Sample records for sediment core analysis

  1. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores.

    PubMed

    Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen

    2017-07-01

    Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

  2. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  3. Estimating selenium removal by sedimentation from the Great Salt Lake, Utah

    USGS Publications Warehouse

    Oliver, W.; Fuller, C.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs in the upper 1-2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL. ?? 2009 Elsevier Ltd.

  4. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  5. MERCURY IN AND FLUXES TO LAKE MICHIGAN SURFICIAL SEDIMENTS

    EPA Science Inventory

    Sediment samples were collected from Lake Michigan between 1994 and 1996. One purpose of the coring was to define the horizontal distribution of mercury in the surficial 1 cm of sediment. When possible the sediments were box cored. Subcores for mercury analysis were sectioned at ...

  6. Investigation of mechanical properties of hydrate-bearing pressure core sediments recovered from the Eastern Nankai Trough using transparent acrylic cell triaxial testing system (TACTT-system)

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Konno, Y.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2014-12-01

    Natural gas hydrate-bearing pressure core sediments have been sheared in compression using a newly developed Transparent Acrylic Cell Triaxial Testing (TACTT) system to investigate the geophysical and geomechanical behavior of sediments recovered from the deep seabed in the Eastern Nankai Trough, the first Japanese offshore production test region. The sediments were recovered by hybrid pressure core system (hybrid PCS) and pressure cores were cut by pressure core analysis tools (PCATs) on board. These pressure cores were transferred to the AIST Hokkaido centre and trimmed by pressure core non-destructive analysis tools (PNATs) for TACTT system which maintained the pressure and temperature conditions within the hydrate stability boundary, through the entire process of core handling from drilling to the end of laboratory testing. An image processing technique was used to capture the motion of sediment in a transparent acrylic cell, and digital photographs were obtained at every 0.1% of vertical strain during the test. Analysis of the optical images showed that sediments with 63% hydrate saturation exhibited brittle failure, although nonhydrate-bearing sediments exhibited ductile failure. In addition, the increase in shear strength with hydrate saturation increase of natural gas hydrate is in agreement with previous data from synthetic gas hydrate. This research was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program by the Ministry of Economy, Trade and Industry (METI).

  7. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Campredon, R.; Abrao, J. J.; Bernat, M.; Latouche, C.

    1994-06-01

    In the last decade, the Atlantic coast of south-eastern Brazil has been affected by increasing deforestation and anthropogenic effluents. Sediments in the coastal lagoons have recorded the process of such environmental change. Thirty-seven sediment samples from three cores in Piratininga Lagoon, Rio de Janeiro, were analyzed for their major components and minor element concentrations in order to examine geochemical characteristics and the depositional environment and to investigate the variation of heavy metals of environmental concern. Two multivariate analysis methods, principal component analysis and cluster analysis, were performed on the analytical data set to help visualize the sample clusters and the element associations. On the whole, the sediment samples from each core are similar and the sample clusters corresponding to the three cores are clearly separated, as a result of the different conditions of sedimentation. Some changes in the depositional environment are recognized using the results of multivariate analysis. The enrichment of Pb, Cu, and Zn in the upper parts of cores is in agreement with increasing anthropogenic influx (pollution).

  8. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    EPA Science Inventory

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  9. Identifying sediment discontinuities and solving dating puzzles using monitoring and palaeolimnological records

    NASA Astrophysics Data System (ADS)

    Dong, Xuhui; Sayer, Carl D.; Bennion, Helen; Maberly, Stephen C.; Yang, Handong; Battarbee, Richard W.

    2016-12-01

    Palaeolimnological studies should ideally be based upon continuous, undisturbed sediment sequences with reliable chronologies. However for some lake cores, these conditions are not met and palaeolimnologists are often faced with dating puzzles caused by sediment disturbances in the past. This study chooses Esthwaite Water from England to illustrate how to identify sedimentation discontinuities in lake cores and how chronologies can be established for imperfect cores by correlation of key sediment signatures in parallel core records and with long-term monitoring data (1945-2003). Replicated short cores (ESTH1, ESTH7, and ESTH8) were collected and subjected to loss-on-ignition, radiometric dating (210Pb, 137Cs, and 14C), particle size, trace metal, and fossil diatom analysis. Both a slumping and a hiatus event were detected in ESTH7 based on comparisons made between the cores and the long-term diatom data. Ordination analysis suggested that the slumped material in ESTH7 originated from sediment deposited around 1805-1880 AD. Further, it was inferred that the hiatus resulted in a loss of sediment deposited from 1870 to 1970 AD. Given the existence of three superior 14C dates in ESTH7, ESTH1 and ESTH7 were temporally correlated by multiple palaeolimnological proxies for age-depth model development. High variability in sedimentation rates was evident, but good agreement across the various palaeolimnological proxies indicated coherence in sediment processes within the coring area. Differences in sedimentation rates most likely resulted from the natural morphology of the lake basin. Our study suggests that caution is required in selecting suitable coring sites for palaeolimnological studies of small, relatively deep lakes and that proximity to steep slopes should be avoided wherever possible. Nevertheless, in some cases, comparisons between a range of contemporary and palaeolimnological records can be employed to diagnose sediment disturbances and establish a chronology.

  10. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.

  11. Barium and calcium analyses in sediment cores using µ-XRF core scanners

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Çaǧatay, Namık; Genç, S. Can; Eriş, K. Kadir; Sarı, Erol; Uçarkus, Gülsen

    2017-04-01

    Barium and Ca are used as proxies for organic productivity in paleooceanographic studies. With its heavy atomic weight (137.33 u), barium is easily detectable in small concentrations (several ppm levels) in marine sediments using XRF methods, including the analysis by µ-XRF core scanners. Calcium has an intermediate atomic weight (40.078 u) but is a major element in the earth's crust and in sediments and sedimentary rocks, and hence it is easily detectable by µ-XRF techniques. Normally, µ-XRF elemental analysis of cores are carried out using split half cores or 1-2 cm thich u-channels with an original moisture. Sediment cores show variation in different water content (and porosity) along their length. This in turn results in variation in the XRF counts of the elements and causes error in the elemental concentrations. We tried µ-XRF elemental analysis of split half cores, subsampled as 1 cm thick u-channels with original moisture and 0.3 mm-thin film slices of the core with original wet sample and after air drying with humidity protector mylar film. We found considerable increase in counts of most elements, and in particular for Ba and Ca, when we used 0.3 mm thin film, dried slice. In the case of Ba, the counts increased about three times that of the analysis made with wet and 1 cm thick u-channels. The higher Ba and Ca counts are mainly due to the possible precipitation of Ba as barite and Ca as gypsum from oxidation of Fe-sulphides and the evaporation of pore waters. The secondary barite and gypsum precipitation would be especially serious in unoxic sediment units, such as sapropels, with considerable Fe-sulphides and bio-barite.It is therefore suggested that reseachers should be cautious of such secondary precipitation on core surfaces when analyzing cores that have long been exposed to the atmospheric conditions.

  12. Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments

    NASA Astrophysics Data System (ADS)

    Han, D.; Nam, S. I.

    2017-12-01

    Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).

  13. Trace element fluxes during the last 100 years in sediment near a nuclear power plant

    NASA Astrophysics Data System (ADS)

    Bojórquez-Sánchez, S.; Marmolejo-Rodríguez, A. J.; Ruiz-Fernández, A. C.; Sánchez-González, A.; Sánchez-Cabeza, J. A.; Bojórquez-Leyva, H.; Pérez-Bernal, L. H.

    2017-11-01

    The Salada coastal lagoon is located in Veracruz (Mexico) near the Laguna Verde Nuclear Power Plant (LVNPP). Currently, the lagoon receives the cooling waters used in the LVNPP. To evaluate the fluxes and mobilization of trace elements due to human activities in the area, two sediment cores from the coastal flood plains of Salada Lagoon were analysed. Cores were collected using PVC tubes. Sediments cores were analysed every centimetre for dating (210Pb by alpha detector) and trace metal analysis using ICP-Mass Spectrometry. The dating of both sediment cores covers the period from 1900 to 2013, which includes the construction of the LVNPP (1970's). The Normalized Enrichment Factor shows enrichment of Ag, As and Cr in both sediment cores. These enrichments correspond to the extent of mining activity (which reached a maximum in the 1900's) and to the geological setting of the coastal zone. The profiles of the element fluxes in both sediment cores reflected the construction and operation of the LVNPP; however, the elements content did not show evidence of pollution coming from the LVNPP.

  14. Quantity of dates trumps quality of dates for dense Bayesian radiocarbon sediment chronologies - Gas ion source 14C dating instructed by simultaneous Bayesian accumulation rate modeling

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.

    2016-12-01

    Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.

  15. SedCT: MATLAB™ tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.

    2017-08-01

    Computed tomography (CT) of sediment cores allows for high-resolution images, three-dimensional volumes, and down core profiles. These quantitative data are generated through the attenuation of X-rays, which are sensitive to sediment density and atomic number, and are stored in pixels as relative gray scale values or Hounsfield units (HU). We present a suite of MATLAB™ tools specifically designed for routine sediment core analysis as a means to standardize and better quantify the products of CT data collected on medical CT scanners. SedCT uses a graphical interface to process Digital Imaging and Communications in Medicine (DICOM) files, stitch overlapping scanned intervals, and create down core HU profiles in a manner robust to normal coring imperfections. Utilizing a random sampling technique, SedCT reduces data size and allows for quick processing on typical laptop computers. SedCTimage uses a graphical interface to create quality tiff files of CT slices that are scaled to a user-defined HU range, preserving the quantitative nature of CT images and easily allowing for comparison between sediment cores with different HU means and variance. These tools are presented along with examples from lacustrine and marine sediment cores to highlight the robustness and quantitative nature of this method.

  16. Historical ecology of the northern Adriatic Sea: Field methods and coring device

    NASA Astrophysics Data System (ADS)

    Haselmair, Alexandra; Gallmetzer, Ivo; Tomasovych, Adam; Stachowitsch, Michael; Zuschin, Martin

    2014-05-01

    For an ongoing study on the historical ecology of the northern Adriatic Sea, the objective was to retrieve a high number of sediment cores at seven sampling stations spread across the entire basin. One set of cores is intended for sediment analyses including radiometric Pb-sediment-dating, grain size, TOC, TAC and heavy metal analyses. The other set of cores delivered enough shelly remains of endo- or epibenthic hard part producers (e.g. molluscs, crustaceans, echinoderms) to enable the reconstruction of death assemblages in core layers from top to bottom. The down-core changes of such assemblages record ecological shifts in a marine environment that has endured strong human impacts over several centuries. A 1.5 m-long core could, according to the available sedimentation data for the area, cover up to 2000 or even more years of ecological history. The coring method had to meet the following requirements: a) deliver 1.5-m-long cores from different sediment settings (mud to sand, reflecting a wide range of benthic habitats in the northern Adriatic); b) enable quick and easy deployment to ensure that multiple cores can be taken at the individual sampling stations within a short time; c) be relatively affordable and allow handling by the researchers themselves, potentially using a small vessel in order to further contain the operating costs. Two types of UWITEC™ piston corers were used to meet these requirements. A model with 90 mm of diameter (samples for sediment analysis) and another one with 160 mm, specifically designed to obtain the large amount of material needed for shell analysis, successfully delivered a total of 54 cores. The device consists of a stabilizing tripod and the interchangeable coring cylinders. It is equipped with a so-called hammer action that makes it possible, at least for the smaller cylinder, to penetrate even harder sediments. A closing mechanism of the corer retains the sediment in the cylinder upon extraction; it works either automatically through hydraulic pressure once the final core-length is reached, or can be triggered manually anytime from the surface using a connected hose and water pump. The whole coring device weighs less than 300 kg and can readily be transported in a van. It can easily be assembled, disassembled and operated by two to three persons after a brief training. With a newly designed, very simple and effective slicing device, the cores can be sliced in an upright position directly on board after extraction. This type of corer can be highly recommended for any smaller coring operations on lakes, streams, or at sea.

  17. Distribution and transport of total mercury and methylmercury in mercury-contaminated sediments in reservoirs and wetlands of the Sudbury River, east-central Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.; Breault, Robert F.; Lent, Robert M.

    1999-01-01

    Total mercury and methylmercury were measured in 4 reservoir cores and 12 wetland cores from Sudbury River. The distribution of total mercury and methylmercury in these cores was evaluated to determine the potential for total mercury and methylmercury transport from reservoir and wetlands sediments to the water column. Concentrations of methylmercury were corrected for an analytical artifact introduced during the separation distillation used in the analysis procedure. Corrected methylmercury concentrations correlated with total mercury concentrations in bulk sediment from below the top layers of reservoir and wetland cores; methylmercury concentrations at the top layers of cores were relatively high, however, and were not correlated with total mercury concentrations. Concentrations of methylmercury in pore water were positively correlated with methylmercury concentrations in the bulk sediment. High concentrations of total mercury and methylmercury in sediment (73 and 0.047 micrograms per gram dry-weight basis, respectively) contributed less to the water column in the reservoir than in the wetlands probably because of burial by low concentration sediment and differences in the processes available to transport mercury from the sediments to the water in the reservoirs, as compared to the wetlands .

  18. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  19. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  20. Inexpensive, easy-to-construct suction coring devices usable from small boats

    USGS Publications Warehouse

    Onuf, Christopher P.; Chapman, Duane C.; Rizzo, William M.

    1996-01-01

    Collection of sediment cores in depths of 1-5 m is difficult with traditional sampling gear. Here we describe three suction coring devices constructed with readily available plumbing supplies and parts easily made from acrylic plastic and silicone sealant. The samplers have been used successfully in sediments ranging from coarse sands and shell hash to muds, highly organic deposits, and dense clays. Successful applications have ranged from contaminants analysis, toxicity testing, seagrass mapping, and assessment of sediment-microfloral interactions to sampling the infauna of surf-swept beaches.

  1. Procedures for Handling and Chemical Analysis of Sediment and Water Samples,

    DTIC Science & Technology

    1981-05-01

    silts. Particularly suitable for studies of the sediment/ water interface, for studies on depositonal sediment structures. Al pi ne- ravity Cores of 2 m...adverse water quality impacts would occur. Elemental partitioning or sedimentation fractionation studies are the most complex of the tests considered...8217 water %nd blend the core or dredge sample. Place a{js roximalel-i 00 cc of’ the blended sample in an oxygen-free, poly - ca rbor’~ [ ’-l centrifuge bottle

  2. Analysis of archaeal communities in Gulf of Mexico dead zone sediments.

    EPA Science Inventory

    Sediments may contribute significantly to Louisiana continental shelf “dead zone” hypoxia but limited information hinders comparison of sediment biogeochemistry between norm-oxic and hypoxic seasons. Dead zone sediment cores collected during hypoxia (September 2006) had higher l...

  3. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    PubMed

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  4. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  5. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina

    2015-03-01

    The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.

  6. Assessing Sedimentation Issues Within Aging Flood Control Reservoirs in Oklahoma

    NASA Astrophysics Data System (ADS)

    Bennet, Sean J.; Cooper, Charles M.; Ritchie, Jerry C.; Dunbar, John A.; Allen, Peter M.; Caldwell, Larry W.; McGee, Thomas M.

    2002-10-01

    Since 1948, the USDA-NRCS has constructed nearly 11,000 flood control dams across the United States, and many of the reservoirs are rapidly filling with sediment. To rehabilitate these structures, the impounded sediment must be assessed to determine the volume of accumulated sediment and the potential hazard this sediment may pose if reintroduced to the environment. An assessment of sedimentation issues within two reservoirs, Sugar Creek No. 12, Hinton, Oklahoma, and Sergeant Major No. 4, Cheyenne, Oklahoma, is presented. Sediment cores obtained using a vibracoring system were composed of alternating layers of gravel, sand, silt, and clay. Stratigraphic analysis coupled with 137Cs dating techniques enabled the discrimination of pre-construction sediment from post-construction deposition. An acoustic profiling system was unencumbered by the relatively shallow water depth at Sugar Creek No. 12 and the seismic horizons agreed well with the sediment core data. Total sediment volume determined from the acoustic survey and the sediment core data for comparable areas differed by only 1.4 percent. The seismic profiling system worked well in the relatively deeper lake of Sergeant Major No. 4 and showed good correspondence to the collected core data. Detailed chemical analyses showed that overall sediment quality was good at both locations and that chemical composition was spatially invariant. Implementation of these techniques will aid action agencies such as the USDA-NRCS in their assessment and effective management of aging flood control reservoirs.

  7. Dynamics of sediments along with their core properties in the Monastir-Bekalta coastline (Tunisia, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Khiari, Nouha; Atoui, Abdelfattah; Khalil, Nadia; Charef, Abdelkrim; Aleya, Lotfi

    2017-10-01

    The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay shore (from 0 to 2 m depth), the bottom is covered by medium sand. Sediment transport is noted along the coast; from north to south and from south to north, caused by longshore drift and a rip current in the middle of the bay. These two currents are generated by wind and swell, especially by north to northeast waves which transport the finest sediment. Particle size analysis of bottom sediment indicates a mean grain size ranging from coarse to very fine sands while vertical distribution of grain size tends to decrease from surface to depth. The increase in particle size of sediment cores may be due to the coexistence of terrigenous inputs along with the sedimentary transit parallel to the coast due to the effect of longshore drift. Mineralogical analysis shows that Monastir's coastal sands and bottom sediment are composed of quartz, calcite, magnesium calcite, aragonite and hematite. The existence of a low energy zone with potential to accumulate pollutants indicates that managerial action is necessary to help preserve Monastir Bay.

  8. Benthic macrofaunal colonization patterns and preservation of laminated sediments: Observations in an extreme coastal basin environment in the lower Gulf of California

    NASA Astrophysics Data System (ADS)

    Herguera, J.; Paull, C. K.; Anderson, K.; Gwiazda, R.; Lundsten, E. M.; Kundz, L.; Edwards, B. D.; McGann, M. L.

    2012-12-01

    New observations and cores obtained with the ROV Doc Ricketts operated from the RV/Western Flyer provide a glimpse into a macrofauna barren sea-floor where laminated sediments are known to accumulate on the sea-floor of Alfonso Basin. This basin, located north of La Paz Bay, Baja California, is known to be an important repository of laminated sediments due to a combination of the relatively high input of terrigenous sediments brought in by summer rains, a moderate to high export productivity from its surface waters, and the very low oxygen concentrations at depth bathed by tropical subsurface waters. These laminated sediments are unique repositories of paleoceanographic and paleoclimatic information for its very high resolution records of past conditions comparable to ice core, tree ring, coral and cave records although spanning continuously much further back in time. However, the paleoceanographic community rarely has had the opportunity to visualize the seafloor surface where these sediments are accumulating and examine the biological abundance patterns in these extreme environments. Here we will show results from ROV Doc Ricketts quantitative video transects providing benthic faunal abundance patterns on the seafloor in these highly oxygen depleted bottom waters. These observations are further compared with the underlying stratigraphy. A coring system carried on the ROV allowed us to replicate cores and to collect a transect of 5 closely spaced cores to evaluate the horizontal extent of the observed variability down-core. We will also show some preliminary results from x-radiographs showing the nature of the laminations and its sediment composition based on elemental analysis on organic carbon, carbonate and biogenic opal analysis. New XRF results from a box core will be used to calibrate its terrigenous components with the historical rainfall record and evaluate its potential to reconstruct summer precipitation patterns in this region.

  9. Methodological issues and preliminary results from a combined sediment fingerprinting and radioisotope dating approach to explore changes in sediment sources with land-use change in the Brantian Catchment, Borneo.

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Higton, Sam; Marshall, Jake; Bidin, Kawi; Blake, William; Nainar, Anand

    2015-04-01

    This paper reports some methodological issues and early results of a project investigating the erosional impacts of land use changes (multiple selective logging and progressive, partial conversion to oil palm) over the last 25-40 years in the 600km2 Brantian river catchment in Sabah, Borneo. A combined sediment fingerprinting and radioisotope dating approach is being applied to sediment cores taken in stream hierarchical fashion across the intermediate catchment scale. Changes in sediment sources and sedimentation rates over time can be captured by changes in the relative importance of geochemical elements with depth in downstream sediment cores, which in turn can be linked to parallel changes in upstream cores by the application of unmixing models and statistical techniques. Radioisotope analysis of the sediment cores allows these changes to be dated and sedimentation rates to be estimated. Work in the neighbouring Segama catchment had successfully demonstrated the potential of such an approach in a rainforest environment (Walsh et al. 2011). The paper first describes steps taken to address methodological issues. The approach relies on taking continuous sediment cores which have aggraded progressively over time and remain relatively undisturbed and uncontaminated. This issue has been tackled (1) through careful core sampling site selection with a focus on lateral bench sites and (2) deployment of techniques such as repeat-measurement erosion bridge transects to assess the contemporary nature of sedimentation to validate (or reject) candidate sites. The issue of sediment storage and uncertainties over lag times has been minimised by focussing on sets of above- and below-confluence sites in the intermediate zone of the catchment, thus minimising sediment transit times between upstream contributing and downstream destination core sites. This focus on the intermediate zone was also driven by difficulties in finding suitable core sites in the mountainous headwaters area due to the prevalence of steep, incised channels without even narrow floodplains. Preliminary results are reported from (1) a field visit to investigate potential sampling sites in July 2014 and (2) initial analysis of a sediment core at a promising lateral bench site. Marked down-profile geochemistry changes of the core indicate a history of phases of high deposition and lateral growth of the channel caused by mobilisation of sediment linked to logging and clearance upstream. Recent channel bed degradation suggests the system has been adjusting a decline in sediment supply with forest recovery since logging in 2005, but a renewed sedimentation phase heralded by > 10 cm deposition at the site in a flood in July 2014 appears to have started linked to partial forest clearance for oil palm. These preliminary results support the ability of a combined fingerprinting and dating approach to reflect the spatial history of land-use change in a catchment undergoing disturbance. Walsh R. P. D. , Bidin K., Blake W.H., Chappell N.A., Clarke M.A., Douglas I., Ghazali R., Sayer A.M., Suhaimi J., Tych W. & Annammala K.V. (2011) Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change. Philosophical Transactions of the Royal Society B, 366, 3340-3353.

  10. Investigation of Sediment Pathways and Concealed Sedimentological Features in Hidden River Cave, Kentucky

    NASA Astrophysics Data System (ADS)

    Feist, S.; Maclachlan, J. C.; Reinhardt, E. G.; McNeill-Jewer, C.; Eyles, C.

    2016-12-01

    Hidden River Cave is part of a cave system hydrogeologically related to Mammoth Cave in Kentucky and is a multi-level active cave system with 25km of mapped passages. Upper levels experience flow during flood events and lower levels have continuously flowing water. Improper industrial and domestic waste disposal and poor understanding of local hydrogeology lead to contamination of Hidden River Cave in the early 1940s. Previously used for hydroelectric power generation and as a source of potable water the cave was closed to the public for almost 50 years. A new sewage treatment plant and remediation efforts since 1989 have improved the cave system's health. This project focuses on sedimentological studies in the Hidden River Cave system. Water and sediment transport in the cave are being investigated using sediment cores, surface sediment samples and water level data. An Itrax core scanner is used to analyze sediment cores for elemental concentrations, magnetic susceptibility, radiography, and high resolution photography. Horizons of metal concentrations in the core allow correlation of sedimentation events in the cave system. Thecamoebian (testate amoebae) microfossils identified in surface samples allow for further constraint of sediment sources, sedimentation rates, and paleoclimatic analysis. Dive recorders monitor water levels, providing data to further understand the movement of sediment through the cave system. A general time constraint on the sediment's age is based on the presence of microplastic in the surface samples and sediment cores, and data from radiocarbon and lead-210 dating. The integration of various sedimentological data allows for better understanding of sedimentation processes and their record of paleoenvironmental change in the cave system. Sediment studies and methodologies from this project can be applied to other karst systems, and have important applications for communities living on karst landscapes and their water management policies.

  11. Surface (sea floor) and near-surface (box cores) sediment mineralogy in Baffin Bay as a key to sediment provenance and ice sheet variations

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2011-01-01

    To better understand the glacial history of the ice sheets surrounding Baffin Bay and to provide information on sediment pathways, samples from 82 seafloor grabs and core tops, and from seven box cores were subjected to quantitative X-ray diffraction weight percent (wt.%) analysis of the 2000 m) all show an abrupt drop in calcite wt.% (post-5 cal ka BP?) following a major peak in detrital carbonate (mainly dolomite). This dolomite-rich detrital carbonate (DC) event in JR175BC06 is possibly coeval with the Younger Dryas cold event. Four possible glacial-sourced end members were employed in a compositional unmixing algorithm to gain insight into down core changes in sediment provenance at the deep central basin. Estimates of the rates of sediment accumulation in the central basin are only in the range of 2 to 4 cm/cal ka, surprisingly low given the glaciated nature of the surrounding land.

  12. Late Holocene sedimentation in coastal areas of the northwestern Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Colizza, Ester; Finocchiaro, Furio; Kuhn, Gerhard; Langone, Leonardo; Melis, Romana; Mezgec, Karin; Severi, Mirko; Traversi, Rita; Udisti, Roberto; Stenni, Barbara; Braida, Martina

    2013-04-01

    Sediment cores and box cores collected in two coastal areas of the northwestern Ross Sea (Antarctica) highlight the possibility of studying the Late Holocene period in detail. In this work we propose a study on two box cores and two gravity cores collected in the Cape Hallett and Wood Bay areas during the 2005 PNRA oceanographic cruise. The two sites are feed by Eastern Antarctic Ice Shelf (EAIS) and previous studies have highlighted a complex postglacial sedimentary sequence, also influenced by local morphology. This study is performed within the framework of the PNRA-ESF PolarCLIMATE HOLOCLIP (Holocene climate variability at high-southern latitudes: an integrated perspective) Project. The data set includes: magnetic susceptibility, X-ray analyses, 210Pb, 14C dating, diatoms and foraminifera assemblages, organic carbon, and grain-size analyses. Furthermore XRF core scanner analyses, colour analysis from digital images, and major, minor and trace element concentration analyses (ICP-AES) are performed. Data show that the box core and upper core sediments represent a very recent sedimentation in which it is possible to observe the parameter variability probably linked to climate variability/changes: these variation will be compared with isotopic record form ice cores collected form the same Antarctic sector.

  13. Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992-2001

    USGS Publications Warehouse

    Van Metre, Peter; Wilson, Jennifer T.; Fuller, Christopher C.; Callender, Edward; Mahler, Barbara J.

    2004-01-01

    The U.S. Geological Survey Reconstructed Trends National Synthesis study collected sediment cores from 56 lakes and reservoirs between 1992 and 2001 across the United States. Most of the sampling was conducted as part of the National Water-Quality Assessment (NAWQA) Program. The primary objective of the study was to determine trends in particle-associated contaminants in response to urbanization; 47 of the 56 lakes are in or near one of 20 U.S. cities. Sampling was done with gravity, piston, and box corers from boats and push cores from boats or by wading, depending on the depth of water and thickness of sediment being sampled. Chemical analyses included major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, cesium-137, and lead-210. Age-dating of the cores was done on the basis of radionuclide analyses and the position of the pre-reservoir land surface in the reservoir and, in a few cases, other chemical or lithologic depth-date markers. Dates were assigned in many cores on the basis of assumed constant mass accumulation between known depth-date markers. Dates assigned were supported using a variety of other date markers including first occurrence and peak concentrations of DDT and polychlorinated biphenyls and peak concentration of lead. A qualitative rating was assigned to each core on the basis of professional judgment to indicate the reliability of age assignments. A total of 122 cores were collected from the 56 lakes and age dates were assigned to 113 of them, representing 54 of the 56 lakes. Seventy-four of the 122 cores (61 percent) received a good rating for the assigned age dates, 28 cores (23 percent) a fair rating, and 11 cores (9 percent) a poor rating; nine cores (7 percent) had no dates assigned. An analysis of the influence of environmental factors on the apparent quality of age-dating of the cores concluded that the most important factor was the mass accumulation rate (MAR) of sediment: the greater the MAR, the better the temporal discretization in the samples and the less important the effects of postdepositional sediment disturbance. These age-dated sediment cores provide the basis for local-, regional-, and national-scale interpretations of water-quality trends.

  14. Sedimentary processes on the Mekong subaqueous delta: Clay mineral and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Xue, Zuo; Paul Liu, J.; DeMaster, Dave; Leithold, Elana L.; Wan, Shiming; Ge, Qian; Nguyen, Van Lap; Ta, Thi Kim Oanh

    2014-01-01

    Sedimentary processes on the inner Mekong Shelf were investigated by examining the characteristics of sediments sampled in gravity cores at 15 locations, including grain size, clay mineralogy, sediment accumulation rates, and the elemental and stable carbon isotopic composition of organic matter (atomic C/N ratios and δ13C). Deltaic deposits exhibit contrasting characteristics along different sides of the delta plain (South China Sea, SCS hereafter, to the east and Gulf of Thailand, GOT hereafter, to the west) as well as on and off the subaqueous deltaic system. On one hand, cores recovered from the subaqueous delta in the SCS/GOT are consisted of poorly/well sorted sediments with similar/different clay mineral assemblage with/from Mekong sediments. Excess 210Pb profiles, supported by 14C chronologies, indicate either "non-steady" (SCS side) or "rapid accumulation" (GOT side) processes on the subaqueous delta. The δ13C and C/N ratio indicate a mixture of terrestrial and marine-sourced organic matter in the deltaic sediment. On the other hand, cores recovered from areas with no deltaic deposits or seaward of the subaqueous delta show excess 210Pb profiles indicating "steady-state" accumulation with a greater proportion of marine-sourced organic matter. Core analysis's relevance with local depositional environment and previous acoustic profiling are discussed.

  15. Planktic foraminifer census data from Northwind Ridge Core 5, Arctic Ocean

    USGS Publications Warehouse

    Foley, Kevin M.; Poore, Richard Z.

    1991-01-01

    The U.S. Geological Survey recovered 9 piston cores from the Northwind Ridge in the Canada Basin of the Arctic Ocean from a cruise of the USCGC Polar Star during 1988. Preliminary analysis of the cores suggests sediments deposited on Northwind Ridge preserve a detailed record of glacial and interglacial cycles for the last few hundred-thousand to one million years. This report includes quantitative data on foraminifers and selected sediment size-fraction data in samples from Northwind Ridge core PI-88AR P5.

  16. The Characteristics of Turbidite Beds of Southwest Ryukyu Trench Floor: A new Approach From the X-ray Fluorescence Core Scanning Analysis

    NASA Astrophysics Data System (ADS)

    Hsiung, K. H.; Kanamatsu, T.; Ikehara, K.; Usami, K.; Saito, S.; Murayama, M.

    2017-12-01

    The southwest Ryukyu Trench near Taiwan is an ideal place for source-to-sink studies based on the distinctive sediment transport route between the terrestrial sediment source in Taiwan and the marine sink in the Ryukyu Trench. Using the bathymetric and seismic reflection data, we develop a sediment transport routes for understanding the ultimate sink of the southwest Ryukyu Trench floor. The southwest Ryukyu Trench floor can be regarded as the most distal depositional basin and isolated from the Ryukyu forearc basins. In addition, part of sediment from the proximal sources of the Ryukyu Islands and Yaeyama accretionary prism could be transported to the trench floor. We collected the piston core, PC04, from the southwest Ryukyu Trench floor of 6,147 m water depth in 3.23 m core length from cruise KR15-18, 2015. The coring site locates behind the natural levee of an obvious channel in the Ryukyu trench floor. The PC04 is composed of gray silty clay interbedded with numerous silt layers. Most of the silt layers are less than 2 cm in thickness. Based upon the core observation, X-ray fluorescence core scanning analysis and 14C age determinations, thirty-seven individual and thin beds were determined as turbidites. The results of X-ray fluorescence core scanning analysis provide continuous and high-resolution (1.0 mm of each point) assessment of relative change in the elemental ratios. Ca/Fe is a proxy for the terrigenous component of the sediment, indicating the High Ca and low Fe of each turbidite layers. Zr/Rb ratios of the marine sediments commonly used in the reflection of the original grain size variation. A large part of deep-sea turbidite beds are characterized by high Ca/Fe and Zr/Rb ratio values. These turbidite beds can be linked spatially over a distance of ˜200 km via submarine canyons within the Taiwan orogen. However, it is difficult to be linked temporally to certain events.

  17. Patterns in bacterial and archaeal community structure and diversity in western Beaufort Sea sediments and waters

    NASA Astrophysics Data System (ADS)

    Hamdan, L. J.; Sikaroodi, M.; Coffin, R. B.; Gillevet, P. M.

    2010-12-01

    A culture-independent phylogenetic study of microbial communities in water samples and sediment cores recovered from the Beaufort Sea slope east of Point Barrow, Alaska was conducted. The goal of the work was to describe community composition in sediment and water samples and determine the influence of local environmental conditions on microbial populations. Archaeal and bacterial community composition was studied using length heterogeneity-polymerase chain reaction (LH-PCR) and multitag pyrosequencing (MTPS). Sediment samples were obtained from three piston cores on the slope (~1000m depth) arrayed along an east-west transect and one core from a depth of approximately 2000m. Discrete water samples were obtained using a CTD-rosette from three locations adjacent to piston core sites. Water sample were selected at three discrete depths within a vertically stratified (density) water column. The microbial community in near surface waters was distinct from the community observed in deeper stratified layers of the water column. Multidimensional scaling analysis (MDS) revealed that water samples from mid and deep stratified layers bore high similarity to communities in cores collected in close proximity. Overall, the highest diversity (bacteria and archaea) was observed in a core which had elevated methane concentration relative to other locations. Geochemical (e.g., bulk organic and inorganic carbon pools, nutrients, metabolites) and physical data (e.g. depth, water content) were used to reveal the abiotic factors structuring microbial communities. The analysis indicates that sediment water content (porosity) and inorganic carbon concentration are the most significant structuring elements on Beaufort shelf sedimentary microbial communities.

  18. Uncertainties in historical pollution data from sedimentary records from an Australian urban floodplain lake

    NASA Astrophysics Data System (ADS)

    Lintern, A.; Leahy, P.; Deletic, A.; Heijnis, H.; Zawadzki, A.; Gadd, P.; McCarthy, D.

    2018-05-01

    Sediment cores from aquatic environments can provide valuable information about historical pollution levels and sources. However, there is little understanding of the uncertainties associated with these findings. The aim of this study is to fill this knowledge gap by proposing a framework for quantifying the uncertainties in historical heavy metal pollution records reconstructed from sediment cores. This uncertainty framework consists of six sources of uncertainty: uncertainties in (1) metals analysis methods, (2) spatial variability of sediment core heavy metal profiles, (3) sub-sampling intervals, (4) the sediment chronology, (5) the assumption that metal levels in bed sediments reflect the magnitude of metal inputs into the aquatic system, and (6) post-depositional transformation of metals. We apply this uncertainty framework to an urban floodplain lake in South-East Australia (Willsmere Billabong). We find that for this site, uncertainties in historical dated heavy metal profiles can be up to 176%, largely due to uncertainties in the sediment chronology, and in the assumption that the settled heavy metal mass is equivalent to the heavy metal mass entering the aquatic system. As such, we recommend that future studies reconstructing historical pollution records using sediment cores from aquatic systems undertake an investigation of the uncertainties in the reconstructed pollution record, using the uncertainty framework provided in this study. We envisage that quantifying and understanding the uncertainties associated with the reconstructed pollution records will facilitate the practical application of sediment core heavy metal profiles in environmental management projects.

  19. Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.

    PubMed

    Gonzalez-Fernandez, Oscar; Queralt, Ignacio

    2010-09-01

    Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites.

  20. Geochemical, radiometric, and environmental approaches for the assessment of the intensity and chronology of metal contamination in the sediment cores from Oualidia lagoon (Morocco).

    PubMed

    Mejjad, Nezha; Laissaoui, Abdelmourhit; El-Hammoumi, Ouafa; Fekri, Ahmed; Amsil, Hamid; El-Yahyaoui, Adil; Benkdad, Azzouz

    2018-06-01

    The present study evaluates the distribution of metals over the last 100 years in the Oualidia lagoon by examining their concentrations in the sediment cores. The samples were analyzed by instrumental neutron activation analysis and inductively coupled plasma mass spectrometry. Activities of 210 Pb, 226 Ra, and 137 Cs were determined by gamma-ray spectrometry for establishing the age-depth relationships throughout the sediment cores by applying conventional models. The results indicated that the study area is contaminated by As and Cd revealing a detectable anthropogenic input of occurring metals as a consequence of the continuous development of human activities around the lagoon since 1950. The enrichment factor calculated for each layer of the three cores revealed that the studied sediments present no enrichment by Pb, K, and Mn; minor enrichment by Zn, Cr, Co, Cu, V, and Ni; and a moderately to severe enrichment by As and Cd. The pollution load index values increase from the bottom to the top of cores, and ranged from 0.9 to 2.8, which indicates levels of pollutants ranging from background to relatively high concentrations in the investigated sediments.

  1. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture where, and to what extent, the burrow tubes deviate from the sediment matrix. Future research will correlate changes in variance due to bioturbation to other features indicating ocean temperatures and nutrient flux, such as foraminifera counts and oxygen isotope data.

  2. Texture, mineralogy and geochemistry of the continental slope sediments in front of Los Tuxtlas, Gulf of Mexico, Mexico: implications on weathering, origin and depositional environments

    NASA Astrophysics Data System (ADS)

    Marca-Castillo, M. E.; Armstrong-Altrin, J.

    2017-12-01

    The textural analysis, mineralogy and geochemistry of two sediment cores recovered from the deep water zone of the southwestern part of the Gulf of Mexico ( 1666 and 1672 m water depth) were studied to infer the provenance and depositional behavior. The textural analysis revealed that both cores are dominated by silt, which occupy more than 50% in both samples and the clay occupy 40%. The petrographic analysis revealed remains of biogenic origin sediments and lithic fragments with an angular shape and low sphericity, indicating a low energy environment and therefore a low level of weathering in the sediment, which suggests that the sediments were not affected by transport and derived from a nearby source rock. In both cores quartz fragments were identified; also volcanic lithic and pyroxenes fragments, which are rocks of intermediate composition and are generally associated with the volcanic activity of the continental margins. SEM-EDS studies showed that the analysed samples have concentrations of minerals such as barite, gibbsite, kaolinite, grossular, magnetite, plagioclase and chlorite, which are probably derived from the mainland to the deep sea zone. In the trace element analysis it was observed a low Sc content, while Co, Ni, V and Cu are slightly enriched with respect to the upper continental crust; this enrichment is related to sediments from intermediate sources. The sediments are classified as shale in the log (SiO2 / Al2O3) - log (Fe2O / K2O) diagram. The fine particles of the shale indicate that a deposit occurred as a result of the gradual sedimentation due to relatively non-turbulent currents, which is consistent with the petrographic analysis. The geochemical features of major and trace elements suggest sediments were derived largely from the natural andesite erosion of coastal regions along the Gulf of Mexico. High values of Fe2O3 and MnO are observed in the upper intervals, reflecting the influence of volcanic sediments. The major element discriminant function diagrams indicate the provenance of sediments from a passive margin, which is consistent with the geology of the Gulf of Mexico.

  3. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx

    2009-06-01

    The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.

  4. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    NASA Astrophysics Data System (ADS)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson Aquifer that an important sources of water in the El Paso/Cd. Juraez metroplex. To delineate the boundary between fresh and brackish water from the northern Hueco Bolson Aquifer, we utilize an integrative geochemical, geophysical, and sedimentological approach. The goal of this study is to use geophysical well-log analysis and the water chemical analysis for identifying the changes in the quality of the groundwater. A detailed microgravity survey is utilized to explore the subsurface geological structures that control the conduits and/or barriers of groundwater flow. A detailed geochemical analysis of aquifer samples provide salinity of groundwater that will complement to the subsurface structures obtained from the geophysical study. This fundamental research in developing methods from an integrated approach to estimate aquifer quality can be used as an analog for similar studies in other arid regions.

  5. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  6. Bulk and compound-specific isotope analysis of long-chain n-alkanes from a 85,000 year sediment core from Lake Peten Petén Itzá, Guatemala

    NASA Astrophysics Data System (ADS)

    Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.

    2013-12-01

    Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.

  7. Paleoclimatic investigations during the late Quaternary using gravity core sediments of Lake Hovsgol in Mongolia

    NASA Astrophysics Data System (ADS)

    Cheong, Daekyo; Shin, Seungwon; Park, Yong-Hee; Nam, Seung Il

    2010-05-01

    The Lake Hovsgol is located in northeast Eurasia which is a tectonic lake formed by rifting, and its thick bottom sediments record climatic change of the past. The lake is a suitable site to study a rapid Quaternary climate change. This study includes analysis of smear slides, particle size analysis, data of spectrophotometer and magnetic susceptibility, trace element analysis using XRF core scanner for HS-3, 5 gravity core sediments from the middle southern Lake Hovsgol. HS-3 core sediments were measured for TOC, and HS-5 core was scrutinized for species analysis of ostracods. HS-3 core was obtained at 160 m water depth, and is divided into three sedimentary units. Unit A of HS-3 is characterized by distinct lamination, high sand contents considerably decreasing towards the upper part, and the ostracods are rarely discovered at the upper part of Unit A. Unit B is characterized by weakly lamination, and some ostracods are observed in the lower part, but diatoms are observed in the upper part of Unit B. Also grain size is getting smaller toward the upper part. Unit C consists of fine diatomaceous ooze and contains abundant diatoms. Overall organic contents are high, and lamination with black-colored organic layer is observed in the lower part of Unit C. HS-5 core was obtained at 210 m water depth and is divided into two sedimentary units with faint boundary. Unit A of HS-5 is characterized by lamination and contains abundant diatoms and ostracods. At Unit B, grain size is getting smaller toward the upper part, and occurrence change of ostracods is observed in the upper part. Framboidal pyrite were formed during the diagenesis. Four species of ostracods are observed in the core sediments, i.e. Cytherissa lacustris, Limnocythere inopinate dominate in the lower part, and Candona lepnevae, Leucocythere sp dominates in the upper part. Carbon age dating results show that sediment unit B of HS-5 and unit C of HS-3 containing rare ostracods are similar in age. The reason of low occurrence of ostracods fossils and high content of sand is consistent with that ostracods disappeared as temperature rise or inhabitant change since late LGM. An age of sediment unit B of HS-3 is the Last Deglacial period when organic contents increased obviously and contents of sand decreased as the lake level rose. The change of magnetic susceptibility and Fe/Al, Ca/Al and Si/Al ratio values are observed at 90 cm depth section of HS-3, which indicates that input sediments changed as the lake level fell due to a temporal cooling at Younger Dryas during the Last Deglacial. The age of the sediment unit C of HS-3 is Holocene. At this period, high contents of organic materials were caused by increase of nutrition input because of a thick vegetation cover as temperature rose, and thus diatom blooming. The organic strata containing mica minerals at early Holocene have been formed during fall or stagnation periods of the lake level. We interpreted that those are closely related to the global environmental change.

  8. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    PubMed

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  9. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  10. Quantifying and overcoming bioturbation in marine sediment cores: dual 14C and δ18O analysis on single foraminifera

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan; Metcalfe, Brett; Wacker, Lukas

    2017-04-01

    Marine sediment cores used in palaeoceanography form the basis of our current understanding of past global climate and ocean chemistry. Precision and accuracy of geochronological control in these sediment cores are crucial in unravelling the timing of rapid shifts in palaeoclimate and, ultimately, the interdependency of global climate mechanisms and their causality. Aware of the problems associated with bioturbation (the mixing of ocean sediments by benthic organisms) palaeoceanographers generally aim to retrieve sediment cores from locations with high sediment accumulation rates, thus minimising the influence of bioturbation as much as possible. However, the practice of concentrating only on areas of the ocean floor with high sedimentation accumulation rates has the potential to introduce a geographical bias into our understanding of global palaeoclimate. For example, global time averaged sediment accumulation rates for the ocean floor (excluding continental margins) indicate that vast areas of the ocean floor have sediment accumulation rates less than the recommended minimum advised sediment accumulation rates of 10 cm/ka or greater. Whilst many studies have focussed on quantifying the impact of bioturbation on our understanding of the past, few have attempted to overcome the problems associated with bioturbation. Recent pioneering developments in 14C AMS at the Laboratory of Ion Beam Physics at ETH Zürich have led to the development of the Mini Carbon Dating System (MICADAS). This compact 14C AMS system can be coupled to a carbonate handling system, thus enabling the direct AMS measurement of gaseous samples, i.e. without graphitisation, allowing for the analysis of carbonate samples of <100 μg. Likewise, while earlier isotope ratio mass spectrometry (IRMS) technology required a minimum of 100 μg of carbonate to produce a successful δ18O measurement, more recent advances in IRMS technology have made routine measurements of as little as 5 μg possible. Combining both analytical techniques enables palaeoclimate reconstructions that are independent of depth. Here, we present work on a low sedimentation core ( 2 cm/ka) core in the North Atlantic (core T86-10P, 37° 8.13' N, 29° 59.15' W) on single shells of the benthic species of foraminifera, Cibicidoides wuellerstorfi. Preliminary downcore single specimen 14C data display a large scatter in 14C ages for the various discrete 1 cm depth intervals analysed. In the case of depth intervals where three or more single specimens have been analysed, we find that the standard deviation in 14C age varies between 1210 and 9437 14C yr, with the mean variation for all such discrete depths being 3384 14C yr.

  11. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DOT (DDT+DDD+DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat bogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.

  12. Planktic foraminifer census data from Northwind Ridge cores PI-88-AP P3, PI-88-AR P7 and PI-88-AR P9, Arctic Ocean

    USGS Publications Warehouse

    Foley, Kevin M.; Poore, Richard Z.

    1993-01-01

    The U.S. Geological Survey recovered 9 piston cores from the Northwind Ridge in the Canada Basin of the Arctic Ocean from a cruise of the USCGC Polar Star during 1988. Preliminary analysis of the cores suggests sediments deposited on Northwind Ridge preserve a detailed record of glacial and interglacial cycles for the last few hundred-thousand to one million years. This report includes quantitative data on foraminifers and selected sediment size-fraction data in 98 samples from Northwind Ridge core PI-88AR P3, 51 samples from core PI-88-AR P7 and 117 samples from core PI-88-AR P9.

  13. Methane and Carbon Dioxide Production Rates in Lake Sediments from Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    DeStasio, J.; Halloran, M.; Erickson, L. M.; Varner, R. K.; Johnson, J. E.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.

    2013-12-01

    Ecosystems at high latitudes are undergoing rapid change due to amplified arctic warming. Lakes in these regions are sources of both methane (CH4) and carbon dioxide (CO2) to the atmosphere and will likely be impacted by elevated temperatures. Because of the potential increase in the release of organic carbon due to thawing permafrost, it is believed that methanogenesis rates within neighboring fresh water sediments will display a positive feedback response, by increasing CH4 emission to the atmosphere. We studied CH4 production potential of sediments using cores from three lakes in the Stordalen Mire complex in sub-Arctic, Sweden: Inre Harrsjön, Mellan Harrsjön, and Villasjön. Sediment cores were incubated to determine CO2 and CH4 production rates and were analyzed for CH4 concentrations, dissolved inorganic carbon (DIC) concentrations, total organic carbon (TOC) concentrations, as well as carbon, nitrogen and sulfur content. Our results from the Villasjön cores indicate that CH4 production rates were highest at the same sediment depths as peak dissolved CH4 concentrations, with maximum values between depths of approximately 10cm and 30cm. Additionally, the highest observed CH4 production rates were in sediments from areas within Villasjön known to have the highest rates of CH4 ebullition. CO2 production rates were generally highest within surface sediments ranging from about 4cm to 11cm in depth, with production rates displaying a steady decrease below 11cm. Additionally, observed CO2 production rates correlated with total organic carbon (TOC) concentrations with respect to sediment depth, but displayed no relationship with dissolved inorganic carbon (DIC). Further analysis will be conducted to determine how CH4 and CO2 production characteristics vary between sediment core samples, as well as isotopic analysis of select samples taken from each lake.

  14. A 59-year sedimentary record of metal pollution in the sediment core from the Huaihe River, Huainan, Anhui, China.

    PubMed

    Wang, Jie; Liu, Guijian; Zhang, Jiamei; Liu, Houqi; Lam, Paul K S

    2016-12-01

    An approximately 59-year (1955-2014) sedimentary record of metal elements (Cu, Pb, Zn, Ni, Co, Mn, and Fe) in a sediment core, collected from the Huaihe River, Huainan City, Anhui Province, China, was reconstructed by using 210 Pb geochronology. Copper, Zn, Ni, Co, and Mn evaluated by enrichment factor (EF) indicated minor contamination due to water pollution accidents of the Huaihe River that occurred in 1990s and 2004. Lead presented the most severe pollution among the metals studied, especially during 1957-1974. The use of leaded petrol and atmospheric deposition of coal combustion flue gases could have contributed to Pb contamination. In spite of the general good quality (mean sediment pollution index (SPI) 35.69) of the sediment core evaluated by SPI based on the principal component analysis, worse sediment qualities in the upper section (<6 cm, 2004) were still observed, suggesting intensive human activities causing the increasing concentrations of metals in recent decades.

  15. Molluscan shell communities: a window into the ecological history of the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Gallmetzer, Ivo; Haselmair, Alexandra; Tomasovych, Adam; Stachowitsch, Michael; Zuschin, Martin

    2015-04-01

    The historical ecology approach used in the present study sheds light on the younger ecological history of the northern Adriatic Sea, targeting the period of the last 500 to 1500 years. We focus on down-core changes in molluscan death assemblages, where differences between community structures serve as a proxy for ecological shifts over time. The northern Adriatic Sea, with its densely populated shoreline, is among the most degraded marine ecosystems worldwide and is therefore particularly suited to study ecosystem modification under human pressure. Multiple cores of 1.5 m length and diameters of 90 and 160 mm were taken at seven sampling stations throughout the northern Adriatic Sea, covering different sediment types, nutrient conditions and degrees of exploitation. For the mollusc analyses, the cores were sliced into smaller subsamples and analysed for species composition, abundance, taxonomic similarity, evidence for ecological interactions (i.e., frequencies of drilling predation) and taphonomic condition of shells. Sediment analyses include granulometry and radiometric sediment dating using Pb 210. Sediment age analysis revealed one-order-of-magnitude differences in sedimentation rates between stations (34 mm/yr at the Po delta, Italy, 1.5 mm/yr at Brijuni islands, Croatia). In total, 114 bivalve and 112 gastropod species were recorded. Bivalve assemblages showed significant interregional differences that are strongly correlated with sedimentation rates and sediment composition. Down-core changes in molluscan communities are conspicuous in all cores, particularly in the uppermost core sections. This information, together with radiometric shell dating for selected species, helps to specify the timing of major ecological changes in the past and define pristine benthic communities as references for future conservation and management efforts.

  16. Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis

    USGS Publications Warehouse

    Ortiz, J.D.; Polyak, L.; Grebmeier, J.M.; Darby, D.; Eberl, D.D.; Naidu, S.; Nof, D.

    2009-01-01

    Sediment clay and silt mineral assemblages provide an excellent means of assessing the provenance of fine-grained Arctic sediment especially when a unique mineral assemblage can be tied to specific source areas. The diffuse spectral reflectance (DSR) first derivative measurements and quantitative X-Ray Diffraction (qXRD) on a high-resolution sediment core from the continental slope north of Alaska constrain the sediment mineralogy. DSR results are augmented by measurements on several adjacent cores and compared to surface sediment samples from the northern Alaskan shelf and slope. Using Principal Component Analysis (PCA), we infer that the three leading DSR modes relate to mixtures of smectite + dolomite, illite + goethite, and chlorite + muscovite. This interpretation is consistent with the down core qXRD results. While the smectite + dolomite, and illite + goethite factors show increased variability down core, the chlorite + muscovite factor had highest positive loadings in the middle Holocene, between ca. 6.0 and 3.6??ka. Because the most likely source of the chlorite + muscovite suite in this vicinity lies in the North Pacific, we argue that the oscillations in chlorite + muscovite values likely reflect an increase in the inflow of Pacific water to the Arctic through the Bering Strait. The time interval of this event is associated in other parts of the globe with a non-linear response of the climate system to the decrease in insolation, which may be related to changes in water exchange between the Pacific and Arctic Ocean. ?? 2009 Elsevier B.V.

  17. The Benthic Exchange of O2, N2 and Dissolved Nutrients Using Small Core Incubations.

    PubMed

    Owens, Michael S; Cornwell, Jeffrey C

    2016-08-03

    The measurement of sediment-water exchange of gases and solutes in aquatic sediments provides data valuable for understanding the role of sediments in nutrient and gas cycles. After cores with intact sediment-water interfaces are collected, they are submerged in incubation tanks and kept under aerobic conditions at in situ temperatures. To initiate a time course of overlying water chemistry, cores are sealed without bubbles using a top cap with a suspended stirrer. Time courses of 4-7 sample points are used to determine the rate of sediment water exchange. Artificial illumination simulates day-time conditions for shallow photosynthetic sediments, and in conjunction with dark incubations can provide net exchanges on a daily basis. The net measurement of N2 is made possible by sampling a time course of dissolved gas concentrations, with high precision mass spectrometric analysis of N2:Ar ratios providing a means to measure N2 concentrations. We have successfully applied this approach to lakes, reservoirs, estuaries, wetlands and storm water ponds, and with care, this approach provides valuable information on biogeochemical balances in aquatic ecosystems.

  18. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China.

    PubMed

    Dai, Lijun; Wang, Lingqing; Li, Lianfang; Liang, Tao; Zhang, Yongyong; Ma, Chuanxin; Xing, Baoshan

    2018-04-15

    Heavy metals in lake sediment have become a great concern because their remobilization has frequently occurred under hydrodynamic disturbance in shallow lakes. In this study, heavy metals (Cr, Cu, Cd, Pb, and Zn) concentrations in the surface and core sediments of the largest freshwater lake in China, Poyang Lake, were investigated. Geostatistical prediction maps of heavy metals distribution in the surface sediment were completed as well as further data mining. Based on the prediction maps, the ranges of Cr, Cu, Cd, Pb, and Zn concentrations in the surface sediments of the entire lake were 96.2-175.2, 38.3-127.6, 0.2-2.3, 22.5-77.4, and 72.3-254.4mg/kg, respectively. A self-organizing map (SOM) was applied to find the inner element relation of heavy metals in the sediment cores. K-means clustering of the self-organizing map was also completed to define the Euclidian distance of heavy metals in the sediment cores. The geoaccumulation index (I geo ) for Poyang Lake indicated a varying degree of heavy metal contamination in the surface sediment, especially for Cu. The heavy metal contamination in the sediment profiles had similar pollution levels as those of surface sediment, except for Cd. Correlation matrix mapping and principal component analysis (PCA) were used to support the idea that Cr, Pb, and Zn may be mainly derived from both lithogenic and human activities, such as atmospheric and river inflow transportation, whereas Cu and Cd may be mainly contributed from anthropogenic sources, such as mining activities and fertilizer application. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Historical reconstruction of atmospheric lead pollution in central Yunnan province, southwest China: an analysis based on lacustrine sedimentary records.

    PubMed

    Liu, Enfeng; Zhang, Enlou; Li, Kai; Nath, Bibhash; Li, Yanling; Shen, Ji

    2013-12-01

    Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using (210)Pb and (137)Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios and enrichment factors (EFs=~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m(-2) year(-1) recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.

  20. Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea

    USGS Publications Warehouse

    Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.

    1998-01-01

    Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.

  1. Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (Meeresboden-Bohrgerät)

    NASA Astrophysics Data System (ADS)

    Pape, Thomas; Hohnberg, Hans-Jürgen; Wunsch, David; Anders, Erik; Freudenthal, Tim; Huhn, Katrin; Bohrmann, Gerhard

    2017-11-01

    Pressure barrels for sampling and preservation of submarine sediments under in situ pressure with the robotic sea-floor drill rig MeBo (Meeresboden-Bohrgerät) housed at the MARUM (Bremen, Germany) were developed. Deployments of the so-called MDP (MeBo pressure vessel) during two offshore expeditions off New Zealand and off Spitsbergen, Norway, resulted in the recovery of sediment cores with pressure stages equaling in situ hydrostatic pressure. While initially designed for the quantification of gas and gas-hydrate contents in submarine sediments, the MDP also allows for analysis of the sediments under in situ pressure with methods typically applied by researchers from other scientific fields (geotechnics, sedimentology, microbiology, etc.). Here we report on the design and operational procedure of the MDP and demonstrate full functionality by presenting the first results from pressure-core degassing and molecular gas analysis.

  2. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing.

    PubMed

    Lin, Qi; Liu, Enfeng; Zhang, Enlou; Nath, Bibhash; Shen, Ji; Yuan, Hezhong; Wang, Rong

    2018-02-01

    Atmospheric pollution, one of the leading environmental problems in South and East Asia, and its impact on the terrestrial environmental quality remain poorly understood particularly in alpine areas where both historical and present-day mining and smelting operations might leave an imprint. Here, we reconstructed atmospheric trace metals pollution during the past century using core sediments from a large and deep alpine lake in Southwest China. The implication of in lake and/or in watershed sediment focusing in pollution quantification is discussed by analyzing 15 sediment cores. Factor analysis and enrichment factor indicated Cd, Pb and Sb as the typical pollutants. Distinct peaks of Pb and Sb pollution were observed around the 1920s, but little Pb pollution was detected in recent decades, different from other studies in similar regions. Cadmium pollution was observed until the mid-1980s synchronized with Sb. The distinctive variations in atmospheric trace metal pollution process in Southwest China highlight the regional and sub-regional sources of metal pollutants, which should be primarily attributed to non-ferrous metal smelting emissions. Both natural and anthropogenic metals showed wide concentration ranges though exhibited similar temporal trends in the 15 cores. Spatial variations of anthropogenic metals were influenced by the in-watershed pollutants remobilization, whereas, natural metals were regulated by the detrital materials in the sub-basin. In-lake sediment focusing had little influence on the spatial distributions of all metals, different from the traditional sediment focusing pattern observed in small lakes. Anthropogenic Cd accumulation in sediments ranged from 1.5 to 10.1mgm -2 in a specific core with an average of 6.5mgm -2 for the entire lake, highlighting that a reliable whole-lake pollutant budget requires an analysis of multiple cores. Our study suggests that the management of aquatic ecosystem health should take the remobilization of in-watershed stored pollutants into consideration especially under increasing human perturbation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acquiring Sediment and Element Compositional Changes Based on a Diffuse Reflectance Spectrophotometry Technology from Cores Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Pan, H. J.; Chen, M. T.

    2014-12-01

    Heavy summer monsoon rainfall along with typhoon-induced extreme precipitation cause frequent geological hazards that often threaten the human's safety and property in Taiwan. These geological hazards can be triggered by both natural factors, and/or have become deteriorated by perturbations from more and more human activities ever since few thousand years ago. However, due to the limit of instrumental records for observing long-term environmental changes in Taiwan, few evidence exist for distinguishing the human-induced impacts from natural climate change. Here we report a study on a high quality marine sediment core (MD103264) which were retrieved from the high sedimentation rate area from offshore southwestern Taiwan and present evidence for the long-term climate and possibly human-induced environmental changes since the last glacial. We are using the VIS-NIR Diffuse Reflectance Spectrophotometry (DRS) methods to study the cores. Interpreting the VIS-NIR reflectance spectra through the VARIMAX-rotation, principle component analysis (VPCA) helps conducting rapid and inexpensive measurements for acquiring high-resolution biogenic component, clay, and iron oxide mineral compositional data from the cores. We are also using X-Ray Fluorescence (XRF) analysis, which is also useful in determining the element compositional changes in the core. Our studies aim toward understanding the sediment and element compositional changes that reflect the patterns of changes in precipitation and soil erosion on land since the last glacial to the Holocene, during which the human activities (deforestation, agriculture, and land uses change) may have increased drastically. We will report and interpret the preliminary results of the optical analyses of the core.

  4. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the mechanisms of methane biotransformation.

  5. Chronology from sediment cores collected in southwestern Everglades National Park, Florida

    USGS Publications Warehouse

    Bernhardt, C.E.; Wingard, G.L.; Willard, D.A.; Marot, M.E.; Landacre, B.; Holmes, C.W.

    2013-01-01

    Age model data are presented for 10 cores from the southwestern coastal mangrove zone of Everglades National Park, Florida, collected in Common Era (CE) 2004 and 2005 and used for paleoecological analysis. Carbon-14 (14C), lead-210 (210Pb), cesium-137 (137Cs), radium-226 (226Ra), and pollen biostratigraphic information is included, and age models were generated for 6 of the 10 cores. Age reversals and sediment disturbance prevented construction of age models on the remaining four cores. Four cores present a continuous record of the last 50 to 100 years, making them useful for analyzing the impacts caused by changes in water management in south Florida. These cores are Harney River 2A and Harney River 1A, Shark River 2A, and Roberts River.

  6. Sediment Carbon Accumulation in Southern Latitude Saltmarsh Communities of Tasmania, Australia.

    PubMed

    Ellison, Joanna C; Beasy, Kim M

    2018-05-02

    Carbon sequestration values of wetlands are greatest in their sediments. Northern hemisphere research dominates the earlier saltmarsh carbon sequestration literature, recently augmented by analyses across mainland Australia where species assemblages, catchment histories and environmental settings differ. No previous assessment has been made for Tasmania. Carbon stores and accumulation rates in saltmarsh sediments of the Rubicon estuary, Tasmania, were investigated. Carbon was determined from sediment cores by Elemental Analyser, combined with analysis of organic content and bulk density. Carbon accumulation was determined using short-term and long-term sediment accretion indicators. Results showed carbon densities to be lower than global averages, with variation found between carbon stores of native and introduced species zones. Cores from introduced Spartina anglica indicated a trend of higher sediment carbon percentages relative to cores from native saltmarsh Juncus kraussii and Sarcocornia quinqueflora , and in finer grain sizes. Sediment carbon stock of 30 cm depths was 49.5 Mg C ha −1 for native saltmarsh and 55.5 Mg C ha −1 for Spartina . Carbon percentages were low owing to high catchment inorganic sediment yields, however carbon accumulation rates were similar to global averages, particularly under Spartina . Covering 85% of saltmarsh area in the estuary, Spartina contributes the majority to carbon stores, potentially indicating a previously unrecognized value for this invasive species in Australia.

  7. Mineralogical and Geochemical Analyses of Antarctic Lake Sediments: A Reflectance and Moessbauer Spectroscopy Study with Applications for Remote Sensing on Mars

    NASA Technical Reports Server (NTRS)

    Froeschl, Heinz; Lougear, Andre; Trautwein, Alfred X.; Newton, Jason; Doran, Peter T.; Koerner, Wilfried; Koeberl, Christian; Bishop, Janice (Technical Monitor); DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Lakebottom sediments from the Dry Valleys region of Antarctica have been analyzed here in order to study the influence of water chemistry on the mineralogy and geochemistry of these sediments, as well as to evaluate techniques for remote spectral identification of potential biomarker minerals on Mars. Lakes from the Dry Valleys region of Antarctica have been investigated as possible analogs for extinct lake environments on early Mars. Sediment cores were collected in the present study from perennially ice-covered Lake Hoare in the Taylor Valley. These sediments were taken from a core in an oxic region of the lake and another core in an anoxic zone. Differences between the two cores were observed in the sediment color, Fe(II)/Fe(III) ratio, the presence of pyrite, the abundance of Fe, S and some trace elements, and the C, N and S isotope fractionation patterns. The results of visible-infrared reflectance spectroscopy (0.3-25 microns) Mossbauer spectroscopy (77 and 4 K) and X-ray diffraction are combined to determine the mineralogy and composition of these samples. The sediments are dominated by plagioclase, K-feldspar, quartz and pyroxene. Algal mats grow on the bottom of the lake and organic material has been found throughout the cores. Calcite is abundant in some layers of the aerobic core (shallow region) and pyrite is abundant in some layers of the anaerobic core (deep region). Analysis of the spectroscopic features due to organics and carbonates with respect to the abundance of organic C and carbonate contents was performed in order to select optimal spectral bands for remote identification of these components in planetary regoliths. Carbonate bands near 4 and 6.8 microns (approx.2500 and 1500/cm) were detected for carbonate abundances as low as 0.1 wt.% CO2. Organic features at 3.38, 3.42 and 3.51 microns (2960, 2925 and 2850/cm) were detected for organic C abundances as low as 0.06 wt.% C. The d13C trends show a more complex organic history for the anaerobic sediments than for the aerobic sediments. The biogenic pyrite found in the anaerobic core is associated with lighter d34S values and high organic C levels and could be used as a biomarker mineral for paleolakes on Mars.

  8. Retreat of the Coalescent Greenland and Innuitian Ice Sheets from Nares Strait

    NASA Astrophysics Data System (ADS)

    Jennings, A. E.; Bailey, E.; Oliver, B.; Andrews, J. T.; Prins, M. A.; Troelstra, S.; Stoner, J. S.; Reilly, B. T.; Davies-Walczak, M.; Mix, A. C.

    2015-12-01

    Nares Strait, which forms one of the main connections between the Arctic Ocean and Baffin Bay was blocked by coalescent Innuitian and Greenland ice sheets during the LGM. Nares Strait opened ca. 9000 cal ka BP when the connection between the two ice sheets was finally severed. Our research focuses on the events and processes leading up to the opening of the strait and the response of the glacier and marine systems to establishment of the throughflow. The study at present involves new analysis of two sediment cores: 2001LSSL-163PC from Smith Sound, at the southern end of Nares Strait, and 2001LSSL-079PC from the mouth of Petermann Fjord at the northern end of the strait. X-radiography and core photographs were studied to establish basic lithofacies and stratigraphy. Foraminiferal faunas provide insight into changes in ice margin proximity, Atlantic Water advection and sea-ice conditions and are used to develop the radiocarbon chronologies. Quantitative X-ray diffraction analysis of bulk sediments aids in determining sediment provenance and the establishment of a north to south connection. Grain size analysis allows sediment processes and sedimentary environments, such as iceberg rafting, current deposition, and sub ice-shelf deposition to be evaluated. A radiocarbon date of >50 kyr was obtained from foraminifera in an overconsolidated, gray diamicton in core 163PC. The diamicton is overlain by a red deglacial sequence of barren laminated sediments followed by gray pebbly mud. Two radiocarbon dates submitted from near the base of the pebbly mud constrain the timing of ice retreat from Smith Sound. The chronology of core 079PC indicates that it captures the opening of Nares Strait, but 4 submitted radiocarbon dates will further constrain its chronology. The goal of the work on these two cores is to lay a framework for extensive marine fieldwork to study ice sheet-ocean interactions in the Petermann Glacier in late summer 2015.

  9. Unravelling the Paleoenvironmental and Diagenetic History of Fluviolacustrine Sediments from a Northern Kenya Rift Basin Through Analysis of HSPDP West Turkana-Kaitio Core Material

    NASA Astrophysics Data System (ADS)

    Rabideaux, N. M.; Chaudhary, M. S.; Deocampo, D.; Feibel, C. S.; Cohen, A. S.

    2016-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) collected sediment cores from six rift basins in Ethiopia and Kenya. The goal of HSPDP is to construct high-resolution records of environmental change, and to understand how those changes relate to early human evolution and cultural adaptations. The West Turkana-Kaitio (WTK) site was targeted due to the abundant archeological and paleontological artifacts and fossils discovered around the basin. We conducted XRD and XRF analyses on HSPDP-WTK core material to construct a high-resolution record of paleoenvironmental conditions in the Kenya Rift during the Early Pleistocene ( 1.9-1.35 Ma). Mineralogical and geochemical trends were also used to identify the diagenetic history of fluviolacustrine sediments in the basin. The bulk mineralogy is comprised of mostly detrital feldspars, muscovite, α-quartz, and carbonates. Zeolites are present in intervals throughout the core, possibly suggesting pulses of increased salinity. Oxides and S-bearing minerals are abundant from 100-170 mbs, which may be indicative of redox and or hydrothermal processes in that interval. The lowermost portion of the core contains α- and β-quartz, pyrite and zeolites, suggesting either low-oxygen saline conditions or hydrothermal activity. Oriented clay analysis indicated multiple intervals of diagenesis, with the illitization of smectite related to hydrothermal and or microbial activity. Clay analysis provided evidence for a low degree of illitization in the upper portion of the core, whereas mixed-layered illite-smectite (I/S) contained 30-50% illite proximal to fault breccia and up to 70% illite below the faulted section, indicative of significant alteration in the lowermost portion of the core. Coupled mineralogical and geochemical analysis revealed a complex alteration history in the basin indicated by: 1) the presence of mixed-layer I/S throughout the 216 m core; 2) pronounced alteration proximal to faulting; and 3) authigenic silicates and pyrite in the basal section of the core.

  10. Preliminary report on the Late Pleistocene and Holocene diatoms of Swamp Lake, Yosemite National Park, California, USA

    USGS Publications Warehouse

    Starratt, Scott W.; Anderson, R. Scott

    2013-01-01

    Swamp Lake, Yosemite National Park, is the only known lake in California containing long sequences of varved sediments and thus has the potential to provide a high-resolution record of climate variability. This preliminary analysis of the diatom assemblages from a 947-cm-long composite sediment core (freeze core FZ02–05; 0–67 cm, Livingstone core 02–05; 53–947 cm) shows that the lake has been freshwater, oligotrophic, and circumneutral to alkaline throughout its ~16,000-year-long history. The first sediments deposited in the lake show that the vegetation in the watershed was sparse, allowing organic matter-poor silt and clay to be deposited in the basin. The basin filled quickly to a depth of at least 5 m and remained at least that deep for most of the sediment record. Several short intervals provided evidence of large fluctuations in lake level during the Holocene. The upper 50 cm of the core contains evidence of the Medieval Climate Anomaly and Little Ice Age.

  11. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California

    USGS Publications Warehouse

    Rosenbaum, Joseph; Reynolds, Richard T.; Smoot, Joseph; Meyer, Robert

    2000-01-01

    At Owens Lake, California, paleomagnetic data document the Matuyama/Brunhes polarity boundary near the bottom of a 323-m core (OL-92) and display numerous directional fluctuations throughout the Brunhes chron. Many of the intervals of high directional dispersion were previously interpreted to record magnetic excursions. For the upper ~120 m, these interpretations were tested using the anisotropy of magnetic susceptibility (AMS), which typically defines a subhorizontal planar fabric for sediments deposited in quiet water. AMS data from intervals of deformed core, determined from detailed analysis of sedimentary structures, were compared to a reference AMS fabric derived from undisturbed sediment. This comparison shows that changes in the AMS fabric provide a means of screening core samples for deformation and the associated paleomagnetic record for the adverse effects of distortion. For that portion of core OL-92 studied here (about the upper 120 m), the combined analyses of sedimentary structures and AMS data demonstrate that most of the paleomagnetic features, previously interpreted as geomagnetic excursions, are likely the result of core deformation.

  12. Organic Geochemistry of Sediments in Nearshore Areas of the Mississippi and Atchafalaya Rivers: I. General Organic Characterization

    USGS Publications Warehouse

    Orem, William H.; Rosenbauer, Robert J.; Swarzenski, Peter W.; Lerch, Harry E.; Corum, Margo D.; Bates, Anne L.

    2007-01-01

    This report presents results on the general organic characteristics of sediment cores collected from the coastal zone of the Mississippi River system, including distributions of the important nutrient elements (C, N, P, and S). This was part of a larger study conducted from 2001-2005 to examine the delivery of sediment-associated contaminants to the Gulf of Mexico by the Mississippi River system, funded by the USGS Coastal and Marine Geology Program. Companion reports emphasize organic contaminants (Rosenbauer and others, 2006), and metals (Swarzenski and others, 2006). The level of contamination within the deltaic system of the Mississippi River system was determined through the collection of sediment cores from interdistributary bays, and offshore in the Gulf of Mexico, including the zone of hypoxia. Results provide the basis for reconstructing contaminant inventories from which to develop historic perspectives on nutrient loading and hypoxia, and to better understand how sediment-hosted contaminants either directly or indirectly move through biota and ultimately affect ecosystem health. Concentrations of C, N, P, and S in sediments varied by a factor of 10 between sites, and in down core profiles. Nearshore cores collected in 2001 proved to have erratic downcore C, N, P, and S profiles and sediment deposition rates, suggesting a high energy regime controlled more by variability in river flow rather than by geochemical processes and reactions within the system. These results focused further coring activities further offshore. Atomic C/N ratios suggest that organic matter deposited at all sites is a mix of microbial (algal) and terrestrial (vascular plant) remains, but with algal material dominant. Concentrations of total sulfur in sediments from cores in the zone of hypoxia were often higher than those in nearby zones with oxic water columns. Corresponding atomic C/S ratios were typically lower in sediments from sites in the zone of hypoxia compared to nearby sites with oxic water columns, and thus atomic C/S values may be useful as a proxy for identifying sites impacted by hypoxic conditions in the water column and for examining historical trends in hypoxia. At one site examined in this study, maximum hypoxic conditions were observed in the mid 1960's. The organic elemental composition (C, N, P, and S) of sediments was also used to guide sample selection for contaminant analysis, and to normalize the contaminant data to organic C content of the sediments. Dissolved hydrocarbon gases in sediments showed a dominance of methane, but identifiable concentrations of ethane and hexane, and trace concentrations of propane, butane, and pentane were also detected. All dissolved gases except hexane were dominated by 'bound' gas, gas released only after agitation of the sediment in a blender. Hexane, in contrast was observed mostly as free gas, determined by headspace analysis.

  13. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.

    2017-12-01

    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in drilling mud. Understanding why contamination occurs will improve the coring process and ensure maximum recovery in the future. The XRD data also show the presence of 7-angstrom clay minerals, most likely chlorite and serpentine, but more analysis is required in order to verify the identification and to establish relative abundances of each mineral.

  14. Autigenic and Anthropogenic Uranium in the Marine Sediments of the Gulf of California in Front of Santa Rosalia Mining District

    NASA Astrophysics Data System (ADS)

    Choumiline, K.; Rodríguez-Figueroa, G.; Shumilin, E.; Sapozhnikov, D.

    2007-05-01

    To verify the possibilities of U enrichments in the marine sedimentary environment of the eastern sector of the central Gulf of Califoria (GC), eleven sediment cores were collected in front of the Santa Rosalia mining region, peninsula of Baja California. Uranium and some other trace element contents in sliced core layers, dried and homogenized, were determined using instrumental neutron activation analysis. Average total U contents in sediments of five cores collected in the open GC in front of Santa Rosalía at sites with water depths from 265 m to 1030 m and in the Guaymas Basin with 2019 m, ranged from 1.36±0.26 mg kg-1 (Guaymas Basin) to 9.31±3.03 mg kg-1 (SR63 core, depth 630 m). To distinguish non-lithogenic U from the lithogenic one, the normalization of total U contents to the concentrations of Sc in the samples was used. That because this element is a reliable indicator of crustal materials, mainly aluminosilicates in the marine sediments. The relative contribution of non-lithogenic (authigenic) U varied from 49.8±3 % (Guaymas Basin) to 84.2±8.2 % (SR62 core) of the total U content in the sediments of the open central GC. Surprisingly, in three sediment cores from the coastal zone adjacent to the town of Santa Rosalía in water depth range 3-6 m very high concentrations of total U were found, ranging from 54.2±7.3 mg kg-1 (SR4 core) to 110±13 mg kg-1 (SR2 core) and exceeding not only U average abundance in the earth´s crust (2.7 mg kg-1), but also its levels found for SR62 core, as well as those reported for natural enrichments of U in suboxic-anoxic environments, e.g. at Mexico and Peru margin sites (3.04 mg kg-1 - 24.54 mg kg-1, McManus et al., 2006). The relative contribution of non-lithogenic U in the sediments of these three anomalous cores varied from 97.2±0.4 % (SR4 core) to 98.80.2 % (SR1 and SR2 cores) of their total U content. The sediments were also depleted in organic C (0.05 % - 0.18 %), which is not typical for marine solid phases enriched in authigenic U. Additional surface sampling around the cores with high levels of U, helped to define the spatial distribution of this element, as well as Co, Cu, Zn, light lanthanides and europium, which also showed "anomalies". The association with anthropogenic impact is discussed because the geochemical fingerprints of these sediments are the same as for solid wastes of copper smelting, which has occurred in Santa Rosalía in the past century till 1984.

  15. Dating sediment cores from Hudson River marshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robideau, R.; Bopp, R.F.

    1993-03-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently depositedmore » sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river.« less

  16. Effect of abalone farming on sediment geochemistry in the Shallow Sea near Wando, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Lee, Yeon Gyu; Jeong, Da Un; Lee, Jung Sick; Choi, Yang Ho; Shin, Yun Kyung

    2015-12-01

    Wando County has grown up to 93% of the total abalone produced in South Korea since the late 1990s; however, this production has been decreasing in recent years. The objectives of this study were to understand the potential contamination risks of abalone farming and to examine the influence of intensive abalone farming on sediment quality by analyzing grain-size composition, organic matter (total organic carbon (TOC), total nitrogen (TN), total sulfur (TS)) and heavy metal content, pH, and 210Pb geochronology. The results of organic matter analysis from surface and core sediment (length: 64 cm) showed that the area around the abalone farm had oxic marine-to-brackish conditions, but that the area directly below an abalone cage (location 7) had reductive conditions, with a C/S ratio of ~2. The average TN levels in the surface and core sediments were 0.25% and 0.29%, respectively, and this was predominantly due to the use of seaweed for feed. The low sediment pH (surface, 7.23; core, 7.04), indicates that acidification of the bottom sediment has gradually increased since the initiation of abalone farming and is likely due to the continuous accumulation of uneaten feed and feces. Heavy metal pollution was not apparent based on the examination of EF and Igeo, although the excess metal flux of Ni, Pb, Cu, Co, As, and Cd increased toward surface of the sediment core. These sediment changes may be caused by the rapid accumulation (sedimentation rate: 1.45 cm/year) of sludge discharged from the abalone farm and may be controlled by tidal currents, physiography, water depth, and tidal ranges.

  17. Is the Core Top Really Modern? A Story of Chemical Erosion, Bioturbation, and Lateral Sediment Redistribution from the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Mekik, F.

    2016-12-01

    Paleoceanographic work is based on calibrating paleo-environmental proxies using well-preserved core top sediments which represent the last one thousand years or less. However, core top sediments may be in places as old as 9000 years due to various sedimentary and diagenetic processes, such as chemical erosion, bioturbation and lateral sediment redistribution. We hypothesize that in regions with high surface ocean productivity, high organic carbon to calcite ratios reaching the seabed promote calcite dissolution in sediments, even in regions above the lysocline. This process may lead to chemical erosion of core tops which in turn may result in core top aging. The eastern equatorial Pacific (EEP), a popular site for calibration of paleoceanographic proxies, is such a place. Better understanding the relationship between core top age and dissolution will help correct biases inherent in proxy calibration because dissolution of foraminifers alters shell chemistry, and wholesale dissolution of sediments leads to core top aging and loss. We present both new and literature-based core top data of radiocarbon ages from the EEP. We created regional maps of both core top radiocarbon age and calcite preservation measured with the Globorotalia menardii Fragmentation Index (MFI; over 100 core tops). Our maps show a clear pattern of deep sea sedimentary calcite dissolution mimicking the pattern of surface ocean productivity observed from satellites and sediment traps in the EEP. Core top radiocarbon ages generally parallel the dissolution patterns observed in the region. Where this relationship does not hold true, bioturbation and/or lateral sediment redistribution may play a role. Down core radiocarbon and 230Th-normalized sediment accumulation rate data from several cores in the EEP support this hypothesis. Better understanding the role of diagenesis promotes the development of more reliable paleo-environmental proxies.

  18. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-08-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants.

  19. Multi-core, multi-constraint chronostratigraphic framework over past 50,000 years places high-resolution Gulf of Alaska ocean-ice-sediment history into a global framework

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; Walczak, M.; Asahi, H.; Belanger, C. L.; Cowan, E. A.; Du, J.; Fallon, S.; Fifield, L. K.; Hobern, T.; Jaeger, J. M.; Jensen, B. J. L.; McKay, J. L.; Padman, J.; Ross, A.; Sharon, S.; Stoner, J. S.; Zellers, S.

    2017-12-01

    Development of precise chronologies extending older than late glacial time in the subpolar North Pacific has been notoriously difficult due to limited record length in sediment cores, poor carbonate preservation, and (in many cases) relatively low resolution records. This is a key gap in our understanding of Northern Hemisphere and global paleoclimate change, now addressed with results from IODP Expedition 341 in the Gulf of Alaska. Here we utilize marine core and drill sites (U1417, U1418, U1419, U1421 and co-located site-survey cores) some of which provide exceptionally high sustained sedimentation rates (up to 2 cm per year in extended glacial intervals). This facilitates a multifaceted approach to chronology development over the past 50,000 years including radiocarbon, foraminiferal stable isotopes and other geochemical proxies, sediment physical properties, sedimentology, and tephrochronology. Given high sedimentation rates and the superb preservation this provides, we have developed marine time series that rival the resolution of the polar ice core records, which allows us to compare radiocarbon-based chronologies with several strategies involving signal tuning. Such a multifaceted approach mitigates weaknesses in any of the individual methods and allows a rigorous analysis of uncertainties in ages and sediment accumulation rates. The resulting record reveals dynamic changes in the Cordilleran Ice Sheet and North Pacific Ocean and most importantly facilitates placing these records into the context of global climate changes. (We acknowledge the contributions of J. Addison and S. Praetorius, who were not listed as co-authors due to USGS submission rules).

  20. INNOVATIVE TECHNOLOGY EVALUATION REPORT ...

    EPA Pesticide Factsheets

    The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the samplers ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Split Core Sampler and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Split Core Sampler performed as well as or better than the reference samplers. Based on visual observations, both the Split Core Sampler and reference samplers collected partially compressed samples of consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved for both consolidated and unconsolidated sediment samples collected by the Split Core Sampler and reference samplers. No sampler was able to collect samples

  1. A simple and inexpensive technique for assessing microbial contamination during drilling operations

    NASA Astrophysics Data System (ADS)

    Friese, André; Vuillemin, Aurèle; Kallmeyer, Jens; Wagner, Dirk

    2016-04-01

    Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing allochthonous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations. Several techniques have been used in the past, including fluorescent dyes, perfluorocarbon tracers and fluorescent microspheres. Fluorescent dyes are inexpensive and easy to analyze on-site but are sensitive to light, pH and water chemistry. Furthermore, significant sorption to clays can decrease the fluorescence signal. Perfluorocarbon tracers are chemically inert hydrophobic compounds that can be detected with high sensitivity via gas chromatography, which might be a problem for on-site analysis. Samples have to be taken immediately after core retrieval as otherwise the volatile tracer will have diffused out of the core. Microsphere tracers are small (0.2 - 0.5 μm diameter) fluorescent plastic particles that are mixed into the drilling fluid. For analysis, these particles can be extracted from the sediment sample, transferred onto a filter and quantified via fluorescence microscopy. However, they are very expensive and therefore unsuitable for deep drilling operations that need large amounts of drilling fluids. Here, we present an inexpensive contamination control approach using fluorescent pigments initially used for coloring plastics. The price of this tracer is nearly three orders of magnitude lower than conventional microsphere tracers. Its suitability for large drilling campaigns was tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia. The tracer was diluted 1:1000 in lake water, which was used as the drilling fluid. Additionally, a plastic bag filled with 20 mL of undiluted tracer was attached to the core catcher to increase the amount of particles in the liner fluid right at the core. After core retrieval, the core was cut and the liner fluid collected. From each whole round core (WRC) that was taken for microbiological and biogeochemical analyses, small samples of 1 cc were retrieved with sterile cutoff syringes from the rim, the center and an intermediate position. After dilution and homogenization in 9 mL MilliQ water, 10 μL of the sediment slurry was transferred onto a filter membrane and particles counted via fluorescence microscopy. Additionally, particles in the liner fluid were also quantified. This allows the quantification of the amount of drilling fluid that has entered the sediment sample during drilling. The minimum detectable volume of drilling fluid was in the order of single nanoliters per cc of sediment, which is in the range of established techniques. The presented method requires only a minimum of equipment and allows rapid determination of contamination in the sediment core and an easy to handle on-site analysis at low costs. The sensitivity is in the same range as perfluorocarbon and microsphere tracer applications. Thus, it offers an inexpensive but powerful technique for contamination assessment for future drilling campaigns.

  2. Synthetic Musk Fragrances in Lake Erie and Lake Ontario Sediment Cores

    PubMed Central

    Peck, Aaron M.; Linebaugh, Emily K.; Hornbuckle, Keri C.

    2009-01-01

    Two sediment cores collected from Lake Ontario and Lake Erie were sectioned, dated, and analyzed for five polycyclic musk fragrances and two nitro musk fragrances. The polycyclic musk fragrances were HHCB (Galaxolide), AHTN (Tonalide), ATII (Traseolide), ADBI (Celestolide), and AHMI (Phantolide). The nitro musk fragrances were musk ketone and musk xylene. Chemical analysis was performed by gas chromatography/mass spectrometry (GC/MS) and results from Lake Erie were confirmed using gas chromatography/triple-quadrupole mass spectrometry (GC/MS/MS). The chemical signals observed at the two sampling locations were different from each other due primarily to large differences in the sedimentation rates at the two sampling locations. HHCB was detected in the Lake Erie core while six compounds were detected in the Lake Ontario core. Using measured fragrance and 210Pb activity, the burden of synthetic musk fragrances estimated from these sediment cores is 1900 kg in Lake Erie and 18000 kg in Lake Ontario. The input of these compounds to the lakes is increasing. The HHCB accumulation rates in Lake Erie for 1979-2003 and 1990-2003 correspond to doubling times of 16 ± 4 yr and 8 ± 2 yr, respectively. The results reflect current U.S. production trends for the sum of all fragrance compounds. PMID:17007119

  3. Sedimentation of the mud belt along the coast of China from the mouth of the Yangtze (Changjiang) River to northern Taiwan Strait: An Source-to-Sink Perspective

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Liu, J. T.; Yang, R.; Huh, C. A.; Su, C. C.

    2016-02-01

    Sediments in the Taiwan Strait are originated from Mainland China and Taiwan. The China Coastal Current, influenced by the northeast monsoon in winter, becomes enhanced, which caries the sediments exported from the Yangtze River to the southern East China Sea and the Taiwan Strait along the Zhemin-Taiwan Strait mud belt. The sediment transport process is also influenced by tidal current and Kuroshio Branch Current and Taiwan Warm Current, making the seafloor sediment signals complex. This study used R/V Ocean Researcher V (Cruise 0032), to collect six box cores and three gravity cores along the Zhemin mud belt and the mud belt in northern Taiwan Strait in the winter of 2014. From the core samples, grain-size distribution, Multi-Sensor Core Logger, and 7Be activity were measured to investigate the sedimentation process along the mud belts. The box core taken at the mouth of the Changjiang- is composed of homogeneous clay and rich in shell fragments. The core off the mouth of Ou River is composed of homogeneous clay, but showing horizontal laminations. Near the Taishan Island off the coast of Zhejiang the core is consisted of a homogeneous sandy sediments that turned into clay. Off the mouth of the Min River the core consists of clay with shell fragments. Off the coast of the Wu River on the west coast of the Taiwan, the core is mainly composed of muddy sediments, which has the siltstone layers of oblique bedding. Off the mouth of Zhuoshui River in central Taiwan, the core is composed of sandy sediments. From the mouth of the Changhjiang, Zhemin mud belt, the northern Taiwan Strait mud belt, to the central Taiwan Strait, 7Be activity in the seafloor sediment indicates that the freshness of the terrigenous sediments decreased. The Mass Magnetic Susceptiblity (MSI) demonstrates that the terrigenous sediments decreased from north to south. The MSI signals in the core off the mouth of the Minjiang are different from those in the neighboring cores. This is suspected due to the convergence of sediments from the Changjiang and Taiwan. The particle sizes of the cores show that the sediment became coarser from the north to south. In the future the study will make use of 210Pbex, and other environmental and provenance such as water dynamic mechanism variables to explore the sediment source and sink patterns along with the Zhemin-Taiwan Strait mud belts.

  4. Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Choi, J.; Seol, Y.; Rosenbaum, E. J.

    2010-12-01

    Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.

  5. Magnetostratigraphy of the Miocene sediments at Háj u Duchcova and Sokolov (West Bohemia)

    NASA Astrophysics Data System (ADS)

    Schnabl, Petr; Man, Otakar; Matys Grygar, Tomáš; Mach, Karel; Kdýr, Šimon; Čížková, Kristýna; Pruner, Petr; Martínek, Karel; Rojík, Petr

    2017-04-01

    Magnetostratigraphic investigation was conducted on the newly excavated drill core HD-50 and previously retreived drill cores DP-333-09 and JP-585-10. The new drill core HD-50 was sampled at the old coal mine 1.Máj near Háj u Duchcova in the Most Basin, while the DP-333-09 and JP-585-10 are from the benches of opencast coal mines Družba and Jiří in the Sokolov Basin. Both basins are parts of one segment of the European Cenozoic Rift System. The sediments in both basins are of Burdigalian age (lower Miocene). Their lithology mainly comprise fossil-free clays/silts above the main coal seam, with two phosphatic horizons with mineral crandalite in the Most Basin and several greigite layers in the Sokolov Basin. Anisotropy of magnetic susceptibility (AMS), alternate field demagnetization and remanent magnetization were measured in all samples. Unusually behaving samples with extremely high magnetic susceptibility (siderite), prolate anisotropy of AMS and samples with the angle of the main AMS axis exceeding 20 degrees was excluded from further evaluation. The sedimentation rate was computed by multivariate spectral analysis on data acquired by X-ray fluorescence. The spectral analysis was performed with our original software solution for identification of typical frequencies and their assignement to Milanković cycles.[1] The sedimentation rate (after compaction) was around 15 cm/ky for the drill core DP-333-09 and around 30 cm/ky for the core JP-585-10. The sediment succession above the coal seam at drill core DP-333-09 starts with 20 meters, in which the magnetic polarity could not be reconstructed (70 - 50 m), then there is a top part of reverse zone (50 - 49 m) and short normal subzone above it (49 - 48 m). Above that there is the second reverse zone (45 - 4 m). Two additional magnetozones above that could be found only in the drill core HD-50 from the Most Basin. The drill core JP-585-10 begins with 14 meters of disturbed zone (94 - 80 m), then 12 meters of normal polarity (69 - 80 m) was found. Above that, after a small gap of magnetically disturbed sediments, there are 60 meters of sediments with reverse polarity (62 - 2 m) with short normal excursion at the upper half (24 - 17 m). According to the detailed analysis of drill core HK591 (Matys Grygar et al. 2014), we suppose, that the succession begins in C5En (only JP-585-10), then C5Dr. Validity of subzone C5Dr.1n in the drills JP-585-10 and DP-333-09 is still under discussion. The zone C5Cr could be found only in the HD-50 core. In comparison of the interpreted polarities with ATNTS2012 the time span in the studied cores is approximately 17.5 to 17.9 Ma for DP-333-09, 17.8 to 18.1 for JP-585-[2]10 and 17.1 to 17.7 Ma for HD-50. Additional investigation should be done. The research was supported by Czech Science Foundation GAČR, project n. 16-00800S. Matys Grygar, T., Mach, K., Pruner, P., Schnabl, P., Laurin, J., Martinez, M., 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic, Geol. Mag. 151 (6), 1013-1033.

  6. A database of paleoceanographic sediment cores from the North Pacific, 1951-2016

    NASA Astrophysics Data System (ADS)

    Borreggine, Marisa; Myhre, Sarah E.; Mislan, K. Allison S.; Deutsch, Curtis; Davis, Catherine V.

    2017-09-01

    We assessed sediment coring, data acquisition, and publications from the North Pacific (north of 30° N) from 1951 to 2016. There are 2134 sediment cores collected by American, French, Japanese, Russian, and international research vessels across the North Pacific (including the Pacific subarctic gyre, Alaskan gyre, Japan margin, and California margin; 1391 cores), the Sea of Okhotsk (271 cores), the Bering Sea (123 cores), and the Sea of Japan (349 cores) reported here. All existing metadata associated with these sediment cores are documented here, including coring date, location, core number, cruise number, water depth, vessel metadata, and coring technology. North Pacific sediment core age models are built with isotope stratigraphy, radiocarbon dating, magnetostratigraphy, biostratigraphy, tephrochronology, % opal, color, and lithological proxies. Here, we evaluate the iterative generation of each published age model and provide comprehensive documentation of the dating techniques used, along with sedimentation rates and age ranges. We categorized cores according to the availability of a variety of proxy evidence, including biological (e.g., benthic and planktonic foraminifera assemblages), geochemical (e.g., major trace element concentrations), isotopic (e.g., bulk sediment nitrogen, oxygen, and carbon isotopes), and stratigraphic (e.g., preserved laminations) proxies. This database is a unique resource to the paleoceanographic and paleoclimate communities and provides cohesive accessibility to sedimentary sequences, age model development, and proxies. The data set is publicly available through PANGAEA at https://doi.org/10.1594/PANGAEA.875998.

  7. Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica

    USGS Publications Warehouse

    Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.

    1997-01-01

    Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.

  8. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  9. Glacial-marine sediments record ice-shelf retreat during the late Holocene in Beascochea Bay on the western margin of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hardin, L. A.; Wellner, J. S.

    2010-12-01

    Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing ice, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western margin of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula Ice Cap since the grounded ice decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the ice retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of ice-shelf influence in Beascochea Bay throughout the Holocene deglaciation. The distinctively laminated sub-ice shelf facies can be clearly seen in the x-rays of these cores, and can be easily distinguished from the poorly sorted glacial-marine facies and the greenish finer-grained facies deposited in open-marine conditions. A 14 m long sediment core taken from the outer basin of Beascochea Bay recovered the greatest length of sediment and dates back to the middle Holocene. X-rays of this core show a possible mid-Holocene retreat of the ice shelf followed by intermittent advance and retreat that precedes the most recent retreat. The inner basin of Beascochea Bay has been without an ice shelf for the last 200 years, based on the sedimentation rates of the last century projected downcore.

  10. Paleoclimatological analysis of Late Eocene core, Manning Formation, Brazos County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yancey, T.; Elsik, W.

    1994-09-01

    A core of the basal part of the Manning Formation was drilled to provide a baseline for paleoclimate analysis of the expanded section of siliciclastic sediments of late Eocene age in the outcrop belt. The interdeltaic Jackson Stage deposits of this area include 20+ cyclic units containing both lignite and shallow marine sediments. Depositional environments can be determined with precision and the repetitive nature of cycles allows comparisons of the same environment throughout, effectively removing depositional environment as a variable in interpretation of climate signal. Underlying Yegua strata contain similar cycles, providing 35+ equivalent environmental transacts within a 6 m.y.more » time interval of Jackson and Yegua section, when additional cores are taken. The core is from a cycle deposited during maximum flooding of the Jackson Stage, with deposits ranging from shoreface (carbonaceous) to midshelf, beyond the range of storm sand deposition. Sediments are leached of carbonate, but contain foram test linings, agglutinated forams, fish debris, and rich assemblages of terrestrial and marine palynomorphs. All samples examined contain marine dinoflagellates, which are most abundant in transgressive and maximum flood zones, along with agglutinated forams and fish debris. This same interval contains two separate pulses of reworked palynomorphs. The transgressive interval contains Glaphyrocysta intricata, normally present in Yegua sediments. Pollen indicates fluctuating subtropical to tropical paleoclimates, with three short cycles of cooler temperatures, indicated by abundance peaks of alder pollen (Alnus) in transgressive, maximum flood, and highstand deposits.« less

  11. Deposition behavior, risk assessment and source identification of heavy metals in reservoir sediments of Northeast China.

    PubMed

    Zhu, Lin; Liu, Jianwei; Xu, Shiguo; Xie, Zaigang

    2017-08-01

    Sediment cores from five reservoirs, located in the Liaoning and Jilin Provinces in Northeast China, were collected to investigate the accumulation and potential toxicity of heavy metals (Fe, Mn, Cu, Cd, Pb, Zn, and Cr) during a sampling campaign in February, 2015. The results showed that all the detected metals accumulated significantly, especially Cd, compared to their respective background values. Among these reservoirs, Biliuhe Reservoir had markedly increasing trends for organic matter and all the metals, among which Mn was elevated by 280% to 3411mg/kg in a core of only 18cm in depth. Xinlicheng Reservoir was characterized by heavy siltation and varying metal distribution due to its regular geometric features and pulsed flood events. The Enrichment factor (EF) and geo-accumulation index (I geo ) indicated Cd was strongly enriched by anthropogenic inputs, with the values of EF and I geo greater than 8 and 3, respectively. The toxicity assessment calculated using consensus-based sediment quality guidelines (SQGs) implied the whole cores of Tanghe and Dahuofang and the upper cores of Biliuhe, Xinlicheng and Fengman exhibited toxicity to sediment-dwelling organisms. Cr contributed more to Q m-PEC than the other heavy metals, because only Cr exceeded the probable effect concentration (PEC) despite its low enrichment. According to the results of correlation analysis (CA) and principal components analysis (PCA), mining industries and agricultural activities within the basin were the main anthropogenic pollution sources for these heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Mohamed Kamari, Halimah; Chee Kong, Yap; Suhaimi Hamzah, Mohd; Suhaimi Elias, Md

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: An example from the Shima River, Pearl River Delta.

    PubMed

    Gao, Lei; Wang, Zhuowei; Shan, Jiju; Chen, Jianyao; Tang, Changyuan; Yi, Ming; Zhao, Xinfeng

    2016-12-01

    Metal pollution in sediments from the Shima River, a typical transboundary watercourse in the Pearl River Delta area, was investigated. Sediment cores were collected at eight sites from the upper to the lower reaches crossing Shenzhen, Dongguan and Huizhou cities. Sediment physicochemical properties and the total concentrations of trace metals (V, Cr, Co, Ni, Cu, Zn, As, Cd and Pb) were determined. The results showed that riverine sediment was significantly polluted by Cr (content range: 13.8-469mgkg -1 ), Ni (14.1-257mgkg -1 ), Cu (10.8-630mgkg -1 ), Zn (50.2-1700mgkg -1 ) and Cd (0.172-2.26mgkg -1 ). The geoaccumulation indices (I geo ) of trace metals decreased in the order Cd>Zn>Ni>Cu>Co>Cr>Pb>As>V. The pollution load indices and potential ecological risk indices (RI) at the sampling sites were similar, with more severe pollution and greater risk presenting in the upper and middle reaches (S1-S6) compared with the lower reaches (S7 and S8). Cd contributed significantly (77.2-87.6%) to the RI. Source identification based on multivariate statistical techniques, including principal component analysis (PCA), correlation analysis (CA) and hierarchical cluster analysis (HACA), was performed to differentiate the origins of trace metals. PCA and CA yielded similar results, indicating that As and V originated from natural sources (e.g., parent materials) and that the other metals were related to anthropogenic activities. HACA based on the I geo showed that Cd was associated mainly with fertilizers, and the origins of Cr, Ni, Cu and Zn were probably industrial effluents, whereas Co and Pb were related to traffic activities. HACA of sediment cores suggested that Dongguan and Shenzhen cities contribute large quantities of metals to the riverine sediment, whereas few metals were discharged from Huizhou City. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed Central

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-01-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496

  15. Analysis of mutagenic activity of biohazardous organics in Kanawha River sediments. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A.R.; Waldron, M.C.

    1988-01-01

    Residual chemical contamination of Kanawha River sediments may constitute a health hazard. Sediment cores have been analyzed using a coupled bioassay/chemical fractionation procedure. Both bacterial mutagenicity and sister chromatid exchange (SCE) analyses were conducted on sediment samples. Pocatalico River sediments extracts showed no response in either bacterial mutagenicity assay or SCE assay. Extracts from Armour Creek and the Kanawha River induced mutagenicities in the presence of S9 enzymes. The same extracts produced a significant increase in human chromosomal cross-over events.

  16. Locations and descriptions of gravity, box, and push cores collected in San Francisco Bay between January and February, 1990 and 1991

    USGS Publications Warehouse

    Anima, Roberto J.; Clifton, H. Edward; Reiss, Carol; Wong, Florence L.

    2005-01-01

    A project to study San Francisco Bay sediments collected over 300 sediment gravity cores; six push cores, and three box cores in San Francisco Bay during the years 1990-91. The purpose of the sampling effort is to establish a database on the Holocene sediment history of the bay. The samples described and mapped are the first effort to catalog and present the data collected. Thus far the cores have been utilized in various cooperative studies with state colleges and universities, and other USGS divisions. These cores serve as a base for ongoing multidisciplinary studies. The sediment studies project has initiated subsequent coring efforts within the bay using refined coring techniques to attain deeper cores.

  17. Sedimentation rates and erosion changes recorded in recent sediments of Lake Piaseczno, south-eastern Poland

    NASA Astrophysics Data System (ADS)

    Tylmann, Wojciech; Turczyński, Marek; Kinder, Małgorzata

    2009-10-01

    This paper presents the dating results and basic analyses of recent sediments from Lake Piaseczno. The age of sediments was determined using the 210Pb method and constant flux: constant sedimentation (CF: CS) model. The estimated timescale was in agreement with the AMS14C date from the base of the core. The mean sediment accumulation rate during the last 100 years was calculated as 0.025 g cm-2 a-1. Based on the radiocarbon date, the rate of sediment accumulation below the 210Pb dating horizon was estimated as 0.066 g cm-2 a-1. The variability of main physical properties and sediment components along the core was analysed as well. The sediments were characterised by a very high water content (>80%). Carbonates were either not present or at a very low level (<1%). However, organic and minerogenic matter variability represents an interesting record of increasing erosion intensity in the catchment area. Analysis of archival cartographic materials demonstrated that the most likely reason for the enhanced transport of minerogenic matter to the lake was deforestation caused by human activity in the beginning of the 20th century.

  18. The changing seascape of Galway Bay, Western Ireland

    NASA Astrophysics Data System (ADS)

    Mc Cullagh, D.; Benetti, S.; Plets, R. M. K.; Edwards, R.

    2016-12-01

    During the late Quaternary significant environmental and relative sea-level variations have contributed to shaping present day coastlines. This is particularly evident along formerly glaciated continental margins. Strong evidence of these changes are recorded in Galway Bay, Western Ireland. This research uses a multidisciplinary approach. Seismic and multibeam data, sedimentological, micropaleontological, geochemical analysis and 15 radiocarbon dates of sediment cores from the bay provide post last glacial maximum (LGM) sea level and environmental reconstructions for the region. The acoustic stratigraphy of the bay includes 3 seismic units: the deepest unit represents the acoustic basement, composed of limestone and granite bedrock; the middle unit is composed of the oldest preserved sediments, deposited during and after the LGM, and interpreted to be glacial till. The uppermost unit represents deposition and reworking after glacial retreat. The erosive action of the ice sheet that extended off the Irish coast is thought to be responsible for the removal and reworking of all sediments older that the LGM. In the sediment cores, three main lithofacies were identified: 1) a sandy silt and clay facies, 2) a distinct shell hash interlayer and, 3) a fine silty sand facies. These 3 facies are found within the uppermost seismic unit, and initial radiocarbon dating of shells in 4 cores, constrain these sediments and the uppermost seismic unit to the Holocene. Preliminary qualitative analysis on foraminifera from several cores shows a general trend of progression from estuarine to open marine conditions, inferred from indicator species. This trend is supported by X-ray fluorescence (XRF) analysis which shows increased ratios of Cl/Fe in younger deposits. Constraining dates on sea level variations in the region will be added to the sea level database for Ireland and possibly used to adjust the existing relative sea level models. These are important for understating past sea level variations and modelling future trends.

  19. The Influence of Sampling Density on Bayesian Age-Depth Models and Paleoclimatic Reconstructions - Lessons Learned from Lake Titicaca - Bolivia/Peru

    NASA Astrophysics Data System (ADS)

    Salenbien, W.; Baker, P. A.; Fritz, S. C.; Guedron, S.

    2014-12-01

    Lake Titicaca is one of the most important archives of paleoclimate in tropical South America, and prior studies have elucidated patterns of climate variation at varied temporal scales over the past 0.5 Ma. Yet, slow sediment accumulation rates in the main deeper basin of the lake have precluded analysis of the lake's most recent history at high resolution. To obtain a paleoclimate record of the last few millennia at multi-decadal resolution, we obtained five short cores, ranging from 139 to 181 cm in length, from the shallower Wiñaymarka sub-basin of of Lake Titicaca, where sedimentation rates are higher than in the lake's main basin. Selected cores have been analyzed for their geochemical signature by scanning XRF, diatom stratigraphy, sedimentology, and for 14C age dating. A total of 72 samples were 14C-dated using a Gas Ion Source automated high-throughput method for carbonate samples (mainly Littoridina sp. and Taphius montanus gastropod shells) at NOSAMS (Woods Hole Oceanographic Institute) with an analytical precision higher than 2%. The method has lower analytical precision compared with traditional AMS radiocarbon dating, but the lower cost enables analysis of a larger number of samples, and the error associated with the lower precision is relatively small for younger samples (< ~8,000 years). A 172-cm-long core was divided into centimeter long sections, and 47 14C dates were obtained from 1-cm intervals, averaging one date every 3-4 cm. The other cores were radiocarbon dated with a sparser sampling density that focused on visual unconformities and shell beds. The high-resolution radiocarbon analysis reveals complex sedimentation patterns in visually continuous sections, with abundant indicators of bioturbated or reworked sediments and periods of very rapid sediment accumulation. These features are not evident in the sparser sampling strategy but have significant implications for reconstructing past lake level and paleoclimatic history.

  20. Mercury contamination history of an estuarine floodplain reconstructed from a 210Pb-dated sediment core (Berg River, South Africa).

    PubMed

    Kading, T J; Mason, R P; Leaner, J J

    2009-01-01

    Mercury deposition histories have been scarcely documented in the southern hemisphere. A sediment core was collected from the ecologically important estuarine floodplain of the Berg River (South Africa). We establish the concentration of Hg in this (210)Pb-dated sediment core at <50 ng g(-1) Hg(T) throughout the core, but with 1.3 ng g(-1) methylmercury in surface sediments. The (210)Pb dating of the core provides a first record of mercury deposition to the site and reveals the onset of enhanced mercury deposition in 1970. The ratio of methylmercury to total mercury is relatively high in these sediments when compared to other wetlands.

  1. Site 765: Sediment Lithostratigraphy

    USGS Publications Warehouse

    ,

    1990-01-01

    A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.

  2. Validation of an isotope dilution, ICP-MS method based on internal mass bias correction for the determination of trace concentrations of Hg in sediment cores.

    PubMed

    Ciceri, E; Recchia, S; Dossi, C; Yang, L; Sturgeon, R E

    2008-01-15

    The development and validation of a method for the determination of mercury in sediments using a sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) for detection is described. The utilization of isotope dilution (ID) calibration is shown to solve analytical problems related to matrix composition. Mass bias is corrected using an internal mass bias correction technique, validated against the traditional standard bracketing method. The overall analytical protocol is validated against NRCC PACS-2 marine sediment CRM. The estimated limit of detection is 12ng/g. The proposed procedure was applied to the analysis of a real sediment core sampled to a depth of 160m in Lake Como, where Hg concentrations ranged from 66 to 750ng/g.

  3. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  4. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores

    USGS Publications Warehouse

    Sheibley, R.W.; Duff, J.H.; Jackman, A.P.; Triska, F.J.

    2003-01-01

    Inorganic N transformations were examined in streambed sediments from the Shingobee River using sediment perfusion cores. The experimental design simulated groundwater-stream water mixing within sediment cores, which provided a well-defined one-dimensional representation of in situ hydrologic conditions. Two distinct hydrologic and chemical settings were preserved in the sediment cores: the lowermost sediments, perfused with groundwater, remained anaerobic during the incubations, whereas the uppermost sediments, perfused with oxic water pumped from the overlying water column, simulated stream water penetration into the bed. The maintenance of oxic and anoxic zones formed a biologically active aerobic-anaerobic interface. Ammonium (NH4+) dissolved in groundwater was transported conservatively through the lower core zone but was removed as it mixed with aerated recycle water. Concurrently, a small quantity of nitrate (NO3-) equaling ???25% of the NH4+ loss was produced in the upper sediments. The NH4+ and NO3- profiles in the uppermost sediments resulted from coupled nitrification-denitrification, because assimilation and sorption were negligible. We hypothesize that anaerobic microsites within the aerated upper sediments supported denitrification. Rates of nitrification and denitrification in the perfusion cores ranged 42-209 and 53-160 mg N m-2 day-1, respectively. The use of modified perfusion cores permitted the identification and quantification of N transformations and verified process control by surface water exchange into the shallow hyporheic zone of the Shingobee River.

  5. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained around 2 mbsf of PC03 core also indicates similar sedimentary process. However, we also obtained large age gap in a thick turbidite layer, indicating remobilization of deeper sediments by landslide. Our results revealed that the studied basin recorded various scales and styles of sediment remobilizations by earthquake shakings.

  6. Late Holocene Environmental Changes from NY-NJ Estuaries

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy M.; Wong, Jennifer K.

    2000-01-01

    High-resolution records of environmental change in the lower Hudson estuary are quite rare. We present preliminary data from several marshes in the New York- New Jersey region in order to understand the late Holocene environmental history of this region. Our project includes salt marsh cores from Hackensack, Piermont, Staten Island, and Jamaica Bay. Our preliminary research has focused on a 11.15 m. sediment core from Piermont Marsh, New York (40 N, 74 W) in an attempt to document the Holocene environmental history of the region. Lithology, loss-on-ignition (LOI), pollen, plant macrofossils, charcoal, and foraminifera were analyzed. Core lithology consists of peat, silts, and clays that vary in color and texture. The base of the core is AMS C-14 dated to 4190 yr BP. Preliminary low-resolution analysis of the core to date includes sampling at the 1-meter interval throughout the core. LOI of the sediments ranges from 1% to 85%. Average rate of deposition is about .26 cm/yr. Major changes in pollen percentages are visible throughout the core.

  7. Impacts of Mesopotamian wetland re-flooding on the lipid biomarker distributions in sediments

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; DouAbul, Ali A. Z.; Al-Maarofi, Sama S.; Simoneit, Bernd R. T.

    2018-03-01

    Shallow sediment core samples from two locales in the Mesopotamian marshlands of Iraq were analyzed to characterize the extractable organic (lipid) compounds, and their sources and distributions after hydrological restoration by re-flooding of the marshes. Dried samples were extracted with a dichloromethane/methanol mixture before analysis by gas chromatography-mass spectrometry (GC-MS). The major compounds were n-alkanes, fatty acids and alcohols, steroids, terpenoids, hopanes, steranes, unresolved complex mixture (UCM), and plasticizers. The lipid compounds in Kurmashia (Al-Hammar marshes) were generally higher in concentration than in Abu Zirig (Central marshes), and decreased with core depths for both sites. This concentration decrease with core depth is attributed to transformation, biodegradation and variable input processes. The distribution patterns of the lipids in the sediment cores indicated that the Abu Zirig area was drier than Kurmashia before the re-flooding process. Furthermore, the concentration of the compounds in the surface sediment the Abu Zirig core was as high and similar to that in Kurmashia, reflecting the re-flooding impacts on the marsh and the revival of the wetland. The major sources of these lipids were from natural terrestrial vegetation (35-66% for Abu Zirig; 40-49% for Kurmashia), microbial (plankton) residues and bacteria (27-52% for Abu Zirig; 39-43% for Kurmashia), with a minor contribution from anthropogenic sources including plastic wastes and petroleum (6-13% for Abu Zirig; 9-18% for Kurmashia).

  8. Hydro-mechanical properties of pressure core sediments recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.

    2017-12-01

    Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that, regardless of the consolidation history with hydrate in place, the consolidation behavior after dissociation will first return to, then follow, the original normal consolidation curve for the hydrate-free host sediment.

  9. Estuarine sedimentation, sediment character, and foraminiferal distribution in central San Francisco Bay, California

    USGS Publications Warehouse

    Chin, John L.; Woodrow, Donald L.; McGann, Mary; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2010-01-01

    Central San Francisco Bay is the deepest subembayment in the San Francisco Bay estuary and hence has the largest water volume of any of the subembayments. It also has the strongest tidal currents and the coarsest sediment within the estuary. Tidal currents are strongest over the west-central part of central bay and, correspondingly, this area is dominated by sand-size sediment. Much of the area east of a line from Angel Island to Alcatraz Island is characterized by muddy sand to sandy mud, and the area to the west of this line is sandy. The sand-size sediment over west-central bay furthermore is molded by the energetic tidal currents into bedforms of varying sizes and wavelengths. Bedforms typically occur in water depths of 15-25 m. High resolution bathymetry (multibeam) from 1997 and 2008 allow for subdivision of the west-central bayfloor into four basic types based on morphologic expression: featureless, sand waves, disrupted/man-altered, and bedrock knobs. Featureless and sand-wave morphologies dominate the bayfloor of west-central bay. Disrupted bayfloor has a direct association with areas that are undergoing alteration due to human activities, such as sand-mining lease areas, dredging, and disposal of dredge spoils. Change detection analysis, comparing the 1997 and 2008 multibeam data sets, shows that significant change has occurred in west-central bay during the roughly 10 years between surveys. The surveyed area lost about 5.45 million m3 of sediment during the decade. Sand-mining lease areas within west-central bay lost 6.77 million m3 as the bayfloor deepened. Nonlease areas gained 1.32 million m3 of sediment as the bayfloor shallowed slightly outside of sand-mining lease areas. Furthermore, bedform asymmetry did not change significantly, but some bedforms did migrate some tens of meters. Gravity cores show that the area east of Angel and Alcatraz Islands is floored by clayey silts or silty sand whereas the area to the west of the islands is floored dominantly by sand- to coarse sand-sized sediment. Sandy areas also include Raccoon Strait, off Point Tiburon, and on the subtidal Alcatraz, Point Knox, and Presidio Shoals. Drab-colored silty clays are the dominant sediment observed in gravity cores from central bay. Their dominance along the length of the core suggests that silty clays have been deposited consistently over much of this subembayment for the time period covered by the recovered sediments (Woodrow and others, this report). Stratification types include weakly-defined laminae, 1-3 mm thick. Few examples of horizontal lamination in very fine sand or silt were observed. Cross lamination, including ripples, was observed in seven cores. Erosional surfaces were evident in almost every core where x-radiographs were available (they are very difficult to observe visually). Minor cut-and-fill structures also were noted in three cores and inclined strata were observed in three cores. Textural patterns in central bay indicate that silts and clays dominate the shallow water areas and margins of the bay. Sand dominates the tidal channel just east of Angel and Alcatraz Islands and to the west of the islands to the Golden Gate. The pattern of sand-sized sediment, as determined by particle-size analysis, suggests that sand movement is easterly from the west-central part of the bay. A second pattern of sand movement is to the south from the southwestern extremity of San Pablo Bay (boundary approximated by the location of the Richmond-San Rafael Bridge). Age dates for central bay sediment samples were obtained by carbon-14 radiometric age dating. Age dates were determined from shell material that was interpreted to be largely in-place (not transported). Age dates subsequently were reservoir corrected and then converted to calendar years. Sediments sampled from central bay cores range in age from 330 to 4,155 years before present. Foraminiferal distribution in the San Francisco Bay estuary is fairly well

  10. Temporal changes of environmental impact in the coastal marine area in front of a former mining zone, detected by means of benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Romano, Elena; Bergamin, Luisa; Maggi, Chiara; Ausili, Antonella

    2016-04-01

    Benthic foraminifera are increasingly used to assess environmental quality of present and past marine environments. They are suitable for the study of ancient environments because their hard and small shells are preserved and abundant in sediment and an adequate number of them can be collected by small samples of sediment cores, supplying reliable data for a statistical approach. The study of foraminiferal assemblages, associated to sediment abiotic parameters, allows to define the anthropogenic impact along the time; reference conditions may be recognized in deep uncontaminated levels. The Sulcis Iglesiente Guspinese area (SW Sardinia, Italy) was affected in past times by intensive mining, which started in mid 19th century and ceased in 1990s. The marine area of Cala Domestica is located few kilometers from the mining district, where mainly galena and sphalerite were exploited. The area houses buildings for storage of minerals receives drainage material from mineral dumps determining a strong enrichment for several metals in the coastal sediments. Sediment core SI/69 was collected by means of vibrocorer in front of Cala Domestica beach, during a vast sampling survey aimed to environmental characterization of marine sediments. The core was subsampled in the laboratory, and a total of 28 levels were collected. Microfaunal, grain size and chemical (As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn) analyses were carried out on different aliquots of the same level. The quantitative analysis on benthic foraminifera was based on the count of at least 300 specimens per sample. Faunal parameters such as Foraminiferal Number (FN i.e. number of specimens / 1 g dry sediment) and species diversity (- index and H-index) were considered as potential indicators of environmental status. Principal Component Analysis (PCA) showed a group of strongly correlated metals (Ba, Cd, Cu, Hg, Mn, Pb and Zn), associated to the superficial samples. These elements displayed a typical profile along core depth, characterized by low steady concentration in the lower part of the core, and increased values in the upper 20 cm. This pattern, which displays for most elements the highest concentrations in the top level, may be considered as influenced by anthropogenic enrichment. Quantitative faunal data were compared with concentrations by means of Canonical Correspondence Analysis (CCA) to highlight the effects of contamination on biota. It highlighted the pollution-tolerant character of some foraminiferal species, which are nearly exclusively present in the upper 20 cm core interval. Moreover, CCA demonstrated that FN was negatively affected by the anthropogenically enriched metals. Foraminiferal assemblages do not show major changes along core depth and high species diversity would suggest, in general, a good environmental status through time. Nevertheless, the comparison of assemblages from the contaminated upper core interval with reference conditions of the pre impacted interval, reveals that heavy metal pollution determined the increase of the pollution-tolerant taxa and a great decrease of foraminiferal abundance. Consequently, a comprehensive degradation of the ecological status referable to mining activity and dumping was recognized in this study.

  11. Grain Size Biasing of 230Th-derived Focusing Factors in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Loveley, M. R.; Marcantonio, F.; Lyle, M. W.; Ibrahim, R.; Wang, J. K.; Hertzberg, J. E.

    2014-12-01

    In this study, we attempt to understand how differing grain size classes in Panama Basin sediments may create biasing of 230Th as a constant-flux proxy. Greater amounts of 230Th are contained in fine grained particles, which, if fractionated from coarser grained counterparts may lead to biasing of 230Th-derived mass accumulation rates (MARs) and sediment focusing factors. We examined sediments that span the past 25 kyr from four new sediment cores retrieved from two different localities close to the ridges that bound the Panama Basin. Each locality contained paired sites that were seismically interpreted to have undergone sediment redistribution, i.e., thick focused sites versus thin winnowed sites. Two sediment cores were retrieved from the northern part of the Panama basin, Cocos Ridge, (MV1014-01-"4JC", 5° 44.7'N 85° 45.5' W, 1730 m depth; MV1014-01-"8JC", 6° 14.0'N 86° 2.6' W, 1993 m depth), and two were retrieved from the southern part of the basin, Carnegie Ridge, (MV1014-02-"11JC", 0° 41.6'S 85° 20.0' W, 2452 m depth; MV1014-02-"17JC" 0° 10.8'S 85° 52.0' W, 2846 m depth). Cores 4JC and 11JC lie closer to the ridge tops of the Cocos and Carnegie Ridges, respectively, and have thin sediment drapes, while deeper cores, 8JC (Cocos) and 17JC (Carnegie), have thicker sediment drapes and lie downslope from the ridge top cores. Age-model-derived sand MARs, which likely represent the vertical rain of particles that cannot be transported by bottom currents, are similar at each of the paired sites in Holocene and glacial time slices. However, 230Th-normalized MARs are about 50% lower, on average at each of the paired sites during the same time slices. Both Holocene and glacial samples from "thin" cores (4,11JC) contain, surprisingly, significant amounts (up to 50%) of the 230Th within the coarse grained (>63 μm) fraction which makes up 40-70% of the bulk samples analyzed. On the contrary, Holocene and glacial samples from "thick" cores, (8,17JC), contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4μm), which makes up 26-40% of the bulk samples analyzed. Although, redistribution of sediment has taken place, our analysis indicates that 230Th-derived focusing factors are being overestimated at thick sites and underestimated at thin sites.

  12. Wetland paleoecological study of southwest coastal Louisiana: sediment cores and diatom calibration dataset

    USGS Publications Warehouse

    Smith, Kathryn E. L.; Flocks, James G.; Steyer, Gregory D.; Piazza, Sarai C.

    2015-01-01

    Wetland sediment data were collected in 2009 and 2010 throughout the southwest Louisiana Chenier Plain as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits from tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh, intermediate, and brackish marsh and are located coincident with Coastwide Reference Monitoring System (CRMS) sites. The nine sediment cores were collected at the Rockefeller Wildlife Refuge (RWR) located in Grand Chenier, La.

  13. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Self-Trail, Jean M.; Edwards, Lucy E.; Litwin, Ronald J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of water- saturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dino-flagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a result, intact Paleogene clasts in Eyreville cores are rare, but clasts of semilithified Potomac Formation silts and clays are common.

  14. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    ,; Edwards, L.E.; Litwin, R.J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of watersaturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dinoflagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a result, intact Paleogene clasts in Eyreville cores are rare, but clasts of semilithified Potomac Formation silts and clays are common. ?? 2009 The Geological Society of America.

  15. Microplastics in Sediment Cores from Asia and Africa as Indicators of Temporal Trends in Plastic Pollution.

    PubMed

    Matsuguma, Yukari; Takada, Hideshige; Kumata, Hidetoshi; Kanke, Hirohide; Sakurai, Shigeaki; Suzuki, Tokuma; Itoh, Maki; Okazaki, Yohei; Boonyatumanond, Ruchaya; Zakaria, Mohamad Pauzi; Weerts, Steven; Newman, Brent

    2017-08-01

    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.

  16. Quantitative palaeodrainage analysis in the Pleistocene of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Vezzoli, G.; Garzanti, E.; Sciunnach, D.

    2009-04-01

    During the Pleistocene, Po Plain deposits recorded repeated waxing and waning of Alpine ice caps, and thus provide an excellent opportunity to investigate the interactions between pronounced climatic fluctuations and background tectonic activity (Scardia et al., 2006), resulting in frequent changes of drainage patterns. A high-resolution Pleistocene stratigraphy, with a complete sedimentological, paleontological, petrographic-mineralogical, magneto-stratigraphic, and seismic data base, was recently obtained from eleven continuous cores drilled in the Lombardy Po Plain north of the Po River (ENI and Regione Lombardia, 2002). In the present study we focus on two cores in the proximal (Cilavegna) and distal plain (Pianengo), which best exemplify the drastic change in sedimentary systems and drainage patterns associated with the onset of major Pleistocene glaciations in the Alps (˜870ky; Muttoni et al., 2003). This climatic event is recorded by a regional unconformity (named R-unconformity by Muttoni et al., 2003), traced all across the Po Basin and encountered at -81 m depth in the Pianengo Core and at -98 m depth in the Cilavegna Core. The Cilavegna Core consists of metamorphiclastic floodplain sediments, capped by the R-unconformity and overlain by quartzofeldspathic braidplain deposits. The Pianengo Core consists of metamorphiclastic deltaic to floodpain sediments, capped by the R-unconformity and overlain by alluvial-fan gravels rich in carbonate pebbles; another unconformity at -39 m depth is overlain by metamorphiclastic braidplain deposits. Our quantitative approach to paleodrainage analysis is based on comprehensive information obtained from modern settings (Garzanti et al., 2004; 2006). End-member modelling and similarity analysis allows us to objectively compare detrital modes from modern and ancient deposits, and to reconstruct the evolution of sediment pathways through geologic time (Vezzoli and Garzanti 2009). The Cilavegna Core documents stepwise south-westward shifts of major tributaries draining the axial belt. The Pianengo Core records the rapid southward progradation of transverse alluvial fans fed locally from the Southern Alps, followed by progressive establishment of the modern Adda river system. Evolving drainage patterns and river avulsions represent a major cause of compositional change in foreland-basin deposits. Lateral shifts of river courses, commonly associated with unconformities and favoured by an increase in the ratio between sediment fluxes and subsidence, provide crucial information on tectonic or climatic events, and should be given full consideration in provenance studies. ENI and Regione Lombardia. 2002. Geologia degli acquiferi padani della Regione Lombardia. Firenze, Società Elaborazioni Cartografiche s.r.l., 130 p. Muttoni G., Carcano C., Garzanti E., Ghielmi M., Piccin A., Pini R., Rogledi S., and Sciunnach D. 2003. Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989-992. Scardia G., Muttoni G., and Sciunnach D. 2006. Subsurface magnetostratigraphy of Pleistocene sediments from the Po Plain (Italy): constraints on rates of sedimentation and rock uplift. Geological Society of America Bulletin, 118, 1299-1312. Vezzoli G. and Garzanti E. 2009. Tracking paleodrainage in foreland-basin sequences. Journal of Geology, In press.

  17. Recent marine deposits reconstruction of two depositional environments of the French Atlantic coast

    NASA Astrophysics Data System (ADS)

    Pouzet, Pierre; Maanan, Mohamed; Schmidt, Sabine; Athimon, Emmanuelle; Robin, Marc

    2017-04-01

    This work provides a 300-yr high-resolution record of past storm and/or tsunami events using a multi-proxy analysis (137Cs and 210Pb dating, chemical composition and grain size) of sedimentary deposits from two coastal depositional environments of the French Atlantic coast. We analyse two wetland areas situated just behind a narrow coastal sand strip: 1) the Mer Blanche and 2) the Turballe. Evidence for strong extratropical storms and /or tsunamis events can be identified in this central part of the Bay of Biscay from the XIXth to the XXth century. Nine short sediment cores were collected in August 2016 using gravity type corer of 10 inner diameter and 100 cm length. Each core was longitudinally sliced, each half section photographed and described. High-resolution elemental analyses of split sediment cores were done using an Avaatech XRF core scanner. Then sediment cores were sampled every 0.5 cm. Grain size analysis was done using a Malvern 2600 laser beam grain sizer; organic carbon was measured by Leco induction furnace. 137Cs, 210Pb and 226Ra activities were measured on about 2 g dried sediment using a low background, well-type γ spectrometer (Canberra). The 210Pb in excess, which is used for dating, was calculated as the difference of measured 210Pb and of its supported activities (226Ra). The history information is performed using historical documents including narrative sources, ancient maps, records of cities repairs, surveys conducted after a disaster, newspaper from different departmental and national archives, and meteorological data. Coastal depositional environments were affected hardest by extreme environmental and climatological events during the last century. In the Mer Blanche core, three extreme episodes can be observed: i) at 36 cm, sediment is characterized by coarser sand and higher Sr/Al ratio, this episode coincides with a high tidal wave in spring 1937; ii) at 55 cm, we observe the presence of many gravels, they dates back to the high tidal wave of 1924 and iii) at 65 cm, the presence of another coarse pebble layer is attributed to a series of severe storms associated with coastal flooding episodes between 1910 and 1913. Acknowledgements The authors gratefully acknowledge Isabelle Billy (EPOC, University of Bordeaux 1) for XRF spectrometric core scanner analysis. This work was supported by grants from the Fondation de France through the research program « Quels littoraux pour demain? » and OR2C PDL regional framework.

  18. Is the core top modern? Observations from the eastern equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Mekik, Figen; Anderson, Robert

    2018-04-01

    A compilation of ages from 67 core tops in the eastern equatorial Pacific (EEP) does not display an easily discernible regional pattern. The ages range from 790 to over 15,000 years. The youngest core tops with the highest sediment focusing factors are located in the Panama Basin. There are weak but statistically significant inverse relationships between core top age and age-model based mass accumulation rates, bioturbation depth, linear sedimentation rate and sediment focusing factors. However, we found no statistically significant relationship between core top age and calcite dissolution in sediments or 230Th-normalized mass accumulation rates. We found evidence suggesting that greater amount of sediment focusing helps to preserve the carbonate fraction of the sediment where focusing is taking place. When focusing factors are plotted against percent calcite dissolved, we observe a strong inverse relationship, and core tops younger than 4500 years tend to occur where focusing factors are high and percent calcite dissolved values are low. Using labile organic carbon fluxes to estimate bioturbation depth in the sediments results in the observation that where bioturbation depth is shallow (<4 cm), the core top age has a strong, inverse relationship with sediment accumulation rate. We used the Globorotalia menardii Fragmentation Index (MFI) as an indicator of percent calcite dissolved in deep sea sediments. There is a distinct pattern to core top calcite dissolution in the EEP which delineates bands of high surface ocean productivity as well as the clear increase in dissolution downward on the flanks of the East Pacific Rise.

  19. Estimating Last Glacial Maximum Ice Thickness Using Porosity and Depth Relationships: Examples from AND-1B and AND-2A Cores, McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.

    2009-12-01

    We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.

  20. Fields of Coal: An analysis of industry and sedimentology in Dolores, Texas

    NASA Astrophysics Data System (ADS)

    Oaden, A.; Besonen, M. R.

    2013-12-01

    Research was conducted on a historically significant pond located in the former mining town of Dolores, located north of Laredo, Texas. The intention of this work was, to determine the influence of local mining operations on the environment and determine the extent of coal production from the sedimentary record. The pond is located ~160 m downslope from a former coal mine and waste pile, and was therefore a likely site of coal accumulations, as well as other debris. Additionally, this pond was created only 130 years ago, in 1882, giving a distinct time frame for any sedimentary records. Field work was conducted to obtain sediment core samples from the pond, and corroborating evidence was gathered using historical documents from archives in Laredo, online resources, as well as library records and inter library loan. Sedimentary cores obtained were shorter than desired as a result of the densely packed clay, which reduceding the penetration of coring equipment, leaving the historical extent of the cores limited. The limited sedimentary record also gives little indication as to the extent of production in the nearby mine and how it may have varied over time. The split cores were scanned with a Minolta CM-2600d spectrophotometer, and the results were transformed into first derivative spectrum equivalent data to identify common sedimentary minerals according to their first derivative signatures. The spectral analysis on the cores determined a large amount of clay minerals, and also limonite/goethite according to prominent first derivative peaks centered on ~440 and 540 nm. This agrees with visual observations given the all minerals showing spectra most intense in the 625 -725 nm portion of the visible spectrum, giving the cores their largely yellowish-reddish/brown hue of the cores. Magnetic susceptibility analysis indicated great changes in mineral contentmagnetism, some possibly associated with ash from fires. Bulk density and loss-on-ignition analysis to further characterize the sediments is underway. Basic conclusions indicate the present environment to be minimally affected by the coal operations and resulting tipple pile, but with a large variance over time in mineralogy and composition of sediment, with further research necessary to determine the full effects of industry in the area.

  1. Mercury accumulation in Devils Lake, North Dakota effects of environmental variation in closed-basin lakes on mercury chronologies

    USGS Publications Warehouse

    Lent, R.M.; Alexander, C.R.

    1997-01-01

    Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake, along with the associated Hg and total organic carbon, and the distribution of sedimentation patterns in Devils Lake may be affected by changing lake levels.

  2. Contaminant trends in reservoir sediment cores as records of influent stream quality

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.

    2004-01-01

    When reconstructing water-quality histories from lake and reservoir cores, it is sometimes assumed that the chemical signatures in the cores reflect historical water quality in the influent streams. To investigate this assumption, concentrations of metals, PAHs, and organochlorine compounds in sediment cores were compared to those associated with an influent-stream suspended sediment for three reservoirs in Fort Worth, TX, and two reservoirs in Boston, MA, U.S.A., and interpreted in light of land-use and regulation histories. In evaluating relations between suspended sediments and cores, three levels of preservation were indicated: (1) influent concentrations and historical trends are preserved in cores (metals at all sites; some organic contaminants at some sites); (2) some loss occurs during transport and initial deposition but relative historical trends are preserved in cores (some organic contaminants at some sites); and (3) neither stream concentrations nor relative historical trends are preserved (dieldrin and p,p???-DDT). The degree of preservation of influent concentration histories varied between lakes, particularly for PAHs. The results support the use of sediment cores to infer streamwater-quality histories for many contaminants but indicate that reservoir-bottom sediment samples might underestimate concentrations of organic contaminants in some streams.

  3. Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado

    USGS Publications Warehouse

    Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2001-01-01

    Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.

  4. Historical trends of perfluoroalkyl substances (PFASs) in dated sediments from semi-enclosed bays of Korea.

    PubMed

    Shen, Aihua; Lee, Sunggyu; Ra, Kongtae; Suk, Dongwoo; Moon, Hyo-Bang

    2018-03-01

    Information is scarce on historical trends of perfluoroalkyl substances (PFASs) in the coastal environment. In this study, four sediment cores were collected from semi-enclosed bays of Korea to investigate the pollution history, contamination profiles, and environmental burden of PFASs. The total PFAS concentrations in sediment cores ranged from 6.61 to 821 pg/g dry weight. The highest concentrations of PFASs were found in surface or sub-surface sediments, indicating on-going contamination by PFASs. Historical trends in PFASs showed a clear increase since the 1980s, which was consistent with the global PFAS consumption pattern. Concentrations of PFASs were dependent on the organic carbon content in sediment cores. PFOS and longer-chain PFASs were predominant in all of the sediment cores. In particular, a large proportion of longer-chain PFASs was observed in the upper layers of the sediment cores from industrialized coastal regions. Inventories and fluxes estimated for PFASs were similar to those for PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park

    EPA Science Inventory

    An analytical method was developed for the trace analysis of 98 semi-volatile organic compounds (SOCs) in remote, high elevation lake sediment. Sediment cores from Lone Pine Lake (West of the Continental Divide) and Mills Lake (East of the Continental Divide) in Rocky Mountain Na...

  6. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  7. Temporal shifts in reef lagoon sediment composition, Discovery Bay, Jamaica

    NASA Astrophysics Data System (ADS)

    Perry, Christopher T.; Taylor, Kevin G.; Machent, Philip G.

    2006-03-01

    Discovery Bay, north Jamaica, forms a large (1.5 km wide), deep (up to 56 m) embayment that acts as a sink for reef-derived and lagoonal carbonate sediments. Since the mid-1960s, the bay has also provided a sink for inputs of bauxite sediment that are spilled during loading at a boat terminal constructed within Discovery Bay. Bauxite has accumulated across much of the southern section of the bay with surficial sediments presently composed of up to 35 weight% non-carbonate. Cores recovered from sites on the western side of the bay provide a stratigraphic record of this history of bauxite contamination across water depths from 5 to 25 m. The bauxite-influenced upper sediment horizons are clearly visible in each core from the distinctive red-brown colouration of the sediment. These sediments are composed of approximately 10% non-carbonate (bauxite) and have Fe contents of around 2-3000 μg/g (up to 7000 μg/g). The thickness of this upper bauxite-contaminated sequence increases down transect (approximately 18 cm in the shallowest core, to around 47 cm in the deepest core), and in each core overlies a sequence of 'clean' lagoon carbonates. These typically are poorly sorted carbonate sands with variable amounts of coral rubble. Down-core data on CaCO 3 and Fe content provide a chemical record of decreasing sediment contamination with depth, with the lower 'clean' carbonates composed of only around 2% non-carbonate and <700 μg/g Fe. Down-core sediment-constituent data also indicate significant changes in sediment production at the shallowest sites. At depths of 5 and 10 m, sediment assemblages have shifted from diverse assemblages of coral, mollusc, Amphiroa and Halimeda in the clean lagoon sands, to assemblages dominated by Halimeda and Amphiroa within the surficial sediments. At the deeper sites, no major down-core shifts in sediment constituents occur. These sites thus record a rather complex history of changes in sediment composition and chemistry. Clear shifts in chemistry and stratigraphy occur in all the cores and reflect progressive bauxite contamination in the near-surface horizons. These inputs, however, do not appear to have directly affected carbonate production, since the major constituent changes appear to be a response to more regional declines in coral community and reef status.

  8. Earthquake Signatures in the Modern Sediment Record of Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Marshall, N. R.; Kuehl, S. A.; Dellapenna, T. M.; Miller, E. J.

    2016-02-01

    Geochemical signatures of earthquake-generated sediment gravity flows are investigated using X-ray fluorescence core scanning on a suite of sediment cores from Prince William Sound, Alaska. This study focused on the development of geochemical proxies for earthquake deposits with an emphasis on interpreting deposits initiated from large subduction earthquakes. A north-south transect of sediment cores from Prince William Sound, between Hinchinbrook Island and the Columbia Glacier, was used to examine a record of earthquakes in this tectonically active region for the past century. The sediments in Prince William Sound are sourced from two geologically distinct regions: the metamorphosed turbidites of coastal Prince William Sound, and the Copper River Basin that contains a significant amount of volcanic rocks. Geochemical studies of sediment cores and end-member sediment samples using X-ray fluorescence and inductively coupled plasma mass spectrometry allowed for the development of geochemical proxies for sediment provenance during the past 100 years. Downcore peaks in Sr/Pb are indicative of Copper River Basin sediments, whereas peaks in K/Ca are indicative of inputs of Prince William Sound sediments. Large subduction earthquakes in northern Prince William Sound initiate gravity flows of Prince William Sound provenance into the deep channel. Particularly robust provenance signatures are seen in the northernmost cores in the core transect, which are closer to the earthquake epicenters and the Columbia Glacier source region. The ages of the deposits, from core-averaged 210Pb sediment accumulation rates, correspond to large earthquakes that occurred in 1912, 1964, and 1983. A similar deposit from 1895 in northern Prince William Sound, prior to historical earthquake records, may have also been initiated from a large earthquake in the 1890's.

  9. The Impacts of Episodic Storm and Flood Events on Carbon and Sediment Delivery to Gulf of Mexico Sediments

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Carlin, J. A.; Sayers, L.; Swenson, J.

    2017-12-01

    Marine sediments are an important long-term reservoir for both recently fixed organic carbon (OC) and ancient rock derived OC, much of which is delivered by rivers. The ratio between these two sources of OC in turn regulates atmospheric levels of oxygen and carbon dioxide over geologic time, making this riverine delivery of OC, primarily carried by sediments, an important flux in the global carbon cycle. However, while the overall magnitude of these fluxes are relatively well known, it remains to be determined the importance of episodic events, like storms and floods, in the flux of OC from terrestrial to marine environments. Here, we present data from a 34 cm core collected from the Gulf of Mexico at a mid-shelf distal depocenter for the Brazos River in 2015, during a strong El Nino when that area of the country was experiencing 100-year flood events and anomalously high river flow. Based on analysis of the radioactive isotope 7Be, approximately the top 7-8 cm of the sediment in this core was deposited during this flood event. Both bulk elemental (C, N, and stable carbon isotopes) and chemical biomarker (lignin-phenol) data has been combined to provide information of the origin and chemistry of the OC in this core both before and during flooding. C:N and d13C indicate a mixture of marine-sourced and terrestrially-sourced OC throughout the length of the core with very little variation between the flood layer and deeper sediments. However, lignin-phenol concentrations are higher in flood-deposited sediment, indicating that this sediment is likely terrestrially-sourced. Lignin-phenol indicators of OC degradation state (Acid:Aldehyde ratios) indicate that flood sediment is fresher and less degraded than deeper sediments. Taken together, these results indicate that 1. Bulk analyses are not enough to determine OC source and the importance of flood events in OC cycling and 2. Episodic events like floods could have an oversized impact on OC storage in marine sediments.

  10. INNOVATIVE TECHNOLOGY EVALUATION REPORT, SEDIMENT SAMPLING TECHNOLOGY, ART'S MANUFACTURING, SPLIT CORE SAMPLER FOR SUBMERGED SEDIMENTS

    EPA Science Inventory


    The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at ...

  11. Sediment Core Descriptions: R/V KANA KEOKI 1972 Cruise, Eastern and Western Pacific Ocean,

    DTIC Science & Technology

    1976-06-01

    of ship tracks and coring stations are shown. Corrected satellite navigation-determined coordinates for each coring operation are indicated, and water depth, length of core, and age of oldest sediment in the cores are given.

  12. Age Estimates of Holocene Glacial Retreat in Lapeyrère Bay, Anvers Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Mead, K. A.; Wellner, J. S.; Rosenheim, B. E.

    2011-12-01

    Lapeyrère Bay is a fjord on the eastern side of Anvers Island, located off the Western Antarctic Peninsula. Anvers island has a maximum elevation of 2400m (comprised of ice overlaying bedrock), and experiences colder temperatures and more precipitation than the South Shetlands, which are ~230km to the north. Two glaciers enter Lapeyrère Bay, one large and vulnerable to avalanching, the Iliad Glacier, and one smaller glacier confined to a northern unnamed cove. Though several research cruises have visited Lapeyrère Bay, very little has been published on the fjord's glacial retreat history or sediment flux. The primary purpose of this study is to reconstruct the glacial retreat and sediment flux histories of Lapeyrère Bay using a SHALDRIL core and standard piston cores for chronology and sedimentary facies analysis, and multibeam swath bathymetry data for identifying seafloor morphological features. Preliminary core data from the proximal northern flank of Lapeyrère Bay show greenish grey sandy mud with scattered pebble and sand lens lithology. A core taken in the distal-most part of the fjord is largely diatomaceous sediment grading into grey silty mud with thin sandy turbidites. Multibeam data has exposed seafloor features including a grounding zone wedge at the entrance of the unnamed cove of northern Lapeyrère Bay, drumlins, glacial lineations, and a glacial outwash fan near the ocean-termination of the Iliad glacier. Additionally, this study seeks to assess the effectiveness of a novel 14C method of dating sediment lacking sufficient calcareous material for carbonate 14C dating. The method being tested is ramped pyrolysis radiocarbon analysis, which dates individual fractions of organic material. It is hypothesized that ramped pyrolysis will improve upon bulk acid insoluble organic material (AIOM) dating, as AIOM can include both autochthonous syndepositionally aged carbon and allochthonous pre-aged carbon, resulting in 14C ages inherently older than the age of deposition. Performing ramped pyrolysis 14C dating and carbonate 14C dating on the same cores and comparing the resulting ages will address this hypothesis. Carbonate radiocarbon dating has been completed for cores taken in the proximal fjord, from the glacial outwash fan. Four dates from a 20.3m drill core yield an average sedimentation rate of 2.2mm/yr. Four dates from the nearby 293cm gravity core yield a sedimentation rate of 1.4mm/yr. Ramped pyrolysis has been performed on a total of nine samples, six taken from the proximal drill core and three taken from the distal-most gravity core of the fjord. The average proximal sample TOC is 0.22%, and the average distal sample TOC is 0.55%. These values show a trend of increasing TOC values with increasing oceanic influence in the distal fjord.

  13. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  14. Assessment of heavy metal contamination in core sediment samples in Gulf of Izmir, Aegean Sea, Turkey (by inductively coupled plasma-optical emission spectrometry (ICP-OES))

    NASA Astrophysics Data System (ADS)

    Ünal Yumun, Zeki; Kam, Erol; Kurt, Dilek

    2017-04-01

    Heavy metal and radionuclide analysis studies are crucial in explaining biotic and abiotic interactions in ecosystems. This type of analysis is highly needed in environments such as coastal areas, gulfs or lakes where human activities are generally concentrated. Sediments are one of the best biological indicators for the environment since the pollution accumulates in the sediments by descent to the sea floor. In this study, sediments were collected from the Gulf of Izmir (Eastern Aegean Sea, Turkey) considering the accumulated points of domestic and industrial wastes to make an anthropogenic pollution analysis. The core sediments had different depths of 0.00-30.00 m at four different locations where Karsiyaka, Bayrakli, Incialti and Cesmealti in the Gulf of Izmir. The purpose of the study was determining Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in the drilling samples to assess their levels and spatial distribution in crucial areas of the Aegean Sea by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion techniques. The heavy metal concentrations found in sediments varied for Cd:

  15. Paleoenvironmental reconstruction of lagoonal strata from Sri Lanka using multiple physical properties proxies to assure stratigraphic continuity

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Ortiz, J. D.; Moore, A.; Siriwardana, C.

    2009-12-01

    Core collapsing is a common problem in studies of lagoonal sediment cores. Coring liquefied sediments below the water table can lead to collapse of material from upper core drives in to the hole. This can be prevented by casing the hole. But casing is not always possible due to practical issues such as coring device type, resources, or time constraints. In such cases identifying the collapsed material in each drive is necessary to ensure accurate results. Direct visual identification of collapsed portion is not always possible and may not be precise. This study successfully recognized collapsed material using a suite of physical properties measurements including: visible (VIS) reflectance spectroscopy, magnetic susceptibility and grain size spectra. This enables us to use the verified stratigraphically continuous records for paleo-environmental studies. Sediment cores were collected from three coastal lagoons and a swale along south eastern and eastern Sri Lanka. Cores were collected using a customized AMS soil coring device with a 1-m long sample barrel. The metal barrel of this instrument collects a 2.5 cm diameter sample in 1-m long plastic tubes. Coring was conducted to refusal, with a maximum depth of 5 m. Casing was not applied to the holes due to small core diameter and time constrains. Drill holes were placed at locations situated both below and above the water level of the lagoons. A total of 100 m of sediment core were obtained from these locations. After opening the cores, suspected collapsed material was initially identified by visual observation using a high power binocular microscope. Particle size, magnetic susceptibility, X-ray fluorescence (XRF) and Diffuse Spectral Reflectance (DSR) was then measured on all cores at 1-2 cm resolution to precisely define the repeated sediment intervals. Down core variation plots of magnetic susceptibility, CIE L* (lightness), a*(red/green difference), b* (blue and yellow difference) clearly record abrupt changes at core drive boundaries at the presence of collapsed material. The correlation of grain-size spectra from the bottom and top of consecutive drives was used to precisely determine the thickness of the collapsed material between drives. Our analysis of 48 m of core material thus far indicates that ~4.4m or ~9% of the record represents collapsed material which can be excluded from further study. The remaining continuous record was analyzed for paleoenvironmental studies. Down core variation of grain size, geochemical ratios, principle components of DSR and geochemical data, and magnetic susceptibility from all locations indicate a gradual filling of these deep lagoons and a transition from reducing to oxic conditions. According to an age model constructed for a nearby lagoon the onset of regression began ~6,000 years BP. Several instantaneous sedimentation events were recorded in all lagoons. Further studies will be carried out to determine whether these represent tsunami, storm surge, or flood deposits.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, V.; Parks, J.M.

    The turtle grass (Thalassia testudinum) community has a significant influence on sedimentation in Florida Bay, but the roles other processes may play in the buildup of mud bank and spit sediments are poorly understood. Samples from cores taken from Ramshorn Spit and Ramshorn Shoal were classified into 4 basic types on the basis of particle size distribution, organic content, and faunal assemblages. In order of increasing volumetric importance they are: (1) very thin, discontinuous shelly packstones, representing overbank or storm deposits; (2) thin, continuous basal shelly packstones, the initial marine deposit on the Pleistocene bedrock surface; (3) muddy wackestones, ofmore » variable thickness, deposited in the presence of a seagrass community; (4) very thick, faintly laminated fine mudstones, with very sparse fauna, representing weak current-transported sediments settling out of suspension. Discriminant function analysis confirms the classifications and shows that these sediment layers are indeed correlatable between cores. Interpretation of the core logs from Ramshorn Spit indicates a definite change in stratigraphy southwestward from the spit and bank junction to the tip of the spit itself. The different sediment layers show a small but significant inclination to the southwest. Throughout its depositional history, Ramshorn Spit seems to have been actively accreting outward into the surrounding lake by means of a current-transported fine mud fraction. After settling out at the growing tip of the spit, the sediments are subsequently stabilized at some later time by a turtle-grass cover.« less

  17. Biogenic silica in Lake Baikal sediments: results from 1990-1992 American cores

    USGS Publications Warehouse

    Carter, Susan J.; Colman, Steven M.

    1994-01-01

    The Lake Baikal Paleoclimate Project is a joint Russian-American program established to study the paleoclimate of Central Asia. During three summer field seasons, duplicate Russian and American cores were taken at a number of sites in different sedimentary environments in the lake. Eight cores returned to the U.S. were quantitatively analyzed for biogenic silica using a single-step 5-hour alkaline leach, followed by dissolved silicon analysis by inductively-coupled-plasma atomic-emission spectroscopy. Sediments of Holocene age in these cores have biogenic silica maxima that range from about 15 to 80 percent. An underlying zone in each core with low biogenic-silica concentrations (0 to 5 percent) dates from the last glacial maximum. The transition from the last glaciation to the present interglaciation, recorded by biogenic silica, began about 13,000 years ago. Biogenic silica profiles from these cores appear to be a good measure of past diatom productivity and a useful basis for paleoclimatic interpretations.

  18. Accumulation and trace-metal variability of estuarine sediments, St. Bernard delta geomorphic region, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, K.E.

    1995-10-01

    Prior to government regulation, little monitoring of metal discharges into the canals, bayous, and rivers that drain estuarine systems occured. Discharges of trace-metals by industries and municipalities into surface water bodies are presently regulated through the use of Federal and State mandated permit programs. Resource management of economically important estuarine systems has fostered increasing concern over the accumulation of trace-metal pollutants in water, sediments, and biota from these dynamic areas. The acid-leachable concentrations of fourteen trace-metals were determined for 125 bottom sediment samples and 50 core interval samples by plasma emission analysis. Bottom sediments of the St. Bernard estuarom complexmore » consist predominantly of silty clays and clayey silts derived from the erosion of the St. Bernard lobe of the Mississippi River delta and sediments associated with historic crevasses along the Mississippi River. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Trace-metal concentrations from sediments for the study area tend to have greater mean concentrations than Florida estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology. Rates varied from 0.12 to 0.21 cm/yr. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Natural trace-metal variability was examined through the use of an aluminum normalization model based on Florida and Louisiana estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology, and grain-size corrected data. Elevated concentrations of As, Ba, Cd, Pb, V and Zn were noted from sediments associated with oil and gas drilling and production, sandblasting and shipbuilding, dredging, and stormwater, municipal, and industrial discharges.« less

  19. Lasting Impact of a Tsunami Event on Sediment-Organism Interactions in the Ocean

    NASA Astrophysics Data System (ADS)

    Seike, Koji; Sassa, Shinji; Shirai, Kotaro; Kubota, Kaoru

    2018-02-01

    Although tsunami sedimentation is a short-term phenomenon, it may control the long-term benthic environment by altering seafloor surface characteristics such as topography and grain-size composition. By analyzing sediment cores, we investigated the long-term effect of the 2011 tsunami generated by the Tohoku Earthquake off the Pacific coast of Japan on sediment mixing (bioturbation) by an important ecosystem engineer, the heart urchin Echinocardium cordatum. Recent tsunami deposits allow accurate estimation of the depth of current bioturbation by E. cordatum, because there are no preexisting burrows in the sediments. The in situ hardness of the substrate decreased significantly with increasing abundance of E. cordatum, suggesting that echinoid bioturbation softens the seafloor sediment. Sediment-core analysis revealed that this echinoid rarely burrows into the coarser-grained (medium-grained to coarse-grained) sandy layer deposited by the 2011 tsunami; thus, the vertical grain-size distribution resulting from tsunami sedimentation controls the depth of E. cordatum bioturbation. As sandy tsunami layers are preserved in the seafloor substrate, their restriction on bioturbation continues for an extended period. The results demonstrate that understanding the effects on seafloor processes of extreme natural events that occur on geological timescales, including tsunami events, is important in revealing continuing interactions between seafloor sediments and marine benthic invertebrates.

  20. Minero-chemical composition as environmental quality assessment tool of an artificial water reservoir: the case of the "Pietra del Pertusillo" lake (Basilicata, Italia)

    NASA Astrophysics Data System (ADS)

    fortunato, elisabetta; mongelli, giovanni; paternoster, michele; sinisi, rosa

    2016-04-01

    The Pietra del Pertusillo fresh-water reservoir is an artificial lake located in the High Agri River Valley (Basilicata); its dam was completed in 1963 for producing hydroelectric energy and providing water for human use to Puglia and Basilicata southern Italian regions (approximately 2 million people). Pertusillo lake lies within a national park because of the presence of many special protected areas. This reservoir is a natural laboratory for assessing the sediment pollution from human activities, including: waste-water treatment plants, landfills, farms, treatment oil plant, plastics and other industrial activities. In addition, the Pertusillo reservoir is located in the area of the largest oil field of continental Europe. This anthropogenic pressure may thus represent an impact factor on the environmental equilibrium and consequently the knowledge and control on their quality represents a relevant environmental challenge. This study reports the preliminary results of a multidisciplinary (sedimentological, mineralogical, geochemical) PhD research focused on the analysis of the lacustrine sediments filling the Pietra del Pertusillo fresh-water reservoir. The lakes and its sediments represent the natural sink for nutrients and possible pollutants which tend to accumulate in relation to the nature and composition of the solid matrix but also the concentration and characteristics of the substances themselves. Moreover the deeper sediments, deposited under undisturbed condition, represent the "historical memory" of the ecosystem. Sub-aqueous lake sediments were investigated in May 2014, sampled using a small platform and a gravity corer (UWITEC, Austria) of 90 mm diameter which allowed to drill 19 cores up to 2 m long from the sediment/water interface. Successively cores were studied and described by using facies analysis techniques; a large number of core samples (147) were collected from the working half of each core, stored in HPDE containers, and frozen at -20°C for subsequent chemical and mineralogical analysis. Further, in order to assess the provenance effects on the composition of lake sediments, the bedrock (Meso-Cenozoic rocks and Quaternary fluvial-lacustrine deposits) and the stream sediments of the main "Pietra del Pertusillo" tributaries, close to the detrital supply entry points of Pietra del Pertusillo lake were also sampled. The mineralogical composition was obtained from randomly oriented powders by XRPD. Chemistry (major, minor, and trace elements) was performed on powdered samples by ICP-MS technique after a four acids digestion and lithium metaborate/tetraborate fusion to facilitate the destruction of possible resistate minerals. Preliminary data related to the stream sediments show that both major and minor elements (including heavy metals, barium and arsenic) have a minor variability and are close to the median values of the bedrock. The mineralogical composition of the analysed samples can explain the elemental relationships,thus excluding any anthropogenic input. The mineralogical composition of the lacustrine samples is made of quartz, carbonates, feldspars, muscovite/illite, chlorite, and interstratified clay minerals, and it is constant throughout the cores. Finally, as further step ot he research plan, we are processing 20 of all lake samples with the highest peaks of interstratified clay minerals, which likely represent the most reactive phases in our sediment-water system.

  1. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    USGS Publications Warehouse

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  2. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  3. Mercury profiles in sediment from the marginal high of Arabian Sea: an indicator of increasing anthropogenic Hg input.

    PubMed

    Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender

    2016-05-01

    Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.

  4. Current status and historical variations of DDT-related contaminants in the sediments of Lake Chaohu in China and their influencing factors.

    PubMed

    Kang, Lei; He, Qi-Shuang; He, Wei; Kong, Xiang-Zhen; Liu, Wen-Xiu; Wu, Wen-Jing; Li, Yi-Long; Lan, Xin-Yu; Xu, Fu-Liu

    2016-12-01

    The temporal-spatial distributions of DDT-related contaminants (DDXs), including DDT (dichlorodiphenyltrichloroethane), DDE (dichlorodiphenyldichloroethylene) and DDD (dichlorodiphenyldichloroethane), in the sediments of Lake Chaohu and their influencing factors were studied. p,p-DDE and p,p-DDD were found to be the two dominant components of DDXs in both surface and core sediments. The parent DDT compounds were still detectable in sediment cores after the late 1930s. Historical usage of technical DDT was identified as the primary source of DDXs in sediments, as indicated by DDT/(DDD + DDE) ratios of less than one. The residual levels of DDXs were higher in the surface and core sediments in the western lake area than in other lake areas, which might be due to the combined inflow effects of municipal sewage, industrial wastewater and agricultural runoff. The DDX residues in the sediment cores reached peak values in the late 1970s or early 1980s. There were significant positive relationships between DDX residues in sediment cores with annual DDT production and with fine particulate sizes (<4.5 μm). The relationship between the DDXs and TOC in sediment was complex, as indicated by the significant differences among the surface and core sediments. The algae-derived organic matter significantly influenced the amount of residue, composition and distribution of DDXs in the sediments. The DDD/DDE ratios responded well to the anaerobic conditions in the sediments that were caused by algal blooms after the late 1970s in the western lake area. This suggests that the algae-derived organic matter was an important factor and served as a biomarker of eutrophication and also affected the DDX residues and lifecycle in the lake ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enantiomer fractions of chlordane components in sediment from U.S. Geological Survey sites in lakes and rivers

    USGS Publications Warehouse

    Ulrich, E.M.; Foreman, W.T.; Van Metre, P.C.; Wilson, J.T.; Rounds, S.A.

    2009-01-01

    Spatial, temporal, and sediment-type trends in enantiomer signatures were evaluated for cis- and trans-chlordane (CC, TC) in archived core, suspended, and surficial-sediment samples from six lake, reservoir, and river sites across the United States. The enantiomer fractions (EFs) measured in these samples are in good agreement with those reported for sediment, soil, and air samples in previous studies. The chlordane EFs were generally close to the racemic value of 0.5, with CC values ranging from 0.493 to 0.527 (usually >0.5) and TC values from 0.463 to 0.53 (usually <0.5). EF changes with core depth were detected for TC and CC in some cores, with the most non-racemic values near the top of the core. Surficial and suspended sediments generally have EF values similar to the top core layers but are often more non-racemic, indicating that enantioselective degradation is occurring before soils are eroded and deposited into bottom sediments. We hypothesize that rapid losses (desorption or degradation) from suspended sediments of the more bioavailable chlordane fraction during transport and initial deposition could explain the apparent shift to more racemic EF values in surficial and top core sediments. Near racemic CC and TC in the core profiles suggest minimal alteration of chlordane from biotic degradation, unless it is via non-enantioselective processes. EF values for the heptachlor degradate, heptachlor epoxide (HEPX), determined in surficial sediments from one location only were always non-racemic (EF ??? 0.66), were indicative of substantial biotic processing, and followed reported EF trends.

  6. Summer temperatures inferred from varved lacustrine sediment at Iceberg Lake in southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Diedrich, K.; Loso, M. G.

    2010-12-01

    Iceberg Lake, a glacier-dammed lake in southcentral Alaska, has been previously shown to record over 1,500 years of continuous laminated lacustrine sediment deposition. Because previous work was based on examination of subaerial outcrops exposed by stream incision in the bed of the jökulhlaup-drained lake, the length of the record was limited by the extent of the outcrops. In August of 2010, we returned to core the remote lake; our goal was recovery of the complete sedimentary record in the lake, extending perhaps back to the onset of late Holocene glaciation—around 3-5 ka in this region. We used a Vibarcorer system to recover sediment cores from two locations, one near the site of previous work and another at the distal end of the lake. The longest cores recovered were 5.2 meters and 6.2 meters at the proximal and distal sites, respectively. Based on the average lamination thickness established previously at the proximal site (4.7 mm), these cores should each represent over 1000 years of sediment accumulation, and likely much longer at the distal site, where laminations are expected to be thinner. Having established previously that the lake’s laminations are annual varves and that they are positively correlated with summer (melt-season) temperatures, our analysis is focused on documenting a long time-series of annual sediment accumulation and summer-layer particle size. Both measurements will be used to interpret the history of summer temperatures. The cores may also provide sedimentary evidence of the timing of advances/retreats of nearby glaciers, including the Tana Glacier and Bagley Icefield, helping to clarify the poorly-constrained timing of neoglaciation in Southern Alaska. The paleoclimate record produced at Iceberg Lake will be included in the Arctic System Science 8ka project

  7. [Concentrations and Distribution of Metals in the Core Sediments from Estuary and City Section of Liaohe River].

    PubMed

    Wang, Wei-jie; Zhou, Jun-li; Pei, Shu-wei; Liu, Zheng-tao

    2016-01-15

    The particle size, total organic carbon (TOC), total nitrogen (TN), C/N ratio and metal concentrations as well as activities of 210Pb were determined in Liaohe River estuary area (LN-2) and Shenyang area (LN-5), and the organic matter resources were discussed in two core sediments. Also the index of geoaccumulation (Igeo) and enrichment factors (EFs) methods were applied to evaluate the state of heavy metal contamination in the studied sties. The study showed that both sediment cores LN-2 and LN-5 were dominated by silts, and the vertical variations of grain-size composition and organic matter were well distributed in LN- 2 while fluctuated in LN-5. According to the organic matter source analysis through C/N ratio, C/N ratio varied in the scale of 5. 24-7.93 in LN-2 which was dominated by river source, and 9.94-14.21 in LN-5 which was dominated by terrestrial input. Al, Ca, Fe, Mn, Ni, Cu, Zn, Cd, Pb and Cr in two sediment cores had different vertical changing rules, Ni and Zn in LN-2 as well as Pb and Zn in LN-5 were affected by both natural and human factors, other elements had similar distributions to those of organic matters, which showed that these elements were mainly affected by the natural activities. Based on Igeo and EFs, both sediment cores were more severely polluted with Ni, Zn and Pb than other metals. The effects of human activities on the environment were also discussed in this study, combined with the economical development of Liaoning Province and the studied sites in the past 20 years.

  8. High resolution paleo-geomagnetic field variations as recorded in sediments from Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Ziegler, Leah; Stoner, Joseph

    2013-04-01

    The dynamic changes in the Earth's magnetic field, caused by fluid motions in its outer core, can be captured in global marine sediments. Here we extend recent efforts to reconstruct Holocene paleomagnetic secular variation and environmental conditions in the mid-high latitude North Pacific with analyses of a marine sediment core taken from Prince William Sound, southern Alaska. Natural and laboratory remanent magnetizations were studied by progressive alternating field (AF) demagnetization of u-channel samples from jumbo piston core EW0408-95JC (60.66278N, 147.70847W, water depth 745m). The lithology is monitored by physical properties measurements, including CT Scans and core descriptions. The lithology of the upper 8.5 m of the 17.6 meter core consists primarily of magnetically homogenous bioturbated muds. Component directions calculated by PCA analysis are characterized by low MAD values (<4°) with inclinations consistent with GAD predictions and declinations varying in a manner consistent with PSV. Normalized remanences are comparable using a variety of normalizers and show minimal scatter through demagnetization suggesting that reliable paleointenisty estimates may be preserved. A detailed chronology developed from calibrated radiocarbon dating of benthic forams shows that the 8.5m spans ~1500 years, and yields sedimentation rates of several hundred cm/kyr - ultra high for marine sediments. Comparison with Pacific Northwest and broader North American records, provides a degree of reproducibility and allows us to assess the spatial scale of signal coherence at centennial resolution . The resulting record of paleosecular variation (PSV) and relative paleointensity are consistent with predictions from global geomagnetic field models, yet allow investigations of rates of change of the local field, that cannot be accessed from global field models.

  9. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn occurred as a result of chemical precipitation of these metals from ground water upstream in the Red River. Comparisons of the geochemistry of the post-1979 sediment core with both mine wastes and with premining sediment from the vicinity of the Questa mine indicate that both are possible sources for this new component of sediment. Existing data have not resolved this enigma.

  10. Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan

    NASA Astrophysics Data System (ADS)

    Kiyokawa, Shoichi; Ueshiba, Takuya

    2015-04-01

    Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively. The estimated production of iron oxyhydroxide for the whole fishing port from trap cores is 142.7-253.3 t/year/5000 m2. From sediment cores, however, the accumulation of iron oxyhydroxide sediments on the sea floor is 39-95 t/year/5000 m2. This finding indicates that the remaining 63%-73% of iron was transported out to sea from Nagahama Bay. Even with a high rate of iron oxyhydroxide production, the sedimentation rate of iron oxyhydroxides in the bay is considerably higher than that observed in modern deep-ocean sediments. This example of rapid and abundant oxyhydroxide sedimentation might provide a modern analog for the formation of iron deposits in the geological record, such as ironstones and banded iron formations.

  11. Late Holocene Environmental Changes from NY-NJ Estuaries

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy M.

    2000-01-01

    High-resolution records of environmental change in the lower Hudson estuary are quite rare. We present preliminary data from several marshes in the New York- New Jersey region in order to understand the late Holocene environmental history of this region. Our project includes salt marsh cores from Hackensack, Piermont, Staten Island, and Jamaica Bay. Our preliminary research has focused on a 11.15 m sediment core from Piermont Marsh, New York (40 deg N, 74 deg W) in an attempt to document the Holocene environmental history of the region. Lithology, loss -on -ignition (LOI), pollen, plant macrofossils, charcoal, and foraminifera were analyzed. Core lithology consists of peat, silts, and clays that vary in color and texture. The base of the core is AMS C-14 dated to 4190 yr BP. Preliminary low-resolution analysis of the core to date includes sampling at the 1-meter interval throughout the core. LOI of the sediments ranges from 1% to 85%. Average rate of deposition is about .26 cm/yr. Major changes in pollen percentages are visible throughout the core.

  12. Tracking recent climate and anthropogenic change in Central America in sediments form the lower fan of the Rio Yaqui, Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Aiello, I. W.; Ravelo, A. C.; Moraes, R.; Swarzenski, P. W.

    2015-12-01

    We report the results of preliminary sedimentologic analyses of a ~3.3m long piston core (P13) collected in the lower fan of the Rio Yaqui (Guaymas Basin, Gulf of California; depth, 1859m) by UNAM's (Universidad Nacional Autónoma de México) research ship El Puma in 2014. The core was collected to test the potential for high-resolution reconstructions of basin-scale paleoclimate in the Pacific and the Mesoamerican region. Shipboard and post-cruise analyses include magnetic susceptibility (MS), smear slide counts and laser diffraction particle size analysis. The core is being analyzed for X-Ray Fluorescence (XRF) and color reflectance, and a 210Pb age model is being constructed. Preliminary results show that Rio Yaqui lower fan sediment differs significantly from that in the Guaymas Basin, which is dominantly diatom ooze. The lower ~2m of core P13 show prominent alternations (~10-20cm) between very-fine-grained, clay intervals characterized by higher MS and mixed diatom and clay intervals, with coarser grain size and lower MS values. In contrast, the upper ~1m has distinctive high MS sand turbidites alternating with diatom-rich layers. Previous core studies from nearby ODP Leg 64 site show sedimentation rates of ~1.2 m/ka; as these sites are further away from the Yaqui delta the sedimentation rates for core P13 should be higher possibly recording only the last few hundred years of sedimentation. Clay/diatom cycles in the lower part of the core could record decadal- or ENSO-scale wet/aridity cycles in the Sonoran Mainland. Conversely, the coarser siliciclastic intervals and the diatom layers in the upper part of the core could reflect the last few decades of land usage in the watershed of the Rio Yaqui, the most important river in the state of Sonora, Mexico. These include large modifications to the river's hydrography (e.g. construction of dams and aqueducts), rapidly expanding mass agricultural practices in the region, and increased eutrophication in the Gulf.

  13. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Machain-Castillo, María Luisa

    2016-11-01

    The mineralogy, geochemistry, and radiocarbon ages of two sediment cores (GMX1 and GMX2) collected from the deep sea area of the Southwestern Gulf of Mexico (∼876-1752 m water depth) were studied to infer the sedimentation rate, provenance, heavy metal contamination, and depositional environment. The sediments are dominated by silt and clay fractions. The mineralogy determined by X-Ray diffractometry for the sediment cores reveals that montmorillonite and muscovite are the dominant clay minerals. The sections between 100 and 210 cm of the sediment cores GMX1 and GMX2, respectively, are characterized by the G. menardii group and G. Inflata planktonic foraminiferal species, which represent the Holocene and Pleistocene, respectively. The radiocarbon-age measurements of mixed planktonic foraminifera varied from ∼268 to 45,738 cal. years B.P and ∼104 to 25,705 cal. years B.P, for the sediment cores GMX1 and GMX2, respectively. The variation in age between the two sediment cores is due to a change in sediment accumulation rate, which was lowest at the location GMX1 (0.006 cm/yr) and highest at the location GMX2 (0.017 cm/yr). The chemical index of alteration (CIA), chemical index of weathering (CIW), and index of chemical maturity (ICV) values indicated a moderate intensity of weathering in the source area. The total rare earth element concentrations (∑REE) in the cores GMX1 and GMX2 vary from ∼94 to 171 and ∼78 to 151, respectively. The North American Shale Composite (NASC) normalized REE patterns showed flat low REE (LREE), heavy REE (HREE) depletion with low negative to positive Eu anomalies, which suggested that the sediments were likely derived from intermediate source rocks. The enrichment factor of heavy metals indicated that the Cd and Zn concentrations in the sediment cores were impacted by an anthropogenic source. The redox-proxy trace element ratios such as V/Cr, Ni/Co, Cu/Zn, (Cu + Mo)/Zn, and Ce/Ce* indicated that the sediments were deposited under an oxic depositional environment. The similarity in major element concentrations, REE content, and the NASC normalised REE patterns between the cores GMX1 and GMX2 revealed that the provenance of sediments remained relatively uniform or constant during deposition for ∼4.5 Ma. The major and trace element based multidimensional discrimination diagrams showed a rift setting for the core sediments, which is consistent with the geology of the Gulf of Mexico.

  14. Quantitative mineralogy of surface sediments of the Iceland shelf, and application to down-core studies of holocene ice-rafted sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2007-01-01

    Quantitative X-ray diffraction analyses on the < 2 mm sediment fraction from the Iceland shelves are reported for subglacial diamictons, seafloor surface sediments, and the last 2000 cal yr BP from two cores. The overall goal of the paper is to characterize the spatial variability of the mineralogy of the present-day surface sediments (18 non-clay minerals and 7 clay minerals), compare that with largely in situ erosional products typified by the composition of subglacial diamictons, and finally examine the late Holocene temporal variability in mineral composition using multi-mineral compositions. The subglacial diamictons are dominated in the non-clay-mineral fraction by the plagioclase feldspars and pyroxene with 36.7 ?? 6.1 and 17.9 ?? 3.5 wt % respectively, with smectites being the dominant clay minerals. The surface seafloor sediments have similar compositions although there are substantial amounts of calcite, plus there is a distinct band of sites from NW to N-central Iceland that contain 1-6 wt% of quartz. This latter distribution mimics the modern and historic pattern of drift ice in Iceland waters. Principal component analysis of the transformed wt% (log-ratio) non-clay minerals is used to compare the subglacial, surface, and down-core mineral compositions. Fifty-eight percent of the variance is explained by the first two axes, with dolomite, microcline, and quartz being important "foreign" species. These analyses indicate that today the NW-N-central Iceland shelf is affected by the import of exotic minerals, which are transported and released from drift ice. The down-core mineralogy indicates that this is a process that has varied over the last 2000 cal yr BP. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

  15. Molecular Characterization of Methanogenic Communities in Core Sediments of the Dajiuhu Peatland, Central China

    NASA Astrophysics Data System (ADS)

    Wang, R.; Wang, H.

    2017-12-01

    Methane (CH4) is an important greenhouse gas with a global warming potential 22 times greater than carbon dioxide. Large amounts of CH4 can be produced and released by methanogenesis in peatland ecosystems, which make peatland ecosystems play an important role in mediating global climate change. Here we report the abundance and distribution of methanogenic communities and their correlation with physicochemical parameters along two sediment cores in the Dajiuhu Peatland via quantitative PCR, clone library construction of functional genes and statistical analysis. Uncultured Group and Fen Cluster were found to be the dominant methanogens at the upper part of the cores, and Rice and Related Rice Cluster became dominant in the bottom of the cores. Quantitative PCR showed that abundances of methanogenic communities ranged from 104 to 106 copies/ng DNA throughout the cores. Canonical Correlation Analysis (CCA) indicated that dissolved oxygen (DO) (P=0.046, F=1.4) was the main factor significantly controlling methanogenic communities. Our results enhance the understanding of the compositions and variations of methanogenic communities vertically and greatly help us to further investigate process of microbial methanogenesis in Dajiuhu Peatland.

  16. Sediment Relative Paleointensity Record With Slow-sedimentation Rates: Implication For a Chronological Tool In The Slow-sedimentation Sequence

    NASA Astrophysics Data System (ADS)

    Kanamatsu, T.

    2006-12-01

    Usefulness of paleointensity records with high-sedimentation rates in stratigraphic correlation have been proved (e.g. Stoner et al., 1998, Laj et al., 2000, Stoner et al., 2000), because the sediment geomagnetic paleointensity data makes possible the fine time correlation between cores on the older sediment than the range of AMS 14C. As father application of the sediment paleointensity for chronological tool, we examined the paleointensity record of much slower sedimentation rate. The paleointensity record of the slower sedimentation sequence is supposed to show the convoluted record by the filtering effect of the post- depositional remanent magnetization, then a unique and different pattern depending on the sedimentation rate (e.g. Guyodo and Channell, 2002). We studied the record of the cores obtained from the West Philippine Sea Basin (Water depth ca. 5000 to 6000 m). The analyses of paleomagnetic direction proved that the cores contain Jaramillo and Olduvai Events. The sedimentation rates of cores estimated from magnetostratigraphy are less than 1cm/kyr (0.6-0.4 cm/kyr). Proxy of paleointensity (NRM20mT/ARM20mT) applied to cores reveals the variations in the records are dominate in c.a. 100 ky cycle. Comparing to other published paleointensity record, it is clear that the record includes ca.100-ky cycle in spite of slower sedimentation rates, although other high frequency records were not identified. It is suggests that geomagnetic events of a few to several kys are recordable in the sediment. The paleointensity in the slow-sedimentation record is still useful for the age control utilizing the lower frequency signal, especially for investigating of less age information sequence such as the deep sea sediment below CCD, but not for fine correlation by high frequency data.

  17. Late Holocene Environmental History of the Los Osos Watershed, Morro Bay, CA

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Reidy, L. M.; Wahl, D.

    2014-12-01

    A comprehensive understanding of past changes in wetland ecosystems is integral for creating policies for modern land use practices. The Morro Bay salt marsh is home to a large wetland that has experienced significant environmental impacts in the last few centuries. In this study, sediment cores from the Morro Bay salt marsh were analyzed to discern changes in environment since the time of European contact, which occurred in 1772. The marsh is fed by two creeks (Chorro and Los Osos) and their associated watersheds. Sediment cores taken from a portion of the marsh fed by Los Osos creek were analyzed and the results compared to those from previous studies on cores taken from the Chorro and Los Osos portions of the marsh. Magnetic susceptibility, loss on ignition, pollen, radiocarbon, and X-ray fluorescence (XRF) analyses were conducted. An age-depth model was established for the Los Osos cores using two radiocarbon dates, as well as Erodium cicutarium as a chronological marker. Preliminary pollen analysis from Chorro marsh cores indicates vegetation shifts at the time of contact, when the salt marsh formed. Magnetic susceptibility and XRF data indicate dramatically increased rates of erosion from the time of contact consistently until the present. Influx of non-carbonate inorganic material also indicates a rapid increase in sedimentation in the marsh starting at the time of contact. Comparison of sedimentation rates between the two creeks suggests that differences in watershed geomorphology and land use practices have had pronounced impacts on erosional processes. Over the last decade, the Morro Bay National Estuary Program (MBNEP) has taken more measures to reduce erosion and sedimentation rates in the Chorro watershed, as is reflected by reduced sedimentation rates in MBNEP data collected within the last few years. Our study helps to elucidate the impacts of anthropogenic land use change on wetland systems, and provides much needed data to policy makers seeking to understand and attenuate anthropogenic impacts on sensitive coastal ecosystems.

  18. Sources and fate of sediment organic matter in Asia's largest brackish water lagoon and nearby mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Muduli, P. R.; Barik, S.; Kumar, S.

    2017-12-01

    Coastal lagoons and mangrove ecosystems regularly undergo natural (tidal) and anthropogenic (riverine inputs) forcings. After effects of these forcings cause coastal environments to sustain high biological production leading to high suspended organic matter (OM) and hence fast sedimentation and accumulation of OM in sediments.The different sources of OM and its burial in tropical lacustrine and mangrove systems have been rarely studied in detail with a few reports from Indian estuaries. The present study attempts to understand the sources and fate organic matter at two Ramsar sites, viz. Chilika Lake (Asia's largest brackish water lagoon) and nearby Bhitarkanika mangroves, located in the east coast of India. We measured nitrogen and carbon content (% N and % C) and isotopic composition (δ13Corg and δ15N) of OM at different depths in eight and three sediment cores collected from the Chilika lagoon and Bhitarkanika mangroves, respectively. Overall, the mean δ13Corg and % C in the lagoon were ‒21.10 ± 0.79 ‰ and 0.84 ± 0.47 %, respectively; whereas the same for mangrove cores were ‒24.56 ± 0.80 ‰ and 1.04 ± 0.26 %, respectively. Similarly, average δ15N and % N in the lagoon cores were 4.15 ± 0.63 ‰ and 0.11 ± 0.05 %, respectively; for mangrove cores the values were 4.28 ± 0.50 ‰ and 0.07 ± 0.01 %, respectively. Preliminary analysis of the isotopic composition (δ13Corg and δ15N) and elemental ratios indicates that organic carbon in the sediment at Bhitarkanika mangrove was of terrigenous, marine and in situ origin, whereas cores of Chilika lagoon showed predominantly marine signature. No relationship between δ13Corg of suspended and sediment in the Chilika lagoon indicates these two organic pools to be not directly coupled. End member mixing model in the mangrove ecosystem indicate on an average 50 % terrestrial contribution to the OM pool.

  19. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. ?? 2009 US Government.

  20. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at 30 and 60 meters from the drill site, suggests that reestablishment of the foraminiferal fauna likely commenced shortly after cessation of drilling activity.

  1. A Composite Depth Scale for Sediments from Crevice Lake, Montana

    USGS Publications Warehouse

    Rosenbaum, J.G.; Skipp, G.; Honke, J.; Chapman, C.

    2010-01-01

    As part of a study to derive records of past environmental change from lake sediments in the western United States, a set of cores was collected from Crevice Lake, Montana, in late February and early March 2001. Crevice Lake (latitude 45.000N, longitude 110.578W, elevation 1,713 meters) lies adjacent to the Yellowstone River at the north edge of Yellowstone National Park. The lake is more than 31 meters deep and has a surface area of 7.76 hectares. The combination of small surface area and significant depth promote anoxic bottom-water conditions that preserve annual laminations (varves) in the sediment. Three types of cores were collected through the ice. The uppermost sediments were obtained in freeze cores that preserved the sediment water interface. Two sites were cored with a 5-centimeter diameter corer. Five cores were taken with a 2-meter-long percussion piston corer. The percussion core uses a plastic core liner with an inside diameter of 9 centimeters. Coring was done at two sites. Because of the relatively large diameter of the percussion cores, samples from these cores were used for a variety of analyses including pollen, charcoal, diatoms, stable isotopes, organic and inorganic carbon, elemental analyses, and magnetic properties.

  2. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  3. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta uplands, NT, Canada.

    PubMed

    Deison, Ramin; Smol, John P; Kokelj, Steve V; Pisaric, Michael F J; Kimpe, Linda E; Poulain, Alexandre J; Sanei, Hamed; Thienpont, Joshua R; Blais, Jules M

    2012-08-21

    We examined dated sediment cores from 14 thermokarst affected lakes in the Mackenzie Delta uplands, NT, Arctic Canada, using a case-control analysis to determine how retrogressive thaw slump development from degrading permafrost affected the delivery of mercury (Hg) and organic carbon (OC) to lakes. We show that sediments from the lakes with retrogressive thaw slump development on their shorelines (slump-affected lakes) had higher sedimentation rates and lower total Hg (THg), methyl mercury (MeHg), and lower organic carbon concentrations compared to lakes where thaw slumps were absent (reference lakes). There was no difference in focus-corrected Hg flux to sediments between reference lakes and slump-affected lakes, indicating that the lower sediment Hg concentration in slump-affected lakes was due to dilution by rapid inorganic sedimentation in the slump-affected lakes. Sedimentation rates were inversely correlated with THg concentrations in sediments among the 14 lakes considered, and explained 68% of the variance in THg concentration in surface sediment, further supporting the dilution hypothesis. We observed higher S2 (algal-derived carbon) and particulate organic carbon (POC) concentrations in sediment profiles from reference lakes than in slump lakes, likely because of dilution by inorganic siliciclastic matter in cores from slump-affected lakes. We conclude that retrogressive thaw slump development increases inorganic sedimentation in lakes, and decreases concentrations of organic carbon and associated Hg and MeHg in sediments.

  4. Preliminary Nearshore Sedimentation Rate Analysis of the Tuungane Project Northern Mahale Conservation Area, Lake Tanganyika (Tanzania)

    NASA Astrophysics Data System (ADS)

    Smiley, R. A.; McGlue, M. M.; Yeager, K. M.; Soreghan, M. J.; Lucas, J.; Kimirei, I.; Mbonde, A.; Limbu, P.; Apse, C.

    2017-12-01

    The combined effects of climate change, overfishing, and sediment pollution are altering Lake Tanganyika's littoral fisheries in profoundly negative ways. One method for conserving critical fish resources and safeguarding biodiversity in Lake Tanganyika is by establishing small-scale nearshore protected zones, which can be administrated by lakeshore villagers organized into beach management units (BMUs). Each BMU endeavors to manage offshore "no-catch" protected zones, prohibit the use of illegal fishing gear, and promote sustainable agriculture that abates erosion in the lake watershed, in order to mitigate sediment pollution in the lake. We adopted a limnogeological approach to assist in characterizing the littoral zone associated with BMUs in the northern Mahale region of Lake Tanganyika (Tanzania), a critical conservation area for the Nature Conservancy's Tuungane Project (https://www.nature.org/ourinitiatives/regions/africa/wherewework/tuungane-project.xml). We hypothesized that BMUs with heavy onshore agricultural activity would experience relatively high offshore sedimentation rates, due to enhanced sediment-laden runoff in the wet season. Such changes are predicted to alter benthic substrates and degrade habitat available for fish spawning. We mapped bathymetry and sediment types along a 29 km2 area of the littoral zone using high-resolution geophysical tools, and assessed short-term sedimentation rates using sediment cores and radionuclide geochronology (210Pb). Initial results from 210Pb analyses show that sedimentation rates at the mud-line ( 85-100 m water depth) are relatively slow but spatially variable in the northern Mahale area. Offshore of the Kalilani village BMU, linear sedimentation rates are 0.50 mm/yr. By contrast, sedimentation rates offshore from the Igualula village BMU are 0.90-1.30 mm/yr. Higher sedimentation rates near Igualula are consistent with greater sediment inputs from the nearby Lagosa River and its watershed, which has been extensively cultivated for oil palm and cassava. Additional sediment cores from the northern Mahale region are presently being analyzed, and 210Pb data from sediment cores associated with the different BMU areas will shed further light on the impacts of land use change on the littoral fisheries.

  5. Mineralogic Causes of Variations in Magnetic Susceptibility of Late Pleistocene and Holocene Sediment from Great Salt Lake, Utah

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Thompson, Robert S.

    2008-01-01

    We describe here results of magnetic susceptibility (MS) measurements and magnetic mineralogy of sediments sampled in three cores from the south basin of Great Salt Lake. The cores were obtained in 1996 with a Kullenburg-type piston corer at sites in close proximity: core 96-4 at 41 deg 01.00' N, 112 deg 28.00' W and cores 96-5 and 96-6 at 41 deg 00.09' N, 112 deg 23.05' W. Cores 96-5 (2.16 m long) and -6 combine to make a composite 11.31-m sediment record. Sediments in core 96-4 (5.54 m long) correspond to the approximate depth interval of 3.9-9.6 m in the composite core of 96-5 and -6 based on similarities in the MS records as described below. The central goal of the research was to provide a sediment record of paleoenvironmental change in the northeastern Basin and Range Province over the past 40,000 years. Specific targets included a sedimentologic record of lake-level change combined with a pollen record of climatic change.

  6. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  7. Detection of Tephra Layers in Antarctic Sediment Cores with Hyperspectral Imaging

    PubMed Central

    Aymerich, Ismael F.; Oliva, Marc; Giralt, Santiago; Martín-Herrero, Julio

    2016-01-01

    Tephrochronology uses recognizable volcanic ash layers (from airborne pyroclastic deposits, or tephras) in geological strata to set unique time references for paleoenvironmental events across wide geographic areas. This involves the detection of tephra layers which sometimes are not evident to the naked eye, including the so-called cryptotephras. Tests that are expensive, time-consuming, and/or destructive are often required. Destructive testing for tephra layers of cores from difficult regions, such as Antarctica, which are useful sources of other kinds of information beyond tephras, is always undesirable. Here we propose hyperspectral imaging of cores, Self-Organizing Map (SOM) clustering of the preprocessed spectral signatures, and spatial analysis of the classified images as a convenient, fast, non-destructive method for tephra detection. We test the method in five sediment cores from three Antarctic lakes, and show its potential for detection of tephras and cryptotephras. PMID:26815202

  8. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario.

    PubMed

    Yeung, Leo W Y; De Silva, Amila O; Loi, Eva I H; Marvin, Chris H; Taniyasu, Sachi; Yamashita, Nobuyoshi; Mabury, Scott A; Muir, Derek C G; Lam, Paul K S

    2013-09-01

    Fourteen perfluoroalkyl substances (PFASs) including short-chain perfluorocarboxylates (PFCAs, C4-C6) and perfluoroalkane sulfonates (PFSAs, C4 and C6) were measured in surface sediment samples from 26 stations collected in 2008 and sediment core samples from three stations (Niagara, Mississauga, and Rochester basins) collected in 2006 in Lake Ontario. Perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA) were detected in all 26 surface sediment samples, whereas perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonamide (FOSA), perfluorododecanoate (PFDoDA) and perfluorobutanoate (PFBA) were detected in over 70% of the surface sediment samples. PFOS was detected in all of the sediment core samples (range: 0.492-30.1ngg(-1) d.w.) over the period 1952-2005. The C8 to C11 PFCAs, FOSA, and PFBA increased in early 1970s. An overall increasing trend in sediment PFAS concentrations/fluxes from older to more recently deposited sediments was evident in the three sediment cores. The known PFCAs and PFSAs accounted for 2-44% of the anionic fraction of the extractable organic fluorine in surface sediment, suggesting that a large proportion of fluorine in this fraction remained unknown. Sediment core samples collected from Niagara basin showed an increase in unidentified organic fluorine in recent years (1995-2006). These results suggest that the use and manufacture of fluorinated organic compounds other than known PFCAs and PFSAs has diversified and increased. © 2013.

  9. The PASADO core processing strategy — A proposed new protocol for sediment core treatment in multidisciplinary lake drilling projects

    NASA Astrophysics Data System (ADS)

    Ohlendorf, Christian; Gebhardt, Catalina; Hahn, Annette; Kliem, Pierre; Zolitschka, Bernd

    2011-07-01

    Using the ICDP (International Continental Scientific Drilling Program) deep lake drilling expedition no. 5022 as an example, we describe core processing and sampling procedures as well as new tools developed for subsampling. A manual core splitter is presented that is (1) mobile, (2) able to cut plastic core liners lengthwise without producing swarf of liner material and (3) consists of off-the-shelf components. In order to improve the sampling of sediment cores, a new device, the core sampling assembly (CSA), was developed that meets the following targets: (1) the partitioning of the sediment into discs of equal thickness is fast and precise, (2) disturbed sediment at the inner surface of the liner is discarded during this sampling process, (3) usage of the available sediment is optimised, (4) subsamples are volumetric and oriented, and (5) identical subsamples are taken. The CSA can be applied to D-shaped split sediment cores of any diameter and consists of a divider and a D-shaped scoop. The sampling plan applied for ICDP expedition 5022 is illustrated and may be used as a guideline for planning the efficient partitioning of sediment amongst different lake research groups involved in multidisciplinary projects. For every subsample, the use of quality flags is suggested (1) to document the sample condition, (2) to give a first sediment classification and (3) to guarantee a precise adjustment of logging and scanning data with data determined on individual samples. Based on this, we propose a protocol that might be applied across lake drilling projects in order to facilitate planning and documentation of sampling campaigns and to ensure a better comparability of results.

  10. A Study on Benthic Foraminifera Assemblages in the Upper Slope off Southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Jen-Chu; Lin, Andrew T.; Chien, Chih-Wei

    2016-04-01

    This study attempts to establish the spatial distribution of benthic foraminifera in the upper accretionary wedge off SW Taiwan. A few box cores (each core up to 49 cm thick) are retrieved onboard R/V Ocean Researcher I during 1092 cruise in 2014 at water depths ranging from 1,135 to 1,586 m lying in between the Good Weather Ridge and the Yuan-An Ridge. Analyses on grain size reveal that the sediment size ranges from clay to silt for all sites with the exception of YT1 site, where a small percentage of fine sand (< 20%) is found to distribute evenly in a 32 cm-thick box core. Core images from X-radiographs show some layers of foraminifera ooze and rare traces of bioturbation. Age of sedimentation is obtained by using 210Pb dating method. The 210Pb concentration profile decays exponentially down core, indicating sedimentation from suspension. The measured sedimentation rate ranges from 0.47 to 2.4 mm/yr. Site YT1 has the lowest sedimentation rate (around 0.47 mm/yr), leading to high abundance of individual benthic foraminiferal species. Living foraminiferal individuals were distinguished from dead assemblages by Rose Bengal staining method during the cruise. Our results show that the dominant living species of all studied cores is Chilostomella oolina, with subsidiary occurrences of Bulimina aculeata, Bolivinita quadrilateral, and Lenticulina spp. etc. Cluster analysis suggests that the forams have similar spatial distribution pattern at all studied sites, indicating uniform and stable hemipelagic sedimentation. Analyses of dead assemblages reveal a remarkable decrease in the abundance of Bulimina and Uvigerina for the last 100 years at YT-2 site, with increasing abundance of Chilostomella. This indicates that the water masses may have turned from suboxic to dysoxic conditions since c. 100 year ago. This is the first study to report the living benthic foraminifera distribution in water depths up to c. 1,600 m off SW Taiwan, providing a basis for future studies. Keywords: benthic foraminifera, upper slope, Taiwan

  11. The Impact of the 1989 Exxon Valdez Oil Spill on Phytoplankton as Evidenced Through the Sedimentary Dinoflagellate Cyst Records in Prince William Sound (Alaska, USA).

    NASA Astrophysics Data System (ADS)

    Genest, M.; Pospelova, V.; Williams, J. R.; Dellapenna, T.; Mertens, K.; Kuehl, S. A.

    2016-12-01

    Large volumes of crude oil are extracted from marine environments and transported via the sea, putting coastal communities at a greater risk of oils spills. It is therefore crucial for these communities to properly assess the risk. The first step is to understand the effects of such events on the environment, which is limited by the lack of research on the impact of oil spills on phytoplankton. This first-of-its-kind research aims to identify how one of the major groups of phytoplankton, dinoflagellates, have been affected by the 1989 Exxon Valdez oil spill in Prince William Sound (PWS), Alaska. To do this, sedimentary records of dinoflagellate cysts, produced during dinoflagellate reproduction and preserved in the sediment, were analyzed. Two sediment cores were collected from PWS in 2012. The sediments are mainly composed of silt with a small fraction of clay. Both well-dated with 210Pb and 137Cs, the cores have high sedimentation rates, allowing for an annual to biannual resolution. Core 10 has a sedimentation rate of 1.1 cm yr-1 and provides continuous record since 1957, while Core 12 has a sedimentation rate of 1.3 cm yr-1 and spans from 1934. The cores were subsampled every centimeter for a total of 110 samples. Samples were treated using a standard palynological processing technique to extract dinoflagellate cysts and 300 cysts were counted per sample. In both cores, cysts were abundant, diverse and well preserved with the average cyst assemblage being characterized by an equal number of cysts produced by autotrophic and heterotrophic dinoflagellates. Of the 40 dinoflagellate cyst taxa, the most abundant are: Operculodinium centrocarpum and Brigantedinium spp. Other common species are: Spiniferites ramosus, cysts of Pentapharsodinium dalei, Echinidinium delicatum, E. zonneveldiae, E. transparantum, Islandinium minutum, and a thin pale brown Brigantedinium type. Changes in the sedimentary sequence of dinoflagellate cysts were analyzed by determining cyst relative abundances, species richness, total cyst concentrations and fluxes before, during and after the oil spill. This analysis provided insight into how phytoplankton can be affected by an oil spill and a timeline for their recovery.

  12. Geochemistry of mercury and other constituents in subsurface sediment—Analyses from 2011 and 2012 coring campaigns, Cache Creek Settling Basin, Yolo County, California

    USGS Publications Warehouse

    Arias, Michelle R.; Alpers, Charles N.; Marvin-DiPasquale, Mark C.; Fuller, Christopher C.; Agee, Jennifer L.; Sneed, Michelle; Morita, Andrew Y.; Salas, Antonia

    2017-10-31

    Cache Creek Settling Basin was constructed in 1937 to trap sediment from Cache Creek before delivery to the Yolo Bypass, a flood conveyance for the Sacramento River system that is tributary to the Sacramento–San Joaquin Delta. Sediment management options being considered by stakeholders in the Cache Creek Settling Basin include sediment excavation; however, that could expose sediments containing elevated mercury concentrations from historical mercury mining in the watershed. In cooperation with the California Department of Water Resources, the U.S. Geological Survey undertook sediment coring campaigns in 2011–12 (1) to describe lateral and vertical distributions of mercury concentrations in deposits of sediment in the Cache Creek Settling Basin and (2) to improve constraint of estimates of the rate of sediment deposition in the basin.Sediment cores were collected in the Cache Creek Settling Basin, Yolo County, California, during October 2011 at 10 locations and during August 2012 at 5 other locations. Total core depths ranged from approximately 4.6 to 13.7 meters (15 to 45 feet), with penetration to about 9.1 meters (30 feet) at most locations. Unsplit cores were logged for two geophysical parameters (gamma bulk density and magnetic susceptibility); then, selected cores were split lengthwise. One half of each core was then photographed and archived, and the other half was subsampled. Initial subsamples from the cores (20-centimeter composite samples from five predetermined depths in each profile) were analyzed for total mercury, methylmercury, total reduced sulfur, iron speciation, organic content (as the percentage of weight loss on ignition), and grain-size distribution. Detailed follow-up subsampling (3-centimeter intervals) was done at six locations along an east-west transect in the southern part of the Cache Creek Settling Basin and at one location in the northern part of the basin for analyses of total mercury; organic content; and cesium-137, which was used for dating. This report documents site characteristics; field and laboratory methods; and results of the analyses of each core section and subsample of these sediment cores, including associated quality-assurance and quality-control data.

  13. The sedimentary organic matter from a Lake Ichkeul core (far northern Tunisia): Rock-Eval and biomarker approach

    NASA Astrophysics Data System (ADS)

    Affouri, Hassène; Sahraoui, Olfa

    2017-05-01

    The vertical distributions of bulk and molecular biomarker composition in samples from a ca. 156 cm sediment core from Lake Ichkeul were determined. Bulk analysis (Rock-Eval pyrolysis, carbonate, lipid extraction) and molecular analysis of saturated fractions were used to characterize the nature, preservation conditions and input of sedimentary organic matter (OM) to this sub-wet lake environment. The sediments are represented mainly by gray-black silty-clay facies where the carbonate (CaCO3) content varies in a range of 10-30% dry sediment. Rock-Eval pyrolysis revealed a homogeneous total organic carbon (TOC) content of ca. 1% sediment, but with down core fluctuation, indicating different anoxic conditions at different depths and material source variation. The values show three periods of relative enrichment, exceeding ca. 1%, at 146-134 cm, 82 cm and 14-0 cm depth. The low Hydrogen Index (HI) values [<119 mg hydrocarbon (HC)/g TOC)] were characteristic of continental Type III OM. The Tmax values in the range 415-420 °C were characteristic of immature OM at an early diagenetic stage. The distributions of n-alkanes (C17 to C34), isoprenoid (iso) alkanes (pristane and phytane), terpanes and steranes showed that the OM is a mixture of marine algal and bacterial source and emergent and floating higher plant origin. In addition, the distributions, as well as several biomarker ratios (n-alkanes, iso-alkanes/n-alkanes), showed that the OM is a mixture of immature and mature. Significant downcore fluctuation was observed in the molecular composition. This indicates intense microbial activity below ca. 50 cm core depth under an anoxic and brackish environment.

  14. Fate of Triclosan and Evidence for Reductive Dechlorination of Triclocarban in Estuarine Sediments

    PubMed Central

    Miller, Todd R.; Heidler, Jochen; Chillrud, Steven N.; DeLaquil, Amelia; Ritchie, Jerry C.; Mihalic, Jana N.; Bopp, Richard; Halden, Rolf U.

    2008-01-01

    The biocides triclosan and triclocarban are wastewater contaminants whose occurrence and fate in estuarine sediments remain unexplored. We examined contaminant profiles in 137Cs/7Be-dated sediment cores taken near wastewater treatment plants in the Chesapeake Bay watershed (CB), Maryland and Jamaica Bay (JB), New York. In JB, biocide occurrences tracked the time course of biocide usage and wastewater treatment strategies employed, first appearing in the 1950s (triclocarban) and 1960s (triclosan), and peaking in the late 1960s and 1970s (24 ± 0.54 and 0.8 ± 0.4 29 mg/kg dry weight, respectively). In CB, where time of sediment accumulation was not as well constrained by 137Cs depth profiles, triclocarban was only measurable in 137Cs bearing sediments, peaking at 3.6 ± 0.6 mg/kg midway through the core and exceeding 1 mg/kg in recent deposits. In contrast, triclosan concentrations were low or not detectable in the CB core. Analysis of CB sediment by tandem mass spectrometry produced the first evidence for complete sequential dechlorination of triclocarban to the transformation products dichloro-, monochloro-, and unsubstituted carbanilide which were detected at maxima of 15.5 ± 1.8, 4.1 ± 2.4, and 0.5 ± 0.1 mg/kg, respectively. Concentrations of all carbanilide congeners combined were correlated with heavy metals (R2 > 0.64, P<0.01), thereby identifying wastewater as the principal pathway of contamination. Environmental persistence over the past 40 years was observed for triclosan and triclocarban in JB, and for triclocarban and its diphenylurea backbone in CB sediments. PMID:18605588

  15. Development of integrated protocols to track the deposition and impacts of metal contaminants in tidal riverine environments

    NASA Astrophysics Data System (ADS)

    Roe, Helen M.; Patterson, R. Timothy; Nasser, Nawaf; Edwards, Robin J.; Graham, Conor

    2016-04-01

    Tidally-influenced rivers are particularly vulnerable to the effects of metal contamination, yet are amongst the most complex fluvial environments in terms of their sediment deposition and transport patterns. We present the results of an interdisciplinary study that aims to elucidate the fluxes and deposition of metal contaminants in a tidally-influenced river system in Northern Ireland, with a view to developing protocols that will have wide applicability for the monitoring and assessment of metal contaminants in similar environments in other regions. We employ a novel methodology that combines ICPMS analysis of sediments, ITRAX-based core analysis and the examination a important group of shelled protozoans (foraminifera), which occur widely in tidal riverine environments, and which are highly sensitive to metal contamination. The responses shown by the group vary between species and with different levels of contaminant exposure. Some species, for example, show increased relative abundances in proximity to discharge sources, whilst others develop chamber deformities. Application of our integrated multiproxy approach to the analysis of surface sediment samples and cores provides a framework for assessing both the spatial and temporal patterns of metal deposition and the impact of contaminants on the biota. Modern sediment samples (n=90) were collected at varying distances from a point contamination source (a former industrial site) in different morpho-sedimentary settings. The impact of 25 measured variables on the modern foraminiferal faunas was considered, including 20 metals, pH, conductivity, elevation and particle size. Channel sediments in close proximity to the contamination source and with the highest levels of Fe, Cu, Zn, Mg and As, yielded the sparsest foraminiferal faunas (Shannon Diversity Index values 0-1.5), whilst the highest prevalence of foraminiferids showing chamber deformities were observed in channel edge and levée bank sites. Kernal density plots showing metal loading and foraminiferal concentrations across the site aided in determining spatial trends. The sediment core data revealed that deformed foraminiferal specimens can extend >15 cm below the contemporary floodplain surface to horizons that pre-date the historical onset of the contamination, suggesting vertical mobilisation of sediment and/or infaunal migration. Etching of the foraminiferal tests in association with reduced pH conditions was also observed for some species. Biometric analysis of tests using SEM imagery further aided in the identification of deformities and the delimitation of graded responses to contaminants. The results of this study of core and surficial samples indicate that the adoption of integrated methodologies that combine established geochemical analysis techniques (e.g. ICPMS analysis) with the observed ecophenotypic response of key indicator microfossil groups (e.g. foraminifera) can provide invaluable data on habitat responses to environmental contamination. Such long-term habitat evaluation data is invaluable to policy makers and planners when prioritising management and remediation efforts.

  16. Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish

    2016-03-01

    The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.

  17. The 3.6 ka Aniakchak tephra in the Arctic Ocean: A constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea

    USGS Publications Warehouse

    Pearce, Christof; Varhelyi, Aron; Wastegård, Stefan; Muschitiello, Francesco; Barrientos Macho, Natalia; O'Regan, Matt; Cronin, Thomas M.; Gemery, Laura; Semiletov, Igor; Backman, Jan; Jakobsson, Martin

    2017-01-01

    The caldera-forming eruption of the Aniakchak volcano in the Aleutian Range on the Alaskan Peninsula at 3.6 cal kyr BP was one of the largest Holocene eruptions worldwide. The resulting ash is found as a visible sediment layer in several Alaskan sites and as a cryptotephra on Newfoundland and Greenland. This large geographic distribution, combined with the fact that the eruption is relatively well constrained in time using radiocarbon dating of lake sediments and annual layer counts in ice cores, makes it an excellent stratigraphic marker for dating and correlating mid–late Holocene sediment and paleoclimate records. This study presents the outcome of a targeted search for the Aniakchak tephra in a marine sediment core from the Arctic Ocean, namely Core SWERUS-L2-2-PC1 (2PC), raised from 57 m water depth in Herald Canyon, western Chukchi Sea. High concentrations of tephra shards, with a geochemical signature matching that of Aniakchak ash, were observed across a more than 1.5 m long sediment sequence. Since the primary input of volcanic ash is through atmospheric transport, and assuming that bioturbation can account for mixing up to ca. 10 cm of the marine sediment deposited at the coring site, the broad signal is interpreted as sustained reworking at the sediment source input. The isochron is therefore placed at the base of the sudden increase in tephra concentrations rather than at the maximum concentration. This interpretation of major reworking is strengthened by analysis of grain size distribution which points to ice rafting as an important secondary transport mechanism of volcanic ash. Combined with radiocarbon dates on mollusks in the same sediment core, the volcanic marker is used to calculate a marine radiocarbon reservoir age offset ΔR = 477 ± 60 years. This relatively high value may be explained by the major influence of typically "carbon-old" Pacific waters, and it agrees well with recent estimates of ΔR along the northwest Alaskan coast, possibly indicating stable oceanographic conditions during the second half of the Holocene. Our use of a volcanic absolute age marker to obtain the marine reservoir age offset is the first of its kind in the Arctic Ocean and provides an important framework for improving chronologies and correlating marine sediment archives in this region. Core 2PC has a high sediment accumulation rate averaging 200 cm kyr throughout the last 4000 years, and the chronology presented here provides a solid base for high-resolution reconstructions of late Holocene climate and ocean variability in the Chukchi Sea.

  18. The Towuti Drilling Project: A new, long Pleistocene record of Indo-Pacific Climate

    NASA Astrophysics Data System (ADS)

    Russell, James M.; Vogel, Hendrik; Bijaksana, Satria; Melles, Martin

    2016-04-01

    Lake Towuti is the largest tectonic lake in Indonesia, and the longest known terrestrial sediment archive in Southeast Asia. Lake Towuti's location in central Indonesia provides an important opportunity to reconstruct long-term changes in terrestrial climate in the Western Pacific warm pool, heart of the El Niño-Southern Oscillation. Lake Towuti has extremely high rates of floral and faunal endemism and is surrounded by one of the most diverse tropical forests on Earth making it a hotspot of Southeast Asian biodiversity. The ultramafic rocks and soils surrounding Lake Towuti provide high concentrations of metals to the lake and its sediments that feed a diverse, exotic microbial community. From May - July, 2015, the Towuti Drilling Project, consisting of more than 30 scientists from eight countries, recovered over 1,000 meters of new sediment core from 3 different drill sites in Lake Towuti, including cores through the entire sediment column to bedrock. These new sediment cores will allow us to investigate the history of rainfall and temperature in central Indonesia, long-term changes in the composition of the region's rainforests and diverse aquatic ecosystems, and the micro-organisms living in Towuti's exotic, metal-rich sediments. The Indo-Pacific region plays a pivotal role in the Earth's climate system, regulating critical atmospheric circulation systems and the global concentration of atmospheric water vapor- the Earth's most important greenhouse gas. Changes in seasonal insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene. Existing records from the region are short and exhibit fundamental differences and complexity in orbital-scale climate patterns that limit our understanding of the regional climate responses to climate boundary conditions. Our sediment cores, which span much of the past 1 million years, allow new tests of these hypotheses. Sediment core logging and lithostratigraphic data document major shifts in sediment composition, including alterations of lake clays and calcareous sediments in the upper ~100m and peats and gravels in the basal units of our records. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we now test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale Indo-Pacific hydrologic change during the late Pleistocene.

  19. The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Pearce, Christof; Varhelyi, Aron; Wastegård, Stefan; Muschitiello, Francesco; Barrientos, Natalia; O'Regan, Matt; Cronin, Thomas M.; Gemery, Laura; Semiletov, Igor; Backman, Jan; Jakobsson, Martin

    2017-04-01

    The caldera-forming eruption of the Aniakchak volcano in the Aleutian Range on the Alaskan Peninsula at 3.6 cal kyr BP was one of the largest Holocene eruptions worldwide. The resulting ash is found as a visible sediment layer in several Alaskan sites and as a cryptotephra on Newfoundland and Greenland. This large geographic distribution, combined with the fact that the eruption is relatively well constrained in time using radiocarbon dating of lake sediments and annual layer counts in ice cores, makes it an excellent stratigraphic marker for dating and correlating mid-late Holocene sediment and paleoclimate records. This study presents the outcome of a targeted search for the Aniakchak tephra in a marine sediment core from the Arctic Ocean, namely Core SWERUS-L2-2-PC1 (2PC), raised from 57 m water depth in Herald Canyon, western Chukchi Sea. High concentrations of tephra shards, with a geochemical signature matching that of Aniakchak ash, were observed across a more than 1.5 m long sediment sequence. Since the primary input of volcanic ash is through atmospheric transport, and assuming that bioturbation can account for mixing up to ca. 10 cm of the marine sediment deposited at the coring site, the broad signal is interpreted as sustained reworking at the sediment source input. The isochron is therefore placed at the base of the sudden increase in tephra concentrations rather than at the maximum concentration. This interpretation of major reworking is strengthened by analysis of grain size distribution which points to ice rafting as an important secondary transport mechanism of volcanic ash. Combined with radiocarbon dates on mollusks in the same sediment core, the volcanic marker is used to calculate a marine radiocarbon reservoir age offset ΔR = 477 ± 60 years. This relatively high value may be explained by the major influence of typically carbon-old Pacific waters, and it agrees well with recent estimates of ΔR along the northwest Alaskan coast, possibly indicating stable oceanographic conditions during the second half of the Holocene. Our use of a volcanic absolute age marker to obtain the marine reservoir age offset is the first of its kind in the Arctic Ocean and provides an important framework for improving chronologies and correlating marine sediment archives in this region. Core 2PC has a high sediment accumulation rate averaging 200 cm kyr-1 throughout the last 4000 years, and the chronology presented here provides a solid base for high-resolution reconstructions of late Holocene climate and ocean variability in the Chukchi Sea.

  20. Hominin Sites and Paleolakes Drilling Project. Chew Bahir, southern Ethiopia: How to get from three tonnes of sediment core to > 500 ka of continuous climate history?

    NASA Astrophysics Data System (ADS)

    Foerster, Verena; Asrat, Asfawossen; Cohen, Andrew S.; Gromig, Raphael; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Schaebitz, Frank; Trauth, Martin H.

    2016-04-01

    In search of the environmental context of the evolution and dispersal of Homo sapiens and our close relatives within and beyond the African continent, the ICDP-funded Hominin Sites and Paleolakes Drilling Project (HSPDP) has recently cored five fluvio-lacustrine archives of climate change in East Africa. The sediment cores collected in Ethiopia and Kenya are expected to provide valuable insights into East African environmental variability during the last ~3.5 Ma. The tectonically-bound Chew Bahir basin in the southern Ethiopian rift is one of the five sites within HSPDP, located in close proximity to the Lower Omo River valley, the site of the oldest known fossils of anatomically modern humans. In late 2014, the two cores (279 and 266 m long respectively, HSPDP-CHB14-2A and 2B) were recovered, summing up to nearly three tonnes of mostly calcareous clays and silts. Deciphering an environmental record from multiple records, from the source region of modern humans could eventually allow us to reconstruct the pronounced variations of moisture availability during the transition into Middle Stone Age, and its implications for the origin and dispersal of Homo sapiens. Here we present the first results of our analysis of the Chew Bahir cores. Following the HSPDP protocols, the two parallel Chew Bahir sediment cores have been merged into one single, 280 m long and nearly continuous (>90%) composite core on the basis of a high resolution MSCL data set (e.g., magnetic susceptibility, gamma ray density, color intensity transects, core photographs). Based on the obvious cyclicities in the MSCL, correlated with orbital cycles, the time interval covered by our sediment archive of climate change is inferred to span the last 500-600 kyrs. Combining our first results from the long cores with the results from the accomplished pre-study of short cores taken in 2009/10 along a NW-SE transect across the basin (Foerster et al., 2012, Trauth et al., 2015), we have developed a hypothesis linking climate forcing and paleoenvironmental signal formation processes in the basin (e.g. the inverse correlation of the K flux with precipitation in the catchment), providing an important prerequisite for understanding the environmental record contained in the long sediment cores. The good recovery and anticipated high time resolution of the cores will give us a continuous record of environmental fluctuations on decadal to orbital timescales, which will allow us to test current hypotheses of the influence of climate on human evolution and dispersal.

  1. Towards improved cirque glacier reconstructions: differentiating glacial- from non-glacial sediments by means of environmental magnetism.

    NASA Astrophysics Data System (ADS)

    Kvisvik, Bjørn Christian; Paasche, Øyvind; Olaf Dahl, Svein

    2014-05-01

    Skriufonnen, a small cirque glacier (0.4 km2) in Southern Norway, has been monitored for the last 10 years, revealing a short response time to on-going climate change. This is the only remaining glacier in the central mountain massif known as Rondane where investigations of past climate variability are scarce. A series of short (HTH, n=8) and long (piston, n=6) cores from two lakes located downstream of Skriufonnen were retrieved and sediments were dated and analysed. In order to complement and validate lake sediment interpretations i.e., the potential connection to glacier variability, a number of soil samples was collected from the surrounding catchment. The six 110 mm piston cores (< 3.1 m length) and eight sediment surface cores were analysed for grain size distribution, geochemical elements (ITRAX XRF-scanning), organic matter content (LOI), magnetic parameters (magnetic susceptibility; surface and bulk), anhysteretic remanent magnetization (ARM) and Saturation Isothermal remanent magnetizations (sIRM). Consistent age-depth relationships were obtained by AMS-C14 and Pb210 dates showing that the cores cover at least the last 10 000 years. High-resolution analysis (XRF and MS) reveals centennial trends, but also distinct changes in frequency and amplitude. A quiescent period during the Holocene Thermal Optimum (9-6 ka) is followed by a sudden onset of Neoglacial (3.8 ka) activity peaking at 2.4 ka. The Little Ice Age (LIA) peaked at 1800 AD. A weak magnetic signal is observed in all cores. This is explained by the fact that Rondane is made of Sparagmite, an arkosic sandstone partly consisting of metamorphosed sandstone and conglomerate with high content of quarts (SiO2) (between 80 to 87 %) and Feldspar. The Sparagmite is resistant to chemical weathering, making the soils dry and sandy. Catchment sediment samples, running in a transect all the way up from the lakes to the glacier snout were sieved into various size classes (250, 125, 63, 38, 20 μm) prior to measuring bulk susceptibility (Ξbulk) at 293K and 77K. The ratio between the two measurements indicates the relative amount of paramagnetic versus ferromagnetic minerals, and results indicate not only that the finest fractions increase in strength as one gets closer to the glacier front, but also that there are long periods in the cores which is dominated by paramagnetic minerals. The approach employed here suggests that the combination of catchment samples with high-resolution analysis of lake sediment cores provide a more accurate reconstruction of past glacier variability, and has resulted in the first continuous cirque glacier reconstruction from this area.

  2. Effects of sulfate-reducing bacteria on methylmercury at the sediment-water interface.

    PubMed

    Zeng, Lingxia; Luo, Guangjun; He, Tianrong; Guo, Yanna; Qian, Xiaoli

    2016-08-01

    Sediment cores (containing sediment and overlying water) from Baihua Reservoir (SW China) were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria (SRB) on mercury (Hg) methylation at sediment-water interfaces. Concentrations of dissolved methyl mercury (DMeHg) in the overlying water of the control cores with bioactivity maintained (BAC) and cores with only sulfate-reducing bacteria inhibited (SRBI) and bacteria fully inhibited (BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMeHg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations (r=-0.5311 and r=-0.4977 for BAC and SRBI, respectively). The water DMeHg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment-water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster (hgcAB), besides SRB, causing Hg methylation in the sediment-water system. Copyright © 2016. Published by Elsevier B.V.

  3. Offshore sediments record the history of onshore iron ore mining in Goa State, India.

    PubMed

    Sebastian, Tyson; Nath, B Nagender; Naik, Sangeeta; Borole, D V; Pierre, Salou; Yazing, Armoury Kazip

    2017-01-30

    Environmental magnetic and geochemical analyses combined with 210 Pb dating were carried out on a sediment core off Goa from Arabian Sea to reconstruct the sedimentation history of last three and a half centuries and to investigate the impact of onshore iron ore mining on the offshore sedimentation. A drastic increase in sedimentation rate and mineral magnetic concentration parameters divides the core into two units (1 & 2) at a depth of 41cm (1982CE). The high magnetic susceptibility values in Unit 1 sediments are coeval with increased iron ore production on land and illustrate the role of terrestrial mining on the increased offshore sedimentation. The early diagenetic signals were observed in Unit 2 of the core with low concentration parameters, coarse magnetic grain size and magnetically hard mineralogy. The geochemical data of the core also record the Little Ice Age (LIA) climatic events of Dalton and Maunder solar minima. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Distribution of Cr, Pb, Cd, Zn, Fe and Mn in Lake Victoria sediments, East Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onyari, J.M.; Wandiga, S.O.

    1989-06-01

    The presence of many metals at trace or ultra-trace levels in the human environment has received increased global attention. Sediments as a sink for pollutants are widely recognized pollution sources and diagenesis and biochemical transformations within the sediment may mobilize pollutants posing a threat to a wider biological community. The natural (background) concentrations of heavy metals in lake sediments can be estimated either by analysis of surface sediments in non-polluted regions or by analysis of core samples antedating modern pollution. The distribution pattern of heavy metals in tropical freshwater systems has been little studied. The authors found increased concentrations ofmore » lead and other trace metals in Lake Victoria. Thus this study was initiated in order to further investigate the distribution patterns of lead and other metals in Lake Victoria.« less

  5. Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique

    NASA Astrophysics Data System (ADS)

    Sou, In Mei; Calantoni, Joseph; Reed, Allen; Furukawa, Yoko

    2012-11-01

    A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The dual stereo PIV windows were positioned on either side of a sediment core inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the core, the residual light intensity was assumed to be scattered from suspended sediments eroded from the core. Results from two different sediment core samples of mud and sand mixtures will be presented.

  6. Tracing metal sources in core sediments of the artificial lake An-Dong, Korea: Concentration and metal association.

    PubMed

    Choi, Mansik; Park, Jongkyu; Cho, Dongjin; Jang, Dongjun; Kim, Miseon; Choi, Jongwoo

    2015-09-15

    The concentration and source of trace metals in the artificial lake An-Dong, which has widespread abandoned mines and a Zn smelter upstream of the drainage basin, were investigated. Soils (18ea), stream waters (15ea) and sediments (15ea) in the main channel and five tributaries downstream of the Zn smelter towards the lake (~ 50 km downstream) were collected. And two core sediments were also taken from the middle of the lake. All samples were analyzed for trace metals in bulk and in a 1N HCl-leached fraction. Although the soil and stream sediments consisted mostly of sand-sized grains, concentrations of metals (Cu, Zn, Cd and Pb) were very high in all samples, including soils, stream waters and sediments at sites near the Zn smelter. However the metal concentrations decreased rapidly downstream, suggesting that the area of impact of the smelter lies within 5 km. Highly enriched metal concentrations were also found in dated core sediments from the lake; while the highest concentrations of Co, Ni, As, Cu, Zn, Cd and Pb were detected in the bottom of the sediment core (dated 1980) they decreased towards 2000, and only Cu, Zn and Cd concentrations increased again in present-day samples. Since the temporal variation in metal concentrations appeared consistent with historical variation in ore mining and Zn smelter production rates, a model combining the production rates of each was developed, which estimated 3%, 12% and 7% contributions from Zn smelter compared to ore mining production rate to levels of Cu, Cd and Zn, respectively, suggesting the different pathways by different sources. In addition, analysis of Cd/Zn and Cu/Zn ratios showed that contamination from ore mining decreased from 1980 to 2000, and smelting processes were most likely responsible for metal enrichment (Cu, Cd and Zn) from 2000 to the present. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Anthropogenic and natural variability in the composition of sedimentary organic matter of the urbanised coastal zone of Montevideo (Río de la Plata).

    PubMed

    Bueno, C; Brugnoli, E; Bergamino, L; Muniz, P; García-Rodríguez, F; Figueira, R

    2018-01-01

    This study is aimed to identify the different sources of sedimentary organic matter (SOM) within Montevideo coastal zone (MCZ). To this end δ 13 C, δ 15 N and C/N ratio were analysed in surface sediments and a sediment core. Sediment core analysis showed that until ~1950CE SOM was mainly marine, observing a shift towards lower δ 13 C in recent sediments, evidencing an estuarine composition. This trend was associated to the climatic variability, which exerted a major influence on the SOM composition, leading to an increased input of terrigenous material and associated anthropogenic contaminants. Surface sediments collected during different El Niño South Oscillation (ENSO) phases did not show inter-annual variability in SOM composition, which was mainly marine in both eastern and western region of MCZ and estuarine in Montevideo Bay. This spatial pattern provides new insights on the dynamics and factors affecting organic matter sources available for primary consumers along the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis of calculations from deposited sediment in the reservoir. Mean total phosphorus concentration in the surface-water inflow to Cheney Reservoir was 0.76 milligram per liter, mean annual phosphorus yield of the watershed was estimated to be 0.38 pound per year per acre, and both are based on sediment deposition in the reservoir. A comparison of the Cheney Reservoir watershed to the Webster Reservoir, Tuttle Creek Lake, and Hillsdale Lake watersheds showed that phosphorus yields were smallest in the Webster Reservoir watershed where precipitation was less than in the other watersheds. Mean concentrations of total ammonia plus organic nitrogen in bottom sediment from Cheney Reservoir ranged from 1,200 to 2,400 milligrams per kilogram as nitrogen. A regression analysis between total ammonia plus organic nitrogen as nitrogen and sediment particle size showed a strong relation between the two variables and suggests, as with phosphorus, that total ammonia plus organic nitrogen as nitrogen adsorbs to the silt- and clay-sized particles that are transported to the deeper parts of the reservoir. An analysis of trends with depth of total ammonia plus organic nitrogen as nitrogen did not indicate a strong relation between the two variables despite the increase in fertilizer use in the watershed during the past 40 years. Selected cores were analyzed for trace elements. Concentrations of arsenic, chromium, copper, and nickel at many sites exceeded levels where adverse effects on aquatic organisms sometimes occur. Larger concentrations of these elements also occurred in sediment closer to the reservoir dam where there is a larger percentage of silt and clay in the bottom sediment than farther upstream. However, the lack of industrial or commercial land use in the watershed suggests that these concentrations may be the result of natural conditions. Organochlorine insecticides were detected in the reservoir-bottom sediment in Cheney Reservoir. DDT and its degradation products DDD and DD

  9. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    NASA Astrophysics Data System (ADS)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and <3 m length respectively) were collected seaward of the Mississippi River Southwest Pass in 25-75 m water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  10. A new long sediment record from Padul, southern Spain records orbital- and suborbital-scale environmental and climate changes during the middle and late Quaternary

    NASA Astrophysics Data System (ADS)

    Jimenez-Moreno, Gonzalo; Camuera, Jon; Ramos-Roman, Maria J.; Toney, Jaime L.; Anderson, R. Scott; Jimenez-Espejo, Francisco J.; Kaufman, Darrell; Bright, Jordon; Webster, Cole

    2017-04-01

    Long paleoenvironmental records are necessary in order to understand recurrent climatic or paleoenvironmental changes occurring with a certain periodicity (i.e., glacial-interglacial cycles). In this respect, the Padul peat bog has one of the best available records of Pleistocene sediments in semiarid Southern Europe. The sedimentary sequence is more than 100 m thick and has been used to study palaeoenvironmental change for the past ca. 1 Ma. Since the 1960s several cores have already been taken from this basin showing oscillations in many proxies (pollen, organic geochemistry and sedimentation) related with paleoclimatic and paleohydrological changes. However, a more detailed and higher resolution study, using new dating and analytical techniques (AMS 14C, AAR, continuous XRF-scanning, high-resolution pollen analysis and geochemistry), needs to be done in such an interesting site. Here we present preliminary paleoenvironmental data from a new sediment core, Padul-15-05, which shows significant changes in the environment and lake sedimentation, probably related with glacial-interglacial climate dynamics during the past ca. 300,000 years. These data confirm that orbital- as well as suborbital-scale variability (i.e., Heinrich, D-O events) are recorded in the studied core. This unique record thus has very high potential for paleoenvironmental and paleoclimatic reconstructions for, at least, the two last climatic cycles in this semiarid Mediterranean area.

  11. Search for continuous paleoclimatic record in Holocene lacustrine sediments from Lake District, Chile (40°S)

    NASA Astrophysics Data System (ADS)

    Bertrand, S.; Fagel, N.

    2003-04-01

    Our aim is to reconstruct a continuous Holocene climatic evolution related to ENSO variability in southern Chile. We focus on the sedimentary infilling of two glacial lakes from the Lake District Area (38-40°S). The preliminar sedimentological analysis must allow to define the key-site and the best palaeoclimatic proxies. This area, at the foothill of the Cordillera de Los Andes, has been affected by an intense Quaternary volcanic activity and by several historical earthquakes (e.g., Valdivia 1960). After preliminary seismic investigation, four cores were recovered in two lakes selected at the two ends of a N-S transect. (1) Icalma lake (12 km2, 38°S) is located in the Cordillera de Los Andes at an elevation of 1150m and results of the infilling of a glacial umbilic. The two 8m sediment cores consist of an alternation of laminated silts and volcanic layers. The sedimentary record is strongly disturbed by numerous seismic or volcanic events. The cumulated volcanogenic-derived material represents up to 50 % of the core length. In particular, the cores record at -4.50m a pumice layer widespread in the watershed and dated at 2900 yr BP. One core contains pluricentrimetric layers of wood accumulation. They could be due to earthquake impact on the vegetational cover in the watershed. An ubiquitous 6cm-thick slump described at -40 cm may be related with the 1960 Valdivia earthquake. (2) On Puyehue lake (164 km2, 40°S, elevation 185 m), two cores (7 and 11m) have been collected in both underflow and interflow sites. The interflow site (PUII) shows a very well laminated sediment, with only small disturbances due to volcanic and seismic activities. This core will be the key-site for the paleoclimatic study. The second core (PUI) is very rich in organic matter. The sediment is strongly destratified by numerous gas bubbles (methane). These characteristics are due to the dense vegetational cover in the watershed and to the core location near the delta of the main river. This preliminary study emphasizes the influence of geodynamic conditions on sedimentology of lacustrine deposits in a geodynamically active region. The contribution of the punctual tectonic and volcanic-derived layers to sediment thickness must be taken into account before calculation of the age-depth model.

  12. Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma

    USGS Publications Warehouse

    Fey, David L.; Becker, Mark F.; Smith, Kathleen S.

    2010-01-01

    Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.

  13. Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas.

    PubMed

    Zeng, Lixi; Chen, Ru; Zhao, Zongshan; Wang, Thanh; Gao, Yan; Li, An; Wang, Yawei; Jiang, Guibin; Sun, Liguang

    2013-10-15

    As the most complex halogenated contaminants, short chain chlorinated paraffins (SCCPs) are scarcely reported in marine environments. In this work, a total of 117 surficial sediment (0-3 cm) samples and two sediment cores were collected from the Chinese Bohai and Yellow Seas to systematically study the spatial and temporal trends of SCCPs at a large scale in the Chinese marine environment. Total SCCP concentrations in the surficial sediments were in the range of 14.5-85.2 ng g(-1) (dry weight, d.w.) with an average level of 38.4 ng g(-1) d.w. Spatial distribution showed a decreasing trend with the distance from the coast to the open waters. Compositional pattern analysis suggested that C10 was the most predominant homologue group, followed by C11, C12, and C13 homologue groups. The concentrations of total SCCPs in sediment cores ranged from 11.6 to 94.7 ng g(-1) d.w. for YS1 and from 14.7 to 195.6 ng g(-1) d.w. for YS2, with sharp rise from the early 1950s to present based on (210)Pb dating technique. The historical records in cores correspond well to the production and usage changes of CPs in China. Multivariate regression statistics indicate TOC, latitude and longitude are the major factors influencing surficial SCCP levels in the Chinese East Seas by combining analysis with the data from the East China Sea (R(2) = 0.332, p < 0.01). These findings indicated that the sources of SCCPs were mainly from river outflows via ocean current and partly from atmospheric depositions by East Asian monsoon in the sampling areas.

  14. Paleoecological inferences of recent alluvial damming of a lake basin due to retrogressive permafrost thaw slumping

    NASA Astrophysics Data System (ADS)

    Quinlan, R.; Delaney, S.; Lamoureux, S. F.; Kokelj, S. V.; Pisaric, M. F.

    2014-12-01

    Expected climate impacts of future warming in the Arctic include thawing of permafrost landscapes in northern latitudes. Thawing permafrost is expected to have major consequences on hydrological dynamics, which will affect the limnological conditions of Arctic lakes and ponds. In this study we obtained a sediment core from a small lake (informally named "FM1") near Fort McPherson, Northwest Territories, Canada, with a large retrogressive thaw slump (nearly 1 kilometre in diameter) within its catchment. A radiocarbon date from the base of the FM1 sediment core suggests the lake formed between 990-1160 Cal AD. The analysis of aerial photographs indicate the thaw slump initiated between 1970-1990, and sediment geochemistry analysis indicated major changes in sediment content at 54-cm sediment core depth. Analyses of subfossil midge (Chironomidae) fossils inferred that, pre-slump, lake FM1 was shallow with a large bog or wetland environment, with midge assemblages dominated by taxa such as Limnophyes and Parametriocnemus. Post-thaw midge assemblages were dominated by subfamily Chironominae (Tribe Tanytarsini and Tribe Chironomini) taxa, and the appearance of deepwater-associated taxa such as Sergentia suggests that lake FM1 deepened, possibly as a result of alluvial damming from slump materials washing into the lake near its outlet. Most recent stratigraphic intervals infer a reversion back to shallower conditions, with a slight recovery of bog or wetland-associated midge taxa, possibly due to rapid basin infilling from increased deposition rates of catchment-derived materials. Results emphasize that there may be a variety of different outcomes to Arctic lake and pond ecosystems as a result of permafrost thawing, contingent on system-specific characteristics such as slump location relative to the lake basin, and relative inflow and outflow locations within the lake basin.

  15. Hydrologic Connectivity and Land Use Effects on Sediment Accumulation on Stream Floodplains of the Savannah River Site, South Carolina.

    NASA Astrophysics Data System (ADS)

    Eddy, J.; Yeager, K. M.; Barton, C.; Phillips, J. D.

    2016-12-01

    Natural sediment accumulation on floodplains is important to maintain water quality of streams, to support regional biodiversity as an ecotone between aquatic and terrestrial environments, and to serve as a sink for organic and inorganic carbon. Recent research suggests that land use and hydrologic connectivity play important roles in determining rates of sediment accumulation. This study hypothesizes that changes in hydrologic connectivity have a greater impact on sediment accumulation rates than changes in land use. Nine sediment cores from seven sub-basins were taken from the Savannah River Site, South Carolina, and processed for grain-size, radioisotope dating, particulate organic carbon (POC), and microscopy. Stratigraphic columns were created for all nine cores. Extensive historical records, aerial, and satellite imagery are used to identify anthropogenic disturbances which may have influenced rates of sediment accumulation, as well as to calculate the percentage of natural vegetation in 1951 and 2014. Grain-size analysis and microscopy indicate that the majority of sediment studied is sand-sized quartz; changes in grain-size classification is used to indicate potential differences in sediment sources. LiDAR and field survey data were used to identify 251 stream flow impediments that potentially affect hydrologic connectivity. Results from radioisotope dating and POC have been used to calculate sediment mass accumulation rates (SMAR; g cm-2 y-1) and linear accumulation rates (LAR; cm y-1) for each of the cores. Preliminary findings show that plots of SMAR versus the number of flow impediments have steeper slopes than plots of SMAR versus the percent difference in vegetation (from 1951 to 2014). This signifies that flow impediments, as a proxy for hydrologic connectivity, have a stronger effect on sediment accumulation rates than changes in land use. This knowledge can help future stream restoration efforts by focusing resources to more efficiently attain stated goals.

  16. A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

    2014-05-01

    Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores Viernheim and Heidelberg. All things considered, the application of magnetic polarity stratigraphy on Pliocene and Pleistocene fluvial sediments from the Heidelberg Basin provides a consistent and independent chronology and opens the perspective for global correlations where other approaches hardly come to results. [1] GABRIEL, G., ELLWANGER, D., HOSELMANN, C. & WEIDENFELLER, M. 2008. Preface: The HeidelbergBasin Drilling Project. E & G (Quaternary Science Journal), 57, 253-260. [2] ELLWANGER, D. & WIELAND-SCHUSTER, U. 2012. Fotodokumentation und Schichtenverzeichnis der Forschungsbohrungen Heidelberg UniNord I und II. LGRB-Informationen, 26, 25-86. [3] KIRSCHVINK, J. L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal, Royal Astronomical Society, 62, 699-718. [4] ROLF, C., HAMBACH, U. & WEIDENFELLER, M. 2008. Rock and palaeomagnetic evidence for the Plio-/Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel), Neth. J. Geosci., 87 (1), 41-50. [5] KNIPPING, M. 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany, Neth. J. Geosci., 87(1), 51-65. [6] HEUMANN, G., pers. Comm. [7] HAHNE, J., pers. Comm.

  17. The Varved Sediments of Lake Bosumtwi, Ghana and Implications for a new Chronology of West African Hydrologic Change During the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Wheeler, C. W.; Overpeck, J. T.; Beck, J. W.; Arko, J.; Sharp, W. E.

    2002-12-01

    Lake Bosumtwi is a small (8-km diameter), deep (78-m) crater lake in the lowland forest of southern Ghana (West Africa) that offers tremendous potential for high-resolution environmental reconstruction. Lying in the path of the seasonal Intertropical Convergence Zone (ITCZ) monsoonal precipitation procession, as well as the dry Harmattan winds of the Sahel in winter, this lake is uniquely located to provide potential proxy records of these dominate climatic phenomena effecting West Africa's hydrologic cycle. The lake exhibits excellent sediment preservation, with finely laminated sediments through most of the ca. 24,000 years of core material recovered thus far. We present a detailed chronological analysis of the uppermost 1.1 meters of laminated sediment, obtained via a recently collected suite of freeze- and piston-cores. Utilizing digital images and petrographic thin-section transects of six freeze-cores and two piston cores, we identified 400 diagnostic marker laminations common among the cores, thus enabling cross correlation of the cores to a sub-centimeter scale. The marker laminations also serve as anchor points for counts of organic-rich fine-laminations that were hypothesized to be annual. Excellent agreement between our lamination counts and independent radiometric sediment age models (lead-210 and bomb radiocarbon) verify that these counted laminations are in fact annual (i.e. varves). Thus, we are able to present an annual chronology for the last 800 years of sedimentation (prior to 2000 AD)ñ ~4%. Though anthroprogenic changes have probably effected the local environment within the last 100 years, as we interpret anomalous increases in %organic carbon, %inorganic carbon and %nitrogen to indicate, the varve appearance does not seem to change across the 1.1 m section analyzed. Pre-nuclear weapon testing radiocarbon values, derived from bulk organic carbon, were examined in relation to the varve and lead-210 age-models to assess radiocarbon age offset due to reservoir effects and the redeposition of old-carbon; the data suggest that anomalously old radiocarbon ages ranging from ~430 to 3000 years are possible. The size of the radiocarbon bias may vary with lake status, indicating the role of old-carbon redeposition from ancient lake sediments currently at shallow depths or above current lake level in the crater catchment. Our study shows that 1) varves have excellent potential for creating a high-resolution chronology for Lake Bosumtwi, and 2) caution must be taken in using radiocarbon results to date the sediments of Lake Bosumtwi

  18. Microstructural study of natural fractures in Cape Roberts Project 3 core, Western Ross Sea, Antarctica

    USGS Publications Warehouse

    Millan, C.; Wilson, T.; Paulsen, T.

    2007-01-01

    Microstructures in natural fractures in core recovered offshore from Cape Roberts, Ross Sea, Antarctica, provide new constraints on the relative timing of faulting and sedimentation in the Victoria Land Basin along the Transantarctic Mountain rift flank. This study characterizes the textures, fabrics and grain-scale structures from thin section analysis of samples of microfaults, veins, and clastic dikes. Microfaults are abundant and display two different types of textures, interpreted to record two different deformation modes: pre-lithification shearing and brittle faulting of cohesive sediment. Both clastic dikes and calcite veins commonly follow fault planes, indicating that injections of liquefied sediment and circulating fluids used pre-existing faults as conduits. The close association of clastic injections, diagenetic mineralization, and faulting indicates that faulting was synchronous with deposition in the rift basin

  19. Holocene paleoecology of an estuary on Santa Rosa Island, California

    USGS Publications Warehouse

    Cole, K.L.; Liu, Gaisheng

    1994-01-01

    The middle to late Holocene history and early Anglo-European settlement impacts on Santa Rosa Island, California, were studied through the analysis of sediments in a small estuarine marsh. A 5.4-m-long sediment core produced a stratigraphic and pollen record spanning the last 5200 yr. Three major zones are distinguishable in the core. The lowermost zone (5200 to 3250 yr B.P.) represents a time of arid climate with predominantly marine sediment input and high Chenopodiaceae and Ambrosia pollen values. The intermediate zone (3250 yr B.P. to 1800 A.D.) is characterized by greater fresh water input and high values for Asteraceae and Cyperaceae pollen and charcoal particles. The uppermost zone (1800 A.D. to present) documents the unprecedented erosion, sedimentation, and vegetation change that resulted from the introduction of large exotic herbivores and exotic plants to the island during Anglo-European settlement. The identification of pollen grains of Torrey Pine (Pinus torreyana) documents the persistence of this endemic species on the island throughout the middle to late Holocene.

  20. Ca Isotope Geochemistry in Marine Deep Sea Sediments of the Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Wittke, A.; Gussone, N. C.; Derigs, D.; Schälling, M.; Teichert, B. M.

    2017-12-01

    Ca isotope ratio analysis (δ44/40Ca) is a powerful tool to investigate diagenetic reactions in marine sedimentary porewater systems, as it is sensitive to processes such as carbonate dissolution, precipitation, recrystallization, ion exchange and deep fluid sources, due to the isotopic difference between dissolved Ca and solid carbonate minerals (e.g. [1];[2]). We analyzed eight sediment cores of the (paleo-) Pacific equatorial age transect. Two sediment cores show decreasing Ca isotope profiles starting at the sediment/water interface with seawater-like values down to sediment-like values due to recrystallization and an increasing in the bottom part again to seawater-like values. The other studied cores show different degrees of flattening of this middle bulge. We interpret this pattern either as an effect of sediment composition and thickness, decreasing recrystallization rates and/or fluid flux or a combination of all of these factors at the respective sampling sites. Element concentration profiles and Sr-isotope variations on some of these sediment cores show a similar behavior, supporting our findings ([3]; [4]). Seawater influx at (inactive) seamounts is supposed to cause seawater-like values at the bottom of the sediment cores by fluids migrating through the oceanic basement (e.g. [5]). While [6] hypothesizes that two seamounts or bathymetric pits are connected, with a recharge and a discharge site [7] say that uptaken fluids could be released through the surrounding seafloor as well due to diffusive exchange with the underlying oceanic crust. Our Ca isotope results combined with a transport reaction model approach support the latter hypothesis. References: [1] Teichert B. M., Gussone N. and Torres M. E. (2009) [2] Ockert C., Gussone N., Kaufhold S. and Teichert B. (2013) [3] Pälike H., Lyle M., Nishi H., Raffi I., Gamage K. and Klaus A. (eds.) (2010) [4] Voigt J., Hathorne E. C., Frank M., Vollstaedt H. and Eisenhauer A. (2015) [5] Villinger H. W., Pichler T., Kaul N., Stephan S., Pälike H. and Stephan F. (2017) [6] Bekins B. A., Spivack A. J., Davis E. E. and Mayer L. A. (2007) [7] Mewes K., Mogollón J. M., Picard A., Rühlemann C., Eisenhauer A., Kuhn T., Ziebis W. and Kasten S. (2016)

  1. Sources of polychlorinated biphenyls to Devils Swamp Lake near Baton Rouge, Louisiana

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Kimball, Briant A.

    2006-01-01

    Devils Swamp Lake near Baton Rouge, Louisiana, created in 1973 by dredging in Devils Swamp along the Mississippi River, is contaminated with polychlorinated biphenyls (PCBs) from historical industrial discharges. This study involved the investigation of the occurrence, distribution, and sources of PCBs in the lake, including the possible historical contribution of PCBs from a hazardous-chemical disposal facility by way of a wastewater drainage ditch that was used from 1971 to 1993. Six bed sediment cores from the lake and three bed sediment grab samples from the drainage ditch were collected; 61 subsamples from selected intervals in five of the six cores and the three grab samples from the ditch were analyzed for PCBs using an immunoassay screening method. Sixteen of the core subsamples and one ditch sample were analyzed for organochlorine pesticides, PCBs, polycyclic aromatic hydrocarbons (PAHs) (15 samples), and major and trace elements. PCB congener profiles and a factor analysis of congener composition indicate that PCBs in sediment from the drainage ditch and in lake sediment deposited near the canal since the mid-1980s are similar, which indicates the disposal facility, by way of the wastewater drainage ditch, is the source of the PCBs. Sediment from several hundred meters down the lake to the west, near where Bayou Baton Rouge enters the lake, had a different PCB composition and in a sample deposited in the early 1980s, a much higher concentration, indicating a second source of PCBs in the watershed of Bayou Baton Rouge. Large differences in PAHs and metals between sediment near the ditch and sediment near Bayou Baton Rouge support this conclusion. The identity of the Bayou Baton Rouge source(s) cannot be established using available data. The short duration and relatively high concentrations of PCBs from the bayou source indicate either a spill or a flood-related release-there was a large flood on the Mississippi River in 1983. Older (deeper) samples from cores near the drainage ditch (dated as deposited before the mid-1980s) had PCB compositions that indicate a mixture of sources (Bayou Baton Rouge and the drainage ditch). Elevated PCB concentrations in sediment from the drainage ditch and cores from near the mouth of the ditch in recent (post-2000) samples indicate that some PCB inputs from the ditch might still be occurring.

  2. Exploration of the Eltanin Impact Area (Bellingshausen Sea): Expedition ANT XVIII5a

    NASA Technical Reports Server (NTRS)

    Gersonde, Rainer; Kyte, Frank T.

    2001-01-01

    The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. On 26 March 2001, the FS Polarstern returned to the impact area during expedition ANT XVIII/5a. Over a period of 14 days, this region was explored by detailed bathymetric mapping, acoustic profiling of sediment deposits, and direct sampling with 18 piston cores and four gravity cores. Preliminary shipboard examination of microfossils showed that sixteen of the piston cores and three gravity cores contained sediments at least as old as the impact event and have a high probability of containing a record of the disturbances caused by the impact. During the expedition, portions of eleven piston cores were opened for preliminary examination of the impact deposits. Visual examination of cores and microscopic identification of suspect impact melt particles were were used to identify ejecta and X-ray radiographs of the opened core segments permitted analysis of sediment structures. Impact deposits were found in nine of the eleven opened cores, and a similar success rate is anticipated in the seven cores remaining to be opened. These preliminary observations indicate that the highest concentrations of meteoritic ejecta and the largest particle sizes appear to occur in the region north of the San Martin seamounts. Recovered debris includes cm-sized melt rocks and a 2.5 cm meteorite. This expedition has confirmed the presence of high concentrations of meteoritic ejecta across a region at least as large as 10(exp 5) sq km. Quantitative analyses of ejecta distribution within this region will require further study, but previous estimates of 1 km for the minimum diameter of the Eltanin asteroid, appear safe.

  3. A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Kumar, Niraj; Stute, Martin; Anderson, Robert F.; Seidl, Michele A.; Schlosser, Peter; Mix, Alan

    1995-07-01

    We present a detailed down-core analysis of helium isotope ratios and concentrations for bulk sediments from the central Equatorial Pacific that span the last two glacial-interglacial cycles. Measured 3He/4He ratios range from 1.0 × 10 -5 to 2.1 × 10 -4, or 7.4 to 149 times the atmospheric ratio. The 3He from interplanetary dust particles (IDPs) constitutes virtually all of the 3He measured within the sediment. Because carbonate accumulation rates are high in the Equatorial Pacific, the measured 3He concentrations are lower than have been measured elsewhere, and range from 4.7 × 10 -13 to 3.0 × 10 -12 cm 3STP · g -1. If the cosmic dust 3He-flux is constant with time, sediment mass accumulation rates can be determined from the 3He concentration in sediments. The excess 230Th technique is an entirely independent method for calculating sediment mass accumulation rates because its source is in-situ decay of 234U in seawater. To first order, initial excess 230Th activities correlate with 3He concentrations within this core. Based on the 230Th results, we estimate the 3He-flux to the Earth's surface as (9.6 ± 2.0) × 10 -16 cm 3STP · cm -2 · a -1. If this flux has remained constant over extended periods of time, it can be used to determine sediment accumulation rates beyond the 230Th range (300,000 yr).

  4. Characterizing Cretaceous Glaciation Events: K-Ar Ages of Southern Ocean Sediments

    NASA Astrophysics Data System (ADS)

    Wright, M. A.; Hemming, S. R.; Barbeau, D. L.; Torfstein, A.; Pierce, E. L.; Williams, T.; McManus, J. F.; Gombiner, J.

    2012-12-01

    Evidence from paleosols and carbonate weathering models suggest that the Late Cretaceous had a supergreenhouse climate due to atmospheric CO2 concentrations two to four times greater than modern levels, tropical sea surface temperatures exceeding 35°C, and high-latitude temperatures exceeding 20°C. Despite this warmth, the Late Cretaceous was apparently punctuated by large (>25 m) and rapid (<<1 million year) sea-level changes, as recorded by marginal marine stratigraphic architectures and pelagic stable isotope compositions. The magnitude and tempo of these changes suggest a glacio-eustatic control, presumably from the growth and decay of continental ice sheets on Antarctica. Because continental glaciation tends to increase the weathering of bedrock and production of sediment delivered to the oceans, circum-Antarctic marine sediment flux would be expected to increase during periods of glaciation. In order to identify a Late Cretaceous glaciation signal from such marine records, we must first constrain the compositional signal of continental detritus in marine sediments. Here we report the results of downcore K-Ar analysis of the terrigenous sediments of Quaternary Weddell Sea cores PS1170-1 and PS1388-3 in order to identify the compositional signature of continent-derived detritus deposited in the Weddell Sea during a known glacial period. Further, we use our K-Ar analyses of circum-Antarctic Quaternary sediment cores to pinpoint potential sediment source areas. Having constrained this glaciation signal, we also present preliminary K-Ar and Sm-Nd analysis of the Campanian-Maastrictian boundary event (69 Ma) at Ocean Drilling Project site 690C to assess the controversial hypothesis of Late Cretaceous glaciation of Antarctica.

  5. Clostridium perfringens in Long Island Sound sediments: An urban sedimentary record

    USGS Publications Warehouse

    Buchholtz ten Brink, Marilyn R.; Mecray, E.L.; Galvin, E.L.

    2000-01-01

    Clostridium perfringens is a conservative tracer and an indicator of sewage-derived pollution in the marine environment. The distribution of Clostridium perfringens spores was measured in sediments from Long Island Sound, USA, as part of a regional study designed to: (1) map the distribution of contaminated sediments; (2) determine transport and dispersal paths; (3) identify the locations of sediment and contaminant focusing; and (4) constrain predictive models. In 1996, sediment cores were collected at 58 stations, and surface sediments were collected at 219 locations throughout the Sound. Elevated concentrations of Clostridium perfringens in the sediments indicate that sewage pollution is present throughout Long Island Sound and has persisted for more than a century. Concentrations range from undetectable amounts to 15,000 spores/g dry sediment and are above background levels in the upper 30 cm at nearly all core locations. Sediment focusing strongly impacts the accumulation of Clostridium perfringens spores. Inventories in the cores range from 28 to 70,000 spores/cm2, and elevated concentrations can extend to depths of 50 cm. The steep gradients in Clostridium perfringens profiles in muddier cores contrast with concentrations that are generally constant with depth in sandier cores. Clostridium perfringens concentrations rarely decrease in the uppermost sediment, unlike those reported for metal contaminants. Concentrations in surface sediments are highest in the western end of the Sound, very low in the eastern region, and intermediate in the central part. This pattern reflects winnowing and focusing of Clostridium perfringens spores and fine-grained sediment by the hydrodynamic regime; however, the proximity of sewage sources to the westernmost Sound locally enhances the Clostridium perfringens signals.

  6. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    PubMed

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  7. Oscillatory erosion and transport flume with superimposed unidirectional flow

    DOEpatents

    Jepsen, Richard A.; Roberts, Jesse D.

    2004-01-20

    A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.

  8. Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes.

    PubMed

    Li, H B; Yu, S; Li, G L; Deng, H

    2012-08-01

    Lead contamination becomes of importance to urban resident health worldwide, especially for child health and growth. Undisturbed lake sediment cores are increasingly employed as a useful tool to backdate environmental contamination history. Five intact sediment cores collected from lakes in five urban parks were dated using (210)Pb and analyzed for total Pb content and isotope ratio to reconstruct the Pb contamination history over the last century in Shanghai, China. Total Pb content in the sediment cores increased by about 2- to 3-fold since 1900s. The profile of Pb flux in each sediment core revealed a remarkable increase of Pb contamination in Shanghai over the past century, especially in the latest three decades when China was experiencing a rapid economic and industrial development. Significant correlations were found between Pb fluxes in sediment cores and Pb emission from coal combustion in Shanghai. Coal combustion emission dominated anthropogenic Pb sources during the past century contributing from 52% to 69% of total Pb in cores, estimated by a three-end member model of Pb isotope ratios. Leaded gasoline emission generally contributed <30% of total Pb, which was banned by 1997 in the Shanghai region. Our results implicate that coal combustion-based energy consumption should be replaced, or at least partially replaced, to reduce health risks of Pb contamination in Shanghai. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sedimentary records of Typhoon Haiyan in the South China Sea

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Chen, Y. H.; Chang, J. H.; Hsu, H. H.; Yu, P. S.; Liu, C. S.

    2016-12-01

    South China Sea (SCS), which is located at the boundary of the Eurasian, Philippine Sea, and Indian plates, is the largest marginal sea of the northwest Pacific and also on the North Western Pacific corridor of typhoons. The unique tectonic setting and climatic conditions make it has to face the severe natural hazards, like submarine landslides, and high sediment discharges which induced by typhoon. On November 8, 2013, the Typhoon Haiyan, which was one of the largest tropical cyclones ever recorded in western Pacific, devastated Philippines and caused catastrophic destruction. Before the Typhoon Haiyan reached Hainan Province, China and Quangninh Province, Vietnam, it emerged over the SCS. How was the large amount of terrestrial materials distributed and recorded in deep sea sediments by such intense typhoon? Is it possible for us to reconstruct the history of extreme tropical cyclones by using deep sea cores? In this study, twelve gravity cores were collected in the Central SCS Basin and around Taiping Island (Itu Aba Island) from 2014 to 2015 and a series of analysis including Multi-Sensor Core Logger, XRF Core Scanner, core surface and X-radiograph images, grain size, and excess 210Pb chronology were conducted for modern extreme event records in cores and attempt to evaluate the possibility of reconstructed extreme typhoon records in cores from the SCS. On core surface images, an obvious brownish oxidized layer exist in core top with higher 210Pb activities beneath the layer. According to the sampling time, we conjecture the oxidized layer might formed by Typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippines. The Power Barge 103 of Napocor in Estancia IIoilo was dislodged from its mount by Typhoon Haiyan and the United Nations Disaster Assessment and Coordination Team reported 600,000 liters of bunker fuel had spilled. To clarify the relationship between the oil spill and high manganese records in sediments, some further analysis is needed. Our analysis result shows, in the Central SCS Basin, over 80 cm turbidite layer was deposited by Typhoon Haiyan and it will take more than 4000 years to deposit on seafloor without the impact of extreme events.

  10. A chronicle of organochlorine contamination in Clear Creek, Galveston and Harris Counties, Texas, 1960-2002, as recorded in sediment cores

    USGS Publications Warehouse

    Mahler, Barbara J.; Van Metre, Peter

    2003-01-01

    Clear Creek flows through the Texas Coastal Plain from its headwaters southeast of Houston, Texas, to Clear Lake, which empties into Galveston Bay. Segments of Clear Creek were on the State of Texas 303(d) list for 1998, 1999, and 2000 as a result of a fish consumption advisory issued by the Texas Department of Health. One of the contaminants for which the fish consumption advisory was issued is the organochlorine pesticide chlordane. Chlordane is a hydrophobic (“waterfearing”) contaminant; that is, it adsorbs to sediment at concentrations much greater than those found in water. The study described here sought to answer three questions:Does chlordane occur in Clear Creek sediments at present?Is there current loading of chlordane to Clear Creek?How has occurrence of chlordane in Clear Creek changed over time?To answer these questions, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA), collected and analyzed sediment cores from Clear Creek (fig. 1). Sediment cores sometimes can be used to reconstruct historical trends in concentrations of hydrophobic contaminants (Eisenreich and others, 1989; Van Metre and others, 1997). Cores were collected from five ponds connected to Clear Creek but out of the main channel (fig. 1). Cesium-137 (137Cs) was analyzed in the cores to determine if the sediments in the cores were undisturbed and if the cores reached sediment predating 1964. The two cores that appeared most undisturbed on the basis of 137Cs profiles (see sidebar, p. 2) were further subsampled and additional samples analyzed for 137Cs, organic carbon, selected organochlorine pesticides (including chlordane), and total polychlorinated biphenyls (PCB).

  11. A sediment record of barrier estuary behaviour at the mesoscale: Interpreting high-resolution particle size analysis

    NASA Astrophysics Data System (ADS)

    Clarke, David W.; Boyle, John F.; Chiverrell, Richard C.; Lario, Javier; Plater, Andrew J.

    2014-09-01

    At present, limited understanding of mesoscale (years-decades-centuries) back-barrier lagoon, barrier estuary behaviour is a critical shortcoming for resource managers and decision makers. In this paper, high-resolution particle size analysis of a sediment core from an intermittently open and closed barrier estuary is utilised to reconstruct a history of back-barrier environmental change at mesoscale temporal resolution. Sediments from Pescadero Marsh, California, were analysed for their particle size distribution at consecutive 2-mm intervals down-core. Site selection, informed by a time series of maps and aerial photographs coupled with a robust core chronology, ensured that the particle size data primarily reflect changing hydrodynamics of the back-barrier area over the European-American era (1850 to the present). Following more traditional plotting of particle size data and summary statistics, and statistical analysis of particle size end-members, visual analysis and categorisation of particle size distribution curves (PSDCs) provide an effective basis for the identification of recurring modal sizes and subpopulations. These particle size windows (PSWs) are interpreted as reflecting different modes of sediment transport and deposition, i.e., suspension and saltation loads, the varying prominence of which is interpreted as being modified by barrier integrity. When considered together, the down-core mean particle size (MPS) trend and individual PSDCs offer considerable insight into mesoscale system behaviour at subannual resolution over multiple years. This behaviour is expressed in the recurrence of characteristic barrier estuarine environments (closed lagoon, tidal lagoon, tidal marsh, and open estuary) and the overall barrier regime, and their persistence over the last c. 150 years. Subannual and multiannual fluctuations in back-barrier environmental configuration are seen to be superimposed on a longer-term quasi-stable barrier regime, demonstrating the value of the applied methodology with regard to bridging the estuarine evolution (long-term, stratigraphic) and process (short-term, geomorphic) knowledge bases. The documented behaviour suggests a level of innate morphological resilience in the system over the long term despite episodic disturbance by high-energy storms. Such empirical demonstrations of resilient behaviour in coastal environments are rare at the mesoscale.

  12. The effects of Hurricanes Katrina and Rita on seabed polycyclic aromatic hydrocarbon dynamics in the Gulf of Mexico.

    PubMed

    Mitra, Siddhartha; Lalicata, Joseph J; Allison, Mead A; Dellapenna, Timothy M

    2009-06-01

    To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited approximately 10cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.

  13. The distribution of sediments grain size along the depth in source of the Yangtze River, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.

    2017-12-01

    Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.

  14. Source and Fate of Sediments in the Bahia de Anasco, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Webb, R. M.

    2005-12-01

    Sediments and wastewater mix in the insular marine waters of the Bah'{i}a de Añasco near Mayag{u}ez, Puerto Rico. Trace metal concentrations in fine sediments deposited in the bay were measured to assess potential impact of the ocean outfall on the biota and habitats that include coral reefs. A Q-mode factor analysis of elemental compositions identified three sediment sources and their relative proportions in 51 core and surficial samples collected from the bay and within the coral reefs: (1) sediments discharged by the R'{i}o Grande de Añasco; (2) calcareous skeletal remains; and (3) sediments discharged by the R'{i}o Guanajibo. The nickel and chromium derived from laterite deposits provide a unique fingerprint for sediments discharged from the R'{i}o Guanajibo. Naturally occurring concentrations of these elements exceed Probable Effect Limits (PEL's: 42 mg/kg for nickel and 160 mg/kg for chromium) in sediments deposited near the river mouth. The detection of mercury at 1 mg/kg in one sample from a core recovered near the wastewater outfall was the only indication of a possible outfall source in the data set. The temporal and spatial variations in source fractions proved useful in determining relative frequencies of historic floods and steady-state circulation patterns off the west coast of Puerto Rico.

  15. Effects of radionuclides on the recent foraminifera from the clastic sediments of the Çanakkale Strait-Turkey

    NASA Astrophysics Data System (ADS)

    Yümün, Zeki Ünal; Kam, Erol

    2017-07-01

    The radionuclides that cause radioactivity accumulate in the sediments as they descend to the seabed, similar to heavy metals. As radionuclides are present on the surface of the sediment or within the sediment, marine benthic foraminifera can be affected by the radioactive pollution. In this study, the habitat of benthic foraminifera was evaluated for radioactive pollution in the Çanakkale Strait, which constitutes the passage of the Marmara Sea and the Aegean Sea. In 2015, seven core samples and one drilling sample were taken from the shallow marine environment, which is the habitat of benthic foraminifera, in the Çanakkale Strait. Locations of the core samples were specifically selected to be pollution indicators in port areas. Gamma spectrometric analysis was used to determine the radioactivity properties of sediments. The radionuclide concentration activity values in the sediment samples obtained from the locations were Cs-137: <2-20 (Bq/kg), Th-232: 17.5-58.3 (Bq/kg), Ra-226: 16.9-48.6 (Bq/kg) and K-40: 443.7-725.6 (Bq/kg). These values were compared with the Turkish Atomic Energy Agency (TAEK) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data and environmental analysis was carried out. The Ra-226 series, the Th-232 series and the K-40 radionuclides accumulate naturally and increase continuously due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to UNSCEAR values, the K-40 and Th-232 series values were observed to be high in almost all locations. The values of Cs-137 were found to be maximum 20 in Çanakkale Dere Port and they were parallel to the values in the other places. In the study, 13 genera and 20 species were identified from core and drilling samples. The number of foraminifera species and individuals obtained at locations with high pollution was very low compared to those in non-polluted zones.

  16. Current status and historical variations of phthalate ester (PAE) contamination in the sediments from a large Chinese lake (Lake Chaohu).

    PubMed

    Kang, Lei; Wang, Qing-Mei; He, Qi-Shuang; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Jiang, Yu-Jiao; Xu, Fu-Liu

    2016-06-01

    The residual levels of phthalate esters (PAEs) in the surface and two core sediments from Lake Chaohu were measured with a gas chromatograph-mass spectrometer (GC-MS). The temporal-spatial distributions, compositions of PAEs, and their effecting factors were investigated. The results indicated that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl) phthalate (DEHP) were three dominant PAE components in both the surface and core sediments. The residual level of total detected PAEs (∑PAEs) in the surface sediments (2.146 ± 2.255 μg/g dw) was lower than that in the western core sediments (10.615 ± 9.733 μg/g) and in the eastern core sediments (5.109 ± 4.741 μg/g). The average content of ∑PAEs in the surface sediments from the inflow rivers (4.128 ± 1.738 μg/g dw) was an order of magnitude higher than those from the lake (0.323 ± 0.093 μg/g dw), and there were similar PAE compositions between the lake and inflow rivers. This finding means that there were important effects of PAE input from the inflow rivers on the compositions and distributions of PAEs in the surface sediments. An increasing trend was found for the residual levels of ΣPAEs, DnBP, and DIBP from the bottom to the surface in both the western and eastern core sediments. Increasing PAE usage with the population growth, urbanization, and industrial and agricultural development in Lake Chaohu watershed would result in the increasing production of PAEs and their resulting presence in the sediments. The significant positive relationships were also found between the PAE contents and the percentage of sand particles, as well as TOC contents in the sediment cores.

  17. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    PubMed

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.

  18. Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments

    NASA Astrophysics Data System (ADS)

    Bölscher, Jens; Schulte, Achim; Terytze, Konstantin

    2017-04-01

    The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), selected nitro-compounds, selected organotin compounds and polychlorinated biphenyls (PCB, AOX and EOX) in the sediment and suspended matter. The physico-chemical conditions of the samples were examined as well. The research into soluble and mobilizable sediment-bounded pollutants is based upon a 24 hour batch test. Certain toxic effects of the sediments were determined by different ecotoxicological test methods. In addition, the thresholds of the sediment quality guidelines published by de Deckere et al. (2011) were used to assess the solid contents. Because of the high concentrations of the pollutants, the consensus 2 values are used as thresholds in this study. The results provide important details on the spatial and temporal distribution of sedimentation and contamination. All sediments of the analysed cores and traps remain highly contaminated with heavy metals and organic compounds. The results indicate the resuspension, transport and accumulation of these sediments and show at least that toxic effects for the benthic taxa are expected. This kind of approach is necessary to create a basis for a remediation programme for, and a risk assessment of, polluted water bodies.

  19. City Core - detecting the anthropocene in urban lake cores

    NASA Astrophysics Data System (ADS)

    Kjaer, K. H.; Ilsøe, P.; Andresen, C. S.; Rasmussen, P.; Andersen, T. J.; Frei, R.; Schreiber, N.; Odgaard, B.; Funder, S.; Holm, J. M.; Andersen, K.

    2011-12-01

    Here, we presents the preliminary results from lake cores taken in ditches associated with the historical fortifications enclosing the oldest - central Copenhagen to achieve new knowledge from sediment deposits related to anthropogenic activities. We have examined sediment cores with X-ray fluorescence (XRF) analyzers to correlate element patterns from urban and industrial emissions. Thus, we aim to track these patterns back in time - long before regular routines of recording of atmospheric environment began around 1978. Furthermore, we compare our data to alternative sources of information in order to constrain and expand the temporal dating limits (approximately 1890) achieved from 210Pb activity. From custom reports and statistic sources, information on imported volumes from coal, metal and oil was obtained and related contaminants from these substances to the sediment archives. Intriguingly, we find a steep increase in import of coal and metals matching the exponential increase of lead and zinc counts from XRF-recordings of the sediment cores. In this finding, we claim to have constrain the initiation of urban industrialization. In order to confirm the age resolution of the lake cores, DNA was extracted from sediments, sedaDNA. Thus we attempt to trace plantation of well documented exotic plants to, for instance, the Botanical Garden. Through extraction and sampling of sedaDNA from these floral and arboreal specimens we intend to locate their strataigraphic horizons in the sediment core. These findings may correlate data back to 1872, when the garden was established on the area of the former fortification. In this line of research, we hope to achieve important supplementary knowledge of sedaDNA-leaching frequencies within freshwater sediments.

  20. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea.

    PubMed

    Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A

    2015-06-15

    Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hydrologic response of desert wetlands to Holocene climate change: preliminary results from the Soda Springs area, Mojave National Preserve, California

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Reheis, Marith C.; McGeehin, John P.; Honke, Jeffrey S.; Bright, J.

    2016-01-01

    Desert wetlands are common features in arid environments and include a variety of hydrologic facies, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Wet ground conditions and dense stands of vegetation in these settings combine to trap eolian, alluvial, and fluvial sediments that accumulate over time. The resulting deposits are collectively called ground-water discharge (GWD) deposits, and contain information on how small desert watersheds responded to climate change in the past. Most GWD studies in the southwestern U.S. have focused on the late Pleistocene because the Holocene was too dry to support the extensive wetland systems that were so pervasive just a few millennia earlier. Here we describe the results of a pilot project that involves coring extant wetlands and analyzing the sedimentology and microfauna of the recovered sediment to infer Holocene hydrologic conditions. In 2011, a series of cores were taken near wetlands situated along the western margin of the Soda Lake basin in the Mojave National Preserve of southern California. The core sediments appear to show that the wetlands responded to the relatively minor climate fluctuations that characterized the Holocene. However, our analysis was limited by relatively low sediment recovery (which only averaged 70-80%) and a general paucity of datable materials in the cores. Additional studies aimed at improving recovery and developing new techniques for concentrating plant microfossils (plant remains that are <150 m in diameter) for radiocarbon dating are ongoing.

  2. Climate variability and volcanic history of the Eastern Romanian Carpathians since early MIS 3 recorded in sediments from Mohoş crater

    NASA Astrophysics Data System (ADS)

    Bormann, M.; Veres, D.; Wulf, S.; Papadopoulou, M.; Panagiotopoulos, K.; Schaebitz, F.

    2015-12-01

    We present a 30m long sediment record covering the last ca. 50,000 years from the in-filled Mohoş crater (46°05' N; 25°55' E) located on Ciomadul volcano (Romania) that was retrieved in 2014. The record consists of bog and lacustrine sediments that are inter-bedded with tephra deposits. Ciomadul volcano, hosting the superimposed craters of Mohoş and Sf. Ana, is the youngest volcanic edifice in the Carpathian-Balkan region. Thus, tephra-analysis on the Mohoş sediments gives valuable insights into the volcanic history of that region, mainly arising from the younger crater of Sf Ana and several secondary domes. For investigations into the past climate history, the Mohoş sediment sequence has been analysed using a multi-proxy approach including geophysical, geochemical and sedimentological parameters. Multi-Sensor core logging and ITRAX X-ray fluorescence scanning have been performed at high-resolution, whereas grain size analysis, TOC and C/N ratios supplement the geophysical and geochemical data. Chronological control is based on radiocarbon and luminescence dating. We also present first results of the tephra-analysis on the Mohoş sediment record and their correlation to medium-distal pyroclastic deposits originating in this volcanic field. We further discuss responses of this mid-altitude site (1050 m a.s.l.) to past climate oscillations since early MIS 3. To date, the Mohoş core record provides the longest time series from the Carpathian region. This study is part of the Collaborative Research Centre 806 "Our Way To Europe; Culture-Environment Interaction and Human Mobility in the Late Quaternary" (www.sfb806.de); subproject B2.

  3. Dual-core mass-balance approach for evaluating mercury and210Pb atmospheric fallout and focusing to lakes

    USGS Publications Warehouse

    Van Metre, P.C.; Fuller, C.C.

    2009-01-01

    Determining atmospheric deposition rates of mercury and other contaminants using lake sediment cores requires a quantitative understanding of sediment focusing. Here we present a novel approach that solves mass-balance equations for two cores algebraically to estimate contaminant contributions to sediment from direct atmospheric fallout and from watershed and in-lake focusing. The model is applied to excess 210Pb and Hg in cores from Hobbs Lake, a high-altitude lake in Wyoming. Model results for excess 210Pb are consistent with estimates of fallout and focusing factors computed using excess 210Pb burdens in lake cores and soil cores from the watershed and model results for Hg fallout are consistent with fallout estimated using the soil-core-based 210Pb focusing factors. The lake cores indicate small increases in mercury deposition beginning in the late 1800s and large increases after 1940, with the maximum at the tops of the cores of 16-20 ??g/m 2year. These results suggest that global Hg emissions and possibly regional emissions in the western United States are affecting the north-central Rocky Mountains. Hg fallout estimates are generally consistent with fallout reported from an ice core from the nearby Upper Fremont Glacier, but with several notable differences. The model might not work for lakes with complex geometries and multiple sediment inputs, but for lakes with simple geometries, like Hobbs, it can provide a quantitative approach for evaluating sediment focusing and estimating contaminant fallout.

  4. Fingerprinting the main erosion processes delivering sediment to hillside reservoirs: Case of Kamech catchment in Cape Bon, Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Slimane, A.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefèvre, I.; Ahmadi, M.; Le Bissonnais, Y.

    2011-12-01

    About 74% of agricultural soils are affected by water erosion in Tunisia. This intense soil degradation threatens the sustainability of food production in the country. It also leads to the siltation of the numerous hillslide reservoirs that were constructed in the 1990s to protect downstream villages against floods and provide a source of water in cultivated areas. Very dense gully systems are observed in Tunisian agricultural land and in other Mediterranean regions, but their contribution to contemporary sediment supply to hillside reservoirs has not been quantified yet. Still, there is a need to quantify the sediment sources in this region in order to guide the implementation of erosion control measures. Sediment can be supplied by gully systems but it can also be provided by erosion of the superficial layer of cultivated soil. We propose a methodology to estimate the relative contribution of gully erosion vs. interrill erosion to the sediment accumulated in hillside reservoirs. This work was conducted in a pilot catchment (i.e., Kamech catchment, 263ha, Cape Bon, Tunisia) to define guidelines on the number and the location of sediment core samples to collect in the reservoirs, in order to provide relevant information on the evolution of sediment sources throughout the last two decades. Once validated, this methodology will be applied to other catchments of the Tunisian Ridge. We applied the sediment fingerprinting method, which consists in measuring conservative and stable properties in both sources and sinks of sediment to outline their origin. Sampling efforts were concentrated on the field surface (cropland and grassland), gullies and channel banks. Thirteen sediment cores were collected along an upstream-downstream transect across Kamech hillside reservoir, in order to estimate the contribution of each potential sediment source to the material accumulated at the outlet, and to investigate the potential spatial differences of sediment origin across the reservoir. Concentration in two types of tracers (i.e., radionuclides and organic matter) was analyzed in all samples to provide potential fingerprinting properties, and a Monte Carlo mixing model was applied. Among the 11 potential tracers, 137Cs, total nitrogen and total organic carbon were selected. Application of the mixing model outlined that a mean homogenized sample provided similar information on the sediment origin as the analysis of all successive sediment layers observed in the core. We subsequently focused on the interpretation of the results obtained for those "mean" homogenised core samples. Those results showed that the dominant sources varied along the reservoir transect. However, the overall dominant source of sediment was interrill erosion. Soil conservation measures need therefore to be applied on cultivated land of Kamech catchment to limit siltation.

  5. Development of recent chronologies and evaluation of temporal variations in Pb fluxes and sources in lake sediment and peat cores in a remote, highly radiogenic environment, Cairngorm Mountains, Scottish Highlands

    NASA Astrophysics Data System (ADS)

    Farmer, John G.; MacKenzie, Angus B.; Graham, Margaret C.; Macgregor, Kenneth; Kirika, Alexander

    2015-05-01

    The use of stable Pb isotope analyses in conjunction with recent (210Pb and anthropogenic radionuclide) chronologies has become a well-established method for evaluating historical trends in depositional fluxes and sources of atmospherically deposited Pb using archival records in lake sediment or peat cores. Such studies rely upon (i) simple radioactive disequilibrium between unsupported 210Pb and longer-lived members of the 238U decay series and (ii) well-defined values for the isotopic composition of contaminant Pb and indigenous Pb in the study area. However, areas of high natural radioactivity can present challenging environments for such studies, with potential complications arising from more complex disequilibria in the 238U decay series and the occurrence, at local or regional level, of anomalous, ill-defined stable isotope ratios due to the presence of elevated levels of radiogenic Pb. Results are presented here for a study of a sediment core from a freshwater lake, Loch Einich, in the high natural radioactivity area of the Cairngorm Mountains of Scotland. 238U decay series disequilibria revealed recent diagenetic re-deposition of both U and 226Ra, the latter resulting in a requirement to use a modified calculation to derive a 210Pb chronology for the core. Confidence in the chronology was provided by good agreement with the independent 241Am chronology, but the 137Cs distribution was affected by significant post-depositional mobility in the organic-rich sediment. The systematics of variations in 230Th, 232Th and stable Pb isotope ratio distributions were used to establish the indigenous Pb characteristics of the sediment. The relatively high radiogenic content of the indigenous Pb resulted in complications in source apportionment, in particular during the 20th century, with multiple natural and anthropogenic sources precluding the use of a simple binary mixing model. Consequently, 206Pb/207Pb ratios in Scottish moss samples from an archive collection were used to provide the input term for atmospheric deposition in order to establish historical trends in indigenous and anthropogenic Pb fluxes. A test of the accuracy of the derived Pb fluxes was provided by analysis of a core from a nearby blanket peat deposit, Great Moss. Independent atmospheric and basal inputs gave a complex distribution of 210Pb in the peat, but this did not affect calculation of a 210Pb chronology. Once again, the 210Pb chronology was supported by the 241Am distribution. Temporal trends in anthropogenic Pb deposition derived for the Loch Einich sediment core were in generally good agreement with those for the Great Moss peat core, other peat cores and some other lake sediment cores from northern Scotland, providing confidence in the use of the archive moss data to characterise atmospheric deposition. However, sustained input of Pb to Loch Einich sediment at relatively high levels in the late 20th century, after the regional decline in atmospheric Pb deposition, suggested that catchment-derived Pb is now a significant component of the depositional flux for Loch Einich.

  6. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  7. Long-Term Changes In The Behaviour Of Jakobshavns Isbrae, West Greenland During The Late Quaternary-Holocene

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, C.; Jennings, A.; Moros, M.; Andrews, J. T.; Kilfeather, A.; Dowdeswell, J. A.; Richter, T.

    2008-12-01

    This poster shows the initial results of a joint scientific project to reconstruct the Late Quaternary-Holocene behavior of Jakobshavns Isbrae in central west Greenland, one of the largest ice streams draining the modern Greenland Ice Sheet. The underlying rationale for this research is to determine if recent observed changes to the mass balance of the Greenland Ice Sheet are part of the natural variability in ice-sheet dynamics, or if they relate to anthropogenically-induced climate warming. Key to resolving this question is an understanding of long-term changes in ice sheet behavior during the Late Quaternary and the Holocene. This research will allow assessment of the links between deglaciation and internal and external environmental controls, such as the influence of inflowing Atlantic Water, and will facilitate modelling of the likely future behavior of the GIS. Currently, four marine sediment cores arrayed along a transect from the Disko Bugt Fan to Disko Bay are providing information on changes in sediment flux and sedimentation style, such as abrupt intervals of iceberg-rafting vs. "normal" hemipelagic sedimentation, as well as the paleoceanographic setting and ice sheet-ocean interactions. The cores are being analysed using a variety of proxies including IRD, mineralogy, oxygen isotopes, foraminiferal assemblages, lithofacies analysis and AMS radiocarbon dating. Data are presented from two piston cores from the continental slope at the trough-mouth fan collected during the HE0006 'shakedown' cruise to Baffin Bay and from two gravity cores recovered in 2007 during MS Merian cruise MSM 05/03 to West Greenland. Slope cores contain sequences of laminated facies interpreted as fine-grained turbidites and intervals of massive, bioturbated, hemipelagic mud. The two Merian cores, contributed to this project by the Baltic Sea Research Institute, were collected from the southern entrance to Disko Bugt and the Vaigat channel north of Disko. Radiocarbon dates from the Disko Bugt core show that it contains a full Holocene record of glacial activity and paleoceanography. The poster will present the initial analyses, including radiocarbon dating, XRF compositional data, magnetic susceptibility, lithofacies and IRD analyses determined from x-radiography, foraminiferal analyses and sediment mineralogy. Additional cores and seismic data for this project will be obtained from a cruise on the Canadian research vessel, CSS Hudson in September 2008, and on the British ship, the RRS James Clark Ross in 2009.

  8. The Lateglacial and Holocene history of annually laminated Lake Tiefer See

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin; Dräger, Nadine; Lampe, Reinhard; Lorenz, Sebastian; Kienel, Ulrike; Schult, Manuela; Słowiński, Michał; Wulf, Sabine; Zawiska, Izabela; Brauer, Achim

    2015-04-01

    Lake Tiefer See (N 53.59, E 12.53) is one of the rare lakes with a long sequence of annually laminated Holocene sediments in northern Central Europe. The lake is a valuable link between laminated lakes in more oceanic climates of the Eifel region and NW Germany and laminated lakes in the more continental climate of Poland. It thus provides great potential to study past climate, vegetation and human land use along that climate transition. The sediments of Lake Tiefer See show repeated changes in varve quality and composition. To disentangle in how far these changes relate to either past climate change, lake water level fluctuations or to changes in the local environment caused by e.g. human activity, we studied 16 sediment cores taken mainly from the lake margin. Almost all cores show interruptions in sedimentation namely during the mid-Holocene, suggesting that the lake water level has been lowered during this period. However, peat-gyttia alternations point at lake level fluctuations also during the early and late Holocene. Discontinuous sedimentation in cores from intermediate depth points at recurring slumping events. The pollen record additionally indicates prominent alternations in land use intensity throughout the late Holocene. By testing correlation between the hydrological changes, changes in land use intensity and changes in the sediment record we discuss effects of climate change and further factors on varve formation in Lake Tiefer See. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.

  9. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula.

    PubMed

    Kobayashi, Tohru; Koide, Osamu; Mori, Kozue; Shimamura, Shigeru; Matsuura, Takae; Miura, Takeshi; Takaki, Yoshihiro; Morono, Yuki; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki

    2008-07-01

    "A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4x10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.

  10. The Lake Towuti Drilling Project: A New, 1-Million Year Record of Indo-Pacific Hydroclimate

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bijaksana, S.; Vogel, H.; Melles, M.; Crowe, S.; Fajar, S. J.; Hasberg, A. K.; Ivory, S.; Kallmeyer, J.; Kelly, C. S.; Kirana, K. H.; Morlock, M.; Tamuntuan, G. H.; Wicaksono, S. A.

    2015-12-01

    ­The Indo-Pacific region plays an integral role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to these global forcings. New paleoclimate records spanning multiple glacial-interglacial cycles are therefore required to document the region's hydroclimatic response to the full range of global climate boundary conditions observed during the late Quaternary. Lake Towuti is located in central Indonesia and is the only known terrestrial sedimentary archive in the region that spans multiple glacial-interglacial cycles. From May - July, 2015, the Towuti Drilling Project, consisting of nearly 40 scientists from eight countries, recovered over 1,000 meters of new sediment core from Lake Towuti. This includes cores though the entire sediment column to bedrock, which likely provide a >1-million-year records of regional hydroclimate. On-site borehole and sediment core logging data document major shifts in sediment composition, including transitions from lake clays to peats, calcareous sediments, and gravels. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we aim to test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale hydrologic change during the last ~1 million years.

  11. Earthquake Records of North Anatolian Fault from Sapanca Lake Sediments, NW Anatolia

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Cagatay, Namık; Acar, Dursun; Demirbag, Emin; Gungor, Emin; Gungor, Nurdan; Gulen, Levent

    2014-05-01

    We determined earthquake records in sediment cores of Sapanca Lake which is a pull-apart basin located along the North Anatolian Fault zone in NW Anatolia. The lake has a maximum depth of 55 m, and a surface area of 46.8 km2, measuring 16 km in E-W and 5 km in N-S directions. A systematic study of the sedimentological, physical and geochemical properties of three water-sediment interface cores, up to 75.7 cm long, located along depth transects ranging from 43 to 51.5 m water depths. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Content (TOC) and Total Inorganic Carbon (TIC) analysis, Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The geochronology was determined using AMS radiocarbon and radionuclide methods. The Sapanca Lake earthquake records are characterized by mass flow units consisting of grey or dark grey coarse to fine sand and silty mud with sharp basal and transional upper boundaries. The units commonly show normal size grading with their basal parts showing high density, and high magnetic susceptibility and enrichment in one or more elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the mass flow units are correlated with 1999 İzmit and Düzce earthquakes (Mw=7.4 and 7.2, respectively) , 1967 Mudurnu earthquake (Mw= 6,8), and 1957 Abant (Mw= 7.1) earthquake. Keywords: Sapanca Lake, North Anatolian Fault, Earthquake, Grain size, Itrax-XRF, MSCL

  12. Natural thorium isotopes in marine sediment core off Labuan port

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. Themore » sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.« less

  13. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.

    PubMed

    Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A

    2004-04-15

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.

  14. Geochronology of recent sediments from the Cariaco Trench (Venezuela) by Alpha Spectrometry of {sup 210}Pb ({sup 210}Po)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arriojas, A.; Barros, H.; Palacios, D.

    2010-08-04

    210Pb concentration in marine sediments of the Cariaco Trench (North-East of Venezuela) was measured through the analysis of 210Po alpha emissions, which can be assumed to be in secular equilibrium with 210Pb. The analysed sediment core has a length of 1.9 m. The results allowed to apply the CF:CS dating model (Constant Flux and Constant Supply). The sedimentation rate was estimated to be 0.25 cm/y. As far as we know this is the first {alpha}- dating carried out in the country, performed with an alpha spectrometer recently funded by the IAEA.

  15. DDTs and HCHs in sediment cores from the coastal East China Sea.

    PubMed

    Lin, Tian; Nizzetto, Luca; Guo, Zhigang; Li, Yuanyuan; Li, Jun; Zhang, Gan

    2016-01-01

    Four sediment cores were collected along the Yangtze-derived sediment transport pathway in the inner shelf of the East China Sea (ECS) for OCP analysis. The sediment records of HCHs and DDTs in estuarine environment reflected remobilization of chemicals from enhanced soil erosion associated to extreme flood events or large scale land use transformation. The sediment records in the open sea, instead, reflected long-term historical trends of OCP application in the source region. Unlike the so-called mud wedge distribution of sediment, inventories of HCHs and DDTs slightly increased from the mouth of Yangtze River alongshore toward south, suggesting the sediment deposition rate was one of factors on the exposure of chemicals within the inner shelf of the ECS. Re-suspension and transport of the Yangtze-derived sediment and consequent fractionation in grain size and TOC were also responsible for the spatial variation of inventories of catchment derived OCPs in a major repository area of the Yangtze suspended sediment. The total burdens of HCHs and DDTs in the inner shelf of the ECS were 35tons and 110tons, respectively. After 1983 (year of the official ban in China), those values were 13tons and 50tons, respectively. It appears that the Yangtze still delivers relatively high inputs of DDTs more than 30years after the official ban. High proportions of DDD+DDE and β-HCH suggested those OCPs mainly originated from historical usage in the catchment recent years. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sediment Dating With 210Pb and 137Cs In Monterey Canyon, California Reveal the extent of recent sediment movement down canyon

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; McGann, M.

    2017-12-01

    Submarine canyons are major vectors of sediment transport off the continent into the deep sea. Recent results from the Monterey Coordinated Canyon Experiment document fifteen sediment transport events occurred during an 18-month period from 2015 to 2017, and three of them reached at least to 1850m. In an attempt to constrain the timing and rate in which sediments were transported down canyons in these and earlier events we have collected sediment cores and measured the sedimentation rates using 210Pb and 137Cs dating techniques along the axis of Monterey Canyon. We employed transects of precisely located ROV collected push cores and vibracores collected at water depths ranging from 300m to 2900m perpendicular to the canyon axis using a remotely operated vehicle (ROV). Some cores were taken in 2013 and compared with those taken in 2017. We focused on cores from terraces that are between 60m and 75m above the canyon thalweg in water depths between 300 and 1500 m and in cores collected form the canyon's axial channel between 1800 and 2900 m water depths where the canyon widens considerably. Generally sedimentation rates vary with depth, with the highest sedimentation rate closest to land, but vary substantially across successive terraces. Sawtooth-shaped excess 210Pb and 137Cs profiles with depth at almost all sites at least to 1500m imply several episodes of deposition and reworking of sediment on the terraces suggesting multiple sediment transport events. The excess 210Pb in many cores reach depths of up to 1m implying sedimentation rates greater than 10mm per year. At the deepest site (2900m) about 10 cm of fine hemipelagic sediment overlies sand indicating a high-energy sediment flow event. In 2014 the measured 210Pb sedimentation rate of 0.6 to 0.8mm per year indicates that the last 10 cm of sediment have been deposited and undisturbed since about the year 1910 showing that recent events have not reached this depth. Measurements are on going to determine if the 2015-2017 sediment transport events have travelled down to 2900m [RG1] and if the timing of these sediment flow events were triggered by external factors, like earthquakes, winter storms, or by seafloor failures within the Canyon. [RG1]This seem to contradict the previous sentence where it says that it did not reach 2900 m

  17. Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, M.C.; Christensen, E.R.; Karls, J.F.

    Four sediment cores were collected from the lower Fox River, Wisconsin, USA, to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) using a chemical mass balance model. The cores, which were obtained in 1995 from areas close to Green Bay, Wisconsin, USA, had total PAH concentrations between 19.3 and 0.34 ppm. To determine historical trends of PAH inputs, {sup 210}Pb and {sup 137}Cs dating was used, and elemental carbon particle analysis was done to characterize particles from the combustion of coal, wood, and petroleum. Source fingerprints were taken from the literature. Their results indicate that coke oven emissions, highway dust,more » coal gasification, and wood burning are likely sources of PAHs in the lower Fox River. Coke oven emissions are in the range of 40 to 90% of total PAHs, and this fraction decreases from 1930 to 1990, except in core Fox River-A (FR-A). The overall highway dust (HWY) contribution is between 10 and 75%, and this fraction increases from 1930 to present, except in core FR-A. The wood burning (WB) contribution is less than 7% in cores FR-B, FR-C, and FR-D. In core FR-A, a maximum ({approximately}23%) is found around 1960. The contribution of wood burning has changed from less than 6% in 1950 to between 3 and 10% in 1995. Evidence of aerobic biodegradation or photolysis in the sediment of phenanthrene, with a half-life of approximately 0.5 years has been found at the site of core FR-D, which is the shallowest (1.1 m) of the four core sites.« less

  18. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System.

    PubMed

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ 13 C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO 4 2- m -2 day -1 in untreated cores to 5.7 mmol SO 4 2- m -2 day -1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2-C6 n -alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n -alkanes (C10-C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  19. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System

    PubMed Central

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H.; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core. PMID:28503172

  20. Late Holocene sea ice conditions in Herald Canyon, Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.

    2017-12-01

    Sea ice in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort seas. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston cores from Herald Canyon in the Chukchi Sea, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal sea ice minimum edge, and is thus an ideal location for the reconstruction of past sea ice variability. Both sediment cores contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). Core 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of Core 4-PC1 from the central canyon (120 mwd) cover the last 3000 years. The chronologies of the cores are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for sea ice and surface water productivity indicate stable sea ice conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from sea ice to open water biota. Most importantly, our results indicate that the ongoing rapid ice retreat in the Chukchi Sea of recent decades was unprecedented during the last 4000 years.

  1. Metal distribution in sediment cores from São Paulo State Coast, Brazil.

    PubMed

    Silva, Paulo S C; Damatto, Sandra R; Maldonado, Caio; Fávaro, Deboráh I T; Mazzilli, Barbara P

    2011-05-01

    Ten sediment core samples with lengths ranging from 35 to 100 cm were collected in the Baixada Santista region and analyzed to determine As, Br, Co, Cr, Cs, Fe, Rb, Sb, Ta, Th, U, Zn and rare earths (Sc, Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) level concentrations using instrumental neutron activation analysis (INAA). The studied region is located in the southeastern coast of São Paulo State and is comprised of a densely urbanized area, the largest industrial complex of the country, with a predominance of petrochemical and fertilizer plants. It is also home to Brazil's most important and busiest port. The conclusions found that the As, La, Sm, Ne, Ce, Eu, Hf, Ta, Th, and U elements have a high background level in the region and that Fe and Zn were the main indicators of anthropogenic contribution in the sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Depositional environment of near-surface sediments, King George Basin, Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Yoon, H. I.; Park, B. K.; Chang, S. K.; Han, M. W.; Oh, J. K.

    1994-03-01

    Four sediment cores were collected to determine the depositional environments of the King George Basin northeast of Bransfield Strait, Antarctica. The cored section revealed three distinct lithofacies: laminated siliceous ooze derived from an increased paleoproductivity near the receding sea-ice edges, massive muds that resulted from hemipelagic sedimentation in open water, and graded sediments that originated from nearby local seamounts by turbidity currents. Clay mineral data of the cores indicate a decreasing importance of volcanic activity through time. Active volcanism and hydrothermal activity appear to be responsible for the enrichment of smectite near the Penguin and Bridgeman Islands.

  3. Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa.

    PubMed

    Manjoro, Munyaradzi; Rowntree, Kate; Kakembo, Vincent; Foster, Ian; Collins, Adrian L

    2017-06-01

    Sediment source fingerprinting has been successfully deployed to provide information on the surface and subsurface sources of sediment in many catchments around the world. However, there is still scope to re-examine some of the major assumptions of the technique with reference to the number of fingerprint properties used in the model, the number of model iterations and the potential uncertainties of using more than one sediment core collected from the same floodplain sink. We investigated the role of subsurface erosion in the supply of fine sediment to two sediment cores collected from a floodplain in a small degraded catchment in the Eastern Cape, South Africa. The results showed that increasing the number of individual fingerprint properties in the composite signature did not improve the model goodness-of-fit. This is still a much debated issue in sediment source fingerprinting. To test the goodness-of-fit further, the number of model repeat iterations was increased from 5000 to 30,000. However, this did not reduce uncertainty ranges in modelled source proportions nor improve the model goodness-of-fit. The estimated sediment source contributions were not consistent with the available published data on erosion processes in the study catchment. The temporal pattern of sediment source contributions predicted for the two sediment cores was very different despite the cores being collected in close proximity from the same floodplain. This highlights some of the potential limitations associated with using floodplain cores to reconstruct catchment erosion processes and associated sediment source contributions. For the source tracing approach in general, the findings here suggest the need for further investigations into uncertainties related to the number of fingerprint properties included in un-mixing models. The findings support the current widespread use of ≤5000 model repeat iterations for estimating the key sources of sediment samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Determining rates of sediment accumulation on the Mekong shelf: Timescales, steady-state assumptions, and radiochemical tracers

    NASA Astrophysics Data System (ADS)

    DeMaster, D. J.; Liu, J. P.; Eidam, E.; Nittrouer, C. A.; Nguyen, T. T.

    2017-09-01

    Thirty-two kasten cores, collected from the proximal Mekong continental shelf, have been analyzed for their excess 210Pb distributions in an effort to establish rates of sediment accumulation over the past 100 years. The length of the cores varied from 0.5 to 3 m, and stations sampled topset, foreset, and bottomset beds (water depths 7-21 m). Apparent excess 210Pb sediment accumulation rates ranged from > 10 cm/y (no down-core decrease of excess activity over 300 cm core length) near the Song Hau river mouth, to 1-3 cm/y in topset and foreset beds within 20-50 km of the river mouth, to rates as low as 0.4 cm/y in cores from bottomset beds. The 210Pb sediment accumulation rates yield an overall sediment burial rate of 6.1 × 1013 g/y for the proximal deltaic deposits, which corresponds to 43% of the total modern Mekong sediment burial on the southern Vietnam shelf (1.4 × 1014 g/y; based on our 210Pb and seismic data and 210Pb data from the literature). This shelf burial rate is in reasonable agreement with current long-term estimates of Mekong River sediment discharge (1.3-1.6 × 1014 g/y) from the literature. The inventory of excess 210Pb in the proximal Mekong deltaic deposits indicates that the shoreward flow of offshore water (entrained during river/ocean mixing) is approximately twice the flow of the Mekong freshwater discharge. Organic-carbon 14C ages were measured on 10 cores from the proximal Mekong delta and compared to 210Pb sediment accumulation rates in the same core. The 210Pb accumulation rates in all 10 cores were considered to be more robust and accurate than the 14C geochronologies, primarily because of down-core variations in the source of organic carbon deposited on the seafloor (old terrestrial carbon versus younger marine carbon). Variations in the source of organic carbon accumulating in the seabed were resolved by measuring the δ13C value of the seabed organic carbon.

  5. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  6. The effect of mining on the sediment - trace element geochemistry of cores from the Cheyenne River arm of Lake Oahe, South Dakota, U.S.A.

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Callender, E.

    1988-01-01

    Six cores, ranging in length from 1 to 2 m, were collected in the Cheyenne River arm of Lake Oahe, South Dakota, to investigate potential impacts from gold-mining operations around Lead, South Dakota. Sedimentation rates in the river arm appear to be event-dominated and rapid, on the order of 6-7 cm yr.-1. All the chemical concentrations in the core samples fall within the wide ranges previously reported for the Pierre Shale of Cretaceous age and with the exception of As, generally are similar to bed sediment levels in the Cheyenne River, Lake Oahe and Foster Bay. Based on the downcore distribution of Mn, it appears that reducing conditions exist in the sediment column of the river arm below 2-3 cm. The reducing conditions do not appear to be severe enough to produce differentiation of Fe and Mn throughout the sediment column in the river arm. Cross-correlations for high-level metal-bearing strata within the sediment column can be made for several strata and for several cores; however, cross-correlations for all the high-level metal-bearing strata are not feasible. As is the only element which appears enriched in the core samples compared to surface sediment levels. Well-crystallized arsenopyrite was found in high-As bearing strata from two cores and probably was transported in that form from reducing sediment-storage sites in the banks or floodplains of Whitewood Creek and the Belle Fourche River. It has not oxidized due to the reducing conditions in the sediment column of the Cheyenne River arm. Some As may also be transported in association with Fe- and Mn-oxides and -hydroxides, remobilized under the reducing conditions in the river arm, and then reprecipitated in authigenic sulfide phases. In either case, the As appears to be relatively immobile in the sediment column. ?? 1988.

  7. Identifying heavy metal levels in historical flood water deposits using sediment cores.

    PubMed

    Lintern, Anna; Leahy, Paul J; Heijnis, Henk; Zawadzki, Atun; Gadd, Patricia; Jacobsen, Geraldine; Deletic, Ana; Mccarthy, David T

    2016-11-15

    When designing mitigation and restoration strategies for aquatic systems affected by heavy metal contamination, we must first understand the sources of these pollutants. In this study, we introduce a methodology that identifies the heavy metal levels in floodplain lake sediments deposited by one source; fluvial floods. This is done by comparing sediment core heavy metal profiles (i.e., historical pollution trends) to physical and chemical properties of sediments in these cores (i.e., historical flooding trends). This methodology is applied to Willsmere and Bolin Billabongs, two urban floodplain lakes (billabongs) of the Yarra River (South-East Australia). Both billabongs are periodically inundated by flooding of the Yarra River and one billabong (Willsmere Billabong) is connected to an urban stormwater drainage network. 1-2-m long sediment cores (containing sediment deposits up to 500 years old) were taken from the billabongs and analysed for heavy metal concentrations (arsenic, chromium, copper, lead, nickel, zinc). In cores from both billabongs, arsenic concentrations are high in the flood-borne sediments. In Bolin Billabong, absolute metal levels are similar in flood and non-flood deposits. In Willsmere Billabong, absolute copper, lead and zinc levels were generally lower in fluvial flood-borne sediments in the core compared to non-fluvial sediments. This suggests that heavy metal concentrations in Bolin Billabong sediments are relatively similar regardless of whether or not fluvial flooding is occurring. However for Willsmere Billabong, heavy metal concentrations are high when overland runoff, direct urban stormwater discharges or atmospheric deposition is occurring. As such, reducing the heavy metal concentrations in these transport pathways will be of great importance when trying to reduce heavy metal concentrations in Willsmere Billabong sediments. This study presents a proof-of-concept that can be applied to other polluted aquatic systems, to understand the importance of river floods in the contamination of the bed sediments of aquatic systems. As a cost effective and less time consuming alternative to extensive field monitoring, our proposed method can be used to identify the key sources of pollution and therefore support the development of effective management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Geochemistry records from laminated sediments of Shira Lake (Russian Asia)

    NASA Astrophysics Data System (ADS)

    Phedorin, M.; Vologina, E.; Drebuschak, M.; Tolomeev, A.; Kirichenko, I.; Toyabin, A.

    2009-04-01

    We measured downcore elements distributions in five cores collected across the Shira Lake situated in Central part of Asia (E90o12', N54o30'). The lake is small (32km2), saline (ca.20g/l SO4-, Cl-, Na+, Mg+, K+), being filled with regional precipitation of about 300mm/year (mainly through one major tributary, river Son) and has no surface outflow. The aim of our study was to reconstruct history of changes in the regime of the lake that happened both before and during period of instrumental meteorological observations. In particular, we were interested in lake-level changes due to evaporation, water supply from surface and from underground sources, and in changes of bioproduction in the lake as well. To construct depth-age model for the cores, we measured Cs-137 and unsupported Pb-210 in top layers of the cores. The sedimentation rate thus identified varied in the range of 1-2 mm/year for different cores. We visually observed fine sedimentation ‘rhythms' having thickness of about 0.x-2.x mm: these layers may now be reliably identified as annual lamination. We also determined concentrations of elements in the sediments by recording x-ray fluorescence (XRF) spectra when continuously scanning the halves of the cores under sharp synchrotron radiation (SR) beam, using an instrument described in (Zolotarev et al., 2001). The resolution of the scanning was 0.1 mm. After processing of the measured XRF-SR data as in (Phedorin and Goldberg, 2005) we obtained downcore records of 20 elements. We correlated all five cores employing elements patterns. We qualitatively identified variations in surface-water supply treating markers of ‘clastic' material (Ti, Rb, Zr). We identified downcore variations in authgenic mineralization, which appeared to have different kinds: Ca-related, Sr-related, Ba-related, Fe-related. We tried to assess biogenic production changes from Br distribution, admitting analogy of Br in Shira sediments to Br in Lake Baikal sediments (Phedorin et al., 2000) and in Lake Khubsugul sediments (Phedorin et al., 2008). The cores we studied provide us with high-resolution geochemical records of last century for further meteorological correlations and regressions back to the past. We plan to reconstruct regional trends proceeding with the investigation of this kind and studying sediments of some other Khakas lakes. The investigation was supported by the grant from RFBR (09-05-98027) and grant from the Siberian Branch of Russian Academy of Science. Phedorin M.A., Goldberg E.L., Grachev M.A., Levina O.L., Khlystov O.M., Dolbnya I.P. The Comparison of Biogenic Silica, Br and Nd Distributions in the Sediments of Lake Baikal as Proxies of Changing Paleoclimates of the Last 480 ky. // Nuclear Instruments and Methods in Physics Research, 2000, V. A448, № 1-2, pp. 400-406. Phedorin M.A., Goldberg E.L. Prediction of absolute concentrations of elements from SR XRF scan measurements of natural wet sediments. Nuclear Instruments and Methods in Physics Research A 543 (2005), p. 274-279. Phedorin M.A., Fedotov A.P., Vorobieva S.S., Ziborova G.A.. Signature of long supercycles in the Pleistocene history of Asian limnic systems. J Paleolimnol, 2008, 40/1, pp. 445-452. Zolotarev K.V., Goldberg E.L., Kondratyev V.I., Kulipanov G.N., Miginsky E.G., Tsukanov V.M., Phedorin M.A., Kolmogorov Y.P. Scanning SR-XRF beamline for analysis of bottom sediments. // Nuclear Instruments and Methods in Physics Research, 2001, V. A470, N 1-2, pp. 376-379.

  9. A sample-freezing drive shoe for a wire line piston core sampler

    USGS Publications Warehouse

    Murphy, F.; Herkelrath, W.N.

    1996-01-01

    Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.

  10. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  11. Heavy metal concentrations and the variations of foraminifers in the Silivri-Kumbagi area (NW Marmara Sea, Turkey)

    NASA Astrophysics Data System (ADS)

    Ünal Yümün, Zeki; Murat Kılıç, Ali; Önce, Melike

    2016-04-01

    In the area between Silivri (İstanbul) and Kumbagi (Tekirdag), NW of Marmara Sea, there is a considerable extent in marine pollution from industrial and settlements wastes, sea transports, and agricultural activities. The most important one of these pollutions is the spread of heavy metals. Our research investigated sediments in order to determine whether heavy minerals affected biota such as recent foraminifers, or not. Our investigation area starts from Marmara Ereglisi, in the east, continues to Tekirdag and Kumbagi, in the west. 10 sea-water samples, 10 sediment-core samples and one 10 m core-drilling sample, taken 250 m off-shore from coast line. As a result of this sampling geochemical analysis of the bottom-mud and water samples were done and the ratio of heavy metals and other contaminants determined. For heavy metal analyses, concentration analysis of 12 heavy metals (Cd, Fe, Cu, Pb, Zn, Al, Co, Cr, Mn, Ni, As, and Hg) has been conducted, as ppm, in sediment samples taken from the levels in which foraminifers are collected. Perpendicular (spatial) heavy metal concentration changes have been determined with off-shore drilling samples and horizontal changes (geochronological) have been determined with the help of core samples. Especially, it has been understood that heavy metal concentrations in recent sediments are higher compared to the past. In this research the samples have been taken from each 10 cm. of core and drilling samples to collect the benthic foraminifers. In this context, 15 grams of dry sediment sample taken from each level, have been washed in 125 μm sieves in order to determine its benthic foraminifer content. Benthic foraminifera from these samples have been identified taxonomically and their morphological differentiation has been determined after taking SEM photos. As a result of this study, the foraminifera types of "Adelosinacliarensis, Adelosinamediteranensis, Adelosinapulchella, Ammonia compacta, Ammonia parkinsonia, Ammonia tepida, Cribroelphidiumpoeyonum, Cycloforinacontorta, Elphidiumaculeatum, Elphidiumcomplanatum, Elphidiumcrispum, Elphidiumgalvestonense, Lobatulalobatula, Massilinasecans, Miliolinellasubrotunda, Pseudotriloculinaoblanga, Quinqueloculina seminula, Quinqueloculina polygona, Spiroloculinaangulosa, Spiroloculinaexcavata, Triloculina marioni" have been determined. Especially in the Elphidiumcrispumand Ammonia compacta, collected from the core samples taken from Marmara Ereglisi (Tekirdag) and Silivri (Istanbul) offshore, some morphological variations, colour changes, abnormality and multiple-individuals, were observed. Increasing of the heavy metal concentration in the levels of these morphological variations is noticeable.

  12. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    NASA Astrophysics Data System (ADS)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    A sedimentological and mineralogical study of sedimentary cores allowed reconstructing the evolution of depositional environments along the Northern coast of Sfax (Tunisia). The aim of this research work is to identify the factors controlling the sedimentation from the Holocene to the Present time. Three 30-m sediment cores collected by drilling at 30 m water depth were analyzed for their color, magnetic susceptibility signal, grain size by laser diffraction, organic matter content by loss of ignition, carbonate content by calcimetry and mineralogy by X-ray diffraction on bulk powder and clay <2 μm. They broadly present the same sedimentological and mineralogical features. Microscopical observations of petrographic slides allowed identifying six main sedimentary facies. Bulk mineralogical assemblages comprised clay minerals, quartz, calcite, gypsum and K-feldspars were examined. Considerable change was observed in the carbonate content that mimicked the bioclaste abundance and diluted the detrital minerals (clay minerals, quartz and feldspars). The gypsum mainly occurred in the lower sedimentary columns (SC12 and SC9) and in the upper/middle of core SC6. The clay fraction was made of a mixture of kaolinite, illite, smectite and palygorskite with no clear variation through core depth. Both grain-size parameters and magnetic susceptibility profile showed a sharp transition in the upper 2-5 m of the sedimentological columns. Coarse, sandy to gravely sediments characterized by a low magnetic susceptibility signal were replaced by fine bioclastic-rich clayey sediments. The analysis of vertical succession of depositional facies revealed a fluvial depositional environment (coastal plain) basically marked by fluvial channels and inundation plains at the bottom of all cores. However, core-top sediments recorded a littoral marine environment with sand depositions rich in gastropods, lamellibranches and algæ. Depositional facies, sedimentological and mineralogical parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.

  13. SlamZ: Slide activity on the Hikurangi margin, New Zealand - First results of the RV Sonne expedition SO247

    NASA Astrophysics Data System (ADS)

    Huhn, Katrin; Kukowski, Nina; Freudenthal, Tim; Crutchley, Gareth; Goepel, Andreas; Henrys, Stuart; Kasten, Sabine; Kaul, Norbert; Kuhlmann, Jannis; Mountjoy, Joshu; Orpin, Alan; Pape, Thomas; Schwarze, Cornelius; Totsche, Kai-Uwe; Torres, Marta; Villinger, Heiner

    2017-04-01

    Submarine landslides are important geologic hazards. Although they have been the focus of research for decades, there is still a clear lack in knowledge with respect to the interplay between tectonic movements, slope architecture and sediment physical properties of slope strata, as well as gas hydrate dissociation as controlling factors of slope stability or respectively slope failure processes. The main scientific goal of the Sonne expedition SO247 undertaken in spring 2016 was to gain a better understanding of the factors controlling slope destabilization, especially the interaction of tectonic steepening and gas hydrate transformation, at different tectonic settings along the Hikurangi subduction zone east of New Zealand's North Island. This active continental margin is characterized by various potential triggers for slope failure, e.g. (I) a wide range of tectonic movements which are associated with high seismicity, numerous active faults, sediment uplift and slope over-steepening, and (II) large gas hydrate deposits whose current upper stability limit in some places correlates with the breakoff points of slides. The target areas of SO247 were the frontal accretionary ridge at Rock Garden and the Tuaheni landslide complex (TLC) further north offshore Gisborne. Bathymetric as well as high-resolution seismic reflection and Parasound data were used to select suitable position for 53 gravity cores with a total length of 150 m which were recovered along systematic transects from the undisturbed slope sections to the slid masses in both working areas. In addition, six long sediment cores (three in both working areas) with a total length of approx. 470 m were drilled utilizing the MARUM Bremen drill rig MeBo200. These include a 105 m long continuous sediment core (core recovery > 95%) from an undisturbed slope section in the vicinity of the Tuaheni slide complex. This core represented the first long (i.e. longer than 50 m) sediment record from the Hikurangi margin. This drilling operation was paired with dense in-situ heat-flow measurements. Sedimentological, geotechnical, geophysical and geochemical analysis of the core material as well as sampled pore fluids and gases will enable a deeper insight into the slide kinematics, potential trigger mechanisms and timing of failure events. Furthermore, these data allow us to test hypotheses regarding the key role of sediment physical properties and/or gas hydrate dissociation and therewith the mechanics of submarine landslides; what are potential trigger mechanisms: uplift and over-steepening vs. sediment physical behaviour.

  14. Pairing Coral Geochemical Analyses with an Ecosystem Services Model to Assess Drivers and Impacts of Sediment Delivery within Micronesia's Largest Estuary, Ngeremeduu Bay

    NASA Astrophysics Data System (ADS)

    Lewis, S.; Dunbar, R. B.; Mucciarone, D.; Barkdull, M.

    2017-12-01

    Scientific tools assessing impacts to watershed and coastal ecosystem services, like those from land-use land conversion (LULC), are critical for sustainable land management strategies. Small island nations are particularly vulnerable to LULC threats, especially sediment delivery, given their small spatial size and reliance on natural resources. In the Republic of Palau, a small Pacific island country, three major land-use activities—construction, fires, and agriculture— have increased sediment delivery to important estuarine and coastal habitats (i.e., rivers, mangroves, coral reefs) over the past 30 years. This project examines the predictive capacity of an ecosystem services model, Natural Capital Project's InVEST, for sediment delivery using historic land-use and coral geochemical analysis. These refined model projections are used to assess ecosystem services tradeoffs under different future land development and management scenarios. Coral cores (20-41cm in length) were sampled along a high-to-low sedimentation gradient (i.e., near major rivers (high-impact) and ocean (low-impact)) in Micronesia's largest estuary, Ngeremeduu Bay. Isotopic indicators of seasonality (δ18O and δ13C values (% VPDB)) were used to construct the age model for each core. Barium, Manganese, and Yttrium were used as trace metal proxies for sedimentation and measured in each core using a laser ablation ICP-MS. Finally, the Natural Capital Project's InVEST sediment delivery model was paired with Geospatial data to examine the drivers of sediment delivery (i.e., construction, farms and fires) within these two watersheds. A thirty-year record of trace metal to calcium ratios in coral skeletons show a peak in sedimentation during 2006 and 2007, and in 2012. These results suggest historic peaks in sediment delivery correlating to large-scale road construction and support previous findings that Ngeremeduu Bay has reached a tipping point of retaining sediment. Natural Capital's project InVEST sediment delivery model results suggest fires increases sediment exportation by an order of magnitude compared with the other major land-use activities. A refined measure of LULC from a novel database (earth-moving permits) will be used to develop a more accurate depiction of sediment delivery to estuarine and coastal habitats.

  15. δ18O and Carbonate Clumped Isotopes as Proxies of Lake Level Change: Mono Lake Modern Sediments Inform Pleistocene Interpretations

    NASA Astrophysics Data System (ADS)

    Westacott, S.; Ingalls, M.; Meixnerova, J.; Betts, M.; Lloyd, M. K.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    In 1941 LA County began diverting water from the Mono Lake basin, causing lake level to fall dramatically until 1994 when diversion was substantially discontinued. High sedimentation rate (0.7 cm/yr) in combination with rapid, well-documented environmental change offers a unique opportunity to investigate the isotopic fingerprint of lake level change at a much finer scale than is typically accessible in the geologic record. δ18Ocarb can record lake level in a closed-basin system, but relies on knowing the relative contributions from carbonate precipitated from lake water and from authigenic carbonates, both of which are expected to exist in alkaline lake sediments. Here, we combine δ18Ocarb with clumped isotope thermometry (T(Δ47)) on a 70 cm sediment core to "unmix" the carbonate sources and reconstruct δ18Owater of Mono Lake over the past 116 years. Carbonate from the upper 10 cm of the sediment core yields a T(Δ47) of 26°C, reflecting surface water carbonate precipitation during late summer. Carbonates from sediment depths greater than 10cm yield a consistent T(Δ47) of 9.6°C, warmer than today's bottom waters, suggesting dissolution and reprecipitation of originally "warm" carbonate deposited from the water column alongside "cold" water of a different δ18Ow than Mono Lake surface water. A clumped isotope mixing model (Defliese & Lohmann, 2015) used to calculate the relative contributions of the two carbonate precipitates, corroborated by mirrored shifts in δ13Corg and δ13Ccarb down-core, suggests that about half of the carbonate found in the lower 60 cm of the sediment core is authigenic. As an example of how this strategy can be applied to older strata with looser constraints on primary composition, we also analysed the Pleistocene Wilson Creek Formation—lake sediments from Mono Lake's predecessor, Lake Russell. Although Pleistocene Lake Russell should have been cooler than modern Mono Lake, T(Δ47) values were similar to those of modern sediments, suggesting that potentially more of Lake Russell carbonates formed at or near the surface. Clumped isotope analysis thus holds significant potential to improve our interpretation of sedimentary carbonates as proxies for lake level and other paleo-environmental conditions.

  16. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. High-resolution sedimentary effects of post-Little Ice Age glacial recession in Hornsund (Svalbard) - insights from chirp and core data

    NASA Astrophysics Data System (ADS)

    Dominiczak, Aleksander; Szczuciński, Witold; Moskalik, Mateusz; Forwick, Matthias

    2017-04-01

    As a result of global warming from the end of the Little Ice Age a fast withdrawal and loss of mass of many glaciers have been observed. The retreat has been particularly rapid in case of tidewater glaciers of Spitsbergen, where in an effect a new bays were formed and serve as glaciomarine sediment accumulation areas. The new depocenters in emerging bays are characterized by high sediment accumulation rates. Analysis and quantitative assessment of the processes occurring in these bays can enhance a better understanding of the dynamics of glaciers recession and bio-geochemical processes occurring in the fjords. This is particularly important because the subpolar fjords may be important storage for organic carbon on a global scale (Smith at al. 2015). In order to obtain a detailed high-resolution record of sedimentation history in the post Little Ice Age bays, 30 gravity cores and 18 box cores were collected along with detail seism acoustic surveys (Chirp) during three cruises on board of R/V Helmar Hansen in 2007, 2014 and 2015. The sediment cores revealed two major types of sediments: subglacial till and overlying laminated glacimarine mud with abundant ice rafted debris. The sediment accumulation rate of the latter is estimated to be on average in order of 1 to 5 cm per year. The periods of increase ice rafting are likely related to surge events. The dense Chirp survey grid spatial changeability in the post-Little Ice Age sediment cover. The amount and lithology of sediments in different parts of the bays also helped to link glacier dynamics with sedimentary effect. Our results confirms that despite similarities in lithology there are significant differences in sediment accumulation rates, probably driven by changes in accommodation spaces and sediment delivery. The record is also affected by effects of glacier surges. However, analyses of historical data enhanced the interpretation of sedimentary record and provide hints to identify the specific processes and events in the sedimentary record. The study was funded by Polish National Science Centre grant No. 2013/10/E/ST10/00166. We kindly acknowledge help of the captain and crew of R/V Helmer Hanssen as well as onboard scientific party. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., & Galy, V. (2015). High rates of organic carbon burial in fjord sediments globally. Nature Geoscience, 8(6), 450-453.

  18. Trends in chemical concentration in sediment cores from three lakes in New Jersey and one lake on Long Island, New York

    USGS Publications Warehouse

    Long, Gary R.; Ayers, Mark A.; Callender, Edward; Van Metre, Peter C.

    2003-01-01

    Data from this study indicate that changes in population, land use, and chemical use in the urbanized watersheds over the period of sedimentary record have contributed to upward trends in concentrations of trace elements and hydrophobic organic compounds. Although downward trends were observed for some constituents in the years after their concentrations peaked, concentrations of most constituents in urban lake cores were higher in the most recently deposited sediments than at the base of each respective core and in the reference lake cores. Similar trends in concentrations of these constituents have been observed in sediment cores from other urban lakes across the United States.

  19. Historical trends of polycyclic aromatic hydrocarbons in the reservoir sediment core at Osaka

    NASA Astrophysics Data System (ADS)

    Moriwaki, Hiroshi; Katahira, Kenshi; Yamamoto, Osamu; Fukuyama, Joji; Kamiura, Toshikazu; Yamazaki, Hideo; Yoshikawa, Shusaku

    The historical trends of polycyclic aromatic hydrocarbons (PAHs) in the sediment core of the moat in Osaka Castle, located at the center of Osaka city, Japan, were studied. The moats in Osaka Castle were built in the 1620s, and the undisturbed sediment core, which consists of atmospheric deposits in Osaka city from 1671 to 1976, was withdrawn from the moat. PAHs in the sediment core were identified and quantified in the total concentration range of 0.053-26 mg kg -1 dry wt. The highest content of PAHs was found in the sample, which was dated to 1944 during World War II. Osaka Castle was exposed to intense bombing raids during World War II, and the spiked peak of the PAH concentration during the mid-1940s was due to the air attacks. The total PAH concentration in the sediment core sample during World War II was about two-fold greater than the average after the war. This study made it appear that the largest impact of PAHs on the atmospheric environment in Osaka city in almost 300 years was caused by modern warfare.

  20. The impacts of tracer selection and corrections for organic matter and particle size on the results of quantitative sediment fingerprinting. A case study from the Nene basin, UK.

    NASA Astrophysics Data System (ADS)

    Pulley, Simon; Ian, Foster; Paula, Antunes

    2014-05-01

    In recent years, sediment fingerprinting methodologies have gained widespread adoption when tracing sediment provenance in geomorphological research. A wide variety of tracers have been employed in the published literature, with corrections for particle size and organic matter applied when the researcher judged them necessary. This paper aims to explore the errors associated with tracer use by a comparison of fingerprinting results obtained using fallout and lithogenic radionuclides, geochemical, and mineral magnetic tracers in a range of environments located in the Nene basin, UK. Specifically, fingerprinting was undertaken on lake, reservoir and floodplain sediment cores, on actively transported suspended sediment and on overbank and channel bed sediment deposits. Tracer groups were investigated both alone and in combination to determine the differences between their sediment provenance predictions and potential causes of these differences. Additionally, simple organic and particle size corrections were applied to determine if they improve the agreement between the tracer group predictions. Key results showed that when fingerprinting contributions from channel banks to actively transported or recently deposited sediments the tracer group predictions varied by 24% on average. These differences could not be clearly attributed to changes in the sediment during erosion or transport. Instead, the most likely cause of differences was the pre-existing spatial variability in tracer concentrations within sediment sources, combined with highly localised erosion. This resulted in the collected sediment source samples not being representative of the actual sediment sources. Average differences in provenance predictions between the different tracer groups in lake, reservoir and floodplain sediment cores were lowest in the reservoir core at 19% and highest in some floodplain cores, with differences in predictions in excess of 50%. In these latter samples organic enrichment of the sediment, selective transport of fine particles and post-depositional chemical changes to the sediment were determined to be the likely cause of the differences. It was determined that organic and particle size corrections made the differences between tracer groups larger in most cases, although differences between tracer group predictions were reduced in two of the four floodplain cores.

  1. Hyper-spectral imaging: A promising tool for quantitative pigment analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Tylmann, Wojciech

    2015-04-01

    Varved lake sediments are good archives for past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a non-destructive method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other scanning methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Among others Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. In this study hyper-spectral imaging is used to infer ecological proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging permits the measurement of an entire sediment core in a single run at high spatial (30x30µm/pixel) and spectral resolutions (~2.8nm) within the visual to near infrared spectrum (400-1000nm). This allows the analysis of data time series and spatial mapping of sedimentary substances (e.g. chlorophylls/bacterio-chlorophylls and diagenetic products) at sub-varve scales. The method is demonstrated on two varved lake sediments from northern Poland showing the distributions of relative concentrations of two types of sedimentary pigments (Chlorophyll-a + derivatives and Bacterio-pheophytin-a) within individual varve years. The relative concentrations from the spectral data set have then been calibrated with absolute concentrations derived by High-Performance-Liquid-Chromatography (HPLC). This results in very high-resolution data sets of absolute sedimentary pigment concentrations suitable for the analysis of seasonal pigment variations.

  2. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Zelibor, Joseph L., Jr.; Grimes, D. Jay; Knobel, Leroy L.

    1987-08-01

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 108 to 104 bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 106 to 103 bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria in these sediments suggest that heterotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO2 to groundwater. However, the possibility that abiotic processes also produce CO2 cannot be ruled out. Estimated rates of CO2 production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, groundwater flow rates, and flow path segment lengths are in the range 10-3 to 10-5 mmol L-1 yr-1. Isotope balance calculations suggest that aquifer-generated CO2 is much heavier isotopically (˜—10 to + 5 per mil) than lignite (˜-24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.

  3. Depositional History of a Saline Blue Hole on Eleuthera Island, Bahamas: Implications for Sea Level History and Climate Change

    NASA Astrophysics Data System (ADS)

    Brady, K.; Bernard, M.; Bender, S.; Roy, Z.; Boush, L. E.; Myrbo, A.; Brown, E. T.; Buynevich, I. V.; Berman, M.; Gnivecki, P.

    2013-12-01

    Physical, chemical and biological properties of Duck Pond Blue Hole (DPBH), located on the southern portion of Eleuthera Island, Bahamas, were examined to analyze its depositional history and the record of climate and anthropogenic changes on the island. DPBH is a small (.001 km2), circular inland blue hole with average salinity ranging from 20-28 ppt and a maximum depth of ~8 m. Sediment cores were recovered using standard piston coring techniques along a transect consisting of three sites yielding cores of varying lengths--170, 155 and 151 cm, respectively. Radiocarbon dating, x-ray fluorescence (XRF), grain size analysis, loss on ignition (LOI), smear slide and mollusk processing and identification were performed on the cores. The sediment recovered is dominated by brown, tan and white carbonate sand with varying amounts of organic matter. Sedimentation rates vary between 0.1-0.5 mm/year. Mollusks are found throughout the cores but gastropods dominate in the upper portions, which date from 2000 years BP to present day. Bivalves are abundant in intervals dating between 5000 and 2500 years BP. The most common bivalve species were Polymesoda maritima, Anomalocardis auberiana and Ervilia concentrica. The most common gastropods were Cerithidea costata and Cerithium lutosum. Drill holes made by predaceous gastropods occur on some of the gastropods, but on most of the bivalves. Drilling frequency is highest between 5000 and 2500 years BP even though gastropods are rarely preserved in that interval. Through smear slide analysis, diatoms, forams and ostracodes were also found to occur throughout the core record. Peaks in Fe and Sr from XRF scans at 0.5 cm intervals may represent records of high atmospheric dust concentrations and sea level fluctuations, respectively. Plotting mollusk bed depths versus calibrated age reveals a sea level rise over the last 6000 years that includes a rapid rise and subsequent fall at ~2500 year BP.

  4. Down-core changes in molluscan death assemblages at Panzano Bay, an impacted area in the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Haselmair, Alexandra; Gallmetzer, Ivo; Stachowitsch, Michael; Tomasovych, Adam; Zuschin, Martin

    2016-04-01

    We use a historical ecology approach to shed light on the environmental history of the northern Adriatic Sea over the last hundreds to thousands of years. We focus on down-core changes in molluscan death assemblages, which serve as proxies for ecological shifts over time. The northern Adriatic Sea is particularly suited to study ecosystem modification under human pressure because it is among the most degraded marine ecosystems worldwide. We chose a sampling station in Panzano Bay, close the Isonzo River mouth and not far from the major industrial harbours of Trieste (Italy) and Koper (Slovenia), and traced down-core changes in molluscan community structure in correlation to major anthropogenic impacts that occurred here during the last centuries. Five sediment cores (1.5 m in length and diameters of 90 and 160 mm) were taken at a water depth of 12 m. We analysed grain size composition, the concentration of heavy metals and organic pollutants, and radiometrically dated the sediment using 210Pb. Furthermore, we dated shells of the abundant bivalve species Corbula gibba using 14C calibrated amino acid-racemisation (AAR). The whole molluscan community in the cores was analysed for species composition, abundance, taxonomic similarity, evidence for ecological interactions (i.e., frequencies of drilling predation) and taphonomic conditions of shells. The granulometric analysis shows that silt and clay dominate equally throughout the cores. Radiometric sediment dating revealed an average sedimentation rate of 2.5 mm/yr during the last 120 years. Shell dating points to a comparable overall core age, with only a few shell specimens being older than 500 years in the deepest core layer. In total, 10,452 mollusc individuals were analysed and 104 species identified. The most abundant bivalve species are Kurtiella bidentata, Corbula gibba and Abra nitida. Turritella communis and Nassarius pygmaeus are the most frequent gastropod species. Down-core changes in species composition and molluscan abundance are conspicuous, with a high peak in abundance between 20 and 50 cm depth and another peak in the lower part of the core. These trends in community composition correlate with the concentration curves of several heavy metals (Pb, Zn, Hg) and polycyclic aromatic hydrocarbons. In the deeper core horizons, a high mercury peak signals a massive and century-long contamination caused be the Idrija mercury mine located up the Isonzo River. In the uppermost 20 cm of sediment, Pb, Zn and PAHs display high concentrations and are accompanied by a decrease of formerly abundant species (e.g. Kurtiella bidentata) and an increase of a few opportunists. Our study shows how pollution, among other factors, affects individual mollusc species and leads to marked and long-lasting changes on the community level.

  5. Vertical distribution of dehalogenating bacteria in mangrove sediment and their potential to remove polybrominated diphenyl ether contamination.

    PubMed

    Pan, Ying; Chen, Juan; Zhou, Haichao; Farzana, Shazia; Tam, Nora F Y

    2017-11-30

    The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A method for estimation of historic contaminant loads using dated sediment cores

    EPA Science Inventory

    Dated sediment cores were used to assess the history of contaminant loads. The contaminant selected must be one that is not significantly remobilized by post depositional processes such as diagenesis. In addition, the core must be from an area with a high deposition rate and litt...

  7. St. Petersburg Coastal and Marine Science Center's Core Archive Portal

    USGS Publications Warehouse

    Reich, Chris; Streubert, Matt; Dwyer, Brendan; Godbout, Meg; Muslic, Adis; Umberger, Dan

    2012-01-01

    This Web site contains information on rock cores archived at the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC). Archived cores consist of 3- to 4-inch-diameter coral cores, 1- to 2-inch-diameter rock cores, and a few unlabeled loose coral and rock samples. This document - and specifically the archive Web site portal - is intended to be a 'living' document that will be updated continually as additional cores are collected and archived. This document may also contain future references and links to a catalog of sediment cores. Sediment cores will include vibracores, pushcores, and other loose sediment samples collected for research purposes. This document will: (1) serve as a database for locating core material currently archived at the USGS SPCMSC facility; (2) provide a protocol for entry of new core material into the archive system; and, (3) set the procedures necessary for checking out core material for scientific purposes. Core material may be loaned to other governmental agencies, academia, or non-governmental organizations at the discretion of the USGS SPCMSC curator.

  8. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.

    2011-01-01

    Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.

  9. An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI.

    PubMed

    Hartwell, S Ian; Apeti, Dennis A; Mason, Andrew L; Pait, Anthony S

    2016-11-01

    Tributyltin (TBT) concentrations near a marina complex in Benner Bay on St. Thomas, US Virgin Islands, were elevated relative to other areas in a larger study of the southeastern shore of the island. At the request of the USVI Coastal Zone Management Program, sediment cores and surface sediment samples were collected to better define the extent and history of TBT deposition in the vicinity of Benner Bay. The sediment cores were sectioned into 2-cm intervals and dated with 210 Pb and 137 Cs. The core sections and the surface samples were analyzed for butyltins and 16 elements. Deposition rates varied from 0.07-5.0 mm/year, and were highest in the marina complex. Core ages ranged from 54 to 200 years. The bottoms of the cores contained shell hash, but the top layers all consisted of much finer material. Surface concentrations of TBT exceeded 2000 ng Sn/g (dry weight) at two locations. At a depth of 8 cm TBT exceeded 8800 ng Sn/g in the marina complex sediment. Based on the ratio of tributyltin to total butyltins, it appears that the marina sediments are the source of contamination of the surrounding area. There is evidence that vessels from neighboring islands may also be a source of fresh TBT. Copper concentrations increase over time up to the present. Gradients of virtually all metals and metalloids extended away from the marina complex. NOAA sediment quality guidelines were exceeded for As, Pb, Cu, Zn, and Hg.

  10. Analyzing sources to sedimentary organic carbon in the Gulf of Urabá, southern Caribbean, using carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Rúa, Alex; Liebezeit, Gerd; Grajales, Heazel; Palacio, Jaime

    2017-10-01

    Carbon stable isotopes analysis serve reconstruction of the origin of organic matter (OM) deposited onto sediments. They also allow tracing vegetation change at different time scales. This study weighs the contribution of both marine and terrestrial sources to sedimentary organic carbon (OC) from a southwestern Caribbean Gulf partly surrounded by large Musa acuminata (banana) croplands. The δ13C values in three sediment cores from the gulf have slightly decreased over 1000 yrs BP, indicating enhanced terrestrial input of detrital carbon owing to river discharge. A two-end mixing model fed with these δ13C values showed that averaged terrestrial contribution of OC to sediment was 52.0% at prodelta, 76.4% at delta front, and 64.2% at Colombia Bay. This agrees well with sediment dynamics. The main source of sedimentary OC within the gulf was terrestrial instead of marine. In fact, a distorted trend in δ13C values for one of the coring sites could be the result of banana crop expansion through the 20th century.

  11. Reconstruction of multistage massive rock slope failure: Polymethodical approach in Lake Oeschinen (CH)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka

    2016-04-01

    Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die damalige Umwelt. Eclogae Geologicae Helvetiae, 98(1), 83-95.

  12. Water-quality trends using sediment cores from White Rock Lake, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.; Land, Larry F.; Braun, C.L.

    1996-01-01

    The purpose of this fact sheet is to summarize the principal findings documented in a report on water-quality trends in White Rock Creek Basin using dated sediment cores from White Rock Lake (Van Metre and Callender, in press). The study used dated sediment cores to reconstruct water-quality conditions. More specifically, the changes in water quality associated with the watershed’s change from agricultural to urban land use and with the implementation of environmental regulations were identified.

  13. Are lake sediments mere archives of degraded organic matter? - evidence of rapid biotic changes tracked in sediments of pre-alpine Lake Lunz, Austria

    NASA Astrophysics Data System (ADS)

    Hollaus, Lisa-Maria; Khan, Samiullah; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin

    2016-04-01

    Lake sediments are used as sentinels of changes in organic matter composition and dynamics within lakes and their catchments. In an effort to investigate how past and recent hydrological extreme events have affected organic matter composition in lake sediments, we investigated the biogeochemical composition of sediment cores and settling particles, using sediment traps in the pre-alpine, oligotrophic Lake Lunz, Austria. We assessed annual sedimentation rates using 137Cs and 210Pb, time integrated loads of settling particles, analyze stable carbon (δ13C) and nitrogen (δ15N) isotopes to track changes of carbon sources and trophic compositions, respectively, and use source-specific fatty acids as indicators of allochthonous, bacterial, and algal-derived organic matter. Preliminary results indicate that settling particles of Lake Lunz (33 m depth) contain high algae-derived organic matter, as assessed by long-chain polyunsaturated fatty acids (LC-PUFA), indicating low degradation of such labile organic matter within the water column of this lake. However, LC-PUFA decreased rapidly in sediment cores below the sediment-water interface. Concentrations of phosphorous remained stable throughout the sediment cores (40 cm), suggesting that past changes in climatic forcing did not alter the load of this limiting nutrient in lakes. Ongoing work reveals dramatic biotic changes within the top layers of the sediment cores as evidenced by high numbers of small-bodied cladocerans (e.g., Bosmina) and large-bodied zooplankton (e.g., Daphnia) are only detected at lower sediment layers. Current research on these lake sediments is aimed at investigating how organic matter sources changed during the past century as a result of recorded weather changes.

  14. Relationship between catchment events (earthquake and heavy rain) and sediment core analysis result in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Ying; Lin, Jiun-Chuan

    2015-04-01

    Lake sediments contains material from the catchment. In those sediments, there are some features which can indicate characteristic or status of the catchment. These features were formed by different mechanisms, including some events like earthquakes or heavy rain, which are very common in Taiwan. By analyzing and discussing features of sediments there is a chance to identify historical events and rebuild catchment history. In this study, we compare features of sediment core ( including density, mineral grain size, whole grain size, and biogenic silica content) and earthquake, precipitation records. Sediment cores are collected from Emerald peak lake (24.514980, 121.605844; 77.5, 77.2, 64cm depth), Liyutan lake (23.959878, 120.996585; 43.2, 78.1 cm depth), Sun Moon Lake (23.847043, 120.909869; 181 cm depth), and Dongyuan lake (22.205742, 120.854984; 45.1, 44.2cm depth) in 2014. We assume that there are regular material and organic output in catchments. And rain will provide impetus to move material into lakes. The greater the rain is the larger the material can move. So, if there is a heavy rainfall event, grain size of lake sediment may increase. However, when earthquakes happen, it will produce more material which have lower organic composition than ordinary. So we suggest that after earthquakes there will be more material stored in catchment than often. And rainfall event provides power to move material into lakes, cause more sediment and mineral content higher than usual. Comparing with earthquake record(from 1949, by USGS) and precipitation record(from1940, by Central Weather Bureau,Taiwan), there were few earthquakes which happened near lakes and scale were more than 7 ML. There were 28 rainfall events near Emerald peak lake; 32 near Liyutan lake and Sun Moon Lake; 58 near Dongyuan lake ( rainfall event: >250 mm/day ). In sediment analytical results, ratio of whole and mineral grain size indeed have similar trends with earthquake record. However, rainfall events were too frequent to determine the relation between rainfall events and sediment analyze results, that may be obstruction of attempt to speculate the extent of earthquake events.

  15. Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.

    2015-12-01

    Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.

  16. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K M; K Kukkadapu, R K; Qafoku, N P

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less

  17. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less

  18. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K. M.; Kukkadapu, R. K.; Qafoku, N. P.

    2012-08-01

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO 4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less

  19. Geochemical Dataset of the Rhone River Delta (Lake Geneva) Sediments - Disentangling Human Impacts from Climate Change

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Girardclos, S.; Loizeau, J. L.

    2016-12-01

    Lake sediment records are often the most complete continental archives. In the last 200 years, in addition to climatic variability, humans have strongly impacted lake watersheds around the world. During the 20th century the Rhone River and its watershed upstream Lake Geneva (Switzerland/France) have been subject to river channelization, dam construction, water flow regulation, water and sediment abstraction as well as various land use changes. Under the scope of the SEDFATE project (Swiss National Science Foundation nº147689) we address human and climatic impact on the sediment transfer from the Rhone River watershed to Lake Geneva. Nineteen short sediment cores were collected in the Rhone River delta area in May 2014. Cores have been scanned with MSCL and XRF, sub-sampled every 1cm and 8 cores were dated by radiometric methods (137Cs and 210Pb). Photographs taken right after core opening were used for lithological description and in addition to MSCL data were used to correlate cores. Core dating shows that mass accumulation rates decreased in the 1964-1986 interval and then increased again in the interval between 1986-2014. XRF elements and ratios, known to indicate detrital sources (Al, Al/Si, Fe, K, Mn, Rb, Si, Ti, Ti/Ca), show that clastic input diminished from 1964 to 1986 and re-increased to the present. Other elemental (Zr/Rb, Zr/K, Si/Ti) and geophysical data (magnetic susceptibility) combined with lithology identify density flow deposits vs hemipelagic sedimentation. Changes in frequency of these event deposits indicate changes in the sedimentation patterns in the Rhone River sublacustrine delta during the last century. From these results we hypothesize that a significant sediment amount was abstracted from the system after the major dam constructions in the 1950's and that, since the 1990's, a contrary signal is due to increased sediment loads that follows glacial melting due to global warming.

  20. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  1. Paleomagnetism of late Quaternary drift sediments off the west Antarctica Peninsula

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Xuan, C.; Hillenbrand, C. D.; Larter, R. D.

    2016-12-01

    Natural remanant magnetization of a series of piston cores (typically 10 m in lengtth) collected during the JR298 Expedition (January-March 2015) to the west Antarctica Peninsula shows well-defined magnetic components (maximum angular deviations 1°-3°) that potentially record paleomagnetic changes at high southern latitudes. Rock magnetic experiments on the sediments conducted at room and high (up to 700°C) temperatures demonstrate the presence of a low- and a high-coercivity component (mean coercivity of 50-60 mT and 130-140 mT respectively). Paleomagnetic directions from the piston cores are primarily carried by the low-coercivity detrital (titano)magnetite, and are affected by authigenic growth of the high-coercivity maghemite. Maghematization in these sediments is attributed to the low concentrations of labile organic matter and lack of sulfate reduction in an extended oxic zone not penetrated by the piston cores. Despite the varying degree of maghematization, some of the recovered cores yield relative paleointensity (RPI) records that can be matched to a reference RPI record constructed mainly from North Atlantic cores. The resulting age models yield mean sedimentation rates of 4-12 cm/kyr for the JR298 piston cores. RPI may serve as a stratigraphic tool to date sediment cores from the region where traditional isotope stratigraphy is challenging due to the rarity of foraminiferal carbonate.

  2. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India.

    PubMed

    Ayyamperumal, T; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Ram-Mohan, V

    2006-09-01

    An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.

  3. Mid-Holocene paleoclimatic changes and solar activity in San'in District, mid-latitude North Pacific Region

    NASA Astrophysics Data System (ADS)

    Okazaki, Y.; Seto, K.; Sakai, T.; Ooki, A.; yamada, K.; Dettman, D. L.

    2011-12-01

    Evidence shows that solar activity influences climate on a global scale. In the mid-latitude region, climate change is expected to change precipitation patterns. Concurrently, variation in solar activity may influence phytoplankton productivity. It seems that these changes should be recorded in sediment and organic matter deposits in coastal lagoons. In this study, we discuss the relationship between climate change and solar activity in the mid-Holocene in the northern hemisphere mid-latitude region based on grain size analysis, total organic carbon (TOC) content and organic carbon accumulation rates (Corg A.R.) in coastal lagoon sediment core samples. The INB core was drilled to produce a high resolution record of Holocene paleoenvironmental change in the San'in District, western Japan. The core is 19.17m in total length and is divided into Unit I~VII by lithofacies. Holocene sediment, primarily organic silt, forms Unit III and above in this core. Unit III was deposited from 8.4 to 5.4 ka, when sea level rose during the Jomon transgression; its depositional environment is a coastal lagoon. Progradation of the river mouth during the sea level rise lead to an increase in the C/N ratio of organic matter. Unit IV contains the volcanic Shigaku pyroclastic flow (the sixth stage of volcanic activity of the Sanbe volcano), and Unit V reflects deposition in a freshwater lake or swamp. Above this aggredational sediments were deposited by small rivers. This study focused on the coastal lagoon sediments of Unit III (8.4 to 5.4 ka); we carried out CNS elemental analysis and grain size analysis with a resolution of approximately five years. TOC content is variable and increases from 0.5 to 5%. Variation in TOC content is relatively well correlated with atmospheric radiocarbon 14C (Delta 14C) and therefore with solar activity, although the relationship is unclear in the upper portion of Unit III. The trend in Corg A.R. is different than TOC contents, about 40g/m/yr at ~8ka and about 20g/m/yr at 6-7 ka. This trend is also observed in a sediment core of Nakaumi Lagoon in San'in District, where it is due to a dilution effect caused by increased precipitation and high productivity because of a higher nutrient load during a warm interval (Sampei et al.,1997). It seems that the correspondence between TOC content and Delta 14C in this core is caused by similar factors. That is, a positive peak of Delta 14C indicating low solar activity and a cold period shows high TOC content because of concentration of TOC. On the other hand, a negative peak in Delta 14C indicates a warm period, and has a low TOC content because of clastic dilution. In the upper portion this relationship becomes complex because of changes in the terrestrial plant input due to river mouth progradation. Using these relationships, we may be able to estimate precipitation change based on the change in TOC content, and discuss its implications for global climate change.

  4. Variations in the depths of sulfate-methane transition zone (SMTZ) in UBGH2-6 drilling site in Ulleung Basin, East sea of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Chun, J. H.; Bahk, J. J.; Ryu, B. J.; Um, I. K.

    2016-12-01

    The second Ulleung Basin Gas hydrate Drilling Expedition (UBGH2) was conducted in the Ulleung Basin, East Sea of Korea in 2010. Gas hydrates were observed in depth interval from 140 mbsf (meter below seafloor) to 160 mbsf in core sediment taken from UBGH2-6 drilling site, located in the north-western part of the basin (2,164 m water depth). To characterize the geochemical process for UBGH2-6 core sediments, pore fluid samples and headspace gas samples were extracted from core sediments and analyzed SO42- and CH4 concentrations. Based on SO42- and CH4 concentrations, sulfate-methane transition zone (SMTZ), where SO42- is depleted to zero and CH4 starts to increase was defined at a depth of approximately 6.50 mbsf in 2010. And in order to identify the variations in the depths of SMTZ at UBGH2-6 drilling site since 2010 (UBGH2), whole-round piston cores were collected from UBGH2-6 drilling site from 2013 to 2015. We analyzed SO42- and CH4 concentrations and identified the SMTZ for the last 3 years. The depths of SMTZ for the cores obtained from 2013, 2014 and 2015 are approximately 3.50 mbsf, 5.00 mbsf, and 5.00 mbsf respectively. The analysis results indicate that the SMTZ in 2013, 2014, and 2015 are shallower than the SMTZ of 2010.

  5. Sedimentological and geochemical record of submarine mine tailing footprint in Repparfjorden (Northern Norway)

    NASA Astrophysics Data System (ADS)

    Sternal, Beata; Junttila, Juho; Pedersen, Kristine Bondo; Skirbekk, Kari; Forwick, Matthias; Carroll, JoLynn

    2016-04-01

    The knowledge on understanding the physical, chemical and biological processes dominating in marine system affected by submarine tailings disposal (STD) remains limited and further knowledge to make reliable long-term predictions of future environmental impacts is needed. One way of contributing to this is by investigation of marine environments already affected by the tailings discharge in the past. We present preliminary results from a multidisciplinary study of marine sediments from Repparfjorden in northern Norway, a fjord that was influenced by the deposition of tailings from a copper mine during the 1970's. The study is a part of the competence cluster Environmental Waste Management (EWMA) that as one of its important aims has advancing the knowledge of spreading of mine-tailing related contaminants. Here we give particular attention to the reconstruction of sedimentation style, rate of sediment accumulation, as well as potential sediment transport paths (contaminants dispersion). Seventeen short cores (up to 21 cm long) were retrieved from sites covering the entire area of Repparfjorden. The cores were sliced into 1-cm intervals that are and will be analysed for grain-size, concentration of heavy metals and total organic carbon content of bulk sediment. Sediment chronologies are and will be derived using 210Pb and 137Cs dating techniques. An approximately 7-cm thick interval which is different from present fjord sedimentation was observed below c. 10 cm depth in three of the cores retrieved from the area of tailings deposition in the 1970's. Sediments of this discrete depth interval are mainly composed of mud or sandy mud with bimodal grain-size distribution (first mode: medium silt fraction; second mode: very coarse silt). They are characterised by very high Cu concentrations (>250 mg/kg). Preliminary measurements of the 210Pb activity indicate an increase in sediment accumulation rate during the deposition of this interval. Therefore, we interpret it to be mainly composed of mine tailing sediments. As this sediment interval was only observed in 3 of 17 cores, we suggest that the lateral extent of the tailings is restricted to a relatively small area of the fjord. However, elevated concentrations of Cu (40-80 mg/kg) were also detected in a discrete sediment interval (3-10 cm) in one core ˜3 km beyond the tailing deposition site. In addition, high Cu concentrations (60-190 mg/kg) in sediments between the seafloor and the tailing deposit, as well as some centimetres below the deposit (in all cores from the old tailing deposition site) suggest possible dispersion of Cu to the immediate surrounding sediments in the cores.

  6. Tracing the recently increasing anthropogenic Pb inputs into the East China Sea shelf sediments using Pb isotopic analysis.

    PubMed

    Wang, Deli; Zhao, Zhiqi; Dai, Minhan

    2014-02-15

    This study examined the Pb content and Pb isotopic composition in a sediment core taken from the East China Sea (ECS) shelf, and it was observed that since 2003 the increasing anthropogenic Pb inputs have impacted as far as the ECS shelf sediments. The ECS shelf sediments were generally characterized with low bulk Pb contents (12.5-15.0 μg/g) and relatively lithogenic Pb isotopic signatures (both HCl-leached and residual fractions). However, elevated Pb records along with lighter Pb isotopic signals have occurred in the post-2003 sediments, as a result of a small but increasing anthropogenic Pb contribution from the heavily human perturbed coastal sediments due to the sharply increasing coal consumption in mainland China since 2003. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sedimentary Characteristics Relating To Artificially Intensified Flow Patterns At Dona And Roberts Bay, West-central Florida

    NASA Astrophysics Data System (ADS)

    Kelso, K. W.; Wang, P.

    2006-12-01

    The Dona and Roberts Bay connects one of the five major watersheds in Sarasota County Florida to the Gulf of Mexico via the Venice Inlet. Like many watersheds in the area, significant modifications have been made to the drainage basins, principally to the main tributaries. Many of the creeks that comprise the watershed have been dammed in order to inhibit the upstream flow of salt water. They are also deepened or lengthened to allow better drainage. In addition, there are numerous oyster bars, as well as artificial structures that impose obstruction to the tidal and river flows. These have resulted in a complex sedimentation and erosion pattern with substantial anthropogenic influences. The objectives of this study are to quantify the sediment characteristics and deposition-erosion trends and their relationship to the flow patterns. A detailed sedimentary analysis was conducted based on 149 surface sediment samples and 29 drill cores. Spatial distribution of the sediment properties is quite complex, controlled by several interactive factors including local sediment supply, intensity of the hydrodynamic processes, distribution of oyster bars and mangrove islands, and artificial structures. Sedimentation and erosion is significantly influenced by flood events. The core data suggest that rapid sedimentation driven by flood events is responsible for the development of some of the large shoals. A 2- D depth-averaged circulation model was established for the study area on a bathymetry that was surveyed by this study. Many of the artificial modifications to the watershed system are incorporated. A close relationship between the flow intensity and sediment characteristics and sedimentation-erosion tendency is identified.

  8. The last deglacial retreat history of the East Antarctic Ice Sheet recorded in sediments from off the Wilkes Land Coast

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Yamane, M.; Miyairi, Y.; Suga, H.; Dunbar, R. B.; Ohkouchi, N.

    2017-12-01

    Timing of past ice sheet retreat of Antarctic continent has been debated with regards to the global sea level changes since the Last Glacial Maximum (LGM) centered at around 20 ka. Exposure dating using cosmogenic radio nuclide (CRN) for glacial deposits have been widely used to reconstruct the last deglacial history though this cannot apply where no-ice free coasts are existed. One such location is the Wilkes Land where the East Antarctic Ice Sheet (EAIS) is situated directory on seafloor. Sediment cores obtained off the Wilkes Land coast successfully retrieved cores during the Intergrated Ocean Drilling Program (IODP) Expedition 318 (Escuita et al., 2011). Major obstacle to obtain reliable chronology for marine cores around Antarctica is sparsity of carbonate materials such as foraminifera. Thus compound-specific radiocarbon analysis (CSRA) has been used and we applied CSRA to the sediments obtained off the Wilkes land coast. The CSRA targeted C16 and C16:1 fatty acid due to their high degradation rate. Hence low concentrations of these compounds are expected. We found major sedimentation occurred since the beginning of Holocene. The result is then compared to the previously reported dates from the land based CRN dates (eg., Mckintosh et al., 2013; Yamane et al., 2011) to discuss the timing of retreat of EAIS.

  9. Sediment Coring of the Proglacial Lake Donguz-Orun (northern Caucasus, Russia)

    NASA Astrophysics Data System (ADS)

    Alexandrin, Mikhail; Solomina, Olga; Kalugin, Ivan; Darin, Andrey; Nesje, Atle

    2014-05-01

    So far, no high-resolution reconstructions of climate and glacier variations based on lake sediment properties are available in Caucasus Mountains. In other presently glaciated regions this approach is proved to be very useful for this purpose (e.g. Nesje et al., 2001, 2011; Bakke, 2005, Nesje, 2009) In this paper we report the first results of the sediment coring of Donguz-Orun Lake (N 43°13'26", E 42°29'35") situated in the upper reaches of Donguz-Orun-Kyol, a tributary of Baksan river in the Elbrus region of Northern Caucasus, a typical proglacial lake dammed by a lateral moraine deposited by the Donguz-Orun Glacier. It is a drainage lake with several inflowing glacial streams and effluent river Donguz-Orun. The surface area is around 105 000 m2 with a water volume of 465 000m3. The average water depth is around 4.5 m, with a maximum water depth of 14 m. The deepest part is found close to the moraine dam in the narrow northern part of the lake. This is normally consistent with this type of glacial lake systems. An intensive gravitational drift of the moraine material towards the lake is observed. These non-rounded moraine boulders constitute a significant part of the lakebed. Lacustrine sediments are present though. The coring campaign from Institute of Geography, Russian Academy of Sciences (August 2012) used a modified piston corer with a 110 mm-diameter plastic tube (Nesje, 1992) mounted on the inflatable catamaran to obtain lake sediments from Lake Donguz-Orun. A 28-cm long core was retrieved from a water depth of around 7 m. The sediments consist of regularly laminated, fine beige clay, with several interlayers of sand. The coring process appeared to be challenging due to the stiffness of clay, which led to extreme bending of the sediment layers in the basal part of the core. The original thickness of the sediments was obviously higher than observed in the core. In order to clarify the recent history of the Donguz-Orun glacier, we used lichenometry and dendrochronology for dating its lateral and terminal moraines. The upper part of the core (0-170 mm) was scanned applying X-ray fluorescent microanalysis using synchrotron radiation and sampled for dating using 137Cs and 210Pb. The assumption that the sediment stratification represents annual layering (spring flood) is generally confirmed with correlation of the Rb/Sr-ratio (that supposedly marks grain-size variations in the sediments) curve and the image of the sediment core. Calculations of Rb/Sr peaks or visual layers yield an accumulation rate of around 2 mm/yr. Analogous results (1.73 mm/yr) are derived from 137Cs-dating. With this high accumulation rate, the sediment core of Lake Donguz-Orun represents an important source of information for high-resolution reconstructions of climatic parameters and glacier variations of the region. The research project of Mikhail Alexandrin is supported by grant# 227470/F11 issued by The Research Council of Norway.

  10. Geochemical data for mercury, methylmercury, and other constituents in sediments from Englebright Lake, California, 2002

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; Marvin-DePasquale, Mark C.; Antweiler, Ronald C.; Lasorsa, Brenda K.; De Wild, John F.; Snyder, Noah P.

    2006-01-01

    Deep coring penetrated the full thickness of material deposited after 1940 at six locations in the reservoir; the cores reached a maximum depth of 32.8 meters below the reservoir floor. At the three deep coring sites closest to Englebright Dam, concentrations of HgT (dry basis) were consistently in the range of 100 to 500 ng/g (nanogram per gram), in sediment dominantly of silt size (median grain size of 0.004 to 0.063 mm [millimeter]). At the deep coring sites located farther upstream, the upper parts of the profile had lower concentrations of HgT, generally ranging from 2 to 100 ng/g, in sediment dominantly of sand size (median grain size from 0.063 to 2 mm). The lower part of the vertical profiles at three upstream coring sites had higher concentrations of HgT than the upper and middle parts of these profiles, and had finer median grain size. The highest median concentration of MeHg (1.1 ng/g) was in the top 2 cm (centimeter) of the shallow box cores. This vertical interval also had the highest value of the ratio of MeHg to HgT, 0.41 percent. Median concentrations of MeHg and median values of MeHg/HgT decreased systematically with depth from 0-4 to 4-8 to 8-12 cm in the shallow cores. However, similar systematic decreases were not observed at the meter scale in the deep cores of the MEM (MEthylMercury) series. The overall median of the ratio MeHg/HgT in the deep cores was 0.25 percent, not much less than the overall median value for the shallow cores (0.33 percent). Mercury-203 radiotracer divalent inorganic mercury (203Hg(II)) was used to determine microbial mercury-methylation potential rates for 11 samples collected from three reservoir locations and various depths in the sediment profile. For the five shallow mercury-methylation subsamples, ancillary geochemical parameters were assayed, including microbial sulfate reduction rates, sulfur speciation (sediment acid volatile sulfide, total reduced sulfur, and pore-water sulfate), iron speciation (sediment acid extractable iron(II), amorphous iron(III), crystalline iron(III) and pore-water iron(II)), pore-water chloride and dissolved organic carbon, and pH, oxidation-reduction potential (Eh) and whole-sediment organic content. The highest potential rates of microbial mercury methylation were measured in shallow (0 to 8 cm depth) sediments (5 to 30 nanograms of mercury per gram dry sediment per day), whereas potential rates for subsamples collected from depths greater than 500 cm were consistently below the detection limit of the radiotracer method (< 0.02 nanogram of mercury per gram dry sediment per day). Chemical analyses of trace and major elements in bed sediment are presented for 202 samples from deep cores from five locations in Englebright Lake. The mean values and standard deviations for selected trace elements were as follows (in micrograms per gram): antimony, 2.4 ? 1.6; arsenic, 69 ? 48; chromium, 134 ? 23; lead, 33 ? 25; and nickel, 87 ? 24. Concentrated samples of heavy-mineral grains, prepared using nine large-volume composite samples from

  11. Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway.

    PubMed

    Lepland, Aivo; Andersen, Thorbjørn J; Lepland, Aave; Arp, Hans Peter H; Alve, Elisabeth; Breedveld, Gijs D; Rindby, Anders

    2010-09-01

    Stratigraphic profiles of Cu, Cd and Hg in ten sediment cores from the Oslo harbor, Norway, combined with results of radiometric dating demonstrate that pollution by these metals peaked between 1940 and 1970. Dating results indicate that Hg discharges peaked between 1940 and 1950, Cd reached maximum ca. 1955-1960, and Cu has the highest concentration in sediment interval corresponding to ca. 1970. Geochemical profiles and maxima of Cu, Cd and Hg concentrations can be used as chronostratigraphic markers for sediment cores from the Oslo harbor. Acoustic backscatter and sediment core data indicate that propeller wash affects the seabed in the Oslo harbor. The propeller-induced turbulence causes erosion, and in places exposes and remobilizes contaminated sediments that accumulated in the harbor during previous decades. Such re-exposure of contaminated sediments could be detrimental to local ecosystems and offset remediation efforts, warranting further impact studies and potential mitigation strategies to prevent redistribution. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. A new high-resolution sediment record from Lake Gościąż (central Poland)

    NASA Astrophysics Data System (ADS)

    Bonk, Alicja; Błaszkiewicz, Mirosław; Brauer, Achim; Brykała, Dariusz; Gierszewski, Piotr; Kramkowski, Mateusz; Plessen, Brigit; Schwab, Markus; Słowiński, Michał; Tjallingii, Rik

    2017-04-01

    The varved sediments from Lake Gościąż, located in the Vistula Valley in Central Poland, are an iconic record for palaeoclimate and palaeoenvironmental reconstruction (Goslar et al. 2000, Hajdas et al. 1995, Ralska-Jasiewiczowa et al. 1998). Recently, we obtained a set of new sediment cores from Lake Gościąż and established a 21 m long sediment profile. Except of the topmost part of the core, it is continuously laminated down to glacial sands. We aim at applying a comprehensive multi-proxy core analyses combined with monitoring of present-day sedimentation processes. Sediment investigations will include new methods that have been developed or advanced since the previous studies on the Lake Gościąż sediments including continuous micro-facies analyses, μXRF core scanning and tephrochronology. The main aims of our new project are a revision of the existing floating chronology and to synchronise the Lake Gościąż sediment record based on independent isochrones with other European varved lake records like, e.g. Lake Meerfelder Maar, in order to investigate in detail proxy responses to climate change and to decipher regional leads and lags in climate change. Here, we will present (1) the objectives of our new project on this key record of past climate and environmental change and, (2) preliminary results including magnetic susceptibility, μ-XRF core scanning and microfacies images. This study is a contribution to scientific project financed by the National Science Centre, Poland - No DEC-2015/19/B/ST10/03039.

  13. Reconstructed Sediment Mobilization Processes in a Large Reservoir Using Short Sediment Cores

    NASA Astrophysics Data System (ADS)

    Cockburn, J.; Feist, S.

    2014-12-01

    Williston Reservoir in northern British Columbia (56°10'31"N, 124°06'33") was formed when the W.A.C. Bennett Dam was created in the late 1960s, is the largest inland body of water in BC and facilitates hydroelectric power generation. Annually the reservoir level rises and lowers with the hydroelectric dam operation, and this combined with the inputs from several river systems (Upper Peace, Finlay, Parsnip, and several smaller creeks) renews suspended sediment sources. Several short-cores retrieved from shallow bays of the Finlay Basin reveal near-annual sedimentary units and distinct patterns related to both hydroclimate variability and the degree to which the reservoir lowered in a particular year. Thin section and sedimentology from short-cores collected in three bays are used to evaluate sediment mobilization processes. The primary sediment sources in each core location is linked to physical inputs from rivers draining into the bays, aeolian contributions, and reworked shoreline deposits as water levels fluctuate. Despite uniform water level lowering across the reservoir, sediment sequences differed at each site, reflecting the local stream inputs. However, distinct organic-rich units, facilitated correlation across the sites. Notable differences in particle size distributions from each core points to important aeolian derived sediment sources. Using these sedimentary records, we can evaluate the processes that contribute to sediment deposition in the basin. This work will contribute to decisions regarding reservoir water levels to reduce adverse impacts on health, economic activities and recreation in the communities along the shores of the reservoir.

  14. Geochemical assessment of metals and dioxin in sediment from the San Carlos Reservoir and the Gila, San Carlos, and San Francisco Rivers, Arizona

    USGS Publications Warehouse

    Church, Stan E.; Choate, LaDonna M.; Marot, Marci E.; Fey, David L.; Adams, Monique; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    In October 2004, we sampled stream-bed sediment, terrace sediment, and sediment from the San Carlos Reservoir to determine the spatial and chronological variation of six potentially toxic metals-Cu, Pb, Zn, Cd, As, and Hg. Water levels in the San Carlos Reservoir were at a 20-year low at an elevation of 2,409 ft (734.3 m). Four cores were taken from the reservoir: one from the San Carlos River arm, one from the Gila River arm, and two from the San Carlos Reservoir just west of the Pinal County line. Radioisotope chronometry (7Be, 137Cs, and 210Pb) conducted on sediment from the reservoir cores provides a good chronological record back to 1959. Chronology prior to that, during the 1950s, is based on our interpretation of the 137Cs anomaly in reservoir cores. During and prior to the 1950s, the reservoir was dry and sediment-accumulation rates were irregular; age control based on radioisotope data was not possible. We recovered sediment at the base of one 4-m-long core that may date back to the late 1930s. The sedimentological record contains two discrete events, one about 1978-83 and one about 1957, where the Cu concentration in reservoir sediment exceeded recommended sediment quality guidelines and should have had an effect on sensitive aquatic and benthic organisms. Concentrations of Zn determined in sediment deposited during the 1957(?) event also exceeded recommended sediment quality guidelines. Concentration data for Cu from the four cores clearly indicate that the source of this material was upstream on the Gila River. Lead isotope data, coupled with the geochemical data from a 2M HCl-1 percent H2O2 leach of selected sediment samples, show two discrete populations of data. One represents the dominant sediment load derived from the Safford Valley, and a second reflects sediment derived from the San Francisco River. The Cu concentration spikes in the reservoir cores have chemical and Pb isotope signatures that indicate that deposits in a porphyry copper deposit from the Morenci district is the likely source of these Cu-rich sedimentary deposits. Copper concentrations and Pb isotope data in premining terrace-sediment deposits indicate that the Cu peaks could not have resulted from erosion of premining sediment from terrace deposits downstream on the Gila River. The chemical and Pb isotope data also indicate that agricultural practices in the Safford Valley have resulted in an increased sediment load to the Gila River since large-scale farming began, prior to the time when the San Carlos Reservoir was built. Analyses of dioxin, which is an impurity in one of the herbicides used in the late 1960s and early 1970s, were completed in sediment from one of the cores in the reservoir to determine whether any of these pesticide residues have accumulated in the reservoir sediment. Dioxin concentration is expressed in terms of its toxicity (toxic equivalent concentration or TEQ). Concentrations of dioxin in the sediment ranged from 0.68 to 1.37 pg/g and are less than any of the benchmark concentrations recommended as threshold values for adverse effects of dioxin in sediment (> 2.5-10 pg/g).

  15. Estimation of a Historic Mercury Load Function for Lake Michigan using Dated Sediment Cores

    EPA Science Inventory

    Box cores collected between 1994 and 1996 were used to estimate historic mercury loads to Lake Michigan. Based on a kriging spatial interpolation of 54 Pb-210 dated cores, 228 metric tons of mercury are stored in the lake’s sediments (excluding Green Bay). To estimate the time ...

  16. Disentangling Holocene lake level changes with a transect of lake sediment cores - a case study from Lake Fürstenseer See, northeastern Germany

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Slowinski, Michal; Kienel, Ulrike; Zawiska, Izabela; Brauer, Achim

    2014-05-01

    Deciphering the main processes contributing to lake and landscape evolution in the northern central European lowlands on different temporal scales is one of the main targets of the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association. In the context of future climatic changes especially the hydrological system is a vulnerable landscape component that showed considerably large changes in the recent past. The analysis of lake sediment archives can help to infer long-term dynamics of regional lake and groundwater levels, although available proxy information needs to be studied carefully, as water level changes are only one trigger. Lake Fürstenseer See (53°19'N, 13°12'E, lake level in 2009: 63.3 m a.s.l.) formed after the retreat of the Weichselian ice sheet in a subglacial channel in the direct forefront of the Pommerian ice margin. The ~2 km2 large lake (zmax = 24.5 m) has a (sub-) surficial catchment area of ~(20) 40 km2 including other smaller lakes and peatlands. In the past, the lake system was artificially dammed for the operation of water mills. Located within the well-drained sandur substrate, the lake levels vary with groundwater levels in response to hydrological and catchment-related groundwater recharge. Detrital matter input from fluvial activity can be excluded. Lake sediment cores at four sites along a transect down to 23 m water depth show distinct sediment facies patterns. Stratigraphic descriptions and non-destructive continuous micro-XRF scanning allowed the differentiation of the main sediment facies, which were microscopically described using thin sections. Quantification of total organic and inorganic matter (TOC, TIC, C/N-composition) and discontinuous macrorest, diatom and Cladocera analysis helped to approach the sedimentation history. Stable isotopes of (delta-180, delta-13C) were used for characterization of carbonates. A high amount of non-reworked terrestrial plant remains from prominent facies shifts were dated with AMS-14C and allowed to link the different cores, assess individual sedimentation rates and to evaluate sediment focusing in the lake. Carbonatic and organic gyttjas are the main sedimentary components related mainly to authigenic production. Sometimes, carbonates show detrital mineral structures and correlations with allochthonous components (K, Ti, Si) that can only be provided by reworking of shore and slope material or in times of intense aeolian transport. Sandy facies dominate only at near-shore, steep sites and form distinct layers at the current sediment limit. A robust statistical analysis considering compositional data constraints allows an objective compilation of indications for lake level change from water depth-related habitat changes and shore erosion. They oppose detrital matter input from aeolian processes in times of anthropogenically-cleared forests. A first lake level reconstruction from the Early Holocene to recent times will be presented and linked to climatic and/or anthropogenic drivers of regional hydrological changes.

  17. Textures of water-rich mud sediments from the continental margin offshore Costa Rica (IODP expeditions 334 and 344)

    NASA Astrophysics Data System (ADS)

    Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd

    2017-04-01

    During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.

  18. Characteristic sediment and water column chlorophyll-a in the sea cucumber’s Paracaudina sp. habitat on the Kenjeran Water, Surabaya

    NASA Astrophysics Data System (ADS)

    Widianingsih, W.; Zaenuri, M.; Anggoro, S.; Kusumaningrum, H. P.; Hartati, R.

    2018-03-01

    The study of characteristic sediment and water column chlorophyll-a has an important role in the sea cucumber habitat. Sediment chlorophyll-a represents a productivity primer for the benthic community. This research has a purpose to investigate characteristic sediment and water column chlorophyll-a on the Kenjeran water, Surabaya. Sediment samples were collected by the ekman grab for analysis, grain size and nutrient. The sample for sediment chlorophyll-a was taken by core sampler. The water samples were taken with Nansen Bottles. According to the research result, the values of sediment chlorophyll-a at station 10, 11 and 12 were higher than the other stations. In contrast, the value of chlorophyll-a in the column water had almost the same value for each station. The sediment chlorophyll-a value on clay and silt sediment type was higher than the fine sand and coarse sediment type. The suitable habitat characteristic for Paracaudina sp. was clay and silt sediment with sediment chlorophyll concentration ranging from 347.82 mg·m-2 to 1135.52 mg·m-2.

  19. Climate signals in Late Holocene sediments from Maxwell Bay and English Strait (South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Hass, H. Christian; Schröder, Simon; Kuhn, Gerhard

    2017-04-01

    Climate fluctuations of the past two millennia such as the Little Ice Age and the Medieval Warm Period are reported mainly from the Northern Hemisphere. Evidence from Antarctica is comparably sparse and reveals regional and temporal differences, which are particularly evident at the western and eastern sides of the Antarctic Peninsula. High-resolution coastal-marine sediment cores from the northernmost tip of the West Antarctic Peninsula reveal periods dominated by finer sediments between periods that lack the finer sediment component. In Maxwell Bay this fine sediment (grain size mode around 16 µm) has been traced back to sediment related to the occurrence of glacial meltwater. It was found in sheltered places and meltwater creeks of Potter Cove, a small tributary fjord to Maxwell Bay. In the sediment core this sediment occurs predominantly between 600 and 1250 AD (Medieval Warm Period) whereas it is only sparsely affecting the record between 1450 and 1900 AD (Little Ice Age). The temporal pattern is very similar to global-temperature reconstructions and even resembles temperature reconstructions from the Northern Hemisphere. To avoid local effects that may occur in Maxwell Bay more sediment cores were taken from bays and straits further south of King George Island during Cruise PS97 of RV "Polarstern" in 2016. A core from English Strait reveals completely different sedimentary conditions with no detectable meltwater signal (16 µm). However, the mean grain size record resembles that of the cores from Maxwell Bay. The lack of a clear-cut meltwater sediment class as it occurs further north is likely the result of a much smaller hinterland (Greenwich and Robert islands) when compared to Maxwell Bay between Nelson Island and the much bigger King George Island where glaciers and ice sheets discharge large quantities of very turbid meltwater directly into the bay. It is concluded that during the warmer climate periods a large amount of meltwater was released along the NW Antarctic Peninsula. The related plume sediments were distributed downstream to overprint coastal sediments even though the amount was likely not sufficient to produce a discrete sediment class.

  20. The sedimentological changes caused by human impact at the artificial channel of Medjerda-River (Coastal zone of Medjerda, Tunisia)

    NASA Astrophysics Data System (ADS)

    Benmoussa, Thouraya; Amrouni, Oula; Dezileau, Laurent; Mahé, Gil; Abdeljaouad, Saâdi

    2018-04-01

    Recent sedimentary and morphological changes at the new mouth of Medjerda-River (Gulf of Tunis) are investigated using a multiproxy approach of sediment cores complited by 210Pbex and 137Cs method dating. The subject of the study is to focus on surveying the sedimentary evolution of Medjerda-Raoued Delta caused by the human intervention in the management of the main tributaries of the Medjerda-River (artificial channel of Henchir Tobias). Sediment cores (CEM-1 and CEM-3) were subjected to both multiproxy approaches (Grain size, geochemical analysis and dating radiometric 210Pbex and 137Cs). The sedimentological analysis of the new deltaic deposits shows a progradation sequence with the silt and clay deposits on the historic sandy substratum. The mean grain size evolution on the old beach profile shows a decreasing trend from backshore (CEM-3) to nearshore (CEM-1). The geochemical results show varying concentrations of chemical elements such as Fe, K, Rb, Nb, Cr, Ti, Ba, Ca, Sr, Zr, V, and potentially toxic metal trace elements such as Pb, Zn and the As. The Principal component Analysis (PCA) applied in the geochemical elements evolution confirms the marine origin of the sand deposits in the basic layers of the two cores. The chronological method (210Pbex and 137Cs) affirms that the first fluvial deposits were set up only after 1950. The sedimentological and geochemical result confirm the actual unless of coarser fluvial supplies under the human activities leading the negative coastal sediment balance and the shoreline retreat as well.

  1. Concentration of Antifouling Biocides and Metals in Sediment Core Samples in the Northern Part of Hiroshima Bay

    PubMed Central

    Tsunemasa, Noritaka; Yamazaki, Hideo

    2014-01-01

    Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter’s degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT) and triphenyltin (TPT)) were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn) levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation. PMID:24901529

  2. Quantifying grain shape with MorpheoLV: A case study using Holocene glacial marine sediments

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Staszyc, Alicia B.; Wellner, Julia S.; Alejandro, Vanessa

    2017-06-01

    As demonstrated in earlier works, quantitative grain shape analysis has revealed to be a strong proxy for determining sediment transport history and depositional environments. MorpheoLV, devoted to the calculation of roughness coefficients from pictures of unique clastic sediment grains using Fourier analysis, drives computations for a collection of samples of grain images. This process may be applied to sedimentary deposits assuming core/interval/image archives for the storage of samples collected along depth. This study uses a 25.8 m jumbo piston core, NBP1203 JPC36, taken from a 100 m thick sedimentary drift deposit from Perseverance Drift on the northern Antarctic Peninsula continental shelf. Changes in ocean and ice conditions throughout the Holocene recorded in this sedimentary archive can be assessed by studying grain shape, grain texture, and other proxies. Ninety six intervals were sampled and a total of 2319 individual particle images were used. Microtextures of individual grains observed by SEM show a very high abundance of authigenically precipitated silica that obscures the original grain shape. Grain roughness, computed along depth with MorpheoLV, only shows small variation confirming the qualitative observation deduced from the SEM. Despite this, trends can be seen confirming the reliability of MorpheoLV as a tool for quantitative grain shape analysis.

  3. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  4. Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010-2012).

    PubMed

    Schwing, P T; O'Malley, B J; Romero, I C; Martínez-Colón, M; Hastings, D W; Glabach, M A; Hladky, E M; Greco, A; Hollander, D J

    2017-01-01

    Following the Deepwater Horizon (DWH) event in 2010 subsurface hydrocarbon intrusions (1000-1300 m) and an order of magnitude increase in flocculent hydrocarbon deposition caused increased concentrations of hydrocarbons in continental slope sediments. This study sought to characterize the variability [density, Fisher's alpha (S), equitability (E), Shannon (H)] of benthic foraminifera following the DWH event. A series of sediment cores were collected at two sites in the northeastern Gulf of Mexico from 2010 to 2012. At each site, three cores were utilized for benthic faunal analysis, organic geochemistry, and redox metal chemistry, respectively. The surface intervals (∼0-10 mm) of the sedimentary records collected in December 2010 at DSH08 and February 2011 at PCB06 were characterized by significant decreases in foraminiferal density, S, E, and H, relative to the down-core intervals as well as previous surveys. Non-metric multidimensional scaling (nMDS) analysis suggested that a 3-fold increase in polycyclic aromatic hydrocarbon (PAH) concentration in the surface interval, relative to the down-core interval, was the environmental driver of benthic foraminiferal variability. These records suggested that the benthic foraminiferal recovery time, following an event such as the DWH, was on the order of 1-2 years.

  5. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Spieβ, Volkhard

    1993-11-01

    An automated, PC-based logging system has been developed to investigate marine sediment cores by full waveform transmission seismograms. High-resolution P-wave velocity and amplitude attenuation profiles are simultaneously derived from the transmission data to characterize the acoustic properties of the sediment column. A pair of ultrasonic, piezoelectric wheel probes is used to generate and record the transmission signals travelling radially through the sediment core. Both unsplit and split cores are allowed. Mounted in a carriage driven by a stepping motor via a shaft the probes automatically move along the core liner, stopping at equidistant spacings to provide a quasi-continuous inspection of the core by the transmission data. The axial travel distance and the core diameter are determined by digital measuring tools. First arrivals are picked automatically from the transmission seismograms using either a threshold in the seismogram's envelope or a cross-correlation algorithm taking the ‘zero-offset’ signal of both wheel probes into account. Combined with the core diameter these first arrivals lead to a P-wave velocity profile with a relative precision of 1 to 2 m s-1. Simultaneously, the maximum peak-to-peak amplitudes of the transmission seismograms are evaluated to get a first idea on the amplitude attenuation along the sediment core. Two examples of gravity cores taken during a recent cruise of R.V. METEOR in the Western Equatorial Atlantic are presented. They yield that the P-wave profiles can be used for locating strong and fine-scale lithological changes, e.g. turbidite layers and slight variations in the sand, silt or clay content. In addition, the transmission seismograms and their amplitude spectra obviously seem to reveal a correlation between the relative amount of low-frequency spectral components and the sediment grain size, and thus provide a tool for the determination of additional, related physical or sedimentological parameters in future investigations.

  6. Trace elements in lake sediments measured by the PIXE technique

    NASA Astrophysics Data System (ADS)

    Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo

    1999-04-01

    Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.

  7. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred.

  8. Persistence and Bioavailability of DDT in a Coastal Salt Marsh

    NASA Astrophysics Data System (ADS)

    Rowlett, K.; Weathers, N.; Morrison, A.; White, H. K.

    2016-02-01

    DDT (dichlorodiphenyltrichloroethane) was a widely-used pesticide in the United States throughout the 1900s. In 1972, the EPA banned the use of DDT due to fears of severe bioaccumulation and toxicity in animals. However, the compound persists in measurable quantities in the environment, leading to questions surrounding its current bioavailability in key ecosystems such as coastal marshes. For this study a sediment core was collected in 2015 from a salt marsh in Dover, Delaware and the sediments and plant matter were analyzed for the presence of DDT and three of its main biological metabolites: DDD, DDE, and DDMU (collectively, DDX). Samples were extracted in toluene and analyzed for DDX via gas chromatography with mass spectrometry (GC/MS) operated in selected ion monitoring (SIM) mode. The initial down-core profile revealed that the maximum concentration of DDX in both plant matter (>1mm in size) and sediments (<250µm in size) was at 22-30cm below the marsh surface, corresponding to the time of DDT application, as determined by 210Pb-dating. After initial analysis of the concentration of DDX in the sediment core, a passive sampling method using low-density polyethylene (LDPE) was employed to measure the bioavailability of the DDX compounds in the collected sediments. Bioavailability experiments with LDPE are ongoing and results will be discussed. This study will contribute to our overall understanding of the persistence of DDT in the environment by further elucidating the association of DDX compounds with plants and sedimentary material as well as their bioavailability with respect to these associations.

  9. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill.

    PubMed

    Dincer Kırman, Zeynep; Sericano, José L; Wade, Terry L; Bianchi, Thomas S; Marcantonio, Franco; Kolker, Alexander S

    2016-07-01

    In 2010, an estimate 4.1 million barrels of oil were accidentally released into the Gulf of Mexico (GoM) during the Deepwater Horizon (DWH) Oil Spill. One and a half years after this incident, a set of subtidal and intertidal marsh sediment cores were collected from five stations in Barataria Bay, Louisiana, USA, and analyzed to determine the spatial and vertical distributions and source of hydrocarbon residues based on their chemical composition. An archived core, collected before the DWH oil spill from the same area, was also analyzed to assess the pre-spill hydrocarbon distribution in the area. Analyses of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and stable carbon isotope showed that the distribution of petroleum hydrocarbons in Barataria Bay was patchy and limited in areal extent. Significant TPH and ΣPAH concentrations (77,399 μg/g and 219,065 ng/g, respectively) were detected in the surface sediments of one core (i.e., core A) to a depth of 9 cm. Based on a sedimentation rate of 0.39 cm yr(-1), determined using (137)Cs, the presence of anthropogenic hydrocarbons in these sediment core deposited ca. 50 to 60 years ago. The historical background hydrocarbon concentrations increased significantly at the sediment surface and can be attributed to recent inputs. Although the oil present in the bay's sediments has undergone moderate weathering, biomarker analyses performed on core A samples likely indicated the presence of hydrocarbons from the DWH oil spill. The effects of oiling events on Barataria Bay and other marsh ecosystems in this region remain uncertain, as oil undergoes weathering changes over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Kang, Xuming; Song, Jinming; Yuan, Huamao; Shi, Xin; Yang, Weifeng; Li, Xuegang; Li, Ning; Duan, Liqin

    2017-03-01

    Phosphorus (P) is an important macronutrient that can limit primary productivity in coastal marine ecosystems. In this study, four sediment cores were collected in the Jiaozhou Bay to study the phosphorus forms and their bioavailability, including exchangeable or loosely sorbed P (Ex-P), iron-bound P (Fe-P), authigenic P (Ca-P), detrital P (De-P) and organic P (OP), which were separated and quantified using a sequential extraction method (SEDEX). The results showed that the concentration of total P (TP) in core sediments ranged from 6.23 to 10.46 μmol/g, and inorganic P (IP) was the dominated P form. Fe-P and De-P were the main chemical forms of IP in core sediments. The profile variation of OP presented the most significant among the phosphorus forms. Whereas the concentrations of Ex-P, Fe-P, and Ca-P varied slightly with depth, indicating that the transformation of Ex-P, Fe-P, Ca-P, and OP could occur during sedimentary P burial. Moreover, the distribution of P species was influenced by many factors, including terrigenous input, biological processes, organic matter degradation and increasing human activities. High total organic carbon (TOC)/OP ratio occurred in the Jiaozhou Bay, ranging from 73 to 472 (average, 180 ± 81) in core sediments, which was caused by the increasing terrestrial organic matter. The ratio of TOC/Preactive ranged from 24 to 101 (average 46 ± 15) in core sediments (lower than the Redfield ratio), implying a surplus of sedimentary reactive P compared with TOC. Potential bioavailable P (BAP) accounted for about 28.2-60.8% (average, 47.1 ± 7.4%) of TP in core sediments, and presented an increasing trend since 1980s, which might be responsible for the shift of phytoplankton community composition during these decades.

  11. Mono Lake sediments preserve a record of recent environmental change

    NASA Astrophysics Data System (ADS)

    Meixnerova, J.; Betts, M.; Westacott, S.; Ingalls, M.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high pH conditions. This process could help elucidate the previously reported dearth of bioavailable nitrogen in Mono Lake. We conclude that the unique chemistry allows the Mono Lake sediments to preserve both a record of environmental change and characteristic fingerprints that could be used to identify similar lake systems in the rock record.

  12. Event-based washload transport and sedimentation in and around flood bypasses: Case study from the Sacramento Valley, California

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Aalto, R. A.

    2005-05-01

    In large river systems, suspended sediment transport and deposition patterns are often affected by channel constraints engineered for flood conveyance or navigation. Such managed channels typically have a limited number of overflow loci through which suspended sediment enters the river's floodplain. Engineered flood bypasses are narrow relic floodplains that are supplied by overflow diversion weirs along managed river channels, and support agriculture and complex aquatic and riparian habitats that are sensitive to the delivery of floods, fine sediment, and adsorbed contaminants. They function as wide, shallow conveyance channels parallel to the main river, and therefore present an opportunity to assess the applicability of existing theory for delivery to and settling of suspended sediment within floodplains. This study is an investigation of hydrograph characteristics, sediment delivery, and sedimentation within the upstream reaches of flood bypasses closest to the weir. We present analysis of hydrologic and sediment records and modeling in the Sacramento River basin. The effects of a single large flood in 1964-1965 were analyzed by documenting hydrograph characteristics, computing event-based sediment discharges and reach erosion/deposition through the bypass system, modeling bypass deposition, and comparing modeled results near the weirs with dated sediment cores. The rapidly rising, slowly declining 1964 flood was generated by storm runoff in the Sierra Nevada. The modeling results indicate: washload discharge through the lower valley 0.5 to 1.7 times long-term annual averages; mainstem reach erosion/deposition 0.5 to 1.25 times annual averages; and centimeter scale deposition in flood bypasses. The results are corroborated by a set of sediment cores extracted from Sacramento Valley bypasses, which were dated with 210Pb geochronology and analyzed for grain size. The modeling and data suggest net sediment accumulation between the channel and flood weirs and in the `hydraulic shadow' of the flood weir, the length of which varies depending on flow and sediment characteristics. Net accumulation in the hydraulic shadow is hypothesized to be associated with infrequent, episodic erosion of stored upland mining legacy sediments. As a result, more frequent, relatively clear-water flooding erodes prior bypass sediment deposits at the downstream end of the hydraulic shadow and propagates upstream toward the weir. Such sediment remobilization and scour events were extensively documented in our cores and have implications for the fate and transport of contaminants such as mercury, left over from decades of foothill mining, and for sediment and contaminant delivery to the Sacramento-San Francisco Bay-Delta. The modeling and field data highlighted shortcomings in conventional theory for event-based sediment concentration profiles and particle settling. These limitations could be addressed with appropriate data collection and model revision to account for the processes of sediment transport over weirs and into flood conveyance channels.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D

    Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less

  14. New radiocarbon ages from cirques in Colorado Front Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, P.T.; Birkeland, P.W.; Caine, N.

    The authors recovered sediment cores 3.1 m long from Blue Lake ([approximately]37m water depth, [approximately]3,445m a.s.l., 40[degree]5 minutes 20 seconds N, 105[degree]37 minutes 08 seconds W) and 2.7m long from Lake Dorothy ([approximately]35m water depth, [approximately]3,675m a.s.l., 40[degree]00 minutes 46 seconds N, 105[degree]41 minutes 11 seconds W). A light-weight percussion coring system suspended from perlon ropes was used because of sediment thicknesses, water depths, and ski-backpacking requirements. Lake ice provided a stable coring platform. One purpose of the project is provision of a high-resolution record of environmental change in the subalpine/alpine ecotone during the Holocene, under the auspices of themore » Niwot Ridge Long-Term Ecological Research program. The sediment cores also provide minimum-limiting radiocarbon ages for deglaciation of cirques and the deposits that impound their tarns. Here the authors report on this second purpose. The Blue Lake core bottomed in sandy, gray, inorganic sediment, presumably glacial diamict. A bulk sample from 2.8--2.9m depth yielded a conventional radiocarbon age of 12,275[+-]345 yrs BP. Thus, ice retreated from the site by 12 ka. Since 12 ka both glacial and rock-glacial sediments have been deposited upvalley; some of these events may be recognized in the core. In contrast, the Lake Dorothy core did not penetrate gray inorganic diamict and is entirely organic-rich. A bulk sample from 2.65--2.7m depth yielded a conventional radiocarbon age of 10,910 [+-] 320 yrs BP. Thus, the moraines impounding the lake are 2--3 times older than suggested by a combination of relative-age methods and one radiocarbon age from surface sediments.« less

  15. Geochronology and sources of heavy metal pollution in sediments of Istanbul Strait (Bosporus) outlet area, SW Black Sea, Turkey.

    PubMed

    Sarı, Erol; Çağatay, M Namık; Acar, Dursun; Belivermiş, Murat; Kılıç, Önder; Arslan, Tuğçe Nagihan; Tutay, Ali; Kurt, Mehmet Ali; Sezer, Narin

    2018-08-01

    Geochemical and sedimentological analyses and radionuclide ( 210 Pb and 137 Cs) dating of three cores from the Bosporus outlet area of the Black Sea, north of Istanbul, were conducted to assess the sources and history of heavy metal pollution. The sedimentary succession in the shelf core KD12-01 consists mainly of clay (49-80%) and silt (15-41%). Radionuclide dating of the core indicates that it consists of old sediments that are uncontaminated with heavy metals. In contrast, cores KD12-04 and KD12-07 recovered from -350 m and -304 mm in the upper slope area represent sediments consisting of silt and clay that were deposited since at least the last 120 years and 60 years, respectively. The latter core contains two mass-flow units represented by relatively old sedimentary material according to the low 210 Pb activity and relatively low heavy metal contents. The upper 40 and 48 cm of cores KD 12-04 and KD 12-07 represent sediments deposited since 1970s and 1980s that are significantly polluted with Cu, Ni, Zn, Mo, Pb and Cr, Cu, Co, Ni, Mo, Pb, Zn, respectively. However, high Pb and Cr concentrations with high TOC contents date back to early part of the 20th century in core KD 12-04. The geochemical data, together with the high 137 Cs concentrations of the contaminated sediments, strongly suggest that the pollution is mainly delivered to the western and north western Black Sea by the large European rivers, from there transported to the study area by the rim current, and deposited in the sediments under anoxic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Methane Concentrations and Biogeochemistry in Lake Sediments from Stordalen Mire, Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Halloran, M.; DeStasio, J.; Erickson, L.; Johnson, J. E.; Varner, R. K.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.

    2013-12-01

    Lake sediments are an important global carbon sink of both allochthonous and autochthonous inputs. However, lakes are also known to emit carbon in gaseous form, most often as methane (CH4) or carbon dioxide (CO2), which are potent greenhouse gases. As northern latitudes warm, it is increasingly important to understand these gases and the sediments that store them. In July of 2013 we took 48 cores at 16 sites throughout three lakes surrounding a mire underlain by degrading permafrost in sub-arctic Sweden. The goal was to characterize the sedimentology and geochemistry of the lake sediments to better understand the production, distribution, and flux of CO2 and CH4 from these lakes. Villasjön is a shallow lake less than 1.5 meters deep, Mellan Harrsjön has a maximum depth of 7 meters and is stream-fed, and Inre Harrsjön has a maximum depth of 5 meters and is connected to Mellan Harrsjön. Published radiocarbon dates suggest that all three lakes formed approximately 3400 years ago. At each sample site, we retrieved 2 to 4 cores from the lake bottom, approximately 40-80 cm in length. The cores were sub-sampled for measurements of bulk TOC, TC, TN, TS, and CaCO3 (by difference) using a CHNS Elemental Analyzer, and grain size using a laser particle size analyzer. Headspace CO2 and CH4 by gas chromatography and infrared gas analysis (IRGA) yielded production rates and CH4 sediment concentrations. Dissolved inorganic carbon (DIC) from porewater extractions were analyzed using IRGA and stable carbon isotopes of DIC were analyzed via a Quantum Cascade Laser. The recovered sediments in the cores from all three lakes were composed of three layers: an upper layer of organic rich sediment (30-40 cm thick), a middle transition layer of mixed organic and lithogenic materials (5-10 cm thick), and a deep layer of grey lithogenic clay with less organic carbon (of variable thickness). Preliminary results from the 12 Villasjön sites indicate that CH4 is present and produced from the organic-rich layer in the upper 20-40 cm of the sediment. TOC values in this lake range from <1 to 44 wt. %. The TOC maximum (approximately 20-40 wt. %) consistently occurred at the same depth as the methane maximum, centered at ~20 cm. A TOC minimum zone (approximately 0-5 wt. %) occurs from 35-80 cm. Particle size distributions in this lake are dominated by silt and sand size fractions (>4 um). Calcium carbonate (CaCO3) concentrations varied, but the maximum always occurred in the upper 20 cm of the core. Core sites with known high lake surface methane fluxes from bubble trap measurements also show high methane concentrations in the sediment, high DIC concentrations in the pore fluids, and δ 13C signatures of CO2 ranging from 0 to 10, consistent with methanogenesis. Similar results are expected from the integration of pending sediment methane profiles with these data from the other two lakes: Mellan Harrsjön and Inre Harrsjön. Future work, including 14C dating, microbial community profiling, and δ13C signatures of CH4 will yield more insight into the biogeochemical mechanisms that regulate sediment methane distributions. 13C isotopes of methane and DIC should indicate if methane consumption through AOM or diffusion is controlling its distribution.

  17. Sediment data collected in 2013 from the northern Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    Buster, Noreen A.; Kelso, Kyle W.; Bernier, Julie C.; Flocks, James G.; Miselis, Jennifer L.; DeWitt, Nancy T.

    2014-01-01

    This data series serves as an archive of sediment data collected in July 2013 from the Chandeleur Islands sand berm and adjacent barrier-island environments. Data products include descriptive core logs, core photographs and x-radiographs, results of sediment grain-size analyses, sample location maps, and Geographic Information System data files with accompanying formal Federal Geographic Data Committee metadata.

  18. Holocene Paleolimnological Records from Thule, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2012-12-01

    Assessing Holocene climatic and environmental variability around the margin of the Greenland Ice Sheet provides important information against which to compare ice sheet margin fluctuations. Here, we report preliminary results from ongoing research in northwestern Greenland. We present records of physical properties of lake sediments and use these to make inferences about the evolution of the lake and its surroundings over the latter half of the Holocene. We collected two sediment cores, 90 and 72 cm in length, from a small (surface area ~0.3 km2), shallow (maximum depth ~4.5 m) lake at 76°33'40''N 68°26'31''W near Thule Air Base in July 2012. The length of the cores was limited by the length of the core barrel and does not reflect the total thickness of sediment in the lake. The lake is situated within the glacial limit and likely formed subsequent to deglaciation of the region during early Holocene time. No glaciers exist within the lake's catchment today; the primary modern source of sediment is a perennial inflow from the west. We developed a preliminary depth-age model using radiocarbon ages of terrestrial organic macrofossils. Thus far, we have analyzed the sediments for magnetic susceptibility and loss-on-ignition. A radiocarbon age of 6069 ± 90 cal yr BP at the base of the core indicates that the sediments preserve a continuous record of middle to late Holocene conditions. The top of both cores consists of a thick (~12 cm) layer of dark gray unlaminated sediments, while the rest of the material in both cores is lighter brown to olive, finely laminated sediment. The upper layer is characterized by low water content (<25%), low loss-on-ignition (<5%), and high magnetic susceptibility (~150-250 x10-6). Conversely, the laminated sediments beneath have higher water content (~40-50%), higher loss-on-ignition (~5-10%), and much lower magnetic susceptibility (<50 x10-6). We hypothesize that the upper, less organic unit may represent a single event in the lake's recent history. We are refining the depth-age model with more radiocarbon ages, measuring grain size and carbon to nitrogen ratios of the sediments, and evaluating possible linkages between the sediment physical properties and precipitation as recorded by annual accumulation in ice cores in northwestern Greenland and Arctic Canada. This project will provide a foundation for future work in Thule investigating Holocene fluctuations of local ice cap and ice sheet margin positions.

  19. Interdisciplinary paleovegetation study in the Fernando de Noronha Island (Pernambuco State), northeastern Brazil.

    PubMed

    Pessenda, Luiz C R; Gouveia, Susy E M; Ledru, Marie-Pierre; Aravena, Ramon; Ricardi-Branco, Fresia S; Bendassolli, José A; Ribeiro, Adauto de S; Saia, Soraya E M G; Sifeddine, Abdelfettah; Menor, Eldemar de A; Oliveira, Sônia M B de; Cordeiro, Renato C; Freitas, Angela M de M; Boulet, René; Filizola, Heloisa F

    2008-12-01

    The aim of this research was to reconstruct vegetation changes (with climate inferences) that occurred during the Holocene in the Fernando de Noronha Island, Pernambuco State, northeastern Brazil. The research approach included the use of geochemical (mineralogy, elemental), carbon isotopes (delta13C, 14C) and pollen analyses in soil organic matter (SOM) and sediments collected in Lagoa da Viração and Manguezal do Sueste. The carbon isotopes data of SOM indicated that there was no significant vegetation changes during the last 7400 BP, suggesting that the climate was not the determinant factor for the vegetation dynamics. The pollen analysis of the sediment of a core collected in the Lagoa da Viração showed the absence of Quaternary material in the period between 720 BP and 90 BP. The mineralogical analysis of deeper layer showed the presence of diopside indicating this material was developed "in situ". Only in the shallow part of the core were found pollen of similar plant species of the modern vegetation. The geochemistry and isotope results, in association with the sediment type and pollen analyses of sediment samples of Manguezal do Sueste, indicated variations in the vegetation and in its location since the middle Holocene. Such variations can be associated with climatic events and sea level oscillations and also with anthropogenic events considering the last five hundred years.

  20. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    PubMed

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  1. Fluvial landscapes evolution in the Gangkou River basin of southern Taiwan: Evidence from the sediment cores

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung

    2017-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.

  2. Natural and Anthropogenic Causes of Accelerated Sediment Accumulation Rates in Nehalem Bay Salt Marshes, Oregon

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Wheatcroft, R. A.; Peck, E. K.; Brophy, L.

    2016-12-01

    Vertical sediment accretion in estuarine salt marshes occurs as sediments settle out of the water column and onto marsh soils during periods of tidal inundation - thus accretion is influenced by both relative sea level rise (RSLR) and sediment flux to the estuary. Oregon estuaries are understudied compared to their East and Gulf Coast counterparts, but provide a unique opportunity to disentangle these effects. A broader study in three Oregon estuaries (Peck et al., this session) indicates RSLR as the dominant factor controlling sedimentation rates. Working in Nehalem Bay (northern Oregon coast), replicate sediment cores were taken along several transects across an elevation gradient for analysis of sediment and carbon accumulation using CT scans, gamma detection of Pb-210, X-Ray Fluorescence (XRF) and Loss-on-Ignition (LOI). Preliminary results indicate sediment accumulation rates over the past century are higher than rates seen in other comparable Oregon salt marshes; this is consistent with past studies and preliminary analysis of remote sensing data that show significant horizontal expansion of Nehalem marshes. A number of possible causes for the high sediment accumulation rates - hydroclimate of Nehalem River, extensive timber harvesting, forest fires such as the so-called Tillamook Burns, and diking of adjacent marshes - are being explored.

  3. Geochemical characteristics of organic compounds in a permafrost sediment core sample from northeast Siberia, Russia

    NASA Technical Reports Server (NTRS)

    Matsumoto, G. I.; Friedmann, E. I.; Gilichinsky, D. A.

    1995-01-01

    We studied total organic carbon (TOC), hydrocarbons and fatty acids in a permafrost sediment core sample (well 6-90, length 32.0 m, 1.5-2.5 Ma BP) from northeast Siberia (approximately 70 degrees N, 158 degrees E), Russia, to elucidate their geochemical features in relation to source organisms and paleoenvironmental conditions. Long-chain n-alkanes and n-alkanoic acids (>C19) were most predominant hydrocarbons and fatty acids, respectively, so organic matter in the sediment core was derived mainly from vascular plants and, to a much smaller extent, from bacteria. Low concentrations of unsaturated fatty acids revealed that organic matter in the sediment core was considerably degraded during and/or after sedimentation. The predominance of vascular plant components, the major ionic components of nonmarine sources, and geological data strongly implied that the sediment layers were formed in shallow lacustrine environments, such as swamp with large influences of tundra or forest-tundra vegetation. Also, no drastic changes in paleoenvironmental conditions for biological activity or geological events, such as sea transgressions or ice-sheet influences, occurred at the sampling site approximately 100 km from the coast of the East Siberian Sea during the late Pliocene an early Pleistocene periods.

  4. A detailed Holocene glacial-periglacial reconstruction based on multidisciplinary studies of a 60 m permafrost core from central Svalbard

    NASA Astrophysics Data System (ADS)

    Hvidtfeldt Christiansen, Hanne; Elberling, Bo; Gilbert, Graham L.; Thiel, Christine; Murray, Andrew; Buylaert, Jan-Pieter; Dypvik, Henning; Lomstein, Bente; Hovgaard, Jonas; Christensen, Anne T.; Mørkved, Pål T.; Reigstad, Laila J.; Fromreide, Siren; Seidenkrantz, Marit-Solveig

    2014-05-01

    During summer 2012, a 60 m sedimentary permafrost core was retrieved from the lower part of the Adventdalen Valley, central Svalbard, as part of the Longyearbyen CO2 project. The core was taken in 3 m long sections, with 20 % core loss, and reached the sedimentary bedrock (Lower Cretaceous). Thus our samples had the potential to represent the entire Quaternary and reflect changes in the sedimentary environments through time. The stratigraphy and sedimentology of the core was first investigated, to establish an overall geological model for the sampling site. The general stratigraphy encompasses a layer of basal till at the bottom of the core. This is overlain by marine sediments documenting a transition from glacial-proximal to open-marine conditions. Subsequently, a thick package of deltaic sediments records the progradation of the local river system. Finally, aeolian sediments, characterizing the modern environment, form the top few meters of the core. The ice content of the permafrost is generally low. Gravimetric water content generally ranges between 20% and 40%, but is considerably higher in some ice-rich layers. High resolution optically stimulated luminescence dating of the core sediment shows that deposition was very fast and took place primarily during the mid Holocene, with very rapid sedimentation of around 4 m/ka. With the onset of aeolian deposition (around 3-4 ka) the sedimentation rate decreased significantly to 1m/ka. The microbial diversity and activity of the core are being studied displaying decreasing activity with depth. Microbial community and functional gene numbers indicate variations with depth and geochemistry. Incubation studies have been performed primarily on the upper 30 m, and indicate a potential CO2 production from all depth intervals being studied. The potential for using foraminifer studies for both dating and palaeoenvironmental reconstructions are evaluated with the intension of comparison with previous studies of marine sediment cores both from the fjords in the Svalbard area and from the Barents Sea and Fram Strait region. This multidisciplinary approach is allowing us to build the first detailed palaeoenvironmental reconstruction of the Holocene glacial-periglacial interaction in the lowlands of central Svalbard; this includes a detailed reconstruction of the permafrost conditions.

  5. Constraining Lipid Biomarker Paleoclimate Proxies in a Small Arctic Watershed

    NASA Astrophysics Data System (ADS)

    Dion-Kirschner, H.; McFarlin, J. M.; Axford, Y.; Osburn, M. R.

    2017-12-01

    Arctic amplification of climate change renders high-latitude environments unusually sensitive to changes in climatic conditions (Serreze and Barry, 2011). Lipid biomarkers, and their hydrogen and carbon isotopic compositions, can yield valuable paleoclimatic and paleoecological information. However, many variables affect the production and preservation of lipids and their constituent isotopes, including precipitation, plant growth conditions, biosynthesis mechanisms, and sediment depositional processes (Sachse et al., 2012). These variables are particularly poorly constrained for high-latitude environments, where trees are sparse or not present, and plants grow under continuous summer light and cool temperatures during a short growing season. Here we present a source-to-sink study of a single watershed from the Kangerlussuaq region of southwest Greenland. Our analytes from in and around `Little Sugarloaf Lake' (LSL) include terrestrial and aquatic plants, plankton, modern lake water, surface sediments, and a sediment core. This diverse sample set allows us to fulfill three goals: 1) We evaluate the production of lipids and isotopic signatures in the modern watershed in comparison to modern climate. Our data exhibit genus-level trends in leaf wax production and isotopic composition, and help clarify the difference between terrestrial and aquatic signals. 2) We evaluate the surface sediment of LSL to determine how lipid biomarkers from the watershed are incorporated into sediments. We constrain the relative contributions of terrestrial plants, aquatic plants, and other aquatic organisms to the sediment in this watershed. 3) We apply this modern source-to-sink calibration to the analysis of a 65 cm sediment core record. Our core is organic-rich, and relatively high deposition rates allow us to reconstruct paleoenvironmental changes with high resolution. Our work will help determine the veracity of these common paleoclimate proxies, specifically for research in southwest Greenland, and will enable an accurate, high-resolution watershed-level reconstruction of Holocene conditions. Serreze, M. and Barry, R. (2011). Global and Planetary Change, 77, 85-96. Sachse, D., et al. (2012). Annual Review of Earth and Planetary Sciences, 40, 221-249.

  6. Quantitative x-ray diffraction mineralogy of Los Angeles basin core samples

    USGS Publications Warehouse

    Hein, James R.; McIntyre, Brandie R.; Edwards, Brian D.; Lakota, Orion I.

    2006-01-01

    This report contains X-ray diffraction (XRD) analysis of mineralogy for 81 sediment samples from cores taken from three drill holes in the Los Angeles Basin in 2000-2001. We analyzed 26 samples from Pier F core, 29 from Pier C core, and 26 from the Webster core. These three sites provide an offshore-onshore record across the Southern California coastal zone. This report is designed to be a data repository; these data will be used in further studies, including geochemical modeling as part of the CABRILLO project. Summary tables quantify the major mineral groups, whereas detailed mineralogy is presented in three appendices. The rationale, methodology, and techniques are described in the following paper.

  7. Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania.

    PubMed

    Bravo, Andrea Garcia; Loizeau, Jean-Luc; Ancey, Lydie; Ungureanu, Viorel Gheorghe; Dominik, Janusz

    2009-08-01

    Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments. Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01-0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3-2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the (137)Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments. Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control. Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment-water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.

  8. Late Holocene sedimentary environments of south San Francisco Bay, California, illustrated in gravity cores

    USGS Publications Warehouse

    Woodrow, Donald L.; Fregoso, Theresa A.; Wong, Florence L.; Jaffe, Bruce E.

    2014-01-01

    Data are reported here from 51 gravity cores collected from the southern part of San Francisco Bay by the U.S. Geological Survey in 1990. The sedimentary record in the cores demonstrates a stable geographic distribution of facies and spans a few thousand years. Carbon-14 dating of the sediments suggests that sedimentation rates average about 1 mm/yr. The geometry of the bay floor and the character of the sediment deposited have remained about the same in the time spanned by the cores. However, the sedimentary record over periods of centuries or decades is likely to be much more variable. Sediments containing a few bivalve shells and bivalve or oyster coquinas are most often found west of the main channel and near the San Mateo Bridge. Elsewhere in the south bay, shells are rare except in the southernmost reaches where scattered gastropod shells are found.

  9. Pore Water Transport of Enterococci out of Beach Sediments

    PubMed Central

    Phillips, Matthew C.; Solo-Gabriele, Helena M.; Reniers, Adrianus J. H. M.; Wang, John D.; Kiger, Russell T.; Abdel-Mottaleb, Noha

    2011-01-01

    Enterococci are used to evaluate the safety of beach waters and studies have identified beach sands as a source of these bacteria. In order to study and quantify the release of microbes from beach sediments, flow column systems were built to evaluate flow of pore water out of beach sediments. Results show a peak in enterococci (average of 10% of the total microbes in core) released from the sand core within one pore water volume followed by a marked decline to below detection. These results indicate that few enterococci are easily removed and that factors other than simple pore water flow control the release of the majority of enterococci within beach sediments. A significantly larger quantity and release of enterococci were observed in cores collected after a significant rain event suggesting the influx of fresh water can alter the release pattern as compared to cores with no antecedent rainfall. PMID:21945015

  10. Geochemical and geological factors controlling the spatial distribution of sulfate-methane transition zone in the Ría de Vigo (NW Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Carreño, N.; García-Gil, S.; Cartelle, V.; de Blas, E.; Ramírez-Pérez, A. M.; Insua, T. L.

    2017-05-01

    High-resolution seismic profiles, gravity core analysis and radiocarbon data have been used to identify the factors behind the methane production and free gas accumulation in the Ría de Vigo. Lithological and geochemical parameters (sulfate and methane concentration) from seventeen gravity cores were analyzed to characterize the sediment of the ria. The distribution of methane-charged sediments is mainly controlled by the quantity and quality of organic matter. Geochemical analyses reveal minimum methane concentrations ranging between 1 μM and 1 mM in sediments located outside the acoustic gas field, while gas-bearing sediments, show methane concentrations up to 5 mM. A shallowing of the sulfate-methane transition zone (SMTZ) is observed from the outer to the inner area of the ria. The presence of methane in the sulfate reduction zone (SRZ) likely to reflect the existence of methylotropic methanogenesis and/or migration processes of deeper methane gas in the sediments of the Ría de Vigo. The presence of an 'anomalous' high-sulfate concentration layer below the SMTZ in the inner and middle area of the ria, is attributed to the intrusion of sulfate-rich waters from adjacent areas that could be transported laterally through more porous layers.

  11. Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: Their controls and origins

    NASA Astrophysics Data System (ADS)

    Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok

    2012-10-01

    Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.

  12. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.

  13. Lake and Bog Sediment Records of Holocene Climate and Glacier Variability in the Cordillera Vilcabamba of Southern Peru

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.

    2013-12-01

    Records of past fluctuations in climatically sensitive tropical glaciers are among the best indicators of regional paleoclimatic trends and forcings. However, continuous sediment records in this region remain limited, particularly during the Holocene. Here we present the first continuous records of glacier activity in the Cordillera Vilcabamba (13°20'S) of southern Peru from lake and bog sediment cores in stratigraphic contact with 10Be-dated moraines. Completed analyses include sediment lithostratigraphy, magnetic susceptibility, and biogenic silica, in conjunction with AMS radiocarbon dates on charcoal. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Visually distinct sedimentological variations, magnetic susceptibility peaks, and radiocarbon dates were correlated among adjacent cores to construct one composite record representative of each coring site. Three composite cores are presented: two from the Rio Blanco valley and one from the Yanama valley. Sediment records from these two glaciated valleys suggest a series of environmental changes during the last ~12,000 calendar years BP. Clastic sediment flux trends are broadly consistent with published evidence that the early to middle Holocene was relatively warm and arid in the southern Peruvian Andes. An episode of high clastic flux in the late Holocene may reflect enhanced glacial activity in response to the onset of cooler and wetter conditions. A prominent peak in magnetic susceptibility at 1660 cal yr BP is present in all composite cores and serves as a chronostratigraphic marker. In addition, our new basal radiocarbon ages place limits on the cosmogenic 10Be production rate in the high Andes, suggesting the cosmogenic 10Be production rate is considerably lower than previously published estimates.

  14. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    PubMed

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.

  15. Ground Penetrating Radar, Magnetic and Compositional Analysis of Sediment Cores and Surface Samples: The Relationships Between Lacustrine Sediments and Holocene Lake- Level and Climate Change at Deming Lake, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Murray, R.; Lascu, I.; Plank, C.

    2007-12-01

    Deming Lake is a small (<1 square km), deep (about 17m), meromictic kettle lake situated near the prairie- forest boundary, in Itasca State Park, MN. Because of the lake's location and morphology, the accumulated sediments comprise a high-resolution record of limnological and ecological changes in response to Holocene climate variations. We used a shore perpendicular transect of three cores (located in littoral, mid-slope, and profundal settings) and ground penetrating radar (GPR) profiles to investigate Holocene lake-level variability at Deming. Cores were sampled continuously at a 1-2 cm resolution and sediment composition (in terms of percent organic matter, carbonate material, and minerogenic residue) was determined via loss on ignition (LOI). Isothermal remanent magnetization (IRM) and anhysteretic remanent magnetization (ARM) were used as proxies of magnetic mineral concentration and grain size. Four lithostratigraphic units were identified and correlated between cores based on these analyses. Changes in GPR facies corroborate the correlation between the two shallow cores. In order to inform our interpretation of down-core variations in magnetic properties and LOI values in terms of variations in lake depth, a suite of over 70 modern sediment samples were collected from the basin and analyzed. LOI compositional variability across the basin was high, with no clear trends related to depth or distance from shore. A sharp decrease in minerogenic content was observed at depths consistent with a predicted wave-base of 0.5 m, but aside from this trend it appears the steep slopes of much of the basin promote gravity driven slumping and mixing of sediments at depth. In the profundal sediments IRM values are routinely 5% higher than in the slope and littoral environments, while ARM/IRM ratios indicate an increase in magnetic grain size with water depth. We infer that an increase in coarse organic material in the shallow-water cores of Deming records a period of aridity (associated with a decrease lake-level less than 2m based on GPR profiles) and/or increased water clarity during the regionally expansive mid-Holocene dry period. We do not see clear evidence of late-Holocene lake level change of a significant magnitude (i.e. >1m). While remanence measurements (especially IRM) often correlate with the LOI residue, interference in the IRM resulting from the dissolution of magnetic minerals casts uncertainty into the reliability of our magnetic measurements as a signal of climate driven limnological change. Additional measurements must be performed before definite interpretations about the lake-level changes at Deming can be made. We suggest that future studies look more closely at the near-shore record (water depths <1m), as our results indicate shoreline migration in response to moisture balance fluctuations during the last 1000 years (as recorded at numerous sites in the great plains and upper Midwest) may have been subtle.

  16. Onset and Multiple Fluctuations of Holocene Glaciation in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Bowerman, N. D.; Clark, D. H.

    2004-12-01

    Multiple sediment cores from two paternoster tarns (First and Second lakes) in North Fork Big Pine Creek, Sierra Nevada, preserve the most detailed and complete record of Holocene glaciation yet recovered in the range; they indicate that the glacier was absent during the early Holocene, reformed in the late Holocene, and experienced several expansions and contractions, culminating with the Matthes maximum during the last ˜200 years. The lakes are fed by outwash from the Palisade Glacier, the largest ( ˜1.3 km2) and presumably longest-lived glacier in the Sierra Nevada, and capture essentially all of the rock flour produced by the glacier. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. Thus, the lakes have received continuous sedimentation since the retreat of the Tioga glacier ( ˜15,000 yr B.P.), and therefore capture rock flour related to all subsequent advances. First and Second lakes occupy relatively deep bedrock basins at 3036 m and 3066 m asl., respectively. Third Lake, a shallow (<3 m deep), moraine-dammed lake that lies directly above Second Lake, is the only lake between the Palisade Glacier and the lower lakes. As such, it captures the coarsest (sand/gravel bedload) outwash, but abundant suspended sediment (silt/clay) continues to the lower lakes. We cored the lakes using both Reasoner and Livingston corers, to sediment depths of up to ˜5 m. The deepest cores bottomed in coarse, inorganic sand and silt that we interpret as outwash or slopewash related to Tioga deglaciation. Magnetic susceptibility (MS) analyses of the sediment cores indicate that both lakes record multiple late-Holocene peaks in MS, with the most recent peak being the largest. They also retain outwash near the base related to the more extensive Recess Peak advance. MS peaks in Sierran lakes typically indicate greater abundances of clastic (vs. organic) sediment. The peaks in our cores thus imply 4-5 periods of increased flux of rock flour (outwash) from the upstream Palisade Glacier, most likely related to formation and expansions of the glacier in the late Holocene. The maximum peak at the top of the cores confirms the moraine record, which indicates that the maximum Holocene advance of Sierran glaciers occurred during the late Little Ice Age (last ˜200 yr) At least one tephra layer, possibly related to the Mono/Inyo dome complexes, occurs in the middle depths of the First Lake cores. Other narrow peaks in MS may also be associated with tephra deposits. Ongoing detailed analyses of the sediments, including AMS radiocarbon dating, visual and x-ray imaging, particle size analysis, organic content, tephrochronology, diatom assemblages, and palynology will constrain the timing and character of the environmental fluctuations related to the rock-flour flux. We will present results of these analyses at the meeting.

  17. Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change.

    PubMed

    Wu, Qiong; Qi, Jun; Xia, Xinghui

    2017-12-31

    Two dated sediment cores from the Miyun Reservoir of Beijing in China were analyzed to reconstruct the pollution history of heavy metals including cadmium (Cd), chromium (Cr), iron (Fe), nickel (Ni), and zinc (Zn) as well as phosphorus (P). Enrichment factor (EF) and geoaccumulation index (I geo ) were applied to assess the enrichment status of heavy metals. Average EF and I geo values indicated that the studied heavy metals in the sediments mainly originated from non-point source pollution and soil-water erosion, showing low ecological risks. In addition, correlation analysis and principal component analysis (PCA) identified that Cd, Zn, and P were mainly from agricultural diffusion pollution caused by utilization of the phosphate fertilizer; Zn, Ni, and Cr originated from soil erosion. PCA analysis was further conducted to investigate the relationships among meteorological factors, algae-dominant total organic carbon (TOC), and heavy metals. Results showed that algae-dominant TOC had strong positive correlation with temperature, which can be explained by that increased temperature accelerated the growth of algae. Meanwhile the opposite loadings between algae-dominant TOC and heavy metal suggested that primary production played an important role in migration and transformation of metals. Moreover, stepwise multiple regression models showed that Fe was sensitive to temperature, which accounted for approximately 39.0% and 40.1% of the variations in Fe of two sediment cores, respectively. Fe showed significant decreasing trends during the past 50years. Reductive environment of water-sediment interface caused by increasing temperature probably contributed to the restoration of ferric iron, resulting in the release of soluble Fe to overlying waters. Future climate change with elevated temperature and extreme weather events will aggravate the ecological risk of heavy metals in water environment due to the enhanced leaching effect and non-point source pollution as well as the release of heavy metals from sediments to water environment. Copyright © 2017. Published by Elsevier B.V.

  18. Carbon and nitrogen isotope composition of core catcher samples from the ICDP deep drilling at Laguna Potrok Aike (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late Glacial (up to 22.0 per mil) are only sporadically reached down core. Compared to this, separated moss debris is remarkably 13C depleted with a minimum at 31.5 per mil. The nitrogen isotope ratios of glacial Laguna Potrok Aike sediments are lower (2.5 per mil) than those of the younger part of the record. The core catcher samples indicate several oscillations between 0.5 and 3.5 per mil. Data suggest a correlation between nitrogen isotopes and C/N ratios, but no linear relation between carbon isotopes and carbon content and an only weak relationship between carbon and nitrogen isotopes. Increasing nitrogen isotope values from 8000 cm downwards could probably be related to changed environmental conditions of Marine Isotope Stage 3 (MIS 3) compared to Marine Isotope Stage 2 (MIS 2). This will be further evaluated with higher resolution from the composite profile including a detailed study of discrete plant debris layers. References Haberzettl, T. et al. (2007). Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene, 17: 297-310. Mayr, C. et al. (2009). Isotopic and geochemical fingerprints of environmental changes during the last 16,000 years on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina). Journal of Paleolimnology, 42: 81-102.

  19. The preglacial sediment record of Lake Ladoga, Russia - first results from a seismic survey and sediment coring in 2013

    NASA Astrophysics Data System (ADS)

    Melles, Martin; Krastel, Sebastian; Fedorov, Grigory; Subetto, Dmitry A.; Savelieva, Larisa A.; Andreev, Andrej; Wagner, Bernd

    2014-05-01

    The new German-Russian project PLOT (Paleolimnological Transect) aims at investigating the Late Quaternary climatic and environmental history along a more than 6000 km long longitudinal transect crossing northern Eurasia. Special emphasis is put on the preglacial history. For this purpose shallow and deep seismic surveys shall be carried out on five lakes, which potentially host preglacial sediment records, followed by sediment coring based on the results of the seismic campaigns. The well-studied Lake El'gygytgyn represents the eastern-most location of the transect and acts as reference site. Within the scope of a pilot phase for the PLOT project, funded by the German Federal Ministry of Education and Research, we were able to investigate Lake Ladoga, which is located close to St. Petersburg at the western end of the transect. Lake Ladoga is the largest lake in Europe, covering an area of almost 18.000 km2. The modern sedimentation as well as the late glacial and Holocene history of the lake were already studied in detail over the past decades. The older, preglacial lake history, however, is only rudimentary known from a core transect drilled in the southern lake in the 1930th. The cores of up to about 60 m length were only briefly described and are not existing any more. The results from these cores, known from unpublished reports only, suggest the existence of marine sediments of presumably Eemian age, representing a time when Lake Lagoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea and further to the Arctic Ocean. In late August/early September 2013 we carried out a seismic survey on Lake Ladoga using a Mini-GI-Gun and a 32-channel seismic streamer. In total, 1500 km of seismic profiles were measured, covering most parts of the lake. The seismic lines typically show acoustically well stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions can reach more than 10 m in thickness. They usually are bordered by a hard reflector underneath that may represent coarse-grained sediments or a till, which in most areas is not penetrated by the acoustic waves. In particular in the western part of the lake, however, these sediment successions can be underlain by sedimentary strata of up to 60 m thickness that fill steeply sloped depressions or channels. Sediment coring at two sites in western Ladoga Lake confirmed the seismic interpretation of the postglacial sediment succession. At one of these sites, the basal reflector at about 13 m depth was penetrated another ca. 10 m into preglacial sediments. According to initial pollen data, these sediments were formed during an interglacial with a slightly warmer climate than that of the Holocene. Further work is currently carried out, for instance, to identify which of the Quaternary interglacials is respresented by the sediments cored in 2013.

  20. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  1. Planktonic foraminifera as proxies of Upper Quaternary sedimentation in The Okhotsk sea

    NASA Astrophysics Data System (ADS)

    Romanova, Alexandra

    2013-04-01

    Analyzing planktonic foraminifera in marine sediments assists us in reconstructing historical maps of climatic changes. The object of the study is the Okhotsk Sea, largest Russian Far East sea. Okhotsk sea, like other marginal seas, is very sensitive to global and regional climate changes. Planktonic foraminifera are poorly investigated in Okhotsk sea. Studying of planktonic foraminifera in Okhotsk sea has some problems: low quantity of species, one taxon domination, low percents of another species, influence of dissolution. These facts don't allow us to use standard approaches for paleotemperature reconstructions using planktonic foraminifera. This research explores the response of this group of microorganisms to main paleoclimatic events in Okhotsk region and attempt to reveal the special characteristics of this proxy for interpreting the paleoodata. The research was based on samples from 4 cores in the central part of the sea and 67 sediment stations from north to south (total of about 270 samples). As a result of studying sediment stations we created a map of biogeographycal distribution of planktonic foraminifera and distinguished five provinces. Each province has specific quantitive and qualative characteristics of foraminifera assemblages that give us information about their modern distribution and ecological preferences. This information is necessary for comparison with cores data. By correlating data from other analysis (radiocarbon dating, benthic and planktonic δ18O records, geochemical, pollen, diatom analyses) with discovered foraminifera sample data (core 936), we established certain climatic patterns and defined 5 criteria to apply to all of the other cores that did not have the same depth of climate information. We find that variation in abundance of different morhpotypes allows determining period of cooling and warming, which is confirmed by the variation in abundance across all of foraminifera species. These criteria might be a solution for paleotemerature reconstruction using planktonic foraminifera.

  2. Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores

    USGS Publications Warehouse

    Sejrup, H.P.; Miller, G.H.; Brigham-Grette, J.; Lovlie, R.; Hopkins, D.

    1984-01-01

    The palaeooceanography of the Arctic Ocean is less well known than any other ocean basin, due to difficulties in obtaining cores and in providing a secure chronological framework for those cores that have been raised. Most recent investigators have suggested that low sedimentation rates (0.05-0.1 cm kyr-1) have characterized the deep basins over the past 5 Myr (refs 1,2) despite the glacial-marine character of the sediment and proximity to major centres of shelf glaciation. These calculations have been primarily based on the down-core pattern in the inclination of magnetic minerals, supported by uranium-series, 14C and micropalaeontological evidence. Here we analyse amino acid diagnesis in foraminifera from two gravity cores raised from the floor of the Arctic Ocean, our results suggest that these cores span <200 kyr., conflicting with the earlier estimate of 3 Myr based on palaeomagnetic data. The chronology of other Arctic Ocean cores and previous palaeoenvironmental interpretations need re-evaluation. ?? 1984 Nature Publishing Group.

  3. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2017-02-15

    In this study, the concentration and sources of aliphatic and petroleum markers were investigated in 105 samples of Anzali, Rezvanshahr and Astara cores from the southwest of Caspian Sea. Petroleum importation was diagnosed as a main source in most depths of cores by the results of unresolved complex mixture, carbon preference index and hopanes and steranes. From the chemical diagnostic parameters, petroleum inputs in sediment of cores were determined to be different during years and the sources of hydrocarbons in some sections differed than Anzali and Turkmenistan and Azerbaijan oils. Diagenic ratios in most sediments of upper and middle sections in Astara core were determined to be highly similar to those of Azerbaijan oil, while the presence of Turkmenistan and Anzali oils were detected in a few sections of Anzali and Rezvanshahr cores and only five layers of downer section in Anzali core, respectively. Copyright © 2016. Published by Elsevier Ltd.

  4. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  5. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  6. Gas and porewater composition of shallow sediments in the Tuaheni Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Rose, P. S.; Coffin, R. B.; Yoza, B.; Boyd, T. J.; Crutchley, G. J.; Mountjoy, J. J.; Pecher, I. A.

    2015-12-01

    Seismic profiles collected during previous investigations on the Hikurangi Margin, off the North Island, New Zealand showed bottom simulating reflectors (BSRs), which are generally indicative of the presence of free gas. Further, double BSRs clearly identified in the Tuaheni Basin were hypothesized to result from differences in gas composition and fluid migration. During a cruise on the RV Tangaroa in June 2015 (TAN 1508) additional seismic data were collected and used to identify piston coring targets. Coring locations were selected to sample around BSR pinch-outs and possible fluid migration pathways to determine gas composition and flux. Shallow sediments collected in June 2015 in the Tuaheni Basin had relatively low sediment headspace CH4 concentrations (6000ppm. Higher molecular weight alkanes were not detected in the sediment headspace gas at any location. Sediment porewater sulfate, chloride and sulfide concentrations will be presented with CH4concentration profiles and geophysical data.

  7. Sedimentology and Permafrost Characteristics of Pingo-Like Features (PLFs) from the Beaufort Sea shelf, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Medioli, B. E.; Dallimore, S. R.; Nixon, F. M.; Dallimore, A.; Blasco, S.; Paull, C. K.; McLaughlin, F.; Ussler, W.; Davies, E.

    2004-12-01

    Pingo-like features (PLFs) are rounded positive relief features commonly found on Beaufort Sea shelf, NWT. PLFs occur in water depths from 20 to 200m, are typically a few hundred meters in diameter and rise 10 to 35m above the seafloor. In the fall of 2003, an MBARI-USGS-GSC-DFO coring and geophysical study was undertaken of a number of PLFs. The crests, flanks and moats of 8 PLFs, as well as background shelf sites, were vibra-cored. Upon recovery, core temperatures of moat sediments ranged from 2.0 to -0.5 deg C and no ice bonding was observed. Sediments consisted of dark-olive-grey to black muds with shells. Sedimentary structures were rare with some finely laminated to finely-color-banded beds. Intense bioturbation, in situ marine shells and a lack of terriginous macrofossils suggest moat sediments were deposited in a shallow coastal environment. In some instances, a down core grain size coarsening was observed with higher organic content suggesting a gradational environment towards more lagoonal conditions. Core temperatures from the 8 PLFs were 0 to -1.7 deg C, significantly colder than the moat sediments. Ice-bonded permafrost was encountered within 1m of the seabed with visible ice content up to 40% by volume. Several ice-bonded intervals were preserved frozen for detailed investigation in the lab. The observed ground ice in the cores was quite unique when compared with visible ice forms commonly seen in regional terrestrial sections. The ice gave the core a vuggy texture with individual ice-filled vugs 10 to 200 mm3. Vugs were typically flattened to ovoid. When thawed, the ice produced excess water resulting in a very soft texture. In many cases the vuggy texture was maintained with sediment voids forming where the ice was. PLF crest sediments were massive silty clays with clayey silts and muddy fine sand interbeds. They generally lack sedimentary structures, although this may have been due to sediment structure loss upon thawing. The background seafloor sediments consisted of unfrozen, massive silty sands and sandy silts and were distinct from the crest and moat sediments. In several cores, a sharp transition was noted to well-sorted sands. This lower unit may represent a transgressed terrestrial sequence. Research continues to determine the origin of the PLFs and quantify the role of permafrost and ice formation.

  8. Evolution of the anthropogenic impact in the Augusta Harbor (Eastern Sicily, Italy) in the last decades: benthic foraminifera as indicators of environmental status.

    PubMed

    Romano, Elena; Bergamin, Luisa; Ausili, Antonella; Celia Magno, Maria; Gabellini, Massimo

    2016-06-01

    The study of benthic foraminifera in sediment cores provides the opportunity to recognize environmental changes, including those due to the anthropogenic impact. The integration of these data with chemical-physical parameters provides a comprehensive quality assessment. This research was applied to a sediment core collected in the Augusta bay, where a very large commercial and military harbor and one of the largest petrochemical poles in Europe are present. Inside the petrochemical area also operated, from 1958 to 2003, a chlor-alkali plant with mercury cell technology which caused anthropic contamination of surrounding land and marine areas. The sediment core was collected in front of this plant and characterized for grain size and pollutants directly associated to chlor-alkali activity, such as mercury (Hg), barium (Ba), polychlorobiphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Composition of foraminiferal assemblages and faunal parameters such as specific diversity, faunal density, abundance of abnormal specimens, and foraminiferal size were investigated as potential indicators of environmental status. Statistical analysis indicated a main common origin for Hg, Ba, and PCBs and the influence of pollutants on species distribution and faunal diversity and density. Exceptionally high Hg concentrations (63-680 mg/kg d.w.) were recorded in the whole core, where the geochronological study attributed the most contaminated levels to the period of maximum activity of the chlor-alkali plant, while a decrease of contamination was recorded after the stop of the activity. Distinct foraminiferal assemblages identified different ecozones along the core, which suggested decreasing anthropogenic impact from the bottom to the top.

  9. Sediment storage quantification and postglacial evolution of an inner-alpine sedimentary basin (Gradenmoos, Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, J.; Buckel, J.; Otto, J. C.; Schrott, L.

    2012-04-01

    Knickpoints in longitudinal valley profiles of alpine headwater catchments can be frequently assigned to the lithological and tectonical setting, to damming effects through large (rockfall) deposits, or to the impact of Pleistocene glaciations causing overdeepened basins. As a consequence various sedimentary sinks developed, which frequently interrupt sediment flux in alpine drainage basins. Today these locations may represent landscape archives documenting a sedimentary history of great value for the understanding of alpine landscape evolution. The glacially overdeepened Gradenmoos basin at 1920 m a.s.l. (an alpine lake mire with adjacent floodplain deposits and surrounding slope storage landforms; approx. 4.1 km2) is the most pronounced sink in the studied Gradenbach catchment (32.5 km2). The basin is completely filled up with sediments delivered by mainly fluvial processes, debris flows, and rock falls, it is assumed to be deglaciated since Egesen times and it is expected to archive a continuous stratigraphy of postglacial sedimentation. As the analysis of denudation-accumulation-systems is generally based on back-calculation of stored sediment volumes to a specific sediment delivering area, most reliable results will be consequently obtained (1) if sediment output of the system can be neglected for the investigated period of time, (2) if - due to spatial scale - sediment storage can be assessed quantitatively with a high level of accuracy, and (3) if the sediment contributing area can be clearly delimited. All three aspects are considered to be fulfilled to a high degree within the Gradenmoos basin. Sediment storage is quantified using geophysical methods, core drillings and GIS modelling whereas postglacial reconstruction is based on radiocarbon dating and palynological analyses. Subject to variable subsurface conditions, different geophysical methods were applied to detect bedrock depth. Electrical resistivity surveying (2D/3D) was used most extensively as it delivered detailed and realistic subsurface models with low residual errors in the fine grained and water saturated central and distal part of the basin. With a lower data density, ground penetrating radar and refraction seismic supplied bedrock depths underneath adjacent debris and talus slope deposits. Additionally extracted sediment cores (up to 22 m depth) yielded a detailed stratigraphic record of the basin comprising a basal till layer underneath lake sediments (sandy-silty, partly varved), a sandy matrix with several oxidised layers in the upper sections, and layers of peat towards the surface. As bedrock was reached several times, core drilling further enabled to calibrate resistivity models. On the base of geophysical derived bedrock points, the shape of the assumed bedrock basin was modelled using a thin-plate-spline interpolation. Sediment volumes were calculated by subtracting the bedrock model from a surface DEM derived from terrestrial laser scanning. Since sediment delivering areas can be clearly assigned to single storage landform volumes, denudation rates could be calculated in detail and related to sedimentation rates obtained by radiocarbon dating results. An integrated analysis of surface, subsurface and temporal information finally yielded a model of postglacial basin evolution which will be discussed in a paraglacial context. This presentation is supported by the EUROCORES programme TOPO-EUROPE of the European Science Foundation.

  10. Polychaete Tubes, Turbulence, and Erosion of Fine-Grained Sediment

    NASA Astrophysics Data System (ADS)

    Kincke-Tootle, A.; Frank, D. P.; Briggs, K. B.; Calantoni, J.

    2016-02-01

    The role of polychaete tubes protruding through the benthic boundary layer in promoting or hindering erosion of fine-grained sediment was examined in laboratory experiments. Diver core samples of the top 10cm of sediment were collected west of Trinity Shoal off the Louisiana coast in 10-m depth. Diver cores were used in laboratory experiments conducted in a unidirectional flume. Tubes that were constructed by polychaetes, which comprised 70% of the species from the study area, were inserted into the core sediment surface. The sediment cores were then placed in the 2-m long test section of a small oscillatory flow tunnel and high-speed, stereo particle image velocimetry was used to determine the 2-dimensional, 3-component fluid velocity at high temporal (100 Hz) and spatial (< 1mm vector spacing) resolution. The tubes that protruded above the boundary layer allowed vortices to be initiated. Tubes are made up of shell fragments and fine-grained sediment, allowing for some rigidity and resistance to the flow. Rigidity determines the resistance causing small-scale eddies to form. The small-scale turbulence incited scour erosion, allowing fine-grained particles to be suspended into the water and in some cases coarser particles to be mobilized. Less-rigid tubes succumb to the shear stress, inhibit the formation of small-scale eddies, limit sediment erodibility, and increase the critical shear stress of the sediment. Discussion will focus on a modification to the critical Shields parameter to account for the effects of benthic biological activity.

  11. Evaluation of dredged material proposed for ocean disposal from Gravesend Bay Anchorage, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, E.S.; Gruendell, B.D.

    1996-09-01

    The Gravesend Bay Anchorage was one of seven waterways that the US Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in February 1994. Sediment samples were submitted for physical and chemical analyses to provide baseline sediment chemistry data on the Gravesend Bay Anchorage. Individual sediment core samples collected at the Gravesend Bay Anchorage were analyzed for grain size, moisture content, and total organic carbon (TOC). Two samples, one of composited sediment cores representing the southeast corner of the anchorage (COMP GR), and one sediment core representingmore » the northeast corner of the anchorage (Station GR-1 0), were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene.« less

  12. Isotopic signature of short term climate oscillations in the sediments of the Gulf of Gdansk (Southern Baltic Sea, Poland)

    NASA Astrophysics Data System (ADS)

    Paczek, Urszula; Tudyka, Konrad; Bałdys, Piotr; Pazdur, Anna

    2010-05-01

    The Gulf of Gdańsk is a part of the southern Baltic Sea - an intra-continental, shallow arm of the Atlantic Ocean entirely located on continental crust. The gulf occupies the area of ca. 5000 km2. Its northern border is a conventional line between the Cape Rozewie (Poland) and the Cape Taran (Russia). The Gulf of Gdańsk is under impact of inflowing salty waters from the North Sea but also there is a great effect of the Vistula River marked. The river is one of two the most important sources of material in the gulf. Cliffs erosion is the second one. The interplay of marine and land waters is multiplied by impact of two different climates - continental and maritime. The subject of intended research is a core of muddy sediments collected within the framework of project carried by the Branch of Marine Geology of the Polish Geological Institute in Gdańsk. The core was 300 cm long and was taken using Kullenberg core sampler in 2006 from the depth of 32 m. Since 2009 the research has been led in cooperation with the Department of Radioisotopes, Institute of Physics, Silesian University of Technology. In our study we use δ18O and δ13C measured in organic mater of sediments with mass spectrometer. Radiocarbon concentration was measured using gas proportional counters using organic mater . 14C dates were corrected according to isotopic fractioning with measured δ13C. We found systematic inversions of dates that were probably caused by changing of ?R (regional difference from the modeled global surface ocean reservoir age) during Baltic evolution. The attention was also paid on recognition of sedimentation process that is a very good indicator of dynamics in sedimentary environment. The grain size analysis was carried out for 300 samples using method of laser diffraction. Results showed great variability in bulk sediment composition that indicates susceptibility to changes in climatic and hydrodynamic conditions of studied area. Excluding the top ca. 30 cm of the core two clear cycles in sedimentation process may be distinguished. They are characterized by the greater contribution of thicker sediment fractions. Additionally shorter variations are also observed in both main cycles. All the results are bounded with 14C age-depth model that represents last 7500 cal BP. It covers two stages of the Baltic Sea development. According to 14C depth model two main cycles in granulation correspond to 1500 yr each. Shorter variations correspond to 550 yr each. We also noticed rapid shift in sedimentation rate that we correlate with sudden change in granulation composition occurring on ca. 30 cm of the core.

  13. Linking Monsoon Activity with River-Derived Sediment Deposition in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ge, Q.; Xue, Z. G.; Liu, P.; Chu, F.

    2016-02-01

    Sediments retrieved from a gravity core were analyzed to examine the connection between East Asian Monsoon (EAM) and river-derived sediment deposition on the continental slope in the South China Sea since the Last Glacial Maximum. Combined clay mineralogy and grain size index analysis provided evidence of the sources of fine-grained sediment as well as for rebuilding the history of paleo-EAM. A shift of sediment source from the Pearl River to southwestern Taiwanese rivers was identified during the Holocene. The 4-8μm grain size fraction, as an environmental sensitive component and thus the EAM proxy, indicated the local deposition environment is mainly controlled by sea-level variations. And during the Holocene, the East Asian summer monsoon exhibited an in-phase relationship with East Asian winter monsoon, both following variations of the insolation intensity.

  14. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment inputs. These results also provide important quantitative data on the amount of sediment delivered to the nearshore from the Skagit River for use in calculating sediment budgets for application to watershed planning and wetland and coastal-ecosystem restoration.

  15. A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf

    USGS Publications Warehouse

    Rosenbauer, R.J.; Swarzenski, P.W.; Kendall, C.; Orem, W.H.; Hostettler, F.D.; Rollog, M.E.

    2009-01-01

    Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of ??13C and ??15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and ??34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and ??34S down-core are likely caused by changes in the rate of sulfate reduction, and hence the degree of hypoxia in the overlying water column. Based principally on the down-core C:N and C:S ratios and ??13C and ??34S profiles, sites MRJ03-3 and MRJ03-2 generally reflect more marine organic matter inputs, while site MRJ03-5 appears to be more influenced by terrestrial deposition. ?? 2009 Springer-Verlag.

  16. Lignin geochemistry of a Late Quaternary sediment core from Lake Washington

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Ertel, John R.; Leopold, Estella B.

    1982-10-01

    Long-term lignin stability and paleovegetation patterns were investigated using CuO oxidation products of sediments from an 11 m core of Late Quaternary sediment collected from the mid-basin of Lake Washington, Washington State. Relatively constant yields of lignin-derived phenols (normalized to organic carbon) from the entire core indicate minimal in situ lignin degradation over the last 13,000 years. Compositional patterns within the phenolic suite and increased corresponding yields from baseextracted sediments indicate that sedimentary lignins are present predominantly as well preserved plant tissue fragments. Abundance patterns of vanillyl, syringyl, and cinnamyl phenols record four distinct sequences within the core characterized by: (a) high concentrations of gymnosperm wood in a basal horizon of glacial flour, 11-10 m; (b) an essentially pure mixture of nonwoody angiosperm tissues in late Pleistocene sediments, 10-8 m; (c) relatively high concentrations of angiosperm woods in the bottom half of a limnic peat sequence deposited approximately 10,000-7,000 years B.P., 8-4 m; and (d) a progressive enrichment in gymnosperm woods at the expense of angiosperm woods over the last 7,000 years in the upper limnic peat, 4-0 m. Vascular plant tissues account for less than half the total sedimentary organic carbon throughout the core.

  17. Google Earth-Based Grand Tours of the World's Ocean Basins and Marine Sediments

    NASA Astrophysics Data System (ADS)

    St John, K. K.; De Paor, D. G.; Suranovic, B.; Robinson, C.; Firth, J. V.; Rand, C.

    2016-12-01

    The GEODE project has produced a collection of Google Earth-based marine geology teaching resources that offer grand tours of the world's ocean basins and marine sediments. We use a map of oceanic crustal ages from Müller et al (2008; doi:10.1029/2007GC001743), and a set of emergent COLLADA models of IODP drill core data as a basis for a Google Earth tour introducing students to the world's ocean basins. Most students are familiar with basic seafloor spreading patterns but teaching experience suggests that few students have an appreciation of the number of abandoned ocean basins on Earth. Students also lack a valid visualization of the west Pacific where the oldest crust forms an isolated triangular patch and the ocean floor becomes younger towards the subduction zones. Our tour links geographic locations to mechanical models of rifting, seafloor spreading, subduction, and transform faulting. Google Earth's built-in earthquake and volcano data are related to ocean floor patterns. Marine sediments are explored in a Google Earth tour that draws on exemplary IODP core samples of a range of sediment types (e.g., turbidites, diatom ooze). Information and links are used to connect location to sediment type. This tour compliments a physical core kit of core catcher sections that can be employed for classroom instruction (geode.net/marine-core-kit/). At a larger scale, we use data from IMLGS to explore the distribution of the marine sediments types in the modern global ocean. More than 2,500 sites are plotted with access to original data. Students are guided to compare modern "type sections" of primary marine sediment lithologies, as well as examine site transects to address questions of bathymetric setting, ocean circulation, chemistry (e.g., CCD), and bioproductivity as influences on modern seafloor sedimentation. KMZ files, student exercises, and tips for instructors are available at geode.net/exploring-marine-sediments-using-google-earth.

  18. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    NASA Astrophysics Data System (ADS)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic particles when a glacier is present upstream, the signal can be highly variable and complex, most likely the result of stochastic processes in the basin. Our analyses indicate that although particle size reflects glacier activity upstream, it is rarely the best record of glacier change and is most useful in combination with other proxies, most notably MS, color, and organic content.

  19. Degree of contamination and sources of polychlorinated biphenyls in Meandering Road Creek and Woods Inlet of Lake Worth, Fort Worth, Texas, 2004 and 2006-07

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.

    2008-01-01

    Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth that extends south from the main body of the lake. Two previous reports documented ele-vated polychlorinated biphenyl (PCB) concentrations in surficial sediment in Woods Inlet relative to those in surficial sediment in other parts of Lake Worth. This report presents the results of another USGS study, done in cooperation with the U.S. Air Force, to indicate the degree of PCB contamination of Meandering Road Creek and Woods Inlet and to identify possible sources of PCBs in Meandering Road Creek and Woods Inlet on the basis of suspended, streambed, and lake-bottom sediment samples collected there in 2004 and 2006-07. About 40 to 80 percent of total PCB concentrations (depending on how total PCB concentration is computed) in suspended sediment exceed the threshold effect concentration, a concentration below which adverse effects to benthic biota rarely occur. About 20 percent of total PCB concentrations (computed as sum of three Aroclors) in suspended sediment exceed the probable effect concentration, a concentration above which adverse effects to benthic biota are expected to occur frequently. About 20 to 30 percent of total PCB concentrations in streambed sediment exceed the threshold effect concentration; and about 6 to 20 percent of total PCB concentrations in lake-bottom (Woods Inlet) sediment exceed the threshold effect concentration. No streambed or lake-bottom sediment concentrations exceed the probable effect concentration. The sources of PCBs to Meandering Road Creek and Woods Inlet were investigated by comparing the relative distributions of PCB congeners of suspended sediment to those of streambed and lake-bottom sediment. The sources of PCBs were identified using graphical analysis of normalized concentrations (congener ratios) of 11 congeners. For graphical analysis, the sampling sites were divided into three groups with each group associated with one of the three outfalls sampled: SSO, OF4, and OF5. The variations of normalized PCB congener concentrations from Woods Inlet, from outfalls along Meandering Road Creek, and from streambed sediment sampling sites along Meandering Road Creek generally form similar patterns within sample groups, which is indicative of a common source of PCBs to each group. Overall, the variations in congener ratios indicate that PCBs in surficial lake-bottom sediment of Woods Inlet probably entered Woods Inlet primarily from Meandering Road Creek, and that runoff from AFP4 is a prominent source of PCBs in Meandering Road Creek. Sixteen of the 20 box core sites in Woods Inlet had lower PCB concentrations in the 2006 cores compared to those in the 2003 cores.

  20. INNOVATIVE TECHNOLOGY EVALUATION REPORT ...

    EPA Pesticide Factsheets

    The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the sampler?s ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Russian Peat Borer and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Russian Peat Borer was the only sampler that collected samples in the deep depth interval (4 to 11 feet below sediment surface). It collected representative and relatively uncompressed core samples of consolidated sediment in discrete depth intervals. The reference samplers collected relatively compressed samples of both consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved only for consolidated sediment samples collected by the Russian Peat Borer but for bo

  1. Reconstruction of organochlorine compound inputs in the Tagus Prodelta.

    PubMed

    Mil-Homens, Mário; Vicente, Maria; Grimalt, Joan O; Micaelo, Cristina; Abrantes, Fátima

    2016-01-01

    Twenty century time-resolved variability of riverine deposits of polychlorobiphenyls (PCBs), DDTs, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) was studied in three (210)Pb dated sediment cores collected in a depositional shelf area adjacent to the Tagus estuary (the Tagus Prodelta). The geographic and temporal distribution patterns were consistent with discharge of these organochlorine compounds (OCs) in the area associated with the Tagus mouth. Their concentrations were not correlated with the sedimentary total organic carbon. The PCB down-core profiles were dominated by CB138 and CB153 (hexa-CBs) congeners followed by CB180 (hepta-CBs). Principal Component Analysis of the congener distributions of these compounds did not define temporal down-core trends. The ratios of DDT metabolites (p,p'-DDE/p,p'-DDT) were consistent with recent DDT inputs into the environment and/or earlier applications and long-term residence in soils/sediments until these were eroded and remobilized. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Carotenoids in the Gulf of Gdansk sediments- useful markers of environmental conditions in the past

    NASA Astrophysics Data System (ADS)

    Krajewska, Magdalena; Szymczak-Żyła, Małgorzata; Kowalewska, Grażyna

    2017-04-01

    Carotenoids are a large group of natural compounds widespread in the aquatic environment. Most of carotenoids in sediments originate from phytoplankton, macroalgae, vascular plants and bacteria. Carotenoids undergo different reactions in water column and after deposition in sediments. Concentration and relative composition of pigments in sediments depend on such factors like primary production, phytoplankton taxonomy, sedimentation and accumulation rate, hydrological and post-depositional conditions. Because some pigments are unstable and can be degraded both by abiotic and biotic factors - in the presence of light, oxygen, herbivores or microorganisms activity, they provide information about conditions in water column and in sediments. They differ in stability and, due to that, carotenoids in marine sediments are indicators, not only of organic matter sources but also of pre- and post-depositional conditions. This work presents a concentration and distribution of selected carotenoids in recent (6 cores 0-20 cm) and deep (1 core, up to 400 cm) sediments of the Gulf of Gdansk- a highly eutrophic area of high primary production and high sedimentation rate. The sediments were collected during two cruises and analysed in framework of CLISED ('Climate Change Impact on Ecosystem Health- Marine Sediment Indicators') Polish- Norwegian research Project, grant no. 196128. Just after collection, the samples were frozen and kept in such a state until analysis in land laboratory. There, after extraction, carotenoids were analysed using high performance liquid chromatography (HPLC-DAD). Sediment age has been defined using C-14 dating. Sediments contained parent carotenoids, markers of the main phytoplankton groups occurring in the Baltic, e.g. diatoms, green algae and cyanobacteria. B-carotene in sediments is a better, averaged, marker of primary production than chlorophyll- a and similarly stable one as sum of chloropigments-a. Presentation will focus on cyanobacteria and their pigments record in sediments, because cyanobacterial blooms are good indicators of eutrophication and anaerobic conditions in the past. Carotenoids record in deep sediments was varied and there are periods of better or worse carotenoids preservation which proves climate changes.

  3. Subdivision of Holocene Baltic sea sediments by their physical properties [Gliederung holozaner ostseesedimente nach physikalischen Eigenschaften

    USGS Publications Warehouse

    Harff, Jan; Bohling, Geoffrey C.; Endler, R.; Davis, J.C.; Olea, R.A.

    1999-01-01

    The Holocene sediment sequence of a core taken within the centre of the Eastern Gotland Basin was subdivided into 12 lithostratigraphic units based on MSCL-data (sound velocity, wet bulk density, magnetic susceptibility) using a multivariate classification method. The lower 6 units embrace the sediments until the Litorina transgression, and the upper 6 units subdivide the brackish-marine Litorina- and post-Litorina sediments. The upper lithostratigraphic units reflect a change of anoxic (laminated) and oxic (non-laminated) sediments. By application of a numerical stratigraphic correlation method the zonation was extended laterally onto contiguous sediment cores within the central basin. Consequently the change of anoxic and oxic sediments can be used for a general lithostratigraphic subdivision of sediments of the Gotland Basin. A quantitative criterion based on the sediment-physical lithofacies is added to existing subdivisions of the Holocene in the Baltic Sea.

  4. Long-Term ENSO Variation Over the Last 20,000 Years From the Peru Continental Margin

    NASA Astrophysics Data System (ADS)

    Skilbeck, G.; Fink, D.; Gagan, M.; Rein, B.

    2006-12-01

    Three ODP Leg 201 cores from the Peru continental margin comprise highly laminated diatomaceous ooze spanning Last Glacial Maximum to present. Geochemical proxy data, layer counting and spectral analysis of red color variation suggest the layers represent interannual accumulation under the influence tropical ENSO conditions, with darker layers representing El Niño events. AMS 14-C dating (Skilbeck &Fink, 2006) of bulk sediment from Sites 201-1228 and -1229 (~11°S) and comparison with Rein et al. (2005) Core SO147-106KL (~12°S) show that where the shelf is narrow south of ~10.5°S, regionally consistent rates of sediment accumulation have occurred over the late Deglaciation and Holocene, with high rates characterising the late (0-2.0 kyrBP, ~100 cm/ka) and the early (8.5-10 kyrBP, ~80 cm/ka) Holocene. Over these intervals laminae are of interannual resolution. Further north where the shelf is broader, Holocene-Late Deglaciation sediments are thin or absent, but the Early Deglaciation is well represented. In a core from ODP Site 201-1227 (~9°S, 427m water depth), the period 15.5-17.5 kyrBP is characterised by sediment accumulation rates in excess of 300 cm/ka, and interannual laminations are again present. Spectral analysis of the instrumental record of ENSO, the SOI, shows a relative stable mode of variation with an average frequency of about 5.5 yr for the past 130 years. Analysis of our ODP cores shows that the ENSO mode appears to be relatively stable for periods of 300-500 years throughout the Holocene with frequencies varying mostly between 5 and 8 years and relatively sudden mode switches, suggesting inter alia that the instrumental record is not long enough to test predictive models of ENSO variation. Throughout the Holocene, this pattern of variation transcends the sedimentation-rate zones identified above, with the inference that changes in the rate of sedimentation have not influenced the temporal pattern. The later part of the deglaciation period (10-14 kyrBP) appears to be a relatively long period of stable ENSO with a repeat frequency between 5 and 6 years. Layer variation over the interval between 14 to 15.5 yrBP loses interannual variability and is characterised by a dominant frequency of ~11-12 yr, but this may simply reflect the low sedimentation rate during this interval. During Early Deglaciation interannual- to decadal-scale layer variability is present, with over 600 discernable laminae recognisable across the ~1600 year interval represented in Core 210-1227B. ENSO during this time has multiple interannual frequency modes ranging between 4 and 10 yr, particularly over the interval 17.2- 16.2 kyrBP, with mode switches slightly more frequent than during the Holocene at between 200 and 300 years. In addition to the interannual laminations and the centennial-scale pattern of frequency mode variation described above, there is a regular oscillatory pattern in the contrast between dark and light laminations which can be traced to parasequence-like packets of laminations on a centimetre scale, and representing variability in the decadal to centennial range. References Rein, B., A. Luckge, et al. (2005). Paleoceanography 20(PA4003): 17p. Skilbeck, C.G. &D. Fink (2005). ODP Scientific Results 201.

  5. An overview of the refinements and improvements to the USEPA’s sediment toxicity methods for freshwater sediment

    EPA Science Inventory

    Sediment toxicity tests are used for contaminated sediments, chemical registration, and water quality criteria evaluations and can be a core component of ecological risk assessments at contaminated sediments sites. Standard methods for conducting sediment toxicity tests have been...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapelle, F.H.; Zelibor, J.L. Jr.; Grimes, D.J.

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 10/sup 8/ to 10/sup 4/ bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 10/sup 6/ to 10/sup 3/ bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria inmore » these sediments suggest that hetrotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO/sub 2/ to ground water. However, the possibility that abiotic processes also produce CO/sub 2/ cannot be rules out. Estimated rates of CO/sub 2/ production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, ground water flow rates, and flow path segment lengths are in the range 10/sup -3/ to 10/sup -5/ mmol L/sup -1/ yr/sup -1/. Isotope balance calculations suggest that aquifer-generated CO/sub 2/ is much heavier isotopically ( approx. - 10 to + 5 per mil) than lignite ( approx. - 24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.« less

  7. Watershed trend analysis and water-quality assessment using bottom-sediment cores from Cheney Reservoir, south-central Kansas

    USGS Publications Warehouse

    Pope, Larry M.

    1998-01-01

    An examination of Cheney Reservoir bottom sediment was conducted in August 1997 to describe long-term trends and document the occurrence of selected constituents at concentrations that may be detrimental to aquatic organisms. Average concentrations of total phosphorus in bottom-sediment cores ranged from 94 to 674 milligrams per kilogram and were statistically related to silt- and (or) clay-size particles. Results from selected sampling sites in Cheney Reservoir indicate an increasing trend in total phosphorus concentrations. This trend is probably of nonpoint-source origin and may be related to an increase in fertilizer sales in the area, which more than doubled between 1965 and 1996, and to livestock production. Few organochlorine compounds were detected in bottom-sediment samples from Cheney Reservoir. DDT, its degradation products DDD and DDE, and dieldrin had detectable concentrations in the seven samples that were analyzed. DDT and DDD were each detected in one sample at concentrations of 1.0 and 0.65 microgram per kilogram, respectively. By far, the most frequently detected organochlorine insecticide was DDE, which was detected in all seven samples, ranging in concentration from 0.31 to 1.3 micrograms per kilogram. A decreasing trend in DDE concentrations was evident in sediment-core data from one sampling site. Dieldrin was detected in one sample from each of two sampling sites at concentrations of 0.21 and 0.22 micrograms per kilogram. Polychlorinated biphenyls were not detected in any bottom-sediment sample analyzed. Selected organophosphate, chlorophenoxy-acid, triazine, and acetanilide pesticides were analyzed in 18 bottom-sediment samples. Of the 23 pesticides analyzed, only the acetanilide herbicide metolachlor was detected (in 22 percent of the samples). Seven bottom-sediment samples were analyzed for major metals and trace elements. The median and maximum concentrations of arsenic and chromium, the maximum concentration of copper, and all concentrations of nickel in the seven samples were in the range where adverse effects to aquatic organisms occasionally occur. No time trends in trace elements were discernable in the August 1997 data.

  8. Unexpected spontaneous ignition of Late Glacial sediments from the palaeolake Wukenfurche (NE Germany)

    NASA Astrophysics Data System (ADS)

    Dräger, Nadine; Brademann, Brian; Theuerkauf, Martin; Wulf, Sabine; Tjallingii, Rik; Słowiński, Michał; Schlaak, Norbert; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    A new finely laminated sediment archive has been recovered from the palaeolake Wukenfurche, NE Germany, comprising the last Glacial to Interglacial transition. The site is located within the Eberswalde ice-marginal valley and south of the terminal moraine that was formed during the Pomeranian phase of the Weichselian glaciation. Two sediment cores were obtained from the presently swampy area in July 2014. From these individual profiles a 14.7 m long continuous composite profile has been compiled by correlation of distinct marker layers. Glacial sand deposits covered by basal peat are found at the base of the cores. A visible volcanic ash layer 6 cm above the transition from basal peat into the overlaying finely laminated lake sediments corresponds most likely to the late Allerød Laacher See Tephra (LST). Preliminary counting on core photographs of the 3.5 m thick package of reddish and black alternating laminae above the LST yields a total of ca. 2500 layer couplets. Further micro-facies analyses on large-scale thin sections will be applied to test if these couplets are of annual origin (i.e. varves). Standard preparation for large-scale thin sections involves freeze-drying (for 48 hours) of 10 cm-long sediment slabs stored in aluminum boxes. Immediately after releasing the vacuum of the freeze-dryer chamber we observed an unexpected spontaneous combustion of the sediment from a particular interval of the profile. The exothermic combustion process lasted for approximately 10 to 20 minutes during which temperatures of up to 350°C have been measured with an infrared camera. Preliminary results suggest that oxidation of iron sulfides contributes to the observed reaction. To our knowledge this is the first time that such spontaneous combustion of lake sediments after freeze-drying has been observed. Details of the combustion process and sediment characteristics will be provided. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association, grant number VH-VI-415.

  9. Lake Worth bottom sediments : A chronicle of water-quality changes in western Fort Worth, Texas, 1914-2001

    USGS Publications Warehouse

    Braun, Christopher L.; Harwell, Glenn R.

    2004-01-01

    In spring 2000, the Texas Department of Health issued a fish-consumption advisory for Lake Worth, Tex., because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish (Texas Department of Health, 2000). In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey (USGS) collected 21 surficial samples and three deeper gravity core samples from the sediment deposited at the bottom of Lake Worth. The purpose of that study was to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of selected metals and hydrophobic organic contaminants (HOCs) to Lake Worth. Hydrophobic (literally “water fearing”) contaminants tend to chemically adsorb to soils and sediments. Fifteen of the top 20 contaminants on the Agency for Toxic Substances and Disease Registry (2001) priority list of hazardous substances are hydrophobic. Chemical analysis of sediment cores is one method that can be used to determine trends in HOCs such as PCBs. As sediments accumulate in lakes and reservoirs, they generate a partial historical record of water quality. This fact sheet describes the collection of sediment cores, age-dating methods, and historical trends in PCBs in Lake Worth sediments. The fact sheet also describes the spatial distribution of PCBs in surficial sediments and concludes with objectives for the second phase of data collection and the approach that will be used to achieve these objectives. The USGS published a comprehensive report on the first phase of the study (Harwell and others, 2003). Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth in Tarrant County. In 1914, the City of Fort Worth completed the reservoir to serve as a municipal water supply. Lake Worth has a surface area of 13.2 square kilometers and a storage capacity of 47 million cubic meters. The drainage area to the reservoir is 5,350 square kilometers(Ruddy and Hitt, 1990). The surrounding area to the south and east is primarily urban, and the area to the north and northwest is mostly residential.

  10. Assessing overland sediment transport to the Apalachicola River/Bay in Florida

    NASA Astrophysics Data System (ADS)

    Smar, D. E.; Hagen, S.; Daranpob, A.; Passeri, D.

    2011-12-01

    An ongoing study in Franklin County, Florida is focused on classifying the mechanisms of sediment transport from the overland areas to eventual deposition in the Apalachicola River and surrounding estuaries. Sediment cores and water column samples were collected at various locations along the Apalachicola River, its tributaries, and distributaries over a two-week period during the wet season. A preliminary particle size distribution analysis of the sediment cores and water column samples demonstrates decreasing particle sizes as the river and wetlands progress toward the ocean. Daily water samples from the mouth of the Apalachicola River and two distributaries reveal fluctuating total suspended solid (TSS) concentrations. To understand these deviations, flow rate and water level at each location is inspected. Because the nearest USGS gage is approximately 16 miles upstream from these sites, investigation of the hydrodynamic influences of sediment transport is conducted by developing a hydrodynamic model simulating river flow and tides in the Apalachicola River and bay system. With spatially accurate flow rates and water levels, an attempt can be made to correlate flow rate with fluctuating TSS concentrations. Precipitation events during the sampling period also support spikes in the TSS concentrations as expected. Assessing sediment transport to the river/bay system will lead to a better understanding of the regression or accretion of the river's alluvial fan and the marsh platform. High flow periods following extreme rain events (which are expected to intensify under global climate change) transport more sediment downstream, however, the interaction with tidal and sea level effects are still being analyzed. With rising sea levels, it is expected that the alluvial fan will recede and wetland areas may migrate inland gradually transforming existing dry lands such as pine forests into new wetland regions. Future work will include an analysis of the tidal cycle during the sampling period to more accurately classify fluctuation of TSS concentration in the downstream samples. The data collection process and laboratory analysis will also be repeated in the dry season, and subsequent years to observe temporal trends.

  11. Exploring the potential of hyper-spectral imaging for the biogeochemical analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech

    2014-05-01

    Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative concentrations of chlorin pigments within individual varve years. In a next step absolute concentrations of chlorins derived from HPLC measurements have been calibrated to the spectral data using a linear regression model. This results in a very high-resolution dataset of absolute sedimentary pigment concentrations. In a second example µXRF measurements are used to validate a spectral index for clay mineral detection.

  12. Comparative analysis of hydroacoustic lakebed classification in three different Brazilian reservoirs

    NASA Astrophysics Data System (ADS)

    Hilgert, Stephan; Sotiri, Klajdi; Fuchs, Stephan

    2017-04-01

    Until today, the surface of artificial water bodies around the world reached an area of around 500,000 km2 equaling one third of the surface of natural water bodies. Most of the constructed waster bodies are reservoirs with a variety of usage purposes, reaching from drinking water supply, electricity production, flood protection to recreation. All reservoirs have in common, that they disrupt riverine systems and their biochemical cycles and promote the accumulation of sediments upstream of the dam. The accumulated sediments contain organic matter, nutrients and/or pollutants which have a direct influence on the water quality within the impoundment. Consequently, detailed knowledge about the amount and the quality of accumulated sediments is an essential information for reservoir management. In many cases the extensive areas covered by the impoundments make it difficult and expensive to assess sediment characteristics with a high spatial resolution. Spatial extrapolations and mass balances based on point information may suffer from strong deviations. We combined sediment point measurements (core and grab sampling) with hydroacoustic sediment classification in order to precisely map sediment parameters. Three different reservoirs (Vossoroca, Capivari, Passauna) in the south-east of Brazil were investigated between 2011 and 2015. A single beam echosounder (EA 400, Kongsberg) with two frequencies (200 & 38 kHz) was used for the hydroacoustic classification. Over 50 core samples and 30 grab samples were taken for physical and chemical analysis to serve as ground truthing of the hydroacoustic measurements. All three reservoirs were covered with dense measurement transects allowing for a lakebed classification of the entire sediment surface. Significant correlations of physical parameters like grain size distribution and density as well chemical parameters like organic carbon content and total phosphorous with a selection of hydroacoustic parameters were obtained. They enabled the derivation of empiric models used for the extrapolation of the sediment point information to the entire reservoir surface. With the obtained spatial information carbon and phosphorous budgets were calculated. Former stock calculations, which were based solely on point sampling, could be improved The results show that the method is transferable to different reservoirs with varying characteristics in regard of their catchments, morphology and trophic state.

  13. Sediment composition and texture of Pleistocene deep-sea turbidites in the eastern Nankai Trough gas hydrate field

    NASA Astrophysics Data System (ADS)

    Egawa, K.; Nishimura, O.; Izumi, S.; Ito, T.; Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    In the 2012 JOGMEC/JAPEX pressure coring operation, we collected a totally 60-m-long core sample from the interval of gas hydrate concentration zone at the planned site of the world's first offshore production test of natural gas hydrates in the eastern Nankai Trough area. In this contribution, the cored sediments were sedimentologically, mineralogically, and paleontologically analyzed to know sediment composition and texture of reservoir formation, which are known to provide useful geological information to discuss sedimentation, diagenesis, and permeability. The targeted interval belongs to a Middle Pleistocene deep-sea turbidite sequence distributed around the Daini Atsumi Knoll, east of the Kumano forearc basin, and consists of the lower (thick sand-dominant), middle (thin-bedded sand-and-mud alteration), and upper (mud-dominant) formations in ascending order. X-ray powder diffraction analysis and scanning electron microscopic observation revealed that pore space in turbidite sands is commonly filled with clay fractions (mostly phyllosilicates) in the lower formation. Such a pore filling of clay fractions is reflected in particle size distribution showing high standard deviation and clay content, and thus is expected to have an impact on permeability. There is the older Pliocene to Early Pleistocene fossil coccolith record in the middle formation, indicating sediment reworking probably induced by submarine landslide. The coexistence of authigenic siderite and framboidal pyrite in the middle formation strongly suggests anoxic microbial activity under methane oxidation and sulfide reduction conditions at least before the hydrate cementation. This contribution was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).

  14. Modeling and sediment study in the watershed Medjerda, Tunisia

    NASA Astrophysics Data System (ADS)

    Kotti, Fatma; Mahé, Gil; Habaieb, Hamadi; Dieulin, Claudine; Hermassi, Taoufik

    2015-04-01

    Water projects have experienced a major expansion in the late 1980s, and we now have sufficient perspective to assess their actual performance and their socio-environmental impacts (Payan, 2007). This study focuses on the great watershed of Tunisia namely Medjerda which has an area of about 23,600 km2. In the main river of Medjerda some dams have been created for water retention: Sidi Salem Dam (the largest in the country), El Aroussia dam, and others on tributaries Mellegue Bouhertma, Siliana, Beni Mtir, Lakhemess and Kasseb. Since the construction of dams, essentially Sidi Salem and Siliana, the Medjerda river has undergone significant changes in morphology. The monitoring of the flow of the major hydrological stations in the pre-estuarine zone downstream from Sidi Salem dam is used to measure the impact of the constructions on hydrological regimes: reduction in average rates, reduction in volumes sold, altered seasonal pattern, and most of all reduction of the sediment transport, which the highest values are related to extreme events. In this context, the balance of sediment monitoring appears indispensable for the quantification of sediment transport at the outlet. Our approach is to calculate a specific flow rate relative to the area of the basin for every structure built in the Medjerda watershed, from the information available on transport and sedimentation rates known, combined with contours of each sub watershed. There are about ten dams spread throughout Medjerda watershed. The methodology is primarily developed for the Mellegue dam because we have at this station a long data set from 1955 until 2005. Other stations will be studied later on. The main objective of this study is to provide a series of annual variation of theoretical contributions. These calculated values will be compared with the actual measured sedimentary series. Two cores in the sediments of the pre-estuarine area are performed to determine past variability in sediment inputs over a time series than should be about one century. The cores' analysis results show a succession of sedimentary layers that likely correspond to different flood deposits that succeeded on this site, and especially the datation of the cores shows that the selected area is a very important deposition area. This sedimentary study will help estimate the sediment dynamics to major estuaries, which is poorly known for most of the rivers of Maghreb. The reduction of the sediment supply to the sea is tipped as a major factor to be taken into account for a better understanding of the dynamics of coastal areas in the context of global climate change and sea level rise. Keywords: sediment core, Medjerda watershed, dam, hydrology, modeling, Tunisia

  15. An innovative piston corer for large‐volume sediment samples

    PubMed Central

    Haselmair, Alexandra; Stachowitsch, Michael; Zuschin, Martin

    2016-01-01

    Abstract Coring is one of several standard procedures to extract sediments and their faunas from open marine, estuarine, and limnic environments. Achieving sufficiently deep penetration, obtaining large sediment volumes in single deployments, and avoiding sediment loss upon retrieval remain problematic. We developed a piston corer with a diameter of 16 cm that enables penetration down to 1.5 m in a broad range of soft bottom types, yields sufficient material for multiple analyses, and prevents sediment loss due to a specially designed hydraulic core catcher. A novel extrusion system enables very precise slicing and preserves the original sediment stratification by keeping the liners upright. The corer has moderate purchase costs and a robust and simple design that allows for a deployment from relatively small vessels as available at most marine science institutions. It can easily be operated by two to three researchers rather than by specially trained technicians. In the northern Adriatic Sea, the corer successfully extracted more than 50 cores from a range of fine mud to coarse sand, at water depths from three to 45 m. The initial evaluation of the cores demonstrated their usefulness for fauna sequences along with heavy metal, nutrient and pollutant analyses. Their length is particularly suited for historical ecological work requiring sedimentary and faunal sequences to reconstruct benthic communities over the last millennia. PMID:28111529

  16. Non-Destructive X-ray Computed Tomography (XCT) of Gas Hydrate Bearing Fractures in Marine Sediment

    NASA Astrophysics Data System (ADS)

    Oti, E.; Buchwalter, E.; Cook, A.; Crandall, D.

    2017-12-01

    Hydrate-filled fractures are found in many environments, both related to methane vents and constrained to lithologic layers; how hydrate filled fractures form in layered environments is not well understood. We focus on understanding hydrate origins and fracture formation by examining hydrate-bearing fractures in conventional cores taken from Gulf of Mexico sites from JIP Leg 1 and UT-GOM, Keathley Canyon 151. There are two main methane sources available for hydrate formation. The first is the hydrocarbon reservoir underlying the Gulf sediments. This reservoir formed when deeply buried organic matter of high molecular weight was exposed to high temperature and pressures and degraded. A second source is the biogenesis of organic material, which occurs when microbial activity breaks down organic materials. Biogenic methane is more enriched in lighter carbon isotopes as the reduction or fermentation reactions preferentially consume lighter carbon isotopes. As a result, we hypothesize that sediment surrounding biogenically derived methane will have heavier carbon isotopes when compared to non-host sediment, due to the consumption of the lighter carbon isotopes during methanogenesis. We use non-destructive X-ray Computed Tomography (XCT) scanning to visualize and identify hydrate-bearing fractures. The presence of hydrate fractures is further confirmed with a salinity analysis, as hydrate dissociation freshens the pore water and lowers the salinity. After hydrate fracture location is inferred, carbon isotope analysis is used to identify hydrocarbon source. XCT scans of Keathley Canyon core JIP-1 17H-4 revealed 10 total fractures, five of which XCT and salinity analysis indicated as formerly containing hydrate. All ten fractures, in addition to background sediment, underwent a carbon isotope analysis in which organic isotopes were measured. In the background sediment and the non hydrate-bearing fractures, DOC values were relatively light, with dC13 percentages ranging from -27.8% to -30.8%. In the five hydrate fracture regions, DOC was comparatively heavy, with DOC dC13 values ranging from -23.2% to -30.3%. These values suggest that biogenic methane was formed adjacent to the fracture and likely migrated into the hydrate filled fracture.

  17. A giant sediment trap in the Florida keys

    USGS Publications Warehouse

    Shinn, E.A.; Reich, C.D.; Locker, S.D.; Hine, A.C.

    1996-01-01

    Aerial photography, high-resolution seismic profiling, coring and jet probing have revealed a large sediment-filled sinkhole in the Key Largo National Marine Sanctuary off Key Largo, Florida. The 600-m-diameter feature straddles coral reef and carbonate-sand facies and contains >55 m of marine lime sand and aragonite mud. Bulk 14C age determinations of mud from a 30- m sediment core indicate infilling rates exceeding 20 m/ka between 3 and 5.6 ka. The total thickness and nature of the sediment near the base of the sinkhole are not known.

  18. Facies-dependent variations in sediment physical properties on the Mississippi River Delta Front, USA: evidence for depositional and post-depositional processes

    NASA Astrophysics Data System (ADS)

    Smith, J. E., IV; Bentley, S. J.; Courtois, A. J.; Obelcz, J.; Chaytor, J. D.; Maloney, J. M.; Georgiou, I. Y.; Xu, K.; Miner, M. D.

    2017-12-01

    Recent studies on Mississippi River Delta have documented sub-aerial land loss, driven in part by declining sediment load over the past century. Impacts of changing sediment load on the subaqueous delta are less well known. The subaqueous Mississippi River Delta Front is known to be shaped by extensive submarine mudflows operating at a range of temporal and spatial scales, however impacts of changing sediment delivery on mudflow deposits have not been investigated. To better understand seabed morphology and stratigraphy as impacted by plume sedimentation and mudflows, an integrated geological/geophysical study was undertaken in delta front regions offshore the three main passes of the Mississippi River Delta. This study focuses on stratigraphy and physical properties of 30 piston cores (5-9 m length) collected in June 2017. Coring locations were selected in gully, lobe and prodelta settings based on multibeam bathymetry and seismic profiles collected in mid-May 2017. Cores were analyzed for density, magnetic susceptibility, P-wave speed, and resistivity using a Geotek multi sensor core logger; here, we focus on density data. Core density profiles generally vary systematically across facies. Density profiles of gully cores are nearly invariant with some downward stepwise increases delineating units meters thick, and abundant gaps likely caused by gas expansion. Lobe cores generally have subtle downward increases in density, some stepwise density increases, and fewer gaps. Prodelta cores show more pronounced downward density increases, decimeter-scale peaks and valleys in density profiles, but stepwise increases are less evident. We hypothesize that density profiles in gully and lobe settings (uniform profiles except for stepwise increases) reflect remolding by mudflows, whereas density variations in prodelta settings instead reflect grain size variations (decimeter-scale) and more advanced consolidation (overall downward density increase) consistent with slower sediment deposition. These hypotheses will be evaluated by a more detailed study of seismic stratigraphy and core properties, including geochronology, grain size distribution and X-radiographic imaging, to further relate important sedimentary processes with resulting deposits.

  19. Evaluating Reflectance Spectroscopy as a Method of Rapid Cryptotephra Identification using Component Analysis: Tephrochronology of the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Fisher, E. A.

    2015-12-01

    The reactivation of Montserrat's South Soufrière-Soufrière Hills volcanic complex has impelled the creation of tephrochronologic records in the Lesser Antilles Arc in order to assess volcanic hazards to human safety. Developing an eruptive history of Montserrat by recording tephra layers preserved in marine sediment is hindered by the lack of a rapid, non-destructive method for detecting cryptotephra, tephra deposits invisible to the naked eye, in marine cores. Identifying cryptotephra is important because some cryptotephra layers represent primary tephra emplacement from small proximal eruptions, events that if excluded from a volcanic record could mischaracterize a volcano's eruptive frequency over time. VSWIR [0.4-2.5 μm] reflectance spectroscopy is a candidate for rapid, non-destructive cryptotephra detection in marine sediment cores because it can detect tephra in hemipelagic sediment using summary parameters sensitive to iron content and clay minerals (McCanta et al. 2014, AGU abstract OS53D-1086). Spectra from marine cores U1396C-1H-1A through U1396C-1H-5A, collected during International Ocean Discovery Program (IODP) mission 340, reveal 29 potential cryptotephra layers (McCanta et al. 2014, AGU abstract OS53D-1086). This study seeks to determine the effectiveness of reflectance spectroscopy at identifying cryptotephra by measuring the abundance of volcanic materials (i.e., glass shards/vesicular pumice and non-vesicular lava clasts) in these layers ( LeFriant et al. 2008; Cassidy et al. 2014). Component analysis was conducted on select core intervals with both cryptotephra-identifying peaks in reflectance parameters, and tephra-indicative peaks in core scanning XRF and magnetic susceptibility parameters (McCanta et al. 2014, AGU abstract OS53D-1086). Samples in this subset show abundances of non-vesicular lava and vesicular pumice clasts above expected background abundances, supporting the existence of cryptotephra at these locations (Fig. 1; LeFriant et al. 2008; Cassidy et al. 2014). This suggests that reflectance spectroscopy is an effective means of identifying cryptotephra in situ, and when employed in concert with other core scanning techniques could facilitate widespread rapid identification of cryptotephra in future tephrochronology studies.

  20. Radiological and multi-element analysis of sediments from the Proserpina reservoir (Spain) dating from Roman times.

    PubMed

    Baeza, A; Guillén, J; Ontalba Salamanca, M A; Rodríguez, A; Ager, F J

    2009-10-01

    The Proserpina dam was built in Roman times to provide drinking water to Emerita Augusta (today's Mérida in SW Spain). During maintenance work, a sediment core was extracted, offering an excellent opportunity to analyze the historical environmental impacts of the dam and its reservoir over the 2000 years since Roman times. In order to establish an accurate chronology, (14)C ages were determined by accelerator mass spectrometry (AMS). Core samples were assayed for their content in uranium and thorium series isotopes, (40)K, and the anthropogenic radionuclides (137)Cs, (90)Sr, and (239+240)Pu. Potassium-40 presented the highest activity level and was not constant with depth. The uranium and thorium series were generally in equilibrium, suggesting there had been no additional input of natural radionuclides. The presence of (137)Cs was only found in relation with the global fallout in the early 1960s. Multi-element assays were performed using the PIXE and PIGE techniques. Some variations in the multi-element concentrations were observed with depth, but the sediment core could be considered as clean, and no presumptive anthropogenic pollutants were found. Nevertheless, an unusually high Zn content was detected at depths corresponding to pre-Roman times, due to geological anomalies in the area.

  1. Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China.

    PubMed

    Peng, Xianzhi; Xiong, Songsong; Ou, Weihui; Wang, Zhifang; Tan, Jianhua; Jin, Jiabin; Tang, Caiming; Liu, Jun; Fan, Yujuan

    2017-02-05

    A variety of personal care products have been classified as emerging contaminants (ECs). Occurrence, fate, spatial and vertical profiles of 13 ultraviolet absorbents, triclocarban (TCC) and its dechlorinated products, triclosan (TCS), 2-phenylphenol and parabens were investigated in riverine and estuarine sediment of the Pearl River catchment, China. Bisphenol A (BPA), a widely applied plasticizer, was also investigated. The ECs were widely present in the bed sediment. TCC was the most abundant with a maximum concentration of 332ngg -1 dry weight. The other prominent ECs included BPA, TCS, octocrylene, and benzotriazole UV stabilizers UV326 and UV328. Treated wastewater effluent was the major source of the ECs in the riverine sediment. TCC, BPA, TCS, methyparaben, UV531, UV326, and UV328 were also detected throughout the estuarine sediment cores, indicating their persistence in the sediment. Temporal trends of the ECs in the sediment cores reflected a combined effect of industrial development, population growth, human life quality improvement, and waste treatment capacity in the Pearl River Delta over the last decades. TCC dechlorination products were frequently detected in the bed sediment with higher levels near treated effluent outlets but only occasionally observed in the sediment cores, suggesting insignificant in-situ TCC dechlorination in the sediment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise

    USGS Publications Warehouse

    Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A.

    2008-01-01

    In April and May 2005, cores were acquired and sub-sampled for gases in lease blocks Atwater Valley 13 and 14 and Keathley Canyon 151 during deep subseafloor drilling conducted as part of the JIP study of gas hydrates in the northern Gulf of Mexico. Sample types included sediment headspace gas, free gas derived from sediment gas exsolution, and gas exsolution from controlled degassing of pressurized cores. The gases measured both onboard and in shore-based labs were nitrogen, oxygen, hydrogen sulfide, carbon dioxide, and the hydrocarbons methane through hexane. The presence of seafloor mounds, seismic anomalies, a shallow sulfate-methane interface, and similar gas compositions and isotopic compositions near the seafloor and at depth suggest an upward flux of methane at both sites. Sediment gases at the Atwater Valley sites, where seafloor mounds and adjacent sediments were cored, strongly suggest a microbial source of methane, with very little thermogenic gas input. Sediment gas from all cores contained from about 96 to 99.9% methane, with the balance composed primarily of carbon dioxide. Methane to ethane ratios were greater than 1000, and often over 10,000. Gases from cores at Keathley Canyon were similar to those at Atwater Valley, however, deeper cores from Keathley Canyon contained more ethane, propane, and butane suggesting mixing with minor concentrations thermogenic gas. The isotopic composition of methane, ethane, and carbon dioxide were measured, and ??13C values range from -84.3 to -71.5???, -65.2 to -46.8???, and -23.5 to -3.0???, respectively, all consistent with microbial gas sources, early diagenesis of organic matter and perhaps biodegradation of petroleum. The presence of deep microbial gas at these sites here and elsewhere highlights a potentially significant, predominantly microbial gas source in the northern Gulf of Mexico.

  3. Geoacoustic Characterization of the Mud Drape at the New England Mud Patch

    NASA Astrophysics Data System (ADS)

    Reed, A. H.

    2016-02-01

    The New England Mud Patch is an extensive deposit of fine-grained sediments that extends from an area south of Cape Cod, MA to south of Montauk Point Long Island, NY out on the continental shelf in water depths of 60 to 90 meters. The mud patch has a remarkable accumulation of up to a 13 meter thick sequence of mud that overlays a transgressive surface of Pleistocene Age and then thins out on the periphery where surficial sediments convert from mud to sand and sand/gravel. The deposit likely accumulated in this region due to the coalescing of shelf currents that had oppositional flow. This work focuses on a section of the mud patch that is centered over the thickest portion of mud and extends east-west for 30 km and north south for 10 km. Gravity cores were collected throughout this region and the cores penetrated the upper 2-4 m of mud at 28 different sites with multiple cores collected in several locations. The mud thickness in these regions exceeded the core barrel length, therefore the cores did not penetrate into the basal sand sediment layer, a relict transgressional horizon, which displays prominently in the acoustic data for this selected region. These cores were evaluated for compressional sound speed (averaging 1480 m/s) and density (1580 kg/m3) and found to be largely homogeneous and similar throughout the study area. The largest source of inhomogeneity was due to dispersed shell hash and disarticulated bivalves, but these inclusions represent minor components in the total sediment volume. The overlying sediment that characterizes the New England Mud Patch can be readily classified as mud, silty mud, or sandy-silty mud. This fine-grained sediment deposit reflects upon the low-energy nature of the hydrodynamics within this region.

  4. Trace elements and organic compounds in sediment and fish tissue from the Great Salt Lake basins, Utah, Idaho, and Wyoming, 1998-99

    USGS Publications Warehouse

    Waddell, Kidd M.; Giddings, Elise M.

    2004-01-01

    A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently.Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s.The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining, including sites on Little Cottonwood Creek in the Jordan River basin, Silver Creek in the Weber River basin, and the Weber River below the confluence with Silver Creek. There was significant correlation of lead concentrations in streambed sediment and fish tissue, but other trace elements did not correlate well. Streambed sediment and fish tissue collected from sites in the Bear River basin, which is predominantly rangeland and agriculture, generally had low concentrations of most elements.Sediment-quality guidelines were used to assess the relative toxicity of streambed-sediment sites to aquatic communities. Sites affected by mining exceeded the Probable Effect Concentration (PEC), the concentration at which it is likely there will be a negative effect on the aquatic community, for arsenic, cadmium, copper, lead, silver, mercury, and zinc. Sites that were not affected by mining did not exceed these criteria. Concentrations of trace elements in samples collected from the Great Salt Lake Basins study unit (GRSL) are high compared to those of samples collected nationally with the NAWQA program. Nine of 15 streambed-sediment samples and 11 of 14 fish-tissue samples had concentrations of at least one trace element greater than the concentration of 90 percent of the samples collected nationally during 1993-2000.Organic compounds that were examined in streambed sediment and fish-tissue samples also were examined in bed-sediment cores. A bed-sediment core from Farmington Bay of Great Salt Lake showed an increase in total polycyclic aromatic hydrocarbon (PAH) concentrations coincident with the increase in population in Salt Lake Valley, which drains into this bay. Analysis of streambed-sediment samples showed that the highest concentrations of PAHs were detected at urban sites, including two sites in the lower Jordan River (the Jordan River flows into Farmington Bay), the Weber River at Ogden Bay, and the Provo River near Provo. Other organic compounds detected in streambed sediment in the lower Jordan River were PCBs, DDT compounds, and chlordane compounds.Organic compounds were detected more frequently in fish tissue than in streambed sediment. Chlordane compounds and PCBs were detected more frequently at urban sites. DDT compounds were detected at 13 of 15 sites including urban and agricultural sites. Concentrations of total DDT in fish tissue exceeded the guideline for protection of fish-eating wildlife at two urban sites. The concentration of organic compounds in the GRSL study unit is low compared with that of samples collected nationally.

  5. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  6. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.

  7. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  8. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    NASA Astrophysics Data System (ADS)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not found in the modern samples, suggesting that additional sampling from dry-grassy meadows is required to verify the presence of this NPP in this kind of environment. The comparison between fossil and modern records of pollen and NPPs provided crucial information in validating the interpretation of 8000 years of climate and vegetation history in the Great Basin.

  9. The Late Pleistocene Contourites on Ceara Rise: Stratigraphy, Sedimentology and Paleoceanography

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Murdmaa, I.; Borisov, D.; Seitkalieva, E.; Ovsepyan, E.

    2016-12-01

    The study of sediment cores obtained during the cruises 35 (2012) and 50 (2015) of RV Akademic Ioffe from the Ceara Rise in the western tropical Atlantic strongly supports a significant influence of bottom (contour) currents on the Late Quaternary sedimentation. Seismic evidence of contourites in the study area (migrating contourite sediment waves, furrows) was previously described by Kumar and Embley (1977) and Curry et al. (1995). Widespread distribution of seismic waves on the rise and adjacent areas was suggested by Murdmaa et al (2014) based on the results of high-resolution seismic profiling with SES-2000 deep (4-5 kHz) in 2012. Our sediment cores recovered intercalation of bioturbated clays and silty clays with thin linear or wavy sand and silt layers and lenses implying strong bottom current control on sedimentation. The stratigraphic frame of the reference core AI-3426 retrieved near the summit of the Ceara Rise, at the water depth of 3046 m is based on the foraminiferal (Globorotalia menardii zones), oxygen isotope and AMS-14C data. The core recovered sediments of the last 140 ka with very rich and well-preserved tropical planktic foraminiferal assemblages. G. menardii is common within MIS 1 and 5 and is almost absent in MIS 2-4 and upper MIS 6. The abundance of benthic foraminifers is rather low. However, dominance of Globocassidulina subglobosa in benthic assemblages likely indicates a moderate bottom-current activity on the Ceara Rise during the last glacial. The other 4-5m long sediment cores collected along the seismic profile from the northern and southern slopes demonstrate the similar contourite sedimentological features and insignificant reworking of the Neogene foraminiferal species as inferred from the core AI-3426 along with the significant variations in foraminiferal preservation during the Pleistocene. The study is supported by the projects RSF 14-50-00095, RFBR 14-05-00744 and RFBR 16-35-60111, and Program I3P by RAS.

  10. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2015-06-01

    A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.

  11. Arsenic geochemistry of alluvial sediments and pore waters affected by mine tailings along the Belle Fourche and Cheyenne River floodplains

    USGS Publications Warehouse

    Pfeifle, Bryce D.; Stamm, John F.; Stone, James J.

    2018-01-01

    Gold mining operations in the northern Black Hills of South Dakota resulted in the discharge of arsenopyrite-bearing mine tailings into Whitewood Creek from 1876 to 1977. Those tailings were transported further downstream along the Belle Fourche River, the Cheyenne River, and the Missouri River. An estimated 110 million metric tons of tailings remain stored in alluvial deposits of the Belle Fourche and Cheyenne Rivers. Pore-water dialysis samplers were deployed in the channel and backwaters of the Belle Fourche and Cheyenne Rivers to determine temporal and seasonal changes in the geochemistry of groundwater in alluvial sediments. Alluvial sediment adjacent to the dialysis samplers were cored for geochemical analysis. In comparison to US Environmental Protection Agency drinking water standards and reference concentrations of alluvial sediment not containing mine tailings, the Belle Fourche River sites had elevated concentrations of arsenic in pore water (2570 μg/L compared to 10 μg/L) and sediment (1010 ppm compared to < 34 ppm), respectively. Pore water arsenic concentration was affected by dissolution of iron oxyhydroxides under reducing conditions. Sequential extraction of iron and arsenic from sediment cores indicates that substantial quantities of soluble metals were present. Dissolution of arsenic sorbed to alluvial sediment particles appears to be affected by changing groundwater levels that cause shifts in redox conditions. Bioreductive processes did not appear to be a substantial transport pathway but could affect speciation of arsenic, especially at the Cheyenne River sampling sites where microbial activity was determined to be greater than at Belle Fourche sampling sites.

  12. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century. Copyright © 2016. Published by Elsevier Ltd.

  14. Historical contributions of phosphorus from natural and agricultural sources and implications for stream water quality, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Milligan, Chad R.; Mau, David Phillip

    2002-01-01

    An examination of soil cores collected from 43 nonagricultural coring sites in the Cheney Reservoir watershed of south-central Kansas was conducted by the U.S. Geological Survey in September 1999. The cores were collected as part of an ongoing cooperative study with the city of Wichita, Kansas. The 43 sites (mostly cemeteries) were thought to have total phosphorus concentrations in the soil that are representative of natural conditions (unaffected by human activity). The purpose of this report is to present the analysis and evaluation of these soil cores, to quantify the phosphorus contributions to Cheney Reservoir from natural and agricultural sources, and to provide estimates of stream-water-quality response to natural concentrations of total phosphorus in the soil. Analysis of soil cores from the 43 sites produced natural concentrations of total phosphorus that ranged from 74 to 539 milligrams per kilogram with a median concentration of 245 milligrams per kilogram in 2-inch soil cores and from 50 to 409 milligrams per kilogram with a median concentration of 166 milligrams per kilogram in 8-inch soil cores. Natural concentrations of total phosphorus in soil were statistically larger in samples from coring sites in the eastern half of the watershed than in samples from coring sites in the western half of the watershed. This result partly explains a previously determined west-to-east increase in total phosphorus yields in streams of the Cheney Reservoir watershed. A comparison of total phosphorus concentrations in soil under natural conditions to the historical mean total phosphorus concentration in agriculturally enriched bottom sediment in Cheney Reservoir indicated that agricultural activities within the watershed have increased total phosphorus concentrations in watershed soil that is transported in streams to about 2.9 times natural concentrations. Retention efficiencies for phosphorus and sediment historically transported to Cheney Reservoir were calculated at 92 and 99 percent, respectively. Most of the phosphorus was retained in bottom sediment. Sediment accumulation in Cheney Reservoir was less than reservoir design-life specifications on the basis of the age of the reservoir. Estimates of mean total phosphorus concentrations for selected streams in the Cheney Reservoir watershed under natural concentrations of total phosphorus in soil and a historic set of watershed conditions indicate that water from two of the five streamflow sampling sites would not meet the total phosphorus water-quality goal of 0.10 milligram per liter established by the Cheney Reservoir Watershed Task Force Committee. These results imply that the water-quality goal for total phosphorus in some streams of the watershed may not be met simply by reducing the amount of phosphorus applied. Instead, meeting the goal could involve a combination of approaches-for example, reducing the agricultural distribution of phosphorus and implementing changes in watershed activities to mitigate phosphorus movement to surface water.

  15. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez-García, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Renteria-Villalobos, M.

    2008-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. ²³²Th-series, ²³⁸U-series, ⁴⁰K and ¹³⁷Cs activity concentrations (AC, Bq kg⁻¹) were determined by gamma spectrometry with a high purity Ge detector. ²³⁸U and ²³⁴U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating ofmore » core sediments was performed applying CRS method to ²¹⁰Pb activities. Results were verified by ¹³⁷Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High ²³⁸U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) ²³⁴U/²³⁸U and ²³⁸U/²²⁶Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. ²³²Th/²³⁸U, ²²⁸Ra/²²⁶Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.« less

  16. Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea: influencing factors, transport and implications.

    PubMed

    Zeng, Lixi; Zhao, Zongshan; Li, Huijuan; Wang, Thanh; Liu, Qian; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin

    2012-09-18

    Short chain chlorinated paraffins (SCCPs) are high production volume chemicals in China and found to be widely present in the environment. In this study, fifty-one surface sediments and two sediment cores were collected from the East China Sea to study their occurrence, distribution patterns and potential transport in the marginal sea. SCCPs were found in all surface sediments and ranged from 5.8 to 64.8 ng/g (dry weight, d.w.) with an average value of 25.9 ng/g d.w. A general decreasing trend with distance from the coast was observed, but the highest value was found in a distal mud area far away from the land. The C10 homologue was the most predominant carbon chain group, followed by C11, C12, and C13 homologue groups. Significant linear relationship was found between total organic carbon (TOC) and total SCCP concentrations (R(2) = 0.51, p < 0.05). Spatial distributions and correlation analysis indicated that TOC, riverine input, ocean current, and atmospheric deposition played an important role in controlling SCCP accumulation in marine sediments. Vertical profiles of sediment cores showed that SCCP concentrations decreased from surface to the depth of 36 cm, and then slightly increased again with depth, which showed a significant positive correlation with TOC and chlorine contents (Cl%). The results suggest that SCCPs are being regionally or globally distributed by long-range atmospheric or ocean current transport.

  17. ECOLOGICAL RISKS OF DIOXINS IN LAKE ONTARIO: A TALE OF TWO SEDIMENT CORES

    EPA Science Inventory

    Sediment box cores have frequently been used to determine organochlorine chemical loading histories of lakes and reservoirs. 137Cs and 210Pb radionuclide dating techniques are employed synchronously with chemical analyses of the contaminants for thin sections extruded from adjace...

  18. Sedimentological, mineralogical, and geochemical results from surface sediments and the sediment record from Site 2 of the ICDP drilling project at Lake Towuti, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.

    2017-12-01

    More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement ( 30 m) that were formed during the past 50 cal kyr. In this period, the data reflect significant climatic and environmental changes, in particular in precipitation and lake level. These changes seem to be coupled to prominent paleoclimatic events.

  19. Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Pagani, Mark; Eglinton, Timothy I.; Brenner, Mark; Hodell, David A.; Curtis, Jason H.; Ma, Keith F.; Breckenridge, Andy

    2014-09-01

    Sedimentary records of plant-wax hydrogen (δDwax) and carbon (δ13Cwax) stable isotopes are increasingly applied to infer past climate change. Compound-specific radiocarbon analyses, however, indicate that long time lags can occur between the synthesis of plant waxes and their subsequent deposition in marginal marine sediments. The influence of these time lags on interpretations of plant-wax stable isotope records is presently unconstrained, and it is unclear whether such time lags also affect lacustrine sediments. We present compound-specific radiocarbon (14Cwax) data for n-alkanoic acid plant waxes (n-C26 to n-C32) from: (1) a sediment core from Lake Chichancanab, Yucatan Peninsula, Mexico, (2) soils in the Lake Chichancanab catchment, and (3) surface sediments from three other lakes in southeastern Mexico and northern Guatemala. 14Cwax ages in the surface sediments are consistently older than modern, and may be negatively correlated with mean annual precipitation and positively correlated with lake catchment area. 14Cwax ages in soils surrounding Lake Chichancanab increase with soil depth, consistent with deep, subsoil horizons being the primary source of lacustrine aged plant waxes, which are likely delivered to lake sediments through subsurface transport. Plant waxes in the Lake Chichancanab core are 350-1200 years older than corresponding ages of bulk sediment deposition, determined by 14C dates on terrestrial plant macrofossils in the core. A δDwax time series is in closer agreement with other regional proxy hydroclimate records when a plant-wax 14C age model is applied, as opposed to the macrofossil-based core chronology. Inverse modeling of plant-wax age distribution parameters suggests that plant waxes in the Lake Chichancanab sediment core derive predominantly from millennial-age soil carbon pools that exhibit relatively little age variance (<200 years). Our findings demonstrate that high-temporal-resolution climate records inferred from stable isotope measures on plant waxes in lacustrine sediments may suffer from possible chronologic distortions as a consequence of long residence times of plant waxes in soils. They also underscore the importance of direct radiocarbon dating of these organic molecules.

  20. Compositional classification and sedimentological interpretation of the laminated lacustrine sediments at Baumkrichen (Western Austria) using XRF core scanning data

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim; Starnberger, Reinhard; Spötl, Christoph; Dulski, Peter

    2015-04-01

    The outcrop at Baumkirchen (Austria) encloses part of a unique sequence of laminated lacustrine sediments deposited during the last glacial cycle. A ~250m long composite sediment record recovered at this location now continuously covers the periods ~33 to ~45 ka BP (MIS 3) and ~59 to ~73 ka BP (MIS 4), which are separated by a hiatus. The well-laminated (mm-cm scale) and almost entirely clastic sediments reveal alternations of clayey silt and medium silt to very-fine sand layers. Although radiocarbon and optically stimulated luminescence (OSL) dating provide a robust chronology, accurate dating of the sediment laminations appears to be problematic due to very high sedimentation rates (3-8 cm/yr). X-ray fluorescence (XRF) core scanning provided a detailed ~150m long record of compositional changes of the sediments at Baumkirchen. Changes in the sediments are subtle and classification into different facies based on individual elements is therefore subjective. We applied a statistically robust clustering analysis to provide an objective compositional classification without prior knowledge, based on XRF measurements for 15 analysed elements (all those with an acceptable signal-noise ratio: Zr, Sr, Ca, Mn, Cu, Zn, Rb, Ni, Fe, K, Cr, V, Si, Ba, T). The clustering analysis indicates a distinct compositional change between sediments deposited below and above the stratigraphic hiatus, but also differentiates between individual different laminae. Preliminary results suggest variations in the sequence are largely controlled by the relative occurrence of different kinds of sediment represented by different clusters. Three clusters identify well-laminated sediments, visually similar in appearance, each dominated by an anti-correlation between Ca and one or more of the detrital elements K, Zr, Ti, Si and Fe. Two of these clusters occur throughout the entire sequence, one frequently and the other restricted to short sections, while the third occurs almost exclusively below the hiatus, indicating a geochemically distinct component that possibly represents a specific sediment source. In a similar manner, three other clusters identify event layers with different compositions of which two occur exclusively above the hiatus and one exclusively below. The variations in the occurrence of these clusters revealing distinct event layers suggest variations in dominant sediment source both above and below the hiatus and within the section above it. More detailed comparisons between compositional variations of the individual clusters obtained from biplots and microscopic observations on thin sections, grain-size analyses, and mineralogical analyses are needed to further differentiate between sediment sources and transport mechanisms.

  1. 87Sr/86Sr dating and preliminary interpretation of magnetic susceptibility logs of giant piston cores from the Rio Grande Rise in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Lacasse, Christian Michel; Santos, Roberto Ventura; Dantas, Elton Luiz; Vigneron, Quentin; de Sousa, Isabela Moreno Cordeiro; Harlamov, Vadim; Lisniowski, Maria Aline; Pessanha, Ivo Bruno Machado; Frazão, Eugênio Pires; Cavalcanti, José Adilson Dias

    2017-12-01

    Giant piston cores recovered from shallow depths (<1200 mbsl) on the northern flank of the Rio Grande Rise, bathed today in intermediate waters (AAIW, UCDW), have uncovered new stratigraphic and paleoceanographic aspects of the Plio-Pleistocene in the South Atlantic. Based on strontium isotope analysis of well-preserved foraminifera-rich sediment a stratigraphy was developed from lowess curve fitting of the data and an optimized matching with an internationally recognized timescale of 87Sr/86Sr seawater variation through geological times. Depth-to-age conversion of the magnetic susceptibility logs was implemented based on the identification of correlative peaks between cores and the developed 87Sr/86Sr age model. The influence of Northern Hemisphere glaciation is reflected in these new stratigraphic logs by a gradual increase from ∼2.7 Ma in the lower signal of magnetic susceptibility (below background level), to values approaching the arithmetic means, likely reflecting an overall increase in terrigenous input. The Rio Grande Rise cores have very low Plio-Pleistocene sedimentation rates (∼0.4-0.8 cm/ka), similar to gravity cores from the oligotrophic subtropical South Atlantic (below ∼2000 mbsl), and for which an inverse correlation between carbonate content and magnetic susceptibility was established. The coring depths on the Rio Grande Rise encompass strong gradients in oxygen concentration and other seawater parameters that define today's AAIW/UCDW transition. Depth-dependent variation in sedimentation rates since the onset of Northern Hemisphere glaciation coincides with the incursion of intermediate waters (UCDW, AAIW) in response to the overall reduction of NADW export to the Southern Ocean. Background levels of magnetic susceptibility in the cores suggest that this variation is mainly attributed to terrigenous input. The source region of this material has yet to be traced by considering in particular the mineral composition and paramagnetic properties of the detrital clays.

  2. Consequences of land use and climate changes on sediment deposition in estuaries during the last centuries

    NASA Astrophysics Data System (ADS)

    Poirier, Clément; Chaumillon, Eric; Arnaud, Fabien; Goubert, Evelyne; Sauriau, Pierre-Guy; Caurant, Florence

    2010-05-01

    Estuaries are the downstream end-member of fluvial systems. They are experiencing high sedimentation rates, thus providing good opportunities for high resolution studies of Holocene environmental changes at the land/ocean interface. From a thorough literature survey, it appears that a rapid siltation and/or an increase in sedimentation rate were recorded in many estuarine environments, concomitantly to major migrations of human population throughout the world, both in time and space. It has been clearly related to an increase in sediment supply to estuaries in Minor Asia (Bronze Age, e.g. Spezzaferri et al, 2000) and in North America and Southwest Pacific (18th and 19th centuries, e.g. Goff, 1997), in response to deforestation on catchment areas. However, this relationship is less obvious in Europe (Sorrel et al., 2009), because deforestation occurred concomitantly to climate changes of the last millennium (climate instability at the end of Medieval Warm Period, Little Ice Age) that can also explain an increase in soil erosion. Indeed, these hypotheses have been proposed to explain a similar change in Marennes-Oléron Bay (Atlantic coast of France), which consists in the sudden deposition of a few meters-thick mud drape on basal mixed mud and sand bodies (Billeaud et al., 2005). The methods used to investigate this estuarine bay so far (very high resolution seismic stratigraphy, grain size analysis and radiocarbon dating) provided relevant information about recent environmental changes, but new data are now needed for further investigation. In the present study, we provide a multi-proxy analysis of the Marennes-Oléron Bay mud drape. A new 8 m-long core (M7UC01) was sampled on an intertidal flat, its location being determined on the basis of seismic stratigraphy. Core processing included visual description, physical measurements, grain size analysis every 2.5 to 5 cm, AMS radiocarbon dating, XRF core scanning, clay mineralogy and Rock Eval analysis. Fossil molluscs and foraminifers were also recovered to provide paleoenvironmental reconstructions. Clay mineralogy of the mud drape is similar to that of the turbid plume of the Charente River, which is an important source of terrestrial sediment in the bay, and to surrounding marsh soils. Examination of sediment smear slides shows that the sediment contains abundant plant debris. The very low values of Hydrogen Index determined by Rock-Eval analysis (mean HI: 150 ± 25 mg HC.g-1 TOC) are typical of organic matter derived from land higher plants. These three results strongly suggest that the Marennes-Oléron Bay mud drape is composed of soil relicts derived from the watershed. The mud drape started to deposit at 1400 AD, which coincides with the start of the Spörer minimum. Fossil mollusc and foraminifer assemblages provide evidences of another environmental change dated to 1670 AD, which corresponds to the Maunder minimum. These data suggest a strong impact of Little Ice Age climate changes, superimposed to land reclamation and deforestation, on the increase of sediment supply in the study area. These results, compared with the detailed literature survey performed meanwhile, would provide new insights into the impact of simultaneous land use and climate changes on the sediment deposition in estuaries during the last centuries. References: Billeaud I. et al., 2005. Geo-Marine Letters 25, 1-10. Goff J.R., 1997. Marine Geology 138, 105-117. Sorrel P. et al., 2009. Quaternary Science Reviews 28, 499-516. Spezzaferri S. et al., 2000. Mediterranean Marine Science 1(1), 19-43.

  3. Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods

    NASA Astrophysics Data System (ADS)

    Shi, Xiangming; Mason, Robert P.; Charette, Matthew A.; Mazrui, Nashaat M.; Cai, Pinghe

    2018-02-01

    In aquatic environments, sediments are the main location of mercury methylation. Thus, accurate quantification of methylmercury (MeHg) fluxes at the sediment-water interface is vital to understanding the biogeochemical cycling of mercury, especially the toxic MeHg species, and their bioaccumulation. Traditional approaches, such as core incubations, are difficult to maintain at in-situ conditions during assays, leading to over/underestimation of benthic fluxes. Alternatively, the 224Ra/228Th disequilibrium method for tracing the transfer of dissolved substances across the sediment-water interface, has proven to be a reliable approach for quantifying benthic fluxes. In this study, the 224Ra/228Th disequilibrium and core incubation methods were compared to examine the benthic fluxes of both 224Ra and MeHg in salt marsh sediments of Barn Island, Connecticut, USA from May to August, 2016. The two methods were comparable for 224Ra but contradictory for MeHg. The radiotracer approach indicated that sediments were always the dominant source of both total mercury (THg) and MeHg. The core incubation method for MeHg produced similar results in May and August, but an opposite pattern in June and July, which suggested sediments were a sink of MeHg, contrary to the evidence of significant MeHg gradients between overlying water and porewater at the sediment-water interface. The potential reasons for such differences are discussed. Overall, we conclude that the 224Ra/228Th disequilibrium approach is preferred for estimating the benthic flux of MeHg and that sediment is indeed an important MeHg source in this marshland, and likely in other shallow coastal waters.

  4. A closer look at the Neogene erosion and accumulation rate increase

    NASA Astrophysics Data System (ADS)

    Willenbring, J.; von Blanckenburg, F.

    2008-12-01

    Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.

  5. Strontium Isotope Dating of Metalliferous Sediment in the SW Pacific Basin

    NASA Astrophysics Data System (ADS)

    Stancin, A. M.; Gleason, J. D.; Owen, B. M.; Rea, D. K.; Moore, T. C.; Hendy, I. L.; Lyle, M. W.; Blum, J. D.

    2007-12-01

    A 2 million km2 region virtually devoid of sediment was identified in the remote SW Pacific Basin during the TUIM- 3 2005 drill site survey cruise. This region, termed the "South Pacific Bare Zone", comprises ocean floor dating back to the Late Cretaceous. Within the Bare Zone, a small (1km2) abyssal valley containing sediment to a depth of 24 m was sampled using a large diameter piston core (MV0502-15JC, 31 ° 42.194'S, 143 ° 30.331'W), leading to recovery of 8.35 m of metalliferous sediment at 5082 m water depth. Fish-teeth Sr-isotope stratigraphy reveals a continuous record of sedimentation from 31 Ma to present at this site. The fish teeth age-depth profile and INAA geochemistry reveal an exponentially decreasing hydrothermal flux, with sedimentation rates approaching 0.05 mm/kyr after 20 Ma. The source of hydrothermal activity at this site was likely the Pacific- Farallon Ridge, which went extinct at 20 Ma. A second piston core (MV0502-16JC; 28 ° 05.151'S, 140 ° 14.140'W) was collected near MacDonald Seamounts located on the southeastern end of the Cook-Austral island chain outside the Bare Zone and recovered 10.5 m of hydrothermal sediment and biogenic ooze. The lower 65 cm of the core consists of a coccolith ooze. From 10 mbsf depth to 1.5 mbsf depth, the core contians reddish black zeolitic clay, while the upper 1.5 mbsf contains biogenic ooze associated with abundant Late Pleistocene foraminifera remains. Concordant nannofossil and fish teeth ages at the base of the core (27-28 Ma), and Pleistocene ages near the top of the core reinforce the validity of the Sr fish teeth method for dating hydrothermal cores. These independent records suggest that regional hydrothermal activity during the Oligocene may have been related to a series of late Eocene/early Oligocene ridge jumps, propagating rifts and seafloor spreading centers that accompanied large-scale plate tectonic reorganization of South Pacific seafloor.

  6. Marine historical ecology at the Brijuni Islands, Croatia: preliminary results from down-core changes of foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Vidovic, Jelena; Cosovic, Vlasta; Gallmetzer, Ivo; Haselmair, Alexandra; Zuschin, Martin

    2015-04-01

    The Late Holocene in the northern Adriatic is characterized by the eustatic peak of the sea-level rise, followed by the equilibrium between the regional tectonic subsidence and hydro-isostatic emergence and relatively stable sea level for a few thousand years. During this period the area experienced changes in sedimentation rate, food/oxygen availability in the benthic ecosystem and eutrophication with seasonal hypoxic and anoxic events. In order to reconstruct the marine paleoecology in the Brijuni Islands area during this period, a multidisciplinary study was carried out, including geochemical (TOC, trace metals, carbonate content), micropaleontological analyses (benthic foraminifera) and dating of sediments and mollusc shells. The principal aim of this study is to observe the effects of ecological shifts on foraminiferal assemblages during the Late Holocene. One core of 1.5 m length was taken at a sampling station south of Veli Brijuni Island, located within a marine protected area with no fishing/dredging pressure (Croatian national park). The core was sliced into smaller subsamples, and four sediment fractions of each subsample (63, 125, 250 and 500 µm) were analyzed for standard properties of the foraminiferal community (species richness, faunal composition, biodiversity indices), in comparison with relevant physical and geochemical properties of the sediment. The results concerning changes in foraminiferal species composition and abundance point to differences within the core: surface sediments are dominated by suspension feeders (Planorbulina mediterranensis, Lobatula lobatula, Cibicides variabilis, Cibicides refulgens), whereas deposit feeders (genera Textularia, Siphonaperta, Adelosina, Trioculina) appear in higher abundances at approximately 30 cm of the sediment depth and dominate down-core. Species richness in the first 30 cm is lower (10 to 34 species per sample) in comparison to the middle part of the core (39 to 53 species), and decreases again at 100 cm to 25 to 42 species per sample. Diversity indices follow the pattern of species richness and point to normal marine conditions. Similarity indices rise with core depth. The radiometric dating of the sediments together with carbon-calibrated amino acid- racemisation of mollusc shells from selected species will help to determine the timing of major ecological changes.

  7. Granulometric analysis at Lampulo Fishing Port (LFP) substrate, Banda Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Purnawan, S.; Setiawan, I.; Haridhi, H. A.; Irham, M.

    2018-01-01

    The study of sediment granulometry was completed at Lampulo fishing port (LFP). The LFP is a main fishing port in Aceh Province, Indonesia, located at 5°34’35” N; 95°19’23” E. The purpose of the research is to study and construct the environment condition of the bottom substrate. The data was taken by incorporating coring method at 10 stations using purposive random sampling. The wet sieve method was used to analyze the grain size for geostatistical analysis. The geostatistical parameters analysis in this study is classified as mean, sorting, skewness and kurtosis. The result informs that the types of sediments are sand, sandy clay and clayey sand for all stations. Station 1, however, is found as the coarsest compares to the other stations. All of the sediment collected at each station displays moderately sorted to poor sorted, while kurtosis values may be categorized as very leptokurtic. The results of the sediment parameters indicate that the environment of harbor pool was in a stable state, related to a sheltered condition.

  8. Triolein embedded cellulose acetate membrane as a tool to evaluate sequestration of PAHs in lake sediment core at large temporal scale.

    PubMed

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun; Deng, Jiancai; Gui, Zhifan

    2012-04-03

    Although numerous studies have addressed sequestration of hydrophobic organic compounds (HOCs) in laboratory, little attention has been paid to its evaluation method in field at large temporal scale. A biomimetic tool, triolein embedded cellulose acetate membrane (TECAM), was therefore tested to evaluate sequestration of six PAHs with various hydrophobicity in a well-dated sediment core sampled from Nanyi Lake, China. Properties of sediment organic matter (OM) varying with aging time dominated the sequestration of PAHs in the sediment core. TECAM-sediment accumulation factors (MSAFs) of the PAHs declined with aging time, and significantly correlated with the corresponding biota-sediment accumulation factors (BSAFs) for gastropod (Bellamya aeruginosa) simultaneously incubated in the same sediment slices. Sequestration rates of the PAHs in the sediment core evaluated by TECAM were much lower than those obtained from laboratory study. The relationship between relative availability for TECAM (MSAF(t)/MSAF(0)) and aging time followed the first order exponential decay model. MSAF(t)/MSAF(0) was well-related to the minor changes of the properties of OM varying with aging time. Compared with chemical extraction, sequestration reflected by TECAM was much closer to that by B. aeruginosa. In contrast to B. aeruginosa, TECAM could avoid metabolism and the influences from feeding and other behaviors of organisms, and it is much easier to deploy and ready in laboratory. Hence TECAM provides an effective and convenient way to study sequestration of PAHs and probably other HOCs in field at large temporal scale.

  9. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores

    USGS Publications Warehouse

    Hostettler, F.D.; Pereira, W.E.; Kvenvolden, K.A.; VanGeen, A.; Luoma, S.N.; Fuller, C.C.; Anima, R.

    1999-01-01

    San Francisco Bay is one of the world's largest urbanized estuarine systems. Its water and sediment receive organic input from a wide variety of sources; much of this organic material is anthropogenically derived. To document the spatial and historical record of the organic contaminant input, surficial sediment from 17 sites throughout San Francisco Bay and sediment cores from two locations Richardson Bay and San Pablo Bay were analyzed for biomarker constituents. Biomarkers, that is, 'molecular fossils', primarily hopanes, steranes, and n-alkanes, provide information on anthropogenic contamination, especially that related to petrogenic sources, as well as on recent input of biogenic material. The biomarker parameters from the surficial sediment and the upper horizons of the cores show a dominance of anthropogenic input, whereas the biomarker profiles at the lower horizons of the cores indicate primarily biogenic input. In the Richardson Bay core the gradual upcore transition from lower maturity background organics to a dominance of anthropogenic contamination occurred about 70-100 years ago and corresponds to the industrial development of the San Francisco Bay area. In San Pablo Bay, the transition was very abrupt, reflecting the complex depositional history of the area. This sharp transition, perhaps indicating a depositional hiatus or erosional period, dated at pre-1952, is clearly visible. Below, the hiatus the biomarker parameters are immature; above, they are mature and show an anthropogenic overlay. Higher concentrations of terrigenous n-alkanes in the upper horizons in this core are indicative of an increase in terrigenous organic matter input in San Pablo Bay, possibly a result of water diversion projects and changes in the fresh water flow into the Bay from the Delta. Alternatively, it could reflect a dilution of organic material in the lower core sections with hydraulic mining debris.

  10. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely source of PCBs associated with a sampling site that receives runoff from Air Force Plant 4. Three approaches to the analyses of congener assemblages indicate that PCBs in surficial bottom sediment of Woods Inlet primarily enter Lake Worth from Meandering Road Creek and that runoff from Air Force Plant 4 is a source of the PCBs in Meandering Road Creek. Although current (2003) transport of PCBs from Air Force Plant 4 to the creek is occurring, large decreases in PCB concentrations with decreasing age in two cores indicate that PCB loading to the inlet has decreased greatly since the 1960s. Because runoff entering Meandering Road Creek from some parts of Air Force Plant 4 was not measured or sampled in this study, it cannot be said with certainty that the Air Force Plant 4 site sampled is the only source of PCBs to Meandering Road Creek.

  11. Environmental evaluations for deepening of Richmond Harbor and Santa Fe Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.; Kohn, N.P.; Crecelius, E.A.

    Richland, California is an important commercial port in San Francisco Bay. The San Francisco District of the US Army Corps of Engineers (USACE) plans to increase the depth of Richmond Harbor and Santa Fe Channels to -38 feet Mean Lower Low Water (MLLW) to accommodate deep-draft commercial vessels. The total volume of dredged material is expected to be approximately 1.4 million cubic yards. The options for disposal of the dredged material are aquatic disposal and upland disposal. The purpose of this study was to develop a database on chemical compounds in the dredged material to assist with determination of disposalmore » methods and the need for additional testing. This purpose was accomplished through an extensive field sampling program followed by chemical analysis of samples. Field sampling involved collection of core samples from Sante Fe and Richmond Harbor Channels. Cores were shipped to Battelle/Marine Sciences Laboratory, where they were subsampled for chemical analysis and/or archived by freezing. All sediment and water samples were analyzed for priority pollutants, including metals, organotins, base/neutral semivolatile organic compounds, chlorinated pesticides and PCBs, herbicide acids, and acidic phenols. Sediment samples were also analyzed for oil and grease and total organic carbon. Organophosphorus pesticides and dioxins and furans were measured in selected sediment samples from Richland Harbor Channel and from both sediment and water samples from Santa Fe Channel. 21 refs., 10 figs., 60 tabs.« less

  12. Exploration of Antarctic Subglacial environments: a challenge for analytical chemistry

    NASA Astrophysics Data System (ADS)

    Traversi, R.; Becagli, S.; Castellano, E.; Ghedini, C.; Marino, F.; Rugi, F.; Severi, M.; Udisti, R.

    2009-12-01

    The large number of subglacial lakes detected in the Dome C area in East Antarctica suggests that this region may be a valuable source of paleo-records essential for understanding the evolution of the Antarctic ice cap and climate changes in the last several millions years. In the framework of the Project on “Exploration and characterization of Concordia Lake, Antarctica”, supported by Italian Program for Antarctic Research (PNRA), a glaciological investigation of the Dome C “Lake District” are planned. Indeed, the glacio-chemical characterisation of the ice column over subglacial lakes will allow to evaluate the fluxes of major and trace chemical species along the ice column and in the accreted ice and, consequently, the availability of nutrients and oligo-elements for possible biological activity in the lake water and sediments. Melting and freezing at the base of the ice sheet should be able to deliver carbon and salts to the lake, as observed for the Vostok subglacial lake, which are thought to be able to support a low concentration of micro-organisms for extended periods of time. Thus, this investigation represents the first step for exploring the subglacial environments including sampling and analysis of accreted ice, lake water and sediments. In order to perform reliable analytical measurements, especially of trace chemical species, clean sub-sampling and analytical techniques are required. For this purpose, the techniques already used by the CHIMPAC laboratory (Florence University) in the framework of international Antarctic drilling Projects (EPICA - European Project for Ice Coring in Antarctica, TALDICE - TALos Dome ICE core, ANDRILL MIS - ANTarctic DRILLing McMurdo Ice Shelf) were optimised and new techniques were developed to ensure a safe sample handling. CHIMPAC laboratory has been involved since several years in the study of Antarctic continent, primarily focused on understanding the bio-geo-chemical cycles of chemical markers and the interpretation of their records in sedimentary archives (ice cores, sediment cores). This activity takes advantage of facilities for storage, decontamination and pre-analysis treatment of ice and sediment strips (cold room equipped with laminar flow hoods and decontamination devices at different automation level, class 10000 clean room, systems for the complete acid digestion of sediment samples, production of ultra-pure acids and sediments’ granulometric selection) and for analytical determination of a wide range of chemical tracers. In particular, the operative instrumental set includes several Ion Chromatographs for inorganic and selected organic ions measurement (by classical Ion Chromatography and Fast Ion Chromatography), Atomic Absorption and Emission Spectrometers (F-AAS, GF-AAS, ICP-AES) and Inductively Coupled Plasma - Sector Field Mass Spectrometry (ICP-SFMS) for the analysis of the soluble or “available” inorganic fraction together with Ion Beam Analysis techniques for elemental composition (PIXE-PIGE, in collaboration with INFN and Physics Institute of Florence University) and geochemical analysis (SEM-EDS).

  13. New Progress on Radiocarbon Geochronology in Southern Lake Tanganyika (East Africa)

    NASA Astrophysics Data System (ADS)

    McGlue, M. M.; Soreghan, M. J.

    2017-12-01

    Our limnogeological research in Lake Tanganyika focuses on elucidating the patterns of sediment accumulation on deepwater horsts, outer platforms, and littoral environments in the lake's southern basin ( 6-8°S latitude). Here, we present new radiocarbon (14C) dates from high-quality surface sediment cores, in order to make comparisons with previously published age models, to address the presence and spatiotemporal variability of a reservoir effect, and to constrain sedimentation rates and facies at sites that may be important targets for future scientific drilling. Plant macrofossils are rare in deepwater sediment cores, so charcoal and bulk organic matter have been the primary materials used for dating. On the Kavala Island Ridge (KIR) horst, initial core descriptions revealed variations in laminae presence, thickness, and chemistry. Sediment cores from the KIR at 172m water depth consist of thickly laminated diatom oozes. Charcoal from the bases of these cores returned median ages of 2.1-2.2 cal ka, suggesting linear accumulation rates on the order of 0.51 mm/yr. By contrast, a core from 420 m water depth on the KIR exhibited very thin laminations and diatom layers were much less prominent. Charcoal at the base of this core produced a median age of 8.1 cal ka, suggesting a linear accumulation rate of 0.11 mm/yr. These initial results suggest that sedimentation rates may vary considerably over sublacustrine horst blocks. We will test this initial discovery with additional sedimentation rate information from the Kalya and Nitiri horsts. In addition, we report new 14C dates made on both dead and live-collected shells of the endemic gastropod Neothauma tanganyicense. These shells form vast accumulations along shallow-water platforms of the lake and form an important substrate for a number of other endemic species. The discovery of living snails in southern Lake Tanganyika may allow for the development of a species-specific reservoir correction. A limited N. tanganyicense shell 14C dataset from the lake's northern basin exhibits time averaged over the past 1600 cal yrs; results from this project will begin to address spatial variability in time averaging, and therefore improve our understanding of shell bed formation and the extent to which anthropogenic sedimentation is impacting shell bed persistence.

  14. Geological and paleontological results from the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) Project

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.

    2015-12-01

    The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca. 10m of ice at WGZ contained abundant sedimentary debris, and active melting and rainout of basal debris was observed. We attribute much of the stratigraphy of the upper sedimentary layers at WGZ, which include soft mud and rock clasts, to ongoing basal melting. This may represent recent grounding line retreat.

  15. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    PubMed

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Paleoenvironmental reconstructions of Nettilling Lake area (Baffin Island, Nunavut): A multi-proxy analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Anne; Pienitz, Reinhard; Francus, Pierre; Zdanowicz, Christian; St-Onge, Guillaume

    2014-05-01

    The paleoclimate and paleolimnological history of several Arctic regions remains poorly known. This is the case for the area around Nettilling Lake (Baffin Island, Nunavut), the largest lake of the Canadian Arctic Archipelago. To reconstruct the past environmental history of this area, a highly innovative multi-proxy approach combining physical, magnetic, chemical and biological properties preserved in lake sediments was used. One particular goal of this study was to investigate the possible coupling between sedimentation processes observed in the lake and melt rates of nearby Penny Ice Cap. A 1-m long sediment core was retrieved from a small bay in the northeastern part of Nettilling Lake during the summer of 2010. This sampling area was chosen based on the hypothesis that incoming glacial meltwaters from Penny Ice Cap would leave a strong climate-modulated signal that would be reflected in the sedimentary sequence. The core was analyzed by both non-destructive (X-radiography (X-ray), microfluorescence-X (µ-XRF), magnetic susceptibility) and destructive (Loss On Ignition, grain size, water content, thin sections, diatoms) techniques. Radiometric AMS 14C and 210Pb/137Cs age determinations, as well as paleomagnetic measurements, were used to develop the core chronology, yielding an estimated bottom age of approximately 1365 AD. The sedimentation rate (0.15 cm.yr-1) in Nettilling Lake was found to be high compared to other Arctic lakes, due to inputs of highly turbid meltwaters from Penny Ice Cap with high suspended sediment loads. Significant correlations were found between geochemical profiles of elements linked to detrital inputs (Si, Ti, K, Ca) and melt rates from Penny Ice Cap since the 19th century. This suggests that variations in detrital elements in Nettilling Lake sediments might be used as an indirect indicator of regional climate fluctuations (e.g., summer temperatures) that determine glacier melt rates.

  17. Selected data for sediment cores collected in Chesapeake Bay in 1996 and 1998

    USGS Publications Warehouse

    Baucom, P.C.; Bratton, J.F.; Colman, Steven M.; Moore, Johnnie N.; King, John W.; Seal, Chip; Seal, R.R.

    2001-01-01

    As part of a study of recent history of the Chesapeake Bay ecosystem, one- to eight- meter long sediment cores were obtained from the mesohaline section of the Chesapeake Bay between the mouths of the Potomac and Rhode Rivers. The sediments consist of three lithofacies: coarse-grained channel deposits, restricted-estuary sands and muds, and open-estuary muds. Water content, biogenic silica, magnetic susceptibility, trace metals, and nutrients (carbon, nitrogen, and their isotopes) were measured in the cores. Biogenic silica, trace-metal, and nutrient data provide a strong basis for discussing past primary productivity and water-column anoxia in the bay.

  18. Vergleich von hydraulischen und chemischen Sedimenteigenschaften aus Spül- und Kernbohrungen im Raum Peine (Norddeutschland)

    NASA Astrophysics Data System (ADS)

    Konrad, C.; Walther, W.; Reimann, T.; Rogge, A.; Stengel, P.; Well, R.

    2008-03-01

    Comparison of hydraulic and chemical properties of sediments from flush- and core drillings in the area of Peine (Germany). Because of financial constraints, investigations of nitrate metabolism are often based on disturbed borehole samples. It is arguable, however, whether disturbed samples are suitable for these types of investigations. Disadvantages of disturbed samples in comparison to undisturbed core samples are well known and include possible contamination of the sample by mud additives, destruction of the sediment formation and the insecurity concerning the correct depth allocation. In this study, boreholes were drilled at three locations to a maximum depth of 50 m. The extracted samples, as intact sediment cores and drill cuttings, were studied with regard to chemical and hydraulic parameters of the aquifer sediments. The results show: 1. hydraulic parameters are not affected by clay-based mud; 2. disturbed samples contain less fine grain material relative to the core samples, and the hydraulic conductivity can only be estimated from catch samples; 3. catch samples contain fewer reducing agents (sulphides, organic carbon) than core samples in hydraulically passive zones (defined as K < 10 6 m · s 1); 4. the results of analyses of disturbed and undisturbed core samples are in good agreement for hydraulically active zones (K ≥ 10 6 m · s 1).

  19. Results of chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.

    2005-01-01

    Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.

  20. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin.

    PubMed

    Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C

    2009-03-01

    The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.

  1. Bayesian integration of radioisotope dating (210Pb, 137Cs, 241Am, 14C) and an 18-20th century mining history of Brotherswater, English Lake District

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet; Welsh, Katharine; Piliposyan, Gayane; Appleby, Peter

    2014-05-01

    Lake sediment records are often a useful tool for investigating landscape evolution as geomorphic changes in the catchment are reflected by altered sediment properties in the material transported through the watershed and deposited at the lake bed. Recent research at Brotherswater, an upland waterbody in the Lake District, northwest England, has focused on reconstructing historical floods from their sedimentary signatures and calculating long-term sediment and carbon budgets from fourteen sediment cores extracted from across the basin. Developing accurate chronological control is essential for these tasks. One sediment core (BW11-2; 3.5 m length) from the central basin has been dated using artificial radionuclide measurements (210Pb, 137Cs, 241Am) for the uppermost sediments and radiocarbon (14C) for lower sediments. The core appears to span the past 1500 years, however a number of problems have arisen. We present our explanations for these errors, the independent chronological techniques used to generate an accurate age-depth model for this core and methods for its transferral to the other 13 cores extracted from the basin. Two distinct 137Cs markers, corresponding to the 1986 Chernobyl disaster and 1960s weapons testing, confirm the 210Pb profile for sediment deposition since ~1950, but calculations prior to this appear erroneous, possibly due to a hiatus in the sediment record. We used high-resolution geochemical profiles (measured by XRF) to cross-correlate with a second 210Pb-dated chronology from a more distal location, which returned more sensible results. Unfortunately, the longer 14C sequence exhibits two age-reversals (radiocarbon dates that are too old). We believe the uppermost two dates are erroneous, due to a shift in inflow location as a flood prevention method ~1900 A.D., dated using information from historical maps. The lower age-reversal coincides with greater supply of terrigenous material to the lake (increased Zr, K, Ti concentrations), pointing to a hillslope clearance event. A widespread concurrent hillslope gullying phase in northwest England triggering enhanced soil erosion is thus the most likely explanation, as the presence of old carbon is a known issue for lakes in the region at this time. Applying a Bayesian age-depth modelling protocol is able to account for these age-reversals with some success. However, the greatest uncertainty in the model occurs across the 1700 -1900 A.D. time window as the radiocarbon percentages offer multiple age solutions due to fluctuating atmospheric 14C concentrations from fossil fuel emissions. We address this issue by incorporating into the model geochemical markers in the sediment core related to local point-source Pb mining of known-age; the most-likely age-depth curve is subsequently much more definitively resolved. Usefully, these mining-derived chronological markers bridge the temporal gap between artificial radionuclide and conventional radiocarbon dating which is a common problem in palaeolimnology. These distinctive geochemical mining profiles (Pb, Zn, Cu) have been mapped across all cores, enabling precise core correlation and confident transferral of the age-depth model, and reveal highly spatially variable sediment accumulation rates. This has enabled more accurate sediment and carbon budgets to be calculated and some insight into palaeoflood frequency to be obtained from the Brotherswater sediment sequence.

  2. Iridium Concentrations and Abundances of Meteoritic Ejecta from the Eltanin Impact in Sediment Cores from Polarstern Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in several sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse ejecta debris. Three cores with well-preserved impact deposits, PS204-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2802-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 gram/sq centimeter of depris over a wide area of the ocean floor. However, there are sill large uncertainties over the actual regional or global extent of this unique sediment deposit.

  3. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  4. Organic geochemistry of sediments of the Deep Gulf of Mexico Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassen, R.; Fang Jiasong

    1990-05-01

    Analysis of 716 core samples cored at DSDP (Deep Sea Drilling Project) Leg 96 in the Mississippi submarine fan and the Orca and Pigmy basins in the Louisiana continental slope using a Rock-Eval pyrolysis unit with a TOC (total organic carbon) module allows computations of hydrogen index (HI), total organic carbon, kerogen type, and oil generative capacity assessment. No samples are obviously oil prone. TOC content ranges from 0.12 to 2.29%, with an overall average of 9.82%. HI values are generally less than 150 mg HC/g TOC. T{sub max} (maximum temperature of S{sub 2}) values (average = 425{degree}C) show themore » sediments are thermally immature through-out the study area. Hydrocarbon generative potential of the sediments ranges from 492 to 1,107 ppm, with an average of 854 ppm. Higher PI (Production index) values, ranging from 0.12 to 0.32 and averaging 0.15, suggest the presence of hydrocarbon seepage. Because of organically lean, thermally immature, and gas-prone terrestrial kerogen, there is little reason to assume that the sediments of the Mississippi fan can provide oil source rock for the Gulf of Mexico Basin, or that sediments of anoxic basins in the Louisiana continental slope are analogs to past environments where source rocks for crude oil have been deposited.« less

  5. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less

  6. Polycyclic aromatic hydrocarbons in sediments from the Old Yellow River Estuary, China: occurrence, sources, characterization and correlation with the relocation history of the Yellow River.

    PubMed

    Yuan, Zijiao; Liu, Guijian; Wang, Ruwei; Da, Chunnian

    2014-11-01

    The levels of 16 USEPA priority PAHs were determined in surface sediments and one dated sediment core from the abandoned Old Yellow River Estuary, China. Total PAH concentrations in the surface sediments ranged from 100.4 to 197.3 ng g(-1) dry weight and the total toxic equivalent quantity (TEQ(carc)) values of the carcinogenic PAHs were very low. An evaluation of PAH sources based on diagnostic ratios and principal component analysis suggested that PAHs in the surface sediments mainly derived from combustion sources. The total PAH concentrations altered significantly with year of deposition and showed quite different patterns of change compared with other studies: it is hypothesized that the principal cause of these changes is the relocation of the course of the Yellow River to the sea in 1976 and 1996. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion.

    PubMed

    Ficetola, Gentile Francesco; Poulenard, Jérôme; Sabatier, Pierre; Messager, Erwan; Gielly, Ludovic; Leloup, Anouk; Etienne, David; Bakke, Jostein; Malet, Emmanuel; Fanget, Bernard; Støren, Eivind; Reyss, Jean-Louis; Taberlet, Pierre; Arnaud, Fabien

    2018-05-01

    What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.

  8. Sediment accumulation and mixing in the Penobscot River and estuary, Maine.

    PubMed

    Yeager, K M; Schwehr, K A; Schindler, K J; Santschi, P H

    2018-04-16

    Mercury (Hg) was discharged in the late 1960s into the Penobscot River by the Holtra-Chem chlor-alkali production facility, which was in operation from 1967 to 2000. To assess the transport and distribution of total Hg, and recovery of the river and estuary system from Hg pollution, physical and radiochemical data were assembled from sediment cores collected from 58 of 72 coring stations sampled in 2009. These stations were located throughout the lower Penobscot River, and included four principal study regions, the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR), and the Penobscot estuary (ES). To provide the geochronology required to evaluate sedimentary total Hg profiles, 58 of 72 sediment cores were dated using the atmospheric radionuclide tracers 137 Cs, 210 Pb, and 239,240 Pu. Sediment cores were assessed for depths of mixing, and for the determination of sediment accumulation rates using both geochemical (total Hg) and radiochemical data. At most stations, evidence for significant vertical mixing, derived from profiles of 7 Be (where possible) and porosity, was restricted to the upper ~1-3cm. Thus, historic profiles of both total Hg and radionuclides were only minimally distorted, allowing a reconstruction of their depositional history. The pulse input tracers 137 Cs and 239,240 Pu used to assess sediment accumulation rates agreed well, while the steady state tracer 210 Pb exhibited weaker agreement, likely due to irregular lateral sediment inputs. Copyright © 2018. Published by Elsevier B.V.

  9. The relationship between the high-density lamina and precipitation in the subarctic Lake Mokoto, North Japan

    NASA Astrophysics Data System (ADS)

    Seto, K.

    2015-12-01

    Koji Seto (ReCCLE, Shimane Univ.), Hiroyuki Takata (Pusan Univ.), Kota Katsuki (KIGAM), Takeshi Sonoda (Tokyo Univ. of Agr.) In the coastal area of the Sea of Okhotsk in the east part of Hokkaido located to for subarctic zone, many brackish-water lakes are distributed. Lake Mokoto has two-layer structure of polyhaline surface waters and mixoeuhaline bottom water. The bottom water shows the anoxic conditions in summer season. In this reason, the sediments of Lake Mokoto consist of organic mud with the lamination. The 09Mk-1C and 09Mk-2C cores collected from Lake Mokoto at 2009. In the soft X-ray photograph, the cyclic lamina set is observed in their core. The cyclic lamina set consists of low-, intermedium- and high-density lamina. It is considered that this cyclic lamina set is the verve. According to the meteorological data in Abashiri region, the annually precipitation is high from August to September. Probably, the cyclic lamina set is formed by seasonal change of precipitation. In this study, we are discussed about the relationship between the high-density lamina and precipitation by sedimentologic and geochemical high-resolution analysis. The 09Mk-1C and 09Mk-2C cores collected from Lake Mokoto show the length of 1.78 to 3.87m, respectively. In 09Mk-2C core, Ta-a tephra (AD 1739) was observed at the 3.5m depths. The 09Mk-1C core consist of organic mud with the lamination in all cores. The core top 100 cm in this core shows the black (N1.5/0), and it seems to indicate the seasonal anoxic environment as present. The organic mud below 100cm depth shows black (10YR1.7/1). The sedimentation rate in 09Mk-1C core increase from late 1960's for the age of cyclic lamina set. It is suggest that supply of sediment in Lake Mokoto is increasing by land development in drainage basin. Phosphorus flux in 09Mk-1C core increase from late 1950's. The increasing of phosphorus flux may be caused by excess drainage of pollution from stock farm. In 2015, we were able to take the new core (15Mk-3C core). We have observed a new lamina set in detail, and compared with precipitation in Abashiri Region.

  10. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    NASA Astrophysics Data System (ADS)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  11. Historical trends of metals in the sediments of San Francisco Bay, California

    USGS Publications Warehouse

    Hornberger, Michelle I.; Luoma, S.N.; VanGeen, A.; Fuller, C.; Anima, R.

    1999-01-01

    Concentrations of Ag, Al, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn were determined in six sediment cores from San Francisco Bay (SFB) and one sediment core in Tomales Bay (TB), a reference estuary. SFB cores were collected from between the head of the estuary and its mouth (Grizzly Bay, GB; San Pablo Bay, SP; Central Bay, CB; Richardson Bay, RB, respectively) and ranged in length from 150 to 250 cm. Concentrations of Cr, V and Ni are greater than mean crustal content in SFB and TB sediments, and greater than found in many other coastal sediments. However, erosion of ultramafic rock formations in the watershed appears to be the predominant source. Baseline concentrations of other metals were determined from horizons deposited before sediments were influenced by human activities and by comparing concentrations to those in TB. Baseline concentrations of Cu co-varied with Al in the SFB sediments and ranged from 23.7 ?? 1.2 ??g/g to 41.4 ?? 2.4 ??g/g. Baseline concentrations of other metals were less variable: Ag, 0.09 ?? 0.02 ??g/g; Pb, 5.2 ?? 0.7 ??g/g; Hg, 0.06 ?? 0.01 ??g/g; Zn, 78 ?? 7 ??g/g. The earliest anthropogenic influence on metal concentrations appeared as Hg contamination (0.3-0.4 ??g/g) in sediments deposited at SP between 1850 and 1880, apparently associated with debris from hydraulic gold mining. Maximum concentrations of Hg within the cores were 20 times baseline. Greater inventories of Hg at SP and GB than at RB verified the importance of mining in the watershed as a source. Enrichment of Ag, Pb, Cu and Zn first appeared after 1910 in the RB core, later than is observed in Europe or eastern North America. Maximum concentrations of Ag and Pb were 5-10 times baseline and Cu and Zn concentrations were less than three times baseline. Large inventories of Pb to the sediments in the GB and SP cores appeared to be the result of the proximity to a large Pb smelter. Inventories of Pb at RB are similar to those typical of atmospheric inputs, although influence from the Pb smelter is also suspected. Concentrations of Hg and Pb have decreased since the 1970s (to 0.30 ??g/g and 25 ??g/g, respectively) and were similar among all cores in 1990. Early Ag contamination was perhaps a byproduct of the Pb smelting process, but a modem source of Ag is also indicated, especially at RB and CB.

  12. Fossil diatom assemblages as paleoecological indicators of paleo-water environmental change in the Ulleung Basin, East Sea, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Yun, Suk Min; Lee, Taehee; Jung, Seung Won; Park, Joon Sang; Lee, Jin Hwan

    2017-09-01

    The fossil diatom assemblage record from two sediment cores obtained from the Ulleung Basin, East Sea, Republic of Korea, revealed changes in the diatom assemblage zones in PG1 and PD3 core samples. The two sediment cores were δC14 dated and approximately represented the late Pleistocene-Holocene. The analysis of age zones in the PG1 core and PD3 core was assessed based on the frequency of variations, and occurrences of biostratigraphical fossil diatom species. During the Last Glacial Maximum (LGM), the sea level was lower than that at present and the Ulleung Basin became isolated from the Pacific Ocean. As a result, there would have been a limited Tsushima Warm Current (TWC) influence, and salinity would have decreased resulting in increased freshwater and coastal diatoms. The distribution pattern of diatoms presented in the cores was associated with changes in water temperature and salinity and the adding of terrigenous material brought about by the input of freshwater. Changes in the abundance of a tychopelagic diatom, Paralia sulcata, reflected the effect of the water currents. Diatom temperature (Td) values and the ratio of centric/pennate diatoms provided evidence of limited influences of the TWC and freshwater inflow. It is thought that all assemblage zones were influenced by the TWC, which had an important effect on the distribution and composition of fossil diatoms.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, L.; Ramial, K.; Wilkinson, P.

    Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less

  14. Temporal and spatial patterns of wetland sedimentation, West Tennessee

    USGS Publications Warehouse

    Hupp, C.R.; Bazemore, D.E.

    1993-01-01

    Dendrogeomorphic techniques were used to describe and interpret patterns of sedimentation rates at two forested wetland sites in West Tennessee. Fifty-five sampling stations were established along transects upstream and downstream from bridge structures, and 515 trees were examined for depth of sediment accretion and cored for age determination. Temporal variation in sedimentation rate may be related more to stream channelization and agricultural activity than to bridge and causeway construction. Sedimentation rates have increased substantially in the last 28 years, although channelized streams may have overall lower rates than unchannelized streams. Comparisons of sedimentation rates from deposition over artificial markers (short term) with those determined from tree-ring analysis (long-term) indicate that trends are similar where hydrogeomorphic conditions have not been altered substantially. No tendency for increased sedimentation upstream from bridges was observed. Deposition rates were inversely correlated with elevation and degree of ponding. Downstream deposition of sand splays appears to be related to flow constrictions and may be extensive. Mean overall rates of sedimentation (between 0.24 and 0.28 cm year-1), determined dendrogeomorphically, are comparable with other published rates. ?? 1993.

  15. Recurrence of water bodies in the hyperarid core of the Atacama Desert - New insights into the Late Pleistocene paleoclimate history of Northern Chile

    NASA Astrophysics Data System (ADS)

    Diederich, J. L.; Wennrich, V.; Fernández Galego, E.; Ritter, B.; Brill, D.; Niemann, K.; Rolf, C.; Melles, M.

    2017-12-01

    The Atacama Desert of northern Chile is regarded as the driest desert on Earth. Although still controversially discussed, overall arid to hyperarid conditions in the Atacama are thought to have persisted at least since the early Miocene, but were frequently punctuated by pluvial phases. The knowledge of past changes in humidity is strongly hampered by the fact that sediment records from the central Atacama Desert, which enable longer-scale precipitation reconstructions, are rare and mostly restricted to the Miocene/Pliocene or the late Pleistocene <50 kyrs. In this study, we focus on a sediment record from the hyperarid core of the Atacama Desert, derived from a tectonically blocked clay pan in the Coastal Cordillera (20°04'33.64"S, 69°55'01.75"W). This clay pan `Huara' has been initially investigated by a geophysical survey in spring 2015, followed by drilling of a short core (HU-III) covering the uppermost 4 m of sediment. Initial results of the ground penetrating radar (GPR) and horizontal to vertical (H/V) spectral ratio measurements indicate well-stratified sediment bodies in the basin with a maximum sediment infill of 30 ± 4 m. The chronology of core HU-III was established by a combination of optically stimulated luminescence (OSL) and paleomagnetic dating. The sedimentological and geochemical data of core HU-III as well as it's sediment geophysical properties indicate the primary accumulation of fine-grained sediments over the past ca. 50 kyrs, interpreted to be deposited under arid conditions with only sporadic precipitation. Intercalated coarser horizons indicate several periods of semiarid climate conditions, causing multiple phases of local alluvial deposition from the interior catchment area into the clay pan. The results are in agreement with a cosmogenic nuclide study from an adjacent meander system, indicating that the whole sediment sequence of the Huara clay pan covers the regional climate history of the past 500 - 700 kyrs.

  16. Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Costa, Kassandra; McManus, Jerry

    2017-01-01

    230Th normalization is an indispensable method for reconstructing sedimentation rates and mass fluxes over time, but the validity of this approach has generated considerable debate in the paleoceanographic community. 230Th systematics have been challenged with regards to grain size bias, sediment composition (CaCO3), water column advection, and other processes. In this study, we investigate the consequences of these effects on 230Th normalization from a suite of six cores on the Juan de Fuca Ridge. The proximity of these cores (<30 km) suggests that they should receive the same particle rain rate of sediment, but the steep bathymetry of the ridge leads to substantial sediment redistribution and variable carbonate preservation, both of which may limit the usage of 230Th in this region. Despite anticipated complications, 230Th normalization effectively reconstructs nearly identical particle rain rates from all six cores, which are summarily unrelated to the total sedimentation rates as calculated from the age models. Instead the total sedimentation rates are controlled almost entirely by sediment focusing and winnowing, which are highly variable even over the short spatial scales investigated in this study. Furthermore, no feedbacks on 230Th systematics were detected as a consequence of sediment focusing, coarse fraction variability, or calcium carbonate content, supporting the robustness of the 230Th normalization technique.

  17. Biozone Characterization of Foraminifera in Upper Pleistocene through Recent Shelf and Slope Sediments, Northern Gulf of Alaska: Integration of SHE-diversity and Polytopic Vector Analyses

    NASA Astrophysics Data System (ADS)

    Zellers, S.; Cowan, E. A.; Davies, M. H.

    2014-12-01

    Gulf of Alaska sediments contain distinct, low-diversity assemblages of benthic and planktic foraminifera, whose distribution is a function of food availability, water mass properties, ice proximity, transport/deposition, predation, and taphonomic processes. Spatial and temporal changes in diversity reflect these processes and provide insight into this margin's history. Two quantitative techniques are integrated to define and characterize benthic foraminferal biozones in Gulf of Alaska sediment core samples collected by the R/V Maurice Ewing in 2004 at shelf site EW0408-79JC (59.53° N, 141.76° W, 158 m depth), and slope site EW0408-85JC (59.56° N, 144.15° W, 682 m depth). Sediments date from the end of the most recent glaciation (diamict in 85JC) to the present (bioturbated, silty clay at both sites). We apply SHE analysis, a graphical, iterative technique, based on diversity trends in a plot of ln E vs. ln N, where E is species evenness and N is cumulative number of specimens. In each step, the plot is examined for the first change in slope between successive samples, representing a change in diversity. At this point a boundary is defined, samples before the break are removed, and the analysis is repeated until all samples are analyzed. Data are further analyzed using an unmixing algorithm known as polytopic vector analyses. This technique defines a small number of orthogonal end members that explain a majority of the variance, thus reducing data complexity and aiding interpretation. SHE-analysis of benthic foraminiferal data defines eighteen informal abundance biozones. Polytopic vector analyses indicate that the faunal assemblages reflect mixtures of up to seven distinct biofacies: outer neritic (2), upper bathyal (2), reduced oxygen (2), and inner neritic. Rapid changes in faunal diversity correspond with increased sedimentation rates, especially during the end of the most recent glaciation (17 to 16 ka). The same relationship occurs over the last 1000 years at the shelf site. Where the cores overlap in age, many more assemblage boundaries occur in the shelf core, suggesting a comparatively dynamic environment relative to the slope. The least amount of diversity change corresponds with the laminated intervals in 85JC, coincident with high productivity and development of anoxia during regional deglaciation.

  18. Extracting paleo-climate signals from sediment laminae: A new, automated image processing method

    NASA Astrophysics Data System (ADS)

    Gan, S. Q.; Scholz, C. A.

    2010-12-01

    Lake sediment laminations commonly represent depositional seasonality in lacustrine environments. Their occurrence and quantitative attributes contain various signals of their depositional environment, limnological conditions and climate. However, the identification and measurement of laminae remains a mainly manual process that is not only tedious and labor intensive, but also subjective and error prone. We present a batch method to identify laminae and extract lamina properties automatically and accurately from sediment core images. Our algorithm is focused on image enhancement that improves the signal-to-noise ratio and maximizes and normalizes image contrast. The unique feature of these algorithms is that they are all direction-sensitive, i.e., the algorithms treat images in the horizontal direction and vertical direction differently and independently. The core process of lamina identification is to use a one-dimensional (1-D) lamina identification algorithm to produce a lamina map, and to use image blob analyses and lamina connectivity analyses to aggregate and smash two-dimensional (2-D) lamina data for the best representation of fine-scale stratigraphy in the sediment profile. The primary output datasets of the system are definitions of laminae and primary color values for each pixel and each lamina in the depth direction; other derived datasets can be retrieved at users’ discretion. Sediment core images from Lake Hitchcock , USA and Lake Bosumtwi, Ghana, were used for algorithm development and testing. As a demonstration of the utility of the software, we processed sediment core images from the top of 50 meters of drill core (representing the past ~100 ky) from Lake Bosumtwi, Ghana.

  19. Using lake sediments from Buarvatnet to reconstruct multiple episodic events found at Folgefonn Peninsula, Norway

    NASA Astrophysics Data System (ADS)

    Roethe, T.; Bakke, J.; Støren, E.

    2016-12-01

    Here we present work in progress from Buarvatnet at the Folgefonn Peninsula, located on the west coast of Norway. Earlier work from Buarvatnet indicated several distinct spikes in the Silica count rates, detected by the ITRAX surface XRF-scanner. However, the process behind these distinct spikes was not understood. The arrival of high-resolution and innovative instruments at EARTHLAB, in particular the computed tomography (CT) scanner and grain Morphometer, have the potential to get a process-based understanding of these distinct layers and unravel the frequency and timing of such events. Multiple sediment cores were retrieved using a modified piston corer and a Uwitech corer from Buarvatnet. The sediments have been analysed using a multi-proxy approach and the analyses included magnetic properties, loss-on-ignition, dry bulk density, grain size/shape, geochemical analysis (XRF scanning) and CT-scanning. Accurate age-control will be achieved through 210Pb dating of the top-most sediments and 14C dating of terrestrial macrofossils. The lithostratigraphy of the 3.6 m long master sediment core from Buarvatnet is divided into three distinct units. The lower most unit ( 87 cm) is massive with fine-grained greyish sediments, most likely representing the deglaciation of the area. A 224 cm long unit is found above, characterised as dark brown gyttja with multiple thin layers (sub-mm to cm thick) of fine grained sediments. Also in this unit is two distinct sub-units showing a finer upwards sequence. At top, a gradual transition from dark brown gyttja to grey fine-grained sediments is found in the upper-most 19 cm of the sediment core. In total 16 distinct layers is found in the gyttja sequence, including the two sub-units, based on the lithostratigraphy and the prelimnary results from the magnetic, physical and geochemical properties. A preliminary hypothesis is that these distinct layers are due to outburst floods from a glacier-dammed lake upstream from Buarvatnet. In such a scenario, a bedrock threshold dams the meltwater from the retreating glacier and an outburst flood is triggered when the glacier calves or advances into the lake. Understanding the processes behind the multiple events is therefore important in order to highlight the potential hazards in rapid outburst floods in a warming world.

  20. Metal Deposition Along the Peru Margin Since the Last Glacial Maximum: Evidence For Regime Change at \\sim 6ka

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Cleaveland, L.; Herbert, T.; Altabet, M.

    2004-12-01

    The Peru Margin upwelling zone plays a key role in regulating marine biogeochemical cycles, particularly the fate of nitrate. High biological productivity and low oxygen waters fed into the oxygen minimum zone result in intense denitrification in the modern system, the consequences of which are global in nature. It has been very difficult, however, to study the paleoclimatic history of this region because of the poor preservation of carbonate in Peru Margin sediments. Here we present records of trace metal accumulation from two cores located in the heart of the suboxic zone off the central Peru coast. Chronology comes from multiple AMS 14C dates on the alkenone fraction of the sediment, as well as correlation using major features of the \\delta 15N record in each core. ODP Site 1228 provides a high resolution, continuous sediment record from the Recent to about 14ka, while gravity core W7706-41k extends the record to the Last Glacial Maximum. Both cores were sampled at a 100 yr resolution, then analyzed for % N, \\delta 15N, alkenones, and trace metal concentration. Analysis of redox-sensitive metals (Mo and V) alongside metals associated with changes in productivity (Ni and Zn) provides perspective on the evolution of the upwelling system and distinguishes the two major factors controlling the intensity of the oxygen minimum zone. The trace metal record exhibits a notable increase in the intensity and variability of low oxygen waters and productivity beginning around 6ka and extending to the present. Within this most recent 6ka interval, the data suggest fluctuations in oxygenation and productivity occur on 1000 yr timescales. Our core records, therefore, suggest that the Peru Margin upwelling system strengthened significantly during the mid to late Holocene.

  1. Understanding Mississippi Delta Subsidence through Stratigraphic and Geotechnical Analysis of a Continuous Holocene Core at a Subsidence Superstation

    NASA Astrophysics Data System (ADS)

    Bridgeman, J.; Tornqvist, T. E.; Jafari, N.; Allison, M. A.

    2017-12-01

    Land-surface subsidence can be a major contributor to the relative sea-level rise that is threatening coastal communities. Loosely constrained subsidence rate estimates across the Mississippi Delta make it difficult to differentiate between subsidence mechanisms and complicate modeling efforts. New data from a nearly 40 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the stratigraphic and geotechnical properties of the Holocene succession. Stratigraphically, the core can be grouped into three sections. The top 12 m is dominated by clastic overbank sediment with interspersed organic-rich layers. The middle section, 12-35 m consists predominately of mud, and the bottom section, 35-38.7 m, is marked by a transition into a Holocene-aged basal peat (11,350-11,190 cal BP) which overlies densely packed Pleistocene sediment. Radiocarbon and OSL ages show up to 6 m of vertical displacement since 3,000 cal BP. We infer that most of this was due to compaction of the thick underlying mud package. The top ­­­­­ 70 cm of the core is a peat that represents the modern marsh surface and is inducing minimal surface loading. This is consistent with the negligible shallow subsidence rate as seen at a nearby rod-surface elevation table - marker horizon station and the initial strainmeter data. Future compaction scenarios for the superstation can be modeled from the stratigraphic and geotechnical properties of the core, including the loading from the planned Mid-Barataria sediment diversion which is expected to dramatically change the coastal landscape in this region.

  2. Clay mineralogical record on the upper continental slope of the northwestern South China Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    CHEN, Q.; Liu, Z.; Stattegger, K.

    2012-12-01

    Clay mineralogy of two gravity cores (18428 and 18429) on the upper continental slope of the northwestern South China Sea was investigated in order to understand terrigenous sediment sources and to evaluate the contribution from the Red River since the Late Glacial Maximum. Planktonic foraminiferal oxygen isotope and carbonate stratigraphies suggest that Core 18428 is constrained in Holocene while Core 18429 covers the period of MIS 1-2. Clay mineral assemblages of two cores are composed mainly of smectite (18-57%) and illite (21-41%), with minor chlorite (12-21%) and kaolinite (8-26%). In despite of relatively constant values of illite crystallinity, ranging among 0.14°-0.20° Δ2θ, the time series variation in clay mineral distributions indicates a strong glacial-interglacial shift. Contents of illite, chlorite, and kaolinite (Core 18429) in the Holocene are lower than in the glacial period, and vice versa for the smectite content. The provenance analysis based on clay mineralogy suggests the Red River as a predominant sedimentary source of illite, chlorite, and kaolinite during all the depositional period of MIS 1-2. The sea level change actually controlled the variations of clay mineral assemblages on the upper slope since the Last Glacial Maximum. When the sea level was low during the last glacial period, more terrigenous sediments from the Red River could reach the continental slope in the northwestern South China Sea. However, when the sea level is closed to the present situation during the Holocene, most of Red River sediments could be trapped in the Gulf of Tonkin, instead of draining in the deep South China Sea.

  3. Sedimentary Environment and Climate Evolution at the Northern Continental Margin of the South China Sea During the Last Glacial Cycle and Holocene

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Kaiser, J.; Borowka, R. K.; Chen, H.; Zhang, J.; Harff, J.; Qiu, Y.; Witkowski, A.

    2014-12-01

    Climate, oceanographic and sea level history during last glacial cycle (LGC) and Holocene at the NW continental margin of the South China Sea (SCS) are investigated within the SECEB project. For that purpose two sediment cores (HDQ2 & 83PC) and single-channel seismic sections were selected to serve as a proxy data source for paleoceanographic and paleoclimatic reconstructions. The sedimentary facies is interpreted by multi-proxy approaches considering micropaleontological, sedimentological and geochemical analyses. According to 14C and OSL datings, sediments of shallow water drill core HDQ2 (88.3 m) cover a time span of ca. 115 kyr BP. Seismic images of the sampling site show a series of reflectors which can be correlated with coarse layers of core HDQ2. These layers are interpreted as transgression / regression horizons. Due to the age model it is possible to correlate these horizons with the general sea level dynamics within the SCS as it is displayed in relative sea level excursions for the MIS 5 to 2 from the Sunda Shelf (Hanebuth et al. 2011). Core 83PC (8.6 m) retrieved from the continental slope provide constant record and calm environment. Therefore, this core is used as a source for data proxy for environmental reconstructions. According to δ18O and paleomagnetic analysis, a good age model which indicate age of this core to ca. 110 kyr BP was elaborated and help correlate the paleoenvironmental data with core HDQ2. Alkenones, δ18O, the Mg/Ca ratio, and microfossil proxies serve for paleo-SST curves and monsoon variability reconstructions. δ15N and δ13C indicate nutrient supply to the marine environment. Diatomological analysis outlines the environmental evolution and interrelations between their parameters during the LGC. Interpretation of seismic profiling allowed identification of submarine paleo-delta. It's anticipated that deposited sediments descent from the Hainan Island and allow correlation of the source and sink area.Hanebuth, T.J.J, Voris, H.K., Yokoyama, Y., Saito, Y., Okuno, J., 2011. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104, p. 92-110The project was funded by the Polish National Science Centre allocated on the basis of the decision no. DEC-2011/01/N/ST10/07708

  4. Diagenetic effects on magnetic minerals in a Holocene lacustrine sediment core from Huguangyan maar lake, southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Xudong; Wang, Yong; Bian, Liu; Shen, Ji

    2016-09-01

    Post-depositional reductive diagenesis usually results in partial or entire cleansing of the pristine palaeomagnetic signal, therefore, its intensity is important to be assessed for sediments that are in the purpose of retrieving palaeomagnetic information. Grain size, rock magnetic and geochemical studies on the entire core, along with scanning electron microscope observations and X-ray diffraction analyses for representative samples were carried out on a Holocene sediment core retrieved from the deep water part of Huguangyan maar lake (HGY), southeast China. The pristine magnetic mineral assemblage of the studied core is domianted by superparamagnetic (SP) and stable single domain titanomagnetite, and high coercivity minerals are not detectable. Based on down-core variations of the average grain size (MZ), total organic carbon (TOC), detrital elements (Al, Ti, Fe and Mn) and the concentration and mineralogy of magnetic minerals, the studied core could be divided into three subsections. The uppermost subsection is the least affected by diagenesis, with detrital titanomagnetite as the dominant magnetic mineral. This is owing to low TOC contents, but high detrital input generated by weak Asian summer monsoon intensity during the late Holocene. The intermediate subsection shows down-core progressively enhanced dissolution of detrital titanomagnetite, and concomitant formation of authigenic pyrite and siderite, which indicates down-core progressively enhanced diagenesis generated by down-core progressive increasing TOC content, but decreasing detrital input as the result of down-core progressively strengthened Asian summer monsoon intensity. The pristine magnetic mineral assemblage has been profoundly modified in the lowermost subsection. At certain positions of the lowermost subsection, detrital titanomagnetite has been even completely dissolved via diagenesis, giving place to authigenic pyrite and siderite. High TOC content, but low detrital input generated from strong Asian summer monsoon intensity during the early Holocene are accountable for intensive diagenesis in the lowermost subsection. Complete erasing of detrital magnetic input signal at certain positions of the lowermost subsection, and considerable formation of authigenic siderite indicate that palaeomagnetic records of the studied core have been significantly compromised. The studied core has relatively higher TOC content, lower detrital matter content, calmer sedimentary environments, and less DO available at its water-sediment interface than the cores retrieved at relatively shallower water depths, which all contribute to its relatively stronger diagenesis. Progressive thickening of the upper two subsections with increasing water depth is owing to progressive increase in sedimentation rate with increasing water depth, which is the key factor in determining the thickness of each diagenetic subsection of cores from HGY. It would be better that lake sediments for palaeomagnetic investigations collected at a water depth shallower than the depth of its thermocline.

  5. Abyssal ostracods from the South and Equatorial Atlantic Ocean: Biological and paleoceanographic implications

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.

    2008-01-01

    We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.

  6. Gains in efficiency and scientific potential of continental climate reconstruction provided by the LRC LacCore Facility, University of Minnesota

    NASA Astrophysics Data System (ADS)

    Noren, A.; Brady, K.; Myrbo, A.; Ito, E.

    2007-12-01

    Lacustrine sediment cores comprise an integral archive for the determination of continental paleoclimate, for their potentially high temporal resolution and for their ability to resolve spatial variability in climate across vast sections of the globe. Researchers studying these archives now have a large, nationally-funded, public facility dedicated to the support of their efforts. The LRC LacCore Facility, funded by NSF and the University of Minnesota, provides free or low-cost assistance to any portion of research projects, depending on the specific needs of the project. A large collection of field equipment (site survey equipment, coring devices, boats/platforms, water sampling devices) for nearly any lacustrine setting is available for rental, and Livingstone-type corers and drive rods may be purchased. LacCore staff can accompany field expeditions to operate these devices and curate samples, or provide training prior to device rental. The Facility maintains strong connections to experienced shipping agents and customs brokers, which vastly improves transport and importation of samples. In the lab, high-end instrumentation (e.g., multisensor loggers, high-resolution digital linescan cameras) provides a baseline of fundamental analyses before any sample material is consumed. LacCore staff provide support and training in lithological description, including smear-slide, XRD, and SEM analyses. The LRC botanical macrofossil reference collection is a valuable resource for both core description and detailed macrofossil analysis. Dedicated equipment and space for various subsample analyses streamlines these endeavors; subsamples for several analyses may be submitted for preparation or analysis by Facility technicians for a fee (e.g., carbon and sulfur coulometry, grain size, pollen sample preparation and analysis, charcoal, biogenic silica, LOI, freeze drying). The National Lacustrine Core Repository now curates ~9km of sediment cores from expeditions around the world, and stores metadata and analytical data for all cores processed at the facility. Any researcher may submit sample requests for material in archived cores. Supplies for field (e.g., polycarbonate pipe, endcaps), lab (e.g., sample containers, pollen sample spike), and curation (e.g., D-tubes) are sold at cost. In collaboration with facility users, staff continually develop new equipment, supplies, and procedures as needed in order to provide the best and most comprehensive set of services to the research community.

  7. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using ICP-MS and ICP-OES for trace and major elements respectively. Well crystallized minerals were detected by X-Ray Diffraction (XRD), while amorphous and poorly crystallized phases were identified with scanning and transmission electron microscope (SEM and TEM respectively), combined with Energy Dispersive X-Ray Spectroscopy (EDXS). Such microscopic techniques also provided information about metal carriers. To have an insight about the metal speciation at molecular level, X-Ray Absorption spectroscopy (XAS) was performed at Zn K-edge. The first analyses of Orne sediment cores evidenced different particle size distribution and sediment consolidation levels. Yet the cores showed that below a layer of apparently recent sediments (about 10-20 cm), lie highly contaminated ones. Zn and Pb content in deep sediment layers reach several thousands ppm, where they appeared mainly as Zn and Pb sulphides. Also, the high content of iron in deep sediments resulted in the presence of different iron phases: hematite, wuestite, magnetite, goethite, sulphides (pyrite), as well as undefined iron-silicate. In addition, interstitial waters contained high values of available metals (Zn: 500-35000 ppm, Pb: 150-5700 ppm, Cd: 1-10ppm), which might cause a greater concern than solid-bound metals, especially when river bed sediments are disturbed.

  8. Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site.

    PubMed

    Choi, Jee Woong; Dahl, Peter H; Goff, John A

    2008-09-01

    Acoustic bottom-interacting measurements from the Shallow Water '06 experiment experiment (frequency range 1-20 kHz) are presented. These are co-located with coring and stratigraphic studies showing a thin (approximately 20 cm) higher sound speed layer overlaying a thicker (approximately 20 m) lower sound speed layer ending at a high-impedance reflector (R reflector). Reflections from the R reflector and analysis of the bottom reflection coefficient magnitude for the upper two sediment layers confirm both these features. Geoacoustic parameters are estimated, dispersion effects addressed, and forward modeling using the parabolic wave equation undertaken. The reflection coefficient measurements suggest a nonlinear attenuation law for the thin layer of sandy sediments.

  9. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  10. Magnetic properties of Japan Sea sediments in areas which host shallow gas hydrates and in relation to the the amount of gas hydrate

    NASA Astrophysics Data System (ADS)

    Shimono, T.; Matsumoto, R.

    2016-12-01

    Shallow gas hydrate is known to occur as massive nodular aggregates in subsurface and/or shallow marine sediments (e.g. Matsumoto et al. 2009). We conducted a rock magnetic study of marine core sediments to clarify the relationship between shallow gas hydrate and the surrounding sediments. The core samples were taken from around Oki area and offshore Joetsu, the eastern margin of Japan Sea, during PS15 cruise in 2015. We mainly report magnetic susceptibility measurement of whole-round core samples. From the onboard measurements, the magnetic susceptibilities of gas hydrates indicated diamagnetic mineral like water or ice ( -0.9 x 10-5 vol. SI). Moreover, we introduce a method to assess the amount of gas hydrate present within marine sediments using magnetic susceptibility and rock magnetic analyses. This study was conducted under the commission from AIST as a part of the methane hydrate research project of METI (the Ministry of Economy, Trade and Industry, Japan).

  11. Electrogenic sulfur oxidation in a northern saltmarsh (St. Lawrence Estuary, Canada).

    PubMed

    Rao, Alexandra; Risgaard-Petersen, Nils; Neumeier, Urs

    2016-06-01

    Measurements of porewater O2, pH, and H2S microprofiles in intact sediment cores collected in a northern saltmarsh in the St. Lawrence Estuary (Quebec, Canada) revealed the occurrence of electrogenic sulfur oxidation (e-SOx) by filamentous "cable" bacteria in submerged marsh pond sediments in the high marsh. In summer, the geochemical fingerprint of e-SOx was apparent in intact cores, while in fall, cable bacteria were detected by fluorescence in situ hybridization and the characteristic geochemical signature of e-SOx was observed only upon prolonged incubation. In exposed, unvegetated creek bank sediments sampled in the low marsh in summer, cable bacteria developed only in repacked cores of sieved (500 μm), homogenized sediments. These results suggest that e-SOx is suppressed by the activity of macrofauna in exposed, unvegetated marsh sediments. A reduced abundance of benthic invertebrates may promote e-SOx development in marsh ponds, which are dominant features of subarctic saltmarshes as in the St. Lawrence Estuary.

  12. An exploratory method to detect tephras from quantitative XRD scans: Examples from Iceland and east Greenland marine sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.; Kristjansdottir, G.B.

    2006-01-01

    Tephras, mainly from Iceland, are becoming increasingly important in interpreting leads and lags in the Holocene climate system across NW Europe. Here we demonstrate that Quantitative Phase Analysis of x-ray diffractograms of the 150 um fraction and identify these same peaks in XRD scans - two of these correlate geochemically and chronologically with Hekla 1104 and 3. At a distal site to the WNW of Iceland, on the East Greenland margin (core MD99-2317), the weight% of volcanic glass reaches values of 11% at about the time of the Saksunarvatn tephra. The XRD method identifies the presence of volcanic glass but not its elemental composition; hence it will assist in focusing attention on specific sections of sediment cores for subsequent geochemical fingerprinting of tephras. ?? 2006 SAGE Publications.

  13. Linking downhole logging data and clay mineralogy analysis in the ICDP Lake Junín drilling Project, Peru

    NASA Astrophysics Data System (ADS)

    Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.

    2017-12-01

    The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be carried out to understand fluid-rock interaction processes, transport processes, and porosity-permeability changes.

  14. Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China.

    PubMed

    Wang, Shaopeng; Wang, Yinghui; Zhang, Ruijie; Wang, Weitao; Xu, Daoquan; Guo, Jing; Li, Pingyang; Yu, Kefu

    2015-11-01

    Historical levels of Pb, Zn, Cd, Cr, Cu, Ni, As, Fe, Al and Mn were found in C1 and C2 sediment cores from the Hejiang River, which is located in a typical mining region of Southern China, the levels date back approximately 57 and 83 years. Temporal variations in the core C1 around the mining peaked in the 1960s, after which they exhibited a decreasing trend, which reflects successful government management. Historical events such as the Pacific War and China's first 5-year economic plan were recorded in core C2, which was collected from the downstream portion of the Hejiang River. Enrichment factors (EF), geo-accumulation (Igeo), and excess flux indicate that severe contamination occurred during the period between 1956 and 1985 due to the release of high amounts of mining waste from human activities around the core C1 region. The highest EF value was displayed by As (67); this was followed by Pb (64), Cd (39), and Zn (35). In contrast, the core C2 sediments exhibited minor pollution because of dilution from tributaries (the Fu River and the Daning River) that do not flow through the mined area and because C2 was farther from the source of the metals. The results of the risk assessment codes (RAC) for both cores indicate that Cd posed a high risk to the local environment. Principal component analysis (PCA) and correlation analysis (CA) revealed that accumulation of heavy metals was mainly due to mining pollution. Copyright © 2015. Published by Elsevier B.V.

  15. Evolution of the Lian River coastal basin in response to Quaternary marine transgressions in Southeast China

    NASA Astrophysics Data System (ADS)

    Tang, Yongjie; Zheng, Zhuo; Chen, Cong; Wang, Mengyuan; Chen, Bishan

    2018-04-01

    The coastal basin deposit in the Lian River plain is among the thickest Quaternary sequences along the southeastern coast of China. The clastic sediment accumulated in a variety of environmental settings including fluvial, channel, estuary/coastal and marine conditions. Detailed investigation of lithofacies, grain-size distributions, magnetic susceptibility, microfossils and chronology of marine core CN01, compared with regional cores, and combined with offshore seismic reflection profiles, has allowed us to correlate the spatial stratigraphy in the inner and outer plain and the seismic units. Grain size distribution analysis of core CN-01 through compositional data analysis and multivariate statistics were applied to clastic sedimentary facies and sedimentary cycles. Results show that these methods are able to derive a robust proxy information for the depositional environment of the Lian River plain. We have also been able to reconstruct deltaic evolution in response to marine transgressions. On the basis of dating results and chronostratigraphy, the estimated age of the onset of deposition in the Lian River coastal plain was more than 260 kyr BP. Three transgressive sedimentary cycles revealed in many regional cores support this age model. Detailed lithological and microfossil studies confirm that three marine (M3, M2 and M1) and three terrestrial (T3, T2 and T1) units can be distinguished. Spatial correlation between the inner plain, outer plain (typical cores characterized by marine transgression cycles) and offshore seismic reflectors reveals coherent sedimentary sequences. Two major boundaries (unconformity and erosion surfaces) can be recognized in the seismic profiles, and these correspond to weathered reddish and/or variegated clay in the study core, suggesting that Quaternary sediment changes on the Lian River plain were largely controlled by sea-level variations and coastline shift during glacial/interglacial cycles.

  16. Using Radar and Seismic Methods for the Determination of Ice Column Properties and Basal Conditions at Jakobshavn Isbrae and the NEEM Drill Site

    NASA Astrophysics Data System (ADS)

    Velez Gonzalez, Jose A.

    The development of preferred crystal orientation fabrics (COF) within the ice column can have a strong influence on the flow behavior of an ice sheet or glacier. Typically, COF information comes from ice cores. Observations of anisotropic seismic wave propagation and backscatter variation as a function of antenna orientation in GPR measurements have been proposed as methods to detect COF. For this investigation I evaluate the effectiveness of the GPR and seismic methods to detect COF by conducting a seismic and GPR experiment at the North Greenland Eemian Ice Drilling facility (NEEM) ice core location, where COF data is available. The seismic experiment was conducted 6.5 km North West of the NEEM facility and consisted of three multi-offset seismic gathers. The results of the anisotropy analysis conducted at NEEM yielded mean c-axes distributed over a conical region of I angle of 30 to 32 degrees. No internal ice reflectors were imaged. Direct COF measurements collected in the ice core are in agreement with the results from the seismic anisotropy analysis. The GPR experiment covered an area of 100 km2 and consisted of parallel, perpendicular, oblique and circular (radius: 35 m) acquisition patterns. Results show evidence for COF for the entire 100 km2 area. Furthermore, for the first time it was possible to image three different COF (random, disk and single maxima) and their respective transition zones. The interpretation of the GPR experiment showed a strong correlation with the ice core measurements. Glacier basal drag is also an important, and difficult to predict, property that influences glacier flow. For this investigation I re-processed a 10 km-long high-resolution reflection seismic line at Jakobshavn Isbrae, Greenland, using an iterative velocity determination approach for optimizing sub-glacier imaging. The resultant line imaged a sub-glacier sediment layer ranging in thickness between 35 and 200 meters. I interpret three distinct seismic facies based on the geometry of the reflectors as a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness between 4 and 93 meters and are thought to be water-saturated actively-deforming sub-glacier sediments. A polarity reversal observed at one location along the ice-sediment interface suggests the presence of water saturated sediments or water ponding 2-4 m thick spanning approximately 240 m across. Using information from the seismic line (bed geometry, ice thickness, till thickness) as well as information available for the area of study (ice surface elevation and ice flow velocity) we evaluate the effect of sub-glacier sediment viscosity on the basal drag using a linearly viscous model and the assumption of a deforming bed. Basal drag values estimated for the study area fall within the range of physically acceptable values. However, the analysis revealed that the assumption of a deforming bed might not be compatible for the area of study given the presence of water at the ice/bed interface.

  17. RECONSTRUCTION OF CONTAMINANT TRENDS IN A SALT WEDGE ESTUARY WITH SEDIMENT CORES DATED USING A MULTIPLE PROXY APPROACH

    EPA Science Inventory

    The Taunton River is a partially mixed tidal estuary in southeastern Massachusetts (USA) which has received significant contaminant inputs, yet little information exists on the history of discharge and the subsequent fate of these contaminants. Three sediment cores taken along a...

  18. Late Quaternary Environmental Changes Inferred from the stable Oxygen Isotope Composition of Aquatic Insects (Chironomidae: Diptera) and Stable Hydrogen Isotope Composition of bulk sediments from Idavain Lake, Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Finney, B.; Wooller, M. J.

    2007-12-01

    Several techniques are available to examine the isotopic composition of historic lake waters, providing data that can subsequently be used to examine environmental changes. Recently-developed techniques are the stable oxygen isotope analysis of subfossil chironomid (Diptera: Chironomidae) head capsules (mostly chitin) preserved in lake sediments and stable hydrogen isotope analyses directly on bulk sediments. An advantage of using δ18O of chironomids is that the chitinous chironomid headcapsules preserve well in lake sediments, retaining the stable oxygen isotope signature of the lake in which they lived. An advantage of δD analyses of bulk sediments is that a sediment core can be analyzed relatively easily and when the %C (total organic carbon) and %H profiles correlate the data can be used to infer past δD changes of the organics in the sediments. We present results from these analyses of a lake sediment core from Idavain Lake (58°46'N, 155°57'W, 223m above sea level) in southwest Alaska in concert with other paleolimnological proxies, including δ15N, δ13C, LOI, magnetic susceptibility, organic content and opal concentrations for a better understanding of paleolimnological changes since deglaciation for the region. Our preliminilary result shows that downcore shifts of δ18O analyzed from chironomid head capsules coincide well with LOI and pollen changes. The δD of sediments and TOM showed large magnitude changes and reflected the relative lake level changes during the record. This study aim to test the correlation between stable isotope analyese on chiornomid head capsules, lake water, and bulk sediments. In the addition, our study will add to the relatively small database of paleoenvironmental reconstructions from terrestrial sites in Southwest Alaska.

  19. Sediment amino acids as indicators of anthropogenic activities and potential environmental risk in Erhai Lake, Southwest China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Zhang, Mianmian

    2016-05-01

    Total hydrolysable amino acids (THAAs) constitute the most important fraction of labile nitrogen. Anthropogenic activities directly influence various biogeochemical cycles and then accelerate lake ecosystem deterioration. This is the first study that has established the relationship between sediment THAAs and anthropogenic activities using dated sediment cores, and evaluated the possibility of THAAs release at the sediment interface based on changes in environmental conditions in Erhai Lake. The results showed that historical distribution and fractions of THAAs could be divided into three stages: a stable period before the 1970s, a clear increasing period from the 1970s to 1990s, and a gradually steady period that started after the 1990s. The chemical fraction, aromatic and sulfur amino acids (AAs) accounted for only ≤3% of THAAs. Basic AAs accounted for 5-17% of THAAs, and remained at a relatively stable level. However, acidic and neutral AAs, which accounted for 19-44% and 35-69% of THAAs, respectively, were the predominant factors causing THAAs to increase due to rapid agricultural intensification and intensification of contemporary sedimentation of phytoplankton or macrophytes since the 1970s. These trends were closely related to both anthropogenic activities and natural processes, which implied that sediment THAAs could act as an effective indicator that reflects anthropogenic activities and aquatic environmental characteristics. The current contributions of sediment THAAs on TN and TOC were <5% and 1.5%, respectively. However, the dramatic increase in THAAs in the sediment cores indicated that there was a huge potential source of labile nitrogen for the overlying water under certain environmental conditions. Correlation analysis suggested that the release of THAAs was negatively correlated with pH, whereas positively correlated with bacterial number and degree of OM mineralization, which particularly depend on the stability of HFOM. Therefore, the risk of sediment THAAs release might increase when the sediment environment continuously changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Foraminiferal record of anthropogenic environmental changes in the northeastern Adriatic Sea (Panzano Bay, Gulf of Trieste, Italy)

    NASA Astrophysics Data System (ADS)

    Vidovic, Jelena; Cosovic, Vlasta; Kern, Vieana; Gallmetzer, Ivo; Haselmair, Alexandra; Zuschin, Martin

    2016-04-01

    The northern Adriatic Sea is one of the world's largest modern epicontinental seas and a young marine ecosystem that has been subject to various natural and anthropogenic processes during the Holocene: marine transgression, regional climate fluctuations, urbanisation and pollution. The Gulf of Trieste, located in the northeastern part, presents the area of particular interest, as it is a shallow and sheltered embayment, prone to the accumulation of pollutants, populated for at least the last 2000 years and with recent anthropogenic pressure coming from several rivers, ports and industrial zones. The aim of this multidisciplinary study is to provide a high-resolution record of these processes using benthic foraminiferal assemblages, geochemical proxies (trace metals, nutrients and pollutants), sedimentological (sedimentation rates) and time-averaging data (from dated mollusc shells). One core of 1.5 m length was taken at the sampling station Panzano Bay, northernmost part of the Gulf of Trieste, at the water depth of 12.5 m. The sedimentation rate is estimated to be 2.5 mm/year, based on 210Pb sediment dating, while dating of the molluscs shells revealed the age at the bottom of the core to be approximately 500 years. The core was sliced into smaller subsamples, and four sediment fractions of each subsample (63, 125, 250 and 500 μm) were analysed for standard properties of the foraminiferal community (faunal composition, absolute and relative abundances of species, biodiversity indices), in order to make comparison with relevant physical and geochemical properties of the sediment. The results concerning changes in foraminiferal species composition, their abundance and biodiversity, supported by statistical analyses (cluster analysis, NMDS, PCA), allow identification of three major foraminiferal associations: 1) 80-150 cm - the oldest association is dominated by opportunistic genera ans species, characteristic for unstable environments: Valvulineria sp. (25-50%), non-keeled elphidiids (23-39%), Ammonia tepida (5-10%) and Haynesina depressula (5-17%). 2) 25-80 cm - opportunistic species are still highly abundant, but there is the increase in abundances of epiphytic species (Adelosina laevigata, Quinqueloculina seminula, Miliolinella subrotunda). 3) 0-25 cm - the youngest association is characterised by the decrease in abundances of opportunistic species and relative higher precentages of epiphytic species: Eggereloides scabrus, A. laevigata, Q. seminula, M. subrotunda. Foraminiferal biodiversity is increasing from the oldest toward the youngest association. The sediment throughout the core is composed of silty clay. Older sediment intervals (80-150, 25-80 cm) have higher concentrations of major (Fe, Al), minor (Mn, P) and trace elements (Hg, Cr, Cu, Ni, As, Li), compared to the uppermost sediment. The concentrations of Pb, Zn, P, TOC, N tot, PAH and PCB display the opposite trend and increase in the youngest sediment interval (0-25 cm).

  1. Speciation and isotopic composition of sedimentary sulfur in the Everglades, Florida, USA

    USGS Publications Warehouse

    Bates, A.L.; Spiker, E. C.; Holmes, C.W.

    1998-01-01

    We have studied the sulfur speciation and isotopic composition of two peat cores from Water Conservation Area 2A (WCA 2A) in the Florida Everglades. Core site E1 is affected by agricultural runoff from the Hillsboro Canal which drains the Everglades Agricultural Area; Core site U3 is distant from the canal and relatively unaffected by agricultural runoff. Depth profiles of the total sulfur content of both cores show fairly constant levels (??0.7 wt.%) below about 25-30 cm depth in Core E1 and below 40-45 cm in Core U3. Above these depths, total sulfur increases to as much as 1.52 wt.% in Core E1 and 1.74 wt.% in Core U3, suggesting that more sulfur has entered the sediments and/or that more sulfur is being retained in recent times at both sampling sites. These changes in total sulfur content with depth in Core E1 correlate with changes in total phosphorus that have been observed in other studies at core sites near the Hillsboro Canal. This correlation of total sulfur with phosphorus with depth is not seen in Core U3 located away from the canal, possibly because phosphorus is more effectively retained than sulfur in the organic sediment near the canal. Organic-sulfur (OS) concentrations are at least twice as high as the dusulfide-sulfur (DS) concentrations in the upper parts of both cores suggesting that iron is presently limiting the amount of dusulfide minerals formed in these sediments. The degree of pyritization (DOP) in the upper parts of the cores suggest that sulfide mineralization is limited by the availability of highly reactive iron during the earliest stages of diagenesis. Positive ??34S values for reduced sulfur forms in both cores indicate a relatively restricted sulfate reservoir, consistent with nearly complete reduction of the sulfate available in the sediment at any given time. Differences between the two core appear in the ??34S values for the near-surface sediments. The DS ??34S values in the upper 10.0 cm of sediment are more posotive at site E1, with a mean ??34S value of +12.9???, than at site U3, with a mean ??34S value of +2.9???. These reuslts may indicate that increased rates of organic deposition due to nutrient loading near the canal have increased the rate of sulfate reduction at the E1 site in recent times. Acid-volatile-sulfide (AVS) concentrations are lower than DS and OS concentrations by at least a factor of 10. Increasing ??34S values for AVS with increasing depth in both cores suggests ongoing reduction of a limited porewater sulfate reservoir after deposition. The disulfide and organic-sulfur ??34S values diverge from the ??34S values for AVS with depth, suggesting that most of the transformation of AVS into disulfide minerals or incorporation of sulfur into orgnaic matter occurs in the near-surface sediments. A comparison of organic-sulfur ??34S values in the dominant flora at the U3 site (sawgrass leaves and periphyton) with organic-sulfur ??34S values at the top of the U3 core indicates that there was early incorporation of an isotopically light sulfide species into the orgnaic matter.

  2. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary

    USGS Publications Warehouse

    Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.

    1999-01-01

    Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].

  3. Analytical Results for 35 Mine-Waste Tailings Cores and Six Bed-Sediment Samples, and An Estimate of the Volume of Contaminated Material at Buckeye Meadow on Upper Basin Creek, Northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern) end of the tailings area, and heavily impacted at the lower (western) end of the area and downstream. The metals are mostly contained in the 2M HCl-1% H2O2 leachable phase, which are the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  4. Rock Magnetic Properties, Paleosecular Variation Record and Relative Paleointensity Stack between 11 and 21 14C kyr B.P. From Sediment Cores, Lake Moreno (Argentina)

    NASA Astrophysics Data System (ADS)

    Gogorza, C. S.; Irurzun, M. A.; Lirio, J. M.; Nunez, H.; Chaparro, M. A.; Sinito, A. M.

    2008-05-01

    We conducted a detailed study of natural remanence and rock magnetic properties on sediments cores from lake Moreno (South-Western Argentina). Based on these measurements, we constructed a paleosecular variation (PSV) record (Irurzun et al., 2008) and a relative paleointensity stack for the period 11-21 14C. The Declination and Inclination logs of the characteristic remanent magnetization for the cores as function of shortened depth are obtained. The data from all cores were combined to obtain a composite record using the Fisher method. Comparison between stacked inclination and declination records of lake Moreno and results obtained in previous works, lake Escondido (Gogorza et al., 1999; Gogorza et al., 2002) and lake El Trébol (Irurzun et al., 2008), shows good agreement. This agreement made possible to transform the stacked curves into time series that spans the interval 11 and 21 14C kyr B.P. Rock magnetic properties of the sediments cores showed uniform magnetic mineralogy and grain size, suggesting that they were suitable for relative paleointensity studies. The remanent magnetization at 20mT (NRM20mT) was normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent magnetization at 20mT (SIRM20mT) and the low field magnetic susceptibility {k}. Coherence analysis showed that the normalized records were not affected by local environmental conditions. The recorded pseudo-Thellier paleointensity was compared with records obtained from conventional normalizing methods. Comparing the paleointensity curves with others obtained previously in other lakes in the area has allowed us to reach reliable conclusions about centennial-scale features. References: Gogorza, C.S.G., Sinito, A.M., Di Tommaso, I., Vilas, J.F., Creer, K., Núnez, H. Holocene Geomagnetic Secular Variations Recorded by Sediments from Escondido lake (South Argentina). Earth, Planets and Space, V51(2), 93- 106. 1999. Gogorza, C.S.G., Sinito, A.M., Lirio, J.M., Núnez, H., Chaparro, M.A.E., Vilas, J.F. Paleosecular Variations 0- 19,000 Years Recorded by Sediments from Escondido lake (Argentina). Physical of the Earth and Planetary Interiors, Elsevier, V133(1-4), 35-55. 2002. Irurzun, M.A., Gogorza, C.S.G., Sinito, A.M., Chaparro, M.A.E., Nuñez, H., Lirio, J.M. Paleosecular Variations 12-20 kyr. as Recorded by Sediments From lake Moreno (Southern Argentina). Studia Geophysica et Geodaetica. In Press. 2008.

  5. Physical Properties of Sediment Related to Gas Hydrate in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Winters, W. J.; Novosel, I.; Boldina, O. M.; Waite, W. F.; Lorenson, T. D.; Paull, C. K.; Bryant, W.

    2002-12-01

    Eighteen giant piston cores, up to 38-m long, were recovered during July 2002 to determine the distribution of gas hydrate in widely different geologic environments of the Northern Gulf of Mexico. Physical properties, including electrical resistivity, three different shear strengths, P-wave velocity, and thermal conductivity were measured on split and whole-round cores at sea. Water content, grain density, and related properties are being determined in a shore-based laboratory from shipboard-acquired subsamples. These physical property data are important for two primary reasons: (1) to relate the presence of gas hydrate to the natural host sediment; and (2) to correlate with shallow seismic reflection records so they can be interpreted more accurately within and below the depth of coring. Preliminary results indicate that porosity and water content typically decrease rapidly to a subbottom depth of about 8 to 9 m, but then decrease at a much lower rate to the base of the core - often 30 or more mbsf. Although higher water contents are measured in the sediments that were recovered in association with gas hydrates, they are probably an artifact of post-sampling hydrate dissociation rather than an in-situ characteristic. The hydrate recovered during the cruise, was present either as particles distributed throughout the sediment or as massive chunks that filled the entire 10-cm diameter of the core liner. The sediments immediately adjacent to the recovered gas hydrates are visually similar to surrounding sediments, and thus primary lithologic differences do not appear to control the distribution of these gas hydrates. Vane shear strength measurements correlate better to subbottom depth than to water content. The strength values typically increase from less than 10 kPa near the seafloor to as much as 80 to 90 kPa at the base of some cores. Electrical resistivity appears to be related to water content (and probably porewater salinity) since a break in slope with depth is often recorded in the upper 8 to 15 m of sediment. Electrical resistivity typically increases from about 0.4 to 0.5 ohm-m near the top of many cores, to about 0.7 ohm-m near the base of the deeper recovered sediment. These values are typical for clay-rich fine-grained sediment with high water content. Although the amount of gas hydrate in the natural environment is enormous, little is known about its distribution in sea-floor sediment or even exactly how it forms. A goal of this cruise was to find evidence for the existence of gas hydrate away from obvious seafloor gas-hydrate mounds and at depth in the sediment. This international, multi-discipline coring cruise was conducted jointly by the Institut Polaire Francais, Paul-Emile Victor (IPEV) and the USGS aboard the 120-m-long French research vessel, Marion Dufresne. Partial funding was provided by the U.S. Dept. of Energy and considerable at-sea help was provided by an international group of about 40 scientists under the IMAGES (International Marine Past Global Changes Study) and PAGE (Paleoceanography of the Atlantic and Geochemistry) programs.

  6. Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming

    USGS Publications Warehouse

    Collins, Donley S.

    1983-01-01

    A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal

  7. Investigating Holocene Glacial and Pluvials Events in the Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.; Kirby, M.; Gray, A. B.

    2016-12-01

    Understanding interannual and decadal variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental record and uncertainty caused by extrapolating paleoclimate data from lower elevation systems to the alpine snow deposition zone. Longer paleo records from high elevation systems are necessary to provide a more accurate record of snow water content and extreme precipitation events over millennial timescales that can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake, an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning along with grain-size analysis at 1-2 cm increments. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K year record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating fine grained, light-dark bands (1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. The sand to gravel sized clasts are most likely associated with extreme precipitation events. Preliminary grain-size analysis results show evidence of isolated extreme hydrologic events and sections of increased event frequency which we hypothesize are the result of atmospheric rivers intersecting the southern Sierra Nevada outside of the snow covered period.

  8. Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota

    USGS Publications Warehouse

    Tangen, Brian A.; Laubhan, Murray K.; Gleason, Robert A.

    2014-01-01

    Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of core characteristics along the depth profile suggests that there has been regular sediment mixing and removal, as well as non-uniform sediment deposition with time. Estimated mean accretion rates based on the three methods of determination (two time markers for 137Cs, 210Pb) ranged from 0.22–0.35 centimeters per year, and approximately 70 percent of cores had less 137Cs than expected. Concentrations of sediment-associated elements generally were within reported reference ranges, and all agrichemicals analyzed were below detection limits. Results suggest that there does not appear to be widespread sediment accumulation in impoundments of the Souris River Basin refuges. In addition, there were no identifiable patterns among sedimentation rates from the upstream (Des Lacs, Upper Souris) to the downstream (J. Clark Salyer) refuges. There were, however, apparent upstream to downstream patterns of increased concentrations of some elements (for example, aluminum, boron, and vanadium) that may warrant further exploration. Future related monitoring and research efforts should focus on areas with high potential for sediment accumulation, such as upstream areas adjacent to dams, to identify potential sediment problems before they become too severe. Further, assessments of suspended sediments transported in the Des Lacs and Souris Rivers would augment interpretation of sedimentation data by identifying potential sediment sources and areas with the greatest potential for accumulation.

  9. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  10. Across-canyon movement of earthquake-induced sediment gravity flow offshore southwestern Taiwan.

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ting; Su, Chih-Chieh; Lu, Yi-Wei; Cheng, Yiya

    2017-04-01

    Caused by the origin of oblique collision between the Eurasian and Philippine Sea Plate, Taiwan Island inevitably faces the destiny to be continuously influenced by frequent and severe earthquake activities. Thus, earthquake-induced sediment gravity flows are common marine geo-hazards in the submarine region of Taiwan. The Pingtung Doublet earthquakes occurred in Dec. 2006 offshore Fangliao Township and two submarine cables were broken at the Fangliao Submarine Canyon (FLSC) head, simultaneously. On the eastern side of the FLSC head, chirp sonar profiles and high-resolution bathymetry data revealed linear seafloor failures along the northwest direction and merged into the FLSC. Moreover, cores taken from the seafloor failure area and in the FLSC also observed thick debrite and turbidite layers at core tops. Nevertheless, in the western side of the FLSC head, local fishermen reported disturbed water just after the Pingtung Doublet earthquakes. Hence series of cores and chirp sonar data were collected at the western side of the FLSC, trying to figure out the linkage of Pingtung Doublet earthquakes induced gravity flow deposits on both sides of the FLSC. The analysis results suggest that the deposits of disturbed water at the western side of FLSC head was caused by the finer suspended sediments separated from the main body at the top of the gravity flow. Our results point out besides the traditional well-known downward transportation in the canyon, the across-canyon movement may also leave stratigraphic records and help us to establish a more complete transportation process of a sediment gravity flow.

  11. Identification and characterization of tsunami deposits off southeast coast of India from the 2004 Indian Ocean tsunami: Rock magnetic and geochemical approach

    NASA Astrophysics Data System (ADS)

    Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.

    2014-06-01

    The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.

  12. Century-scale high-resolution black carbon records in sediment cores from the South Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Hong, Yuehui; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Lirong; Wang, Jianghai

    2018-01-01

    Black carbon (BC) has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance, preserving fire-history records, and more importantly, acting as an indicator of biogeochemical cycles and global changes. By adopting an improved chemothermal oxidation method (WXY), this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea. The BC records were divided into five stages, which exhibited specific sequences with three BC peaks at approximately 1891, 1921, and 2007 AD, representing times at which the first heavy storms appeared just after the termination of long-term droughts. The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe (Yellow) River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runoff, which augmented the atmospheric deposition. Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD. Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5, whereas no graphitic carbon entered during Stages 1 and 3. The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.

  13. Magnetic Hysteresis Parameters and Day-Plot Analysis to Delineate Diagenetic Alteration in Gas Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Baker, J.; Nourgaliev, D.; Iassonov, P.

    2005-12-01

    Gas hydrates are naturally occurring cage structures of ice found in continental slope and permafrost sediments. They contain vast quantities of methane which is important both as a climate driver and an energy resource. Hydrate formation alters the redox potential of interstitial fluids which can in turn alter magnetic minerals. Thus magnetic methods can help delineate diagenetic pathways, provide a proxy method to map out past hydrate occurrences, and eventually lead to new remote sensing methods in prospecting for gas hydrates. We present data acquired using a J-Meter Coercivity Spectrometer. Induced and remanent magnetism are simultaneously measured on 1.5 cc samples as they spin on a 50 cm diameter disk, 20 times per second. The applied field ramps between ± 500 mT to produce a hysteresis loop in 7 minutes. Sub-second viscous decay is measured to provide a proxy for the amount of superparamagnetism present. The rapid and simple measurements made possible by this robust machine are ideal for core logging. Measurements made on frozen core from the Mallik permafrost gas hydrate field in Canada's Northwest Territories demonstrates that the magnetic properties are dependent on the concentration of gas hydrate present. Day-plots of magnetic hysteresis parameter ratios distinguish the magnetic carriers in gas hydrate rich sediments. The original magnetite is often reduced to sulphide when gas hydrate concentration exceeds 40%. In other high-concentration gas hydrate horizons, fine single-domain (SD) grains of magnetite apparently dissolve leaving nothing but large multi-domain (MD) magnetite grains. Independently measured superparamagnetism is shown to push hysteresis ratios off the hyperbola expected for SD-MD mixtures, as predicted by Dunlop [JGR, 10.10291/2001JB000486, 2002]. Magnetic study of host sediments in gas hydrate systems provides a powerful core-logging tool, offers a window into the processes of gas hydrate formation, and forms the basis for quantitative analysis of magnetic surveys over gas hydrate fields.

  14. A New Method for the Determination of Annual Sediment Fluxes from Varved Lake Sediments

    NASA Astrophysics Data System (ADS)

    Francus, P.; Massa, C.; Lapointe, F.

    2013-12-01

    Calculation of sediment mass accumulation rates instead of thickness accumulation is preferable for paleoclimatic reconstruction as it eliminates the effects of dilution and compaction. Annually laminated lake sediment sequences (varved) theoretically allow for the estimation of sediment fluxes at annual scale, but the calculation is limited by discrete bulk density measurements, often carried out at a much lower resolution (usually 1 cm) than the varves (ranging from 0.07 to 27.3 mm, average 1.84 mm according to Ojala et al. 2012). Since many years the development of automated logging instruments made available continuous and high resolution sediment property data, in a non-destructive fashion. These techniques can easily be used to extract the physical and chemical parameters of sediments at the varve scale (down to 100 μm). Here we present a robust method to calculate annual sediment fluxes from varved lake sediments by combining varves thickness measurements to core logging data, and provide an example for its applications. Several non-destructive densitometric methods applied to the Strathcona Lake sediment, northern Ellesmere Island, Canada (78°33'N; 82°05'W) were compared: Hounsfield Units from a CT-Scan, coherent/incoherent ratio and X-ray radiography (of both split core and sediment slabs, from an Itrax core Scanner), and gamma ray attenuation density. Core logging data were statistically compared to 400 discrete measurements of dry bulk density, wet bulk density and water content performed at 2 mm contiguous intervals. A very strong relationship was found between X-ray grey level on sediment slab and dry bulk density. Relative X-ray densities, at 100μm resolution, were then successfully calibrated against real densities. The final step consisted in binning the calibrated densities to the corresponding varve thickness and then to calculate the annual mass accumulation rates by multiplying the two parameters for each varve year. Strathcona Lake is located directly downstream of the Agassiz ice cap and contains laminated sediments whose accumulation is directly related to hydrological inputs generated by the melting of the ice cap. Over the last 65 years, annual sediment accumulation rates in Strathcona Lake documented an increase in high-energy hydrologic discharge events from 1990 to 2009. This timing is in agreement with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. A good correspondence was also found between annual mass accumulation rates and Eureka air temperature records, suggesting that temperature changes affected the extent of summer melting on the Agassiz Ice Cap, leading to high sediment yield to Strathcona Lake. Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S.F. (2012) Characteristics of sedimentary varve chronologies - A review. Quaternary Science Reviews, 43, 45-60.

  15. The sedimentary records of Holocene environmental changes from the Central High of the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Filikci, Betul; Çağatay, Namık; Kadir Eriş, Kürşad; Akyol, Mustafa; Yalamaz, Burak; Uçarkuş, Gülsen; Henry, Pierre

    2015-04-01

    The Sea of Marmara (SoM) is located between the Aegean Sea and the Black Sea, to which it is connected via the Istanbul (Bosphorus) and Canakkale (Dardanelles) straits having sill depths of 65 and 35 m, respectively. It has a two-way water mass exchange with a permanent pycnocline located at 20-25 m water depth. With the objective of determining Holocene paleoenvironmental changes, we studied a 8.36 m-long piston core recovered from the Central High of the SoM at a water depth of 835 m, using multiproxy analyses such as total organic and inorganic carbon, high resolution µ-XRF core scanner analysis, grain size, magnetic susceptibility and density. A 2 cm-thick tephra layer with high K and Zr and relatively low magnetic susceptibility occurs at 2.1 meter below sea floor (mbsf), which is correlated with the Avellino (Somma-Vesuvius, Italy) eruption dated at 3.9 ka BP, according to the previous studies. Using this age and assuming a uniform sedimentation rate, the base of the core dates back to ca 8 ka BP. The core includes organic-rich (sapropelic) sediments with 1.5 % to 2.2%) in its top 3.5 m and bottom 1 m. Sapropelic layers are olive green and in part laminated, and contain occasional reddish brown spots and laminae formed by oxidation of iron monosulphides. The core also contains some few mm- to cm-thick sandy-silty mass-flow units below 2.4 mbsf, some of which could have been triggered by the earthquake activity on the Central High segment of the North Anatolian Fault, just a few km away from the core location. Variations in Ca-Ti ratio suggest millennial-scale climatic changes during the Holocene. Keywords: Sea of Marmara, Holocene paleoenvironmental records, tephra, turbidites, TOC analysis, XRF analysis, physical properties.

  16. Vertical accumulation of potential toxic elements in a semiarid system that is influenced by an abandoned gold mine

    NASA Astrophysics Data System (ADS)

    Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto

    2013-09-01

    The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn concentrations in the sediment cores were related to the deposition of fine sediments and organic carbon.

  17. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87°W, 4910 m asl), a lake that has not received glacial meltwater since late glacial time. We used the clastic sediment record to determine the input from non-glacial sources, representing ambient climate. This information tests our hypothesis that increased clastic sediment is from a glacial source in the Challpacocha record. The Yanacocha cores are composed primarily of organic-rich sediment with little clastic sediment. Eight radiocarbon ages in stratigraphic order indicate a continuous sedimentation in the lake since 11,240±90 cal. yr BP. Till at the base of the core indicates likely ice recession from the basin at this time. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, and gray scale suggest only minor changes in sedimentation relative to those in the Challpacocha core. Our new continuous lake sediment record provides complementary data to the discontinuous records of QIC Holocene extents as marked by moraines and exposed sections (e.g. Buffen et al. 2009; Thompson et al. 2006). Our record has some similarities with the nearby lacustrine record from Laguna Pacococha, which also receives meltwater from QIC (Rodbell and Seltzer, 2000; Abbott et al., 2003).

  18. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan)

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Ryoshi; Uzaki, Minoru

    1987-02-01

    A vertical profile of lignin in the upper 700 m layer of a 1400 m sediment core of Lake Biwa, an oligotrophic freshwater lake in Japan, was determined using a CuO oxidative degradation method. The results indicated that lignin is found throughout the core, demonstrating lignin to be very stable for over 0.6 million years. Moreover, the upper 250 m (approximately 0.6 million years old) segment of the sediment core was investigated to determine the apparent long term degradation rate of lignin. A downward lignin concentration decrease is observed over the upper 250 m of the core which corresponds to a calculated half life of at least approximately 40 × 10 4 years, assuming that lignin decrease is due to its in situ degradation (diagenesis).

  19. HISTORICAL RECONSTRUCTION OF POLLUTION STESS AND RECOVERY IN AN URBAN ESTUARY: ORGANIC CONTAMINANTS

    EPA Science Inventory

    Our analysis of tree ring and sediment core data indicates that climate variability in the 1900s had different consequences in the Potomac Estuary and Chesapeake Bay than in the previous two centuries as a result of anthropogenic activity affecting nutrient loadings in associated...

  20. CLIMATE CHANGE AND EUTROPHICATION RESPONSES IN THE POTOMAC ESTUARY AND CHESAPEAKE BAY

    EPA Science Inventory

    Our analysis of tree ring and sediment core data indicates that climate variability in the 1900s had different consequences in the Potomac Estuary and Chesapeake Bay than in the previous two centuries as a result of anthropogenic activity affecting nutrient loadings in associated...

  1. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments.

    PubMed

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N

    2014-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.

  2. Using recent hurricanes and associated event layers to evaluate regional storm impacts on estuarine-wetland systems

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Marot, M. E.; Osterman, L. E.; Adams, C. S.; Haller, C.; Jones, M.

    2016-12-01

    Tropical cyclones are a major driver of change in coastal and estuarine environments. Heightened waves and sea level associated with tropical cyclones act to erode sediment from one environment and redistribute it to adjacent environments. The fate and transport of this redistributed material is of great importance to the long-term sediment budget, which in turns affects the vulnerability of these coastal systems. The spatial variance in both storm impacts and sediment redistribution is large. At the regional-scale, difference in storm impacts can often be attributed to natural variability in geologic parameters (sediment availability/erodibility), coastal geomorphology (including fetch, shoreline tortuosity, back-barrier versus estuarine shoreline, etc.), storm characteristics (intensity, duration, track/approach), and ecology (vegetation type, gradient, density). To assess storm characteristics and coastal geomorphology on a regional-scale, cores were collected from seven Juncus marshes located in coastal regions of Alabama and Mississippi (i.e., Mobile Bay, Bon Secour Bay, Mississippi Sound, and Grand Bay) expected to have been impacted by Hurricane Frederic (1979). All cores were sectioned and processed for water content, organic matter (loss-on-ignition), and select cores analyzed for foraminiferal assemblages, stable isotopes and bulk metals to aid in the identification of storm events. Excess lead-210 and cesium-137 were used to develop chronologies for the cores and evaluate mass accumulation rates and sedimentation rates. Temporal variations in accumulation rates of inorganic and organic sediments were compared with shoreline and areal change rates derived from historic aerial imagery to evaluate potential changes in sediment exchange prior to, during, and following the storm. A combined geospatial and geologic approach will improve our understanding of coastal change in estuarine marsh environments, as well help refine the influence of storms on regional sediment budgets.

  3. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  4. Archive of sediment data from vibracores collected in 2010 offshore of the Mississippi barrier islands

    USGS Publications Warehouse

    Kelso, Kyle W.; Flocks, James G.

    2015-01-01

    Selection of the core site locations was based on geophysical surveys conducted around the islands from 2008 to 2010. The surveys, using acoustic systems to image and interpret the nearsurface stratigraphy, were conducted to investigate the geologic controls on island evolution. This data series serves as an archive of sediment data collected from August to September 2010, offshore of the Mississippi barrier islands. Data products, including descriptive core logs, core photographs, results of sediment grain-size analyses, sample location maps, and geographic information system (GIS) data files with accompanying formal Federal Geographic Data Committee (FDGC) metadata can be downloaded from the data products and downloads page.

  5. Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.

    2000-01-01

    Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.

  6. Recent increases in sediment and nutrient accumulation in Bear Lake, Utah/Idaho, USA

    USGS Publications Warehouse

    Smoak, J.M.; Swarzenski, P.W.

    2004-01-01

    This study examines historical changes in sediment and nutrient accumulation rates in Bear Lake along the northeastern Utah/Idaho border, USA. Two sediment cores were dated by measuring excess 210Pb activities and applying the constant rate of supply (CRS) dating model. Historical rates of bulk sediment accumulation were calculated based on the ages within the sediment cores. Bulk sediment accumulation rates increased throughout the last 100 years. According to the CRS model, bulk sediment accumulation rates were <25mg cm-2 year-1 prior to 1935. Between 1935 and 1980, bulk sediment accumulation rates increased to approximately 40mg cm -2 year-1. This increase in sediment accumulation probably resulted from the re-connection of Bear River to Bear Lake. Bulk sediment accumulation rates accelerated again after 1980. Accumulation rates of total phosphorus (TP), total nitrogen (TN), total inorganic carbon (TIC), and total organic carbon (TOC) were calculated by multiplying bulk sediment accumulation rates times the concentrations of these nutrients in the sediment. Accumulation rates of TP, TN, TIC, and TOC increased as a consequence of increased bulk sediment accumulation rates after the re-connection of Bear River with Bear Lake.

  7. Role of storms and forest practices in sedimentation of an Oregon Coast Range lake

    NASA Astrophysics Data System (ADS)

    Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.; Guerrero, F. J.

    2014-12-01

    The design of better management practices in forested watersheds to face climate change and the associated increase in the frequency of extreme events requires a better understanding of watershed responses to extreme events in the past and also under management regimes. One of the most sensitive watershed processes affected is sediment yield. Lake sediments record events which occur in a watershed and provide an opportunity to examine the interaction of storms and forest management practices in the layers of the stratigraphy. We hypothesize that timber harvesting and road building since the 1900s has resulted in increases in sedimentation; however, the passage of the Oregon Forest Practices Act (OFPA) in 1972 has led to a decrease in sedimentation. Sediment cores were taken at Loon Lake in the Oregon Coast Range. The 32-m deep lake captures sediment from a catchment highly impacted by recent land use and episodic Pacific storms. We can use sedimentological tools to measure changes in sediment production as motivated by extreme floods before settlement, during a major timber harvesting period, and after installation of forestry Best Management Practices. Quantification of changes in particle size and elemental composition (C, N, C/N) throughout the cores can elucidate changes in watershed response to extreme events, as can changes in layer thickness. Age control in the cores is being established by Cesium-137 and radiocarbon dating. Given the instrumental meteorological data and decadal climate reconstructions, we will disentangle climate driven signals from changes in land use practices. The sediment shows distinct laminations and varying thickness of layers throughout the cores. Background deposition is composed of thin layers (<0.5 cm) of fine silts and clays, punctuated by thicker layers (3-25 cm) every 10 to 75 cm. These thick layers consist of distinctly textured units, generally fining upward. We interpret the thick layers in Loon Lake to be deposited by sediment-producing floods throughout much of the 1500-year lifespan of this lake. We will explore the relationship between sedimentation, land use, and climate forcing events to determine if the OFPA is having an effect on reducing sedimentation rates as a result of extreme magnitude storm events.

  8. Occurrence, trends, and sources in particle-associated contaminants in selected streams and lakes in Fort Worth, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Harwell, Glenn R.; Gary, Marcus O.; Heitmuller, Franklin T.; Mahler, Barbara J.

    2003-01-01

    Several lakes and stream segments in Fort Worth, Texas, have fish consumption bans because of elevated levels of chlordane, dieldrin, DDE, and polychlorinated biphenyls (PCBs). This study was undertaken to evaluate current loading, trends, and sources in these long-banned contaminants and other particle-associated contaminants commonly found in urban areas. Sampling included suspended sediments at 11 sites in streams and bottom-sediment cores in three lakes. Samples were analyzed for chlorinated hydrocarbons, major and trace elements, and polycyclic aromatic hydrocarbons (PAHs). All four legacy pollutants responsible for fish consumption bans were detected frequently. Concentrations of chlordane, lead, and PAHs most frequently exceeded sediment-quality guidelines. Trends in DDE and PCBs since the 1960s generally are decreasing; and trends in chlordane are mixed with a decreasing trend in Lake Como, no trend in Echo Lake, and an increasing trend in Fosdic Lake. All significant trends in trace elements are decreasing, and most significant trends in PAHs are increasing. Sedimentation surveys were conducted on each of the three lakes and used in combination with sediment core data to compute sediment mass balances for the lakes, to estimate long-term-average loads and yields of sediment, and to estimate recent loads and yields of selected contaminants.Concentrations of most trace elements in suspended sediments were similar to those at the tops of cores, but concentrations of many hydrophobic organic contaminants were two to three times larger. As a result, for these fluvial systems, sediment cores probably provide a historical record of trace element contamination but could underestimate historical concentrations of organic contaminants. However, down-core profiles suggest that relative concentration histories are preserved in these sediment cores for many organic contaminants (such as chlordane and total DDT) but not for all (such as dieldrin).Percent urban land use correlates strongly with selected contaminant concentrations in sediments. Organochlorine pesticides had significant correlations to residential land use, whereas PCBs, cadmium, lead, zinc, and PAHs more often correlate significantly with commercial and industrial land uses, which suggests different urban sources for different contaminants. The amount of enrichment in these contaminants associated with urban land use predicted from regression equations, expressed as the ratio of concentrations predicted for 100 percent urban to 30 percent urban, ranges from 3.6 to 6.9 for PCBs and heavy metals to about 15 for chlordane, total DDT, and PAHs. These data indicate that urbanization is having a substantial negative effect on sediment and water quality and that legacy pollutants are being actively transported to streams and lakes 13 to 30 years after their use was restricted or banned. They further suggest that fish in the lakes and these water bodies will continue to be exposed to legacy pollutants in sediment for many years to come.

  9. Biomarkers and isotopic fingerprinting to track sediment origin and connectivity at Baldegg Lake (Switzerland)

    NASA Astrophysics Data System (ADS)

    Lavrieux, Marlène; Meusburger, Katrin; Birkholz, Axel; Alewell, Christine

    2017-04-01

    Slope destabilization and associated sediment transfer are among the major causes of aquatic ecosystems and surface water quality impairment. Through land uses and agricultural practices, human activities modify the soil erosive risk and the catchment connectivity, becoming a key factor of sediment dynamics. Hence, restoration and management plans of water bodies can only be efficient if the sediment sources and the proportion attributable to different land uses and agricultural practices are identified. Several sediment fingerprinting methods, based on the geochemical (elemental composition), color, magnetic or isotopic (137Cs) sediment properties, are currently in use. However, these tools are not suitable for a land-use based fingerprinting. New organic geochemical approaches are now developed to discriminate source-soil contributions under different land-uses: The compound-specific stable isotopes (CSSI) technique, based on the biomarkers isotopic signature (here, fatty acids δ13C) variability within the plant species, The analysis of highly specific (i.e. source-family- or even source-species-specific) biomarkers assemblages, which use is until now mainly restricted to palaeoenvironmental reconstructions, and which offer also promising prospects for tracing current sediment origin. The approach was applied to reconstruct the spatio-temporal variability of the main sediment sources of Baldegg Lake (Lucern Canton, Switzerland), which suffers from a substantial eutrophication, despite several restoration attempts during the last 40 years. The sediment supplying areas and the exported volumes were identified using CSSI technique and highly specific biomarkers, coupled to a sediment connectivity model. The sediment origin variability was defined through the analysis of suspended river sediments sampled at high flow conditions (short term), and by the analysis of a lake sediment core covering the last 130 years (long term). The results show the utility of biomarkers and CSSI to track organic sources in contrasted land-use settings. Associated to other fingerprinting methods, this approach could in the future become a decision support tool for catchments management.

  10. Microbial diversity in methane hydrate-bearing deep marine sediments core preserved in the original pressure.

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hata, T.; Nishida, H.

    2017-12-01

    In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).

  11. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene

    NASA Astrophysics Data System (ADS)

    Quintana-Cobo, Isabel; Moreira-Turcq, Patricia; Cordeiro, Renato C.; Aniceto, Keila; Crave, Alain; Fraizy, Pascal; Moreira, Luciane S.; Duarte Contrera, Julia Maria de Aguiar; Turcq, Bruno

    2018-01-01

    To better understand the impact of channel migration processes and climate change on the depositional dynamics of floodplain lakes of the upper Amazon Basin during the late Holocene, we collected three sediment cores from floodplain lakes of the Ucayali River and one from the Marañón River. The cores were dated with 14C, radiographed and described. Bulk density, grain size analysis and total organic carbon (TOC) were determined. The results show that sedimentation in Ucayali floodplain lakes was marked by variations during the late Holocene, with periods of intense hydrodynamic energy and abrupt accumulations, a gap in the record between about 2870 and 690 cal yr BP, and periods of more lacustrine conditions. These changes in sedimentation were associated with variations in the river's influence related to changes in its meandering course (2870 cal yr BP) and a period of severe flooding between 3550 and 3000 cal yr BP. Lake Lagarto on the Marañón River floodplain exhibits a different sedimentary environment of low hydrodynamics with palm trees and macrophytes. Apparently, the lake has not experienced intense migration processes during the last 600 cal yr BP (base of the core). Nevertheless, the river sediment flux to the lake was important from 600 to 500 cal yr BP, although it decreased thereafter until the present. This decrease in the mineral accumulation rate indicates a decrease in river discharge since 500 cal yr BP, which coincides with precipitation records from the central Andes. In the upper part of the three Ucayali floodplain cores, a 30- to 250-cm-thick layer of reworked sediments has been deposited since 1950 AD (post-bomb). In Lake Carmen, this layer is associated with invasion of the lake by the levee of a migrating meander of the Ucayali. In Lakes Hubos and La Moringa, however, the river is still far away and the deposition must be interpreted as the result of extreme flooding. The beginning of the Ucayali meander migration is dated back to 2000 AD, suggesting that these extreme floods could be very recent and linked to hydrologic extremes registered instrumentally in the Amazon Basin.

  12. A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.

    2015-12-01

    Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis, scanning XRF, TOC and carbon isotopic analyses as well as compound specific carbon and hydrogen work.

  13. The Chew Bahir Drilling Project (HSPDP). Deciphering climate information from the Chew Bahir sediment cores: Towards a continuous half-million year climate record near the Omo - Turkana key palaeonanthropological Site

    NASA Astrophysics Data System (ADS)

    Foerster, Verena E.; Asrat, Asfawossen; Chapot, Melissa S.; Cohen, Andrew S.; Dean, Jonathan R.; Deino, Alan; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Leng, Melanie J.; Roberts, Helen M.; Schaebitz, Frank; Trauth, Martin H.

    2017-04-01

    As a contribution towards an enhanced understanding of human-climate interactions, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has successfully completed coring five dominantly lacustrine archives of climate change during the last 3.5 Ma in East Africa. All five sites in Ethiopia and Kenya are adjacent to key paleoanthropological research areas encompassing diverse milestones in human evolution, dispersal episodes, and technological innovation. The 280 m-long Chew Bahir sediment records, recovered from a tectonically-bound basin in the southern Ethiopian rift in late 2014, cover the past 550 ka of environmental history, a time period that includes the transition to the Middle Stone Age, and the origin and dispersal of modern Homo sapiens. Deciphering climate information from lake sediments is challenging, due to the complex relationship between climate parameters and sediment composition. We will present the first results in our efforts to develop a reliable climate-proxy tool box for Chew Bahir by deconvolving the relationship between sedimentological and geochemical sediment composition and strongly climate-controlled processes in the basin, such as incongruent weathering, transportation and authigenic mineral alteration. Combining our first results from the long cores with those from a pilot study of short cores taken in 2009/10 along a NW-SE transect of the basin, we have developed a hypothesis linking climate forcing and paleoenvironmental signal-formation processes in the basin. X-ray diffraction analysis of the first sample sets from the long Chew Bahir record reveals similar processes that have been recognized for the uppermost 20 m during the pilot-study of the project: the diagenetic illitization of smectites during episodes of higher alkalinity and salinity in the closed-basin lake induced by a drier climate. The precise time resolution, largely continuous record and (eventually) a detailed understanding of site specific proxy formation, will give us a continuous record of environmental history on decadal to orbital timescales. Our data enable us to test current hypotheses of the impact of a variety of climate shifts on human evolution and dispersal.

  14. Analytical results for Bullion Mine and Crystal Mine waste samples and bed sediments from a small tributary to Jack Creek and from Uncle Sam Gulch, Boulder River watershed, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    2000-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana affect water quality as a result of acid-generation and toxic-metal solubilization. Mine waste and tailings in the unnamed tributary to Jack Creek draining the Bullion mine area and in Uncle Sam Gulch below the Crystal mine are contributors to water quality degradation of Basin Creek and Cataract Creek, Montana. Basin Creek and Cataract Creek are two of three tributaries to the Boulder River in the study area. The bed sediment geochemistry in these two creeks has also been affected by the acidic drainage from these two mines. Geochemical analysis of 42 tailings cores and eleven bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb, and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms in the aquatic food chain. Suites of one-inch cores of mine waste and tailings material were taken from two breached tailings impoundments near the site of the Bullion mine and from Uncle Sam Gulch below the Crystal mine. Forty-two core samples were taken and divided into 211 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid (HC1-HNO3-HC1O4-HF) digestion. Results of the core analyses show that some samples contain moderate to very high concentrations of arsenic (as much as 13,000 ppm), silver (as much as 130 ppm), cadmium (as much as 260 ppm), copper (as much as 9,000 ppm), lead (as much as 11,000 ppm), and zinc (as much as 18,000 ppm). Eleven bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HC1-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of the Jack Creek tributary are impacted by past mining at the Bullion and Crystal mines. The contaminating metals are mostly contained in the 2M HC1-1% H2O2 leachable phase, which are the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  15. Analysis of elements in lake sediment samples by PIXE spectrometry

    NASA Astrophysics Data System (ADS)

    Chelarescu, E. D.; Radulescu, C.; Stihi, C.; Bretcan, P.; Tanislav, D.; Dulama, I. D.; Stirbescu, R. M.; Teodorescu, S.; Bucurica, I. A.; Andrei, R.; Morarescu, C.

    2017-09-01

    This work aims to determine the concentrations of several elements (e.g. Pb, Ni, Zn, Mn, Cr, and Fe) from lake sediments, in order to characterize their origin and evolution. Particle Induced X-ray Emission (PIXE) technique using the 3 MV Tandetron™ particle accelerator from National Institute for R&D in Physics and Nuclear Engineering "Horia Hulubei" (IFIN-HH), Magurele-Bucharest, Romania, was applied. Sediment cores from different salt lakes from Romania (i.e. Amara Lake, Caineni Lake, and Movila Miresii Lake) were collected, in August 2015. The content of Pb, Cr, Mn, Fe, and Ni from sediment samples show similarities with other data presented in literature and international regulation. The Zn was the only element with a higher content in all samples (e.g. maximum 401.7-517.3 mg/kg d.w.).

  16. Lead in Lake Michigan and Green Bay Surficial Sediments

    EPA Science Inventory

    Sediment cores were collected in 1987-1989 in Green Bay using a box corer and in 1994-1996 in Lake Michigan using a box corer and a PONAR. Core samples were segmented and dated. Historic background lead concentrations were determined for Green Bay (range=1.8-39.3 mg/kg, mean=14...

  17. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough.

    PubMed

    Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua

    2017-02-15

    Sediment core samples from the northern Okinawa Trough (OT) were analyzed to determine abundances and distributions of hydrocarbons by gas chromatography-mass spectrometer (GC-MS). The results show that the n-alkanes in this sediment core conform to a bimodal distribution, and exhibit an odd-to-even predominance of high molecular weights compared to an even-to-odd predominance in low molecular weight n-alkanes with maxima at C 16 and C 18 . The concentrations of bitumen, alkanes and polyaromatic hydrocarbons (PAHs) were higher in samples S10-07 than all others. Three maturity parameters as well as the ratios between parent phenanthrenes (Ps) and methylphenanthrenes (MPs) in samples S10-07 and S10-17 were higher. The distribution and composition of hydrocarbons in sample S10-07 suggest that one, or several, undetected hydrothermal fields may be present in the region of this sediment core. Results also suggest that volcanism may be the main reason for the observed distribution and composition of hydrocarbons in S10-17 sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Application of Rhizon Porewater Samplers to Shipboard Operations, IODP Expedition 308, Northeast Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Macko, S. A.; Flemings, P. B.

    2005-12-01

    Pleistocene and Recent sediments within the Brazos-Trinity and Ursa Basins (northwestern Gulf of Mexico) were largely deposited by turbidity currents and have been deformed by a number of mass transport events. The geochemical composition of interstitial waters was determined in order to assess fluid flow within these sediments. Typical porewater sampling resolution, using advanced piston coring and the traditional Manheim squeezer technique, is approximately one sample every other core (20m) with the highest working resolution at one sample every 1.5m. In this study, Rhizon soil moisture samplers were used to attain high-resolution porewater profiles within sea floor surface sediments and for permeable sediments at depth. The small dimensions (2mm x 30mm) and pore-size (1μm) of the devices enable high-frequency placement within a core, specific targeting of the sequence of interest, and do not require sediment removal from the core, or filtering of extracted porewaters. Initial shipboard analyses derived from sediments at the Ursa Basin (Site 1322) indicate a linear decrease in salinity with depth at U1322 where the overpressure gradient is thought to be greatest. The less saline waters with depth lends evidence for potential mixing between deep-seated fluids and low salinity ones derived from the Blue Unit and seawater. Isotopic composition and concentrations of sulfur species (SO4 and H2S) dissolved in porewaters, as well as, ionic compositions (Cl, Na, K, Ca, Mg) and chemical composition of associated sediments (%C, %N, 13C, and 15N) are compared with chemical results obtained with squeezers.

  19. Evidence for gassy sediments on the inner shelf of SE Korea from geoacoustic properties

    NASA Astrophysics Data System (ADS)

    Gorgas, Thomas J.; Kim, Gil Y.; Park, Soo C.; Wilkens, Roy H.; Kim, Dae C.; Lee, Gwang H.; Seo, Young K.

    2003-05-01

    The inner shelf of SE Korea is characterized by an up to 40 m thick blanket of soft sediments often characterized by acoustic turbidity (AT). This AT is caused by a layer of sub-surface gas, which prohibits the identification of geological structures below that gas layer. Sound speeds were measured directly in these sediments using the Acoustic Lance (AL) in both mid- and late-September 1999. In situ sound speeds obtained in mid-September varied between 1400 and 1550 m/s, and thus did not confirm the presence of gas within the top 3.5 m of the seafloor. However, signal waveforms suggested that a gassy layer might have been just below the depth penetrated by the Lance. In late-September, on the other hand, two sites showed an abrupt decrease in signal amplitudes and in sound speed (less than 800 m/s) at depths as shallow as 2 m below seafloor, indicating the presence of free gas bubbles. Piston-cored sediments were retrieved at the same sites in February 1999. X-radiographs of some of the cores revealed numerous microcracks caused by the expansion of gas bubbles during core retrieval. In contrast to in situ acoustic data, ultrasonic sound speeds acquired in the laboratory in May 1999 on those cores did not differentiate convincingly between gas-bearing and gas-free sediments. Our measurements on the SE Korean shelf with the AL provide new data on the in situ acoustic behavior of gassy sediments and the sediments that overlie them in zones of AT.

  20. Enhanced Sulfate Reduction and Carbon Sequestration in Sediments Underlying the Core of the Arabian Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Fernandes, S. Q.; Mazumdar, A.; Peketi, A.; Bhattacharya, S.; Carvalho, M.; Da Silva, R.; Roy, R.; Mapder, T.; Roy, C.; Banik, S. K.; Ghosh, W.

    2017-12-01

    The oxygen minimum zone (OMZ) of the Arabian Sea in the northern Indian Ocean is one of the three major global sites of open ocean denitrification. The functionally anoxic water column between 150 to 1200 mbsl plays host to unique biogeochemical processes and organism interactions. Little is known, however, about the consequence of the low dissolved oxygen on the underlying sedimentary biogeochemical processes. Here we present, for the first time, a comprehensive investigation of sediment biogeochemistry of the Arabian Sea OMZ by coupling pore fluid analyses with microbial diversity data in eight sediment cores collected across a transect off the west coast of India in the Eastern Arabian Sea. We observed that in sediments underlying the core of the OMZ, high organic carbon sequestration coincides with a high diversity of all bacteria (the majority of which are complex organic matter hydrolyzers) and sulfate reducing bacteria (simple organic compound utilizers). Depth-integrated sulfate reduction rate also intensifies in this territory. These biogeochemical features, together with the detected shallowing of the sulfate-methane interface and buildup of pore-water sulfide, are all reflective of heightened carbon-sulfur cycling in the sediments underlying the OMZ core. Our data suggests that the sediment biogeochemistry of the OMZ is sensitive to minute changes in bottom water dissolved oxygen, and is dictated by the potential abundance and bioavailability of complex to simple carbon compounds which can stimulate a cascade of geomicrobial activities pertaining to the carbon-sulfur cycle. Our findings hold implications in benthic ecology and sediment diagenesis.

Top