Flocks, James G.; Kindinger, Jack G.; Ferina, Nicholas; Dreher, Chandra
2002-01-01
The Mississippi and Atchafalaya Rivers transport very large amounts of bedload and suspended sediments to the deltaic and coastal environments of the northern Gulf of Mexico. Absorbed onto these sediments are contaminants that may be detrimental to the environment. To adequately assess the impact of these contaminants it is first necessary to develop an understanding of sediment distribution patterns in these deltaic systems. The distribution patterns are defined by deltaic progradational cycles. Once these patterns are identified, the natural and industrial contaminant inventories and their depositional histories can be reconstructed. Delta progradation is a function of sediment discharge, as well as channel and receiving-basin dimensions. Fluvial energy controls the sediment distribution pattern, resulting in a coarse grained or sandy framework, infilled with finer grained material occupying the overbank, interdistributary bays, wetlands and abandoned channels. It has been shown that these fine-grained sediments can carry contaminants through absorption and intern them in the sediment column or redistribute them depending on progradation or degradation of the delta deposit. Sediment distribution patterns in delta complexes can be determined through high-resolution geophysical surveys and groundtruthed with direct sampling. In the Atchafalaya and Mississippi deltas, remote sensing using High-Resolution Single-Channel Seismic Profiling (HRSP) and Sidescan Sonar was correlated to 20-ft vibracores to develop a near-surface geologic framework that identifies variability in recent sediment distribution patterns. The surveys identified bedload sand waves, abandoned-channel back-fill, prodelta and distributary mouth bars within the most recently active portions of the deltas. These depositional features respond to changes in deltaic processes and through their response may intern or transport absorbed contaminants. Characterizing these features provides insight into the fate of sediment-hosted contaminants.
The numerical model of the sediment distribution pattern at Lampulo National fisheries port
NASA Astrophysics Data System (ADS)
Irham, M.; Setiawan, I.
2018-01-01
The spatial distribution of sediment pattern was studied at Lampulo Fisheries Port, Krueng Aceh estuarial area, Banda Aceh. The research was conducted using the numerical model of wave-induced currents at shallow water area. The study aims to understand how waves and currents react to the pattern of sediment distribution around the beach structure in that region. The study demonstrated that the port pool area had no sedimentation and erosion occurred because the port was protected by the jetty as the breakwater to defend the incoming waves toward the pool. The protected pool created a weak current circulation to distribute the sediments. On the other hand, the sediments were heavily distributed along the beach due to the existence of longshore currents near the shoreline (outside the port pool area). Meanwhile, at the estuarial area, the incoming fresh water flow responded to the coastal shallow water currents, generating Eddy-like flow at the mouth of the river.
NASA Astrophysics Data System (ADS)
Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok
2012-10-01
Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.
NASA Astrophysics Data System (ADS)
Michaud, Emma; Aller, Robert, C.; Stora, Georges
2010-11-01
The coupling between biogenic reworking activity and reactive organic matter patterns within deposits is poorly understood and often ignored. In this study, we examined how common experimental treatments of sediment affect the burrowing behavior of the polychaete Nephtys incisa and how these effects may interact with reactive organic matter distributions to alter diagenetic transport - reaction balances. Sediment and animals were recovered from a subtidal site in central Long Island Sound, USA. The upper 15 cm of the sediment was sectioned into sub-intervals, and each interval separately sieved and homogenized. Three initial distributions of sediment and organic substrate reactivity were setup in a series of microcosms: (1) a reconstituted natural pattern with surface-derived sediment overlying sediment obtained from progressively deeper material to a depth of 15 cm (Natural); (2) a 15 cm thick sediment layer composed only of surface-derived sediment (Rich); and (3) a 15 cm thick layer composed of uniformally mixed sediment from the original 15 cm sediment profile (Averaged). The two last treatments are comparable to that used in microcosms in many previous studies of bioturbation and interspecific functional interaction experiments. Sediment grain size distributions were 97.5% silt-clay and showed no depth dependent patterns. Sediment porosity gradients were slightly altered by the treatments. Nepthys were reintroduced and aquariums were X-rayed regularly over 5 months to visualize and quantify spatial and temporal dynamics of burrows. The burrowing behaviour of adult populations having similar total biovolume, biomass, abundance, and individual sizes differed substantially as a function of treatment. Burrows in sediment with natural property gradients were much shallower and less dense than those in microcosms with altered gradients. The burrow volume/biovolume ratio was also lower in the substrate with natural organic reactivity gradients. Variation in food resources or in sediment mechanical properties associated with treatments, the latter in part coupled to remineralization processes such as exopolymer production, may explain the burrowing responses. In addition to demonstrating how species may respond to physical sedimentation events (substrate homogenization) and patterns of reactive organic matter redistribution, these experiments suggest that infaunal species interactions in microcosms, including the absolute and relative fluxes of remineralized solutes, may be subject to artifacts depending on exactly how sediments are introduced experimentally. Nonlocal transport and cylinder microenvironment transport - reaction models readily demonstrate how the multiple interactions between burrowing patterns and remineralization rate distributions can alter relative flux balances, decomposition pathways, and time to steady state.
Hampton, M.A.; Bouma, A.H.; Frost, T.P.; Colburn, I.P.
1979-01-01
Surficial sediments of the Kodiak shelf, Gulf of Alaska, contain various amounts of volcanic ash whose physical properties indicate that it originated from the 1912 Katmai eruption. The distribution of ash is related to the shelf physiography and represents redistribution by oceanic circulation rather than the original depositional pattern from the volcanic event. The ash distribution can be used, in conjunction with the distribution of grain sizes, as an indicator of present-day sediment dispersal patterns on the shelf. No significant modern input of sediment is occurring on the Kodiak shelf, which is mostly covered by Pleistocene glacial deposits. Coarse-grained sediments on flat portions of shallow banks apparently are being winnowed, with the removed ash-rich fine material being deposited in shallow depressions on the banks and in three of the four major troughs that cut transversely across the shelf. The other major trough seems to be experiencing a relatively high-energy current regime, with little deposition of fine material. ?? 1979.
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.
2001-01-01
The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.
Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun
2007-11-01
Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.
Lou, Chuangneng; Liu, Xiaodong; Liu, Wenqi; Wu, Libin; Nie, Yaguang; Emslie, Steven D
2016-05-15
Ornithogenic sediments are rich in toxic As (arsenic) compounds, posing a potential threat to local ecosystems. Here we analyzed the distribution of As speciation in three ornithogenic sediment profiles (MB6, BI and CC) collected from the Ross Sea region, East Antarctica. The distributions of total As and total P (phosphorus) concentrations were highly consistent in all three profiles, indicating that guano input is a major factor controlling total As distribution in the ornithogenic sediments. The As found in MB6 and CC is principally As(V) (arsenate), in BI As(III) (arsenite) predominates, but the As in fresh guano is largely composed of DMA (dimethylarsinate). The significant difference of As species between fresh guano and ornithogenic sediment samples may be related to diagenetic processes after deposition by seabirds. Based on analysis of the sedimentary environment in the studied sediments, we found that the redox conditions have an obvious influence on the As speciation distribution. Moreover, the distributions of As(III) and chlorophyll a in the MB6 and BI profiles are highly consistent, demonstrating that aquatic algae abundance may also influence the distribution patterns of As speciation in the ornithogenic sediments. Copyright © 2016 Elsevier B.V. All rights reserved.
Learned, R.E.; Chao, T.T.; Sanzolone, R.F.
1985-01-01
To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of copper. ?? 1985.
NASA Astrophysics Data System (ADS)
Yamashita, S.; Nakajo, T.; Naruse, H.
2009-12-01
In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.
NASA Astrophysics Data System (ADS)
Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2015-06-01
A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.
Distribution of Cr, Pb, Cd, Zn, Fe and Mn in Lake Victoria sediments, East Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onyari, J.M.; Wandiga, S.O.
1989-06-01
The presence of many metals at trace or ultra-trace levels in the human environment has received increased global attention. Sediments as a sink for pollutants are widely recognized pollution sources and diagenesis and biochemical transformations within the sediment may mobilize pollutants posing a threat to a wider biological community. The natural (background) concentrations of heavy metals in lake sediments can be estimated either by analysis of surface sediments in non-polluted regions or by analysis of core samples antedating modern pollution. The distribution pattern of heavy metals in tropical freshwater systems has been little studied. The authors found increased concentrations ofmore » lead and other trace metals in Lake Victoria. Thus this study was initiated in order to further investigate the distribution patterns of lead and other metals in Lake Victoria.« less
NASA Astrophysics Data System (ADS)
Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2017-08-01
The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.
Wei, Guangshan; Li, Mingcong; Li, Fenge; Li, Han; Gao, Zheng
2016-11-01
There are close exchanges between sediment and water in estuaries; however, the patterns of prokaryotic community assembly in these two habitat types are still unclear. This study investigated the bacterial and archaeal abundance, diversity, and community composition in the sediment and the overlying water of the Yellow River estuary. Notably higher prokaryotic abundance and diversity were detected in the sediment than in the water, and bacterial abundance and diversity were remarkably higher than those of archaea. Furthermore, the ratio of bacterial to archaeal 16S rRNA gene abundance was significantly lower in the sediment than in the water. Bacterial communities at different taxonomic levels were apparently distinct between the sediment and water, but archaeal communities were not. The most dominant bacteria were affiliated with Deltaproteobacteria and Gammaproteobacteria in sediment and with Alphaproteobacteria and Betaproteobacteria in water. Euryarchaeota and Thaumarchaeota were the most abundant archaea in both habitats. Although distinct prokaryotic distribution patterns were observed, most of the dominant bacteria and archaea present were related to carbon, nitrogen, and sulfur cycling processes, such as methanogenesis, ammonia oxidation, and sulfate reduction. Unexpectedly, prokaryotes from the water showed a higher sensitivity to environmental factors, while only a few factors affected sediment communities. Additionally, some potential co-occurrence relationships between prokaryotes were also found in this study. These results suggested distinct distribution patterns of bacterial and archaeal communities between sediment and overlying water in this important temperate estuary, which may serve as a useful community model for the further ecological and evolutionary study of prokaryotes in estuarine ecosystems.
NASA Astrophysics Data System (ADS)
Benda, L. E.
2009-12-01
Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.
Luo, Lian-Cong; Qin, Bo-Qiang; Zhu, Guang-Wei
2004-01-01
Investigation was made into sediment depth at 723 irregularly scattered measurement points which cover all the regions in Taihu Lake, China. The combination of successive correction scheme and geostatistical method was used to get all the values of recent sediment thickness at the 69 x 69 grids in the whole lake. The results showed that there is the significant difference in sediment depth between the eastern area and the western region, and most of the sediments are located in the western shore-line and northern regimes but just a little in the center and eastern parts. The notable exception is the patch between the center and Xishan Island where the maximum sediment depth is more than 4.0 m. This sediment distribution pattern is more than likely related to the current circulation pattern induced by the prevailing wind-forcing in Taihu Lake. The numerical simulation of hydrodynamics can strong support the conclusion. Sediment effects on water quality was also studied and the results showed that the concentrations of TP, TN and SS in the western part are obviously larger than those in the eastern regime, which suggested that more nutrients can be released from thicker sediment areas.
NASA Astrophysics Data System (ADS)
Meile, C. D.; Dwyer, I.; Zhu, Q.; Polerecky, L.; Volkenborn, N.
2017-12-01
Mineralization of organic matter in marine sediments leads to the depletion of oxygen, while activities of infauna introduce oxygenated seawater to the subsurface. In permeable sediments solutes can be transported from animals and their burrows into the surrounding sediment through advection over several centimeters. The intermittency of pumping leads to a spatially heterogeneous distribution of oxidants, with the temporal dynamics depending on sediment reactivity and activity patterns of the macrofauna. Here, we present results from a series of experiments in which these dynamics are studied at high spatial and temporal resolution using planar optodes. From O2, pH and pCO2 optode data, we quantify rates of O2 consumption and dissolved inorganic carbon production, as well alkalinity dynamics, with millimeter-scale resolution. Simulating intermittent irrigation by imposed pumping patterns in thin aquaria, we derive porewater flow patterns, which together with the production and consumption rates cause the chemical distributions and the establishment of reaction fronts. Our analysis thus establishes a quantitative connection between the locally dynamic redox conditions relevant for biogeochemical transformations and macroscopic observations commonly made with sediment cores.
NASA Astrophysics Data System (ADS)
Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.
2016-12-01
Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.
NASA Astrophysics Data System (ADS)
García, T.; Velo, A.; Fernandez-Bastero, S.; Gago-Duport, L.; Santos, A.; Alejo, I.; Vilas, F.
2005-02-01
This paper examines the linkages between the space-distribution of grain sizes and the relative percentage of the amount of mineral species that result from the mixing process of siliciclastic and carbonate sediments at the Ria de Vigo (NW of Spain). The space-distribution of minerals was initially determined, starting from a detailed mineralogical study based on XRD-Rietveld analysis of the superficial sediments. Correlations between the maps obtained for grain sizes, average fractions of either siliciclastic or carbonates, as well as for individual-minerals, were further stabilised. From this analysis, spatially organized patterns were found between carbonates and several minerals involved in the siliciclastic fraction. In particular, a coupled behaviour is observed between plagioclases and carbonates, in terms of their relative percentage amounts and the grain size distribution. In order to explain these results a conceptual model is proposed, based on the interplay between chemical processes at the seawater-sediment interface and hydrodynamical factors. This model suggests the existence of chemical control mechanisms that, by selective processes of dissolution-crystallization, constrain the mixed environment's long-term evolution, inducing the formation of self-organized sedimentary patterns.
NASA Astrophysics Data System (ADS)
Baasch, B.; Müller, H.; von Dobeneck, T.
2018-07-01
In this work, we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine-learning techniques. Non-negative matrix factorization is used to determine grain-size end-members from sediment surface samples. Four end-members were found, which well represent the variety of sediments in the study area. A radial basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.
NASA Astrophysics Data System (ADS)
Baasch, B.; M"uller, H.; von Dobeneck, T.
2018-04-01
In this work we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine learning techniques. Nonnegative matrix factorisation is used to determine grain-size end-members from sediment surface samples. Four end-members were found which well represent the variety of sediments in the study area. A radial-basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.
NASA Technical Reports Server (NTRS)
Pirie, D. M.; Steller, D. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.
Agunbiade, Foluso O; Moodley, Brenda
2016-01-01
The paucity of information on the occurrence of pharmaceuticals in the environment in African countries led the authors to investigate 8 acidic pharmaceuticals (4 antipyretics, 3 antibiotics, and 1 lipid regulator) in wastewater, surface water, and sediments from the Msunduzi River in the province of KwaZulu-Natal, South Africa, using solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC/MS). The method recoveries, limits of detection (LOD), and limits of quantification were determined. The method recoveries were 58.4% to 103%, and the LODs ranged between 1.16 ng/L and 29.1 ng/L for water and between 0.58 ng/g and 14.5 ng/g for sediment. The drugs were all present in wastewater and in most of the surface water and sediment samples. Aspirin was the most abundant pharmaceutical observed, 118 ± 0.82 μg/L in wastewater influent, and the most observed antibiotic was nalidixic acid (25.2-29.9 μg/L in wastewater); bezafibrate was the least observed. The distribution pattern of the antipyretic in water indicates more impact in suburban sites. The solid-liquid partitioning of the pharmaceuticals between sediment and water, measured as the distribution coefficient (log KD ) gave an average accumulation magnitude of 10× to 32× in sediments than in water. The downstream distribution patterns for both water and sediment indicate discharge contributions from wastewater, agricultural activities, domestic waste disposal, and possible sewer system leakages. Although concentrations of the pharmaceuticals were comparable with those obtained from some other countries, the contamination of the present study site with pharmaceuticals has been over time and continues at present, making effective management and control necessary. © 2015 SETAC.
Zhou, Zhichao; Zhang, Guo-Xia; Xu, Yan-Bin; Gu, Ji-Dong
2018-06-26
Thaumarchaeota and Bathyarchaeota (formerly named Miscellaneous Crenarchaeotal Group, MCG) are globally occurring archaea playing potential roles in nitrogen and carbon cycling, especially in marine benthic biogeochemical cycle. Information on their distributional and compositional patterns could provide critical clues to further delineate their physiological and biochemical characteristics. Profiles of thaumarchaeotal and the total archaeal community in the northern South China Sea surface sediments revealed a successively transitional pattern of Thaumarchaeota composition using MiSeq sequencing. Shallow-sea sediment enriched phylotypes decreased gradually along the slope from estuarine and coastal marine region to the deep-sea, while deep-sea sediment enriched phylotypes showed a trend of increasing. Proportion of Thaumarchaeota within the total archaea increased with seawater depth. Phylotypes enriched in shallow- and deep-sea sediments were affiliated to OTUs originated from similar niches, suggesting that physiological adaption not geographical distance shaped the distribution of Thaumarchaeota lineages. Quantitative PCR also depicted a successive decrease of thaumarchaeotal 16S rRNA gene abundance from the highest at shallow-sea sites E708S and E709S (2.57 × 10 6 and 2.73 × 10 6 gene copies/g of dry sediment) to the lowest at deep-sea sites E525S and E407S (1.97 × 10 6 and 2.14 × 10 6 gene copies/g of dry sediment). Both of the abundance fractions of Bathyarchaeota subgroups (including subgroups 1, 6, 8, 10, 13, 15, 17, and ungrouped Bathyarchaeota) and the total Bathyarchaeota in the total archaea showed a negative distribution to seawater depth. Partitioned distribution of Bathyarchaeota fraction in the total archaea is documented for the first time in this study, and the shallow- and deep-sea Bathyarchaeota could account for 17.8 and 0.8%, respectively, on average. Subgroups 6 and 8, enriched subgroups in shallow-sea sediments, largely explained this partitioned distribution pattern according to seawater depth. Their prevalence in shallow-sea and suboxic estuarine sediments rather than deep-sea sediments hints that their metabolic properties of carbon metabolism are adapted to carbon substrates in these environments.
Alexandrium minutum resting cyst distribution dynamics in a confined site
NASA Astrophysics Data System (ADS)
Anglès, Sílvia; Jordi, Antoni; Garcés, Esther; Basterretxea, Gotzon; Palanques, Albert
2010-02-01
The life cycle of the toxic dinoflagellate Alexandrium minutum consists of an asexual stage, characterized by motile vegetative cells, and a sexual stage, a resting cyst that once formed remains dormant in the sediment. Insight into the factors that determine the distribution and abundance of resting cysts is essential to understanding the dynamics of the vegetative phase. In investigations carried out between January 2005 and January 2008 in Arenys de Mar harbor (northwestern Mediterranean Sea), the spatial and temporal distribution patterns of A. minutum resting cysts and of the sediments were studied during different bloom stages of the vegetative population. Maximum cyst abundance was recorded mainly in the innermost part of the harbor while the lowest abundance always occurred near the harbor entrance, consistent with the distribution of silt-clay sediment fractions. The tendency of cysts in sediments to increase after bloom periods was clearly associated with new cyst formation, while cyst abundance decreased during non-bloom periods. Exceptions to this trend were observed in stations dominated by the deposition of coarse sediments. High correlation between the presence of cysts and clays during non-bloom periods indicates that cysts behave as passive sediment particles and are influenced by the same hydrodynamic processes as clays. In Arenys de Mar, the main physical forcing affecting sediment resuspension is the seiche, which was studied using in situ measurements and numerical models to interpret the observed distribution patterns. During non-bloom periods, cyst losses were smaller when the seiche was more active and at the station where the seiche-induced current was larger. Thus, seiche-forced resuspension appears to reduce cyst losses by reallocating cysts back to the sediment surface such that their burial in the sediment is avoided. The observed vertical profiles of the cysts were consistent with this process.
NASA Astrophysics Data System (ADS)
Afifah, M. R. Nurul; Aziz, A. Che; Roslan, M. Kamal
2015-09-01
Sediment samples were collected from the shallow marine from Kuala Besar, Kelantan outwards to the basin floor of South China Sea which consisted of quaternary bottom sediments. Sixty five samples were analysed for their grain size distribution and statistical relationships. Basic statistical analysis like mean, standard deviation, skewness and kurtosis were calculated and used to differentiate the depositional environment of the sediments and to derive the uniformity of depositional environment either from the beach or river environment. The sediments of all areas were varied in their sorting ranging from very well sorted to poorly sorted, strongly negative skewed to strongly positive skewed, and extremely leptokurtic to very platykurtic in nature. Bivariate plots between the grain-size parameters were then interpreted and the Coarsest-Median (CM) pattern showed the trend suggesting relationships between sediments influenced by three ongoing hydrodynamic factors namely turbidity current, littoral drift and waves dynamic, which functioned to control the sediments distribution pattern in various ways.
Morey, G.B.; Setterholm, D.R.
1997-01-01
The relative abundance of rare earth elements in sediments has been suggested as a tool for determining their source rocks. This correlation requires that weathering, erosion, and sedimentation do not alter the REE abundances, or do so in a predictable manner. We find that the rare earth elements are mobilized and fractionated by weathering, and that sediments derived from the weathered materials can display modifications of the original pattern of rare earth elements of some due to grain-size sorting of the weathered material. However, the REE distribution pattern of the provenance terrane can be recognized in the sediments.
NASA Astrophysics Data System (ADS)
Auras-Schudnagies, Anabelle; Kroon, Dick; Ganssen, Gerald; Hemleben, Christoph; Van Hinte, Jan E.
1989-10-01
Living planktonic foraminiferal and pteropod distribution patterns in the western Arabian Sea, Gulf of Aden and Red Sea, collected during two summer cruises (1984, 1985), reflect the hydrographical system that is mainly controlled by a combination of monsoonal winds and evaporation rates. Spinose species constitute the majority of the planktonic foraminiferal assemblages in the Red Sea during both monsoonal seasons. The non-spinose species Globorotalia menardii, Neogloboquadrina dutertrei and Pulleniatina obliquiloculata, which are always abundant in the Arabian Sea, are present only during winter inflow. The intensity and duration of these inflowing surface currents control their distribution pattern. Stable oxygen isotope ratios show that G. menardii survives but ceases to grow north of Bab el Mandeb, while N. dutertrei continues to grow. Trends in the foraminiferal distribution in surface waters compare well with those of the sea floor, as far as larger specimens (>250 μm) are concerned, but differ for the small ones. Surface distribution patterns of small-sized specimens and juvenile/neanic stages of large-sized fully grown species do not correspond to those in the core top samples. The distribution pattern of living pteropods in the Red Sea is closely related to distinct water masses and corresponds to the distribution in top core sediments. Pteropods are absent in the sediments of the Gulf of Aden and the western Arabian Sea due to dissolution. Peak abundances of various pteropods and foraminifers indicate the presence of local upwelling processes in the Bab el Mandeb area. Determining these dynamics allows for the reconstruction of ancient oceanic environments and climatic interactions in the area.
Kunte, Pravin D; Alagarsamy, R; Hursthouse, A S
2013-06-01
The littoral drift regime along the northeastern coast of India was investigated by analyzing coastal drift indicators and shoreline changes based on multitemporal satellite images. The study of offshore turbidity patterns and quantitative estimation of suspended sediments was undertaken to understand the magnitude and direction of movement of sediment fluxes. The study revealed that: (1) the character of coastal landforms and sedimentation processes indicate that the sediment transport is bidirectional and monsoon dependent; (2) multidate, multitemporal analysis of satellite images helps to show the nature of sediment transport along the coast. The dominant net sediment transport is in a NE direction along the eastern coast of India. Finally, this assessment demonstrates the potential of remote sensing technology in understanding the coastal morphometric changes, long-term sediment transport, shoreline changes, and offshore turbidity distribution pattern and the implications for the transport of sediment-associated pollutants.
Li, Tao; Wang, Peng
2013-05-01
This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.
NASA Astrophysics Data System (ADS)
Kelso, K. W.; Wang, P.
2006-12-01
The Dona and Roberts Bay connects one of the five major watersheds in Sarasota County Florida to the Gulf of Mexico via the Venice Inlet. Like many watersheds in the area, significant modifications have been made to the drainage basins, principally to the main tributaries. Many of the creeks that comprise the watershed have been dammed in order to inhibit the upstream flow of salt water. They are also deepened or lengthened to allow better drainage. In addition, there are numerous oyster bars, as well as artificial structures that impose obstruction to the tidal and river flows. These have resulted in a complex sedimentation and erosion pattern with substantial anthropogenic influences. The objectives of this study are to quantify the sediment characteristics and deposition-erosion trends and their relationship to the flow patterns. A detailed sedimentary analysis was conducted based on 149 surface sediment samples and 29 drill cores. Spatial distribution of the sediment properties is quite complex, controlled by several interactive factors including local sediment supply, intensity of the hydrodynamic processes, distribution of oyster bars and mangrove islands, and artificial structures. Sedimentation and erosion is significantly influenced by flood events. The core data suggest that rapid sedimentation driven by flood events is responsible for the development of some of the large shoals. A 2- D depth-averaged circulation model was established for the study area on a bathymetry that was surveyed by this study. Many of the artificial modifications to the watershed system are incorporated. A close relationship between the flow intensity and sediment characteristics and sedimentation-erosion tendency is identified.
Spatial Patterns Study for Sediments from Lake Michigan
Accurately understanding the distribution of sediment measurements within large water bodies such as Lake Michigan is critical for modeling and understanding of carbon, nitrogen, silica and phosphorus dynamics. Several water quality models have been formulated and applied to the ...
Zhou, Shanshan; Fu, Jie; He, Huan; Fu, Jianjie; Tang, Qiaozhi; Dong, Minfeng; Pan, Yongqiang; Li, An; Liu, Weiping; Zhang, Limin
2017-10-01
Concentrations and spatial distribution pattern of organohalogen flame retardants were investigated in the riverine surface sediments from Taizhou, an intensive e-waste recycling region in China. The analytes were syn- and anti- Dechlorane Plus (DP), Dechloranes 602, 603, and 604, a DP monoadduct, two dechlorinated DPs and 8 congeners of polybrominated diphenyl ethers (PBDEs). The concentrations of Σ 8 PBDEs, ΣDP, ΣDec600s, and ΣDP-degradates ranged from <100 to 172,000, 100 to 55,000, not detectable (nd) to 1600, and nd to 2800 pg/g dry weight, respectively. BDE-209 and DP, both have been manufactured in China, had similar spatial distribution patterns in the study area, featured by distinctly recognizable hotspots some of which are in proximity to known e-waste dumping or metal recycling facilities. Such patterns were largely shared by Dec602 and dechlorinated DP, although their concentration levels were much lower. These major flame retardants significantly correlate with each other, and cluster together in the loading plot of principle component analysis. In contrast, most non-deca PBDE congeners do not correlate with DPs. Dec604 stood out having distinctly different spatial distribution pattern, which could be linked to historical use of mirex. Organic matter content of the sediment was not the dominant factor in determining the spatial pattern of pollution by halogenated flame retardants in the rivers of this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zink, Klaus-G.; Leythaeuser, Detlev; Melkonian, Michael; Schwark, Lorenz
2001-01-01
Distribution patterns of C 37 and C 38 polyunsaturated long-chain alkenones (LCAs) serve as proxies for the determination of paleotemperatures for marine surface waters. We studied Recent/Subrecent and Late Glacial/Holocene sediments from Germany, Austria, Russia, and the U.S. to test for a correspondence between LCA distribution and surface water temperature in limnic systems. Previously, reports of LCA occurrence were restricted to sediments of 6 wide distributed freshwater and alkaline lakes. In this study 13 of 27 investigated lakes contained LCAs in surface sediments with concentrations varying between 12 to 205 μg/g TOC. Late Glacial to Holocene sediment sequences from Lake Steisslingen and Lake Wummsee, (Germany), Lake Pichozero (Russia), and Brush Lake (U.S.A.) contained abundant LCAs with averaged concentrations of 33 to 7536 μg/g TOC. For the first time we observed the occurrence of LCAs within in the water column of oligotrophic Lake Stechlin (NE-Germany). Alkenones were restricted to the zone of maximum chlorophyll concentration within the water column indicating that LCAs have a biosynthetic origin and can be attributed to phototrophic (micro)algae. Attempts to identify the producing organism, however, were not successful. Culture experiments allow various phytoplankton to be excluded as producers. Alkenone-producing algae are evidently of small size, hindering microscopical identification. LCAs commonly occur in high concentrations in Late Glacial sediments, mainly during the cold period of the Younger Dryas, whereas the Holocene usually is devoid of polyunsaturated alkenones. The episodic occurrence of LCAs restricts their utility as proxies for continuous geological records. Furthermore, lack of microscopical verification and the episodic distribution allow for different producers of unsaturated alkenones in Recent and Late Glacial sediments. An empirical relationship between LCA distribution and temperature was observed. In fossil sediments from Lake Steisslingen, there is a good correspondence between Uk37 and the temperature-controlled δ 18O isotope ratio of lake chalk. Comparison of LCA patterns obtained from the uppermost centimetres of lake sediments with averaged summer surface water temperatures of the lakes studied, demonstrates a trend of covariance ( r2: Uk'37 = 0.90, Uk37 = 0.67; n = 9). Hence, the same mechanism that causes temperature-dependence of LCA patterns in marine systems might be effective in limnic settings. Identification of alkenone producers and their culture under controlled temperature are still mandatory before LCAs can be routinely applied as paleotemperature proxy in limnic systems.
Post-landslide recovery patterns in a coast redwood forest
Leslie M. Reid; Elizabeth Keppeler; Sue Hilton
2017-01-01
Large landslides can exert a lasting influence on hillslope and channel form and can continue to contribute to high in-stream sediment loads long after the event. We used discharge and suspended sediment concentration data from the Caspar Creek Experimental Watersheds to evaluate the temporal distribution of sediment inputs from 11 landslides of 100 to 5500 m
Wolf, S.C.
1970-01-01
In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments southward except near Monterey Canyon which acts as a physiographic barrier and the extreme southern end of the bay where currents are non persistent. Some sediments are also transported offshore by rip currents and other agencies and deposited in deeper, quieter waters. Supply of sediments to the canyon head results in over-filling and steepening with subsequent mass movement of sediments seaward followed by deposition in channels and on the broad deep sea fan. ?? 1970.
Goatley, Christopher H. R.; Bellwood, David R.
2017-01-01
Sediments are found in the epilithic algal matrix (EAM) of all coral reefs and play important roles in ecological processes. Although we have some understanding of patterns of EAM sediments across individual reefs, our knowledge of patterns across broader spatial scales is limited. We used an underwater vacuum sampler to quantify patterns in two of the most ecologically relevant factors of EAM sediments across the Great Barrier Reef: total load and grain size distribution. We compare these patterns with rates of sediment production and reworking by parrotfishes to gain insights into the potential contribution of parrotfishes to EAM sediments. Inner-shelf reef EAMs had the highest sediment loads with a mean of 864.1 g m-2, compared to 126.8 g m-2 and 287.4 g m-2 on mid- and outer-shelf reefs, respectively. High sediment loads were expected on inner-shelf reefs due to their proximity to the mainland, however, terrigenous siliceous sediments only accounted for 13–24% of total mass. On inner-shelf reef crests parrotfishes would take three months to produce the equivalent mass of sediment found in the EAM. On the outer-shelf it would take just three days, suggesting that inner-shelf EAMs are characterised by low rates of sediment turnover. By contrast, on-reef sediment production by parrotfishes is high on outer-shelf crests. However, exposure to oceanic swells means that much of this production is likely to be lost. Hydrodynamic activity also appears to structure sediment patterns at within-reef scales, with coarser sediments (> 250 μm) typifying exposed reef crest EAMs, and finer sediments (< 250 μm) typifying sheltered back-reef EAMs. As both the load and grain size of EAM sediments mediate a number of important ecological processes on coral reefs, the observed sediment gradients are likely to play a key role in the structure and function of the associated coral reef communities. PMID:28122042
Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang
2016-05-15
Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental distribution of PAHs in pine needles, soils, and sediments.
Navarro-Ortega, Alícia; Ratola, Nuno; Hildebrandt, Alain; Alves, Arminda; Lacorte, Sílvia; Barceló, Damià
2012-03-01
The content of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in 60 samples from three environmental matrices (soils, sediments, and pine needles) in an effort to assess their distribution on a river basin scale. A sampling campaign was carried out in 2006, selecting urban, industrial, and agricultural sampling sites along the northeast of Spain. Techniques used included pressurized liquid extraction and solid-liquid ultrasonic extraction followed by gas chromatography-electron impact ionization mass spectrometry. The mean total PAHs concentrations were 290 < 613 < 1,628 ng/g (dry weight) in pine needles, soil, and sediments, respectively. There is a good correspondence between the total concentration of soils and pine needles, as opposed to the levels between sediments and pine needles. The high concentrations found in some Pinus halepensis samples may reflect a superior uptake potential of this species in comparison to the others studied. The three matrices present a very different PAH distribution pattern, with pine needles showing a predominance of the lighter (2-, 3-, and 4-ring) PAHs, whereas 5- and 6-ring PAHs are the most abundant in soils. Sediments display a more heterogeneous pattern, with contributions of all the PAHs but different distribution depending on the site, suggesting a wider range of input sources. Established PAH molecular ratios and principal component analysis were used to identify the origins and profiles of PAHs. While sediments showed a wide range attributed to historical inputs, soils and pine needles confirmed the compartmentalization of the PAHs, with lighter airborne PAHs accumulated in pine needles and heavier ones in soils. It can be suggested that the monitoring of several matrices is a strong tool to elucidate the contamination sources and accumulation patterns of PAHs. However, given the influence of the matrix type on this assessment, the information should be considered complementary, yet allowing a more comprehensive depiction of the area in question.
Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng
2018-03-01
Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hess, Sybille; Wenger, Amelia S.; Ainsworth, Tracy D.; Rummer, Jodie L.
2015-01-01
Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L−1 of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from ‘healthy’ to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health. PMID:26094624
Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L
2015-06-22
Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.
Distribution of biogenic silica and quartz in recent deep-sea sediments
NASA Astrophysics Data System (ADS)
Leinen, Margaret; Cwienk, Douglas; Heath, G. Ross; Biscaye, Pierre E.; Kolla, V.; Thiede, Jørn; Dauphin, J. Paul
1986-03-01
All available quartz and biogenic silica concentrations from deep-sea surface sediments were intercalibrated, plotted, and contoured on a calcium-carbonate-free basis. The maps show highest concentrations of biogenic silica (opal) along the west African coast, along equatorial divergences in all oceans, and at the Polar Front in the southern Indian Ocean. These are all areas where upwelling is strong and there is high biological productivity. Quartz in pelagic sediments deposited far from land is generally eolian in origin. Its distribution reflects dominant wind systems in the Pacific, but in much of the Atlantic and Indian oceans the distribution pattern is strongly modified by turbidite deposition and bottom current processes.
Algae contribute to trophic and biogeochemical processes in tidal wetlands. We investigated patterns of sediment pigment content and macroalgal abundance and diversity in marshes in four Oregon estuaries representing a variety of vegetation types, salinity regimes, and tidal ele...
Pischedda, L; Poggiale, J C; Cuny, P; Gilbert, F
2008-06-01
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad
2016-07-01
Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of the total detrital elemental flux. Trace elements show high concentrations of radioactive elements like U, Th, Pb, and Rb that suggest their high anomalous presence in the catchment lithology. An overall study indicates that the hydroclimatic conditions over the debris-covered glacier play a dominant controlling factor in erosion, transportation, and evacuation of suspended sediments during the ablation season.
Sediment distribution and coastal processes in Cook Inlet, Alaska
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Gatto, L. W.; Mckim, H. L.; Petrone, A.
1973-01-01
Regional hydrologic and oceanographic relationships in Cook Inlet, Alaska have been recognized from sequential ERTS-1 MSS imagery. Current patterns are visible in the inlet because of differential concentrations of suspended sediment. The circulation patterns within Cook Inlet are controlled primarily by the interaction between the semi-diurnal tides and the counter clockwise Alaska current. In general, heavily sediment laden water is seen to be confined to portions of the inlet north of the Forelands and west of Kalgin Island. Tongues of clear oceanic water are observed to enter the inlet through Kennedy Channel along the east shoreline in the vicinity of Cape Elizabeth. A recurring counterclockwise circulation pattern observed around Kalgin Island seems to result from the interplay of the northerly moving water along the east shore and the southerly moving, sediment laden, water along the west side of the inlet. Prominent, fresh water plumes, heavily laden with sediment are visible at the mouths of all major rivers. Relect plumes from as many as three tidal stages have been recognized.
Residual flow patterns and morphological changes along a macro- and meso-tidal coastline
NASA Astrophysics Data System (ADS)
Leonardi, Nicoletta; Plater, Andrew James
2017-11-01
The hydrodynamic and residual transport patterns arising from oscillating tidal motion have important consequences for the transport of sediments, and for the evolution of the shoreline, especially under macro- and meso-tidal conditions. For many locations there are significant uncertainties about residual currents and sediment transport characteristics, and their possible influence on the morphological evolution of the coastline and on the character of the bed. Herein we use the coastline of SE England as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. We found that in the long term the morphology of the system evolves toward a dynamic equilibrium configuration characterized by smaller, and spatially constant residual transport patterns. While the spatial distribution of residual currents maintains a similar trend during both neap and spring tide, during spring tide and for large areas residual currents switch between northerly and southerly directions, and their magnitude is doubled. Residual eddies develop in regions characterized by the presence of sand bars due to the interaction of the tide with the varying topography. Residual transport patterns are also computed for various sediment fractions, and based on the hydrodynamics and sediment availability at the bottom. We found that the distribution of sediments on the bed is significantly correlated with the intensity of residuals. Finally, the majority of long-term morphological changes tend to develop or augment sand banks features, with an increase in elevation and steepening of the bank contours.
Algae have important functional roles in estuarine wetlands along the Pacific coast of the United States. We quantified differences in macroalgal abundance, composition and diversity, and sediment chlorophyll a and pheophytin a among three National Wetlands Inventory emergent mar...
NASA Astrophysics Data System (ADS)
Li, Tao; Li, Tuan-Jie
2018-04-01
The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.
Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz
2017-02-01
Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leipe, T.; Naumann, M.; Tauber, F.; Radtke, H.; Friedland, R.; Hiller, A.; Arz, H. W.
2017-12-01
This study presents selected results of a sediment geochemical mapping program of German territorial waters in the south-western Baltic Sea. The field work was conducted mainly during the early 2000s. Due to the strong variability of sediment types in the study area, it was decided to separate and analyse the fine fraction (<63 μm, mud) from more than 600 surficial samples, combined with recalculations for the bulk sediment. For the contents of total organic carbon (TOC) and selected elements (P, Hg), the regional distribution maps show strong differences between the analysed fine fraction and the recalculated total sediment. Seeing that mud contents vary strongly between 0 and 100%, this can be explained by the well-known grain-size effect. To avoid (or at least minimise) this effect, further interpretations were based on the data for the fine fraction alone. Lateral transport from the large Oder River estuary combined with high abundances and activities of benthic fauna on the shallow-water Oder Bank (well sorted fine sand) could be some main causes for hotspots identified in the fine-fraction element distribution. The regional pattern of primary production as the main driver of nutrient element fixation (C, N, P, Si) was found to be only weakly correlated with, for example, the TOC distribution in the fine fraction. This implies that, besides surface sediment dynamics, local conditions (e.g. benthic secondary production) also have strong impacts. To the best of the authors' knowledge, there is no comparable study with geochemical analyses of the fine fraction of marine sediments to this extent (13,600 km2) and coverage (between 600 and 800 data points) in the Baltic Sea. This aspect proved pivotal in confidently pinpointing geochemical "anomalies" in surface sediments of the south-western Baltic Sea.
Lively, R.S.; Morey, G.B.; Mossler, J.H.
1997-01-01
As part of a regional geochemical investigation of lower Paleozoic strata in the Hollandale embayment of southeastern Minnesota, elemental concentrations in acid-insoluble residues were determined for carbonate rock in the Middle Ordovician Galena Group. Elemental distribution patterns within the insoluble residues, particularly those of Ti, Al, and Zr, show that the Wisconsin dome and the Wisconsin arch, which contributed sediment to the embayment prior to Galena time, continued as weak sources of sediment during this period. In contrast, trace metals commonly associated with Mississippi Valley-type lead-zinc mineralization, including Pb, Zn, Cu, Ag, Ni, Co, As, and Mo, show dispersal patterns that are independent of those associated with primary depositional phenomena. These trace metals are concentrated in southern Minnesota in carbonate rocks near the interface between limestone- and dolostone-dominated strata. Dispersal patterns imply that the metals were carried by a north-flowing regional ground-water system. The results show that the geochemical attributes of insoluble residues can be used to distinguish provenance and transport directions of primary sediments within a depositional basin from effects of subsequent regional ground-water flow systems.
Cooper, K M; Barry, J
2017-09-29
In this study we produce a standardised dataset for benthic macrofauna and sediments through integration of data (33,198 samples) from 777 grab surveys. The resulting dataset is used to identify spatial and temporal patterns in faunal distribution around the UK, and the role of sediment composition and other explanatory variables in determining such patterns. We show how insight into natural variability afforded by the dataset can be used to improve the sustainability of activities which affect sediment composition, by identifying conditions which should remain favourable for faunal recolonisation. Other big data applications and uses of the dataset are discussed.
Disappointment Reach, Australia as seen from STS-67 Endeavour
NASA Technical Reports Server (NTRS)
1995-01-01
A nearly vertical view of Disappointment Reach and surroundings. Ripple-like patterns extending at right angles to the tidal flow can be discerned on shoals. Relict sand dune patterns, crests unvegetated, are evident on the western side of the estuary. Red mud brought down the Mooramel River on the east side of the estuary does extend into the shallow water of the inter-tidal lagoons. Most of the light-colored water along the coast, represents shoals of lime sediment. Patterns of sediment distribution by tides, waves, streams, and wind combine to create a complex and colorful scene.
Disappointment Reach, Australia as seen from STS-67 Endeavour
1995-03-14
A nearly vertical view of Disappointment Reach and surroundings. Ripple-like patterns extending at right angles to the tidal flow can be discerned on shoals. Relict sand dune patterns, crests unvegetated, are evident on the western side of the estuary. Red mud brought down the Mooramel River on the east side of the estuary does extend into the shallow water of the inter-tidal lagoons. Most of the light-colored water along the coast, represents shoals of lime sediment. Patterns of sediment distribution by tides, waves, streams, and wind combine to create a complex and colorful scene.
Brito, Pedro; Prego, Ricardo; Mil-Homens, Mário; Caçador, Isabel; Caetano, Miguel
2018-04-15
The distribution and sources of yttrium and rare-earth elements (YREE) in surface sediments were studied on 78 samples collected in the Tagus estuary (SW Portugal, SW Europe). Yttrium and total REE contents ranged from 2.4 to 32mg·kg -1 and 18 to 210mg·kg -1 , respectively, and exhibited significant correlations with sediment grain-size, Al, Fe, Mg and Mn, suggesting a preferential association to fine-grained material (e.g. aluminosilicates but also Al hydroxides and Fe oxyhydroxides). The PAAS (Post-Archean Australian Shale) normalized patterns display three distinct YREE fractionation pattern groups along the Tagus estuary: a first group, characterized by medium to coarse-grained material, a depleted and almost flat PAAS-normalized pattern, with a positive anomaly of Eu, representing one of the lithogenic components; a second group, characterized mainly by fine-grained sediment, with higher shale-normalized ratios and an enrichment of LREE relative to HREE, associated with waste water treatment plant (WWTP) outfalls, located in the northern margin; and, a third group, of fine-grained material, marked by a significant enrichment of Y, a depletion of Ce and an enrichment of HREE over LREE, located near an inactive chemical-industrial complex (e.g. pyrite roast plant, chemical and phosphorous fertilizer industries), in the southern margin. The data allow the quantification of the YREE contents and its spatial distribution in the surface sediments of the Tagus estuary, identifying the main potential sources and confirming the use of rare earth elements as tracers of anthropogenic activities in highly hydrodynamic estuaries. Copyright © 2017 Elsevier B.V. All rights reserved.
Sühring, Roxana; Busch, Friederike; Fricke, Nicolai; Kötke, Danijela; Wolschke, Hendrik; Ebinghaus, Ralf
2016-01-15
A total of 53 halogenated flame retardants (HFRs) were analysed in sediments, European eels and dabs from both freshwater and marine sampling stations in the German Bight and the river Elbe. Classic HFRs, such as polybrominated diphenylethers (PBDEs), were the highest concentrated HFRs in eels as well as in most dabs (apart from 1,2,5,6-tetrabromocyclooctane (TBCO)). In sediments, on the other hand, alternate BFRs and especially dechloranes dominated the contamination pattern. Dabs were still found to be statistically representative for the contamination patterns and relative magnitude in sediments from their respective habitats. Contamination patterns in eels seemed to be more driven by the contamination situation in the food chain or historical contamination of their habitat. Unsuspectedly the alternate flame retardant TBCO was found in comparably high concentrations (up to 12 ng g(-1) ww) in dabs from two sampling stations as well as in sediments from these stations (up to 1.2 ng g(-1) dw). It could not be detected in any other analysed fish or sediment samples, indicating a localised contamination source in the area. This study provides information on HFR contamination patterns and behaviour in both marine and freshwater sediments and their potential role as contamination source for benthic fish. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Pan; Hu, Rijun; Zhu, Longhai; Wang, Peng; Yin, Dongxiao; Zhang, Lianjie
2017-06-15
Heavy metals (Cu, Pb, Cr, Cd and As) contents in surface sediments from western Laizhou Bay were analysed to evaluate the spatial distribution pattern and their contamination level. As was mainly concentrated in the coastal area near the estuaries and the other metals were mainly concentrated in the central part of the study area. The heavy metals were present at unpolluted levels overall evaluated by the sediment quality guidelines and geoaccumulation index. Principal component analysis suggest that Cu, Pb and Cd were mainly sourced from natural processes and As was mainly derived from anthropogenic inputs. Meanwhile, Cr originated from both natural processes and anthropogenic contributions. Tidal currents, sediments and human activities were important factors affecting the distribution of heavy metals. The heavy metal environment was divided into four subareas to provide a reference for understanding the distribution and pollution of heavy metals in the estuary-bay system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taheri, Mehrshad; Braeckman, Ulrike; Vincx, Magda; Vanaverbeke, Jan
2014-08-01
The responses of nematode communities to short-term hypoxia (1 and 7 days) were investigated in three North Sea stations with different sediment types (coarse silt, fine sand and medium sand). In the field, nematode density, diversity, vertical distribution and community structure differ among the stations. In the laboratory, oxic and hypoxic treatments were established for 1 and 7 days for all sediment types. Comparison between field control and oxic day 1 treatments showed that experimental sediment handling did not affect nematode characteristics. Our results revealed that short-term hypoxia did not affect total density, diversity, community composition, vertical density profiles (except in the fine sand) and densities of five dominant species in all sediment types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chang, Y H; Scrimshaw, M D; Macleod, C L; Lester, J N
2001-06-01
Recent changes in the UK's coastal defence strategy have resulted in the introduction of Managed Realignment (MR), a technique which attempts to establish salt marshes on low-lying coastal farmland. This work investigates the impact of MR, in particular on the interactions between sediment movement, changes in heavy metal concentrations and salt marsh development. Pre- and post-inundation samples were collected and analysed between 1995 and 1997. Sediment transport patterns (1996) demonstrated that sediment particles were distributed by tides around the site, resulting in a change in the spatial distribution of the metals which was related to the sediment particle size distribution. Despite the presence of some metal contaminants found within the MR site, vegetated salt marsh has developed since 1997. However, heavy metals such as Cu, Mn, Ni, Pb and Zn exhibited relative depletion in the sediment developing with salt marsh in 1997, which is in agreement with data indicating that concentrations of metals within sediments is related to frequency of tidal inundation. During initial development of the site, sediment transport was the main factor controlling metal distribution, however, subsequently the frequency of tidal inundation became the most significant factor. Further work may allow for prediction of how future MR sites will develop with respect to redistribution of sediments and subsequent transport of contaminants in the dissolved phase.
Wang, Min; Wang, Chuanyuan; Li, Yuanwei
2017-09-15
Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benthic exchange and biogeochemical cycling in permeable sediments.
Huettel, Markus; Berg, Peter; Kostka, Joel E
2014-01-01
The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.
NASA Astrophysics Data System (ADS)
Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.
2016-12-01
Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.
The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wu, C.; Shih, P.
2012-12-01
Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm in 3 days in 2009 Typhoon Morakot is also discussed in the study. A extreme river discharge with the return period of 100 year transported the macro sediment with the total volume of around 3.2×107 m3 in 8 days during 2009 Typhoon Morakot, and it also resulted in 18.1% increase of the mean river width and 4 m increase of the mean scouring depth in Chenyulan River, especially the mean increase of 50 m in river width resulted from the total sediment volume of 1.9×107 m3 deposited within 8 km from the sediment-yielded area, i.e. Shenmu watershed. Furthermore, the distribution of sediment deposition in a narrow pass is also discussed in the research. Sediment deposited apparently in the upstream of a narrow pass and also results in the disordered river patterns. The high velocity flow due to the contraction of the river width in the narrow pass section also leads to the headwater erosion in the upstream of the narrow pass section. Contrarily, the unapparent sediment deposition in the downstream of the narrow pass section brings about the stable main channel and swinging flow patterns from our decade observation.
NASA Astrophysics Data System (ADS)
Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.
2017-12-01
Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.
Williams, Gareth J; Knapp, Ingrid S; Maragos, James E; Davy, Simon K
2011-08-01
A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway. Copyright © 2011 Elsevier Ltd. All rights reserved.
Controls on subglacial patterns and depositional environments in western Ireland
NASA Astrophysics Data System (ADS)
Knight, J.
2009-12-01
In western Ireland, Late Devensian ice flow dynamics and resultant patterns of landforms and sediments reflect the interplay between internal (glaciological) forcing and external forcing by rapid climate changes centred on the adjacent Atlantic Ocean. This interplay can be best demonstrated where ice from climatically-sensitive mountain source regions flowed into surrounding lowlands, such as the Connemara region of west County Galway, western Ireland. Here, a semi-independent ice cap was present over the Twelve Bens mountains, and interacted with ice from the much larger regional ice sheet from central Ireland. Landform and sediment patterns in the flat lowland region (c. 100 km2 below 30 m asl) to the south of the Twelve Bens reflect elements of this ice interaction. In detail, landform and sediment distributions here are highly complex with marked spatial differences in patterns of sediment availability. Across much of the region, sculpted bedrock forms (whaleback and bedrock drumlin ridges, roches mountonnées, striae) reflect subglacial abrasion across the underlying igneous and metamorphic bedrock that forms a relatively flat and lake-dominated landscape. Glacigenic sediments are found only at or around ice-retreat margins, and within isolated bedrock valleys. Here, diamicton drumlins are relatively uncommon but yet must represent depositional conditions that are not reflected elsewhere in this ice sheet sector where subglacial sediments are generally absent. This paper explores the interrelationship between local and regional ice flows through their impact on spatial patterns of glacial landforms and sediments. The paper presents field data on the characteristics of bedrock forms (erosional) and diamicton drumlins (depositional). Subglacial sediments are described from drumlin outcrops at key sites around Connemara, which helps in the understanding of the evolution of the subglacial environment in response to ice interactions from different source regions.
The Late Pliocene Eltanin Impact - Documentation From Sediment Core Analyses
NASA Astrophysics Data System (ADS)
Gersonde, R.; Kuhn, G.; Kyte, F. T.; Flores, J.; Becquey, S.
2002-12-01
The expeditions ANT-XII/4 (1995) and ANT-XVIII/5a (2001) of the RV POLARSTERN collected extensive bathymetric and seismic data sets as well as sediment cores from an area in the Bellingshausen Sea (eastern Pacific Southern Ocean) that allow the first comprehensive geoscientific documentation of an asteroid impact into a deep ocean (~ 5 km) basin, named the Eltanin impact. Impact deposits have now been recovered from a total of more than 20 sediment cores collected in an area covering about 80,000 km2. Combined biomagnetostratigraphic dating places the impact event into the earliest Matuyama Chron, a period of enhanced climate variability. Sediment texture analyses and studies of sediment composition including grain size and microfossil distribution reveal the pattern of impact-related sediment disturbance and the sedimentary processes immediately following the impact event. The pattern is complicated by the San Martin Seamounts (~57.5 S, 91 W), a large topographic elevation that rises up to 3000 m above the surrounding abyssal plain in the area affected by the Eltanin impact. The impact ripped up sediments as old as Eocene and probably Paleocene that have been redeposited in a chaotic assemblage. This is followed by a sequence sedimented from a turbulent flow at the sea floor, overprinted by fall-out of airborne meteoritic ejecta that settled trough the water column. Grain size distribution reveals the timing and interaction of the different sedimentary processes. The gathered estimate of ejecta mass deposited over the studied area, composed of shock-melted asteroidal matrial and unmelted meteorites including fragments up to 2.5 cm in diameter, point to an Eltanin asteroid larger than the 1 km in diameter size originally suggested as a minimum based on the ANT-XII/4 results. This places the energy released by the impact at the threshold of those considered to cause environmental disturbance at a global scale and it makes the impact a likely transport mechanism explaining the presence of extinct Cenozoic microfossils in the transantarctic Sirius Unit. Although a crater structure representing Eltanin ground zero has not been discovered, the distribution pattern of sediment disturbance and ejecta deposits now allows to better determine the central target area north of the San Martin Seamounts.
The Late Pliocene Eltanin Impact: Documentation From Sediment Core Analyses
NASA Technical Reports Server (NTRS)
Gersonde, R.; Kyte, F.; Flores, J. A.; Becquey, S.
2002-01-01
The expeditions ANT-XII/4 (1995) and ANT-XVIII/5a (2001) of the RV POLARSTERN collected extensive bathymetric and seismic data sets as well as sediment cores from an area in the Bellingshausen Sea (eastern Pacific Southern Ocean) that allow the first comprehensive geoscientific documentation of an asteroid impact into a deep ocean (approx. 5 km) basin, named the Eltanin impact. Impact deposits have now been recovered from a total of more than 20 sediment cores collected in an area covering about 80,000 km2. Combined biomagnetostratigraphic dating places the impact event into the earliest Matuyama Chron, a period of enhanced climate variability. Sediment texture analyses and studies of sediment composition including grain size and microfossil distribution reveal the pattern of impact- related sediment disturbance and the sedimentary processes immediately following the impact event. The pattern is complicated by the San Martin Seamounts (approx. 57.5 S, 91 W), a large topographic elevation that rises up to 3000 m above the surrounding abyssal plain in the area affected by the Eltanin impact. The impact ripped up sediments as old as Eocene and probably Paleocene that have been redeposited in a chaotic assemblage. This is followed by a sequence sedimented from a turbulent flow at the sea floor, overprinted by fall-out of airborne meteoritic ejecta that settled trough the water column. Grain size distribution reveals the timing and interaction of the different sedimentary processes. The gathered estimate of ejecta mass deposited over the studied area, composed of shock-melted asteroidal material and unmelted meteorites including fragments up to 2.5 cm in diameter, point to an Eltanin asteroid larger than the 1 km in diameter size originally suggested as a minimum based on the ANT-XII/4 results. This places the energy released by the impact at the threshold of those considered to cause environmental disturbance at a global scale and it makes the impact a likely transport mechanism explaining the presence of extinct Cenozoic microfossils in the transantarctic Sirius Unit. Although a crater structure representing Eltanin ground zero has not been discovered, the distribution pattern of sediment disturbance and ejecta deposits now allows to better determine the central target area north of the San Martin Seamounts.
Contrasting Patterns of Fine Fluvial Sediment Delivery in Two Adjacent Upland Catchments
NASA Astrophysics Data System (ADS)
Perks, M.; Bracken, L.; Warburton, J.
2010-12-01
Quantifying patterns of fine suspended sediment transfer in UK upland rivers is of vital importance in combating the damaging effects of elevated fluxes of suspended sediment, and sediment associated transport of contaminants, on in-stream biota. In many catchments of the UK there is still a lack of catchment-wide understanding of both the spatial patterns and temporal variation in fine sediment delivery. This poster describes the spatial and temporal distribution of in-stream fine sediment delivery from a network of 44 time-integrated mass flux samplers (TIMs) in two adjacent upland catchments. The two catchments are the Esk (210 km2) and Upper Derwent (236 km2) which drain the North York Moors National Park. Annual suspended sediment loads in the Upper Derwent are 1273 t, whereas in the Esk catchment they are greater at 1778 t. Maximum yields of 22 t km-2 yr -1 were measured in the headwater tributaries of the Rye River (Derwent), whereas peak yields in the Esk are four times greater (98 t km-2 yr-1) on the Butter Beck subcatchment. Analysis of the within-storm sediment dynamics, indicates that the sediment sources within the Upper Derwent catchment are from distal locations possibly mobilised by hillslope runoff processes, whereas in the Esk, sediment sources are more proximal to the channel e.g. within channel stores or bank failures. These estimates of suspended sediment flux are compared with the diffuse pollution potential generated by a risk-based model of sediment transfer (SCIMAP) in order to assess the similarity between the model predictions and observed fluxes.
Mobility of maerl-siliciclastic mixtures: Impact of waves, currents and storm events
NASA Astrophysics Data System (ADS)
Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin
2017-04-01
Maerl beds are free-living, non-geniculate coralline algae habitats which form biogenic reefs with high micro-scale complexity supporting a diversity and abundance of rare epifauna and epiflora. These habitats are highly mobile in shallow marine environments where substantial maerl beds co-exist with siliciclastic sediment, exemplified by our study site of Galway Bay. Coupled hydrodynamic-wave-sediment transport models have been used to explore the transport patterns of maerl-siliciclastic sediment during calm summer conditions and severe winter storms. The sediment distribution is strongly influenced by storm waves even in water depths greater than 100 m. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. A combined wave-current Sediment Mobility Index during storm conditions shows correlation with multibeam backscatter and surficial sediment distribution. A combined wave-current Mobilization Frequency Index during storm conditions acts as a physical surrogate for the presence of maerl-siliciclastic mixtures in Galway Bay. Both indices can provide useful integrated oceanographic and sediment information to complement coupled numerical hydrodynamic, sediment transport and erosion-deposition models.
NASA Astrophysics Data System (ADS)
Son, Geunsoo; Kim, Dongsu; Kim, YoungDo; Lyu, Siwan; Kim, Seojun
2017-04-01
River confluences are zones where two rivers with different geomorphic and hydraulic characteristics amalgamate, resulting in rapid change in terms of flow regime, sediment entrainment and hydraulic geometry. In these confluence zones, the flow structure is basically complicated responded with concurrent mixing of physical and chemical aquatic properties, and continuous channel morphology could be changed due to erosion and sedimentation. In addition, the confluences are regions in which two rivers join and play an important role in river ecology. In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, therefore, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data especially for characterizing this kind of mixing process. Even with intensive in-situ measurements, those researches tended to focus mainly on the hydraulic characteristics such as the flow and morphological complexity of confluence, so that very few studies comprehensively included sediment variation with flow at the same time. In this study, subsequently, flow and sediment mixing characteristics were concurrently investigated in the confluence between Nakdong and Nam river in South Korea, where it has been frequently questioned to determine how Nam river affects Nakdong river that recently have suffered various environmental problems such as green algae bloom and erosion/deposition in the confluence. We basically examined the mixing characteristics of confluence by using acoustic Doppler current profilers (ADCPs) which were used to measure hydraulic factors such as flow rate and depth, as well as measuring the suspended sediment concentration by using acoustic backscatter. Cross-sectional ADCP measurements in a confluence were collected with high spatial resolution in order to analyze the details of spatial distribution in the perspective of the three-dimensional mixing patterns of flow and sediment, where backscatters (or SNR) measured from ADCPs were used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter and flow measurements by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers.
Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.
Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J
2001-06-01
The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.
NASA Astrophysics Data System (ADS)
Pfeiffer, Andrew; Wohl, Ellen
2018-01-01
We used 48 reach-scale measurements of large wood and wood-associated sediment and coarse particulate organic matter (CPOM) storage within an 80 km2 catchment to examine spatial patterns of storage relative to stream order. Wood, sediment, and CPOM are not distributed uniformly across the drainage basin. Third- and fourth-order streams (23% of total stream length) disproportionately store wood and coarse and fine sediments: 55% of total wood volume, 78% of coarse sediment, and 49% of fine sediment, respectively. Fourth-order streams store 0.8 m3 of coarse sediment and 0.2 m3 of fine sediment per cubic meter of wood. CPOM storage is highest in first-order streams (60% of storage in 47% of total network stream length). First-order streams can store up to 0.3 m3 of CPOM for each cubic meter of wood. Logjams in third- and fourth-order reaches are primary sediment storage agents, whereas roots in small streams may be more important for storage of CPOM. We propose the large wood particulate storage index to quantify average volume of sediment or CPOM stored by a cubic meter of wood.
Analytical approaches to the determination of phosphorus partitioning patterns in sediments.
Pardo, P; Rauret, G; López-Sánchez, J F
2003-04-01
Three methods for phosphorus fractionation in sediments based on chemical extractions have been applied to fourteen aquatic sediment samples of different origin and characteristics. Two of the methods used different approaches to obtain the inorganic fractions. The Hieltjes and Lijklema procedure (HL) uses strong acids or bases, whereas the Golterman procedure (G) uses chelating reagents. The third one, the Standards, Measurements and Testing (SMT) protocol, was proposed in the frame of the SMT Programme (European Commission) which aimed to provide harmonisation and the validation of such methodologies. This harmonised procedure was also used for the certification of the extractable phosphorus contents in a sediment certified reference material (CRM BCR 684). Principal component analysis (PCA) was used to group sediments according to their composition and the three extraction methods were applied to the samples including CRM BCR 684. The data obtained show that there is some correlation between the results from the three methods when considering the organic and the residual fractions together. The SMT and the HL methods are the most comparable, whereas the G method, using a different type of reagent, yields different distribution patterns depending on sample composition. In relation to the inorganic phosphorus, the three methods give similar information, although the distribution between non-apatite and apatite fractions can be different.
Sediment morpho-dynamics induced by a swirl-flow: an experimental study
NASA Astrophysics Data System (ADS)
Gonzalez-Vera, Alfredo; Duran-Matute, Matias; van Heijst, Gertjan
2016-11-01
This research focuses on a detailed experimental study of the effect of a swirl-flow over a sediment bed in a cylindrical domain. Experiments were performed in a water-filled cylindrical rotating tank with a bottom layer of translucent polystyrene particles acting as a sediment bed. The experiments started by slowly spinning the tank up until the fluid had reached a solid-body rotation at a selected rotation speed (Ωi). Once this state was reached, a swirl-flow was generated by spinning-down the system to a lower rotation rate (Ωf). Under the flow's influence, particles from the bed were displaced, which changed the bed morphology, and under certain conditions, pattern formation was observed. Changes in the bed height distribution were measured by utilizing a Light Attenuation Technique (LAT). For this purpose, the particle layer was illuminated from below. Images of the transmitted light distribution provided quantitative information about the local thickness of the sediment bed. The experiments revealed a few characteristic regimes corresponding to sediment displacement, pattern formation and the occurrence of particle pick-up. Such regimes depend on both the Reynolds (Re) and Rossby (Ro) numbers. This research is funded by CONACYT (Mexico) through the Ph.D. Grant (383903) and NWO (the Netherlands) through the VENI Grant (863.13.022).
Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates
NASA Astrophysics Data System (ADS)
Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico
2017-10-01
Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.
Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea
Gardner, J.V.; Dean, W.E.; Vallier, T.L.
1980-01-01
Present-day sediment dynamics, combined with lowerings of sea level during the Pleistocene, have created a mixture of sediments on the outer continental shelf of the southern Bering Sea that was derived from the Alaskan Mainland, the Aleutian Islands, and the Pribilof ridge. Concentrations of finer-grained, higher-organic sediments in the region of the St. George basin have further modified regional distribution patterns of sediment composition. Q-mode factor analysis of 58 variables related to sediment size and composition - including content of major, minor, and trace elements, heavy and light minerals, and clay minerals - reveals three dominant associations of sediment: 1. (1) The most significant contribution, forming a coarse-grained sediment scattered over most of the shelf consists of felsic sediment derived from the generally quartz-rich rocks of the Alaskan mainland. This sediment contains relatively high concentrations of Si, Ba, Rb, quartz, garnet, epidote, metamorphic rock fragments, potassium feldspar, and illite. 2. (2) The next most important group, superimposed on the felsic group consists of andesitic sediment derived from the Aleutian Islands. This more mafic sediment contains relatively high concentrations of Na, Ca, Ti, Sr, V, Mn, Cu, Fe, Al, Co, Zn, Y, Yb, Ga, volcanic rock fragments, glass, clinopyroxene, smectite, and vermiculite. 3. (3) A local group of basaltic sediment, derived from rocks of the Pribilof Islands, is a subgroup of the Aleutian andesite group. Accumulation of fine-grained sediment in St. George basin has created a sediment group containing relatively high concentrations of C, S, U, Li, B, Zr, Ga, Hg, silt, and clay. Sediment of the Aleutian andesite group exhibits a strong gradient, or "plume", with concentrations decreasing away from Unimak Pass and toward St. George basin. The absence of present-day currents sufficient to move even clay-size material as well as the presence of Bering submarine canyon between the Aleutian Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.
NASA Astrophysics Data System (ADS)
Hong, Hanlie; Wang, Chaowen; Zeng, Kefeng; Gu, Yansheng; Wu, Yuanbao; Yin, Ke; Li, Zhaohui
2013-05-01
The source of mid-Pleistocene red earth sediments in the middle to lower reaches of the Yangtze (Changjiang) River was investigated based on their geochemical characteristics. The Xuancheng and Jiujiang red earth sediments have similar major and trace element distribution patterns. Compared to the loess and paleosol deposits of the Chinese Loess Plateau, the upper continental crust (UCC), and the post-Archean Australian average shale (PAAS), the sediments display notable depletion of CaO, MgO, Na2O, and accumulation of TiO2, Al2O3, and Fe2O3(t). The trace element distribution patterns of the red earth sediments are also different from those of loess and the PAAS, but are similar to those of the loess deposits, except for lower values of mobile trace elements Sr, Ba, and Ni, and higher values of Zr and Y. The red earth samples have uniform La/Th ratios of ~ 2.8, compatible with those of the UCC, loess, and paleosol. They also have similar chondrite-normalized REE patterns, characterized by enriched LREE and relatively flat HREE profiles, and consistent negative Eu anomalies, similar to those of the UCC, the loess and paleosol, and the Yangtze deposits. These results suggest that the red earth sediments have been subject to considerable mixing prior to deposition and strong subsequent chemical weathering. The sediments have very uniform 143Nd/144Nd and 147Sm/144Nd ratios, this points to well-mixed and multi-recycled sediments. The 143Nd/144Nd and 87Sr/86Sr values of the red earth sediments match well with those of the deposits in the middle to lower reaches of the Yangtze River, but are different from those of the loess and paleosols. This suggests that the red earth sediments are derived from the drainage basins of the middle to lower Yangtze River and might have experienced more intense chemical weathering relative to the Yangtze deposits, as reflected by their higher Rb/Sr ratios, intense depletion of mobile elements and accumulation of immobile elements, as well as their well-developed net-like structure.
Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E
2007-04-01
Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.
Distribution of copper and other metals in gully sediments of part of Okanogan County, Washington
Fox, Kenneth F.; Rinehart, C. Dean
1972-01-01
A geochemical exploration program aimed at determining regional patterns of metal distribution as well as pinpointing areas likely to contain undiscovered ore deposits was carried out in north-central Okanogan County, Washington. About 1,000 gully and stream sediment samples were collected from a rectangular area of about 800 square miles. The area includes two contiguous, virtually dormant, mining districts that had yielded nearly $1.4 million in gold, silver, lead, copper, and zinc prior to the end of World War I, mostly from quartz lodes.
Oliveira, André H B; Cavalcante, Rivelino M; Duaví, Wersângela C; Fernandes, Gabrielle M; Nascimento, Ronaldo F; Queiroz, Maria E L R; Mendonça, Kamila V
2016-01-15
Between the 1940s and 1990s, immeasurable amounts of organochlorine pesticides (OCPs) were used in endemic disease control campaigns and agriculture in the tropical semi-arid regions of Brazil. The present study evaluated the legacy of banned OCP usage, considering the levels, ecological risk and dependence on sediment physicochemical properties for the fate and distribution in the Jaguaribe River. The sum concentration of OCPs (ΣOCPs) ranged from 5.09 to 154.43 ng·g(-1), comparable to the levels found in other tropical and subtropical regions that have traditionally used OCPs. The environmental and geographical distribution pattern of p,p-DDT, p,p-DDD and p,p-DDE shows that the estuarine zone contained more than 3.5 times the levels observed in the fluvial region, indicating that the estuary of the Jaguaribe River is a sink. The temporal pattern indicates application of dichloro-diphenyl-trichloroethanes (DDTs) in the past; however, there is evidence of recent input of these pesticides. High ecological risk was observed for levels of γ-hexachlorocyclohexanes (γ-HCH) and heptachlor, and moderate ecological risk was observed for levels of DDTs in sediments from the Jaguaribe River. The heptachlor, γ-HCH and hexachlorobenzene (HCB) concentrations depend on the organic and inorganic fractions of sediment from the Jaguaribe River, whereas the p,p-DDE, p,p-DDD, p,p-DDT and α-endosulfan concentrations depend solely on the organic fraction of the sediment.
Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.
2015-12-01
Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Huh, Oscar K.; Walker, Nan D.; Rouse, Lawrence J.; Frey, Herbert V. (Technical Monitor)
2001-01-01
The University of Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to modify coastal circulation and resuspend sediments along the microtidal Louisiana coast. The assessment includes quantifying the influence of cumulative winter season atmospheric forcing (through surface wind observations) from year to year in response to short term climate variability, such as El Nino events. A correlation between winter cyclone frequency and the strength of El Nino events has been suggested. The atmospheric forcing data are being correlated to geomorphic measurements along western Louisiana's prograding muddy coast. Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODIS observations will enable estimates of SSC in case 2 waters over the global domain. Progress in Year 1 of this study has included data collection and analysis of wind observations for atmospheric forcing characterization, a field activity (TX-2001) to collect in situ water samples with co-incident remote sensing measurements from the NASA ER-2 based MODIS Airborne Simulator (MAS) and the EOS Terra based MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aerial photography and of sediment burial pipe field measurements along the prograding muddy Chenier Plain coast of western Louisiana for documenting coastal change in that dynamic region, and routine collection of MODIS 250 in resolution data for monitoring coastal sediment patterns. The data sets are being used in a process to transfer an SSC estimation algorithm to the MODIS platform. Work is underway on assessing coastal transport for the winter 2000-01 season. Water level data for use in a Geomorphic Impact Index, which relates wind energy, water level conditions, and geomorphic change along the microtidal western Louisiana coastline is being assembled.
Miller, Ronald L.; McPherson, Benjamin F.
2001-01-01
Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.
Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland
NASA Astrophysics Data System (ADS)
Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.
2015-12-01
Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.
Temporal and spatial distributions of sediment total organic carbon in an estuary river.
Ouyang, Y; Zhang, J E; Ou, L-T
2006-01-01
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.
Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.
2014-01-01
Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984
Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.
2011-01-01
Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.
Girardclos, S.; Baster, I.; Wildi, W.; Pugin, A.; Rachoud-Schneider, A. -M.
2003-01-01
The Late-Glacial and Holocene sedimentary history of the Hauts-Monts area (western Lake Geneva, Switzerland) is reconstructed combining high resolution seismic stratigraphy and well-dated sedimentary cores. Six reflections and seismic units are defined and represented by individual isopach maps, which are further combined to obtain a three-dimensional age-depth model. Slumps, blank areas and various geometries are identified using these seismic data. The sediment depositional areas have substantially changed throughout the lake during the end of the Late-Glacial and the Holocene. These changes are interpreted as the result of variations in the intensity of deep lake currents and the frequency of strong winds determining the distribution of sediment input from the Versoix River and from reworking of previously deposited sediments within the lacustrine basin. The identified changes in sediment distribution allowed us to reconstruct the lake's deep-current history and the evolution of dominant strong wind regimes from the Preboreal to present times.
Liu, Lili; Wang, Yupeng; Lin, Sen; Li, Hong; Chen, Xin; Wang, Zhiping; Lin, Kuangfei
2018-04-01
In this study, sediment samples were collected from 24 sites in the East China Sea (ECS) to investigate the distribution characteristics, co-occurrence correlations, and ecological risks of metals. In surface sediments, metals presented a homologous banding distribution pattern decreasing seaward with distance. With network analysis, it indicated metals in this area might directly derive from the coastal river inputs. According to geo-accumulation indexes (I geo ), Cd was classified as moderate pollution at 58% sites, far above other metals. In addition, the potential ecological risk index (RI) was clustered with the ecological risk (ER) of Cd, which was regarded as considerable or high-risk level for most coastal stations. Thus Cd pollution in the ESC sediment should be paid more attention. In sum, the visualization of statistical analyses combined with geochemical approaches could reveal the potential sources of contaminants and ecological risks, thus facilitate the pollution evaluation in marine sediments.
A distributed analysis of Human impact on global sediment dynamics
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Syvitski, J. P.
2012-12-01
Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.
Iwata, H; Tanabe, S; Sakai, N; Nishimura, A; Tatsukawa, R
1994-01-01
Persistent organochlorines in air, river water and sediment samples were analysed from eastern and southern Asia (India, Thailand, Vietnam, Malaysia, Indonesia) and Oceania (Papua New Guinea and Solomon Islands) to elucidate their geographical distribution in tropical environment. The concentrations of organochlorines in these abiotic samples collected from Taiwan, Japan and Australia were also monitored for comparison. Atmospheric and hydrospheric concentrations of HCHs (hexachlorocyclohexanes) and DDTs (DDT and its metabolites) in the tropical developing countries were apparently higher than those observed in the developed nations, suggesting extensive usage of these chemicals in the lower latitudes. CHLs (chlordane compounds) and PCBs (polychlorinated biphenyls) were also occasionally observed at higher levels in the tropics, implying that their usage area is also expanding southward. Distribution patterns of organochlorines in sediments showed smaller spatial variations on global terms, indicating that the chemicals released in the tropical environment are dispersed rapidly through air and water and retained less in sediments. The ratios of organochlorine concentrations in sediment and water phases were positively correlated with the latitude of sampling, suggesting that persistent and semivolatile compounds discharged in the tropics tend to be redistributed on a global scale.
Spatial patterns of erosion in a bedrock gorge
NASA Astrophysics Data System (ADS)
Beer, Alexander. R.; Turowski, Jens M.; Kirchner, James W.
2017-01-01
Understanding the physical processes driving bedrock channel formation is essential for interpreting and predicting the evolution of mountain landscapes. Here we analyze bedrock erosion patterns measured at unprecedented spatial resolution (mm) over 2 years in a natural bedrock gorge. These spatial patterns show that local bedrock erosion rates depend on position in the channel cross section, height above the streambed, and orientation relative to the main streamflow and sediment path. These observations are consistent with the expected spatial distribution of impacting particles (the tools effect) and shielding by sediment on the bed (the cover effect). Vertical incision by bedrock abrasion averaged 1.5 mm/a, lateral abrasion averaged 0.4 mm/a, and downstream directed abrasion of flow obstacles averaged 2.6 mm/a. However, a single plucking event locally exceeded these rates by orders of magnitude (˜100 mm/a), and accounted for one third of the eroded volume in the studied gorge section over the 2 year study period. Hence, if plucking is spatially more frequent than we observed in this study period, it may contribute substantially to long-term erosion rates, even in the relatively massive bedrock at our study site. Our observations demonstrate the importance of bedrock channel morphology and the spatial distribution of moving and static sediment in determining local erosion rates.
Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong
2011-11-01
The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.
Global ecological pattern of ammonia-oxidizing archaea.
Cao, Huiluo; Auguet, Jean-Christophe; Gu, Ji-Dong
2013-01-01
The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water, marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus) and a non-monophyletic cluster constituted mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This result suggested the existence of AOA communities with different evolutionary history in the different habitats. Based on an up-to-date amoA phylogeny, this analysis provided insights into the possible evolutionary mechanisms and environmental parameters that shape AOA community assembly at global scale.
NASA Astrophysics Data System (ADS)
Hupp, C. R.; Rinaldi, M.
2010-12-01
Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery of floodplains by affecting sedimentation dynamics. Identification and understanding of critical fluvial parameters related to floodplain connectivity (e.g. stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services.
Isotopic constraints on crustal growth and recycling
NASA Technical Reports Server (NTRS)
Jacobsen, Stein B.
1988-01-01
The Sm-Nd isotopic data on clastic and chemical sediments are used with the present-day age distribution of continental crustal rocks to estimate the rates of crustal accretion, growth and recycling throughout earth's history. A new method for interpreting Nd model ages on both chemical and clastic sediments is proposed. A general relationship is derived between the mean crustal residence time of material recycled from the crust to the mantle (i.e., sediments), the mean age of the crust, and the crustal growth and recycling rates. This relationship takes into account the fact that the age distribution of material in the continental crust is generally different from the age distribution of material recycled into the mantle. The episodic nature of the present-day age distribution in crustal rocks results in similar episodicity in the accretion and recycling rates. The results suggest that by about 3.8 Ga ago, about 40 percent of the present continental volume was present. Recycling rates were extremely high 3-4 Ga ago and declined rapidly to an insignificant value of about 0.1 cu km/a during most of the Phanerozoic. The Nd model age pattern on sediments suggests a fairly high rate of growth during the Phanerozoic.
Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.
Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju
2011-03-01
Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.
2017-12-01
Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."
Zaghden, Hatem; Tedetti, Marc; Sayadi, Sami; Serbaji, Mohamed Moncef; Elleuch, Boubaker; Saliot, Alain
2017-04-15
We investigated the origin and distribution of aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs) and organic matter (OM) in surficial sediments of the Sfax-Kerkennah channel in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). TOC, AH and PAH concentrations ranged 2.3-11.7%, 8-174μgg -1 sed.dw and 175-10,769ngg -1 sed.dw, respectively. The lowest concentrations were recorded in the channel (medium sand sediment) and the highest ones in the Sfax harbor (very fine sand sediment). AHs, PAHs and TOC were not correlated for most of the stations. TOC/N and δ 13 C values revealed a mixed origin of OM with both marine and terrestrial sources. Hydrocarbon molecular composition highlighted the dominance of petrogenic AHs and the presence of both petrogenic and pyrogenic PAHs, associated with petroleum products and combustion processes. This work underscores the complex distribution patterns and the multiple sources of OM and hydrocarbons in this highly anthropogenized coastal environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2016-04-01
In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.
Zeng, Lixi; Zhao, Zongshan; Li, Huijuan; Wang, Thanh; Liu, Qian; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin
2012-09-18
Short chain chlorinated paraffins (SCCPs) are high production volume chemicals in China and found to be widely present in the environment. In this study, fifty-one surface sediments and two sediment cores were collected from the East China Sea to study their occurrence, distribution patterns and potential transport in the marginal sea. SCCPs were found in all surface sediments and ranged from 5.8 to 64.8 ng/g (dry weight, d.w.) with an average value of 25.9 ng/g d.w. A general decreasing trend with distance from the coast was observed, but the highest value was found in a distal mud area far away from the land. The C10 homologue was the most predominant carbon chain group, followed by C11, C12, and C13 homologue groups. Significant linear relationship was found between total organic carbon (TOC) and total SCCP concentrations (R(2) = 0.51, p < 0.05). Spatial distributions and correlation analysis indicated that TOC, riverine input, ocean current, and atmospheric deposition played an important role in controlling SCCP accumulation in marine sediments. Vertical profiles of sediment cores showed that SCCP concentrations decreased from surface to the depth of 36 cm, and then slightly increased again with depth, which showed a significant positive correlation with TOC and chlorine contents (Cl%). The results suggest that SCCPs are being regionally or globally distributed by long-range atmospheric or ocean current transport.
Lee, Jun H; Woo, Han J; Jeong, Kap S; Kang, Jeong W; Choi, Jae U; Jeong, Eun J; Park, Kap S; Lee, Dong H
2017-10-15
Our research team investigated the elemental composition and the presence of various toxic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), in estuary surface sediments to trace the spatial distribution of the sources of pollution deposited in Nakdong River, Busan, South Korea. The spatial patterns of elemental composition and toxic organic compounds were determined from the measurements of total organic carbon (TOC), total nitrogen, total sulfur, PAHs, and PCBs. The sediments had TOC contents of between 0.02 and 1.80 wt% (avg. 0.34 wt%), depending on the amount of clay-sized particles. The concentrations of PAHs and PCBs (10.8-167.7 ng g -1 dry wt and 197.0-754.0 pg g -1 dry wt, respectively) in surface sediments revealed different spatial patterns for these compounds, suggesting that they partially originated from the combustion of fossil fuels and from the use of commercial PCB products at adjacent industrial complexes. Although these concentrations were far below the Sediment Quality Guideline (SQG) of the National Oceanic and Atmospheric Administration (NOAA), the sediments at one site contained PCBs at concentrations close to the response level (754.0 pg g -1 dry wt), and were dominated by low-molecular-weight PAHs. The PAHs and PCBs in Nakdong River Estuary sediments were likely to have originated from the combustion of fossil fuels and biomass at the adjacent industrial complexes. The primarily analyzed results determined that PAHs originated from the combustion of fossil fuels and biomass, and overall concentrations were related to the contributions of individual PAHs in most sediment samples. Based on the SQG of the NOAA, our results indicate that the anthropogenic activity should be considered on the future-sustainable management of this estuary system.
An application of sedimentation simulation in Tahe oilfield
NASA Astrophysics Data System (ADS)
Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He
2017-12-01
The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.
2014-01-01
Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695
Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet
NASA Astrophysics Data System (ADS)
Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.
2014-12-01
The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.
Modern sedimentation patterns in Potter Cove, King George Island, Antarctica
NASA Astrophysics Data System (ADS)
Hass, H. Christian; Kuhn, Gerhard; Wölfl, Anne-Cathrin; Wittenberg, Nina; Betzler, Christian
2013-04-01
IMCOAST among a number of other initiatives investigates the modern and the late Holocene environmental development of south King George Island with a strong emphasis on Maxwell Bay and its tributary fjord Potter Cove (maximum water depth: about 200 m). In this part of the project we aim at reconstructing the modern sediment distribution in the inner part of Potter Cove using an acoustic ground discrimination system (RoxAnn) and more than136 ground-truth samples. Over the past 20 years the air temperatures in the immediate working area increased by more than 0.6 K (Schloss et al. 2012) which is less than in other parts of the West Antarctic Peninsula (WAP) but it is still in the range of the recovery of temperatures from the Little Ice Age maximum to the beginning of the 20th century. Potter Cove is a small fjord characterized by a series of moraine ridges produced by a tidewater glacier (Fourcade Glacier). Presumably, the farthest moraine is not much older than about 500 years (LIA maximum), hence the sediment cover is rather thin as evidenced by high resolution seismic data. Since a few years at least the better part of the tidewater glacier retreated onto the island's mainland. It is suggested that such a fundamental change in the fjord's physiography has also changed sedimentation patterns in the area. Potter Cove is characterized by silty-clayey sediments in the deeper inner parts of the cove. Sediments are coarser (fine to coarse sands and boulders) in the shallower areas; they also coarsen from the innermost basin to the mouth of the fjord. Textural structures follow the seabed morphology, i.e. small v-shaped passages through the moraine ridges. The glacier still produces large amounts of turbid melt waters that enter the cove at various places. We presume that very fine-grained sediments fall out from the meltwater plumes and are distributed by mid-depth or even bottom currents, thus suggesting an anti-estuarine circulation pattern. Older sediments that are more distal to the glacier front and sediments in shallower places (e.g. on top of the moraine ridges) become increasingly overprinted by coarser sediments from the shallow areas of the fjord. These areas are prone to wave induced winnowing effects as well as disturbances by ploughing icebergs. It can be concluded that coarsening of the fjord sediments will continue while the supply of fine-grained meltwater sediments might cease due to exhaustion of the reservoirs.
NASA Astrophysics Data System (ADS)
Mozley, P.; Yoon, H.; Williams, R. T.; Goodwin, L. B.
2015-12-01
The spatial distribution of pore-filling authigenic minerals (cements) is highly variable and controlled in large part by the mineralogy of the cements and host sediment grains. Two end-member distributions of cements that commonly occur in sedimentary material are: (1) concretionary, in which precipitation occurred in specific zones throughout the sediment, with intervening areas largely uncemented; and (2) grain-rimming, in which precipitation occurred on grain-surfaces relatively uniformly throughout the rock. Concretions form in rocks in which sediment grains have a different composition from the cement, whereas rim cements form in those that have the same composition. Both the mechanical attributes and permeability of a given volume of rock are affected to a much greater extent by grain rimming cements, which have a significant impact on properties at even low abundances. Concretionary cements have little impact on bulk properties until relatively large volumes have precipitated (~80% cemented) and concretions begin to link up. Precipitation of cement in fault zones also impacts both mechanical and hydrologic properties. Cementation will stiffen and strengthen unlithified sediment, thereby controlling the locus of fracturing in protolith or damage zones. Where fracture networks form in fault damage zones, they are initially high permeability elements. However, progressive cementation greatly diminishes fracture permeability, resulting in cyclical permeability variation linked to fault slip. To quantitatively describe the interactions of groundwater flow, permeability, and patterns and abundance of cements, we use pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous mineral-surface reactions. By exploring the effects of varying distributions of porosity and mineralogy, which impact patterns of cementation, we provide mechanistic explanations of the interactions of coupled processes under various flow and chemistry conditions.
Adeogun, Aina O; Chukwuka, Azubuike V; Okoli, Chukwunonso P; Arukwe, Augustine
2016-01-01
The distributions of polychlorinated biphenyl (PCB) congeners were determined in sediment and muscle of the African sharptooth catfish (Clarias gariepinus) from the Ogun and Ona rivers, southwest Nigeria. In addition, the effect of PCB congeners on condition factor (CF) and associated human health risk was assessed using muscle levels for a noncarcinogenic hazard quotient (HQ) calculation. Elevated concentrations of high-molecular-weight (HMW) PCB congeners were detected in sediment and fish downstream of discharge points of both rivers. A significant reduction in fish body weight and CF was observed to correlate with high PCB congener concentrations in the Ona River. A principal component (PC) biplot revealed significant site-related PCB congener distribution patterns for HMW PCB in samples from the Ogun River (71.3%), while the Ona River (42.6%) showed significant PCB congener patterns for low-molecular-weight (LMW) congeners. Biota-sediment accumulation factor (BSAF) was higher downstream for both rivers, presenting PCB congener-specific accumulation patterns in the Ona River. Significant decreases in fish body weight, length and CF were observed downstream compared to upstream in the Ona River. The non-carcinogenic HQ of dioxin-like congener 189 downstream in both rivers exceeded the HQ = 1 threshold for children and adults for both the Ogun and Ona rivers. Overall, our results suggest that industrial discharges contribute significantly to PCB inputs into these rivers, with potential for significant health implications for neighboring communities that utilize these rivers for fishing and other domestic purposes.
Deng, Yinan; Ren, Jiangbo; Guo, Qingjun; Cao, Jun; Wang, Haifeng; Liu, Chenhui
2017-11-28
Deep-sea sediments contain high concentrations of rare earth element (REE) which have been regarded as a huge potential resource. Understanding the marine REE cycle is important to reveal the mechanism of REE enrichment. In order to determine the geochemistry characteristics and migration processes of REE, seawater, porewater and sediment samples were systematically collected from the western Pacific for REE analysis. The results show a relatively flat REE pattern and the HREE (Heavy REE) enrichment in surface and deep seawater respectively. The HREE enrichment distribution patterns, low concentrations of Mn and Fe and negative Ce anomaly occur in the porewater, and high Mn/Al ratios and low U concentrations were observed in sediment, indicating oxic condition. LREE (Light REE) and MREE (Middle REE) enrichment in upper layer and depletion of MREE in deeper layer were shown in porewater profile. This study suggests that porewater flux in the western Pacific basin is a minor source of REEs to seawater, and abundant REEs are enriched in sediments, which is mainly caused by the extensive oxic condition, low sedimentation rate and strong adsorption capacity of sediments. Hence, the removal of REEs of porewater may result in widespread REE-rich sediments in the western Pacific basin.
Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows
NASA Astrophysics Data System (ADS)
Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.
2016-12-01
Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.
137Cs as a tracer of recent sedimentary processes in Lake Michigan
Cahill, R.A.; Steele, J.D.
1986-01-01
To determine recent sediment movement, we measured the levels of 137Cs (an artificial radionuclide produced during nuclear weapons testing) of 118 southern Lake Michigan samples and 27 in Green Bay. These samples, taken from 286 grab samples of the upper 3 cm of sediment, were collected in 1975 as part of a systematic study of Lake Michigan sediment. 137Cs levels correlated well with concentrations of organic carbon, lead, and other anthropogenic trace metals in the sediment. 137Cs had a higher correlation with silt-sized than with clay-sized sediment (0.55 and 0.46, respectively). Atmospherically derived 137Cs and trace metals are being redistributed by sedimentary processes in Lake Michigan after being incorporated in suspended sediment. We determined a distribution pattern of 137Cs that represents areas of southern Lake Michigan where sediment deposition is occurring. ?? 1986 Dr W. Junk Publishers.
Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen
2017-07-01
Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.
Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Yanxin; Cheng Yipik; Xu Xiaomin
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wavemore » velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.« less
Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y
2002-01-01
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.
Schratzberger, Michaela; Larcombe, Piers
2014-01-01
We combined sediment and faunal data to explore the role of the sedimentary regime in shaping the distribution of subtidal sandbank environments and the associated meiofaunal nematode communities at Broken Bank and Swarte Bank, in the southern North Sea. A variety of sediment transport processes occur in the area, differing in the frequency and magnitude of sediment mobility, and the continuum between erosion, translation and sediment accumulation. The seabed contained a variety of bedforms, including longitudinal furrows, and small to very large sandwaves. The bed sediments were dominated by fine and medium sands, with admixtures of silt and gravel. Based on sedimentary bedforms and grain size analysis, a total of 11 sedimentary facies were delineated, of which 8 were analysed in detail for their relationships with the meiofauna. The sedimentary facies fell clearly into groups of facies, respectively representing high, high-moderate and moderate, and episodic sediment mobility. For those sedimentary facies where daily movement of sediments and bedforms occurred (‘high’ sediment mobility), the resulting spatially homogeneous environments were dominated by an impoverished nematode community comprising small deposit feeders and large predators. Resistance to sediment movement and the ability to exploit alternative food sources were prominent functional features of the successful colonisers. Those facies characterised by relatively infrequent sediment mobility (‘episodic’ and ‘high-moderate and moderate’ sediment mobility) comprised a heterogeneous suite of benthic habitats, containing taxonomically and functionally diverse assemblages of nematodes of various sizes, feeding types and reproductive potential. Faunal distribution patterns here indicated trade-offs between the resistance to sediment movement, environmental tolerance and competitive abilities. Our focus on diverse assemblages of organisms with high turnover times, inhabiting highly dynamic sedimentary environments, has revealed new animal-sediment relationships of relevance to pure and applied science. PMID:25296029
Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.
Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver
2016-10-15
Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.
Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars
NASA Technical Reports Server (NTRS)
Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.
2004-01-01
Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.
Duan, Xiao-yong; Li, Yan-xia; Li, Xian-guo; Zhang, Da-hai; Gao, Yi
2014-07-01
Alkylphenols (APs) have been found as ubiquitous environmental pollutants with reproductive and developmental toxicity. In this study, APs in surface sediments of the Yellow Sea (YS) and East China Sea (ECS) inner shelf were analyzed to assess influences of riverine and atmospheric inputs of pollutants on the marine environment. NP concentrations ranged from 349.5 to 1642.8 ng/g (average 890.1 ng/g) in the YS sediments and from 31.3 to 1423.7 ng/g (average 750.1 ng/g) in the ECS inner shelf sediments. NP distribution pattern was mainly controlled by the sedimentary environment. OP concentration was 0.8-9.3 ng/g (average 4.7 ng/g) in the YS sediments and 0.7-11.1 ng/g (average 5.1 ng/g) in the ECS sediments. Assessment of the influence of distances from land on OP concentrations provided evidence for the predominance of coastal riverine and/or atmospheric inputs rather than long-range transport. And the biological pump may play an important role for sequestration of OP in the nearshore area. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Durrieu de Madron, Xavier; Pasqual, Catalina; Canals, Miquel
2013-11-01
Superficial sediments from Cap de Creus to the Rhone Delta, in the Gulf of Lion, Northwestern Mediterranean Sea, including the mid-shelf mud belt and the continental slope were collected between 2005 and 2008 to assess the levels, main sources and distribution patterns of organochlorine pollutants. Discharges from the Rhone River are the main source for all these compounds around the area. The spatial distribution of organochlorine pollutants was also related to their physicochemical properties and to sediment grain size and composition. The concentrations of polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDD and DDE), and the chlorobenzenes (CBzs) - pentachlorobenzene (PeCB) and hexachlorobenzene (HCB) - decreased westwards along the mid-shelf mud belt. In contrast, hexachlorocyclohexane isomers (HCHs), namely lindane (γ-HCH), followed another concentration pattern suggesting a different transport mode. The major concentrations of organochlorine compounds were observed off the Rhone River mouth, in the prodelta, where PCB, DDT and CBz concentrations reached 38, 29 and 8.3 ng g-1, respectively. These average concentrations in the mid continental shelf were two to ten times lower than those found in a study performed about 20 years ago, albeit in almost all the sites the values of PCBs and DDTs still exceed the NOAA’s Sediment Quality Guidelines. In contrast, the concentrations in the continental slope were nearly the same as 20 years ago, which may evidence that even most of these compounds were banned decades ago, their background concentrations associated to diffuse pollution have not decreased in the deep continental margin.
Connecting source aggregating areas with distributive regions via Optimal Transportation theory.
NASA Astrophysics Data System (ADS)
Lanzoni, S.; Putti, M.
2016-12-01
We study the application of Optimal Transport (OT) theory to the transfer of water and sediments from a distributed aggregating source to a distributing area connected by a erodible hillslope. Starting from the Monge-Kantorovich equations, We derive a global energy functional that nonlinearly combines the cost of constructing the drainage network over the entire domain and the cost of water and sediment transportation through the network. It can be shown that the minimization of this functional is equivalent to the infinite time solution of a system of diffusion partial differential equations coupled with transient ordinary differential equations, that closely resemble the classical conservation laws of water and sediments mass and momentum. We present several numerical simulations applied to realstic test cases. For example, the solution of the proposed model forms network configurations that share strong similiratities with rill channels formed on an hillslope. At a larger scale, we obtain promising results in simulating the network patterns that ensure a progressive and continuous transition from a drainage drainage area to a distributive receiving region.
Spatial patterns in gravel habitats and communities in the central and eastern English Channel
NASA Astrophysics Data System (ADS)
Coggan, Roger; Barrio Froján, Christopher R. S.; Diesing, Markus; Aldridge, John
2012-10-01
The distribution of sediment type and benthic communities in the central and eastern English Channel is shown to be polarised around a distinctive local hydrodynamic feature. The seabed in the region includes an extensive area of gravel substrate which is both an important habitat for benthic marine fauna and a valuable source of material for the marine aggregate industry. Effective management of the area is predicated on an understanding of whether it represents a single homogeneous unit, or several different units that may need to be managed in different ways. The aim of this study was to provide information that would inform such management decisions. Spatial patterns in gravel habitats and communities were studied by investigating the physical environment through modelled and empirical data, and the distribution of infauna and epifauna along an east-west trending transect. A common spatial pattern was observed in both physical and biological parameters, but rather than indicating a simple longitudinal gradient, there was a distinct polarisation around a central feature, a bedload parting (BLP) zone situated between the Isle of Wight and Cotentin peninsula. Sediments and communities at the eastern and western ends of the transect were more similar to each other than to those in the middle. The strong hydrodynamic regime in the BLP area controls sediment distribution, transporting finer material, mainly sand, away from the mid transect area. The pattern in sand content of the substrate mirrors the magnitude of the potential bedload transport, which is complex in this region due to the interplay between the M2 and M4 tidal constituents and produced a series of erosional and depositional zones. The structure of benthic communities reflected the local substrate and hydrodynamic conditions, with sponges observed among the stable substrates and stronger currents that characterised the mid transect area, while infauna became more diverse towards the ends of the transect where substrates were more mobile. We conclude that the area should not be considered as a homogeneous unit for management purposes, despite its apparent uniformity on contemporary seabed sediment maps.
Spatio-temporal patterns of sediment particle movement on 2D and 3D bedforms
NASA Astrophysics Data System (ADS)
Tsubaki, Ryota; Baranya, Sándor; Muste, Marian; Toda, Yuji
2018-06-01
An experimental study was conducted to explore sediment particle motion in an open channel and its relationship to bedform characteristics. High-definition submersed video cameras were utilized to record images of particle motion over a dune's length scale. Image processing was conducted to account for illumination heterogeneity due to bedform geometric irregularity and light reflection at the water's surface. Identification of moving particles using a customized algorithm was subsequently conducted and then the instantaneous velocity distribution of sediment particles was evaluated using particle image velocimetry. Obtained experimental results indicate that the motion of sediment particles atop dunes differs depending on dune geometry (i.e., two-dimensional or three-dimensional, respectively). Sediment motion and its relationship to dune shape and dynamics are also discussed.
Jo, Hyeyeong; Son, Min-Hui; Seo, Sung-Hee; Chang, Yoon-Seok
2017-07-01
Hexabromocyclododecane (HBCD) contamination and its diastereomeric profile were investigated in a multi-media environment along a river at the local scale in air, soil, sludge, sediment, and fish samples. The spatial distribution of HBCD in each matrix showed a different result. The highest concentrations of HBCD in air and soil were detected near a general industrial complex; in the sediment and sludge samples, they were detected in the down-stream region (i.e., urban area). Each matrix showed the specific distribution patterns of HBCD diastereomers, suggesting continuous inputs of contaminants, different physicochemical properties, or isomerizations. The particle phases in air, sludge, and fish matrices were dominated by α-HBCD, owing to HBCD's various isomerization processes and different degradation rate in the environment, and metabolic capabilities of the fish; in contrast, the sediment and soil matrices were dominated by γ-HBCD because of the major composition of the technical mixtures and the strong adsorption onto solid particles. Based on these results, the prevalent and matrix-specific distribution of HBCD diastereomers suggested that more careful consideration should be given to the characteristics of the matrices and their effects on the potential influence of HBCD at the diastereomeric level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui
2013-12-01
Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.
NASA Astrophysics Data System (ADS)
Yu, X.; Lei, J.; Yang, K.; Fang, Y.
2012-12-01
Carbonate and sediment samples collected from the Dongsha area the South China by TV-grab. The δ13C values of the carbonate indicate that the carbonate carbon is mainly derived from the oxidation of methane. According to the δ13C value of two groups carbonates could be divided: Group1 (G1) is 13C-depleted as reported previously, the δ13C value lighter than -50‰ PDB; group2 (G2) is enriched in 13C relatively, the δ13C value is around -30‰PDB. The δ13C value of sediments associated with carbonate varying from -19.2 to -30.4‰PDB. G1 and G2 have similar n-alkanes distribution and with 13C-depleted PMI, but glycerol dialkyl glycerol tetraethers (GDGTs) patterns obviously different. The G1 with the higher GDGTs concentration, up to 0.37 ug/g (dry weight), and the isoprenoid GDGTs is dominantly, with a acyclic > monocyclic > bicyclic > tricyclic > tetracyclic biphytane distribution, the branch GDGTs is less than 2%. The G2 with the quite lower GDGTs concentration, varying from 0.025~0.063ug/g (dry weight), the isoprenoid GDGTs content is less than 70%, with a acyclic > tetracyclic > bicyclic > monocyclic > tricyclic biphytane distribution, the branch GDGT is more than 30%. The sediment associated with carbonate has the similar GDGTs pattern with the G2, but the GDGTs concentration is between G1 and G2. The molecular structure and their carbon isotopic composition suggest that the organism mainly derived from methane oxidizing archaea and more carbonate precipitation by AOM within the G1 carbonates. Meanwhile, partly organism derived from crenachaeol and terrestrial, some carbonate precipitation originated from water column within the G2 carbonates. The G2 carbonates contain the similar biomarkers as found in nearby sediments, suggesting that the organisms associated with carbonate precipitation are the similar
NASA Astrophysics Data System (ADS)
Oliveira, Vanessa; Santos, Ana L.; Aguiar, Claúdia; Santos, Luisa; Salvador, Ângelo C.; Gomes, Newton C. M.; Silva, Helena; Rocha, Sílvia M.; Almeida, Adelaide; Cunha, Ângela
2012-09-01
The aim of this study was to investigate the influence of monospecific colonization of sediment stands by Spartina maritima or Halimione portulacoides on benthic prokaryote assemblages in a salt marsh located in Ria de Aveiro (Portugal). The distribution of Bacteria, Archaea and sulfate-reducing bacteria (SRB) in sediments with monospecific plant stands and in unvegetated sediments was characterized by Fluorescence In Situ Hybridization (FISH). Total prokaryote abundance (0.4 × 109-1.7 × 109 cells gdw-1) was highest in sediments from the surface layer. The domain Bacteria comprised approximately 40% of total prokaryote communities with the highest percentages occurring in the surface layer. Archaeal cells corresponded to an average of 25% of total prokaryote population, with higher abundance in the vegetation banks, and displaying homogeneous vertical distribution. The relative abundance of SRB represented approximately 3% of total 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) stained cells at unvegetated sediment and H. portulacoides stand and 7% at S. maritima stand. Headspace solid-phase microextraction (HS-SPME) combined with Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GC × GC-ToFMS) was used to analyse the volatile and semi-volatile fraction of root exudates. A total of 171 compounds were identified and Principal Component Analysis showed a clear separation between the chemical composition (volatile and semi-volatile organic compounds) of the exudates of the two plants. The patterns of vertical distribution and differences in the proportion of SRB and Archaea in the prokaryote communities developing in sediments colonized by Spartina maritima or Halimione portulacoides suggest the existence of plant-specific interactions between halophyte vegetation and estuarine sediment bacteria in Ria de Aveiro salt marshes, exerted via sediment lithology and root-derived exudates.
Zuo, Xiaojun; Fu, Dafang; Li, He
2012-11-01
Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.
Lindsey, David A.
1975-01-01
The middle Precambrian Moeda Formation of Minas Gerais, Brazil, contains uranium and other minerals believed to be of detrital origin. Two areas of anomalously high concentrations of uranium have been discovered in conglomeratic zones that are interpreted as paleochannels. Because the distribution of uranium is believed to be controlled at least in part by sedimentation, a reconnaissance study was undertaken to assess the depositional environment and sediment dispersal pattern of the Moeda Formation.
Detection of sand encroachment patterns in desert oases. The case of Erg Chebbi (Morocco).
Puy, Arnald; Herzog, Manuel; Escriche, Pedro; Marouche, Amou; Oubana, Yousef; Bubenzer, Olaf
2018-06-11
Desert oases are fragile agrarian areas, very vulnerable to sand encroachment by wind. Ensuring their conservation highly depends on our capacity to identify sand encroachment patterns, e.g. the origin of sand and its spatial distribution in the irrigated plots. Here we show how to tackle this issue using the case study of Erg Chebbi (Morocco), where two oases (Hassilabiad and Merzouga) are surrounded by dunes, Hamada and alluvial sediments from the Wadi Ziz. We combine field interviews with the study of wind dynamics, sediment sampling, Particle Size Distribution (PSD) tests and End-Member Modelling Analysis (EMMA). We observe that the most relevant contributor to sand encroachment is the Wadi Ziz (30%), followed by the Hamada (28%), an undetermined source of dust (25%), and the Erg dunes (16%). These genetically different sediments cluster unevenly in the oases, indicating the existence of areas with contrasting degrees of exposure to sedimentary sources. The results allow to define on solid grounds which sand source areas should be stabilized first in order to obtain the greatest reduction in sand encroachment. Our approach also provides policy-makers with better tools to identify which spots are specially vulnerable to accumulate a specific sediment, thus allowing for a more nuanced management of sand in oasis environments. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.
2016-04-01
Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The present study is supported by FOEN (Federal Office for the Environment, Switzerland).
NASA Astrophysics Data System (ADS)
Tang, H.; Weiss, R.
2016-12-01
GeoClaw-STRICHE is designed for simulating the physical impacts of tsunami as it relates to erosion, transport and deposition. GeoClaw-STRICHE comprises GeoClaw for the hydrodynamics and the sediment transport model we refer to as STRICHE, which includes an advection diffusion equation as well as bed-updating. Multiple grain sizes and sediment layers are added into GeoClaw-STRICHE to simulate grain-size distribution and add the capability to develop grain-size trends from bottom to the top of a simulated deposit as well as along the inundation. Unlike previous models based on empirical equations or sediment concentration gradient, the standard Van Leer method is applied to calculate sediment flux. We tested and verified GeoClaw-STRICHE with flume experiment by Johnson et al. (2016) and data from the 2004 Indian Ocean tsunami in Kuala Meurisi as published in Apotsos et al. (2011). The comparison with experimental data shows GeoClaw-STRICHE's capability to simulate sediment thickness and grain-size distribution in experimental conditions, which builds confidence that sediment transport is correctly predicted by this model. The comparison with the data from the 2004 Indian Ocean tsunami reveals that the pattern of sediment thickness is well predicted and is of similar quality, if not better than the established computational models such as Delft3D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Clair, C.E.; Short, J.W.; Rice, S.D.
Sediments were collected at ten locations in Prince William Sound in July 1993 to determine the geographical and bathymetric distribution of oil from the Exxon Valdez oil spill in the low intertidal zone and subtidal region. The authors sampled sediments at mean lower low water (0 m) and at five subtidal depths from 3 to 100 m. No Exxon Valdez oil was found in sediments at 0 m where the greatest mean intertidal concentration of total polynuclear aromatic hydrocarbons excluding perylene (54 ng/g) was observed at Moose Lips Bay. Subtidal sediments showed polynuclear aromatic hydrocarbon composition patterns similar to Exxonmore » Valdez oil at three sites, Herring Bay, Northwest Bay and Sleepy Bay. Contamination of sediments by Exxon Valdez oil reached a depth of 20 m at Northwest Bay and Sleepy Bay. In deep sediments (> or = 40 m) the authors found no evidence of weathered Exxon Valdez oil.« less
Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems
NASA Astrophysics Data System (ADS)
Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.
2016-10-01
Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.
NASA Astrophysics Data System (ADS)
Nesvold, E.; Mukerji, T.
2017-12-01
River deltas display complex channel networks that can be characterized through the framework of graph theory, as shown by Tejedor et al. (2015). Deltaic patterns may also be useful in a Bayesian approach to uncertainty quantification of the subsurface, but this requires a prior distribution of the networks of ancient deltas. By considering subaerial deltas, one can at least obtain a snapshot in time of the channel network spectrum across deltas. In this study, the directed graph structure is semi-automatically extracted from satellite imagery using techniques from statistical processing and machine learning. Once the network is labeled with vertices and edges, spatial trends and width and sinuosity distributions can also be found easily. Since imagery is inherently 2D, computational sediment transport models can serve as a link between 2D network structure and 3D depositional elements; the numerous empirical rules and parameters built into such models makes it necessary to validate the output with field data. For this purpose we have used a set of 110 modern deltas, with average water discharge ranging from 10 - 200,000 m3/s, as a benchmark for natural variability. Both graph theoretic and more general distributions are established. A key question is whether it is possible to reproduce this deltaic network spectrum with computational models. Delft3D was used to solve the shallow water equations coupled with sediment transport. The experimental setup was relatively simple; incoming channelized flow onto a tilted plane, with varying wave and tidal energy, sediment types and grain size distributions, river discharge and a few other input parameters. Each realization was run until a delta had fully developed: between 50 and 500 years (with a morphology acceleration factor). It is shown that input parameters should not be sampled independently from the natural ranges, since this may result in deltaic output that falls well outside the natural spectrum. Since we are interested in studying the patterns occurring in nature, ideas are proposed for how to sample computer realizations that match this distribution. By establishing a link between surface based patterns from the field with the associated subsurface structure from physics-based models, this is a step towards a fully Bayesian workflow in subsurface simulation.
NASA Astrophysics Data System (ADS)
Cruz, Anna P. S.; Barbosa, Catia F.; Ayres-Neto, Arthur; Munayco, Pablo; Scorzelli, Rosa B.; Amorim, Nívea Santos; Albuquerque, Ana L. S.; Seoane, José C. S.
2018-02-01
In order to investigate the chemical and magnetic characteristics of sediments of the western boundary upwelling system of Southwest Atlantic we analyzed magnetic susceptibility, grain size distribution, total organic carbon, heavy mineral abundance, Fe associated with Mössbauer spectra, and Fe and Mn of pore water to evaluate the deposition patterns of sediments. Four box-cores were collected along a cross-shelf transect. Brazil Current and coastal plume exert a primary control at the inner and outer shelf cores, which exhibited similar depositional patterns characterized by a high abundance of heavy minerals (mean 0.21% and 0.08%, respectively) and very fine sand, whereas middle shelf cores presented low abundances of heavy minerals (mean 0.03%) and medium silt. The inner shelf was dominated by sub-angular grains, while in middle and outer shelf cores well-rounded grains were found. The increasing Fe3+:Fe2+ ratio from the inner to the outer shelf reflects farther distance to the sediment source. The outer shelf presented well-rounded minerals, indicating abrasive processes as a result of transport by the Brazil Current from the source areas. In the middle shelf, cold-water intrusion of the South Atlantic Central Water contributes to the primary productivity, resulting in higher deposition of fine sediment and organic carbon accumulation. The high input of organic carbon and the decreased grain size are indicative of changes in the hydrodynamics and primary productivity fueled by the western boundary upwelling system, which promotes loss of magnetization due to the induction of diagenesis of iron oxide minerals.
Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillen, K.J.; Do Van Luu; Lee, E.K.
1996-12-31
An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less
Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillen, K.J.; Do Van Luu; Lee, E.K.
1996-01-01
An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less
On the distribution and inventories of radionuclides in dated sediments around the Swedish coast.
Olszewski, Grzegorz; Andersson, Pål; Lindahl, Patric; Eriksson, Mats
2018-06-01
The activity concentrations and distribution of 137 Cs, 238 Pu, 239+240 Pu, 241 Am, and 210 Pb was determined by the analysis of six sediment cores from the Baltic Sea and Kattegat. The chronology of the sediment cores has been used to evaluate the origin and time trend of the radionuclide sources in these sediments. The sediment cores were dated with a 210 Pb model and the results were validated with fallout peaks, assumed to originate from the global nuclear weapons testing and the Chernobyl accident. Source identification, using the isotopic and radionuclide activity ratios, showed that the Chernobyl accident is the main source of 137 Cs in the Baltic Sea; for 239+240 Pu and 241 Am the dominant source was shown to be fallout from nuclear weapons tests. For 238 Pu and 241 Am the Chernobyl accident had a significant impact on the direct fallout into the Baltic Proper, with up to a 65% contribution in the sediment slices dated to 1986. In these sediment slices the maximum activity ratios of 238 Pu/ 239+240 Pu and 241 Am/ 239+240 Pu were 0.314 ± 0.008 and 1.29 ± 0.06, respectively. The ratios clearly deviate from the corresponding ratios for global nuclear weapons fallout (around 0.028 and 0.54, respectively). Calculated inventories were 63-175 Bq·m -2 for 239+240 Pu, 2.8-7.8 for 238 Pu Bq·m -2 and 0.92-44.4 kBq·m -2 for 137 Cs. Different fallout patterns for 137 Cs and plutonium isotopes from the Chernobyl accident were confirmed through depth profiles analyses. The maximum inventory of 137 Cs was observed in the Bothnian Sea, while Chernobyl-derived plutonium was found to be mostly present in Northern Baltic Proper. The radionuclides distribution in the depth profiles shows how contaminated water affects the sediment as it passes sampling stations according to the current circulation pattern in the Baltic Sea. Additionally, the effect of increased activity concentrations from of river discharges in the most contaminated area in the Bothnian Sea was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Calvin, M.
1975-01-01
The insoluble organic materials present in the algal mats at Laguna Mormona, Baja California were studied. A series of six identical sediments collected from Mono lake which were stored under different conditions was investigated to see if any changes are observed in the lipid distribution patterns as a result of differences in sample storage conditions. Bacteria strains from Mono Lake sediments were cultured in bulk quantities and the sterol fractions from them were isolated and analyzed. Results add further support to the utility of the sterols as a chemotaxonomical tool in distinguishing and classifying these bacteria.
Fastelli, Paolo; Blašković, Andrea; Bernardi, Giulia; Romeo, Teresa; Čižmek, Hrvoje; Andaloro, Franco; Russo, Giovanni F; Guerranti, Cristiana; Renzi, Monia
2016-12-15
This research aims to define for the first time levels and patterns of different litter groups (macro, meso and microplastics) in sediments from a marine area designed for the institution of a new marine protected area (Aeolian Archipelago, Italy). Microplastics resulted the principal group and found in all samples analyzed, with shape and colours variable between different sampling sites. MPs levels measured in this study are similar to values recorded in harbour sites and lower than reported in Adriatic Sea, while macroplastics levels are notably lower than in harbor sites. Sediment grain-size and island extent resulted not significant in determining levels and distribution of plastic debris among islands. In the future, following the establishment of the MPA in the study area, these basic data will be useful to check for potential protective effects on the levels and distribution of plastic debris. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ralston, David K.; Geyer, W. Rockwell; Warner, John C.
2012-01-01
Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
Cyclic sedimentation pattern in Lake Veetka, southeast Estonia: a case study
NASA Astrophysics Data System (ADS)
Saarse, Leili
2015-03-01
A sediment core from Lake Veetka, southeast Estonia, 1077 cm in length and covering 10,500 calibrated years, was examined using loss-on-ignition, grain-size distribution and AMS 14C dating to reconstruct depositional dynamics. The studied core, recovered from the northern part of the lake, shows a cyclic pattern of organic and mineral matter concentration with cycle durations of 100-400 years. Cyclicity is displayed better in sediments laid down between 9,200 and 5,600 cal BP. Within two time windows (5,600-5,100 cal BP and from 1,200 cal BP to the present), sediment composition changed drastically on account of a high and fluctuating mineral matter content, obviously driven by different factors. Little Ice Age cooling is characterised by the highest proportion of mineral matter, and the Medieval Warm Period is typified by high organic matter content. The cyclic change of organic and mineral matter has been related to climate dynamics, most likely an alternation of wet and dry conditions, changes in the water level of the lake and differences in bioproduction
NASA Astrophysics Data System (ADS)
Byun, Uk Hwan; Lee, Hyun Suk; Kwon, Yi Kyun
2018-02-01
The Jigunsan Formation is the middle Ordovician shale-dominated transgressive succession in the Taebaeksan Basin, located in the eastern margin of the North China platform. The total organic carbon (TOC) content and some geochemical properties of the succession exhibit a stratigraphically distinct distribution pattern. The pattern was closely associated with the redox conditions related to decomposition, bulk sedimentation rate (dilution), and productivity. To explain the distinct distribution pattern, this study attempted to construct a high-resolution sequence stratigraphic framework for the Jigunsan Formation. The shale-dominated Jigunsan Formation comprises a lower layer of dark gray shale, deposited during transgression, and an upper layer of greenish gray siltstone, deposited during highstand and falling stage systems tracts. The concept of a back-stepped carbonate platform is adopted to distinguish early and late transgressive systems tracts (early and late TST) in this study, whereas the highstand systems tracts and falling stage systems tracts can be divided by changes in stacking patterns from aggradation to progradation. The late TST would be initiated on a rapidly back-stepping surface of sediments and, just above the surface, exhibits a high peak in TOC content, followed by a gradually upward decrease. This trend of TOC distribution in the late TST continues to the maximum flooding surface (MFS). The perplexing TOC distribution pattern within the late TST most likely resulted from both a gradual reduction in productivity during the late TST and a gradual increase in dilution effect near the MFS interval. The reduced production of organic matter primarily incurred decreasing TOC content toward the MFS when the productivity was mainly governed by benthic biota because planktonic organisms were not widespread in the Ordovician. Results of this study will help improve the understanding of the source rock distribution in mixed carbonate-siliciclastic successions within a stratigraphic framework, particularly for unconventional shale reservoirs.
Zhen, Xiaomei; Tang, Jianhui; Xie, Zhiyong; Wang, Runmei; Huang, Guopei; Zheng, Qian; Zhang, Kai; Sun, Yongge; Tian, Chongguo; Pan, Xiaohui; Li, Jun; Zhang, Gan
2016-06-01
The distribution characteristics and potential sources of polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) were investigated in 54 surface sediment samples from four bays (Taozi Bay, Sishili Bay, Dalian Bay, and Jiaozhou Bay) of North China's Yellow Sea. Of the 54 samples studied, 51 were collected from within the four bays and 3 were from rivers emptying into Jiaozhou Bay. Decabromodiphenylethane (DBDPE) was the predominant flame retardant found, and concentration ranged from 0.16 to 39.7 ng g(-1) dw and 1.13-49.9 ng g(-1) dw in coastal and riverine sediments, respectively; these levels were followed by those of BDE 209, and its concentrations ranged from n.d. to 10.2 ng g(-1) dw and 0.05-7.82 ng g(-1) dw in coastal and riverine sediments, respectively. The levels of DBDPE exceeded those of decabromodiphenyl ether (BDE 209) in most of the samples in the study region, whereas the ratio of DBDPE/BDE 209 varied among the four bays. This is indicative of different usage patterns of brominated flame retardants (BFRs) and also different hydrodynamic conditions among these bay areas. The spatial distribution and composition profile analysis indicated that BFRs in Jiaozhou Bay and Dalian Bay were mainly from local sources, whereas transport from Laizhou Bay by coastal currents was the major source of BFRs in Taozi Bay and Sishili Bay. Both the ∑PBDEs and ∑aBFRs (sum of pentabromotoluene (PBT), 2,3-diphenylpropyl-2,4,6-tribromophenyl ether (DPTE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB)) were at low concentrations in all the sediments. This is probably attributable to a combination of factors such as low regional usage of these products, atmospheric deposition patterns, coastal currents transportation patterns, and degradation processes for higher BDE congeners. This paper is the first study that has investigated the levels of DBDPE in the coastal sediments of China's Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao
2014-09-01
The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr
Distribution of ferromanganese nodules in the Pacific Ocean.
Piper, D.Z.; Swint-Iki, T.R.; McCoy, F.W.
1987-01-01
The occurrence and distribution of deep-ocean ferromanganese nodules are related to the lithology of pelagic surface-sediment, sediment accumulation rates, sea-floor bathymetry, and benthic circulation. Nodules often occur in association with both biosiliceous and pelagic clay, and less often with calcareous sediment. Factors which influence the rather complex patterns of sediment lithology and accumulation rates include the supply of material to the sea-floor and secondary processes in the deep ocean which alter or redistribute that supply. The supply is largely controlled by: 1) proximity to a source of alumino-silicate material and 2) primary biological productivity in the photic zone of the ocean. Primary productivity controls the 'rain' to the sea-floor of biogenic detritus, which consists mostly of siliceous and calcareous tests of planktonic organisms but also contains smaller proportions of phosphatic material and organic matter. The high accumulation rate (5 mm/1000 yr) of sediment along the equator is a direct result of high productivity in this region of the Pacific. Secondary processes include the dissolution of particulate organic matter at depth in the ocean, notably CaCO3, and the redistribution of sedimentary particles by deep-ocean currents. -J.M.H.
NASA Astrophysics Data System (ADS)
Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz
2017-04-01
We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.
Zhang, Long-Hui; Du, Yong-Fen; Wang, Dan-Dan; Gao, Shu; Gao, Wen-Hua
2014-06-01
To understand the ecological impact of Spartina alterniflora on the coastal wetland environment, field survey was carried out in July, 2010, over the intertidal areas of Rudong coast, Jiangsu province; sediment samples were collected from a series of stations with different conditions of vegetation cover and S. alterniflora growth. The contents of eight heavy metals, together with sediment composition and total organic carbon were analyzed to reveal the distribution patterns of the heavy metals. Environmental quality status was evaluated using both the index of geoaccumulation (I(geo)) and the index of the Håkanson ecological risk. The analytical results showed that the average contents of Pb, Cd, As, Hg, Cr, Cu, Ni and Zn were below the standard for the Category I sediment quality, among which Cd, Hg, Ni and Zn exceeded the sediment background value of the region. On the whole, the contents of eight heavy metals in vegetation areas were higher than those associated with the adjacent bare flat areas. These data sets indicate a non-polluted condition in term of I(geo) estimation; however, a critical state of low to moderate degrees of pollution and a low level of risk were deduced according to the index of the Håkanson potential ecological risk. Both indices suggested that the pollution level of Hg and Cd were the highest among the eight metals measured. Along the transection from seaward to landward, the contents of As, Cu and Hg, their indices of I(geo) and Håkanson ecological risk all showed an increasing tread, in accordance with the condition of vegetation cover. Along the coastline with S. alterniflora being distributed in patchiness, all metal contents and their ecological risk level values for the marshes were higher than those for the unvegetated sediments nearby; moreover, except for Hg, other seven metals exhibited relatively low values than those in the shore-normal section with a better S. alterniflora growth. These findings indicate that S. alterniflora is one of important factors to enrich the heavy metal in tidal flat sediment. Thus, ecological risk of the heavy metal is reduced or blocked, due to the filtering effect of salt-marsh, which prevents metals from entering the open sea directly. The distribution of heavy metal is influenced by a combination of colonization time of vegetation, chemical form of metals and their origins.
NASA Astrophysics Data System (ADS)
Yamashita, Cintia; Mello e Sousa, Silvia Helena de; Vicente, Thaisa Marques; Martins, Maria Virgínia; Nagai, Renata Hanae; Frontalini, Fabrizio; Godoi, Sueli Susana; Napolitano, Dante; Burone, Letícia; Carreira, Renato; Figueira, Rubens Cesar Lopes; Taniguchi, Nancy Kazumi; Rezende, Carlos Eduardo de; Koutsoukos, Eduardo Apostolos Machado
2018-05-01
Living (stained) benthic foraminifera from deep-sea stations in the Campos Basin, southeastern Brazilian continental margin, were investigated to understand their distribution patterns and ecology, as well as the oceanographic processes that control foraminiferal distribution. Sediments were collected from 1050 m to 1950 m of water depth during the austral winter of 2003, below the Intermediate Western Boundary Current (IWBC) and the Deep Water Boundary Current (DWBC). Based on statistical analysis, vertical flux of particulate organic matter and the grain size of sediment seem to be the main factors controlling the spatial distribution of benthic foraminifera. The middle slope (1050 m deep) is characterized by relatively high foraminiferal density and a predominance of phytodetritus-feeding foraminifera such as Epistominella exigua and Globocassidulina subglobosa. The occurrence of these species seems to reflect the Brazil Current System (BCS). The above-mentioned currents are associated with the relatively high vertical flux of particulate organic matter and the prevalence of sandy sediments, respectively. The lower slope (between 1350 and 1950 m of water depth) is marked by low foraminiferal density and assemblages composed of Bolivina spp. and Brizalina spp., with low particulate organic matter flux values, muddy sediments, and more refractory organic matter. The distribution of this group seems to be related to episodic fluxes of food particles to the seafloor, which are influenced by the BCS at the surface and are deposited under low deep current activity (DWBC).
Sommerfield, C.K.; Lee, H.J.; Normark, W.R.
2009-01-01
Sedimentary strata on the Southern California shelf and slope (Point Conception to Dana Point) display patterns and rates of sediment accumulation that convey information on sea-level inundation, sediment supply, and oceanic transport processes following the Last Glacial Maximum. In Santa Monica Bay and San Pedro Bay, postglacial transgression is recorded in shelf deposits by wave-ravinement surfaces dated at 13-11 ka and an upsection transition from coastal to shallow-marine sediment facies. Depositional conditions analogous to the modern environment were established in the bays by 8-9 ka. On the continental slope, transgression is evidenced in places by an increase in sediment grain size and accumulation rate ca. 15-10 ka, a consequence of coastal ravinement and downslope resedimentation, perhaps in conjunction with climatic increases in fluvial sediment delivery. Grain sizes and accumulation rates then decreased after 12-10 ka when the shelf flooded and backfilled under rising sea level. The Santa Barbara coastal cell contains the largest mass of postglacial sediment at 32-42 ?? 109 metric tons, most of which occurs between offshore Santa Barbara and Hueneme Canyon. The San Pedro cell contains the second largest quantity of sediment, 8-11 ?? 109 metric tons, much of which is present on the eastern Palos Verdes and outer San Pedro shelves. By comparison, the mass of sediment sequestered within the Santa Monica cell is smaller at ??6-8 ?? 109 metric tons. The postglacial sediment mass distribution among coastal cells reflects the size of local fluvial sediment sources, whereas intracell accumulation patterns reflect antecedent bathymetric features conducive for sediment bypass or trapping. ?? 2009 The Geological Society of America.
Clostridium perfringens in Long Island Sound sediments: An urban sedimentary record
Buchholtz ten Brink, Marilyn R.; Mecray, E.L.; Galvin, E.L.
2000-01-01
Clostridium perfringens is a conservative tracer and an indicator of sewage-derived pollution in the marine environment. The distribution of Clostridium perfringens spores was measured in sediments from Long Island Sound, USA, as part of a regional study designed to: (1) map the distribution of contaminated sediments; (2) determine transport and dispersal paths; (3) identify the locations of sediment and contaminant focusing; and (4) constrain predictive models. In 1996, sediment cores were collected at 58 stations, and surface sediments were collected at 219 locations throughout the Sound. Elevated concentrations of Clostridium perfringens in the sediments indicate that sewage pollution is present throughout Long Island Sound and has persisted for more than a century. Concentrations range from undetectable amounts to 15,000 spores/g dry sediment and are above background levels in the upper 30 cm at nearly all core locations. Sediment focusing strongly impacts the accumulation of Clostridium perfringens spores. Inventories in the cores range from 28 to 70,000 spores/cm2, and elevated concentrations can extend to depths of 50 cm. The steep gradients in Clostridium perfringens profiles in muddier cores contrast with concentrations that are generally constant with depth in sandier cores. Clostridium perfringens concentrations rarely decrease in the uppermost sediment, unlike those reported for metal contaminants. Concentrations in surface sediments are highest in the western end of the Sound, very low in the eastern region, and intermediate in the central part. This pattern reflects winnowing and focusing of Clostridium perfringens spores and fine-grained sediment by the hydrodynamic regime; however, the proximity of sewage sources to the westernmost Sound locally enhances the Clostridium perfringens signals.
Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting
NASA Astrophysics Data System (ADS)
Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.
2016-04-01
Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed during flushing events. Further, the photographs clearly show the erosional development of a UFCS (upstream-facing convex surface) feature with an upstream-facing surface full of impact marks, a sharp crest-line, and an adjacent downstream-facing surface preserved from sediment impacts. This pilot study documents that bedrock erosion painting provides an easy, cost-efficient and clear qualitative method for detecting the spatial distribution of bedrock erosion and inferring its controlling factors. Our results show that the susceptibility of a painted surface to abrasion is controlled by its position in the channel and its spatial orientation relative to the sediment-laden flow. Erosion painting is a scientifically useful form of graffiti that could be widely applied in both natural and laboratory settings, providing insight into patterns and processes of erosion.
Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean
Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.
2009-01-01
Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.
Fertouna-Bellakhal, Mouna; Dhib, Amel; Béjaoui, Béchir; Turki, Souad; Aleya, Lotfi
2014-07-15
Species composition and abundance of dinocysts in relation to environmental factors were studied at 123 stations of surface sediment in Bizerte Lagoon. Forty-eight dinocyst types were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pseudogonyaulax, Alexandrium catenella, and Lingulodinum machaerophorum along with many round brown cysts and spiny round brown cysts. Cysts ranged from 1276 to 20126 cysts g(-1)dry weight sediment. Significant differences in cyst distribution pattern were recorded among the zones, with a higher cyst abundance occurring in the lagoon's inner areas. Redundancy analyses showed two distinct associations of dinocysts according to location and environmental variables. Ballast water discharges are potential introducers of non-indigenous species, especially harmful ones such as A. catenella and Polysphaeridium zoharyi, with currents playing a pivotal role in cyst distribution. Findings concerning harmful cyst species indicate potential seedbeds for initiation of future blooms and outbreaks of potentially toxic species in the lagoon. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haskell, Brian J.; Johnson, Thomas C.
1993-01-01
Two transects of box core, hydrographic and photographic stations were made along the Blake Outer Ridge on the southeastern U.S. continental rise to study how circulation patterns affect surface sediment properties. Circulation is strongest at 4200 m on the flanks of the ridge and is reflected in the suspended particulate distribution. A second turbidity maximum at 3600 m suggests that there may be a second axis of circulation at this depth. The intense circulation on the flanks of the ridge has resulted in winnowing of the sediment revealed by coarsening and flattening of the grain size distribution in the detrital silt fraction, and concentration of carbonate by the formation of a foraminiferal lag deposit. The mean grain size of the detrital silt fraction on the crest of the ridge decreases southeastwards with increasing distance from upstream sediment sources. Shifts in the position and strength of the Western Boundary Undercurrent affect the distance that relatively coarse silt is transported. Downcore changes in grain size can therefore be used as paleoceanographic proxy for changes in deepwater circulation.
Sedimentation and bathymetry changes in Suisun Bay: 1867-1990
Cappiella, Karen; Malzone, Chris; Smith, Richard; Jaffe, Bruce
1999-01-01
Understanding patterns of historical erosion and deposition in San Francisco Bay is crucial in managing such issues as locating deposits of sediment-associated contaminants, and the restoration of wetland areas. These problems were addressed by quantitatively examining historical hydrographic surveys. The data from five hydrographic surveys, made from 1867 to 1990, were analyzed using surface modeling software to determine long-term changes in the sediment system of Suisun Bay and surrounding areas. A surface grid displaying the bathymetry was created for each survey period, and the bathymetric change between survey periods was computed by differencing these grids. Patterns and volumes of erosion and deposition, sedimentation rates, and shoreline changes were derived from the resulting change grids. Approximately 115 million cubic meters of sediment were deposited in the Suisun Bay area from 1867 to 1887, the majority of which was debris from hydraulic gold mining in the Sierra Nevada. Just under two-thirds of the area of the study site was depositional during this time period, while less than one-third of it was erosional. However, over the entire study period, the Suisun Bay area lost sediment, indicating that a large amount of erosion occurred from1887 to 1990. In fact, this area lost sediment during each of the change periods between 1887 and 1990. Because erosion and deposition are processes that may vary over space and time, further analyses of more specific areas were done to examine spatial and temporal patterns. The change in the Suisun Bay area from being a largely depositional environment to an erosional one is the result of a combination of several factors. These factors include the regulation and subsequent cessation of hydraulic mining practices, and the increase in flood control and water distribution projects that have decreased sediment supply to the bay by reducing the frequency and duration of peak flow conditions. Another pattern shown by the changing bathymetry is the substantial decrease in the area of tidal flat (defined in this study as the area between mean lower low water and the shoreline), particularly in Grizzly Bay and Honker Bay. These tidal flats are important to the bay ecosystem, providing stability and biologic diversity.
Chen, Baoliang; Xuan, Xiaodong; Zhu, Lizhong; Wang, Jing; Gao, Yanzheng; Yang, Kun; Shen, Xueyou; Lou, Baofeng
2004-09-01
Ten polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in 17 surface water samples and 11 sediments of four water bodies, and 3 soils near the water-body bank in Hangzhou, China in December 2002. It was observed that the sum of PAHs concentrations ranged from 0.989 to 9.663 microg/L in surface waters, from 132.7 to 7343 ng/g dry weight in sediments, and from 59.71 to 615.8 ng/g dry weight in soils. The composition pattern of PAHs by ring size in water, sediment and soil were surveyed. Three-ring PAHs were dominated in surface waters and soils, meanwhile sediments were mostly dominated by four-ring PAHs. Furthermore, PAHs apparent distribution coefficients (K(d)) and solid f(oc)-normalized K(d) (e.g. K(oc)= K(d) / f(oc)) were calculated. The relationship between logK(oc) and logK(ow) of PAHs for field data on sediments and predicted values were compared. The sources of PAHs in different water bodies were evaluated by comparison of K (oc) values in sediments of the river downstream with that in soils. Hangzhou section of the Great Canal was heavily polluted by PAHs released from industrial wastewater in the past and now PAHs in sediment may serve as sources of PAHs in surface water. PAHs in Qiantang River were contributed from soil runoff. Municipal road runoff was mostly contributed to West Lake PAHs.
Water color and circulation southern Chesapeake Bay, part 1
NASA Technical Reports Server (NTRS)
Nichols, M. M.; Gordon, H. H.
1975-01-01
Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.
NASA Astrophysics Data System (ADS)
Hong, Seok Hwi; Chun, Seung Soo; Chang, Tae Soo; Jang, Dae Geon
2017-08-01
Sedimentation patterns of tidal flats along the Korean west coast have long been known to be largely controlled by the monsoon climate. On the other hand, much less is known about the effect of the monsoon on sedimentation in coastal embayments with mouths of different geographic orientations. Good examples are Hampyeong and Yeoja bays along the west and south coasts, respectively. Both have narrow entrances, but their mouths open toward the northwest and the south, respectively. With mean tidal ranges of 3.46 and 3.2 m, respectively, the two bays experience similar tidal regimes and are hence excellent candidates to compare the effect of different exposure to the same regional monsoon climate on their respective sediment distribution patterns. The winter monsoon, in particular, is characterized by strong northwesterly winds that directly impact the west coast, but blow offshore along the south coast. For the purpose of this study, surficial sediment samples were collected from intertidal and subtidal flats of the two bays, both in summer and winter. Grain-size analyses were carried out by sieving (sand fraction) and Sedigraph (mud fraction). In the case of Yeoja Bay, the sediments consist mostly of mud (mean grain sizes of 5.4 to 8.8 phi). Seasonal changes are very subtle, the sediments being slightly coarser in summer when silt-dominated sediments are supplied by two streams to the northern parts of the bay in response to heavy rainfall. With the exception of the deeper tidal channels, Yeoja Bay is characterized by a thick mud blanket the year round, which is modulated by processes associated with the summer monsoon that predominantly blows from the east. Textural parameters suggest severely restricted sediment mixing on the subtidal and intertidal flats, the overall low energy situation preventing sands from reaching the tidal flats. The sediments of Hampyeong Bay, by contrast, are characterized by a distinct shoreward fining trend. Mean grain sizes average around -2.2 phi at the mouth and 8.2 phi near the shore of the inner bay. The textural relationships suggest progressive mixing between two hydraulic populations, the overall higher energy situation allowing sands to be transported onto the tidal flats in winter. In addition, a clear seasonal signal indicating deposition in summer and erosion in winter is observed, the latter probably being controlled by waves generated by strong northwesterly winds of the winter monsoon. The contrasting energy regimes controlling sediment distribution in the two bays are particularly well reflected in ternary diagrams of sand/silt/clay ratios and bivariate plots of textural parameters. The results clearly demonstrate that tidal sedimentation along the west coast of Korea is controlled by the more energetic winter monsoon, whereas along the south coast it is modulated by the less energetic summer monsoon. As a consequence, distinct seasonal changes are particularly pronounced along the west coast, whereas these are more subtle along the south coast. The orientation of bay mouths relative to the direction of wind associated with the summer and winter monsoon is thus identified as the main reason for the completely different sedimentation patterns observed on the subtidal and intertidal flats of the two bays.
Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance
NASA Technical Reports Server (NTRS)
Simoneit, B. R. T.
1977-01-01
Cyclic diterpenoid compounds have been found by various investigators in the geosphere (e.g., fossil resins, coals, soil, shale, and deep-sea sediments). These compounds occur in significant amounts only in higher plants and are therefore potential markers of terrigenous plant lipids. Diterpenoids with the abietane skeleton (mainly dehydroabietic acid) have been identified in the lipids of sediment samples from the northeast Pacific Ocean, Black Sea, and North Atlantic Ocean. The presence of these resin-derived compounds was correlated with the terrigenous clay components and with the presence of pollen. The presence of polycyclic diterpenoids was also correlated with the distribution patterns and inferred sources of other sediment lipid constituents. Potamic transport, followed by turbidite redistribution, is the probable input mechanism of these resin-derived compounds to the deep-sea sediments. These diterpenoids appear to be excellent biological markers of resinous higher plants.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Ecologic and Morphologic Analysis of a Proposed Network of Sediment Diversions
NASA Astrophysics Data System (ADS)
Meselhe, E. A.; Sadid, K. M.; Jung, H.; Messina, F.; Esposito, C.; Liang, M.
2017-12-01
Deltaic processes are governed by factors including the characteristics of inflowing sediment (e.g., temporal variability of the load and size class distribution), receiving basins (e.g., water depth, tidal range, circulation pattern, and wind field), and substrate (e.g., sediment type and soil strength). These factors influence the deltaic growth as well as the size and pattern of channel bifurcations. This topic is of importance to deltas experiencing land loss due to subsidence and sea level rise. The Mississippi River Delta is an example where a number of sediment diversions are being considered in conjunction with other restoration actions to minimize loss of wetlands. Historically, the Mississippi River played a significant role in providing sediment, nutrients, and fresh water to support Louisiana's coastal wetland system. As such, a systems perspective for regional-scale implementation of diversions is important. Field observations coupled with numerical modeling at various temporal and spatial scales, has provided insights toward a system-scale approach to design, evaluate and operate sediment diversions. These research activities investigate the uncertainties associated with morphodynamic processes both on the river and receiving basin sides and identify parameters influencing the magnitude and rate of building new land and sustaining existing wetland areas. Specifically, this presentation discusses the impact of extracting sediment and water from fluvial rivers, the ability to convey (and retain) sediment to the receiving basins. In addition to delivering sediment to receiving basins, some proposed sediment diversions could discharge high volumes of nutrient-rich fresh water into existing wetlands and bays. A goal of the analysis presented here is to improve our understanding of morphodynamic responses of the receiving basins and the ecosystem effects of discharges of freshwater and nutrients at this scale.
Chen, Li-lei; Liu, Jian; Xing, Lei; Krauss, Ken W.; Wang, Jia-sheng; Xu, Gang; Li, Li
2017-01-01
The burial of sedimentary organic matter (SOM) in the large river-influenced estuarine-coastal regions is affected by hydrodynamic sorting, diagenesis and human activities. Typically, the inner shelf region of the East China Sea is a major carbon sink of the Yangtze River-derived fine-grained sediments. Most of the previous work concentrated on the studies of surface sediments or used a single-proxy in this region. In this study, two cores from the Zhejiang-Fujian Coast were analyzed using bulk (TOC, TN and δ13CTOC) and molecular biomarker (n-alkane, brassicasterol, dinosterol and glycerol dialkyl glycerol tetraether lipids) techniques to clarify the sources, spatiotemporal distribution and fate of SOM in the Yangtze River Estuary and adjacent shelf. Results from this study indicated that the effects of diagenesis and diffusion on different sedimentary biomarkers resulted in overestimation of the relative contribution of terrestrial organic matter (%OMterr), compared with those based on δ13CTOC. The amounts of terrestrial plant organic matter (OMplant) and%OMterr in sediments decreased offshore. In contrast, the amounts of marine organic matter (OMmarine) increased offshore, but closer to the Yangtze River mouth, the amounts of soil organic matter (OMsoil) increased. Moreover, the amounts of TOC, OMplant and OMmarine biomarkers increased, but OMsoil and%OMterrdecreased over time in recent decades. Our study suggests that spatial organic matter distribution patterns in marine shelf sediments were controlled primarily by hydrodynamic sorting and nutrient concentrations, and temporally diverse patterns were controlled predominantly by anthropogenic influence (e.g., dam construction and soil conservation, reclamation and agricultural plantations, anthropogenic nutrient input, dust storms, eutrophication, etc) and climate events (e.g., interdecadal climatic jump and heavy rain events) in the geological period.
Storm-driven sediment transport in Massachusetts Bay
Warner, J.C.; Butman, B.; Dalyander, P.S.
2008-01-01
Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.
Karl, Herman A.; Carlson, P.R.
1987-01-01
Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Walters, Jeffrey S.; Hedges, John I.
1999-02-01
Although recent research has indicated that bacteria may contribute an important fraction of biochemical residues in terrestrial and marine environments, it is difficult for geochemists to identify contributions from these ubiquitous and biochemically diverse organisms. Previous studies have suggested uronic acids and O-methyl sugars may be useful indicators of microbial abundance and activity, but have been limited primarily to analyses of a small number of isolated samples. We report here comparative distributions of O-methyl sugars, uronic acids, and aldoses in sediment trap material and sediments from Dabob Bay, WA and nearby Saanich Inlet, BC, where temporal and spatial trends may be used together with well-established patterns in other biochemicals to identify bacterial contributions against the background of other carbohydrate sources. O-methyl sugars and uronic acids were important contributors to the overall flux and burial of polysaccharide material in Dabob Bay and Saanich Inlet, composing ≤12 wt% of the total carbohydrate yields from sediment trap and sediment samples. O-methyl sugars accounted for an average of 5% of the carbohydrate yields from sediment trap materials and sediments, but were found rarely and only in low abundance in vascular plant tissues, phytoplankton, and kelp. In contrast, uronic acids were abundant products of sediment trap material and sediments, as well as vascular plant tissues, where in some cases they predominated among all carbohydrates. Uronic acid abundance in sediment trap material averaged 3% and ranged to >6% of total carbohydrate yields. The persistence of total minor sugar yields in water column collections from Dabob Bay throughout the seasonal cycle indicated they had a primary source that was not directly related to plankton bloom cycles nor pulsed inputs of vascular plant remains. Subsurface maxima in total minor sugar yields (and several individual components) within sediment cores from both sites indicate in situ sedimentary sources. Taken together, the observed environmental distributions strongly suggest that the minor sugar abundances in Dabob Bay and Saanich Inlet were controlled by in situ microbial production.
Perignon, M. C.; Tucker, G.E.; Griffin, Eleanor R.; Friedman, Jonathan M.
2013-01-01
The spatial distribution of riparian vegetation can strongly influence the geomorphic evolution of dryland rivers during large floods. We present the results of an airborne lidar differencing study that quantifies the topographic change that occurred along a 12 km reach of the Lower Rio Puerco, New Mexico, during an extreme event in 2006. Extensive erosion of the channel banks took place immediately upstream of the study area, where tamarisk and sandbar willow had been removed. Within the densely vegetated study reach, we measure a net volumetric change of 578,050 ± ∼ 490,000 m3, with 88.3% of the total aggradation occurring along the floodplain and channel and 76.7% of the erosion focusing on the vertical valley walls. The sediment derived from the devegetated reach deposited within the first 3.6 km of the study area, with depth decaying exponentially with distance downstream. Elsewhere, floodplain sediments were primarily sourced from the erosion of valley walls. Superimposed on this pattern are the effects of vegetation and valley morphology on sediment transport. Sediment thickness is seen to be uniform among sandbar willows and highly variable within tamarisk groves. These reach-scale patterns of sedimentation observed in the lidar differencing likely reflect complex interactions of vegetation, flow, and sediment at the scale of patches to individual plants.
NASA Astrophysics Data System (ADS)
Williams, Gwyneth; Marcantonio, Franco; Turekian, Karl K.
1997-04-01
The Os concentration and 187Os/ 186Os distributions in surface sediments of Long Island Sound (eastern U.S.) provide a way of determining the sources and estuarine transport of Os. The contribution of anthropogenic Os from sewer outfalls from the New York City region supplies a tracer with a characteristic 187Os/ 186Os of about 1. The Os concentration of the bulk surface sediment increases steeply moving toward New York City in the westernmost Sound and generally follows the concentration of organic carbon. The 187Os/ 186Os ratio of bulk surface sediment increases from west to east in the westernmost part of the Sound and is effectively constant in the central Sound. We interpret these results as indicating that the surface bulk sediments of the Sound contain a low 187Os/ 186Os component, perhaps as a reduced coating associated with organic remains from sewer outfalls. The acid hydrogen peroxide leach fraction has an average 187Os/ 186Os of 9.5 in the central Sound, significantly higher than both the bulk sediment value and the probable sea water value of about 8. The leach fraction in the westernmost part of the traverse is less radiogenic than the central Sound and follows the Os wsotope trend of the bulk sediment. Liquid effluent from a New York City sewer outfall contains 30 pg l -1 of dissolved Os with a 187Os/ 186Os of about 2.5, consistent with its being an end-member of the west-east sediment pattern recorded in the leach fractions of the westernmost cores. The leachable Os from the central Sound predominantly reflects Os in ferromanganese oxyhydroxide coatings from continentally derived sediments with 187Os/ 186Os ratios more radiogenic than seawater. The distribution patterns of anthropogenic and natural Os, with their characteristic isotopic signatures in the Sound, and the insights gained from the behavior of other particle-reactive species, indicates that very little Os in solution may pass through the estuarine gauntlet.
NASA Astrophysics Data System (ADS)
Flood, R. D.; Kinney, J.; Weaver, M.
2006-12-01
The Peconic Bays, an estuary of the National Estuary Program, is about 50 km long and 10 km wide, ranges in depth to 20-30 m and is located between the North Fork and South Fork at the east end of Long Island. There is much interest in the nature and distribution of benthic habitats within this estuary, and we have been conducting high-resolution side-scan sonar and multibeam bathymetry and backscatter studies to understand sediment distribution patterns and physical processes and to guide benthic sampling. Our initial results indicate that the seabed morphology in this area has been shaped by a range of biological and physical processes that have been occurring since glacial times. Morphological elements of the seafloor include apparent glacial-aged topography, eroded glacial deposits, early post-glacial canyons and channels, widespread relict oyster reefs, modern migrating sand banks, restricted areas of modern mud accumulation, and active sand waves. The wide range of morphological elements representing a relatively long time span is apparently due to the fact that the area has been protected from large, erosive ocean waves during the post- glacial sea-level rise and thus there was apparently little wave-induced erosion at the shoreline. Also, there is not a very large modern sediment supply. The largest river on Long Island (the Peconic River) drains into the area. The Peconic River is about 25 km long with a drainage area of 200 km2 and drains a low-relief terrain. That river drains into Great Peconic Bay which may have trapped most of the sediment load. Additional modern sediment is derived from the erosion of glacial cliffs, but a low sediment supply plus strong currents results in insufficient sediment deposition to cover the relict topography in many areas. In addition to underscoring the importance of older environments in controlling more recent sedimentation patterns, observations suggest that important post-glacial and early interglacial climate records may be preserved in Peconic Bay sediments.
Horowitz, Arthur J.; Elrick, Kent A.; Cook, Robert B.
1993-01-01
During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing.Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases.The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.
Mora-Ruiz, M Del R; Cifuentes, A; Font-Verdera, F; Pérez-Fernández, C; Farias, M E; González, B; Orfila, A; Rosselló-Móra, R
2018-03-01
Microorganisms are globally distributed but new evidence shows that the microbial structure of their communities can vary due to geographical location and environmental parameters. In this study, 50 samples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned identification of approximately 1000 OPUs (almost equivalent to "species") using multivariate analysis revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of previously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms. Copyright © 2017 Elsevier GmbH. All rights reserved.
Controls on sediment cover in bedrock-alluvial channels of the Henry Mountains, Utah
NASA Astrophysics Data System (ADS)
Hodge, R. A.; Yager, E.; Johnson, J. P.; Tranmer, A.
2017-12-01
The location and extent of sediment cover in bedrock-alluvial channels influences sediment transport rates, channel incision and instream ecology. However, factors affecting sediment cover and how it responds to changes in relative sediment supply have rarely been quantitatively evaluated in field settings. Using field surveys and SFM analysis of channel reach topography, we quantified sediment cover and channel properties including slope, width, grain size distributions, and bedrock and alluvial roughness in North Wash and Chelada Creek in the Henry Mountains, Utah. Along reaches where upstream sediment supply does not appear to be restricted, we find that the fraction of local bedrock exposure increases as a function of local relative transport capacity . In a downstream section of Chelada Creek, decadal-scale sediment supply has been restricted by an upstream culvert that has caused a backwater effect and corresponding upstream deposition. In this section, alluvial cover is uncorrelated with local stream power. To test the impact of relative sediment supply on sediment cover, a 1D sediment transport model was used to predict the equilibrium sediment cover in Chelada Creek under varying flow and sediment supply conditions. Sediment transport in each model section was predicted using the partial cover model of Johnson (2015), which accounts for differences in bedrock and alluvial roughness on critical shear stress and flow resistance. Model runs in which sediment supply was approximately equal to mean transport capacity produced a pattern of sediment cover which best matched the field observations upstream of the culvert. However, runs where sediment supply was under-capacity produced the pattern most similar to field observations downstream of the culvert, consistent with our field-based interpretations. Model results were insensitive to initial sediment cover, and equilibrium was relatively quickly reached, suggesting that the channel is responsive to changes in imposed conditions. Overall, our results suggest that alluvial cover fractions may be predictable at spatial scales relevant for landscape evolution modelling, but that local bed roughness and thresholds in relative sediment supply may need to be accounted for.
Hwang, Hyun-Min; Green, Peter G; Holmes, Robert W
2009-01-01
To investigate the occurrence of contaminants and to assess their toxicity potential to benthic organisms, streambed sediments were collected from three agricultural and one urban influenced small waterways in the lower Sacramento River watershed and analyzed for PAHs, organochlorine (OC) and organophosphorus (OP) pesticides, pyrethroids, and metals. These sites had low benthic biotic index scores in earlier field surveys. The occurrence patterns of these contaminants and iron normalized enrichment factors of metals reflect the land use patterns around study sites. DDTs were detected in all samples while chlordanes were found only at the urban influenced site. No OP pesticides were found in any sediment presumably due to their high water solubilities and low solid-water partitioning. DDTs, PAHs, and metals at sites in the Biggs/West Gridley Canal showed a gradient increasing toward downstream. Distribution patterns of individual PAHs and their ratios found in sediment from the Biggs/West Gridley Canal downstream site resemble those of petroleum. PAHs in this site might originate from petroleum oils that have been used as agricultural pesticides. The enrichment factor of vanadium, which is an indicator of petroleum residue, was also higher in this site. The anthropogenic enrichment of copper at all Biggs/West Gridley Canal sites might be because of significant use of copper based pesticides. The high enrichment factor of lead at the urban influenced Dry Creek site might be related to historical use of leaded gasoline. All sediment samples had at least one chemical that exceed the threshold effects concentration (TEC). Total probable effects concentration quotients (tPECQs) were greater than 1 at all sites, indicating that sediment bound contaminants in the study sites can possibly pose toxic effects. This finding can be linked to lower biotic index scores observed in previous regional monitoring studies.
NASA Astrophysics Data System (ADS)
Liao, Y.; Wang, H.; Xu, W.
2013-12-01
Normal fault arrays and associated relay ramps between two overlapping en-echelon normal faults are well known to control the deposition and distribution of sediments in alluvial, fluvial and deltaic systems in rift settings. The influence of transfer zones or relay ramps on sediment routes and dispersal patterns in subaqueous (deeper marine/lacustrine), however, is barely studied and hence less clear. Previous experimental studies indicate that subaqueous relay ramps may act as sediment transportation pathways if certain conditions are available. In this study, we integrate detailed structural and stratigraphic analysis with three-dimensional seismic data and limited well log data from the Qikou Sag to examine the tectonic evolution and the syn-rift sediment patterns response to fault growth and linkage in an active rift setting. Qikou Sag is located at the center of Huanghua Depression, Bohaiwan Basin of eastern China. Structurally, it is a typical continental rift basin characterized by a linked system of two NEE-SWW-striking half-grabens and one E-W-striking graben. Qikou sag is filled with Eocene-Oligocene syn-rift sediments and Miocene to Quaternary post-rift sediments. The Eocene-Oligocene rifting stage can be divided into early rifting period (43-36.5 Ma, the third member and second member of Shahejie Formation, Es3 and Es2), stable rifting period (36.5-29Ma, the first member of Shaehejie Formation, Es1) and fault-depressed diversionary period (29-24.6Ma, the Dongying Formation, Ed). This study focus on the early syn-rift, the third and second member of Shehejie Formation, which is mostly dark-grey mudstone interbedded with fine to coarse-grained sandstone deposited by large-scale turbidity currents in deep-lake. In particular, we use a combination of thickness variability and facies distributions, onlap patterns within a high-resolution sequence stratigraphic framework, integrated with structural geometry, fault activity and subsidence history analysis to investigate the degree of tectonic control on subaqueous sediment transportation and dispersal. Specific attention is paid to deposits close to boundary faults-Gangxi fault, Gangdong fault and Binhai fault and associated relay ramp. Our studies show that significant amount of sediments were deposited on the basin floor close to boundary faults hanging-wall, which were derived from Cangxian uplift and might have originated from channel overspill or flow shedding across the faults. However, minor deposits occurred adjacent to and at the foot of relay ramp, suggesting an influence of these topography features on sediment routing, with the intrabasinal structural high-Beidagang buried hill acting as an additional sediment source. Therefore, the substantial differences between subaerial and subaqueous systems may influence the role of relay ramps in controlling the sediment routes and deposition in Qikou Sag. The attempt to depict subaqueous syn-rift sediment dispersal and relate them with relay ramps is needed to consider the interplay of various factors such as sediment provenience, tectonic activity, ramp geometry, and base level fluctuations in the future investigation.
Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan
2018-03-01
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.
A geochemical atlas of South Carolina--an example using data from the National Geochemical Survey
Sutphin, David M.
2005-01-01
National Geochemical Survey data from stream-sediment and soil samples, which have been analyzed using consistent methods, were used to create maps, graphs, and tables that were assembled in a consistent atlas format that characterizes the distribution of major and trace chemical elements in South Carolina. Distribution patterns of the elements in South Carolina may assist mineral exploration, agriculture, waste-disposal-siting issues, health, environmental, and other studies. This atlas is an example of how data from the National Geochemical Survey may be used to identify general or regional patterns of elemental occurrences and to provide a snapshot of element concentration in smaller areas.
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann E.
The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1 to 20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two- dimensional and basin-scalemore » three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. As a result, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.« less
Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...
2017-02-01
The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1 to 20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two- dimensional and basin-scalemore » three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. As a result, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.« less
Oil residue contamination of continental shelf sediments of the Gulf of Mexico.
Harding, V; Camp, J; Morgan, L J; Gryko, J
2016-12-15
We have investigated the distribution of a heavy oil residue in the coastal sediments of the Gulf of Mexico. The amount of the contamination was determined by high-temperature pyrolysis coupled with the Gas Chromatography-Mass Spectrometry (GCMS) of air-dried sediments. The pyrolysis products contain straight-chain saturated and unsaturated hydrocarbons, such as dodecane and 1-dodecene, resulting in a very characteristic pattern of double peaks in the GCMS. Hydrocarbons containing 8 to 23 carbon atoms were detected in the pyrolysis products. Using thermal pyrolysis we have found that the sediment samples collected along Texas, Louisiana, and Mississippi shores contain no detectable traces of oil residue, but most of the samples collected along Alabama and Florida shores contain ~200ppm of heavy oil residue. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xianjun; Wang, Yanxin; Ellis, Andre
Arsenic (As)-contaminated aquifer sediments from Datong basin, China have been analyzed to infer the provenance and depositional environment related to As distribution in the aquifer sediments. The As content in the sediments ranged from 2.45 to 27.38 mg/kg with an average value of 9.54 mg/kg, which is comparable to the average value in modern unconsolidated sediments. However, minor variation in As concentration with depth has been observed in the core. There was a significant correlation between Fe, and Al and As, which was attributed to the adsorption or co-precipitation of As onto/with Fe oxides/hydroxides and/or Fe-coated clay minerals. Post-Archean Australianmore » Shale (PAAS)-normalized REEs patterns of sediment samples along the borehole were constant, and the sediments had a notably restricted range of La-N/Yb-N ratios from 0.7 to 1.0. These results suggested that the provenance of the Datong basin remained similar throughout the whole depositional period. The analysis of major geochemical compositions confirmed that all core sediments were from the same sedimentary source and experienced significant sedimentary recycling. The co-variation of As, V/Al, Ni/Al and chemical index of alteration (CIA) values in the sediments along the borehole suggested that As distribution in the sediments was primarily controlled by weathering processes. The calculated CIA values of the sediments along the borehole indicate that a relative strong chemical weathering occurred during the deposition of sediments at depths of similar to 35 to 88 m, which was corresponding to the depth at which high As groundwater was observed at the site. Strong chemical weathering favored the deposition of Fe-bearing minerals including poorly crystalline and crystalline Fe oxide mineral phases and concomitant co-precipitation of As with these minerals in the sediments. Subsequent reductive dissolution of As-bearing poorly crystalline and crystalline Fe oxides would result in the enrichment of As in groundwater. In general, the chemical weathering during the deposition of the sediments governed the co-accumulation of Fe oxides and As in the aquifer sediments. And then, the reductive dissolution of Fe oxides/hydroxides is the mechanism of As enrichment in the groundwater in the Datong basin« less
Suspended sediments of the modern Amazon and Orinoco rivers
Meade, R.H.
1994-01-01
The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.
Fernández-Ramos, C; Ballesteros, O; Zafra-Gómez, A; Camino-Sánchez, F J; Blanc, R; Navalón, A; Pérez-Trujillo, J P; Vílchez, J L
2014-02-15
Alcohol sulfates (AS) and alcohol ethoxysulfates (AES) are all High Production Volume and 'down-the-drain' chemicals used globally in detergent and personal care products, resulting in low levels ultimately released to the environment via wastewater treatment plant effluents. They have a strong affinity for sorption to sediments. Almost 50% of Tenerife Island surface area is environmentally protected. Therefore, determination of concentration levels of AS/AES in marine sediments near wastewater discharge points along the coast of the Island is of interest. These data were obtained after pressurized liquid extraction and liquid chromatography-tandem mass spectrometry analysis. Short chains of AES and especially of AS dominated the homologue distribution for AES. The Principal Components Analysis was used. The results showed that the sources of AS and AES were the same and that both compounds exhibit similar behavior. Three different patterns in the distribution for homologues and ethoxymers were found. Copyright © 2013 Elsevier Ltd. All rights reserved.
Barreto, Cintia F; Vilela, Claudia G; Baptista-Neto, José A; Barth, Ortrud M
2012-09-01
Aiming to investigate the deposition of pollen grains and spores in Guanabara Bay, Rio de Janeiro State, 61 surface sediment samples were analyzed. The results showed that the current deposition of palynomorphs in surface sediments of Guanabara Bay represents the regional vegetation of this hydrographic basin. The differential distribution of palynomorphs followed a pattern influenced by bathymetry, tidal currents speed, discharge of numerous rivers, and by human activity. The dominance of representatives of Field Vegetation reflects the changes of the original flora caused by intense human activities in the region. The continued presence and richness of pollen types of rain forest in the samples indicates that their source area might be the vegetation from riparian border of rivers in the western sector of the Bay, where the mangrove vegetation is being preserved. The large amount of damaged palynomorphs may be related to abrasion that occurs during river transport, indicating removal or reworking from their areas of origin.
Liu, Xiaoshou; Wang, Lu; Li, Shuai; Huo, Yuanzi; He, Peimin; Zhang, Zhinan
2015-10-15
To evaluate spatial distribution pattern of intertidal macrofauna, quantitative investigation was performed in January to February, 2013 around Fildes Peninsula, King George Island, South Shetland Islands. A total of 34 species were identified, which were dominated by Mollusca, Annelida and Arthropoda. CLUSTER analysis showed that macrofaunal assemblages at sand-bottom sites belonged to one group, which was dominated by Lumbricillus sp. and Kidderia subquadrata. Macrofaunal assemblages at gravel-bottom sites were divided into three groups while Nacella concinna was the dominant species at most sites. The highest values of biomass and Shannon-Wiener diversity index were found in gravel sediment and the highest value of abundance was in sand sediment of eastern coast. In terms of functional group, detritivorous and planktophagous groups had the highest values of abundance and biomass, respectively. Correlation analysis showed that macrofaunal abundance and biomass had significant positive correlations with contents of sediment chlorophyll a, phaeophorbide and organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie
2018-04-01
Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leclere, S.; Sklar, L. S.; Genetti, J. R.
2014-12-01
The size distribution of sediments produced on hillslopes and supplied to channels depends on the geomorphic processes that weather, detach and transport rock fragments down slopes. Little in the way of theory or data is available to predict patterns in hillslope size distributions at the catchment scale from topographic and geologic maps. Here we use aerial imagery and a variety of remote sensing techniques to map and categorize geomorphic landscape units (GLUs) by inferred sediment production process regime, across the steep mountain catchment of Inyo Creek, eastern Sierra Nevada, California. We also use field measurements of particle size and local geomorphic attributes to test and refine GLU determinations. Across the 2 km of relief in this catchment, landcover varies from bare bedrock cliffs at higher elevations to vegetated, regolith-covered convex slopes at lower elevations. Hillslope gradient could provide a simple index of sediment production process, from rock spallation and landsliding at highest slopes, to tree-throw and other disturbance-driven soil production processes at lowest slopes. However, many other attributes are needed for a more robust predictive model, including elevation, curvature, aspect, drainage area, and color. We combine tools from ArcGIS, ERDAS Imagine and Envi with groundtruthing field work to find an optimal combination of attributes for defining sediment production GLUs. Key challenges include distinguishing: weathered from freshly eroded bedrock, boulders from intact bedrock, and landslide deposits from talus slopes. We take advantage of emerging technologies that provide new ways of conducting fieldwork and comparing field data to mapping solutions. In particular, cellphone GPS is approaching the accuracy of dedicated GPS systems and the ability to geo-reference photos simplifies field notes and increases accuracy of later map creation. However, the predictive power of the GLU mapping approach is limited by inherent uncertainty in remotely sensed data and aerial imagery. This work is a contribution toward the long-term goal of reliable and automated mapping of hillslope sediment size distributions for use in sediment budgets and hazard delineation, and for understanding the feedbacks between climate, erosion and topography that drive sediment production.
NASA Astrophysics Data System (ADS)
Gobeil, C.; Kuzyk, Z. Z. A.; Goni, M. A.; Macdonald, R. W.
2016-02-01
Concentrations of elements (S, Mn, Mo, U, Cd, Re) providing insights on organic C metabolized through oxidative processes at the sea floor were measured in 27 sediment cores collected along a section extending from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of these elements were used to i) document the relative importance of aerobic versus anaerobic degradation of organic C in NAAM sediments, ii) infer variations in water column carbon flux and iii) estimate the importance of this margin as a sink for key elements in the Arctic and global ocean. Distributions of Mn, total S and reduced inorganic S demonstrated that most sediments along the NAAM had relatively thick (>1 cm) surface oxic layers, underlain by sediments with weakly reducing conditions and limited sulphate reduction. Strongly reducing conditions accompanied by substantial sedimentary pyrite burial occurred only in certain subregions, including the Bering-Chukchi Shelves, shallow portions of Barrow Canyon. Estimated accumulation rates of authigenic S, Mo, Cd and U, and total Re displayed marked spatial variability that was related to sedimentary redox conditions induced by the supply of labile C to the seabed, as shown by significant relationships between the accumulation rates and vertical C flux, estimated from regional primary production values and water depth at the coring sites. High primary production combined with shallow water columns drive elevated rates of authigenic trace element accumulation in sediments from the Bering-Chukchi Shelves whereas low production combined with moderately deep conditions drive low rates of accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Using the average authigenic trace element accumulation rates in sediments from the various regions, we submit that the shelves along the NAAM margin are important sinks in global marine biogeochemical budgets.
NASA Astrophysics Data System (ADS)
Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar
2016-04-01
A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.
NASA Astrophysics Data System (ADS)
Cheng, F.; Hong, H.; Li, C.; Ye, H.; Yang, H.
2015-12-01
The net-like laterite sediments is widely spread over the terraces and high lands of the river valley in southern China during mid-Pleistocene, although whose origin is still debated. The Xiaomei laterite sediments on the terraces of Youjiang River, Guangxi Zhuang Autonomous Region, southern China, was dominated by the intermittently uplift of the Tibetan Plateau for the mechanism during the Quaternary times. Compared to the loess-paleosol deposits in Chinese Loess Plateau (CLP), the upper continental crust (UCC) and the post-Archean Australian average shale (PAAS), the sediments show notable depletion of the relative mobile compositions like CaO, MgO, Na2O, K2O, Sr, Ba and the accumulation of TiO2, Al2O3, Fe2O3(t), Zr, but similar with other laterite sediments (the Xuancheng and Jiujiang laterite profiles) in the middle to lower reaches of Yangtze River, southern China. The relatively uniform La/Th ratio, U/Pb vs. Th/Pb ratio and chondrite-normalized REE distribution pattern of Xiaomei samples are similar with the loess-paleosol deposits and UCC values, which suggesting the sediments have experienced well-mixing prior to deposition and intense superficial weathering. The low ɛNd(t) values and uniform 147Sm/144Nd ratios with the 87Sr/86Sr vs. Rb/Sr ratios show the notable differences with loess-paleosol deposits and the recycling function of the old fluvial sediments which are similar with the Pearl River sediments. The stable zircon age distribution pattern with three age groups of 240-300Ma, 420-480Ma and 900-1000Ma for Xiaomei laterite samples are different with the loess-paleosol deposits and its source regions. The zircons are mainly derived from a source of the Upper Permian to Middle Triassic clastic rocks in Youjiang Basin, superordinate tectonic unit of Bose Basin, and their potential source areas like the Emeishan Large Igneous Province (Emeishan LIP) and the southeastern area of south China Craton (SCC). For the basis of these data, we suggest that that the aeolian dusts may have not started to accumulate in southern China during these times, and the laterite sediments in southern China may dominate by the proximal supplementation.
NASA Astrophysics Data System (ADS)
Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.
2017-12-01
Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream-groundwater interactions on nutrient cycling.
Seafloor environments in the Long Island Sound estuarine system
Knebel, H.J.; Signell, R.P.; Rendigs, R. R.; Poppe, L.J.; List, J.H.
1999-01-01
Four categories of modern seafloor sedimentary environments have been identified and mapped across the large, glaciated, topographically complex Long Island Sound estuary by means of an extensive regional set of sidescan sonographs, bottom samples, and video-camera observations and supplemental marine-geologic and modeled physical-oceanographic data. (1) Environments of erosion or nondeposition contain sediments which range from boulder fields to gravelly coarse-to-medium sands and appear on the sonographs either as patterns with isolated reflections (caused by outcrops of glacial drift and bedrock) or as patterns of strong backscatter (caused by coarse lag deposits). Areas of erosion or nondeposition were found across the rugged seafloor at the eastern entrance of the Sound and atop bathymetric highs and within constricted depressions in other parts of the basin. (2) Environments of bedload transport contain mostly coarse-to-fine sand with only small amounts of mud and are depicted by sonograph patterns of sand ribbons and sand waves. Areas of bedload transport were found primarily in the eastern Sound where bottom currents have sculptured the surface of a Holocene marine delta and are moving these sediments toward the WSW into the estuary. (3) Environments of sediment sorting and reworking comprise variable amounts of fine sand and mud and are characterized either by patterns of moderate backscatter or by patterns with patches of moderate-to-weak backscatter that reflect a combination of erosion and deposition. Areas of sediment sorting and reworking were found around the periphery of the zone of bedload transport in the eastern Sound and along the southern nearshore margin. They also are located atop low knolls, on the flanks of shoal complexes, and within segments of the axial depression in the western Sound. (4) Environments of deposition are blanketed by muds and muddy fine sands that produce patterns of uniformly weak backscatter. Depositional areas occupy broad areas of the basin floor in the western part of the Sound. The regional distribution of seafloor environments reflects fundamental differences in marine-geologic conditions between the eastern and western parts of the Sound. In the funnel-shaped eastern part, a gradient of strong tidal currents coupled with the net nontidal (estuarine) bottom drift produce a westward progression of environments ranging from erosion or nondeposition at the narrow entrance to the Sound, through an extensive area of bedload transport, to a peripheral zone of sediment sorting. In the generally broader western part of the Sound, a weak tidal-current regime combined with the production of particle aggregates by biologic or chemical processes, cause large areas of deposition that are locally interrupted by a patchy distribution of various other environments where the bottom currents are enhanced by and interact with the seafloor topography.
Impacts of Mesopotamian wetland re-flooding on the lipid biomarker distributions in sediments
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; DouAbul, Ali A. Z.; Al-Maarofi, Sama S.; Simoneit, Bernd R. T.
2018-03-01
Shallow sediment core samples from two locales in the Mesopotamian marshlands of Iraq were analyzed to characterize the extractable organic (lipid) compounds, and their sources and distributions after hydrological restoration by re-flooding of the marshes. Dried samples were extracted with a dichloromethane/methanol mixture before analysis by gas chromatography-mass spectrometry (GC-MS). The major compounds were n-alkanes, fatty acids and alcohols, steroids, terpenoids, hopanes, steranes, unresolved complex mixture (UCM), and plasticizers. The lipid compounds in Kurmashia (Al-Hammar marshes) were generally higher in concentration than in Abu Zirig (Central marshes), and decreased with core depths for both sites. This concentration decrease with core depth is attributed to transformation, biodegradation and variable input processes. The distribution patterns of the lipids in the sediment cores indicated that the Abu Zirig area was drier than Kurmashia before the re-flooding process. Furthermore, the concentration of the compounds in the surface sediment the Abu Zirig core was as high and similar to that in Kurmashia, reflecting the re-flooding impacts on the marsh and the revival of the wetland. The major sources of these lipids were from natural terrestrial vegetation (35-66% for Abu Zirig; 40-49% for Kurmashia), microbial (plankton) residues and bacteria (27-52% for Abu Zirig; 39-43% for Kurmashia), with a minor contribution from anthropogenic sources including plastic wastes and petroleum (6-13% for Abu Zirig; 9-18% for Kurmashia).
Dai, Tianjiao; Zhang, Yan; Tang, Yushi; Bai, Yaohui; Tao, Yile; Huang, Bei; Wen, Donghui
2016-10-01
Coastal areas are land-sea transitional zones with complex natural and anthropogenic disturbances. Microorganisms in coastal sediments adapt to such disturbances both individually and as a community. The microbial community structure changes spatially and temporally under environmental stress. In this study, we investigated the microbial community structure in the sediments of Hangzhou Bay, a seriously polluted bay in China. In order to identify the roles and contribution of all microbial taxa, we set thresholds as 0.1% for rare taxa and 1% for abundant taxa, and classified all operational taxonomic units into six exclusive categories based on their abundance. The results showed that the key taxa in differentiating the communities are abundant taxa (AT), conditionally abundant taxa (CAT), and conditionally rare or abundant taxa (CRAT). A large population in conditionally rare taxa (CRT) made this category collectively significant in differentiating the communities. Both bacteria and archaea demonstrated a distance decay pattern of community similarity in the bay, and this pattern was strengthened by rare taxa, CRT and CRAT, but weakened by AT and CAT. This implied that the low abundance taxa were more deterministically distributed, while the high abundance taxa were more ubiquitously distributed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Anand, S. P.; Erram, Vinit C.; Patil, J. D.; Pawar, N. J.; Gupta, Gautam; Suryavanshi, R. A.
2016-03-01
Ground magnetic data collected over Chikotra River in the peripheral region of Deccan Volcanic Province (DVP) of Maharashtra located in Kolhapur district was analysed to throw light on the structural pattern and distribution of magnetic sources within the basin. In order to isolate the magnetic anomalies showing varying trend and amplitude, several transformation operations including wavelength filtering, and upward continuation has been carried out on the reduced to pole anomaly map. Qualitative interpretation of these products help identify the distribution of magnetic sources, viz., the Deccan basalts, dolerite intrusives and older greenstone and schist belts in the subsurface. Present study suggests that the Chikotra basin is composed of three structural units; a NE-SW unit superposed on deeper NW-SE unit with randomly distributed trap flows on the surface. One of the major outcome of the present study is the delineation of almost 900-m thick Proterozoic Kaladgi sediments below the Deccan trap flows. The NE-SW magnetic sources may probably represent intrusives into the Kaladgi sediments, while the deeper NW-SE trends are interpreted as the northward extension of the Dharwars, underneath the Deccan lava flows, that forms the basement for the deposition of Kaladgi sediments.
Chokwe, T B; Okonkwo, O J; Sibali, L L; Mporetji, S M
2016-09-01
High environmental concentrations for alkylphenol ethoxylates (APEs) and brominated flame retardants (BFRs) have been observed near cities than in rural environment. This is due, in part, to sewage systems receiving effluents from many industrial processes along with domestic wastewater. While these classes of compounds are being phased out in most developed countries, there is still widespread use in low to middle income countries. To better understand the extent of APEs and BFRs contamination in the environment, this study reports on the concentration and distribution of APEs and BFRs in sediments samples collected from Vaal River, South Africa. Measurable concentrations of these contaminants were obtained using GC-MS after heptafluorobutyric derivatization. The concentrations range (ng g(-1)) for these pollutants were as follows: nd-46, 20-127, 24-38, 3-5, 14-28, 16-54 for octylphenol penta ethoxylates, nonylphenol ethoxylates (mono- di), nonylphenol penta ethoxylates, PBB101, PBDEs, and HBCD; respectively. The distribution observed in this study indicated higher levels of sediment contamination by APEs relative to BFRs. These results underline the need to further investigate the burden and risks associated with chemical contamination in developing countries.
Fuller, C.C.; Davis, J.A.; Cain, D.J.; Lamothe, P.J.; Fries Fernandez, T.L.G.; Vargas, J.A.; Murillo, M.M.
1990-01-01
A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediment from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediments from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.
Sedimentation patterns in floodplains of the Mekong Delta - Vietnam
NASA Astrophysics Data System (ADS)
Van Manh, Nguyen; Merz, Bruno; Viet Dung, Nguyen; Apel, Heiko
2013-04-01
Quantification of floodplain sedimentation during the flood season in the Mekong Delta (MD) plays a very important role in the assessment of flood deposits for a sustainable agro-economic development. Recent studies on floodplain sedimentation in the region are restricted to small pilot sites because of the large extend of the Delta, and the complex channel. This research aims at a quantification of the sediment deposition in floodplains of the whole Mekong Delta, and to access the impacts of the upstream basin development on the sedimentation in the Delta quantitatively. To achieve this, a suspended sediment transport model is developed based on the quasi-2D hydrodynamic model of the whole Mekong Delta developed by Dung et al. (2011). The model is calibrated and validated using observed data derived from several sediment measurement campaigns in channel networks and floodplains. Measured sediment data and hydrodynamic model quantify the spatio-temporal variability of sediment depositions in different spatial units: individual dyke compartments, and the sub-regions Plain of Reeds, Long Xuyen Quadrangle and the area between Tien River and Hau River. It is shown that the distribution of sediment deposition over the delta is highly depended on the flood magnitude, that in turn drives the operation policy of flood control systems in floodplains of the Mekong Delta. Thus, the sedimentation distribution is influenced by the protection level of the dyke systems in place and the distance to the Tien River and Hau River, the main branches of the Mekong in the Delta. This corroborates the main findings derived from data analysis obtained from a small scale test site by Hung et al, (2011, 2012a). Moreover, the results obtained here underlines the importance of the main channels for the sediment transport into the floodplains, and the deposition rate in floodplains is strongly driven by the intake locations and the distance from these to the main channels as well.
Benthic impacts of intertidal oyster culture, with consideration of taxonomic sufficiency.
Forrest, Barrie M; Creese, Robert G
2006-01-01
An investigation of the impacts from elevated intertidal Pacific oyster culture in a New Zealand estuary showed enhanced sedimentation beneath culture racks compared with other sites. Seabed elevation beneath racks was generally lower than between them, suggesting that topographic patterns more likely result from a local effect of rack structures on hydrodynamic processes than from enhanced deposition. Compared with control sites, seabed sediments within the farm had a greater silt/clay and organic content, and a lower redox potential and shear strength. While a marked trend in macrofaunal species richness was not evident, species composition and dominance patterns were consistent with a disturbance gradient, with farm effects not evident 35 m from the perimeter of the racks. Of the environmental variables measured, sediment shear strength was most closely associated with the distribution and density of macrofauna, suggesting that human-induced disturbance from farming operations may have contributed to the biological patterns. To evaluate the taxonomic sufficiency needed to document impacts, aggregation to the family level based on Linnean classification was compared with an aggregation scheme based on ;general groups' identifiable with limited taxonomic expertise. Compared with species-level analyses, spatial patterns of impact were equally discernible at both aggregation levels used, provided density rather than presence/absence data were used. Once baseline conditions are established and the efficacy of taxonomic aggregation demonstrated, a ;general group' scheme provides an appropriate and increasingly relevant tool for routine monitoring.
NASA Astrophysics Data System (ADS)
Rodrigues, Ana Maria; Quintino, Victor; Pereira, Fábio; Freitas, Rosa
2012-09-01
The macroinvertebrate spatial distribution patterns in the Lagoon of Óbidos were studied in 1984 and revisited in 2002. The overall surficial sediments and benthic community patterns show consistent similarities in the two sampling periods, but also important differences. The lagoon is relatively shallow, with about 1/3 of the area covered with extensive intertidal sand banks. These are interrupted by a navigation channel bordering the northern margin (1984) and, following dredging operations, a new navigation channel was opened along the southern margin (2002). The sediments in the navigation channels were coarser and with less percentage of fines in 2002 than in 1984. Arthropods dominated the species richness and abundance in 1984, but were much less important in 2002, when the community was dominated by molluscs and annelids, both in species numbers as well as in abundance. In 1984, the structure of the macrofauna communities closely followed a general model proposed for Atlantic and Mediterranean lagoons, with the marine, the transition and the lagoon communities occupying very well defined areas. This gradient was in accordance with an increase in the fines and organic matter content directed inwards allowing for the coexistence of several characteristic lagoon species with others characteristic of organic enriched sediments. In 2002 this spatial pattern is still recognized but the marine and the transition communities are spatially mixed, occupying both the entrance region and the navigation channels, whereas the characteristic lagoon community identified in 1984 was only recognized in a group of sites located along the southern margin in 2002. Several species show very important changes in their distribution extent in the lagoon system. These changes essentially show a generalized inward expansion of the distribution range of the marine species, in agreement with a larger influence of marine conditions toward the inner areas of the lagoon. This study shows how sensitive lagoon systems can be to the regime of water exchange rate with the ocean being possible to induce more or less marine conditions to the system as a response to the flow and exchange rate of water through the communication inlet following dredging interventions.
Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.
Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia
2013-04-01
Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.
Wolschke, Hendrik; Sühring, Roxana; Massei, Riccardo; Tang, Jianhui; Ebinghaus, Ralf
2018-05-01
This study reports the occurrence and distribution of organophosphorus flame retardants and plasticizer (OPEs) in sediments of eight large river basin estuaries and deltas across Europe. A robust and sensitive OPE analysis method was developed through the application of an in-cell clean-up in an accelerated solvent extraction and the use of an GC-MSMS System for instrumental analyses. OPEs were detected in all sediment samples with sum concentrations of up to 181 ng g -1 dw. A fingerprinting method was used to identify river specific pattern to compare river systems. The estuaries and deltas were chosen to have a conglomerate print of the whole river. The results are showing very similar OPE patterns across Europe with minor differences driven by local industrial input. The European estuary concentrations and patterns were compared with OPEs detected in the Xiaoquing River in China, as an example for a region with other production, usage and legislative regulations. The Chinese fingerprint differed significant from the overall European pattern. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wu, Yuling; Wang, Xinhong; Ya, Miaolei; Li, Yongyu; Hong, Huasheng
2016-12-01
Estuaries and coastal areas strongly influenced by terrestrial inputs resulted from anthropogenic activities. To study the distributions, origins, potential transport and burden of organochlorine compounds (OCs) from river to marginal sea, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in surface sediments collected from a subtropical estuary (Jiulong River Estuary, JRE) and the inner shelf of adjacent Western Taiwan Strait (WTS). The concentrations of OCPs and PCBs were from 5.2 to 551.7 and 1.0-8.1 ng g -1 (dry weight), respectively. OCP concentrations in the JRE were higher than in adjacent WTS, and a decreasing trend with the ascending distance from the estuary to the open sea was observed. Concentrations of DDTs were quite high in the upper reach of the estuary, inferred from antifouling paint on fishing boats of a local shipping company. According to established sediment quality guidelines, DDTs in the JRE posed potential ecological risk. HCHs in the estuary were mainly derived from the weathered HCHs preserved in the agriculture soils via local major river runoffs. OCPs patterns showed that OCPs in the south coast of WTS were resulted from local sources via river input, while OCPs in the north coast attributed to the long-range transport derived by the Fujian-Zhejiang Coastal Current. Minor variations of PCB concentrations and homologs indicated that PCBs were not the main pollutant in the agricultural region, consistent lighter PCBs reflected industrial PCBs were transported via atmospheric deposition derived by East Asia Monsoon. Moreover, the primary distribution pattern founded for DDTs and the considerable mass inventories and burdens calculated (258.1 ng cm -2 and 10.4 tones for OCPs) that higher than Pearl River Delta and Yangtze River Delta, together suggested that the contaminated sediments in the study area may be a potential source of OCPs to the global ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments
NASA Astrophysics Data System (ADS)
Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann
2018-07-01
Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.
NASA Astrophysics Data System (ADS)
Pihl, Leif; Svenson, Anders; Moksnes, Per-Olav; Wennhage, Håkan
1999-06-01
Distribution and biomass of green algal mats were studied in marine shallow (0-1 m) soft-bottom areas on the Swedish west coast from 1994 to 1996, by combining aerial photography surveys with ground truth sampling. Filamentous green algae, dominated by species of the genera Cladophora and Enteromorpha, were generally present throughout the study area during July and August, and largely absent in late April and early May. These algae occurred at 60 to 90% of the locations investigated during the summer, and were estimated to cover between 30 and 50% of the total area of shallow soft bottoms of the Swedish Skagerrak archipelago. The distributional patterns were similar during the three years of the investigation and appeared unrelated to annual local nutrient inputs from point sources and river discharge. We postulate that the apparent lack of such a relationship is due to an altered state of nutrient dynamics throughout the archipelago. Mechanisms are likely to involve long-term, diffuse elevations in nutrient levels in coastal waters of the Skagerrak and the Kattegat over several decades leading to current eutrophic conditions, exceeding nutrient requirements for abundant filamentous algal growth. Patterns of algal abundance in our study were largely related to physical factors such as exposure to wind, waves and water exchange under conditions where nutrient loads among embayments seemed to be unlimited. Further, our results show that sediments covered by algal mats had higher carbon and nitrogen contents than unvegetated sediments. We hypothesise that sustained high nutrient loads, manifested in extensive biomass of filamentous algae during summer months, are re-mineralised via decay and sedimentation in the benthic realm. Hence, accumulated carbon and nutrients in the sediment could, in turn, constitute the basic pool for future algal mat production overlying soft bottoms in areas where tidal exchange is limited.
Heavy mineral analyses as a powerful tool in fluvial geomorphology
NASA Astrophysics Data System (ADS)
von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik
2014-05-01
The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.
Ballent, Anika; Corcoran, Patricia L; Madden, Odile; Helm, Paul A; Longstaffe, Fred J
2016-09-15
Microplastics contamination of Lake Ontario sediments is investigated with the aim of identifying distribution patterns and hotspots in nearshore, tributary and beach depositional environments. Microplastics are concentrated in nearshore sediments in the vicinity of urban and industrial regions. In Humber Bay and Toronto Harbour microplastic concentrations were consistently >500 particles per kg dry sediment. Maximum concentrations of ~28,000 particles per kg dry sediment were determined in Etobicoke Creek. The microplastic particles were primarily fibres and fragments <2mm in size. Both low- and high-density plastics were identified using Raman spectroscopy. We provide a baseline for future monitoring and discuss potential sources of microplastics in terms of how and where to implement preventative measures to reduce the contaminant influx. Although the impacts of microplastics contamination on ecosystem health and functioning is uncertain, understanding, monitoring and preventing further microplastics contamination in Lake Ontario and the other Great Lakes is crucial. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrate Formation in Gas-Rich Marine Sediments: A Grain-Scale Model
NASA Astrophysics Data System (ADS)
Holtzman, R.; Juanes, R.
2009-12-01
We present a grain-scale model of marine sediment, which couples solid- and multiphase fluid-mechanics together with hydrate kinetics. The model is applied to investigate the spatial distribution of the different methane phases - gas and hydrate - within the hydrate stability zone. Sediment samples are generated from three-dimensional packs of spherical grains, mapping the void space into a pore network by tessellation. Gas invasion into the water-saturated sample is simulated by invasion-percolation, coupled with a discrete element method that resolves the grain mechanics. The coupled model accounts for forces exerted by the fluids, including cohesion associated with gas-brine surface tension. Hydrate growth is represented by a hydrate film along the gas-brine interface, which increases sediment cohesion by cementing the grain contacts. Our model of hydrate growth includes the possible rupture of the hydrate layer, which leads to the creation of new gas-water interface. In previous work, we have shown that fine-grained sediments (FGS) exhibit greater tendency to fracture, whereas capillary invasion is the preferred mode of methane gas transport in coarse-grained sediments (CGS). The gas invasion pattern has profound consequences on the hydrate distribution: a larger area-to-volume ratio of the gas cluster leads to a larger drop in gas pressure inside the growing hydrate shell, causing it to rupture. Repeated cycles of imbibition and hydrate growth accompanied by trapping of gas allow us to determine the distribution of hydrate and gas within the sediment as a function of time. Our pore-scale model suggests that, even when film rupture takes place, the conversion of gas to hydrate is slow. This explains two common field observations: the coexistence of gas and hydrate within the hydrate stability zone in CGS, and the high methane fluxes through fracture conduits in FGS. These results demonstrate the importance of accounting for the strong coupling among multiphase flow, sediment mechanics, and hydrate formation. Our model explains the remarkable differences in hydrate distribution and saturation between fine- and coarse-grained sediments, and promotes the quantitative understanding of the role of methane hydrate in seafloor stability and the global carbon cycle, including the size of the hydrate energy resource, and estimates of methane fluxes into the ocean and the atmosphere.
Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz
2012-01-01
Fatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far. Combined FA concentrations in the surface sediment were higher compared to those in the deep sediment (497 vs. 127 μg g(-1)d.w., respectively). This was related to deposition of autochthonous biomass and higher terrestrial plants onto the surface sediment, as well as--to lesser extent--with higher bacterial activity on the sediment-water interface. The FA distribution in both sediments was characterized by a strong even-over-odd preference and was bimodal in nature: there was a cluster at nC(14)-nC(18) characteristic of chiefly autochthonous (algal and bacterial) SOM production, and another cluster at nC(22-28) related to input from higher plants. The FA distribution in the surface sediment pointed to higher terrestrial input compared to autochthonous contribution to SOM (67%:33%) as an estimate. Fingerprinting of viable bacteria was accomplished through signature FA markers including branched C(15) and C(17) surrogates, cyclopropanoic acids, 3-hydroxy (OH) acids and monounsaturated surrogates with unusual double bond localization. The abundance of Gram-negative bacteria was higher in the surface sediment as evidenced by total diagnostic 3-OH-fatty acids (37 μg g(-1) versus 25 μg g(-1)). Potential source taxa in both sediment layers included acidophilic iron- and sulfur-oxidizing bacteria including Acidithiobacillus ferrooxidans. High abundances of terminally branched C(15) and C(17) surrogates in both sediments pointed to sulfate- and iron-reducing bacteria. Signature FAs characteristic of methanotrophs were virtually lacking in both sediments. Copyright © 2011 Elsevier B.V. All rights reserved.
Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria
Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban
2016-01-01
The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838
Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Mehdinia, Ali; Safari, Omid
2014-01-01
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait. PMID:24747349
A regional soil and sediment geochemical study in northern California
Goldhaber, M.B.; Morrison, J.M.; Holloway, J.M.; Wanty, R.B.; Helsel, D.R.; Smith, D.B.
2009-01-01
Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.
NASA Astrophysics Data System (ADS)
Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.
2016-09-01
Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.
NASA Astrophysics Data System (ADS)
Dupuy, Christine; Mallet, Clarisse; Guizien, Katell; Montanié, Hélène; Bréret, Martine; Mornet, Françoise; Fontaine, Camille; Nérot, Caroline; Orvain, Francis
2014-09-01
Resuspension thresholds in terms of friction velocity were experimentally quantified for the prokaryotes, protists and for the first time, viruses of intertidal mudflat biofilms. Differences in resuspension thresholds could be related to the type, behaviour and size of microorganisms and their association with particles. Free microorganisms (viruses, bacteria and some nanoflagellates) were resuspended by weak flow at friction velocities lower than 2 cm s- 1. Chlorophyll a, some nanoflagellates and attached bacteria were resuspended together with the bed's muddy sediment, which required friction velocities larger than 3 cm s- 1. Diatoms smaller than 60 μm were resuspended at velocities between 3 and 5 cm s- 1, while those larger than 60 μm were resuspended at higher friction velocities (5.5 to 6.5 cm s- 1). The thresholds of resuspension also depended on the micro-scale position of microorganisms in the sediment (horizontal and vertical distributions). In the field, the vertical distribution of chlorophyll a (a proxy of microphytobenthos) was skewed, with a maximum in the first 2 mm of sediment. Along the neap-spring tidal cycle, chlorophyll a revealed an increase in MPB biomass in the first 2 mm of the sediment, in relation to light increases with exposure durations. The horizontal distribution of chlorophyll a could be inferred from erosion experiments. During the initial phase of biofilm growth, the distribution of chlorophyll a seemed horizontally homogeneous, and was uniformly eroded at the beginning of the increase in chlorophyll a. From these results, we can make a hypothesis: in the subsequent phase of biofilm growth until the maximum of emersion duration, the eroded quantity of chlorophyll a was larger than expected based from chlorophyll a vertical distribution, suggesting that biofilm horizontal distribution became patchy and enriched chlorophyll a was preferentially eroded. When emersion duration and biofilm growth decreased, the trend was reversed, and eroded quantity of chlorophyll a was lower than expected from chlorophyll a vertical distribution, suggesting that areas with low chlorophyll a were preferentially eroded. Such erosion patterns when biofilm growth decreased probably resulted from the bulldozing activity of a surficial sediment bioturbator, the gastropod Peringia ulvae. Our study did not directly prove this horizontal distribution but it should be further discussed. This distribution needs to be studied to acquire real evidence of patchy distributions.
NASA Astrophysics Data System (ADS)
Xing, Lei; Zhang, Hailong; Yuan, Zineng; Sun, Yao; Zhao, Meixun
2011-07-01
Revealing of the sources and distributions of sedimentary organic matter in the East China Sea (ECS) is important for understanding its carbon cycle, which has significant temporal and spatial variability due to the influences of recent climate changes and anthropogenic activities. In this study, we report the contents of both terrestrial and marine biomarkers including ∑C 27+C 29+C 31n-alkanes (38.6-580 ng/g), C 37 alkenones (5.6-124.6 ng/g), brassicasterol (98-913 ng/g) and dinosterol (125-1521 ng/g) from the surface sediments in the Changjiang River Estuary (CRE) and shelf areas of the ECS. Several indices based on biomarker contents and ratios are calculated to assess the spatial distributions of both terrestrial and marine organic matter in the ECS surface sediments, and these results are compared with organic matter distribution patterns revealed by the δ13C (-20.1‰ to -22.7‰) and C/N ratio (5-7.5) of total organic matter. The contents of terrestrial biomarkers in the ECS surface sediments decrease seaward, controlled mostly by Changjiang River (CR) inputs and surface currents; while higher contents of the two marine biomarkers (brassicasterol and dinosterol) occur in upwelling areas outside the CRE and in the Zhejiang-Fujian coastal zone, controlled mostly by marine productivity. Four proxies, fTerr( δ13C) (the fraction of terrestrial organic matter in TOC estimated by TOC δ13C), odd-alkanes (∑C 27+C 29+C 31n-alkanes), 1/ Pmar-aq ((C 23+C 25+C 29+C 31)/(C 23+C 25) n-alkanes) and TMBR (terrestrial and marine biomarker ratio) (C 27+C 29+C 31n-alkanes)/((C 27+C 29+C 31) n-alkanes+(brassicasterol+dinosterol+alkenones)), reveal a consistent pattern showing the relative contribution of terrestrial organic matter (TOM) is higher in the CRE and along the Zhejiang-Fujian coastline, controlled mostly by CR inputs and currents, but the TOM contribution decreases seaward, as the influences of the CR discharge decrease.
Contaminant distribution and accumulation in the surface sediments of Long Island Sound
Mecray, E.L.; Buchholtz ten Brink, Marilyn R.
2000-01-01
The distribution of contaminants in surface sediments has been measured and mapped as part of a U.S. Geological Survey study of the sediment quality and dynamics of Long Island Sound. Surface samples from 219 stations were analyzed for trace (Ag, Ba, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn and Zr) and major (Al, Fe, Mn, Ca, and Ti) elements, grain size, and Clostridium perfringens spores. Principal Components Analysis was used to identify metals that may covary as a function of common sources or geochemistry. The metallic elements generally have higher concentrations in fine-grained deposits, and their transport and depositional patterns mimic those of small particles. Fine-grained particles are remobilized and transported from areas of high bottom energy and deposited in less dynamic regions of the Sound. Metal concentrations in bottom sediments are high in the western part of the Sound and low in the bottom-scoured regions of the eastern Sound. The sediment chemistry was compared to model results (Signell et al., 1998) and maps of sedimentary environments (Knebel et al., 1999) to better understand the processes responsible for contaminant distribution across the Sound. Metal concentrations were normalized to grain-size and the resulting ratios are uniform in the depositional basins of the Sound and show residual signals in the eastern end as well as in some local areas. The preferential transport of fine-grained material from regions of high bottom stress is probably the dominant factor controlling the metal concentrations in different regions of Long Island Sound. This physical redistribution has implications for environmental management in the region.
NASA Astrophysics Data System (ADS)
Hamilton, P.; Strom, K.; Hoyal, D. C. J. D.
2015-12-01
Subaqueous fans are distributive channel systems that form in a variety of settings including offshore marine, sub-lacustrine, and reservoirs. These distributive systems create complex sedimentation patterns through repeated avulsion to fill in a basin. Here we ran a series of experiments to explore the intrinsic controls on avulsion cycles on subaqueous fans. Experiments are a convenient way to study these systems since the time-scale of fan development is dramatically shortened compared to natural settings, all boundary conditions can be controlled, and the experimental domain can be instrumented to monitor the pertinent hydraulic and morphologic variables. Experiments in this study used saline underflows and crushed plastic sediment fed down an imposed slope covered in the sediment. Avulsion cycles are a central feature in these experiments which are characterized by: (1) channel extension and stagnation; (2) bar aggradation and hydraulic jump initiation; (3) upstream retreat; and (4) flow avulsion. Looking at and analyzing these cycles yield the following conclusions: (1) distributive channels cease progradation due to a drop in sediment transport capacity in an expanded region ahead of the channel; (2) mouth bar aggradation leads to a large flow obstacle to cause the hydraulic jump feedback; (3) hydraulic jump regions are a significant locus of deposition; and (4) the upstream retreat rate is a function of sediment supply and the strength of the jump. We found that simple one-dimensional hydraulic principles such as the choked flow condition and the sequent depth ratio help to explain hydraulic jump initiation and emplaced lobe thickness respectively.
Modelling the bathymetry of the Antarctic continental shelf
ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.
1992-01-01
Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
Soilscapes in the dynamic tropical environments: The case of Sierra Madre del Sur
NASA Astrophysics Data System (ADS)
Krasilnikov, P. V.; García-Calderón, N. E.; Ibáñez-Huerta, A.; Bazán-Mateos, M.; Hernández-Santana, J. R.
2011-12-01
The paper gives an analysis of the pattern of soil cover of the Sierra Madre del Sur, one of the most complex physiographic regions of Mexico. It presents the results of the study of four latitudinal traverses across the region. We show that the distribution of soils in the Sierra Madre del Sur is associated with major climatic gradients, namely by vertical bioclimatic zonality in the mountains and by the effect of mountain shadow. Altitudinal distribution of soil-bioclimatic belts is complex due to non-uniform gradients of temperature and rainfall, and varies with the configuration of the mountain range. The distribution of soils is associated with the erosion and accumulation rates both on mountain slopes and in river valleys. The abundance of poorly developed soils in (semi)arid areas was ascribed to high erosion rate rather than to low pedogenetic potential. The formation of soil mosaic at a larger scale might be ascribed to the complex net of gully erosion and to the system of seismically triggered landslides of various ages. In the valleys, the distribution of soils depends upon the dynamics of sedimentation and erosion, which eventually exposes paleosols. Red-colored clayey sediments are remains of ancient weathering and pedogenesis. Their distribution is associated mainly with the intensity of recent slope processes. The soil cover pattern of the Sierra Madre del Sur cannot be explained by simplified schemes of bioclimatic zonality. The soil ranges can be explained by the distribution of climates, lithology, complex geological history of the region, and recent geomorphological processes.
NASA Astrophysics Data System (ADS)
Knoppers, B.; Medeiros, P. R. P.; de Souza, W. F. L.; Oliveira, E. N.; Fontes, L. C. da S.; do Carmo, M. S.; Carvalho, I. S.; Silva, M. C.; Brandini, N.; Carneiro, M. E.
2012-04-01
This study couples published and unpublished information on the alterations of continental material fluxes, plume dispersal patterns and coastal erosion induced by natural and human impacts to the distribution of sediment facies and sedimentation rates of the continental shelf of the States of Sergipe and Alagoas, northeastern Brazil (Lats. 8o56,2' and 11o20,0' S, Longs. 35o07,7' and 37o14,2' W). Historical data on river flow and material fluxes of 7 rivers, including the São Francisco river (L = 2850 km, AB = 634000 km2), were obtained from own measurements and from the national data bank of ANA (National Agency of Waters, www.ana.gov.br) with the softwares HIDRO 1.2 and SisCAH 1.0. Historical data on the distribution of sediments and their elemental composition of the shelf from the AKAROA (1965) campaign with 190 sampling stations (scale 1:1.000.000; Kempf, 1972, Summerhayes et al. 1975 & 1976, Coutinho, 1976) were revisited and new digital maps constructed with ArcGIS 9.3. Comparisons are made from new maps from recent campaigns (scale 1:250.000) performed by the consortium GEORIOEMAR/ UFS/ CENPES/ PETROBRÁS (2010). Statistical analyses with all parameters revealed that the shelf harbors 4 major regional sedimentary domains (i.e. A to D), reflecting the interaction between continental inputs and the impact of the oligotrophic South Equatorial Current (SEC) upon the shelf. The domains are: A- The Alagoas shelf. Set north of the São Francisco river with low fluvial input, dominance of SEC, recent organogenetic carbonate sediments with the calcareous algae Lithothamnium sp. and Halimeda sp. B- The São Francisco river alluvial fan and canyon. The river harbors a cascade of dams and after 1995, river flow declined by 40 % and was modulated to a constant flow of 2060 m3s-1, 95 % of the suspended matter load was retained within the reservoirs and nutrients (N,P) were impoverished by 90 % . The estuarine waters are now transparent and oligotrophic and the coastal plume lost its original turbidity and unimodal seasonal pattern of pulsation upon the shelf as indicated by In Situ sampling and Satellite imagery series (LANDSAT TM 2-5 and MODIS). The coastal plume is largely fed with suspended matter from resupension processes and coastal erosion. C- The Japaratuba river fan. The inner-mid shelf harbors relict muddy and sandy siliclastic sediments and the shelf margin biodetritic carbonates. Riverine inputs have become insignificant. D- The southern shelf of Sergipe. The muddy, sandy and carbonate Merl sediments are heterogeneously distributed,and the coast is affected by diffuse small riverine inputs and wash out by the SEC. Sedimentation rates (210Pbex chronology with the CRS model) of Domains B and C ranged between 0.7 and 0.1 cm year-1, being similar to those of the eastern Brazilian shelf.
NASA Astrophysics Data System (ADS)
Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.
2017-12-01
Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A
2018-10-15
The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Dahae; Kim, Jung-Hyun; Kim, Min-Seob; Ra, Kongtae; Shin, Kyung-Hoon
2018-05-04
We investigate historical environmental changes in an artificial lake, Lake Shihwa in South Korea, based on bulk (TOC, TN, C/N ratio, δ 13 C TOC , and δ 15 N TN ) and molecular (concentrations and δ 13 C of n-alkanes) parameters, by analyzing riverbank sediments (n = 12), lake surface sediments (n = 9), and lake core sediments (n = 108). Although the bulk organic parameters showed similar characteristics for all lake surface sediment samples, the distribution pattern and δ 13 C of n-alkanes revealed distinct differences between 2009 samples and 2012/2016 samples. This change of sedimentary organic matter characteristics can be attributed to operation of the tidal power plant that began in 2011, which improved lake water circulation and thus changed the lake sedimentary environment from anoxic to more oxic conditions. The vertical profiles of bulk and molecular lake sediment core records collected in 2009, especially at the site closest to the dike, showed a drastic shift around 1987, indicating that stronger anoxic sedimentary conditions prevailed after 1987. This is linked to sea dike construction in 1987, which prohibited sea-lake water exchange and thus deteriorated water quality in Lake Shihwa. We conclude that Lake Shihwa has experienced severe environmental changes due to human activities. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, C. L.; Zou, X. Q.; Zhao, Y. F.; Li, Y. L.; Song, Q. C.; Wang, T.; Yu, W. W.
2017-06-01
This study conducted the first extensive and comprehensive investigation of the regional-scale sedimentary polycyclic aromatic hydrocarbons (PAHs) concentration, flux, and budget in the continental shelves of the Eastern China Marginal Seas (ECMSs). Surface sediment samples from multiple sites were collected and assessed, and the latest data from current research were assessed. The spatial distribution pattern of PAHs in the ECMSs was significantly influenced by the regional hydrodynamics, sediment properties (grain-size, total organic carbon [TOC] content, and sedimentation rate), and anthropogenic impacts. Relatively higher PAHs concentrations occurred in areas with fine-grained sediment. Results of source apportionment found that the relative proportions of PAHs showed significant regional variation, mainly influenced by socioeconomic differences between north and south China. The PAHs burial flux in the study area ranged from 11.2 to 1308 ng cm-2 yr-1 with an average value of 101 ± 104 ng cm-2 yr-1. The area-integrated sedimentary PAHs burial flux across the ECMSs was 494 t yr-1. A mass budget calculation revealed that riverine input and atmospheric deposition were the most significant sources contributing, 28.4% and 71.6%, respectively. The study demonstrated that net PAHs transportation occurs between the Bohai Sea (BS) and Yellow Sea (YS), with a flux of approximately 10.2 t yr-1. PAHs were also transported from YS to the East China Sea (ECS), due to water exchange between the YS and ECS. Additionally, substantial amounts of PAHs in the inner shelf of the ECS were transported out of the shelf area due to cross-shelf plume.
Li, Hongjun; Gao, Xuelu; Gu, Yanbin; Wang, Ruirui; Xie, Pengfei; Liang, Miao; Ming, Hongxia; Su, Jie
2018-04-01
The Bohai Sea is characterized as a semi-closed sea with limited water exchange ability, which has been regarded as one of the most contaminated regions in China and has attracted public attention over the past decades. In recent years, the rapid industrialization and urbanization around the coastal region has resulted in a severe pollution pressure in the Bohai Sea. Although efforts from official government and scientific experts have been made to protect and restore the marine ecosystem, satisfactory achievements were not gained. Moreover, partial coastal areas in the Bohai Sea seemingly remain heavily polluted. In this study, we focused on five coastal regions around the Bohai Sea to study the spatial distribution pattern of trace elements in the sediments and their ecological risk. A total of 108 sediment samples were analyzed to determine the contamination degree of trace elements (Cu, Cd, As, Pb, Zn, Cr, and Hg). Contamination factor (CF), pollution load index (PLI), geoaccumulation index (I geo ), and potential ecological risk index (PERI) were utilized to assess the pollution extent of these metals. Spatial distribution patterns revealed that the sedimentary environments of coastal Bohai were in good condition, except Jinzhou Bay, according to the Marine Sediment Quality of China. The concentrations of Hg and Cd were considerably higher than the average upper crust value and presented high potential ecological risk and considerable potential ecological risk, respectively. The overall environment quality of the coastal Bohai Sea does not seem to pose an extremely serious threat in terms of metal pollution. Thus, the government should continue implementing pollution control programs in the Bohai Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong
2017-09-12
Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.
Petroleum hydrocarbon concentrations in marine sediments along Chennai Coast, Bay of Bengal, India.
Venkatachalapathy, R; Veerasingam, S; Ramkumar, T
2010-10-01
The spatial and temporal distribution of petroleum hydrocarbons (PHC) in marine sediments along the Chennai coast, Bay of Bengal was quantified by Ultra-Violet Fluorescence (UVF) Spectroscopy. The concentration of PHC in surface sediments varied from 1.88 to 39.76 ppm. The highest values obtained in the northern part of the study area, where shipping activities and land-based waste waters disposed into sea through the rivers like Kuvam and Adayar. The Adayar (7.26-16.83 ppm) and Kuvam (5.5-39.72 ppm) cores reveal a clear horizon of increase in PHC above 50 and 35 cm respectively. PHC values showed a decreasing pattern with depth in all sediment cores suggesting the excess anthropogenic loading occurring in the recent past. The present study revealed that the PHC values of Chennai coastal sediments are lower than the values reported from selected costal areas including the sediment of the Mumbai coast (7.6-42.8 ppm), Arabian Sea. The results will be useful for pollution monitoring program along the coastal region and also to check the level of petroleum hydrocarbons in marine sediments.
Detecting Suspended Sediments from Remote Sensed Data in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Hardin, D. M.; Graves, S. J.; Hawkins, L.; He, M.; Smith, T.; Drewry, M.; Ebersole, S.; Travis, A.; Thorn, J.; Brown, B.
2012-12-01
The Sediment Analysis Network for Decision Support (SANDS) project utilized remotely sensed data from Landsat and MODIS, both prior and following landfall, to investigate suspended sediment and sediment redistribution. The satellite imagery was enhanced by applying a combination of cluster busting and classification techniques to color and infrared bands. Results from the process show patterns associated with sediment transport and deposition related to coastal processes, storm-related sediment transport, post-storm pollutant transport, and sediment-current interactions. Imagery prior to landfall and following landfall are shown to the left for Landsat and to the right for MODIS. Scientific analysis and production of enhanced imagery was conducted by the Geological Survey of Alabama. The Information Technology and Systems Center at the University of Alabama in Huntsville was responsible for data acquisition, development of the SANDS data portal and the archive and distribution through the Global Hydrology Resource Center, one of NASA's Earth Science Data Centers . SANDs data may be obtained from the GHRC at ghrc.nsstc.nasa.gov and from the SANDS data portal at sands.itsc.uah.edu. This project was funded by the NASA Applied Sciences Division
NASA Astrophysics Data System (ADS)
Chapuis, Margot; Dufour, Simon; Provansal, Mireille; Couvert, Bernard; de Linares, Matthieu
2015-02-01
Bedload transport and bedform mobility in large gravel-bed rivers are not easily monitored, especially during floods. Large reaches present difficulties in bed access during flows for flow measurements. Because of these logistical issues, the current knowledge about bedload transport processes and bedform mobility lacks field-based information, while this missing information would precisely match river management needs. The lack of information linking channel evolution and particle displacements is even more striking in wandering reaches. The Durance River is a large, wandering, gravel-bed river (catchment area: 14,280 km2; mean width: 240 m), located in the southern French Alps and highly impacted by flow diversion and gravel mining. In order to improve current understanding of the link between sediment transport processes and river bed morphodynamics, we set up a sediment particle survey in the channel using Radio Frequency Identification (RFID) tracking and topographic surveys (GPS RTK and scour chains) for a 4-year recurrence interval flood. By combining topographic changes before and after a flood, intraflood erosion/deposition patterns from scour chains, differential routing of tracer particles, and spatial distribution of bed shear stress through a complex reach, this paper aims to define the critical shear stress for significant sediment mobility in this setting. Gravel tracking highlights displacement patterns in agreement with bar downstream migration and transport of particles across the riffle within this single flood event. Because no velocity measurements were possible during flood, a TELEMAC three-dimensional model helped interpret particle displacements by estimating spatial distribution of shear stresses and flow directions at peak flow. Although RFID tracking in a large, wandering, gravel-bed river does have some technical limitations (burial, recovery process time-consuming), it provides useful information on sediment routing through a riffle-pool sequence.
Seasonal sedimentary processes of the macrotidal flat in Gomso Bay, west coast of Korea
NASA Astrophysics Data System (ADS)
Woo, H.; Kang, J.; Choi, J.
2012-12-01
The tidal flats on the west coast of Korea have broad zones with gentle slopes and a macrotidal setting with 4 to 10 meters of tidal ranges. They are directly influenced by monsoons and heavily affected by waves in winter and tidal currents in summer. As a result, most western tidal flats show the seasonal changes of sedimentary features comprising sedimentation and/or erosion of sediments. Gomso bay in the mid-west of Korea is a funnel-shaped embayment with a wide entrance to the west. Tides are semidiurnal and macrotidal, with a mean tidal range of 433.8 cm. Digital elevation model (DEM) showed that the landward inner bay had mainly high elevations and the seaward outer bay had relatively low elevations. In particular, there are considerable gradients in the outer bay from area of high-water line to area of low-water line. The sedimentary analysis and monitoring short-term sedimentation rates were investigated to understand seasonal sedimentary processes of tidal flats in Gomso bay. The surface sediments in the bay were classified into five sedimentary facies in spring 2011. Generally, sandy sediments were dominated in the outer bay, whereas sandy mud sediments were distributed on the inner bay. The middle bay mainly consisted of muddy sand sediments. The percentages of sand decreased from outer to inner bay. The short-term sedimentation rates were obtained from three lines by burying a plate at sub-bottom depth and periodically measuring the changing sediment depth from February 2011 to February 2012. In the tidal flat at inner bay (KB- Line), the annual sedimentation rates were ranged -8.87 to 74.69 mm/year with the net deposition rate of 40.90 mm/year. The deposition occurred on KB-Line in spring, autumn and winter. The erosion was dominated on the tidal flats at middle (KH-Line) and outer bay (KM-Line) during autumn and winter with an annual erosion rate of -29.86 mm/year and -9.92 mm/year, respectively. The seasonal variations of sedimentation on these tidal flats showed that the deposition occurred with an inflow of muddy sediments in summer, whereas the erosion was dominated in autumn and winter. In August 2011, the distribution patterns of rare earth elements (REEs) relative to the upper continental crust (UCC) showed the enrichment of light REEs (LREEs: La-Nd), together with an apparent depletion of Eu in the KH- and KM-Lines. This pattern was more pronounced in the middle bay sediments (KH-Line) due to influence of muddy sediment transport from Jujin Stream during the rainy period (July and August). On the other hand, the outer bay sediments in the KM-Line were reflected more inflow of second sediment source, the Geum River. The major control factors for seasonal variations of sediments on the tidal flat could be heavy rainfall and tidal currents during summer and strong waves during winter. The net sedimentation showed that the deposition occurred in the inner tidal flat and erosion occurred in the middle and outer tidal flat of the bay.
Zhou, Zhichao; Chen, Jing; Meng, Han; Dvornyk, Volodymyr; Gu, Ji-Dong
2017-02-01
PCR primers targeting genes encoding the two proteins of anammox bacteria, hydrazine synthase and cytochrome c biogenesis protein, were designed and tested in this study. Three different ecotypes of samples, namely ocean sediments, coastal wetland sediments, and wastewater treatment plant (WWTP) samples, were used to assess the primer efficiency and the community structures of anammox bacteria retrieved by 16S ribosomal RNA (rRNA) and the functional genes. Abundances of hzsB gene of anammox bacteria in South China Sea (SCS) samples were significantly correlated with 16S rRNA gene by qPCR method. And hzsB and hzsC gene primer pair hzsB364f-hzsB640r and hzsC745f-hzsC862r in combination with anammox bacterial 16S rRNA gene primers were recommended for quantifying anammox bacteria. Congruent with 16S rRNA gene-based community study, functional gene hzsB could also delineate the coastal-ocean distributing pattern, and seawater depth was positively associated with the diversity and abundance of anammox bacteria from shallow- to deep-sea. Both hzsC and ccsA genes could differentiate marine samples between deep and shallow groups of the Scalindua sp. clades. As for WWTP samples, non-Scalindua anammox bacteria reflected by hzsB, hzsC, ccsA, and ccsB gene-based libraries showed a similar distribution pattern with that by 16S rRNA gene. NH 4 + and NH 4 + /Σ(NO 3 - + NO 2 - ) positively correlated with anammox bacteria gene diversity, but organic matter contents correlated negatively with anammox bacteria gene diversity in SCS. Salinity was positively associated with diversity indices of hzsC and ccsB gene-harboring anammox bacteria communities and could potentially differentiate the distribution patterns between shallow- and deep-sea sediment samples. SCS surface sediments harbored considerably diverse community of Scalindua. A new Mai Po clade representing coastal estuary wetland anammox bacteria group based on 16S rRNA gene phylogeny is proposed. Existence of anammox bacteria within wider coverage of genera in Mai Po wetland indicates this unique niche is very complex, and species of anammox bacteria are niche-specific with different physiological properties towards substrates competing and chemical tolerance capability.
Wang, Jing; Kan, Jinjun; Zhang, Xiaodong; Xia, Zhiqiang; Zhang, Xuecheng; Qian, Gang; Miao, Yanyi; Leng, Xiaoyun; Sun, Jun
2017-01-01
Ammonia-oxidizing Archaea (AOA) and ammonia-oxidizing Bacteria (AOB) oxidize ammonia to nitrite, and therefore play essential roles in nitrification and global nitrogen cycling. To better understand the population structure and the distribution of AOA and AOB in the deep Eastern Indian Ocean (EIO), nine surface sediment samples (>3,300 m depth) were collected during the inter-monsoon Spring 2013. One sediment sample from the South China Sea (SCS; 2,510 m) was also included for comparison. The community composition, species richness, and diversity were characterized by clone libraries (total 1,238 clones), and higher diversity of archaeal amoA genes than bacterial amoA genes was observed in all analyzed samples. Real time qPCR analysis also demonstrated higher abundances (gene copy numbers) of archaeal amoA genes than bacterial amoA genes, and the ratios of AOA/AOB ranged from 1.42 to 8.49 among sites. In addition, unique and distinct clades were found in both reconstructed AOA and AOB phylogeny, suggesting the presence of niche-specific ammonia-oxidizing microorganisms in the EIO. The distribution pattern of both archaeal and bacterial amoA genes revealed by NMDS (non-metric multidimensional scaling) showed a distinct geographic separation of the sample from the SCS and most of the samples from the EIO following nitrogen gradients. Higher abundance and diversity of archaeal amoA genes indicated that AOA may play a more important role than AOB in the deep Indian Ocean. Environmental parameters shaping the distribution pattern of AOA were different from that of AOB, indicating distinct metabolic characteristics and/or adaptation mechanisms between AOA and AOB in the EIO, especially in deep-sea environments. PMID:28360898
NASA Astrophysics Data System (ADS)
Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco
2015-12-01
Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.
NASA Astrophysics Data System (ADS)
Yang, YanYan; Liu, LianYou; Shi, PeiJun; Zhang, GuoMing; Qu, ZhiQiang; Tang, Yan; Lei, Jie; Wen, HaiMing; Xiong, YiYing; Wang, JingPu; Shen, LingLing
2015-03-01
To understand the characteristics of the nebkhas in barchan interdune areas, isolated barchan dunes at the southeast margin of the Badain Jaran Desert in China and Nitraria tangutorun nebkhas in the interdune areas were selected, and the morphometric parameters, spatial patterns, and granulometric characteristics of the nebkhas in various interdune zones were compared. According to the locations relative to barchan dunes, the interdune areas were divided into three zones: the windward interdune zone (Zw), the leeward interdune zone (Zl), and the horn interdune zone (Zh). The zone that is proximal to barchan dunes and has never been disturbed by barchan dunes was also selected (Zi). The morphometric parameters were measured through a satellite image and field investigation. The population density and spatial patterns were analyzed using the satellite image, and surface sediment samples of the nebkhas and barchan dunes were collected for grain size analysis. The morphometric parameters of Nitraria tangutorun nebkhas in the interdune zones differ significantly. The nebkhas in Zh are larger than those observed in the other zones, and the nebkhas are the smallest in Zl. In all of the zones, the long-axis orientation of the nebkhas is perpendicular to the prevailing wind direction. The population density of the nebkhas in Zw is relatively higher, whereas the density in Zh and Zl becomes obviously lower. The spatial distribution of nebkhas in all of the zones can be categorized as a dispersed pattern. The sediments of the nebkhas are coarsest in Zh and finest in Zl. In addition, the sediments of the nebkhas in all of the zones are finer than those of barchan dunes. The amount of sand captured by the nebkhas in the interdune areas is approximately 20% of the volume of barchan dunes. The variations of the nebkhas' sizes, spatial pattern and sediment are subjected to migration, flow field and sand transport of barchan dunes and sand accumulation with plant growth in the interdune areas, which suggest complex mutual interactions between barchan dunes and the nebkhas in the interdune areas.
Harris, C.K.; Wiberg, P.L.
2001-01-01
A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.
Steuer, Jeffrey S.; Fitzgerald, Sharon A.; Hall, David W.
1999-01-01
The distribution and transport of polychlorinated biphenyl (PCB) congeners were determined at various sites on Cedar Creek and its receiving stream, the Milwaukee River. PCB congener distributions were determined in the operationally defined dissolved phase, suspended-particle phase, and surficial bed sediments (0?2 centimeters depth). At most sites, the relative abundances of PCB congeners in the suspended particles and surficial bed sediments were similar to each other, and in some cases, to known Aroclor mixtures (1242 and 1260). Dissolved PCB congener distributions were higher in the less chlorinated congeners as predicted by their lower hydrophobicity and higher solubility. Log partition coefficients for the dissolved and the particle-associated organic carbon phases ranged from 5.0 to 5.8 and 6.5 to 7.5, respectively, for SPCB?s (congener summation). Particle-associated PCB?s exhibited two patterns: (1) a general increase in spring and summer associated with algal growth and, (2) episodic increases associated with resuspension of bed sediments during storms. Total suspended solids loads in water year 1994 ranged from 8,700 tons at Pioneer Road to 15,800 tons at Estabrook Park. PCB loads decreased from Highland Road (3.7 kilograms) to Pioneer Road (1.8 kilograms) from August 1994 to August 1995, indicating PCB deposition between those sites. PCB transport at Estabrook Park was 8 to 16 kilograms during this same time period.
Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.
2015-01-01
Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.
Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman
2018-02-23
The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.
Hengstmann, Elena; Tamminga, Matthias; Vom Bruch, Constantin; Fischer, Elke Kerstin
2018-01-01
To extent the understanding on microplastics in the marine environment we performed a case study at four beaches on the Isle of Rügen considering abundance and spatial distribution of microplastics in beach sediments. For the analysis, density separation via a glass elutriation column was implemented. In advance, efficiencies were tested for two polymers, being not buoyant in water. Recovery rates of 80% for PET and 72% for PVC particles in sandy samples were achieved. A median abundance of 88.10 (Q 1 =55.01/Q 3 =114.72) microplastic particles per kg dry sediment or 2862.56 (Q 1 =1787.34/Q 3 =3727.28) particles per m 2 was found at the beaches on Rügen. Fibers were more abundant than fragments at all beaches. In this study, no statistically significant differences but only tendencies were determined between the beaches with different exposition and anthropogenic activity as well as for distribution patterns which showed that microplastic fragments accumulate in topographic depressions, similar to macrolitter items. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook
2009-01-01
The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our understanding of mechanisms of organic matter preservation in saline lake sediments.
NASA Astrophysics Data System (ADS)
Laine, Ari O.
2003-05-01
To analyse the large-scale distribution of soft-bottom macrofauna in the open Baltic Sea, samples for species abundance and biomass were collected in 1996-1997. Benthic community structure was used to classify and describe different assemblages and the observed distribution of communities was related to environmental factors. Distinct benthic assemblages were found that were dominated by only a few species ( Harmothoe sarsi, Saduria entomon, Monoporeia affinis, Pontoporeia femorata and Macoma balthica). These assemblages were related to different subareas and/or depth zones of the Baltic Sea. Salinity or the combined effects of salinity, dissolved oxygen and sediment organic matter content best explained the patterns in community distribution, indicating the importance of hydrography and sediment quality as structuring factors of the macrozoobenthos communities. When compared to long-term studies on Baltic macrozoobenthos it is evident that the results represent only a momentary state in the succession of the open-sea communities, which have been affected by past changes in hydrography, and will be subject to future changes in accordance with the variable environment, affected by climate.
Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei
2015-12-01
Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.
NASA Astrophysics Data System (ADS)
Simionato, Claudia; Moreira, Diego
2017-04-01
The impact of the diverse mechanisms driving the suspended sediments distribution in the wide, shallow and microtidal Río de la Plata (RdP) estuary and the adjacent shelf is studied by means of a set of process-oriented numerical simulations. With that aim, a regional application of the hydro-sedimentological Model for Applications at Regional Scale (MARS) is implemented, tested and run under diverse conditions. Even the simulations are idealized, they reproduce both qualitatively and quantitatively well the main features of the suspended sediments observed distribution, particularly the mean values of concentration and its gradients: perpendicular to the estuary axis at the upper and intermediate RdP and parallel to the estuary axis at its outer part. Even though naturally the diameter of the sediments that deposit decays with the distance to the sources (with sands and silts dominating in the upper estuary and fine silts and clays over the Barra del Indio), model results show that the large width and the geometry of the estuary play an important role in the sedimentation process. The widening and deepening, and the associated significant reduction of the currents speed that occurs after (i) the confluence of the tributaries and (ii) downstream the Barra del Indio Shoal, favors sediments deposition downstream those areas. Even though tides are of small amplitude in the study area, they have a significant impact on the lateral mixing and the re-suspension of bottom sediments; this last augments the concentration of fine sediments in the layers close to the bottom but their energy is not enough to rise them up to the surface. The model reproduces the increment in the concentration of fine sediments observed in the areas where tidal dissipation energy by bottom friction maximizes (over the southern coast of the RdP and around Punta Piedras and Punta Rasa), but shows that tides alone cannot account for the observed maxima. Winds (which can be quite large over this area) enhance horizontal mixing, smoothing the pattern produced by the tides. Wind waves are the most important forcing for the vertical mixing of the sediments. Their effect is most evident along the southern coast of the RdP and the Barra del Indio Shoal, where wind waves rise to the surface the sediments resuspended by tides. The bottom salinity front acts retaining the sediments upstream the Barra del Indio shoal; there, estuarine currents and flocculation play an important role in sediments deposition.
Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E.
1991-01-01
Cinnabar- and stibnite-bearing epithermal vein deposits are found throughout the Kuskokwim River region of southwestern Alaska. A geochemical orientation survey was carried out around several of these epithermal lodes to obtain information for planning regional geochemical surveys and to develop procedures which maximize the anomaly: threshold contrast of the deposits. Stream sediment, heavy-mineral concentrate, stream water, and vegetation samples were collected in drainages surrounding the Red Devil, Cinnabar Creek, White Mountain, Rhyolite, and Mountain Top deposits. Three sediment size fractions; nonmagnetic, paramagnetic and magnetic splits of the concentrate samples; stream waters; and the vegetation samples were analyzed for multi-element suites by a number of different chemical procedures. Nonmagnetic, heavy-mineral concentrates were also examined microscopically to identify their mineralogy. Results confirm Hg, Sb and As concentrations in minus-80-mesh stream sediments as effective pathfinder elements in exploration for epithermal cinnabar and stibnite deposits. Coarser-grained sediments are much less effective in the exploration for these deposits. Concentrations greater than 3 ppm Hg, 1 ppm Sb, and 15 ppm As in the minus-80-mesh stream sediment, regardless of the host lithology, are indicative of upstream cinnabar-stibnite deposits. Gold, Ag and base metals in the stream sediments are ineffective pathfinders for this epithermal deposit type. Collection of heavy-mineral concentrates provides little advantage in the exploration for these mineral deposits. Antimony and As dispersion patterns downstream from mineralized areas are generally more restricted in the concentrates than those in the stream sediments. Anomalous placer cinnabar observed in the concentrates has a similar spatial distribution pattern as anomalous Hg and Sb in corresponding sediments. Stream waters are less effective than the stream sediments or heavy-mineral concentrates, and vegetation is an ineffective geochemical sample medium in exploration for this deposit type. ?? 1991.
Google Earth-Based Grand Tours of the World's Ocean Basins and Marine Sediments
NASA Astrophysics Data System (ADS)
St John, K. K.; De Paor, D. G.; Suranovic, B.; Robinson, C.; Firth, J. V.; Rand, C.
2016-12-01
The GEODE project has produced a collection of Google Earth-based marine geology teaching resources that offer grand tours of the world's ocean basins and marine sediments. We use a map of oceanic crustal ages from Müller et al (2008; doi:10.1029/2007GC001743), and a set of emergent COLLADA models of IODP drill core data as a basis for a Google Earth tour introducing students to the world's ocean basins. Most students are familiar with basic seafloor spreading patterns but teaching experience suggests that few students have an appreciation of the number of abandoned ocean basins on Earth. Students also lack a valid visualization of the west Pacific where the oldest crust forms an isolated triangular patch and the ocean floor becomes younger towards the subduction zones. Our tour links geographic locations to mechanical models of rifting, seafloor spreading, subduction, and transform faulting. Google Earth's built-in earthquake and volcano data are related to ocean floor patterns. Marine sediments are explored in a Google Earth tour that draws on exemplary IODP core samples of a range of sediment types (e.g., turbidites, diatom ooze). Information and links are used to connect location to sediment type. This tour compliments a physical core kit of core catcher sections that can be employed for classroom instruction (geode.net/marine-core-kit/). At a larger scale, we use data from IMLGS to explore the distribution of the marine sediments types in the modern global ocean. More than 2,500 sites are plotted with access to original data. Students are guided to compare modern "type sections" of primary marine sediment lithologies, as well as examine site transects to address questions of bathymetric setting, ocean circulation, chemistry (e.g., CCD), and bioproductivity as influences on modern seafloor sedimentation. KMZ files, student exercises, and tips for instructors are available at geode.net/exploring-marine-sediments-using-google-earth.
Bejarano, Adriana C; Michel, Jacqueline
2010-05-01
A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (< or = 1), low (>1 - < or = 2), low-medium (>2 - < or = 3), medium (>3 - < or = 5) and high-risk (>5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - <60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerhardt, Sabine; Henrich, Rüdiger
2001-08-01
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive "metabolic" aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and δ13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO 2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.
Fracture characteristics of gas hydrate-bearing sediments in the Ulleung Basin, East Sea
NASA Astrophysics Data System (ADS)
Kim, Gil Young; Narantsetseg, Buyanbat; Yoo, Dong Geun; Ryu, Byong Jae
2015-04-01
The LWD (Logging-While-Drilling) logging (including wireline logging) and coring (including pressure coring) were conducted during UBGH2 (Ulleung Basin Gas Hydrate) expedition. The LWD data from 13 logged sites were obtained and most of the sites showed typical log data indicating the presence of gas hydrate. In particular, prominent fractures were clearly identified on the resistivity borehole images from the seismic chimney structures. The strike and dip of each fracture in all sites was calculated and displayed on the stereographic plot and rosette diagram. Fracture orientations on the stereographic plot are more broadly distributed, indicating that the fracture pattern is not well-ordered on the rosette diagram, although the maximum horizontal stress dominates NW-SE direction at most sites. This indicates that accurate horizontal stress directions cannot be completely resolved from the fractures. Moreover, the fractures may be developed from overburden (e.g., gravitational effect) compaction associated with sediment dewatering after deposition. Thus we should consider various factors affecting formation of fractures in order to interpret the origin of fractures. Nevertheless, the results of fracture analysis can be used to interpret distribution pattern and type of gas hydrate in the Ulleung Basin. .
Wilson, Doyle C
2018-04-15
Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.
1996-01-01
Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.
Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris
2005-07-01
The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.
Cenozoic seismic stratigraphy of the SW Bermuda Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mountain, G.S.; Driscoll, N.W.; Miller, K.G.
1985-01-01
The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough tomore » erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.« less
NASA Astrophysics Data System (ADS)
Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou
2014-05-01
Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by managing sediment according to the identified sediment sources in the watershed.
NASA Astrophysics Data System (ADS)
Sneddon, Christopher; Copplestone, David; Tyler, Andrew; Hunter, Peter; Smith, Nick
2014-05-01
The EPSRC-funded Adaptation and Resilience of Coastal Energy Supply (ARCoES) project encompasses four research strands, involving 14 institutions and six PhD studentships. ARCoES aims to determine the threats posed to future energy generation and the distribution network by flooding and erosion, changing patterns of coastal sedimentation, water temperature and the distribution of plants and animals in the coastal zone. Whilst this research has direct benefits for the operation of coastal power stations, ARCoES aims to have a wider stakeholder engagement through assessing how the resilience of coastal communities may be altered by five hundred years of coastal evolution. Coastal evolution will have substantial implications for the energy sector of the North West of England as former waste storage sites are eroded and remobilised within the intertidal environment. The current intertidal environmental stores of radioactivity will also experience reworking as ocean chemistry changes and saltmarsh chronologies are reworked in response to rising sea levels. There is a duel requirement to understand mass sediment movement along the North West coast of England as understanding the sediment transport dynamics is key to modelling long term coastal change and understanding how the environmental store of radioactivity will be reworked. The University of Stirling is researching the long-term environmental and health implications of remobilisation and transport of contaminated sediments around the UK coastline. Using a synergy of hyperspectral and topographic information the mobilisation of sediment bound contaminants within the coastal environment will be investigated. Potential hazards posed by contaminants are determined by a set of environmental impact test criteria which evaluate the bio-accessibility and ionising dose of contaminants. These test criteria will be used to comment on the likely environmental impact of modelled sediment transport and anticipated changes in ocean chemistry.
NASA Astrophysics Data System (ADS)
Castelo-Branco, R.; Barreiro, A.; Silva, F. S.; Carvalhal-Gomes, S. B. V.; Fontana, L. F.; Mendonça-Filho, J. G.; Vasconcelos, V.
2016-11-01
The Cabo Frio Upwelling System is one of the largest and most productive areas in southeastern Brazil. Although it is well-known that bacterial communities play a crucial role in the biogeochemical cycles and food chain of marine ecosystems, little is known regarding the microbial communities in the sediments of this upwelling region. In this research, we address the effect of different hydrological conditions on the biogeochemistry of sediments and the diversity of bacterial communities. Biogeochemistry profiles of sediments from four sampling stations along an inner-outer transect on the continental shelf were evaluated and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments was used to study the bacterial community composition in these sediments. Our sequencing analysis of excised bands identified Alpha- and Gammaproteobacteria, Bacteroidetes and bacteria belonging to the Firmicutes phyla as the phylogenetic groups, indicating the existence of great diversity in these marine sediments. In this multidisciplinary study, the use of multivariate analysis was crucial for understanding how biogeochemical profiles influence bacterial community distribution. A Principal Component Analysis (PCA) indicated that the biogeochemical variables exhibited a clear spatial pattern that is mainly related to hydrological conditions. A Correspondence Analysis (CA) revealed an important association between certain taxonomic groups and specific sampling locations. Canonical Correspondence Analysis (CCA) demonstrated that the biogeochemistry influences the structure of the bacterial community in sediments. Among the bacterial groups identified, the most taxonomically diverse classes (Alphaproteobacteria and Gammaproteobacteria) were found to be distributed regardless of any studied biogeochemical variables influences, whereas other groups responded to biogeochemical conditions which, in turn, were influenced by hydrological conditions. This finding was observed for members of the two classes in the Bacteroidetes phylum, which were associated with either proteins or carbohydrates.
Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †
King, Gary M.; Roslev, Peter; Skovgaard, Henrik
1990-01-01
Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299
Co-evolution of Vegetation, Sediment Transport and Infiltration on semi-arid hillslopes
NASA Astrophysics Data System (ADS)
Harman, C. J.; Troch, P. A.; Lohse, K. A.; Sivapalan, M.
2011-12-01
Soils in semi-arid landscapes can vary over very small distances, with a great deal of variation associated with 'resource islands' created and maintained by woody vegetation. The distinct physical and hydraulic properties that arise in these islands can lead to spatial patterns of infiltration that have been implicated in the maintenance of the vegetation populating the island. Less well understood are the roles that the small-scale variability in soils plays in determining the transport of sediments, water and sediment-bound carbon and nitrogen across hillslopes. Here we explore these relationships using a coupled field and modeling approach. Detailed field data from hillslopes underlain by both granite and schist parent materials in the Santa Catalina mountains (part of the JSC Critical Zone Observatory) suggest that soils under individual velvet mesquite (latin name) contain higher concentration of soil organic matter and have higher hydraulic conductivity and water holding capacity. Greater infiltration and increased roughness under the canopy appears to lead to the formation of mounds that alter overland flow lines around the area under the canopy, particularly in the finer schist soils. This diversion leads to a complex distribution of shear stresses across the hillslope, creating systematic patterns in the transport of carbon and nitrogen rich soils under the canopies. The relationship between the small scale mechanism and the emergent pattern dynamics in the temporal variability of materials delivered to the stream from the hillslope are also examined, and the implications of these results for the modeling of water, sediment and nutrient fluxes at hillslope scales will be discussed.
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Communities containing five different coastal vegetation species, developed marshlands, and fresh water impoundments have been identified in ERTS-1 images. Suspended sediment and circulation patterns in imagery from five ERTS-1 passes over Delaware Bay have been enhanced and correlated with predicted current patterns. Conclusions reached are: (1) ERTS-1 is suitable platform for observing suspended sediment patterns and water masses synoptically over large areas. (2) Suspended sediment acts as a natural tracer allowing photointerpreters to deduce gross current circulation patterns from ERTS-1 imagery. (3) Under atmospheric conditions encountered along the East Coast of the United States MSS band 5 seems to give the best representation of sediment load in upper one meter of water column. (4) In the ERTS-1 imagery the sediment patterns are delineated by three to four neighboring shades of grey. (5) Negative transparencies of the ERTS-1 images give better contrast whenever the suspended sediment tones fall within the first few steps of the grey scale. (6) Color density slicing helps delineate the suspended sediment patterns more clearly and differentiate turbidity levels.
The Dynamics of Coarse Sediment Transfer in an Upland Bedrock River
NASA Astrophysics Data System (ADS)
Warburton, J.; Hardy, R. J.; Ferguson, R. I.; Cray, A.
2010-12-01
Bedrock channels in UK environments have received relatively little attention despite their importance within upland river systems and their influence on controlling the conveyance of sediment downstream. This poster describes the transfer of coarse sediment through Trout Beck, an upland bedrock reach in the North Pennines, UK. The transport of coarse sediment has been quantified through field monitoring of sediment characteristics, repeat magnetic tracer surveys and in-situ bed load impact sensors. This was carried out in conjunction with surveys of channel morphology (using terrestrial laser scanning and repeat dGPS measurements) and continuous flow monitoring. The interaction between mobile sediment and channel morphology is partly conditioned by the extent of alluvial sediment cover. Sediment storage is patchy with partially alluvial and alluvial sections of the channel, interspersed with bedrock reaches containing very little sediment except in hydraulically sheltered sites. There are notable differences in sediment dynamics between these different sections of the river channel which have a considerable influence on conveyance of sediment through the reach. In bedrock sections the low resistance to flow and stable channel boundaries result in little sediment storage and during periods when flow is competent there is downstream conveyance of the full grain-size distribution of sediment. Detailed morphological survey has provided the necessary boundary conditions, along with the flow data, to apply a one-dimensional hydraulic model (HEC-RAS) of the bedrock study reach. The modelling results have quantified the hydraulic regime of the channel. Using local shear stress as a proxy for sediment transport, sediment transport potential for the dominant grain-size distribution of the reach (16-256 mm) has been assessed for different locations in the channel. There are significant differences in the critical threshold of shear stress for sediment transport down the reach. Sediment which is transported through the bedrock reach will be deposited and stored, in the partially alluvial and alluvial sections of the channel. As the flow magnitude increases above the critical entrainment threshold, sediment transport potential increases throughout the whole channel until hydraulic conditions in the whole reach have the potential to transport sediment. Hence, sediment storage in the channel fluctuates through time depending on the frequency of ‘channel clearing’ floods; however, the overall pattern (template) of sedimentation is predictable based on local hydraulics. By combining the field and modelling approaches an improved understanding of the flow thresholds and spatial variations in sediment transport, in an upland bedrock channel, has been achieved.
Nearshore sediment thickness, Fire Island, New York
Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.
2017-04-03
Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.
Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J.
2009-01-01
Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The Geological Society of America.
Dispersal of river sediment in the Southern California Bight
Warrick, J.A.; Farnsworth, K.L.
2009-01-01
The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly (??10 cm/s) and only with adequate wave-generated shear stress and sediment loading. Calleguas Creek is unique in that it discharges directly into a steepsloped canyon (greater than 0.1) that should allow for violent auto-suspending gravity currents. In light of this, only one shelf setting-the Santa Clara and Ventura-has considerable Holocene sediment accumulation (exceeding 60 m), and here we show that the morphology of this shelf is very similar to an equilibrium shape predicted by gravity-current sediment transport. Thus, we conclude that a wide distribution of river-shelf settings occur in the Southern California Bight, which will directly influence sediment dispersal processes-both dilute suspended and gravity-current transport-and sediment-accumulation patterns. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Daigle, Hugh; Clary, Wesley A.; Gulick, Sean P. S.; Montelli, Aleksandr
2018-02-01
The southern Alaskan margin offshore the St. Elias Mountains has experienced the highest recorded offshore sediment accumulation rates globally. Combined with high uplift rates, active convergence and extensive temperate glaciation, the margin provides a superb setting for evaluating competing influences of tectonic and surface processes on orogen development. We correlate results from Integrated Ocean Drilling Program (IODP) Expedition 341 Sites U1420 and U1421 with regional seismic data to determine the spatial and temporal evolution of the Pamplona Zone fold-thrust belt that forms the offshore St. Elias deformation front on the continental shelf. Our mapping shows that the pattern of active faulting changed from distributed across the shelf to localized away from the primary glacial depocenter over ∼300-780 kyrs, following an order-of-magnitude increase in sediment accumulation rates. Simple Coulomb stress calculations show that the suppression of faulting is partially controlled by the change in sediment accumulation rates which created a differential pore pressure regime between the underlying, faulted strata and the overlying, undeformed sediments.
The principles of cryostratigraphy
NASA Astrophysics Data System (ADS)
French, Hugh; Shur, Yuri
2010-08-01
Cryostratigraphy adopts concepts from both Russian geocryology and modern sedimentology. Structures formed by the amount and distribution of ice within sediment and rock are termed cryostructures. Typically, layered cryostructures are indicative of syngenetic permafrost while reticulate and irregular cryostructures are indicative of epigenetic permafrost. 'Cryofacies' can be defined according to patterns of sediment characterized by distinct ice lenses and layers, volumetric ice content and ice-crystal size. Cryofacies can be subdivided according to cryostructure. Where a number of cryofacies form a distinctive cryostratigraphic unit, these are termed a 'cryofacies assemblage'. The recognition, if present, of (i) thaw unconformities, (ii) other ice bodies such as vein ice (ice wedges), aggradational ice and thermokarst-cave ('pool') ice, and (iii) ice, sand and gravelly pseudomorphs is also important in determining the nature of the freezing process, the conditions under which frozen sediment accumulates, and the history of permafrost.
Seismic Site Effects from the Seafloor Motion Recorded by the Short-period Ocean Bottom Seismometers
NASA Astrophysics Data System (ADS)
Lin, J. Y.; Cheng, W. B.; Chin, S. J.; Hsu, S. K.; Dong, J. J.
2014-12-01
For decades, it has been mentioned that submarine slope failures are spatially linked to the presence of gas hydrates/gas-charged sediments. When triggered by earthquakes, oversteepen and instable sediments may prompt breakouts of the slopes containing gas hydrates and cause submarine landslides and tsunamis. Widely distributed BSRs have been observed in the area offshore of southwestern Taiwan where the active accretionary complex meets with the passive China continental margin. In the region, large or small scale landslides were also reported based on seismic interpretations. In order to clarify the link between earthquake, landslide and the presence of gas hydrate, we evaluate the response of seafloor sediments in regard to passive dynamic loads. Horizontal-to-vertical (H/V) spectral ratios are used to characterize the local sediment response. Ambient noise as well as distant earthquakes are used as generators of the passive dynamic loads. Based on this study, we aim to characterize the site in terms of its physical properties and the local site effect produced by shallow marine sediments. The results show that the maximum H/V ratios appeared in the range of 5-10 Hz, where the horizontal amplitudes increased by an order of magnitude relative to the vertical amplitude. The stations located in the northwestern part of study area were characterized by another relatively small peak at proximately 2 Hz, which may indicates the presence of a discontinuity of sediments. For most stations, the H/V ratios estimated based on the earthquake (i.e. strong input signal) and noise (background, micro-seismic noise) records were characterized by different pattern. No distinct peak is observed for the H/V pattern calculated during earthquakes. This phenomenon may suggest that no clear sedimentary boundary exist when a stronger motion applies. Estimating H/V spectral ratios of data recorded by the seven short period OBSs (Ocean Bottom Seismometer) deployed in the southwest Taiwan offshore area in April 2014 offers a general understanding of the preferential vibration modes of soft sediment systems. By comparing the resonance characteristics of each sites and the gas hydrate distribution, we hope to provide precious information for the designing of marine structures such as oil drilling and production platforms.
Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N
2010-02-01
Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design. Further investigations of invertebrate sensitivity to sedimentation may benefit from assessments of sedimentation impacts at different spatial scales, determining compromised physical habitat integrity of specific taxa and developing alternative streambed measures for quantifying sedimentation.
NASA Astrophysics Data System (ADS)
Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries
2013-07-01
A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.
Wang, Kai; Zou, Li; Lu, Xinxin; Mou, Xiaozhen
2018-08-15
Marginal sea sediments receive organic substrates of different origins, but whether and to what extent sediment microbial communities are reflective of the different sources of organic substrates remain unclear. To address these questions, sediment samples were collected in two connected China marginal seas, i.e., Bohai Sea and Yellow Sea, and their two major tributaries (Yellow River and Liao River). Sediment bacterial community composition (BCC) was examined using 16S rRNA gene pyrosequencing. In addition, physicochemical variables that describe environmental conditions and sediment features were measured. Our results revealed that BCCs changed with salinity and organic carbon (OC) content. Members of Gaiellaceae and Comamonadaceae showed a rapid decrease as salinity and phytoplankton-derived OC increased, while Piscirickettsiaceae and Desulfobulbaceae exhibited an opposite distribution pattern. Differences of riverine vs. marginal sea sediment BCCs could be mostly explained by salinity. However, within the marginal seas, sediment BCC variations were mainly explained by OC-related variables, including terrestrial-derived fatty acids (Terr_FA), phytoplankton-derived polyunsaturated fatty acids (Phyto_PUFA), stable carbon isotopes (δ 13 C), and carbon to nitrogen ratio (C/N). In addition to environmental variables, network analysis suggested that interactions among individual bacterial taxa might be important in shaping sediment BCCs in the studied areas. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishimura, Mitsugu; Baker, Earl W.
1987-06-01
Five recent sediment samples from a variety of North American continental shelves were analyzed for fatty acids (FAs) in the solvent-extractable (SOLEX) lipids as well as four types of non-solvent extractable (NONEX) lipids. The NONEX lipids were operationally defined by the succession of extraction procedure required to recover them. The complete procedure included (i) very mild acid treatment, (ii) HF digestion and (iii) saponification of the sediment residue following exhaustive solvent extraction. The distribution pattern and various compositional parameters of SOLEX FAs in the five sediments were divided into three different groups, indicating the difference of biological sources and also diagenetic factors and processes among the three groups of samples. Nevertheless, the compositions of the corresponding NONEX FAs after acid treatment were surprisingly very similar. This was also true for the remaining NONEX FA groups in the five sediment samples. The findings implied that most of the NONEX FAs reported here are derived directly from living organisms. It is also concluded that a large part of NONEX FAs are much more resistant to biodegradation than we have thought, so that they can form the large percentage of total lipids with increasing depth of water and sediments.
NASA Astrophysics Data System (ADS)
Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Gao, Xin; Spiga, Aymeric; Narteau, Clément
2018-05-01
Dunes provide unique information about wind regimes on planetary bodies where there is no direct meteorological data. At the eastern margin of Olympia Undae on Mars, dune orientation is measured from satellite imagery and sediment cover is estimated using the high contrast between the dune material and substrate. The analysis of these data provide the first quantification of relationship between sediment availability and dune orientation. Abrupt and smooth dune reorientations are associated with inward and outward dynamics of dunes approaching and ejecting from major sedimentary bodies, respectively. These reorientation patterns along sediment transport pathways are interpreted using a new generation dune model based on the coexistence of two dune growth mechanisms. This model also permits solving of the inverse problem of predicting the wind regime from dune orientation. For bidirectional wind regimes, solutions of this inverse problem show substantial differences in the distributions of sediment flux orientation, which can be attributed to atmospheric flow variations induced by changes in albedo at the boundaries of major dune fields. Then, we conclude that relationships between sediment cover and dune orientation can be used to constrain wind regime and dune field development on Mars and other planetary surfaces.
Li, Pingyang; Xue, Rui; Wang, Yinghui; Zhang, Ruijie; Zhang, Gan
2015-01-15
Fifteen polycyclic aromatic hydrocarbons (PAHs) in 41 surface sediment samples and a sediment core (50 cm) from the Beibu Gulf, a significant low-latitude developing gulf, were analyzed. PAHs concentrations were 3.01-388 ng g(-)(1) (mean 95.5 ng g(-)(1)) in the surface sediments and 10.5-87.1 ng g(-)(1) (average 41.1 ng g(-)(1)) in the sediment core. Source apportionment indicated that PAHs were generated from coke production and vehicular emissions (39.4%), coal and biomass combustion (35.8%), and petrogenic sources (24.8%). PAHs were mainly concentrated in the industrialized and urbanized regions and the harbor, and were transported by atmospheric deposition to the marine matrix. The mass inventory (1.57-2.62t) and probability risk showed sediments here served as an important reservoir but low PAH risk. Different from oil and natural gas in developed regions, coal combustion has always been a significant energy consumption pattern in this developing region for the past 30 years (56 ± 5%). Copyright © 2014 Elsevier Ltd. All rights reserved.
A Study on Benthic Foraminifera Assemblages in the Upper Slope off Southwest Taiwan
NASA Astrophysics Data System (ADS)
Yeh, Jen-Chu; Lin, Andrew T.; Chien, Chih-Wei
2016-04-01
This study attempts to establish the spatial distribution of benthic foraminifera in the upper accretionary wedge off SW Taiwan. A few box cores (each core up to 49 cm thick) are retrieved onboard R/V Ocean Researcher I during 1092 cruise in 2014 at water depths ranging from 1,135 to 1,586 m lying in between the Good Weather Ridge and the Yuan-An Ridge. Analyses on grain size reveal that the sediment size ranges from clay to silt for all sites with the exception of YT1 site, where a small percentage of fine sand (< 20%) is found to distribute evenly in a 32 cm-thick box core. Core images from X-radiographs show some layers of foraminifera ooze and rare traces of bioturbation. Age of sedimentation is obtained by using 210Pb dating method. The 210Pb concentration profile decays exponentially down core, indicating sedimentation from suspension. The measured sedimentation rate ranges from 0.47 to 2.4 mm/yr. Site YT1 has the lowest sedimentation rate (around 0.47 mm/yr), leading to high abundance of individual benthic foraminiferal species. Living foraminiferal individuals were distinguished from dead assemblages by Rose Bengal staining method during the cruise. Our results show that the dominant living species of all studied cores is Chilostomella oolina, with subsidiary occurrences of Bulimina aculeata, Bolivinita quadrilateral, and Lenticulina spp. etc. Cluster analysis suggests that the forams have similar spatial distribution pattern at all studied sites, indicating uniform and stable hemipelagic sedimentation. Analyses of dead assemblages reveal a remarkable decrease in the abundance of Bulimina and Uvigerina for the last 100 years at YT-2 site, with increasing abundance of Chilostomella. This indicates that the water masses may have turned from suboxic to dysoxic conditions since c. 100 year ago. This is the first study to report the living benthic foraminifera distribution in water depths up to c. 1,600 m off SW Taiwan, providing a basis for future studies. Keywords: benthic foraminifera, upper slope, Taiwan
NASA Astrophysics Data System (ADS)
van de Koppel, J.; Weerman, E.; Herman, P.
2010-12-01
During spring, intertidal flats can exhibit strikingly regular spatial patterns of diatom-covered hummocks alternating with almost bare, water-filled hollows. We hypothesize that 1) the formation of this geomorphic landscape is caused by a strong interaction between benthic diatoms and sediment dynamics, inducing spatial self-organization, and 2) that self-organization affects ecosystem functioning by increasing the net average sedimentation on the tidal flat. We present a combined empirical and mathematical study to test the first hypothesis. We determined how the sediment erosion threshold varied with diatom cover and elevation. Our results were incorporated into a mathematical model to investigate whether the proposed mechanism could explain the formation of the observed patterns. Our mathematical model confirmed that the interaction between sedimentation, diatom growth and water redistribution could induce the formation of regular patterns on the intertidal mudflat. The model predicts that areas exhibiting spatially-self-organized patterns have increased sediment accretion and diatom biomass compared with areas lacking spatial patterns. We tested this prediction by following the sediment elevation during the season on both patterned and unpatterned parts of the mudflat. The results of our study confirmed our model prediction, as more sediment was found to accumulate in patterned parts of the mudflat, revealing how self-organization affected the functioning of mudflat ecosystems. Our study on intertidal mudflats provides a simple but clear-cut example of how the interaction between biological and geomorphological processes, through the process of self-organization, induces a self-organized geomorphic landscape.
Spatial patterns of plastic debris along Estuarine shorelines.
Browne, Mark A; Galloway, Tamara S; Thompson, Richard C
2010-05-01
The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas where the movements of water are slower. There was, however, no relationship between the abundance of microplastic and the proportion of clay in sediments from the strandline. These results illustrate how FT-IR spectroscopy can be used to identify the different types of plastic and in this case was used to indicate spatial patterns, demonstrating habitats that are downwind acting as potential sinks for the accumulation of debris.
Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Rawlins, B K; Rivera-Rivera, D M
2018-02-01
A baseline study on metal concentrations in sediments was initiated from the Sodwana Bay and St. Lucia, adjacent to marine protected areas (MPAs) of South Africa. They were analysed to identify the acid leachable metal (ALM) (Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg) concentration pattern. Metal distribution in 65 sediment samples exhibits higher abundances of Cr, Mo, Cd and Hg compared to the Upper Continental Crust. We relate the enrichment of these metals to beach placer deposits and activities related to former gold mining. Geochemical indices affirmed that Cr and Hg caused contamination, and Hg posed ~90% harmful effect on the biological community. These beach sediments, however, host lower metal concentrations compared to many worldwide beaches and other beaches in South Africa. This study suggests that it is largely unaffected by human activities, however, the overabundance of Hg demands regular monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: A first assessment.
Blumenröder, J; Sechet, P; Kakkonen, J E; Hartl, M G J
2017-11-15
The concentration of microplastic particles and fibres was determined in the intertidal sediments at selected sites in Scapa Flow, Orkney, using a super-saturated NaCl flotation technique to extract the plastic and FT-IR spectroscopy to determine the polymer types. Mean concentrations were 730 and 2300kg -1 sediment (DW), respectively. Detailed spatial and quantitative analysis revealed that their distribution was a function of proximity to populated areas and associated wastewater effluent, industrial installations, degree of shore exposure and complex tidal flow patterns. Sediment samples from Orkney showed similar levels of microplastic contamination as in two highly populate industrialized mainland UK areas, The Clyde and the Firth of Forth. It was concluded that relative remoteness and a comparative small island population are not predictors of lower microplastic pollution. Furthermore, a larger concerted effort across Scotland and the UK is required to establish a baseline microplastic database for the evaluation of future policy measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbial biogeography of San Francisco Bay sediments
NASA Astrophysics Data System (ADS)
Lee, J. A.; Francis, C. A.
2014-12-01
The largest estuary on the west coast of North America, San Francisco Bay is an ecosystem of enormous biodiversity, and also enormous human impact. The benthos has experienced dredging, occupation by invasive species, and over a century of sediment input as a result of hydraulic mining. Although the Bay's great cultural and ecological importance has inspired numerous surveys of the benthic macrofauna, to date there has been almost no investigation of the microbial communities on the Bay floor. An understanding of those microbial communities would contribute significantly to our understanding of both the biogeochemical processes (which are driven by the microbiota) and the physical processes (which contribute to microbial distributions) in the Bay. Here, we present the first broad survey of bacterial and archaeal taxa in the sediments of the San Francisco Bay. We conducted 16S rRNA community sequencing of bacteria and archaea in sediment samples taken bimonthly for one year, from five sites spanning the salinity gradient between Suisun and Central Bay, in order to capture the effect of both spatial and temporal environmental variation on microbial diversity. From the same samples we also conducted deep sequencing of a nitrogen-cycling functional gene, nirS, allowing an assessment of evolutionary diversity at a much finer taxonomic scale within an important and widespread functional group of bacteria. We paired these sequencing projects with extensive geochemical metadata as well as information about macrofaunal distribution. Our data reveal a diversity of distinct biogeographical patterns among different taxa: clades ubiquitous across sites; clades that respond to measurable environmental drivers; and clades that show geographical site-specificity. These community datasets allow us to test the hypothesis that salinity is a major driver of both overall microbial community structure and community structure of the denitrifying bacteria specifically; and to assess whether patterns of diversity observed at the broadest of taxonomic scales also apply to patterns observed within a single extremely diverse gene (nirS). In sum, this project provides a first look at the forces driving the migration and selection of microbial communities in San Francisco Bay.
Gonul, L T
2015-12-01
Total arsenic, arsenic(III) and (V), Fe, and Mn were measured in 17 surface sediment samples from Izmir Bay. The concentrations and ecological risk of As were characterized in the sediment affected by urban and agricultural activities. Total As ranged from 8.87 to 28.3 μg g(-1) dry weight (96.5-99.9 % as inorganic As). Distribution of total As and total As/Fe followed a different trend in sediments at all sampling sites. Arsenite (As(III)) was the most dominant form followed by As(V), while organic arsenic represented a minor constituent (0.03 to 3.49 %). The highest concentration of total As was observed at Gediz River estuary and exceeded lower threshold value (threshold effects level (TEL)). Due to the biological reduction of As(V) and abundance of Fe (oxyhydr)oxides in the sediments, most inorganic As in the Izmir Bay was present as As(III). Besides, the levels of As were >TEL and
Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska
Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.
2000-01-01
Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.
Impact of tsunami on texture and mineralogy of a major placer deposit in southwest coast of India
NASA Astrophysics Data System (ADS)
Babu, N.; Babu, D. S. Suresh; Das, P. N. Mohan
2007-03-01
The great Indonesian earth quake (26 December 2004) triggered a tsunami wave across the Bay of Bengal and Indian Ocean basins and has brought a major havoc in several countries including India. The coastal segment between Thotapalli and Valiazhikal in Kerala state of southwest India, where considerably rich beach placer deposit with ilmenite percentage of more than 70% is concentrated, has been investigated to understand the impact of tsunami on coastal sediments. The grain size analysis flashes out the significant differences between the pre- and post-tsunami littoral environments. While the mineral grains collected during pre-tsunami period show well-sorted nature, the post-tsunami samples represent moderately to poorly sorted nature. Similarly, unimodal and bimodal distributions of the sediments have been recorded for pre- and post-tsunami sediments, respectively. Further, mineral assemblages corresponding to before and after this major wave activity clearly indicate the large-scale redistribution of sediments. The post-tsunami sediments register increasing trends of garnet, sillimanite and rutile. The total heavy mineral percentage of the post-tsunami sediment also shows an improved concentration, perhaps due to the large-scale transport of lighter fraction. Magnetite percentage of post-tsunami samples reflects higher concentration compared to the pre-tsunami samples, indicating the intensity of reworking process. X-ray diffraction patterns of ilmenite grains have confirmed the increased presence of pseduorutile, and pseudobrookite in post-tsunami samples, which could be due to the mixing of more altered grains. SEM examination of grains also confirms the significant alteration patterns on the ubiquitous mineral of placer body, the ilmenite. The reason for these textural, mineralogical and micromorphological changes in heavy minerals particularly in ilmenite, could be due to the churning action on the deeper sediments of onshore region or on the sediments entrapped in the near shelf region of the area, by the ˜ 6 m high tsunami waves.
Patterns of sediment dispersion coastwise the State of Bahia - Brazil.
Bittencourt; Dominguez; Martin; Silva
2000-06-01
Using the average directions of the main wave-fronts which approach the coast of Bahia State - coinciding with that of the main wind occurring in the area - and of their periods, we define a wave climate model based on the construction of refraction diagrams. The resulting model of sediment transport was able to reproduce, in a general way, the sediment dispersion patterns furnished by geomorphic indicators of the littoral drift. These dispersion patterns control the generation of different types of sediment accumulations and of coastal stretches under erosion. We demonstrate that the presence of the Abrolhos and Corumbaú Point coral reefs is an important factor controlling the sediment dispersion patterns, since them act as a large protection against the waves action.
The effects of hillslope-scale variability in burn severity on post-fire sediment delivery
NASA Astrophysics Data System (ADS)
Quinn, Dylan; Brooks, Erin; Dobre, Mariana; Lew, Roger; Robichaud, Peter; Elliot, William
2017-04-01
With the increasing frequency of wildfire and the costs associated with managing the burned landscapes, there is an increasing need for decision support tools that can be used to assess the effectiveness of targeted post-fire management strategies. The susceptibility of landscapes to post-fire soil erosion and runoff have been closely linked with the severity of the wildfire. Wildfire severity maps are often spatial complex and largely dependent upon total vegetative biomass, fuel moisture patterns, direction of burn, wind patterns, and other factors. The decision to apply targeted treatment to a specific landscape and the amount of resources dedicated to treating a landscape should ideally be based on the potential for excessive sediment delivery from a particular hillslope. Recent work has suggested that the delivery of sediment to a downstream water body from a hillslope will be highly influenced by the distribution of wildfire severity across a hillslope and that models that do not capture this hillslope scale variability would not provide reliable sediment and runoff predictions. In this project we compare detailed (10 m) grid-based model predictions to lumped and semi-lumped hillslope approaches where hydrologic parameters are fixed based on hillslope scale averaging techniques. We use the watershed scale version of the process-based Watershed Erosion Prediction Projection (WEPP) model and its GIS interface, GeoWEPP, to simulate the fire impacts on runoff and sediment delivery using burn severity maps at a watershed scale. The flowpath option in WEPP allows for the most detail representation of wildfire severity patterns (10 m) but depending upon the size of the watershed, simulations are time consuming and computational demanding. The hillslope version is a simpler approach which assigns wildfire severity based on the severity level that is assigned to the majority of the hillslope area. In the third approach we divided hillslopes in overland flow elements (OFEs) and assigned representative input values on a finer scale within single hillslopes. Each of these approaches were compared for several large wildfires in the mountainous ranges of central Idaho, USA. Simulations indicated that predictions based on lumped hillslope modeling over-predict sediment transport by as much as 4.8x in areas of high to moderate burn severity. Annual sediment yield within the simulated watersheds ranged from 1.7 tonnes/ha to 6.8 tonnes/ha. The disparity between simulated sediment yield with these approaches was attributed to hydrologic connectivity of the burn patterns within the hillslope. High infiltration rates between high severity sites can greatly reduce the delivery of sediment. This research underlines the importance of accurately representing soil burn severity along individual hillslopes in hydrologic models and the need for modeling approaches to capture this variability to reliability simulate soil erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dill, R.F.; Slosson, J.E.
1993-04-01
The configuration and stability of the present coast line near Abalone Cove, on the south side of Palos Verdes Peninsula, California is related to the geology, oceanographic conditions, and recent and ancient landslide activity. This case study utilizes offshore high resolution seismic profiles, side-scan sonar, diving, and coring, to relate marine geology to the stability of a coastal region with known active landslides utilizing a desk top computer and off-the-shelf software. Electronic navigation provided precise positioning that when applied to computer generated charts permitted correlation of survey data needed to define the offshore geology and sea floor sediment patterns. Amore » mackintosh desk-top computer and commercially available off-the-shelf software provided the analytical tools for constructing a base chart and a means to superimpose template overlays of topography, isopachs or sediment thickness, bottom roughness and sediment distribution patterns. This composite map of offshore geology and oceanography was then related to an extensive engineering and geological land study of the coastal zone forming Abalone Cove, an area of active landslides. Vibrocoring provided ground sediment data for high resolution seismic traverses. This paper details the systems used, present findings relative to potential landslide movements, coastal erosion and discuss how conclusions were reached to determine whether or not onshore landslide failures extend offshore.« less
Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Ghiglione, Jean-François; Agogué, Hélène; Saïd, Olfa Ben; Taïb, Najwa; Debroas, Didier; Garnier, Cédric; Auguet, Jean-Christophe
2016-01-01
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales. PMID:27594854
Le Jeune, Anne-Hélène; Colombet, Jonathan; Thouvenot, Antoine; Latour, Delphine
2017-01-01
ABSTRACT Monitoring of water and surface sediment in a French eutrophic lake (Lake Aydat) was carried out over a 2-year period in order to determine whether akinetes in sediment could be representative of the most recent bloom and to estimate their germination potential. Sediment analysis revealed two akinete species, Dolichospermum macrosporum and Dolichospermum flos-aquae, present in the same proportions as observed for the pelagic populations. Moreover, similar spatial patterns observed for vegetative cells in the water column and akinete distributions in the sediment suggest that akinetes in the sediment may be representative of the previous bloom. However, the relationship between akinetes in the sediment and vegetative cells in the water column was not linear, and other factors may interfere. For example, our results highlighted horizontal transport of akinetes during the winter. The benthic overwinter phase did not seem to influence the percentages of intact akinetes, which remained stable at approximately 7% and 60% for D. macrosporum and D. flos-aquae, respectively. These percentages may thus be the result of processes that occurred in the water column. The intact overwintering akinetes showed germination rates of up to 90% after 72 h for D. flos-aquae or 144 h for D. macrosporum. The difference in akinete germination rates between these two species demonstrates different ecological strategies, which serve to expand the window for germination in time and space and thus optimize colonization of the water column by nostocalean cyanobacteria. IMPORTANCE Cyanobacteria have the ability to proliferate and to form blooms. These blooms can then affect the local ecology, health, and economy. The akinete, a resistant cell type that persists in sediment, is an important intermediate phase between previous and future blooms. We monitored the water column and the surface sediment of a French eutrophic lake (Lake Aydat) to investigate the relationship between vegetative cells in the water column and akinetes in the sediment. This study focused on the characterization of spatiotemporal akinete distributions, cellular integrity, and germination potential. Species-specific ecological strategies were highlighted and may partly explain the temporal succession of species in the water column. Akinetes may also be used to understand past nostocalean blooms and to predict future ones. PMID:28970224
Becker, Jesse C; Groeger, Alan W; Nowlin, Weston H; Chumchal, Matthew M; Hahn, Dittmar
2011-10-01
Patterns of spatial variation of mercury and methylmercury (MeHg) were examined in sediments and muscle tissue of largemouth bass (Micropterus salmoides) from Amistad International Reservoir, a large and hydrologically complex subtropical water body in the Rio Grande drainage. The distributions of both Hg and MeHg were compared with environmental and biological factors known to influence production of MeHg. The highest concentrations of total Hg (THg) in sediment were found in the Rio Grande arm of the reservoir, whereas MeHg was highest at sites in the Devils River arm and inundated Pecos River (often more than 3.0 ng/g). Conditions in the sediments of the Devils River arm and Pecos River channel were likely more favorable to the production of MeHg, with higher sediment porewater dissolved organic carbon, and porewater sulfate levels in the optimal range for methylation. Although the detection of different groups of sulfate-reducing bacteria by polymerase chain reaction (PCR) was generally correlated with MeHg concentrations, bacterial counts via fluorescent in situ hybridization (FISH) did not correlate with MeHg. A sample of 156 largemouth bass (<30 cm) showed a spatial pattern similar to that of MeHg in sediments, where fish from the Devils River arm of the reservoir had higher muscle Hg concentrations than those collected in the Rio Grande arm. In 88 bass of legal sport fishing size (>35 cm), 77% exceeded the 0.3 mg/kg U.S. Environmental Protection Agency screening value. This study shows that significant variation in sediment MeHg and biotic Hg concentration can exist within lakes and reservoirs and that it can correspond to variation in environmental conditions and Hg methylation. Copyright © 2011 SETAC.
Streambed Mobility and Dispersal of Aquatic Insect Larvae: Results from a Laboratory Study.
NASA Astrophysics Data System (ADS)
Kenworthy, S. T.
2002-12-01
Three series of flume experiments were conducted to quantify relationships between entrainment of surface layer gravels and displacement of benthic insect larvae. One series (B) utilized a sediment mixture with a median size 6.9 mm, maximum size 45 mm, and 10% < 2mm. Two other series examined the effects of locally coarsening the bed surface (Bc) and increasing the < 2mm fraction to 20% (S). Aquatic insect larvae were collected in the field and placed in an upstream segment of the flume bed. Flow rate, flume slope, and sediment transport rate were varied systematically among experiments. Displaced larvae were collected in a net at the end of the flume. The distribution of larvae remaining in the bed was obtained by sorting larvae from the sediment in 25 channel segments. Flow rate and mean boundary shear stress varied among runs by factors of 1.2 and 2.4 respectively. Proportional entrainment of >11mm surface grains ranged from <0.05 to >0.90. Displacement of insect larvae increased in a regular and consistent manner with increasing flow strength and surface sediment entrainment. Significant displacement occurred for some types of larvae (Ephemerellid mayflies) over a relatively low range of shear stress and bed surface entrainment. Other larvae (Atherix sp.) were displaced only at the highest levels of bed surface entrainment. Displacement was lower from coarsened bed surfaces in series Bc, and higher from sandier sediments in series S experiments. The differential effects of bed surface entrainment upon various types of larvae are consistent with anatomical and behavioral differences that influence exposure to near-bed flow and bedload transport. These results suggest that spatial patterns of sediment mobilization are important for understanding patterns of dispersal and disturbance of streambed communities.
The role of ocean currents for carbonate platform stratigraphy (Invited)
NASA Astrophysics Data System (ADS)
Betzler, C.; Lindhorst, S.; Luedmann, T.; Eberli, G. P.; Reijmer, J.; Huebscher, C. P.
2013-12-01
Breaks and turnovers in carbonate bank growth and development record fluctuations in sea-level and environmental changes. For the carbonate banks of the Bahamas, the Maldives, the Queensland, and the Marion Plateau, sea-level changes and synchronous oceanographic and atmospheric circulation events were recorded through compositional and architectural changes. Most of these major carbonate edifices contain drift deposits, indicating that oceanic currents were a major driver of carbonate-bank evolution. It is proposed that such currents have a larger imprint on the growth patterns and the stratigraphic packaging of carbonates than previously thought. In the Bahamas, slope facies of carbonate banks exposed to deep oceanic currents are not arranged into sediment-texture controlled and depth-dependant strike-continuous facies belts. Facies patterns are controlled by the interplay of shallow-water input, succeeding sediment sorting as well as redistribution and erosion processes. This complements the classical windward - leeward classification of carbonate platform slopes and accounts for the significant and potentially dominant process of alongslope sediment transport and dispersal. Deep oceanic currents also have the potential to steepen the carbonate bank slopes, through sediment winnowing at the distal slope, such as for example in the Maldives. This process can be enhanced as the bank grows and expands in size which may accelerate currents. Oceanic current onset or amplification, however, may also account for slope steepening as an externally, i.e. climate-driven agent, thus forcing the banks into an aggradation mode of growth which is not a response to sea-level fluctuations or a result of the windward / leeward exposure of the bank edge. Ignorance of the impact of currents on platforms and platform slopes may lead to an erroneous conclusion that changes in sediment production, distribution, and morphologies of sediment bodies are features solely related to sea-level changes.
NASA Astrophysics Data System (ADS)
Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing
2017-11-01
Seasonal and spatial distributions of nutrients and chlorophyll-a (Chl-a), together with temperature, salinity and total suspended matter (TSM), were investigated in the Yellow River estuary (China) to examine the biogeochemical influence of the ;Water and Sediment Regulation Scheme (WSRS); that is used to manage outflows from the river. Four cruises in April, June (early phase of WSRS), July (late phase of WSRS) and September were conducted in 2013 (WSRS from 19th June to 12th July). The results showed that nutrient species could be divided into two major groups according to their seasonal and spatial distributions. One group included NO3-, dissolved organic nitrogen (DON) and Si(OH)4, primarily from freshwater discharge. NO3- and DON related to anthropogenic sources were also separated from Si(OH)4, which was related to weather. The other group included dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), NO2-, and NH4+. Along with freshwater inputs, sediment absorption/desorption showed impacts on DIP and DOP concentration and distribution. Nitrification was a dominant factor controlling NO2- concentrations. NH4+ was influenced by both sediment absorption/desorption and nitrification. The WSRS not only shifted the seasonal patterns of nutrients in the estuary, with high concentrations moved from autumn to June and July, but also promoted the nutrient spread to the south central part of the Bohai Sea. Spatial distribution of Chlorophyll-a (Chl-a) was influenced by the WSRS, with high concentrations being found in the river mouth in June and September, flanking the river mouth in July, and in the south central part of the Bohai Sea in September. Although Chl-a concentrations increased in June and July, the seasonal patterns did not change. The highest concentrations were found in September. Nutrient loadings during the WSRS relieved DIP and Si(OH)4 limitation in the estuary and south central Bohai Sea, causing an excess of DIN and disrupting the balance of DIN/DIP in the estuary and Bohai Sea. High turbidity and freshwater flushing depressed the growth of phytoplankton during the WSRS. The growth of phytoplankton was nutrient limited in June (DIP) when the WSRS started and in September after DIP and Si(OH)4 had been consumed by phytoplankton.
Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi
2018-02-01
Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bastos, Alex Cardoso; Costa Moscon, Daphnne Moraes; Carmo, Dannilo; Neto, José Antonio Baptista; da Silva Quaresma, Valéria
2015-02-01
Sediment dynamics in wave-dominated coastal embayments are generally controlled by seasonal meteorological conditions, storms having a particularly strong influence. In the present study, such hydrodynamic processes and associated deposits have been investigated in a coastal embayment located along the southeast coast of Brazil, i.e. Espírito Santo Bay, in the winter (June/July) of 2008. The bay has undergone a series of human interventions that have altered the local hydrodynamic processes and, consequently, the sediment transport patterns. Facies distribution and sediment dynamics were examined by acoustic seabed mapping, sediment and core sampling, hydrodynamic measurements and sand transport modelling. The results show that sediment distribution can be described in terms of nearshore and offshore zones. The offshore bay sector is predominantly composed of "palimpsest" lithoclastic medium-coarse sands deposited in the course of the early Holocene transgression that peaked about 5,000 years ago. In the inner bay or nearshore zone (up to depths of 4-8 m), these older transgressive deposits are today overlain by a thin (up to 30-cm-thick) and partly patchy blanket of younger regressive fine sand/muddy fine sands. Both coarse- and fine-grained facies are being reworked during high-energy events (Hs>1.5 m) when fine sediment is resuspended, weak tide-induced drift currents causing the sand patches to be displaced. The coarser sediment, by contrast, is mobilized as bedload to produce wave ripples with spacings of up to 1.2 m. These processes lead to a sharp spatial delimitation between a fine sand/mud facies and a rippled coarse sand facies. The fine sand patches have a relief of about 20-30 cm and reveal a typical internal tempestite depositional sequence. Fair-weather wave-induced sediment transport (Hs<1 m), supported by weak tidal currents, seems to only affect the fine sediment facies. Sediment dynamics in Espírito Santo Bay is thus essentially controlled by wave action during storms, tidal currents playing a very subordinate role. Anthropogenic changes due to the construction of a port at the entrance of the bay have not only produced erosion along the beach, but could also explain the occurrence of sand patches concentrated in the north-eastern part of the bay. Because storm-induced deposits of the type observed in this study have an inherently patchy distribution, this feature needs to be taken into consideration when interpreting the rock record in terms of modern analogues.
NASA Astrophysics Data System (ADS)
do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice
2018-05-01
Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs have trapped relict siliciclastic sediments within the three sets of reefs, west of the Açu Incised Valley and adjacent coasts. Lines evidence of easterly nearshore currents carried sediments from the old Açu Incised Valley and adjacent coasts. These incipiently drowned reefs influence the water circulation patterns of the modern shelf system, its carbonate sedimentation, and sediment transport. This study provides a new example of reef occurrence which might be more commonly observed on similar equatorial continental shelves.
Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.
He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng
2016-05-01
Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Castagno, K. A.; Ruehr, S. A.; Donnelly, J. P.; Woodruff, J. D.
2017-12-01
Coastal populations have grown increasingly susceptible to the impacts of tropical cyclone events as they grow in size, wealth, and infrastructure. Changes in tropical cyclone frequency and intensity, augmented by a changing climate, pose an increasing threat of property damage and loss of life. Reconstructions of intense-hurricane landfalls from a series of southeastern New England sediment cores identify a series of events spanning the past 2,000 years. Though the frequency of these landfalls is well constrained, the intensity of these storms, particularly those for which no historical record exists, is not. This study analyzes the grain-size distribution of major storm event beds along a transect of sediment cores from a kettle pond in Falmouth, MA. The grain-size distribution of each event is determined using an image processing, size, and shape analyzer. The depositional patterns and changes in grain-size distribution in these fine-grained systems may both spatially and temporally reveal characteristics of both storm intensity and the nature of sediment deposition. An inverse-modeling technique using this kind of grain-size analysis to determine past storm intensity has been explored in back-barrier lagoon systems in the Caribbean, but limited research has assessed its utility to assess deposits from back-barrier ponds in the northeastern United States. Increases in hurricane intensity may be closely tied to increases in sea surface temperature. As such, research into these prehistoric intervals of increased frequency and/or intensity provides important insight into the current and future hurricane risks facing coastal communities in New England.
NASA Astrophysics Data System (ADS)
Jin, Xiaobo; Liu, Chuanlian
2017-05-01
Coccoliths, combined with sediment grain size, carbonate calcium and organic matters content, were analyzed to assess the ecological and taphonomical influences on coccolith distribution patterns in surface sediments in the continental shelf of the Yellow and East China Seas. Coccolith abundances ranged from 0 to 2.08×109 coccoliths g-1 sediment. The increasing abundance from the coastal inner shelf to the seaward middle shelf generally reflects the ecological fact that living coccolithophores are more abundant in the mesotrophic shelf waters than in the eutrophic coastal waters, although their deposits are still controlled by taphonomical effects, such as bottom (tidal) currents and calcite preservation conditions. Most abundant coccoliths are found in the fine-grained sediments of southwestern Cheju Island, where both ecology and taphonomy favor coccolith preservation. Still, large densities of coccoliths (>108 coccoliths g-1 sediment) are also found in coarse-grained relict sediments in the middle shelf. Coccolith assemblages were predominated by Gephyrocapsa oceanica and Emiliania huxleyi. The relative abundance of E. huxleyi, in addition to ecological reasons, may relate to selective post-mortem dissolution, since small E. huxleyi coccoliths are more susceptible to dissolution. Coccolith calcite has minor contributions (<1% to 12%) to total sediment CaCO3, and the main parts are attributed to terrigenous CaCO3 debris and relict shell fragments.
NASA Astrophysics Data System (ADS)
Harris, Courtney K.; Wiberg, Patricia L.
1997-09-01
Modeling shelf sediment transport rates and bed reworking depths is problematic when the wave and current forcing conditions are not precisely known, as is usually the case when long-term sedimentation patterns are of interest. Two approaches to modeling sediment transport under such circumstances are considered. The first relies on measured or simulated time series of flow conditions to drive model calculations. The second approach uses as model input probability distribution functions of bottom boundary layer flow conditions developed from wave and current measurements. Sediment transport rates, frequency of bed resuspension by waves and currents, and bed reworking calculated using the two methods are compared at the mid-shelf STRESS (Sediment TRansport on Shelves and Slopes) site on the northern California continental shelf. Current, wave and resuspension measurements at the site are used to generate model inputs and test model results. An 11-year record of bottom wave orbital velocity, calculated from surface wave spectra measured by the National Data Buoy Center (NDBC) Buoy 46013 and verified against bottom tripod measurements, is used to characterize the frequency and duration of wave-driven transport events and to estimate the joint probability distribution of wave orbital velocity and period. A 109-day record of hourly current measurements 10 m above bottom is used to estimate the probability distribution of bottom boundary layer current velocity at this site and to develop an auto-regressive model to simulate current velocities for times when direct measurements of currents are not available. Frequency of transport, the maximum volume of suspended sediment, and average flux calculated using measured wave and simulated current time series agree well with values calculated using measured time series. A probabilistic approach is more amenable to calculations over time scales longer than existing wave records, but it tends to underestimate net transport because it does not capture the episodic nature of transport events. Both methods enable estimates to be made of the uncertainty in transport quantities that arise from an incomplete knowledge of the specific timing of wave and current conditions. 1997 Elsevier Science Ltd
NASA Astrophysics Data System (ADS)
Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.
2016-10-01
This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.
NASA Astrophysics Data System (ADS)
Xing, Lei; Hou, Di; Wang, Xinchen; Li, Li; Zhao, Meixun
2016-07-01
To evaluate the applicability of source proxies and to assess the sources of sedimentary organic matter in the Bohai Sea (BS) and the northern Yellow Sea (NYS), we analyzed total organic carbon (TOC), total nitrogen (TN), δ13C of TOC, n-alkanes, phytoplankton biomarkers, and glycerol dialkyl glycerol tetraethers (GDGTs) including branched GDGTs (brGDGTs) in 60 surface sediment samples covering the BS and the NYS. Spatial distribution comparison and principal component analysis indicate that with the exception of brGDGTs, terrestrial biomarkers have different spatial distribution pattern from marine biomarkers, suggesting that the sources control the distributions of these biomarkers in spite of hydrodynamic forcing. Significantly positive correlation (R2 = 0.5) between TOC normalized brGDGTs content and TOC normalized crenarchaeol content suggested in situ production of brGDGTs in the BS and the NYS. The δ13C values, TMBR [terrestrial and marine biomarker ratio: (C27 + C29 + C31n-alkanes)/[(C27 + C29 + C31n-alkanes) + (brassicasterol + dinosterol + alkenones)] ] and BIT (branched isoprenoid tetratether index) proxy indicated high terrestrial organic matter (TOM) input near the Huanghe River Estuary, while TOC/TON did not reveal similar distribution pattern. Quantitative estimates of TOM using a binary model revealed much higher TOM percentage from δ13C (avg. 58%) and TMBR (avg. 31%) than from BIT (avg. 7.4%). Our results suggest that, owing to significant in situ production of brGDGTs, the BIT is not a good proxy for indicating soil OM contribution in marine sediments from the BS and the NYS.
Alkenone temperature of 84 core tops and Holocene sediments in the southeastern Yellow Sea
NASA Astrophysics Data System (ADS)
Bae, S. W.; Lee, K. E.; Chang, T. S.
2016-12-01
The C37 alkenones have been widely used for reconstruction of past sea surface temperatuer (SST) in open ocean, but there is an uncertainty about the applicability of alkenone paleothermometry at marginal sea, especially in the Yellow Sea. To test that, alkenone-based temperatures estimated using 84 surface sediments from the Heuksan Mud Belt (HMB), which is located in the southeastern Yellow Sea, were compared with horizontal, vertical, and seasonal distriubution pattern of in-situ temperature (data from NFRDI in Korea, 2005-2014). In addition, we reconstruct variations in Holocene high-resolution SST from the deep drilled core sediments (HMB-101 and HMB-103) recovered from the HMB. The values of core top alkenone temperatues and its spatial distribution pattern correspond well with those of in-situ temperature in spring to summer at depths of 0-10 m. Especially, the alkenone temperatures of southern part were relatively high compared to those of the northern part and they decreased northward, which is consistent to the general trend of in-situ temperature. These indicate that reconstructed alkenone temperature from the HMB marine sediments seems to represent the SST in spirng to summer. During the Holocene, the alkenone temperatures which were reconstructed from HMB cores ranged from 15.5 to 19 °C. The study area is characterized by high sedimentation rate of approximately 0.2 cm/yr and average temporal resolution of the reconstructed alkenone temperature record is 20 yr. Hence multi-centennial to millennial time scale SST variations during the Holocene will be able to be investigated based on the alkenone record.
Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.
2016-01-01
Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, H.M.
The Baltic Sea (Central Europe) is surrounded by coastal regions with long histories of industrialization. The heavy metal profiles in the sediments in the center of the Arkona Basin, one of the depressions of the southern Baltic Sea area, clearly reflect the historical anthropogenic influence. The Arkona Basin-is the final sink for materials derived from the Oder river which drains a highly polluted industrial area of Eastern Europe. Surficial muddy sediments from a close-meshed field of sampling-points were analyzed for distribution patterns of aliphatics and quantities and ratios of selected polycyclic aromatic hydrocarbons (PAH). These compounds are thought to reflectmore » anthropogenic pollution related to emissions from traffic, heating, etc. We use these marker substances to test if the basin sediments reflect riverine input, and if additional sources can be identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-02-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less
Liu, Jing L; Zhang, Jing; Liu, Feng; Zhang, Lu L
2014-05-01
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic and mutagenic characteristics have been detected in many estuaries and bays around the world. To detect the contaminated level in typical estuaries in Haihe river basin, China, a comprehensive survey of 16 PAHs in surface sediment has been conducted and an ecological risk assessment has been taken. It showed that Haihe river estuary had the highest concentration, ranging from 92.91 to 15886.00 ng g(-1). And Luan river estuary has the lowest polluted level, ranging from 39.55 to 328.10 ng g(-1). PAHs in sediment were dominated by low and mid molecular weight PAHs in all the sampling sites. Most of the sampling sites in all sampling seasons indicated a rarely happened ecological risk of ΣPAHs, while the S6 in Haihe river estuary was in an occasionally anticipated risk. To illustrate the spatial distribution pattern of PAHs in surface sediment in Haihe river basin, the results were compared with previous research of the research team. Based on data of the comparison, it had been revealed that Haihe river had the most serious PAHs pollution, with an average concentration of 5884.86 ng g(-1), and showed the highest contamination level in all four ecological units. The ΣPAHs concentration showed in a rank of reservoir > estuary > rural area > city.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2016-10-01
Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.
2017-05-01
The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.
Ghosh, Somdeep; Bakshi, Madhurima; Kumar, Alok; Ramanathan, A L; Biswas, Jayanta Kumar; Bhattacharyya, Subarna; Chaudhuri, Punarbasu; Shaheen, Sabry M; Rinklebe, Jörg
2018-05-09
Hooghly-Matla estuarine system along with the Sundarbans mangroves forms one of the most diverse and vulnerable ecosystems in the world. We have investigated the distribution of Co, Cr, Cu, Fe and Zn along with sediment properties at six locations [Shamshernagar (S1), Kumirmari (S2 and S3), Petuaghat (S4), Tapoban (S5) and Chemaguri (S6)] in the Hooghly estuary and reclaimed islands of the Sundarbans for assessing the degree of contamination and potential ecological risks. Enrichment factor values (0.9-21.6) show enrichment of Co, Cu and Zn in the intertidal sediments considering all sampling locations and depth profiles. Geo-accumulation index values irrespective of sampling locations and depth revealed that Co and Cu are under class II and class III level indicating a moderate contamination of sediments. The pollution load index was higher than unity (1.6-2.1), and Co and Cu were the major contributors to the sediment pollution followed by Zn, Cr and Fe with the minimum values at S1 and the maximum values at S5. The sediments of the Hooghly-Matla estuarine region (S4, S5 and S6) showed considerable ecological risks, when compared with effect range low/effect range median and threshold effect level/probable effect level values. The variation in the distribution of the studied elements may be due to variation in discharge pattern and exposure to industrial effluent and domestic sewage, storm water and agricultural run-off and fluvial dynamics of the region. The study illuminates the necessity for the proper management of vulnerable coastal estuarine ecosystem by stringent pollution control measures along with regular monitoring and checking program.
Transport processes near coastal ocean outfalls
Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.
2001-01-01
The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.
NASA Astrophysics Data System (ADS)
Díez, I.; Santolaria, A.; Gorostiaga, J. M.
2003-04-01
Subtidal vegetation distribution patterns in relation to environmental conditions (pollution, wave exposure, sedimentation, substratum slope and depth) were studied along the western Basque coast, northern Spain, by applying canonical correspondence analysis and log-linear regressions. A total of 90 species of macrophytes were recorded by systematic sampling along 21 transects. Mesophyllum lichenoides and Cystoseira baccata were the most abundant (accounting for 47% of the overall algal cover). Gelidium sesquipedale, Pterosiphonia complanata, Zanardinia prototypus, Codium decorticatum and Asparagopsis armata ( Falkenbergia phase) were other macrophytes with significant cover. Ordination analysis indicates that the five environmental variables explored account between them for 52% of the species data variance. Pollution, sedimentation and wave exposure were the principal factors explaining differences in flora composition and abundance (24, 14 and 12% of the explained variance, respectively). Log-linear regressions and canonical correspondence analyses reveal that C. baccata and G. sesquipedale exhibit a negative relationship with pollution, while sediment loading negatively affects G. sesquipedale, and C. baccata cannot stand high wave exposure levels. In contrast, P. complanata and C. decorticatum show a positive relationship with pollution and can bear high levels of sedimentation and wave exposure. M. lichenoides and Z. prototypus present a wide tolerance range for all these factors. Macroalgal cover, species richness and diversity remain practically constant from unpolluted to slightly polluted sites, but they decrease sharply under moderately polluted conditions. In the same way, algal cover decreases as sediment loading increases, but diversity and species richness show the highest values at intermediate levels of sedimentation. In relation to wave exposure, maximum algal cover was achieved at very exposed habitats whereas diversity and species richness were higher under semi-exposed conditions.
NASA Astrophysics Data System (ADS)
Schmitt, R. J. P.; Castelletti, A.; Bizzi, S.
2014-12-01
Understanding sediment transport processes at the river basin scale, their temporal spectra and spatial patterns is key to identify and minimize morphologic risks associated to channel adjustments processes. This work contributes a stochastic framework for modeling bed-load connectivity based on recent advances in the field (e.g., Bizzi & Lerner, 2013; Czubas & Foufoulas-Georgiu, 2014). It presents river managers with novel indicators from reach scale vulnerability to channel adjustment in large river networks with sparse hydrologic and sediment observations. The framework comprises three steps. First, based on a distributed hydrological model and remotely sensed information, the framework identifies a representative grain size class for each reach. Second, sediment residence time distributions are calculated for each reach in a Monte-Carlo approach applying standard sediment transport equations driven by local hydraulic conditions. Third, a network analysis defines the up- and downstream connectivity for various travel times resulting in characteristic up/downstream connectivity signatures for each reach. Channel vulnerability indicators quantify the imbalance between up/downstream connectivity for each travel time domain, representing process dependent latency of morphologic response. Last, based on the stochastic core of the model, a sensitivity analysis identifies drivers of change and major sources of uncertainty in order to target key detrimental processes and to guide effective gathering of additional data. The application, limitation and integration into a decision analytic framework is demonstrated for a major part of the Red River Basin in Northern Vietnam (179.000 km2). Here, a plethora of anthropic alterations ranging from large reservoir construction to land-use changes results in major downstream deterioration and calls for deriving concerted sediment management strategies to mitigate current and limit future morphologic alterations.
NASA Astrophysics Data System (ADS)
Pupienis, Donatas; Buynevich, Ilya; Ryabchuk, Daria; Jarmalavičius, Darius; Žilinskas, Gintautas; Fedorovič, Julija; Kovaleva, Olga; Sergeev, Alexander; Cichoń-Pupienis, Anna
2017-08-01
The 98-km-long Curonian Spit is fronted by beaches mainly composed of quartz sand with minor high-density fractions. In this study heavy-mineral concentration (HMC) trends and grain-size statistical parameters were used to assess their role as indicators of natural processes, human activities, and patterns of longshore transport. A total of 92 surface sand samples were collected at 1 km intervals from the middle of the beach along the Baltic Sea shoreline of the spit between Klaipėda strait in Lithuania and Zelenogradsk in Russia. HMC contribution was assessed in the laboratory using bulk low-field magnetic susceptibility (MS) as a proxy for ferrimagnetic and paramagnetic mineral content. Quartz-dominated (background) sand is generally characterized by low MS values of κ < 50 μSI, whereas higher values κ > 150 μSI are typical for heavy-mineral-rich sand. The greatest MS values along the middle of the beach occur in the southern part of the spit and are 40 times higher than in the northern sector. This pattern suggests the existence of a longshore particle flux with HMC distribution having the potential as a useful tracer of longshore sediment transport. Local anomalously high MS excursions are associated with contribution of iron-rich materials from adjacent man-made structures. Therefore, temporally constrained HMC distribution along the middle of the beach reflects the cumulative effect of antecedent geologic framework, longshore sediment transfer, erosional and accretionary processes, wave and wind climate, and local coastal protective structures.
Permeability-porosity relationships of subduction zone sediments
Gamage, Kusali; Screaton, Elizabeth; Bekins, B.; Aiello, I.
2011-01-01
Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
Varley, Adam; Tyler, Andrew; Bondar, Yuri; Hosseini, Ali; Zabrotski, Viachaslau; Dowdall, Mark
2018-09-01
Cs-137 is considered to be the most significant anthropogenic contributor to human dose and presents a particularly difficult remediation challenge after a dispersal following nuclear incident. The Chernobyl Nuclear Power Plant meltdown in April 1986 represents the largest nuclear accident in history and released over 80 PBq of 137 Cs into the environment. As a result, much of the land in close proximity to Chernobyl, which includes the Polessie State Radioecology Reserve in Belarus, remains highly contaminated with 137 Cs to such an extent they remain uninhabitable. Whilst there is a broad scale understanding of the depositional patterns within and beyond the exclusion zone, detailed mapping of the distribution is often limited. New developments in mobile gamma spectrometry provide the opportunity to map the fallout of 137 Cs and begin to reconstruct the depositional environment and the long-term behaviour of 137 Cs in the environment. Here, full gamma spectrum analysis using algorithms based on the peak-valley ratio derived from Monte Carlo simulations are used to estimate the total 137 Cs deposition and its depth distribution in the soil. The results revealed a pattern of 137 Cs distribution consistent with the deposition occurring at a time of flooding, which is validated by review of satellite imagery acquired at similar times of the year. The results were also consistent with systematic burial of the fallout 137 Cs by annual flooding events. These results were validated by sediment cores collected along a transect across the flood plain. The true merit of the approach was confirmed by exposing new insights into the spatial distribution and long term fate of 137 Cs across the floodplain. Such systematic patterns of behaviour are likely to be fundamental to the understanding of the radioecological behaviour of 137 Cs whilst also providing a tracer for quantifying the ecological controls on sediment movement and deposition at a landscape scale. Copyright © 2018 Elsevier Ltd. All rights reserved.
Temporal and spatial distribution of the meiobenthic community in Daya Bay, South China Sea
NASA Astrophysics Data System (ADS)
Tang, L.; Li, H. X.; Yan, Y.
2012-04-01
Spatial and temporal biodiversity patterns of the meiobenthos were studied for the first time in Daya Bay, which is a tropical semi-enclosed basin located in the South China Sea. The abundance, biomass, and composition of the meiobenthos and the basic environmental factors in the bay were investigated. The following 19 taxonomic groups were represented in the meiofauna: Nematoda, Copepoda, Polychaeta, Oligochaeta, Kinorhyncha, Gastrotricha, Ostracoda, Bivalvia, Turbellaria, Nemertinea, Sipuncula, Hydroida, Amphipoda, Cumacea, Halacaroidea, Priapulida, Echinodermata, Tanaidacea, and Rotifera. Total abundance and biomass of the meiobenthos showed great spatial and temporal variation, with mean values of 993.57 ± 455.36 ind cm-2 and 690.51 ± 210.64 μg 10 cm-2, respectively. Nematodes constituted 95.60 % of the total abundance and thus had the greatest effect on meiofauna quantity and distribution, followed by copepods (1.55 %) and polychaetes (1.39 %). Meiobenthos abundance was significantly negatively correlated with water depth at stations (r=-0.747, P<0.05) and significantly negatively correlated with silt-clay content (r=-0.516, P<0.01) and medium diameter (r=-0.499, P<0.01) of the sediment. Similar results were found for correlations of biomass and abundance of nematodes with environmental parameters. Polychaete abundance was positively correlated with the bottom water temperature (r=0.456, P<0.01). Meiobenthos abundance differed significantly among seasons (P<0.05), although no significant difference among stations and the interaction of station × season was detected by two-way ANOVA. In terms of vertical distribution, most of the meiobenthos was found in the surface layer of sediment. This pattern was apparent for nematodes and copepods, but a vertical distribution pattern for polychaetes was not as obvious. Based on the biotic indices and analyses of their correlations and variance, the diversity of this community was likely to be influenced by environmental variations.
User’s Guide for Assessing Sediment Transport at Navy Facilities
2007-09-01
hairy sea cucumbers (Sclerodactyla briareus), lobsters (Homarus americanus), purple sea urchins (Arbacia punctulata), and several species of crabs...Diego P. J. White CH2M HILL C. A. Jones Sea Engineering, Inc. Approved for public release; distribution is unlimited. SSC San Diego...similar water properties and circulation patterns. Some bays are tide-dominated, and others are wave-dominated. Tides are the rise and fall of the sea
In-Situ Electrokinetic Remediation for Metal Contaminated Soils
2001-03-01
Press. Riddle, M. J. 1988. Patterns in the distribution of macrofauna! communities in coral reef sediments on the central Great Barrier Reef . Mar...acidified. This acidification results in solubilization of contaminants due to desorption and dissolution of species from soil. Once contaminants are...the north and east, the Pacific Ocean on the south and west, and a Ventura County Game Reserve on the west and northwest (Figure 6). The Navy has
Estimating floodplain sedimentation in the Laguna de Santa Rosa, Sonoma County, CA
Curtis, Jennifer A.; Flint, Lorraine E.; Hupp, Cliff R.
2013-01-01
We present a conceptual and analytical framework for predicting the spatial distribution of floodplain sedimentation for the Laguna de Santa Rosa, Sonoma County, CA. We assess the role of the floodplain as a sink for fine-grained sediment and investigate concerns regarding the potential loss of flood storage capacity due to historic sedimentation. We characterized the spatial distribution of sedimentation during a post-flood survey and developed a spatially distributed sediment deposition potential map that highlights zones of floodplain sedimentation. The sediment deposition potential map, built using raster files that describe the spatial distribution of relevant hydrologic and landscape variables, was calibrated using 2 years of measured overbank sedimentation data and verified using longer-term rates determined using dendrochronology. The calibrated floodplain deposition potential relation was used to estimate an average annual floodplain sedimentation rate (3.6 mm/year) for the ~11 km2 floodplain. This study documents the development of a conceptual model of overbank sedimentation, describes a methodology to estimate the potential for various parts of a floodplain complex to accumulate sediment over time, and provides estimates of short and long-term overbank sedimentation rates that can be used for ecosystem management and prioritization of restoration activities.
Numerical simulation of a horizontal sedimentation tank considering sludge recirculation.
Zhang, Wei; Zou, Zhihong; Sui, Jun
2010-01-01
Most research conducted on the concentration distribution of sediment in the sedimentation tank does not consider the role of the suction dredge. To analyze concentration distribution more accurately, a suspended sediment transportation model was constructed and the velocity field in the sedimentation tank was determined based on the influence of the suction dredge. An application model was then used to analyze the concentration distribution in the sedimentation tank when the suction dredge was fixed, with results showing that distribution was in accordance with theoretical analysis. The simulated value of the outlet concentration was similar to the experimental value, and the trends of the isoconcentration distribution curves, as well as the vertical distribution curves of the five monitoring sections acquired through simulations, were almost the same as curves acquired through experimentation. The differences between the simulated values and the experimental values were significant.
Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA
Remo, Jonathan; Heine, Ruben A.; Ickes, Brian
2016-01-01
In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.
Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang
2017-04-01
Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.
NASA Astrophysics Data System (ADS)
Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas
2014-12-01
Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.
Characterization of bottom sediments in the Río de la Plata estuary
NASA Astrophysics Data System (ADS)
Simionato, Claudia G.; Moreira, Diego
2016-04-01
Bottom sediments and surface water samples were collected in the intermediate and outer Río de la Plata Estuary during 2009-2010, in six repeated cruises, with 26 stations each. Samples were processed for grain size using a laser particle size analyzer, and water and organic matter contents. The aim of this work is to analyze this data set to provide a comprehensive and objective characterization of the bottom sediments distribution, to study their composition and to progress in the construction of a conceptual model of the involved physical mechanisms. Principal Components Analysis is applied to the bottom sediments size histograms to investigate the spatial patterns. Variations in grain-size parameters contain information on possible sediment transport patterns, which were analyzed by means of trend vectors. Sediments show a gradational arrangement of textures, sand dominant at the head, silt in the intermediate estuary and clayey silt and clay at its mouth; textures become progressively more poorly sorted offshore, and the water and organic matter contents increase. And seem to be strongly related to the geometry and the hydrodynamics. Along the Northern coast of the intermediate estuary, well sorted medium and fine silt predominates, whereas in the Southern coast, coarser and less sorted silt prevails, due to differences in tidal currents and/or in water pathways. Around Barra del Indio, clay prevails over silt and sand, and the water and organic matter contents reach a maximum, probably due flocculation, and the reduction of the currents. Immediately seawards the salt wedge, net transport reverses its direction and well sorted coarser sand from the adjacent shelf dominates. Relict sediment is observed around the Santa Lucía River, consisting of poorly sorted fine silt and clay. The inferred net transport suggests convergence at the Barra del Indio shoal, which is consistent with the constant growing of the banks.
Experimental Bedrock Channel Incision: Scaling, Sculpture and Sediment Transport
NASA Astrophysics Data System (ADS)
Johnson, J. P.; Whipple, K. X.
2004-12-01
Abrasion by sediment in turbulent flows often sculpts bedrock channels into dramatic forms; quantifying the feedbacks between fluid flow, sediment impacts, and channel morphology is needed to refine models of fluvial incision into bedrock. We present data from laboratory flume experiments funded by the National Center for Earth-Surface Dynamics and conducted at St. Anthony Falls Laboratory, University of Minnesota that show how the spatial and temporal distribution of erosion is strongly coupled to the evolving topography of the bed. These experiments focus on the high Froude number and tool-starved end of parameter space, where bed cover tends to be negligible. Independent variables include flume slope, water flux and sediment flux and size distribution. Sediment moves energetically as bedload, suspended load, or locally transitional between transport modes. Quantitative measurements of the evolving bed topography show that the synthetic brittle "bedrock" in the flume (cured sand-cement mixture) eroded to form narrow incised channels with tight scoops and potholes. The experimental erosional forms are similar in morphology, and sometimes in scale, to those observed in natural bedrock rivers in southeast Utah and other field settings. The experiments demonstrate that both the mean and distribution of measured erosion rates change as the bed topography evolves, even with constant water and sediment discharges. Even starting with a plane bed geometry, erosion and sediment transport very quickly become localized in interconnected topographic lows. Positive feedback develops between the evolving topography and the fluid velocity and sediment transport fields, resulting in the incision of an inner channel. Once formed, the erosion rate in the axis of the inner channel decreases as local bed shear stresses and fluid velocities are reduced by increasing wall drag, and sediment fluxes through the channel but causes less incision (no deposition). Decreasing the sediment flux (all else held equal) causes renewed incision, but of an even narrower inner channel; increasing the sediment flux leads to inner channel deposition. Where erosion is most vigorous, sediment generally moving as saltating bedload becomes locally suspended by upward-directed mean flow. For example, swirling clouds of "bedload" particles are continuously suspended by vortices developed within potholes such that the upward flux of particles out of the potholes balance the total sediment flux through the flume. Potholes spontaneously form where average bed slope and fluid velocities were highest, dramatically accelerating the local erosion rate. Our experimental potholes are smaller in scale but morphologically strikingly similar to many observed in the field, and include features such as corkscrew grooves down the outside walls and a protruding horn at the pothole center. More generally, abrasion becomes focused in places where the flow is spatially accelerated, such as in scoops and bends with high curvature. The knife-edge margins and spatial distribution of erosional forms indicate abrupt transitions in erosional efficiency that are tightly coupled to near-bed fluid flow patterns, which in turn are strongly influenced by the erosional forms themselves. Our experiments suggest that, in highly sculpted bedrock channels, naturally developed bed roughness presents a physical length scale that is important to controlling the interaction between sediment impacts and the bed, rather than a length scale based explicitly on sediment transport and average flow conditions such as the saltation hop length.
Near bottom velocity and suspended solids measurements in San Francisco Bay, California
Gartner, Jeffrey W.; Cheng, Ralph T.; Cacchione, David A.; Tate, George B.
1997-01-01
Ability to accurately measure long-term time-series of turbulent mean velocity distribution within the bottom boundary layer (BBL) in addition to suspended solids concentration (SSC) is critical to understanding complex processes controlling transport, resuspension, and deposition of suspended sediments in bays and estuaries. A suite of instruments, including broad band acoustic Doppler current profilers (BB-ADCPs), capable of making very high resolution measurement of velocity profiles in the BBL, was deployed in the shipping channel of South San Francisco Bay (South Bay), California in an investigation of sediment dynamics during March and April 1995. Results of field measurements provide information to calculate suspended solids flux (SSF) at the site. Calculations show striking patterns; residual SSF varies through the spring-neap tidal cycle. Significant differences from one spring tide to another are caused by differences in tidal current diurnal inequalities. Winds from significant storms establish residual circulation patterns that may affect magnitude of residual SSF more than increased tidal energy at spring tides.
Geophysical Mapping of the South Carolina Offshore for Wind Energy Development
NASA Astrophysics Data System (ADS)
Brantley, D.; Knapp, C. C.; Battista, B.; Stone, J.
2017-12-01
The Bureau of Ocean Energy Management (BOEM) has identified potential Wind Energy Areas (WEA's) on the continental shelf of South Carolina characterized by good wind resource potential and minimal environmental and societal use conflicts based on existing regional data sets. A multi-sensor geophysical survey has been initiated to provide a more thorough determination of the shallow geologic framework and bottom habitat and cultural resources potential to further refine future wind farm siting. The most recent phase of deposition (Pleistocene; <1.8 Mya) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on sitting installations for wind energy. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC. The collaborative effort is generating multibeam, and side scan sonar, CHIRP sub-bottom and magnetometer data. Across the region a thin veneer of sediments overlies indurated Tertiary deposits. The Tertiary geologic section is locally scoured and influenced small channels and probable karstification and enduring fluid exchange across the sea floor which has been previously identified in the region. The sea floor exhibits large-scale (100s of meters) low relief shore-perpendicular bedforms similar to those found within the shoreface and innermost shelf though the SC Coastal Erosion Study. Post-processed bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by the longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries.
Distribution of Technetium-99 in sub-tidal sediments of the Irish Sea
NASA Astrophysics Data System (ADS)
McCubbin, David; Leonard, Kinson S.; McDonald, Paul; Bonfield, Rachel; Boust, Dominique
2006-03-01
To date, relatively little attention has been given to the accumulation of 99Tc discharged from Sellafield in the subtidal sediments of the Irish Sea. The potential implications for secondary seafood contamination from contaminated sediment has driven the UK Food Standards Agency to commission further research into this pathway. The work reported here reviews existing data and provides new measurements of 99Tc specific activity in surface and sub-surface sediments of the Irish Sea, together with environmental Kd values. The results are used to assess the spatial and temporal evolution of 99Tc in the seabed after 8 years of enhanced Sellafield discharges (between 1994 and 2002), of the aforementioned radionuclide. The information is discussed with reference to other studies, in an attempt to infer the processes controlling 99Tc uptake and release from seabed sediments. The average environmental Kd value for 99Tc in the Irish Sea (1.9×10 3) was more than an order of magnitude greater than the presently recommended value of 10 2 [IAEA, 2004. Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical Report Series No. 422, IAEA, Vienna]. Comparison with results from laboratory studies indicates that the observed distribution may represent metastable binding rather than thermodynamic equilibrium. Activities in surface sediments decreased with increasing distance from Sellafield but were also dependent upon the nature of the underlying substrate, being greater on muddy material. Preliminary measurements of grain-size distribution indicated that the observed variation in activities was probably not due to surface area effects. There is an emerging body of evidence from other studies that indicate the differences were most likely due to variations in redox regimes between the different substrates. Vertical profiles were significantly irregular, probably due to the effects of variable sediment mixing processes. Comparison of profiles, close to the Sellafield pipeline, with a core taken over 20 years earlier (pre-EARP) indicated that the increase in the cumulative Sellafield discharge and redissolution from surficial sediment were required to explain the temporal variation. Since the surveys reported here were completed, substantial progress has been made in reducing 99Tc discharges from Sellafield. Assuming that the rate and extent of 99Tc remobilisation follows a similar pattern to that previously observed for caesium ( 137Cs), then the half-time for redissolution of 99Tc bound to sedimentary material in the Irish Sea is likely to be of the order of several tens of years. It is probable that small but nevertheless measurable 99Tc contamination of local seafood will persist for several decades, due to this secondary source.
Seasonal sediment and nutrients transport patterns
USDA-ARS?s Scientific Manuscript database
It is essential to understand sediment and nutrient sources and their spatial and temporal patterns in order to design effective mitigation strategies. However, long-term data sets to determine sediment and nutrient loadings are scarce and expensive to collect. The goal of this study was to determin...
Chin, John L.; Woodrow, Donald L.; McGann, Mary; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.
2010-01-01
Central San Francisco Bay is the deepest subembayment in the San Francisco Bay estuary and hence has the largest water volume of any of the subembayments. It also has the strongest tidal currents and the coarsest sediment within the estuary. Tidal currents are strongest over the west-central part of central bay and, correspondingly, this area is dominated by sand-size sediment. Much of the area east of a line from Angel Island to Alcatraz Island is characterized by muddy sand to sandy mud, and the area to the west of this line is sandy. The sand-size sediment over west-central bay furthermore is molded by the energetic tidal currents into bedforms of varying sizes and wavelengths. Bedforms typically occur in water depths of 15-25 m. High resolution bathymetry (multibeam) from 1997 and 2008 allow for subdivision of the west-central bayfloor into four basic types based on morphologic expression: featureless, sand waves, disrupted/man-altered, and bedrock knobs. Featureless and sand-wave morphologies dominate the bayfloor of west-central bay. Disrupted bayfloor has a direct association with areas that are undergoing alteration due to human activities, such as sand-mining lease areas, dredging, and disposal of dredge spoils. Change detection analysis, comparing the 1997 and 2008 multibeam data sets, shows that significant change has occurred in west-central bay during the roughly 10 years between surveys. The surveyed area lost about 5.45 million m3 of sediment during the decade. Sand-mining lease areas within west-central bay lost 6.77 million m3 as the bayfloor deepened. Nonlease areas gained 1.32 million m3 of sediment as the bayfloor shallowed slightly outside of sand-mining lease areas. Furthermore, bedform asymmetry did not change significantly, but some bedforms did migrate some tens of meters. Gravity cores show that the area east of Angel and Alcatraz Islands is floored by clayey silts or silty sand whereas the area to the west of the islands is floored dominantly by sand- to coarse sand-sized sediment. Sandy areas also include Raccoon Strait, off Point Tiburon, and on the subtidal Alcatraz, Point Knox, and Presidio Shoals. Drab-colored silty clays are the dominant sediment observed in gravity cores from central bay. Their dominance along the length of the core suggests that silty clays have been deposited consistently over much of this subembayment for the time period covered by the recovered sediments (Woodrow and others, this report). Stratification types include weakly-defined laminae, 1-3 mm thick. Few examples of horizontal lamination in very fine sand or silt were observed. Cross lamination, including ripples, was observed in seven cores. Erosional surfaces were evident in almost every core where x-radiographs were available (they are very difficult to observe visually). Minor cut-and-fill structures also were noted in three cores and inclined strata were observed in three cores. Textural patterns in central bay indicate that silts and clays dominate the shallow water areas and margins of the bay. Sand dominates the tidal channel just east of Angel and Alcatraz Islands and to the west of the islands to the Golden Gate. The pattern of sand-sized sediment, as determined by particle-size analysis, suggests that sand movement is easterly from the west-central part of the bay. A second pattern of sand movement is to the south from the southwestern extremity of San Pablo Bay (boundary approximated by the location of the Richmond-San Rafael Bridge). Age dates for central bay sediment samples were obtained by carbon-14 radiometric age dating. Age dates were determined from shell material that was interpreted to be largely in-place (not transported). Age dates subsequently were reservoir corrected and then converted to calendar years. Sediments sampled from central bay cores range in age from 330 to 4,155 years before present. Foraminiferal distribution in the San Francisco Bay estuary is fairly well
Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl
2014-02-01
Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.
Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore
2012-11-01
Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.
Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore
2012-01-01
Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0–10 cm) could be discriminated from those of the intermediate (11–27 cm) and deep (28–40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth. PMID:22648129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairey, R.; Roberts, C.; Jacobi, M.
1998-08-01
Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less
NASA Astrophysics Data System (ADS)
Ertel, John R.; Hedges, John I.
1984-10-01
Vanillyl, syringyl and cinnamyl phenols occur as CuO oxidation products of humic, fulvic and base-insoluble residual fractions from soils, peat and nearshore marine sediments. However, none of these lignin-derived phenols were released by CuO oxidation of deepsea sediment or its base-extractable organic fractions. Lignin analysis indicated that peat and coastal marine sediments contained significantly higher levels of recognizable vascular plant carbon (20-50%) than soils and offshore marine sediments (0-10%). Although accounting for less than 20% of the total sedimentary (bulk) lignin, lignin components of humic acid fractions compositionally and quantitatively resembled the corresponding bulk samples and baseinsoluble residues. Recognizable lignin, presumably present as intact phenylpropanoid units, accounted for up to 5% of the carbon in peat and coastal humic acids but less than 1% in soil humic acids. Fulvic acid fractions uniformly yielded less lignin-derived phenols in mixtures that were depleted in syringyl and cinnamyl phenols relative to the corresponding humic acid fractions. Within the vanillyl and syringyl families the relative distribution of acidic and aldehydic phenols is a sensitive measure of the degree of oxidative alteration of the lignin component The high acid/aldehyde ratios and the low phenol yields of soils and their humic fractions compared to peat and coastal sediments indicate extensive degradation of the lignin source material. Likewise, the progressively higher acid/aldehyde ratios and lower phenol yields along the sequence: plant tissues (plant debris)-humic acids-fulvic acids suggest that this pattern represents the diagenetic sequence for the aerobic degradation of lignin biopolymers.
Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda
2018-01-01
The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934
NASA Astrophysics Data System (ADS)
Cammeraat, L. H.
2009-04-01
Geomorphological processes including soil erosion are active in specific spatio-temporal domains and lead eventually to various emerging soil properties and landscape structures which are evidently also scale dependent. In this study the scale and threshold dependency of landscapes will be compared involving three different landscapes from the temperate, Mediterranean and semi-arid Sahelian geo-ecosystems, especially with regard to the connectivity of water and sediment redistribution. The dominant processes and feed-backs interwoven with soil erosion processes will be discussed from a hierarchical theory type of approach. However, current processes are almost always affected by the presence of inherited soil and landscape properties that might be formed under very different climatological conditions than those that are dominant today. Another important factor in these processes is the role of animals and plants. It will be shown that in all discussed geo-ecosystems plants and animals can be seen as geo-ecosystem engineers and are also important at broader scales with respect to runoff generation and sediment transport. For the temperate zone a case study from the cuesta landscape of the Paris Basin will be discussed, showing that fine scale, soil physico-chemical processes, soil animal and vegetation related processes lead to the emergence of partial areas and also play an important role in the formation of the cuestas itself. For the Mediterranean a case study is discussed where vegetation pattern heterogeneity determines water and sediment distribution from the patch to the sub-catchment scale leading to the emergence of either sheetwash generated slopes (pediments) or concentrated flow generated slopes (gullies), but where inherited landscape elements such as pediments with calcretes strongly affect runoff generation and the availability of sediments and hence have a strong impact on the sediment redistribution and measured erosion rates that strongly vary with the scale at which they are measured. Finally a case study from a semi-arid Sahelian ecosystem is discussed where runoff generation and sediment sources are strongly related to the semi-natural upper landscape zones with a strong interplay between vegetation and surface conditions, and where land use in the lower landscape units is an important sink area for both sediment and water. Landscape heterogeneity and the distribution of source and sinks of water and sediment is often strongly disconnected and shows clear physical thresholds that can be either of natural origin (e.g. vegetation clumps and patterns) or man-made (e.g. terraces). These physical thresholds are also important as temporary sediment sinks, that may convert to sediment sources during high magnitude events. The connectivity of sediment flow and hence sediment delivery to lower landscape units or larger channels is therefore highly variable and strongly dependent on both finer scale landscape elements and their specific position in the landscape, and the frequency-magnitude relationships of rainfall. It can be concluded that aspects of hydrological connectivity, temporary sinks of water and sediment in combination with biophysical and anthropogenic thresholds as well as storm characteristics should be included when scaling landscape processes to understand erosion and sediment yields. Furthermore the role and importance of biotic components in erosion studies is still underrated, despite the fact that vegetation is more and more applied to reduce erosion.
Chemical quality of the Saw Mill River, Westchester County, New York, 1981-83
Rogers, R.J.
1984-01-01
Surface waters, bottom sediments and coatings formed on artificial substrates (ceramic tiles) were analyzed to evaluate the chemical quality of the Saw Mill River, New York. Heavy metals, nutrients, and organic contaminants were studied. Dissolved orthophosphate concentrations were highest in the lower third of the river. Dissolved manganese was the only metal to exceed U.S. Environmental Protection Agency water-quality criteria. Arsenic, cadmium, copper, lead, and zinc concentrations were highest in waters from the lowest 4 river miles. Concentrations of copper, lead, and zinc in bottom sediments from the lowest 3 river miles were greater than in upstream sediments. Concentrations of nine heavy metals were higher on tiles emplaced below river mile 3 than on tiles upstream. Few organic compounds were detected in the water column; none persisted at all sites. Chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were found in bottom sediments throughout the basin. PCB concentrations were highest in the lowest 6 river miles; the other organic compounds exhibited no spatial patterns. Polynuclear aromatic hydrocarbons were most abundant in bottom sediments from the lowest 2 river miles. Collectively the distribution of contaminants indicates that river quality deteriorates in the lower, more heavily urbanized reach. (USGS)
Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.
2009-01-01
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.
Tracer constraints on organic particle transfer efficiency to the deep ocean
NASA Astrophysics Data System (ADS)
Weber, T. S.; Cram, J. A.; Deutsch, C. A.
2016-02-01
The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.
VanDusen, Beth M.; Fegley, Stephen R.; Peterson, Charles H.
2012-01-01
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats. PMID:23285153
Paleogeography of the upper Paleozoic basins of southern South America: An overview
NASA Astrophysics Data System (ADS)
Limarino, Carlos O.; Spalletti, Luis A.
2006-12-01
The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions (including turbiditic successions). In the Late Cisuralian (stage 4), important differences in sedimentation patterns are registered for the western arc-related basins and eastern intraplate basins. The former were locally dominated by volcaniclastic sediments or marine deposits, and the intraplate basins are characterized by shallow marine conditions punctuated by several episodes of deltaic progradation. Finally, in the Late Permian (stage 5), volcanism and volcaniclastic sedimentation dominated in basins located along the western South American margin. The intraplate basins in turn were characterized by T-R cycles composed of shallow marine, deltaic, and fluvial siliciclastic deposits.
Tang, Qiang; Bao, Yuhai; He, Xiubin; Zhou, Huaidong; Cao, Zhijing; Gao, Peng; Zhong, Ronghua; Hu, Yunhua; Zhang, Xinbao
2014-05-01
Impoundment of the Three Gorges Reservoir has created an artificial riparian zone with a vertical height of 30 m and a total area of 349 km(2), which has been subjected to seasonal inundation and exposure due to regular reservoir impoundment and the occurrence of natural floods. The significant alteration of hydrologic regime has caused numerous environmental changes. The present study investigated the magnitude and spatial pattern of sedimentation and metal enrichment in a typical section of the riparian zone, composed of bench terraces with previous agricultural land uses, and explored their links to the changed hydrologic regime. In particular, we measured the total sediment depths and collected surface riparian sediments and down-profile sectioned riparian soils (at 5 cm intervals) for trace metal determination. Our analysis showed that the annual average sedimentation rates varied from 0.5 to 10 cm·yr(-1) and they decreased significantly with increasing elevation. This lateral distribution was principally attributed to seasonal variations in water levels and suspended sediment concentrations. Enriched concentrations of trace metals were found both in the riparian sediments and soils, but they were generally higher in the riparian sediments than in riparian soils and followed a similar lateral decreasing trend. Metal contamination assessment showed that the riparian sediments were slightly contaminated by Ni, Zn, and Pb, moderately contaminated by Cu, and moderately to strongly contaminated by Cd; while riparian soils were slightly contaminated by As, and moderately contaminated by Cd. Trace metal enrichment in the riparian sediments may be attributed to external input of contaminated sediments produced from upstream anthropogenic sources and chemical adsorption from dissolved fractions during pure sediment mobilization and after sink for a prolonged flooding period due to reservoir impoundment. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.
2013-02-01
High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.
Angulo, Jesús; Ojeda, Rafael; de Paz, José-Luis; Lucas, Ricardo; Nieto, Pedro M; Lozano, Rosa M; Redondo-Horcajo, Mariano; Giménez-Gallego, Guillermo; Martín-Lomas, Manuel
2004-01-03
Six synthetic heparin-like oligosaccharides have been used to investigate the effect of the oligosaccharide sulfation pattern on the stimulation of acidic fibroblast growth factor (FGF-1) induced mitogenesis signaling and the biological significance of FGF-1 trans dimerization in the FGF-1 activation process. It has been found that some molecules with a sulfation pattern that does not contain the internal trisaccharide motif, which has been proposed for high affinity for FGF-1, stimulate FGF-1 more efficiently than those with the structure of the regular region of heparin. In contrast to regular region oligosaccharides, in which the sulfate groups are distributed on both sides of their helical three-dimensional structures, the molecules containing this particular sulfation pattern display the sulfate groups only on one side of the helix. These results and the fact that these oligosaccharides do not promote FGF-1 dimerization according to sedimentation-equilibrium analysis, confirm the importance of negative-charge distribution in the activation process and strongly suggest that FGF dimerization is not a general and absolute requirement for biological activity.
Anatomy of the western Java plate interface from depth-migrated seismic images
NASA Astrophysics Data System (ADS)
Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.
2009-11-01
Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.
Anatomy of the western Java plate interface from depth-migrated seismic images
Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.
2009-01-01
Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.
Sediment transport dynamics in steep, tropical volcanic catchments
NASA Astrophysics Data System (ADS)
Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie
2017-04-01
How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (< years) over which they transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre-event rainfall intensity thresholds takes only about two to three months. We conclude that the study catchment geomorphologically represents a low-resistance, but highly resilient catchment that quickly recovers after the impact of extreme rainfall-runoff events. The latter was indicated by a different pre and post-event hysteretic pattern of sediment-runoff dynamics and associated different material properties. The combined use of high-temporal resolution monitoring with spatially distributed surveys provided new insights into the fluvial geomorphology of steep, volcanic headwater catchments with potential to establish more complete sediment budgets and time-scales of land-forming processes of such highly dynamic environments in the humid tropics.
Tao, Wanghai; Wu, Junhu; Wang, Quanjiu
2017-01-01
Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431
NASA Astrophysics Data System (ADS)
Dai, S.; Seol, Y.
2015-12-01
In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.
Phillips, R.L.; Grantz, A.
2001-01-01
The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during the last glacial maximum on the North Slope of Alaska, suggests that atmospheric circulation in the western Arctic during late Quaternary was similar to that of the present. ?? 2001 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, R.G.; Hill, D.E.; Sharp, R.R. Jr.
1978-05-01
During the summer of 1976, 1336 water and 1251 sediment samples were collected for Los Alamos Scientific Laboratory (LASL) from 1356 streams and small lakes or ponds within Shishmaref, Kotzebue, Selawik, and western portion of Shungnak NTMS quadrangles in western Alaska. Both a water and sediment sample were generally obtained from each location at a nominal location density of 1/23 km/sup 2/. Total uranium was measured in waters by fluorometry and in sediments and a few waters by delayed neutron counting at LASL. Uranium concentrations in waters have a mean of 0.31 ppB and a maximum of 9.23 ppB, andmore » sediments exhibit a mean of 3.44 ppM and a maximum of 37.7 ppM. A large number of high-uranium concentrations occur in both water and sediment samples collected in the Selawik Hills. At least two locations within the Selawik Hills appear favorable for further investigation of possible uranium mineralization. A cluster of high-uranium sediments, seen in the Waring Mountains, are probably derived from a lower Cretaceous conglomerate unit which is assocated with known airborne radiometric anomalies. Apparently less favorable areas for further investigation of possible uranium mineralization are also located in the Waring Mountains and Kiana Hills. Additional samples were collected within the Shungnak quadrange to increase the sampling density used elsewhere in the area to about one location per 11 km/sup 2/ (double-density). Contoured plots of uranium concentrations for both waters and sediments were prepared for all double-density sample locations, and then for the even-numbered and odd-numbered locations separately. These plots indicate that the HSSR sampling density of 1/23 km/sup 2/ used in lowland areas of Alaska provide essentially the same definition of relative areal uranium distributions in waters and sediments as seen when the density is doubled. These plots indicate that regional distribution patterns for uranium are well defined without selective sampling of geologic units.« less
NASA Astrophysics Data System (ADS)
Jensen, M.; Choi, K.; Forwick, M.; Howe, J. A.; Husum, K.; Korsun, S.; Maat, D.; Nam, S. I.
2016-12-01
Valleys and fjords are the key transport and storage systems for sediments and biogeochemical elements from high arctic landscapes to the ocean. Sediment and nutrient fluxes are important for the biochemical cycle in the fjords and eventually in the ocean, and are important input data to earth system models. At present, high latitude systems are underrepresented in such models (Russell, 2014). Dicksonfjorden is a fjord in the larger Isfjorden system, Central Spitsbergen, Svalbard. It has no direct glacial input, in contrast to fjords affected by tidewater glaciers. The sediment supply is very high and the inner fjord receives sediment from a tide-influenced delta. This study is part of a multidisciplinary project aiming at mapping and quantifying sediment types and dispersal patterns in present Arctic valley - fjord systems and is the first comprehensive study of the depositional system in Dicksonfjorden. The first field campaign took place in summer 2016, when detailed mapping of the tidal delta and the sea floor in the inner fjord, coring onshore and offshore and sampling for foraminifera, nutrients and microbial abundances were performed. The surface mapping is based on high-resolution drone images, which will be processed to a high-resolution digital elevation model, and the bathymetry and sediment distribution data from the sea floor has been collected with a Gavia Offshore Surveyor AUV, providing high-resolution bathymetry and backscatter data of the seabed. Core transects from the delta surface will be described and compared to marine cores from the fjord basin retrieved from R/V Helmer Hanssen. Sediment accumulation rates will be assessed from 210Pb and 137Cs radionuclides. Preliminary results on the physical and chemical characteristics of the sedimentation system in inner Dicksonfjorden will be presented and implications for the fjord ecosystem will be discussed. References Russell , J.L., 2014. Control on the Latitudinal distribution of climate processes: Results from Earth System Model simulations. AAPG/SEPM Hedberg Research Conference "Latitudinal controls on stratigraphic models and sedimentary concepts, Banff, Alberta, Canada, September 28 - October 1, 2014, Abstract volume, 10-11.
NASA Astrophysics Data System (ADS)
Zhou, Hongying; Yuan, Xuanjun; Zhang, Youyan; Dong, Wentong; Liu, Song
2016-11-01
It is of great importance for petroleum exploration to study the sedimentary features and the growth pattern of shoal water deltas in lake basins. Taking spatio-temporal remote sensing images as the principal data source, combined with field sedimentation survey, a quantitative research on the modern deposition of Ganjiang delta in the Poyang Lake Basin is described in this paper. Using 76 multi-temporal and multi-type remote sensing images acquired from 1973 to 2015, combined with field sedimentation survey, remote sensing interpretation analysis was conducted on the sedimentary facies of the Ganjiang delta. It is found that that the current Poyang Lake mainly consists of three types of sand body deposits including deltaic deposit, overflow channel deposit, and aeolian deposit, and the distribution of sand bodies was affected by the above three types of depositions jointly. The mid-branch channels of the Ganjiang delta increased on an exponential growth rhythm. The main growth pattern of the Ganjiang delta is dendritic and reticular, and the distributary channel mostly arborizes at lake inlet and was reworked to be reticulatus at late stage.
Rodrigues, M O; Abrantes, N; Gonçalves, F J M; Nogueira, H; Marques, J C; Gonçalves, A M M
2018-08-15
Microplastics (particles with a size<5mm), one of the most emerging aquatic pollutants, are of particular concern since they can reach high densities and interact with biotic and abiotic environment. The occurrence of microplastics in freshwater systems is less understood than in marine environment. Hence, the present study aims to provide new insights into microplastics abundances and distribution in Antuã River (Portugal) by applying the isolation method of wet peroxide oxidation with addition of zinc chloride to water and sediment samples collected in March and October 2016, in three sampling sites. The abundance of microplastics in water ranged from 5 to 8.3mgm -3 or 58-193itemsm -3 in March and from 5.8-51.7mgm -3 or 71-1265itemsm -3 in October. In sediments, the abundance ranged from 13.5-52.7mgkg -1 or 100-629itemskg -1 in March and from 2.6-71.4mgkg -1 or 18-514itemskg -1 in October. The water and sediment samples with the greatest abundances were from São João da Madeira and Aguincheira, respectively. Spatio-temporal distribution showed different pattern according to methodological approaches, seasonal and hydrodynamic conditions and the proximity to urban/industry areas. Analysis of plastics by Fourier transform infrared spectroscopy underline polyethylene and polypropylene as the most common polymer types identified in this work. The low medium high oxidation ratio was 56:22:22 (%) in March and 61:31:8 (%) in October. Foams and fibers were the most abundant type in São João da Madeira, while fibers and fragments were the most abundant in Aguincheira and Estarreja in water and sediment samples, respectively. This study emphasizes the importance of rivers as carriage systems of microplastics. Further studies should be performed to identify point sources in order to mitigate the microplastics contamination in aquatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frenzel, Peter; Borrmann, Corinna; Lauenburg, Beate; Bohling, Björn; Bartholdy, Jan
2009-02-01
An experimental sediment dumping was carried out in the southern part of the Mecklenburg Bight in June 2001. Foraminiferans and ostracods from superficial sandy sediment were studied in a time series from before dumping until March 2004 in order to assess changes in associations and recolonization patterns of both groups. Additionally, an area sampling covering the dumping site and its surroundings from 15.5 to 20.7 m water depth made it possible to compare associations inside and outside the dumping area as well as the water depth dependent distribution of foraminiferans and ostracods. Salinity values vary within the high alpha-mesohaline and low polyhaline range. The dominating species are Ammotium cassis (Foraminifera) and Sarsicytheridea bradii (Ostracoda). The diversity is low (Fisher alpha index from 0.4 to 3.2 for foraminiferans and 1.0 to 2.5 for ostracods), but higher within the dumping site samples. These higher values are explainable by input of allochthonous tests and valves representing additional species. After the sediment dumping it took two and a half years to re-establish the total foraminiferan association and the total foraminifer/ostracod ratio within the dumping site. Total foraminiferan abundance increases remarkably with water depth (mean 83 tests in 100 ml) driven by higher nutrient availability and more suitable salinity and temperature values within the zone of the oscillating halocline. The distribution of shallow water species such as Cribroelphidium excavatum, Eucythere argus and Hirschmannia viridis, within the transient water layer A. cassis, Nodulina dentaliniformis, S. bradii and Palmoconcha laevata and below Eggerella scabra indicate the depth position of the halocline. Water depth and sediment dumping influence are the main driving factors for the distribution of foraminifer and ostracod associations within the study area. However, a significant sedimentological difference between samples inside and outside the dumping area is not recognizable.
Lin, Jing; Qian, Bihua; Wu, Zhai; Huang, Peng; Chen, Kai; Li, Tianyao; Cai, Minggang
2018-01-01
The Beibu Gulf (also named the Gulf of Tonkin), located in the northwest of the South China Sea, is representative of a bay suffering from turbulence and contamination associated with rapid industrialization and urbanization. In this study, we aim to provide the novel baseline levels of heavy metals for the research area. Concentrations of five heavy metals (i.e., Cu, Pb, Zn, Cd and Cr) were determined in surface sediments from 35 sites in the eastern Beibu Gulf. The heavy metal content varied from 6.72 to 25.95 mg/kg for Cu, 16.99 to 57.98 mg/kg for Pb, 73.15 to 112.25 mg/kg for Zn, 0.03 to 0.12 mg/kg for Cd, and 20.69 to 56.47 mg/kg for Cr, respectively. With respect to the Chinese sediment quality criteria, sediments in the eastern Beibu Gulf have not been significantly affected by coastal metal pollutions. The results deduced from the geoaccumulation index (Igeo) showed that the study area has been slightly polluted by Pb, which might be caused by non-point sources. Relatively high concentrations of Cu, Pb and Cd were found around the coastal areas of Guangxi province, the Leizhou Peninsula and the northwest coast of Hainan Island, whereas the highest concentrations of Zn and Cr were found on the northwest coast of Hainan Island. Spatial distribution patterns of the heavy metals showed that bioavailable fractions of Pb were higher than in the residual fractions, while Cu and Cd concentrations in exchangeable and carbonate fractions were relatively higher than those in the bioavailable fractions. Hierarchical clustering analysis suggested that the sampling stations could be separated into three groups with different geographical distributions. Accompanying their similar spatial distribution in the study area, significant correlation coefficients among Cu, Cd and Pb were also found, indicating that these three metals might have had similar sources. Overall, the results indicated that the distribution of these heavy metals in the surface sediments collected from the Beibu Gulf was complex. PMID:29534527
Lead distribution in coastal and estuarine sediments around India.
Chakraborty, Sucharita; Chakraborty, Parthasarathi; Nath, B Nagender
2015-08-15
This study describes the geochemical distribution of lead (Pb) and identifies the critical factors that significantly control Pb distribution and speciation in coastal and estuarine sediments around India by using published data from the literature. Crustal sources influence the abundance of Pb in coastal sediment from the south-east and central-west coast of India. Parts of north-east, north-west, and south-west coast of India were polluted by Pb. Distribution of Pb in sediments, from the north-east and north-west coasts of India, were controlled by Fe-Mn oxyhydroxide mineral phases of the sediments. However, organic carbon (OC) seemed to be a dominant factor in controlling the distribution of Pb in sediments from the central-east and south-west coasts of India. The outcome of this study may help in decision-making to predict the levels of Pb from natural and anthropogenic sources and to control Pb pollution in coastal and estuarine sediments around India. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qiao, Lin; Xia, Dan; Gao, Lirong; Huang, Huiting; Zheng, Minghui
2016-12-01
Chlorinated paraffins (CPs), one class of hydrophobic and toxic compounds, are easily adsorbed into sediments and then pose potential risks to the ecosystem and human health. However, few researches on short- and medium-chain CPs (SCCPs and MCCPs) in sediments have been performed. In order to comprehensively investigate the spatial distributions, sources, and ecological risks of CPs, sediments collected from the middle reaches of the Yellow River were analyzed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). The concentrations of SCCPs and MCCPs ranged from 11.6 to 9.76 × 10 3 ng/g dry weight (dw) and from 8.33 to 168 ng/g dw, respectively. No significant correlation was found between total organic carbon (TOC) and CP concentrations (P > 0.05). The spatial distributions showed that contamination levels of CPs were relevant to human activities. In addition, two types of sediment samples were classified by hierarchical cluster analysis (HCA) and results indicated the predominant congener groups were C 10 Cl 6-7 for SCCPs and C 14 Cl 7-8 for MCCPs. Principal component analysis (PCA) revealed that SCCPs and MCCPs in the sediments may have different sources, and SCCPs are likely to come from the production and use of CP-42 and CP-52. Moreover, complex environmental processes, including long-range transportation via the atmosphere and/or river, deposition and degradation of CPs, resulted in increased abundances of short chain and low chlorinated congeners in sediment samples compared with commercial mixtures, and different homolog patterns among samples. The significant negative correlation between SCCP concentrations and MCCP/SCCP ratios could be related to long-range transport of CPs. A preliminary risk assessment indicated that CPs at current levels posed no significant ecological risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Shuhong; Zhang, Nan; Chen, Han; Li, Liang; Yan, Wen
2014-10-01
The grain size as well as some major and trace elements, including rare earth element (REE), for 273 surface sediment samples collected from the continental shelf of the northern South China Sea were analyzed in this study. The sediment types are mainly sandy silt and silt, making up 60% of the whole samples, and secondly are mud, sandy mud, muddy sand and silty sand, making up 28% of the whole samples, based on grain-size in which the Folk's classification was used. The total REE content (ΣREE) show a wide variation from 21 ppm to 244 ppm with an average value of 155 ppm, which similar to the average ΣREE of the China loess, but much different from that in deep-sea clay, showing a significant terrigenous succession. The REE contents in different sediment types vary greatly, mainly enriching in silt, sandy silt, mud and sandy mud. The REE distribution contours parallel to the coastal, presenting like strips and their contents gradually reduce with increasing distance from the coast. The high content of the western Pearl River Mouth, Shang/Xiachuan Islands and Hailing Bay might be regarded to the coastal current developed from the east to the west along to the Pearl River Mouth in the northern South China Sea. But the chondrite-normalized REE patterns in various sediment types have no difference, basically same as those of coastal rivers and upper crust. They all show relative enrichments in light rare earth element (LREE), noticeable negative Eu anomaly and no Ce anomaly, indicating that those sediments are terrigenous sediments and from the same source region. Further analysis suggest that the sedimentary environment in the study area is relatively stable and granite widely distributed in the South China mainland is the main source of REE, which are transported mainly by the Pearl River. The late diagenesis has little effect on the REE.
East Louisiana continental shelf sediments: a product of delta reworking
Brooks, Gregg R.; Kingdinger, Jack L.; Penland, Shea; Williams, S. Jeffress
1995-01-01
Data from 77 vibracores were integrated with 6,700 line-km of high- resolution seismic reflection profiles collected off the eastern Louisiana coast in the region of the St. Bernard Delta, the first of the Holocene highstand deltas of the Mississippi River. Seismic fades and sediment facies were integrated in order to establish the stratigraphic details within this relict delta. Results provide a regional geologic framework from which comparisons can be made with other areas. Holocene deposits in the study area overlie a heavily dissected surface interpreted to represent a lowstand erosional surface. Resting on this surface is a thin unit of relatively clean, quartz sand interpreted to have been deposited during early transgression. This unit is overlain by sediments of the St. Bernard Delta, a seaward-prograding, coarsening-upward wedge of sands and muds that contain vertically-stacked units of deltaic succession. Two or more prograding units separated by an unconformity, delineated from regional seismic profiles, may represent laterally shifting subdelta lobes. Surficial sediments consist of a thin unit of sands and muds derived from and reflecting the individual subenvirons of the underlying delta. Holocene inner-shelf development off eastern Louisiana has been controlled by relative sea-level rise and sediment supply. Sediment supply and deposition are a product of delta progradation and delta-lobe switching. The modern shelf configuration and surficial sediment distribution patterns reflect reworking of underlying deltaic deposits. The lack of modern sediment input helps to maintain the imprint of this ancient delta on the modern shelf surface.
MacKenzie, A B; Cook, G T; Barth, J; Gulliver, P; McDonald, P
2004-05-01
The distribution of contaminant radionuclides from the Sellafield nuclear fuel reprocessing plant was used to establish chronologies for three saltmarsh sediment cores from south west Scotland. delta(13)C and (14)C analyses indicated that the cores provided a useful archive record of variations in input of organic matter and carbonate. The results imply that prior to major releases of contaminant (14)C from Sellafield, the (14)C specific activity of organic matter in Irish Sea offshore sediments was about 24 Bq kg(-1) C, while that of the carbonate component was below the limit of detection. These results provide baseline data for modelling the uptake of contaminant (14)C by the Irish Sea sediment system. The study confirmed that small(13)C analyses provide a sensitive means of apportioning the origin of saltmarsh organic matter between C(3) terrigenous plants, C(4) terrigenous plants and suspended particulate marine organic matter. For the <2 mm fraction of sediment, a clear pattern of decreasing marine organic input was observed in response to increasing elevation of the marsh surface as a result of sediment accumulation. Bulk sediment, including detrital vegetation, had a dominant input from terrigenous plants. The combined use of delta(13)C and (14)C data revealed that organic matter in the marine organic component of the <2 mm fraction of contemporary surface sediments of the saltmarshes is dominated by recycled old organic material.
Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian
2018-04-15
A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.
Reconstruction of organochlorine compound inputs in the Tagus Prodelta.
Mil-Homens, Mário; Vicente, Maria; Grimalt, Joan O; Micaelo, Cristina; Abrantes, Fátima
2016-01-01
Twenty century time-resolved variability of riverine deposits of polychlorobiphenyls (PCBs), DDTs, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) was studied in three (210)Pb dated sediment cores collected in a depositional shelf area adjacent to the Tagus estuary (the Tagus Prodelta). The geographic and temporal distribution patterns were consistent with discharge of these organochlorine compounds (OCs) in the area associated with the Tagus mouth. Their concentrations were not correlated with the sedimentary total organic carbon. The PCB down-core profiles were dominated by CB138 and CB153 (hexa-CBs) congeners followed by CB180 (hepta-CBs). Principal Component Analysis of the congener distributions of these compounds did not define temporal down-core trends. The ratios of DDT metabolites (p,p'-DDE/p,p'-DDT) were consistent with recent DDT inputs into the environment and/or earlier applications and long-term residence in soils/sediments until these were eroded and remobilized. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.
Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao
2016-09-15
To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-region
Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation
Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.
2012-01-01
Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.
Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins
NASA Astrophysics Data System (ADS)
Ouraga, Zady; Guy, Nicolas; Pouya, Amade
2018-05-01
In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.
On contemporary sedimentation at the titanic survey area
NASA Astrophysics Data System (ADS)
Lukashin, V. N.
2009-12-01
The basic parameters of the sedimentation environment are considered: the Western Boundary Deep Current that transports sedimentary material and distributes it on the survey area; the nepheloid layer, its features, and the distribution of the concentrations and particulate standing crop in it; the distribution of the horizontal and vertical fluxes of the sedimentary material; and the bottom sediments and their absolute masses. The comparison of the vertical fluxes of the particulate matter and the absolute masses of the sediments showed that the contemporary fluxes of sedimentary material to the bottom provided the distribution of the absolute masses of the sediments in the survey area during the Holocene.
NASA Astrophysics Data System (ADS)
Motanated, Kannipa; Tice, Michael M.
2016-05-01
Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co-occurring feldspar grains. Although calculated settling velocity distributions for zircon grains in structureless sandstones were slower than those for feldspar grains at infinite dilution, calculated settling velocity distributions for zircon and feldspar grains in overlying black siltstone layers were identical. This evidence suggests that these sandstone divisions were deposited from hyperconcentrated suspensions where particle segregation was diminished and hydraulically fine grains were entrained with hydraulically coarse particles. Hydraulic fining of zircon grains during deposition implies that the suspended sediment concentration at the bases of turbidity currents increased even as the overall current evolved toward lower density as reflected by cessation of Ta deposition and by hydraulic equivalence of zircon and feldspar grains in overlying low-density turbiditic siltstones. This evolution likely resulted from volumetric collapse of the turbidity currents.
Do deglaciated mountainslopes contribute significantly to paraglacial sediment fluxes?
NASA Astrophysics Data System (ADS)
Cossart, Etienne
2013-04-01
Current models of paraglacial sediment generation and transport (Ballantyne, 2002 & 2003) are general in nature; they are probably inaccurate for many specific locations because of the wide range in local or regional geomorphic conditions encountered around the globe. One of the conditions that varies from place to place is the pattern of paraglacial landsliding; it varies in both the magnitude, scale, and timing, and therefore has variable influence on sediment generation. Another condition that varies is the sediment connectivity between slopes and the fluvial system; this can vary due to differences in topography, hydrologic regimes, or transient sediment buffers such as landslide dams. In this paper, we examine the extent to which variability in paraglacial landslide patterns and sediment connectivity may affect the applicability of the general paraglacial model. To achieve this we draw on both existing literature and our field experience from the European Alps and Iceland. Sediment generation and pathways, as influenced by post-glacial collapse of mountain slopes in particular, are studied in three steps. First, the processes involved in rock failure are identified and their possible influence on mass-movement locations at different spatial scales in various places is discussed. This comparison reveals a variable pattern of paraglacial landslide distribution, and allows the local/regional controlling parameters to be identified. Second, the rate of triggering of mass-movement over time is roughly assessed in various settings based on a review of recently published data. This comparison aims to identify typical temporal-models for slope evolution through the time elapsed since deglaciation. Third, an attempt is made to assess the contribution of landsliding to the whole paraglacial cascading system by evaluating the somewhat contradictory findings and assertions from previous authors: Some authors have argued for a high sediment yield at catchment sinks in relation to paraglacial landsliding (Church & Ryder, 1972; Ritter & Ten Brink, 1986), whereas others have identified that some long-lived sediment dams can occur after the deposition of a landslide mass, so that no or little sediment exportation occurs (Korup, 2009; Cossart & Fort, 2008). We add to this debate by developing a typology of geomorphic couples, between paraglacial landslides and other geomorphic processes, and present simulations of sediment yield evolution since glacier disappearance. BALLANTYNE C.K., 2002 - A general model of paraglacial landscape response. The Holocene, 12, 371-376. BALLANTYNE C.K., 2003 - Paraglacial landform succession and sediment storage in deglaciated mountain valleys: theory and approaches to calibration. Zeitschrift für Geomorphologie, 32, 1-18. CHURCH M., & RYDER J.M., 1972 - Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin, 83, 3059-3072. COSSART É., & FORT M., 2008 - Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 62, 115-131. KORUP O., 2009 - Linking landslides, hillslope erosion, and landscape evolution. Earth Surface Processes and Landforms, 34, 1315-1317. RITTER D.F., & TEN BRINK N.W., 1986 - Alluvial fan development and the glacial-glaciofluvial cycle. Nenana Valley, Alaska. Journal of Geology, 94, 613-615.
Bradford, David F; Stanley, Kerri A; Tallent, Nita G; Sparling, Donald W; Nash, Maliha S; Knapp, Roland A; McConnell, Laura L; Massey Simonich, Staci L
2013-03-01
Contaminants used at low elevation, such as pesticides on crops, can be transported tens of kilometers and deposited in adjacent mountains in many parts of the world. Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The authors sampled shallow-water sediment and tadpoles (Pseudacris sierra) for pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls in four high-elevation sites in Yosemite National Park in the central Sierra Nevada twice during the summers of 2006, 2007, and 2008. Both historic- and current-use pesticides showed a striking pattern of lower concentrations in both sediment and tadpoles in Yosemite than was observed previously in Sequoia-Kings Canyon National Parks in the southern Sierra Nevada. By contrast, PAH concentrations in sediment were generally greater in Yosemite than in Sequoia-Kings Canyon. The authors suggest that pesticide concentrations tend to be greater in Sequoia-Kings Canyon because of a longer air flow path over agricultural lands for this park along with greater pesticide use near this park. Concentrations for DDT-related compounds in some sediment samples exceeded guidelines or critical thresholds in both parks. A general pattern of difference between Yosemite and Sequoia-Kings Canyon was not evident for total tadpole cholinesterase activity, an indicator of harmful exposure to organophosphorus and carbamate pesticides. Variability of chemical concentrations among sites, between sampling periods within each year, and among years, contributed significantly to total variation, although the relative contributions differed between sediment and tadpoles. Copyright © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Shi, Y.; Kempes, C.; Chadwick, G.; McGlynn, S.; He, X.; Orphan, V. J.; Meile, C. D.
2016-02-01
The anaerobic oxidation of methane in marine sediments plays an important role in the global methane cycle. Mediated by a microbial consortium consisting of archaea and bacteria, it is estimated that almost 80% of all the methane that arises from marine sediments is oxidized anaerobically by this process (Reeburgh 2007, Chemical Reviews 107, 486-513). We used reactive transport modeling to compare and contrast potential mechanisms of methane oxidation. This included acetate, hydrogen, formate, and disulfide acting as intermediates that are exchanged between archaea and bacteria. Moreover, we investigated electron transport through nanowires, facilitating the electron exchange between the microbial partners. It was shown that reaction kinetics, transport intensities, and energetic considerations all could decisively impact the overall rate of methane consumption. Informed by observed microbial cell distribution, we applied the model to a range of spatial distribution patterns of archaea and bacteria. We found that a consortium with evenly distributed archaeal and bacterial cells has the potential to more efficiently oxidize methane, because the vicinity of bacteria and archaea counteracts the build up of products and therefore prevents the thermodynamic shutdown of microbial metabolism. Single cell stable isotope enrichment in archaeal-bacterial consortia observed by nanoSIMS revealed rather uniform levels of anabolic activity within consortia with different spatial distribution patterns. Comparison to model simulation illustrates that efficient exchange is necessary to reproduce such observations and prevent conditions that are energetically unfavorable for methane oxidation to take place. Model simulations indicate that a recently described mechanism of direct interspecies electron transport between the methanotrophic archaea and its bacterial partner through a conductive matrix (McGlynn et al. 2015, Nature, 10.1038/nature15512) is consistent with observations.
Le Dantec, Nicolas; Hogarth, Leah J.; Driscoll, Neal W.; Babcock, Jeffrey M.; Barnhardt, Walter A.; Schwab, William C.
2010-01-01
CHIRP seismic and swath bathymetry data acquired offshore La Jolla, California provide an unprecedented three-dimensional view of the La Jolla and Scripps submarine canyons. Shore-parallel patterns of tectonic deformation appear to control nearshore sediment thickness and distribution around the canyons. These shore-parallel patterns allow the impact of local tectonic deformation to be separated from the influence of eustatic sea-level fluctuations. Based on stratal geometry and acoustic character, we identify a prominent angular unconformity inferred to be the transgressive surface and three sedimentary sequences: an acoustically laminated estuarine unit deposited during early transgression, an infilling or “healing-phase” unit formed during the transgression, and an upper transparent unit. Beneath the transgressive surface, steeply dipping reflectors with several dip reversals record faulting and folding along the La Jolla margin. Scripps Canyon is located at the crest of an antiform, where the rocks are fractured and more susceptible to erosion. La Jolla Canyon is located along the northern strand of the Rose Canyon Fault Zone, which separates Cretaceous lithified rocks to the south from poorly cemented Eocene sands and gravels to the north. Isopach and structure contour maps of the three sedimentary units reveal how their thicknesses and spatial distributions relate to regional tectonic deformation. For example, the estuarine unit is predominantly deposited along the edges of the canyons in paleotopographic lows that may have been inlets along barrier beaches during the Holocene sea-level rise. The distribution of the infilling unit is controlled by pre-existing relief that records tectonic deformation and erosional processes. The thickness and distribution of the upper transparent unit are controlled by long-wavelength, tectonically induced relief on the transgressive surface and hydrodynamics.
The relationship between plantar pressure and footprint shape.
Hatala, Kevin G; Dingwall, Heather L; Wunderlich, Roshna E; Richmond, Brian G
2013-07-01
Fossil footprints preserve the only direct evidence of the external foot morphologies and gaits of extinct hominin taxa. However, their interpretation requires an understanding of the complex interaction among foot anatomy, foot function, and soft sediment mechanics. We applied an experimental approach aimed at understanding how one measure of foot function, the distribution of plantar pressure, influences footprint topography. Thirty-eight habitually unshod and minimally shod Daasanach individuals (19 male, 19 female) walked across a pressure pad and produced footprints in sediment directly excavated from the geological layer that preserves 1.5 Ma fossil footprints at Ileret, Kenya. Calibrated pressure data were collected and three-dimensional models of all footprints were produced using photogrammetry. We found significant correlations (Spearman's rank, p < 0.0001) between measurements of plantar pressure distribution and relative footprint depths at ten anatomical regions across the foot. Furthermore, plantar pressure distributions followed a pattern similar to footprint topography, with areas of higher pressure tending to leave deeper impressions. This differs from the results of experimental studies performed in different types of sediment, supporting the hypothesis that sediment type influences the relationship between plantar pressure and footprint topography. Our results also lend support to previous interpretations that the shapes of the Ileret footprints preserve evidence of a medial transfer of plantar pressure during late stance phase, as seen in modern humans. However, the weakness of the correlations indicates that much of the variation in relative depths within footprints is not explained by pressure distributions under the foot when walking on firm ground, using the methods applied here. This warrants caution when interpreting the unique foot anatomies and foot functions of extinct hominins evidenced by their footprint structures. Further research is necessary to clarify how anatomical, functional, and sedimentary variables influence footprint formation and how each can be inferred from footprint morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gogina, Mayya; Glockzin, Michael; Zettler, Michael L.
2010-01-01
In this study we relate patterns in the spatial distribution of macrofaunal communities to patterns in near-bottom environmental parameters, analysing the data observed in a limited area in the western Baltic Sea. The data used represents 208 stations, sampled during the years 2000 to 2007 simultaneously for benthic macrofauna, associated sediment and near-bottom environmental characteristics, in a depth range from 7.5 to 30 m. Only one degree of longitude wide, the study area is geographically bounded by the eastern part of the Mecklenburg Bight and the southwestern Darss Sill Area. Spatial distribution of benthic macrofauna is related to near-bottom environmental patterns by means of various statistical methods (e.g. rank correlation, hierarchical clustering, nMDS, BIO-ENV, CCA). Thus, key environmental descriptors were disclosed. Within the area of investigation, these were: water depth, regarded as a proxy for other environmental factors, and total organic content. Distinct benthic assemblages are defined and discriminated by particular species ( Hydrobia ulvae-Scoloplos armiger, Lagis koreni-Mysella bidentata and Capitella capitata-Halicryptus spinulosus). Each assemblage is related to different spatial subarea and characterised by a certain variability of environmental factors. This study represents a basis for the predictive modeling of species distribution in the selected study area.
Hu, Limin; Shi, Xuefa; Qiao, Shuqing; Lin, Tian; Li, Yuanyuan; Bai, Yazhi; Wu, Bin; Liu, Shengfa; Kornkanitnan, Narumol; Khokiattiwong, Somkiat
2017-01-01
Surface sediments obtained from a matrix of 92 sample sites in the Gulf of Thailand (GOT) were analyzed for a comprehensive study of the distribution, sources, and mass inventory of polycyclic aromatic hydrocarbons (PAHs) to assess their input pathways and impacts of the regional land-based energy structure on the deposition of PAHs on the adjacent continental margins. The concentration of 16 PAHs in the GOT ranged from 2.6 to 78.1ng/g (dry weight), and the mean concentration was 19.4±15.1ng/g. The spatial distribution pattern of 16 PAH was generally consistent with that of sediment grain size, suggesting the influence of regional hydrodynamic conditions. Correlation and principal component analysis of the PAHs indicated that direct land-based inputs were dominantly responsible for the occurrence of PAHs in the upper GOT and the low molecular weight (LMW) PAHs in the coastal region could be from petrogenic sources. A positive matrix factorization (PMF) model apportioned five contributors: petroleum residues (~44%), biomass burning (~13%), vehicular emissions (~11%), coal combustion (~6%), and air-water exchange (~25%). Gas absorption may be a significant external input pathway for the volatile PAHs in the open GOT, which further implies that atmospheric loading could be important for the sink of PAHs in the open sea of the Southeast Asia (SE Asia). The different PAH source patterns obtained and a significant disparity of PAH mass inventory in the sediments along the East and Southeast Asia continental margins can be ascribed mainly to different land-based PAH emission features under the varied regional energy structure in addition to the depositional environment and climatic conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Measures, R.; Hicks, D. M.; Brasington, J.
2016-01-01
Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477
Williams, R D; Measures, R; Hicks, D M; Brasington, J
2016-08-01
Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.
Meteorological Situations Favouring the Development of Dust Plumes over Iceland
NASA Astrophysics Data System (ADS)
Schepanski, K.; Szodry, K.
2017-12-01
The knowledge on mineral dust emitted at high latitudes is limited, but its impact on the polar environments is divers. Within a warming climate, dust emitted from regions in cold climates is expected to increase due to the retreat of the ice sheet and increasing melting rates. Therefore, and for its extensive impacts on different aspects of the climate system, a better understanding of the atmospheric dust life-cycle at high latitudes/cold climates in general, and the spatio-temporal distribution of dust sources in particular, are essential. At high-latitudes, glacio-fluvial sediments as found on river flood plains e.g. supplied by glaciers are prone to wind erosion when dry and bare. In case of the occurrence of strong winds, sediments are blown out and dust plumes develop. As dust uplift is controlled by soil surface characteristics, the availability of suitable sediments, and atmospheric conditions, an interannual variability in dust source activity is expected. We investigated atmospheric circulation patterns that favour the development of dust plumes over Iceland, which presents a well-known dust source at high latitudes. Using the atmosphere model COSMO (COnsortium for Small-scale MOdeling), we analysed the wind speed distribution over the Iceland region for identified and documented dust cases. As one outcome of the study, the position of the Icelandic low, the anticyclones located over Northern Europe, and the resulting pressure gradients are of particular relevance. The interaction of the synoptic-scale winds with the Icelandic orography may locally enhance the wind speeds and thus foster local dust emission. Results from this study suggest that the atmospheric circulation determined by the pressure pattern is of particular relevance for the formation of dust plumes entering the North Atlantic.
NASA Astrophysics Data System (ADS)
Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.
2015-01-01
Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10-15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. Taken together, these culturing and sediment studies suggest that δ13CAA patterns in sediments represent a novel proxy for understanding both primary production sources, as well as direct bacterial role in the ultimate preservation of sedimentary organic matter.
Thieler, E. Robert; Foster, David S.; Himmelstoss, Emily A.; Mallinson, David J.
2013-01-01
The inner continental shelf off the northern Outer Banks of North Carolina was mapped using sidescan sonar, interferometric swath bathymetry, and high-resolution chirp and boomer subbottom profiling systems. We use this information to describe the shallow stratigraphy, reinterpret formation mechanisms of some shoal features, evaluate local relative sea-levels during the Late Pleistocene, and provide new constraints, via recent bedform evolution, on regional sediment transport patterns. The study area is approximately 290 km long by 11 km wide, extending from False Cape, Virginia to Cape Lookout, North Carolina, in water depths ranging from 6 to 34 m. Late Pleistocene sedimentary units comprise the shallow geologic framework of this region and determine both the morphology of the inner shelf and the distribution of sediment sources and sinks. We identify Pleistocene sedimentary units beneath Diamond Shoals that may have provided a geologic template for the location of modern Cape Hatteras and earlier paleo-capes during the Late Pleistocene. These units indicate shallow marine deposition 15–25 m below present sea-level. The uppermost Pleistocene unit may have been deposited as recently as Marine Isotope Stage 3, although some apparent ages for this timing may be suspect. Paleofluvial valleys incised during the Last Glacial Maximum traverse the inner shelf throughout the study area and dissect the Late Pleistocene units. Sediments deposited in the valleys record the Holocene transgression and provide insight into the evolutionary history of the barrier-estuary system in this region. The relationship between these valleys and adjacent shoal complexes suggests that the paleo-Roanoke River did not form the Albemarle Shelf Valley complex as previously proposed; a major fluvial system is absent and thus makes the formation of this feature enigmatic. Major shoal features in the study area show mobility at decadal to centennial timescales, including nearly a kilometer of shoal migration over the past 134 yr. Sorted bedforms occupy ~ 1000 km2 of seafloor in Raleigh Bay, and indicate regional sediment transport patterns between Capes Hatteras and Lookout that help explain long-term sediment accumulation and morphologic development. Portions of the inner continental shelf with relatively high sediment abundance are characterized by shoals and shoreface-attached ridges, and where sediment is less abundant, the seafloor is dominated by sorted bedforms. These relationships are also observed in other passive margin settings, suggesting a continuum of shelf morphology that may have broad application for interpreting inner shelf sedimentation patterns.
NASA Astrophysics Data System (ADS)
Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.
2015-12-01
The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the Southwestern Pennsylvania region, as well as early industrial coal production/consumption on legacy trace metal contamination. This record suggests that some early industrial processes can rival more recent metal fluxes and should be carefully considered in modern assessments of legacy sediment metal contamination.
NASA Astrophysics Data System (ADS)
Lacharité, Myriam; Metaxas, Anna
2017-08-01
Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.
NASA Astrophysics Data System (ADS)
Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L.
2013-09-01
In order to improve knowledge of the identification, distribution and abundances of microplastic particles of 1 mm or less (S-MPPs) in the coastal area of the Mediterranean region, a preliminary monitoring survey was carried out in a transitional environment along the north-eastern Italian coasts, the Lagoon of Venice. S-MPPs were evaluated in sediments collected from 10 sites chosen in shallow areas variously affected by natural conditions and anthropogenic influences (i.e., landward stations influenced by freshwater inputs, seaward areas near sea inlets, and sites influenced by the presence of aquaculture farms, industry and city centers). S-MPPs, extracted from bulk sediments by density separation, were counted and identified by Fourier-Transform Infrared Micro-spectroscopy (μFT-IR). The μFT-IR process included automatic surface chemical mapping and references to an infrared library database to identify the compositional spectra of particles. S-MPPs were recovered from all samples - a fact which emphasizes their extensive distribution throughout the Lagoon. Total abundances varied from 2175 to 672 S-MPPs kg-1 d.w., higher concentrations generally being observed in landward sites. Of the ten polymer types identified, the most abundant, accounting for more than 82% of total S-MPPs, were polyethylene and polypropylene. The most frequent size (93% of observed microplastics) was in the range 30-500 μm. Total S-MPP values were significantly correlated with the finer sediment fraction and with the metal pollution index.
Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng
2015-01-01
Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3) to 2.10±0.13×10(5) copies g(-1) (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×10(3) to 1.83±0.18×10(5) copies g(-1) (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4(+)) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.
NASA Astrophysics Data System (ADS)
Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Hara, Motoyuki; Nagata, Toshi; Fujikura, Kasunori; Sonoda, Akira
2016-04-01
On March 11, 2011, huge earthquake with M9.0 took place at Japan Trench area off Northeast Japan. Vigorous disturbances of marine environments and ecosystems have taken place at coastal areas where huge tsunamis swept sediments and organisms away from the coastal areas to deeper oceans. Distributional pattern of sediments and organisms in coves and bays have strongly changed after tsunamis. Marine ecosystems at Northeast Japan have totally disturbed and damaged. Scientists from Tohoku University, the University of Tokyo and JAMSTEC have started to monitor how much marine ecosystem disturbed and how it may recover. A research team, named Tohoku Ecosystem-Associated Marine Sciences, continually makes research on marine ecosystems as ten years monitoring project funded by MEXT, Japan since 2011. On 2016, it takes five years from the Earthquake and Tsunami occurred. What happens marine ecosystems at Tohoku area during these years. Water column ecosystems are rather easy to recover from disturbances. Seaweed communities have strongly damaged, but, they gradually recover. Sediment communities have not recovered yet as sediment distribution is different from before earthquake and tsunamis. Most difficulties are scars in human minds. We, scientists, try to share scientific activities and results with local peoples including fishermen and local governments for better understanding of both oceanic conditions and fishery resources. Disaster risk reduction should accelerate with resilience of community structure. But, mental resilience is the most effective way to recover human activities at the damaged areas.
[Effects of sediment on the early settlement stage of Sargassum horneri on rocky subtidal reefs].
Bi, Yuan-Xin; Zhang, Shou-Yu; Wu, Zu-Li
2013-05-01
By using sediment trap and suction pump to measure the relative sediment levels across different sites and water depths, and through the in situ measurements of Sargassum horneri density, this paper assessed the relationships between the distribution of S. horneri and the sediment levels and wave exposure on the rocky subtidal platforms around Gouqi Island, China. The laboratory-based experiments were also conducted to test the effects of different sediment levels on the attachment of S. horneri zygote and the survival rate of S. horneri germling after the attachment. S. horneri predominated at the sites with lesser sediment and wave exposure, but less distributed in the sites with high level sediment and wave-exposure. At different water depths, the distribution of S. horneri was negatively correlated with the amount of sediment. A medium dusting (dry mass 10.47 mg x cm(-2), approximate 0.543 mm deep) of sediment on the plate reduced the percentage of S. horneri zygotes attached to the substratum by 4.4%, and a heavy dusting (dry mass 13.96 mg x cm(-2), approximate 0.724 mm deep) of sediment on the plate completely prevented the attachment. One week after the settlement of the zygotes, there were 24% of the germlings still survived when the dry mass sediment coverage was 13.96 mg x cm(-2). However, when the dry mass sediment coverage was up to 34.9 mg x cm(-2) (approximate 1.81 mm deep), 100% of the germlings died. Overall, the distribution of S. horneri was not only related to sediment level, but also restricted by wave exposure to some extent. Sediment level was a critical factor affecting the distribution of S. horneri, particularly at its zygote attachment stage.
Mapping turbidity patterns in the Po river prodelta using multi-temporal Landsat 8 imagery
NASA Astrophysics Data System (ADS)
Braga, Federica; Zaggia, Luca; Bellafiore, Debora; Bresciani, Mariano; Giardino, Claudia; Lorenzetti, Giuliano; Maicu, Francesco; Manzo, Ciro; Riminucci, Francesco; Ravaioli, Mariangela; Brando, Vittorio Ernesto
2017-11-01
Thirty-meters resolution turbidity maps derived from Landsat 8 (L8) images were used to investigate spatial and temporal variations of suspended matter patterns and distribution in the area of Po River prodelta (Italy) in the period from April 2013 to October 2015. The main focus of the work was the study of small and sub-mesoscale structures, linking them to the main forcings that control the fate of suspended sediments in the northern Adriatic Sea. A number of hydrologic and meteorological events of different extent and duration was captured by L8 data, quantifying how river discharge and meteo-marine conditions modulate the distribution of turbidity on- and off-shore. At sub-mesoscale, peculiar patterns and smaller structures, as multiple plumes and sand bars, were identified thanks to the unprecedented spatial and radiometric resolution of L8 sensor. The use of these satellite-derived products provides interesting information, particularly on turbidity distribution among the different delta distributaries in specific fluvial regimes that fills the knowledge gap of traditional studies based only on in situ data. A novel approach using satellite data within model implementation is then suggested.
NASA Astrophysics Data System (ADS)
Mojtahid, M.; Geslin, E.; Coynel, A.; Gorse, L.; Vella, C.; Davranche, A.; Zozzolo, L.; Blanchet, L.; Bénéteau, E.; Maillet, G.
2016-12-01
Ninety-seven surface sediment samples were collected in September 2012 from intertidal and subtidal areas along the Loire estuary (western France). The main objective of this work is to study the spatial distributional patterns of living benthic foraminifera and their link to the environmental parameters (distance to sea, elevation, grain size, total organic carbon, trace metals, sedimentary carbonates, and polycyclic aromatic hydrocarbons) in the Loire estuary. Foraminiferal analysis was also extended to the dead assemblages in thirty-three surface samples from the lower inner estuary. The highest absolute densities of living benthic foraminifera are found in the lower inner estuary within the polyhaline domain. This is attributed to the presence of mudflats with abundant food source, i.e. microphytobenthos. The low densities found in the outer estuary (euhaline domain) are attributed partly to the sandy nature of the sediments and the food source inhabiting this substrate. The near absence of foraminifera in the inner estuary (mesohaline and polyhaline domains) is inferred to the physical disturbance resulting from the regular dredging of the navigation channel. The living assemblages are dominated by three typical estuarine species: Ammonia tepida and Haynesina germanica in the intertidal mudflats of the lower inner estuary and Cribroelphidium excavatum in the sandy subtidal sediments of the lower inner and outer estuary. In the Loire estuary, H. germanica has an unusual intermediate geographical distribution along the estuary between A. tepida and C. excavatum while in most temperate estuaries this species is present upstream in the mesohaline domain. This is most likely the result of the regular dredging of the navigation channel damaging its natural habitat. This might be also the explanation for the total absence of agglutinated species usually dominating the oligohaline domain. The canonical correspondence analysis shows that elevation (and its link to time of emersion), distance to sea (and its correspondence with salinity), and organic carbon content appear to be the primary drivers of foraminiferal distribution. The present study provides for the first time ecological and distribution patterns of living benthic foraminiferal communities in the Loire estuary. This baseline knowledge is necessary for the future studies focusing on the use of benthic foraminifera as bio-indicators in the Loire estuary and in transitional environments in general.
Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.
2014-01-01
Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.
NASA Astrophysics Data System (ADS)
Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.
2015-08-01
Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. It is uncertain whether archaea may have contributed to sedimentary δ13CAA patterns we observe, and controlled culturing studies will be needed to investigate whether δ13CAA patterns can differentiate bacterial from archeal sources. Further research efforts are also needed to understand how closely δ13CAA patterns derived from hydrolyzable amino acids represent total sedimentary proteineincous material, and more broadly sedimentary organic nitrogen. Overall, however, both our culturing and sediment studies suggest that δ13CAA patterns in sediments will represent a novel proxy for understanding both primary production sources, and the direct bacterial role in the ultimate preservation of sedimentary organic matter.
Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons
Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter
2016-01-01
Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-. PMID:27175907
Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons.
Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter
2016-01-01
Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-.
Temporal pattern and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo
2015-04-01
In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.
Chemistry of modern sediments in a hypersaline lagoon, north of Jeddah, Red Sea
NASA Astrophysics Data System (ADS)
El-Sayed, Mahmoud Kh.
1987-10-01
Previous studies of modern peritidal sedimentary environments of the Red Sea, such as hypersaline lagoons and sea-marginal flats, have concentrated on its northern part, particularly in the Gulf of Aqaba. However, little is known about lagoon sediments in other localities along the Red Sea coastal stretches. This paper deals with the chemical characteristics of the sediments of a hypersaline (Ras Hatiba) lagoon, north of Jeddah, Saudi Arabia. The chemistry of hypersaline lagoon sediments is considerably changed following the modifications to the water chemistry by evaporation and precipitation. Ras Hatiba lagoon is a hypersaline elongated water body connected to the Red Sea by a narrow and shallow opening. The total area of the lagoon is c. 30 km 2. Coarse bioclastic sands are dominant in the lagoon and mostly surround lithified calcareous grounds. However, fine silt and clay sediments are present in separate patches. The sediments are rich in carbonates (average 78·5%) and organic carbon (average 7·3%), although they are negatively correlated. Calcium (average 25·1%) and magnesium (average 10·8‰) show a similar distribution pattern in the lagoon sediments. Strontium (average 5·2‰) is positively correlated with calcium. Sodium and potassium are relatively highly concentrated in the sediments (average 118 ppm and 173 ppm, respectively). Magnesium and strontium are of prime importance in the process of mineralization and diagenesis. The sabkha formation surrounding the lagoon is of low carbonate and organic carbon content, compared with the lagoon sediments, whilst it is characterized by high magnesium, sodium and potassium concentrations. Ras Hatiba lagoon sediments and sabkha resemble those of the northern Red Sea in the Gulfs of Aqaba and Suez and the Arabian Gulf in their major sedimentological and chemical characteristics.
Sun, Xueshi; Fan, Dejiang; Liu, Ming; Tian, Yuan; Pang, Yue; Liao, Huijie
2018-06-18
Sediment samples, including 40 surface samples and 12 sediment cores, were collected from 52 stations of the Yangtze River Estuary (YRE) in 2015 and 2016. The 95% linear prediction intervals (LPI) and principal components analysis (PCA), were conducted to evaluate the metal sources and grain-size effect (GSE). The in situ physico-chemical properties of pH, Eh, DO, salinity, temperature and turbidity were combined to elucidate the relationships between environmental factors and the fate of heavy metals in the river-estuary-shelf system. This study indicates a decreasing trend of metals in sediments from the estuary towards the adjacent shelf and the river channel and that Zn, Cu and Cr are mainly derived from natural processes throughout the catchment, whereas Pb appears to have anthropogenic inputs via atmospheric deposition. Furthermore, considering the best fit regression lines between the concentrations of Al and heavy metals as well as the deficiencies of the conventional C elements /C Al method, we introduce an approach (Al-SN: Al-scope normalization) that can eliminate the GSE on heavy metals and be applied to other estuaries. After Al-scope normalization, the relatively constant levels of Zn, Cu and Cr that remain in sediments from the river channel to the estuary and shelf confirmed that the variation of grain size in sediments almost entirely explained the distribution patterns of sediment toxicity in the YRE, while the enrichment of Pb in estuarine sediments could be attributed to its chemical species and physico-chemical properties. The results further suggest that the relationship between grain size and spatial behavior of sediment pollutants should be given priority over the contamination assessment and provenance discrimination in estuarine or similar environments with complex sediment compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Erwin, S. O.; Jacobson, R. B.; Eric, A. B.; Jones, J. C.; Anderson, B. W.
2015-12-01
Perturbations to sediment regimes due to anthropogenic activities may have long lasting effects, especially in systems dominated by coarse sediment where travel times are relatively long. Effectively evaluating management alternatives requires understanding the future trajectory of river response at both the river network and reach scales. The Ozark Plateaus physiographic province is a montane region in the interior US composed primarily of Paleozoic sedimentary rock. Historic land-use practices around the turn of the last century accelerated delivery of coarse sediment to river channels. Effects of this legacy sediment persist in two national parks, Ozark National Scenic Riverways, MO and Buffalo National River, AR, and are of special concern for management of native mussel fauna. These species require stable habitat, yet they occupy inherently dynamic environments: alluvial rivers. At the river-network scale, analysis of historical data reveals the signature of sediment waves moving through river networks in the Ozarks. Channel planform alternates between relatively stable, straight reaches, and wider, multithread reaches which have been more dynamic over the past several decades. These alternate planform configurations route and store sediment differently, and translate into different patterns of bed stability at the reach scale, which in turn affects the distribution and availability of habitat for native biota. Geomorphic mapping and hydrodynamic modeling reveal the complex relations between planform (in)stability, flow dynamics, bed mobility, and aquatic habitat in systems responding to increased sediment supply. Reaches that have a more dynamic planform may provide more hydraulic refugia and habitat heterogeneity compared to stable, homogeneous reaches. This research provides new insights that may inform management of sediment and mussel habitat in rivers subject to coarse legacy sediment.
Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto
2013-10-01
We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Zeng, Lixi; Chen, Ru; Zhao, Zongshan; Wang, Thanh; Gao, Yan; Li, An; Wang, Yawei; Jiang, Guibin; Sun, Liguang
2013-10-15
As the most complex halogenated contaminants, short chain chlorinated paraffins (SCCPs) are scarcely reported in marine environments. In this work, a total of 117 surficial sediment (0-3 cm) samples and two sediment cores were collected from the Chinese Bohai and Yellow Seas to systematically study the spatial and temporal trends of SCCPs at a large scale in the Chinese marine environment. Total SCCP concentrations in the surficial sediments were in the range of 14.5-85.2 ng g(-1) (dry weight, d.w.) with an average level of 38.4 ng g(-1) d.w. Spatial distribution showed a decreasing trend with the distance from the coast to the open waters. Compositional pattern analysis suggested that C10 was the most predominant homologue group, followed by C11, C12, and C13 homologue groups. The concentrations of total SCCPs in sediment cores ranged from 11.6 to 94.7 ng g(-1) d.w. for YS1 and from 14.7 to 195.6 ng g(-1) d.w. for YS2, with sharp rise from the early 1950s to present based on (210)Pb dating technique. The historical records in cores correspond well to the production and usage changes of CPs in China. Multivariate regression statistics indicate TOC, latitude and longitude are the major factors influencing surficial SCCP levels in the Chinese East Seas by combining analysis with the data from the East China Sea (R(2) = 0.332, p < 0.01). These findings indicated that the sources of SCCPs were mainly from river outflows via ocean current and partly from atmospheric depositions by East Asian monsoon in the sampling areas.
NASA Astrophysics Data System (ADS)
Tomaru, Hitoshi; Fehn, Udo
2015-01-01
Halogen concentrations and 129I/I ratios were determined in pore waters from the Nankai Trough subduction system, collected during IODP Expeditions 315, 316, 322, and 333 along the NanTroSEIZE transect. The transect allowed the first direct comparison of iodine results across an active subduction system, from subducting oceanic sediments to the accretionary prism, and the overlying forearc basin. In contrast to the other halogens (Cl and Br) iodine concentrations show large variations within and among the cores at all sites landward of the trough, I concentrations increase rapidly with depth and reach values several orders of magnitude higher than those in seawater, but are only slightly higher than seawater values at the seaward sites. Methane concentrations follow a similar pattern. Host sediments of the fluids are younger than 7 Ma in all the cores, but the ages of iodine in pore waters at the landward sites reach values beyond 30 Ma. In contrast, iodine seaward of the trough is in isotopic equilibrium with the host sediments, resulting in very similar iodine and sediment ages. The distribution of iodine concentrations and ages indicates that iodine at the landward sites has been transported there in aqueous fluids, probably together with methane, from old formations in the upper plate. The specific fluid pathways potentially were influenced by features such as the megasplay fault in the prism or the décollement. The results demonstrate large-scale transport of fluids carrying iodine and other compounds such as methane from old layers in the upper plate to surface locations landward of the Nankai Trough, while separate, but only local hydrologic processes occur in the marine sediments moving toward the trough.
Bronx River bed sediments phosphorus pool and phosphorus compound identification
NASA Astrophysics Data System (ADS)
Wang, J.; Pant, H. K.
2008-12-01
Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.
Historical trace element distribution in sediments from the Mississippi River delta
Swarzenski, P.W.; Baskaran, M.; Rosenbauer, R.J.; Orem, W.H.
2006-01-01
Five sediment cores were collected on the shelf of the inner Mississippi Bight in June 2003 for a suite of radionuclides to establish geochronologies and trace elements to examine patterns of contaminant deposition and accumulation. Core sites were chosen to reflect a matrix of variable water depths, proximity to the Mississippi River mouth as the primary source for terrigenous particles, and extent and duration of summertime water column hypoxia. The vertical distribution of 239,240Pu and 210Pbxs (= 210Pbtotal - 226Ra) provided reliable geochronological age constraints to develop models for mass accumulation rates and historic trace element inputs and variations. Mass accumulation rates ranged from 0.27 to 0.87 g cm-2 yr-1 and were internally consistent using either 210Pbxs or 239,240Pu. Measured inventories of 137Cs, 239,240Pu, and 210Pbxs were compared to atmospheric deposition rates to quantify potential sediment focusing or winnowing. Observed variability in calculated mass accumulation rates may be attributed foremost to site-specific proximity to the river mouth (i.e., sediment source), variability in water depth, and enhanced sediment focusing at the Mississippi River canyon site. Trace element concentrations were first normalized to Al, and then Al-normalized enrichment factors (ANEF) were calculated based on preanthropogenic and crustal trace element abundances. These ANEFs were typically > 1 for V and Ba, while for most other elements studied, either no enrichment or depletion was observed. The enrichment of Ba may be related, in part, to the seasonal occurrence of oxygen-depleted subsurface waters off the Mississippi River delta, as well as being an ubiquitous by-product of the petroleum industry. ?? 2006 Estuarine Research Federation.
NASA Astrophysics Data System (ADS)
Pfeiffer, A.; Finnegan, N. J.
2017-12-01
Gravel river beds provide an ephemeral architecture for the benthic inhabitants of river ecosystems. Periphyton and benthic macroinvertebrates that live on or within the gravel are subject to catastrophic disruption upon mobilization of the surface gravel during floods. Because sediment supply varies by orders of magnitude across North America, and rivers have adjusted to convey their imposed loads, river bed surface mobility varies enormously. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydrologic patterns result in diverse regimes of benthic habitat stability. To quantitatively characterize these regimes, we calculate decades-scale time series of estimated bed surface mobility using sediment transport equations (Wilcock and Crowe, 2003). The method requires measurements of the bed surface grainsize distribution, channel slope, and standard USGS stream gauging records. We calculate the fraction of the bed surface grain size distribution that is mobile at any given flow, as well as the intensity of transport. We use the time series of bed mobility to compare between rivers and regions. In many snowmelt-dominated rivers in Idaho, a period of moderate bed mobility (W* > 0.002) generally occurs during the annual melt, and can last for days. In rivers draining the central and northern Appalachians, bed mobility is comparatively rare and occurs during short duration floods. Rivers on the tectonically active West Coast tend to experience bed mobility during most winter storms, with brief (hours long) periods of high transport rates (W* > 0.02) during storm peaks. The timing and intensity of bed mobility varies with hydrologic regime and sediment supply; these contrasts in bed mobility lead to diverse structural templates for river ecosystems.
Modes of Contintental Sediment Storage and the History of Atmospheric Oxygen
NASA Astrophysics Data System (ADS)
Husson, J. M.; Peters, S. E.
2015-12-01
Documenting the history of atmospheric oxygen levels, and the processes that have governed that history, are among the most fundamental of problems in Earth science. Diverse observations from sedimentary petrography, isotope geochemistry, stratigraphy and trace element geochemistry have led to a model wherein concentrations of oxygen experienced two significant rises: the first 'Great Oxidation Event' near the Archean-Proterozoic boundary, and a second near the Proterozoic-Phanerozoic boundary. Despite ongoing debates over important details in the history of atmospheric O2, there is widespread agreement that the burial and long-term storage of sedimentary organic matter derived from photosynthesis, which represents net O2 production over consumption by respiration, is the primary driver of oxygenation of the atmosphere. In this regard, sedimentation on the continents is vitally important; today, >90% of buried organic matter occurs in sediments deposited on continental crust. Here we use 23,813 rock units, distributed among 949 geographic regions in North America, from the Macrostrat database to constrain patterns of sedimentation through Earth history. Sedimentary packages are low in number in the Archean, increase to a higher steady state value across the transition to the Proterozoic, and rise again across the Proterozoic-Phanerozoic boundary during the final stage in the formation of the Great Unconformity. Map-based data from polar Eurasia and Australia show qualitatively similar macrostratigraphic patterns of sediment abundance. The temporal similarities between continental sedimentation and the putative history of pO2 are sensible in the context of organic carbon burial. A simple model of burial and weathering on North America predicts two significant rises in pO2. These results suggest that the changing ability of the continents to serve as long-term organic carbon storage reservoirs, presumably due to geodynamic processes, has exerted a first-order control on the stepwise oxygenation of Earth's atmosphere.
Anoxia stimulates microbially catalyzed metal release from Animas River sediments.
Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J
2017-04-19
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.
NASA Astrophysics Data System (ADS)
Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.
2017-08-01
Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical gradients in vesicomyid assemblages, and by the vesicomyid population characteristics that vary in density, size and composition. By modifying the sediment geochemistry differently according to their morphology and physiology, the different vesicomyid species play an important role structuring macrofauna composition and vertical distribution. Dynamics of turbiditic deposits at a longer temporal scale (thousands of years) and their spatial distribution in the lobe area also resulted in high heterogeneity of the "cold-seep-like communities". Dynamics of chemosynthetic habitats and associated macrofauna in the active lobe area resembled those previously observed at the Regab pockmark along the Congo margin and rapid succession is expected to cope with high physical disturbance by frequent turbiditic events and huge sedimentation rates. Finally, we propose a model of the temporal evolution of these peculiar habitats and communities on longer timescales in response to changes in distributary channels within the lobe complex.
Frequency-Magnitude relationships for Underwater Landslides of the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Urgeles, R.; Gràcia, E.; Lo Iacono, C.; Sànchez-Serra, C.; Løvholt, F.
2017-12-01
An updated version of the submarine landslide database of the Mediterranean Sea contains 955 MTDs and 2608 failure scars showing that submarine landslides are ubiquitous features along Mediterranean continental margins. Their distribution reveals that major deltaic wedges display the larger submarine landslides, while seismically active margins are characterized by relatively small failures. In all regions, landslide size distributions display power law scaling for landslides > 1 km3. We find consistent differences on the exponent of the power law depending on the geodynamic setting. Active margins present steep slopes of the frequency-magnitude relationship whereas passive margins tend to display gentler slopes. This pattern likely responds to the common view that tectonically active margins have numerous but small failures, while passive margins have larger but fewer failures. Available age information suggests that failures exceeding 1000 km3 are infrequent and may recur every 40 kyr. Smaller failures that can still cause significant damage might be relatively frequent, with failures > 1 km3 likely recurring every 40 years. The database highlights that our knowledge of submarine landslide activity with time is limited to a few tens of thousand years. Available data suggest that submarine landslides may preferentially occur during lowstand periods, but no firm conclusion can be made on this respect, as only 149 landslides (out of 955 included in the database) have relatively accurate age determinations. The timing and regional changes in the frequency-magnitude distribution suggest that sedimentation patterns and pore pressure development have had a major role in triggering slope failures and control the sediment flux from mass wasting to the deep basin.
Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Martinez-Serrano, Raymundo G; Alatorre, Miguel Angel; Armstrong-Altrin, John S
2015-04-01
Two oceanographic cruises were taken during the winter (SAV I, November and December 2007) and summer (SAV II, July and August 2008) across the mouth of the Papaloapan River in the Gulf of Mexico. Surficial sediment samples were collected from shallow (16-30 m), intermediate (30 to 80 m), and deeper areas (≥300 m). Shallow water sediments are coarser, better-sorted, and primarily composed of sands during the winter, while those found in the summer are finer. At depths greater than 30 m, sediments are primarily fine-grained no matter the season. Major element analysis from shallow areas indicates higher SiO2 concentrations during the windy season with negative correlation against Al2O3 during both seasons, following the respective abundances of sand and muds. High organic carbon content was observed in shallow areas during the summer. Trace metals V, Ni, Cu, Zn, Pb, Li, Cr, Co, and Ba were evaluated. The first six metals showed higher average concentration in the deeper areas, although the highest values at some individual sampling sites for Cr, Co, Cu, and Ba were observed in the coastal area. Factor and cluster analysis were used to explain the sediment distribution pattern and the factors that determine the sediment characteristics within the study area. In shallow areas, four clusters were observed during the winter and five during the summer. The geochemical characteristics of the samples in each cluster suggest association with fluvial sediment input, textural characteristics, heavy minerals, and Cu and Ba concentration. To evaluate the variations in heavy metal concentration, metal enrichment factors (EFs) were calculated. Enrichment in V, Cr, Co, Zn, Ba, and Pb was detected at certain sites, whereas Cu behaved differently. The distribution of Cu enrichment suggests that it may be of natural origin, associated with the lithology of the volcanic continental area. The minor enrichment observed for other elements may be associated with river discharge. According to sediment quality guidelines, trace metal concentrations of Cu, Pb, and Zn present occasional risks to aquatic organisms.
NASA Astrophysics Data System (ADS)
Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.
2017-12-01
Intraslope basins are important geomorphological features present in several continental slopes around the world. They are quasi-circular in shape, and some are connected by submarine canyons. Minibasins constitute excellent locations for the deposition of siliciclastic material transported by turbidity currents and are often targets for hydrocarbon exploration. Sediment deposition in intraslope minibasin is described by the `fill-and-spill' model. When a turbidity current enters an empty minibasin, it reflects on the distal flank creating a bore. A sharp interface separates the clear water above from the turbidity current. In this phase sediments are deposited, and ponded deposits form at a lower elevation relative to the spill point. In phases in which sedimentation exceed subsidence, the thickness of the ponded deposit increases, the space between the minibasin floor and the spill point decreases, and the turbidity currents eventually overspill. The depositional pattern changes with preferential sediment deposition in the proximal part of the minibasin and the formation of a perched apron. The objective of this study is to investigate how the characteristics of the minibasin deposits change with increasing vertical distance between the minibasin inlet and the spill point, i.e. with an increase in slopes of the submarine settings. We applied a three-dimensional numerical model for turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspension along with the Exner equation of bed sediment conservation for multiple grain size classes. The model grid is adjusted according to changes in the bed elevation. The model is first validated using 2D and 3D laboratory experiments in which the minibasin entrance and the spill point are at similar elevation. The validation is done with a comparison of measured and simulated deposit geometries, vertical profiles of suspended sediment concentration and spatial distributions of sediment sizes in the deposit. Then, the vertical distance between the minibasin inlet and the spill point is systematically changed to study the effect of slope on sediment grain size distribution and the shape of the deposit.
Mercury distribution in ancient and modern sediment of northeastern Bering Sea
Nelson, C.H.; Pierce, D.E.; Leong, K.W.; Wang, F.F.H.
1975-01-01
Reconnaissance sampling of surface and subsurface sediment to a maximum depth of 80 m below the sea floor shows that typical values of 0.03 p.p.m. and anomalies of 0.2-1.3 p.p.m. mercury have been present in northeastern Bering Sea since Early Pliocene time. Values are highest in modern beach (maximum 1.3 and mean 0.22 p.p.m. Hg) and nearshore subsurface gravels (maximum 0.6 and mean 0.06 p.p.m. Hg) along the highly mineralized Seward Peninsula and in clayey silt rich in organic matter (maximum 0.16 and mean 0.10 p.p.m. Hg) throughout the region. Although gold mining may be partly responsible for high mercury levels in the modern beach near Nome, Alaska (maximum 0.45 p.p.m.), equally high or greater concentrations of mercury occur in buried Pleistocene sediments immediately offshore (maximum 0.6 p.p.m.) and in modern unpolluted beach sediments at Bluff (maximum 1.3 p.p.m.); this suggests that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The mercury content of offshore surface sediment, even adjacent to mercury-rich beaches, corresponds to that of unpolluted marine and fresh-water sediment elsewhere. The normal values that prevail offshore may be attributable to entrapment of mercury-bearing heavy minerals on beaches near sources and/or dilution effects of offshore sedimentation. The few minor anomalies offshore occur in glacial drift derived from mercury source regions of Chukotka (Siberia) and Seward Peninsula; Pleistocene shoreline processes have reworked the drift to concentrate the heavy metals. The distribution pattern of mercury indicates that particulate mercury-bearing minerals have not been widely dispersed from onland deposits in quantities sufficient to increase mercury levels above normal in offshore sediments of Bering Sea; however, it shows that natural sedimentary processes can concentrate this mercury in beaches of the coastal zone where there already is concern because of potential pollution from man's activities.
Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia
NASA Astrophysics Data System (ADS)
Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe
2008-02-01
Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.
Secular and environmental constraints on the occurrence of dinosterane in sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summons, R.E.; Boreham, C.J.; Thomas, J.
1992-06-01
The distribution patterns of sedimentary A-ring methylated steranes have changed markedly over geological time. Although dinosterane and its isomer 24-ethyl-4{alpha}-methylcholestane have been tentatively identified in three Proterozoic rock units, they are either not detectable or occur in low abundance relative to 3-methyl steranes throughout most of the Palaeozoic. Between Permian and middle Triassic times (260-220 Ma ago), 4-methyl sterane abundances in marine sediments increased markedly. The presence of dinosterane in some middle Triassic marine sediments is contemporaneous with the appearance of fossil cysts of uncontested dinoflagellate affinity. 4-Methyl steranes, including dinosterane or their precursor sterenes and sterols, then show amore » continuous presence, often in high abundance, in marine sediments from the late Triassic through to the present day. Assemblages of 4-methyl steranes and their precursors, but with dinosterane absent or in low relative abundance, are often the predominant steroids in lacustrine sediments in the Cainozoic. Dinosterane appears to arise predominantly from marine dinoflagellates and, as a consequence, is a useful biological marker for Mesozoic and Cainozoic marine organic matter. The isomer 24-ethyl-4{alpha}-methylcholestane is likely to have multiple origins although its very high abundance in Tertiary lacustrine sediments and oils, compared to older materials, suggests that dinoflagellates could also be the source in these cases.« less
NASA Astrophysics Data System (ADS)
Bergamaschi, B. A.; Smith, R. A.; Shih, J. S.; Sohl, T. L.; Sleeter, B. M.; Zhu, Z.
2014-12-01
Land-use and land-cover distributions are primary determinants of terrestrial fluxes of sediments and nutrients to coastal oceans. Sediment and nutrient delivery to coastal waters have already been significantly altered by changes in population and land use, resulting in modified patterns of coastal production and carbon storage. Continued population growth and increasing agricultural areal extent and intensity are expected to accelerate these changes. The USGS LandCarbon project developed prospective future land use and land cover projections based on IPCC scenarios A1b, A2 and B1 to 2050 as the basis for a multitude of biogeochemical assessments. We assessed the impacts on delivery of nutrients and sediments to the coastal ocean, and concomitant carbon storage. Fluxes were estimated using the SPARROW model, calibrated on historical water quality measurements. Significantly greater fluxes of nutrients and sediments to coastal waters by 2050 are projected by the model. For example, for the Eastern United States, nitrate fluxes for 2050 are projected to be16 to 52 percent higher than the baseline year, depending on scenario. As a consequence, an associated increase in the frequency and duration of coastal and estuarine hypoxia events and harmful algal blooms could be expected. Model estimates indicate that these prospective future nutrient and sediment fluxes will increase carbon storage rates in coastal waters by 18 to 56 percent in some regions.
Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia
NASA Astrophysics Data System (ADS)
Guzman, C. D.; Castro, A.; Morales, A.; Hoyos, F.; Moreno, P.; Steenhuis, T. S.
2014-12-01
A main goal of this study was to improve prediction of sediment and solute transport using soil surface and soil nutrient changes, based on field measurements, within small watersheds receiving conservation measures. Sediment samples and solute concentrations were measured from two streams in the southwestern region of the Colombian Andes. Two modeling approaches for stream discharge and sediment transport predicted were used with one of these being used for nutrient transport prediction. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations. Lateral transects in the upper, middle, and lower part of the hillsides in the Aguaclara watershed of the Rio Bolo watershed network showed differences in soil nutrient status and soil surface depth changes. The model based on semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used model indicating available options for comparison of conservation changes in the future.
NASA Astrophysics Data System (ADS)
Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.
2003-12-01
The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.
NASA Astrophysics Data System (ADS)
Grall, C.; Pickering, J.; Steckler, M. S.; Spiess, V.; Seeber, L.; Paola, C.; Goodbred, S. L., Jr.; Palamenghi, L.; Schwenk, T.
2015-12-01
Deltas can subside very fast, yet many deltas remain emergent over geologic time. A large sediment input is often enough to compensate for subsidence and rising sea level to keep many deltas at sea level. This implies a balance between subsidence and sedimentation, both of which may, however, be controlled by independent factors such as sediment supply, tectonic loads and sea-level change. We here examine the subsidence of the Ganges-Brahmaputra Delta (GBD). Located in the NE boundary of the Indian-Eurasian collision zone, the GBD is surrounded by active uplifts (Indo-Burma Fold Belt and the Shillong Massif). The pattern of subsidence from these tectonic loads can strongly vary depending on both loads and lithospheric flexural rigidity, both of which can vary in space and time. Sediment cover changes both the lithostatic pressure and the thermal properties and thus the rigidity of the lithosphere. While sediments are deposited cold, they also insulate the lithosphere, acting as a thermal blanket to increase lower crustal temperatures. These effects are a function of sedimentation rates and may be more important where the lithosphere is thin. At the massive GBD the impact of sedimentation should be considered for properly constraining flexural subsidence. The flexural rigidity of the lithosphere is here modeled by using a yield-stress envelope based on a thermomechanic model that includes geothermal changes associated with sedimentation. Models are constrained by using two different data sets, multichannel seismic data correlated to borehole stratigraphy, and gravity data. This approach allows us to determine the Holocene regional distribution of subsidence from the Hinge Zone to the Bengal Fan and the mass-anomalies associated with the flexural loading. Different end-member scenarios are explored for reproducing the observed land tilting and gravity anomalies. For all scenarios considered, data can be reproduced only if we consider an extremely weak lithosphere and we will quantify the extent that this weakness is influenced by the extreme sediment thickness of the delta. While the distribution of the present-day subsidence suggests that sediment compaction plays a major role on the current subsidence over the delta, its role over a geological time frame is probably minor.
NASA Astrophysics Data System (ADS)
Grzelak, Katarzyna; Kotwicki, Lech; Hasemann, Christiane; Soltwedel, Thomas
2017-08-01
Bathymetric patterns in standing stocks and diversity are a major topic of investigation in deep-sea biology. From the literature, responses of metazoan meiofauna and nematodes to bathymetric gradients are well studied, with a general decrease in biomass and abundance with increasing water depth, while bathymetric diversity gradients often, although it is not a rule, show a unimodal pattern. Spatial distribution patterns of nematode communities along bathymetric gradients are coupled with surface-water processes and interacting physical and biological factors within the benthic system. We studied the nematode communities at the Long-Term Ecological Research (LTER) observatory HAUSGARTEN, located in the Fram Strait at the Marginal Ice Zone, with respect to their standing stocks as well as structural and functional diversity. We evaluated whether nematode density, biomass and diversity indices, such as H0, Hinf, EG(50), Θ- 1, are linked with environmental conditions along a bathymetric transect spanning from 1200 m to 5500 m water depth. Nematode abundance, biomass and diversity, as well as food availability from phytodetritus sedimentation (indicated by chloroplastic pigments in the sediments), were higher at the stations located at upper bathyal depths (1200-2000 m) and tended to decrease with increasing water depth. A faunal shift was found below 3500 m water depth, where genus composition and trophic structure changed significantly and structural diversity indices markedly decreased. A strong dominance of very few genera and its high turnover particularly at the abyssal stations (4000-5500 m) suggests that environmental conditions were rather unfavorable for most genera. Despite the high concentrations of sediment-bound chloroplastic pigments and elevated standing stocks found at the deepest station (5500 m), nematode genus diversity remained the lowest compared to all other stations. This study provides a further insight into the knowledge of deep-sea nematodes, their diversity patterns and a deeper understanding of the environmental factors shaping nematodes communities at bathyal and abyssal depths.
NASA Astrophysics Data System (ADS)
Nyobe, Jules Mbanga; Sababa, Elisé; Bayiga, Elie Constantin; Ndjigui, Paul-Désiré
2018-03-01
This paper is focused on the morphological, mineralogical, and geochemical features of alluvial sediments from the Neoproterozoic Pan-African belt to explore rutile. The fine-grained sediments, which contain a large proportion of rutile, are made up of quartz, rutile, zircon, brookite, tourmaline, andalusite, and kyanite. The high SiO2 and TiO2 contents highlight the predominance of silica minerals in the alluvia from the humid tropical zone. La/Sc, La/Co, Th/Sc and Zr/Cr ratios reflect the contribution of felsic and mafic sources. The highest Ti contents, which occur at the outlet of the Lobo watershed, indicate the resistance of rutile. The REE distribution could be linked to the heavy mineral sorting. The low (La/Yb)N ratios and high Zr contents are attributed to the high proportion of zircon. Chondrite-normalized REE patterns indicate high felsic sources, which are the regional rocks. Ultimately, the Yaoundé Group constitutes a favorable potential target for further rutile exploration.
Multi-offset GPR methods for hyporheic zone investigations
Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.
2009-01-01
Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.
Sreekanth, Athira; Mrudulrag, S K; Cheriyan, Eldhose; Sujatha, C H
2015-12-30
The geochemical distribution and enrichment of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) were determined in the surface sediments of Arabian Sea, along southwest India, Kerala coast. The results of geochemical indices indicated that surficial sediments of five transects are uncontaminated with respect to Mn, Zn and Cu, uncontaminated to moderately contaminated with Co and Ni, and moderately to strongly contaminated with Pb. The deposition of trace elements exhibited three different patterns i) Cd and Zn enhanced with settling biodetritus from the upwelled waters, ii) Pb, Co and Ni show higher enrichment, evidenced by the association through adsorption of iron-manganese nodules onto clay minerals and iii) Cu enrichment observed close to major urban sectors, initiated by the precipitation as Cu sulfides. Correlation, principal component analysis (PCA) and cluster analysis (CA) were used to confirm the origin information of metals and the nature of organic matter composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Willson, C. S.
2011-12-01
Over the past several thousand years the Mississippi River has formed one of the world's largest deltas and much of the Louisiana coast. However, in the last 100 years or so, anthropogenic controls have been placed on the system to maintain important navigation routes and for flood control resulting in the loss of the natural channel shifting necessary for replenishment of the deltaic coast with fresh sediment and resources. In addition, the high relative sea level rise in the lowermost portion of the river is causing a change in the distributary flow patterns of the river and deposition center. River and sediment diversions are being proposed as way to re-create some of the historical distribution of river water and sediments into the delta region. In response to a need for improving the understanding of the potential for medium- and large-scale river and sediment diversions, the state of Louisiana funded the construction of a small-scale physical model (SSPM) of the lower ~76 river miles (RM). The SSPM is a 1:12,000 horizontal, 1:500 vertical, highly-distorted, movable bed physical model designed to provide qualitative and semi-quantitative results regarding bulk noncohesive sediment transport characteristics in the river and through medium- and large-scale diversion structures. The SSPM was designed based on Froude similarity for the hydraulics and Shields similarity for sand transport and has a sediment time scale of 1 year prototype to 30 minutes model allowing for decadal length studies of the land building potential of diversions. Annual flow and sediment hydrographs were developed from historical records and a uniform relative sea level rise of 3 feet in 100 years is used to account for the combined effects of eustatic sea level rise and subsidence. Data collected during the experiments include river stages, dredging amounts and high-resolution video of transport patterns within the main channel and photographs of the sand deposition patterns in the diversion receiving areas. First, the similarity analysis that went into the model design along with a discussion of the resulting limitations will be presented. Next, calibration and validation results will be shown demonstrating the ability of the SSPM to capture the general lower Mississippi River sediment transport trends and deposition patterns. Third, results from a series of diversion experiments will be presented to semi-quantitatively show the effectiveness of diversion locations, sizes, and operating strategies on the quantities of sand diverted from the main river and the changes in main channel dredging volumes. These results will are then correlated with recent field and numerical studies of the study area. This talk will then close with a brief discussion of a new and improved physical model that will cover a larger domain and be designed to provide more quantitative results.
Sediment dispersal patterns within the Nares Abyssal Plain: observations from GLORIA Sonographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shephard, L.E.; Tucholke, B.E.; Fry, V.A.
1985-01-01
Features evident on GLORIA sonographs from the Nares Abyssal Plain suggest a sediment dispersal pattern for turbidity currents that varies temporally and spatially, resulting in randomly distributed turbidite deposits in the distal abyssal plain east of 64/sup 0/W. Regional variations in backscatter intensities across the abyssal plain are related to the frequency and thickness of near-surface silt beds, basement highs disrupting the seafloor, and subtle changes in surface and sub-surface bedforms related to low-relief turbidite flow paths, biologic activity, and possibly erosion. High backscatter intensities, prevalent west of 64/sup 0/W, are generally associated with those areas containing thicker silt bedsmore » and very regular subbottom reflectors on 3.5 kHz profiles. Low backscatter intensities, prevalent east of 64/sup 0/W, are associated with those areas containing thin silt beds or stringers with a much higher percentage of pelagic clay. Seafloor lineaments occur throughout the survey area but decrease in abundance east of 64/sup 0/W. These features have no apparent relief when crossed by surface-towed seismic reflection profiles. In some instances the lineaments may correspond to low-relief turbidite flow paths that contain varying textural compositions resulting in increased backscatter. These features would be indicative of sediment transport directions. Other possible origins for the lineaments, that often appear trackline parallel, include near-surface morphology that is preferentially detected and aligned by GLORIA, or possibly the lineaments result from complex subbottom interference patterns that would not be readily apparent in areas with a more irregular seafloor.« less
Modern sedimentary environments in Boston Harbor, Massachusetts
Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.
1991-01-01
Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.
Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence
NASA Astrophysics Data System (ADS)
Gomberg, J.
2018-02-01
Local geologic structure and topography may modify arriving seismic waves. This inherent variation in shaking, or "site response," may affect the distribution of slope failures and redistribution of submarine sediments. I used seafloor seismic data from the 2011 to 2015 Cascadia Initiative and permanent onshore seismic networks to derive estimates of site response, denoted Sn, in low- and high-frequency (0.02-1 and 1-10 Hz) passbands. For three shaking metrics (peak velocity and acceleration and energy density) Sn varies similarly throughout Cascadia and changes primarily in the direction of convergence, roughly east-west. In the two passbands, Sn patterns offshore are nearly opposite and range over an order of magnitude or more across Cascadia. Sn patterns broadly may be attributed to sediment resonance and attenuation. This and an abrupt step in the east-west trend of Sn suggest that changes in topography and structure at the edge of the continental margin significantly impact shaking. These patterns also correlate with gravity lows diagnostic of marginal basins and methane plumes channeled within shelf-bounding faults. Offshore Sn exceeds that onshore in both passbands, and the steepest slopes and shelf coincide with the relatively greatest and smallest Sn estimates at low and high frequencies, respectively; these results should be considered in submarine shaking-triggered slope stability failure studies. Significant north-south Sn variations are not apparent, but sparse sampling does not permit rejection of the hypothesis that the southerly decrease in intervals between shaking-triggered turbidites and great earthquakes inferred by Goldfinger et al. (2012, 2013, 2016) and Priest et al. (2017) is due to inherently stronger shaking southward.
Constraints on the sedimentation history of San Francisco Bay from 14C and 10Be
VanGeen, A.; Valette-Silver, N. J.; Luoma, S.N.; Fuller, C.C.; Baskaran, M.; Tera, F.; Klein, J.
1999-01-01
Industrialization and urbanization around San Francisco Bay as well as mining and agriculture in the watersheds of the Sacramento and San Joaquin rivers have profoundly modified sedimentation patterns throughout the estuary. We provide some constraints on the onset of these erosional disturbances with 10Be data for three sediment cores: two from Richardson Bay, a small embayment near the mouth of San Francisco Bay, and one from San Pablo Bay, mid-way between the river delta and the mouth. Comparison of pre-disturbance sediment accumulation determined from three 14C-dated mollusk shells in one Richardson Bay core with more recent conditions determined from the distribution of 210Pb and 234Th [Fuller, C.C., van Geen, A., Baskaran, M, Anima, R.J., 1999. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 239,240Pu.] shows that the accumulation rate increased by an order of magnitude at this particular site. All three cores from San Francisco Bay show subsurface maxima in 10Be concentrations ranging in magnitude from 170 to 520 x 106 atoms/g. The transient nature of the increased 10Be input suggests that deforestation and agricultural develop- ment caused basin-wide erosion of surface soils enriched in 10Be. probably before the turn of the century.
[Study on quantitative model for suspended sediment concentration in Taihu Lake].
Chen, Jun; Zhou, Guan-hua; Wen, Zhen-he; Ma, Jin-Feng; Zhang, Xu; Peng, Dan-qing; Yang, Song-lin
2010-01-01
The complicated compositions of Case II waters result in the complex properties of spectral curves. The present paper analyzed the in situ measurements data of spectral curves, and further realized the relationships between the properties of spectral curves and suspended sediment concentration. The study found that the max peak of spectral curves was moving to the direction of shortwavelength as increasing suspended sediment concentration, namely the blue shift of wavelength; the area enclosed by spectral curve and coordinate axis in the range of sensitive bands had preferably linear relationship with the suspended sediment concentration (curve area model); the trapezoidal area model which was an approximation of curve area model could also excellently reflect those relationships, and be greatly suitable for multi-spectral satellite imagery retrieval such as LandSat/TM, MODIS and so on. The inversion results of trapezoidal area model for LandSat/TM imagery on October 27, 2003 in Taihu Lake showed that the suspended sediment concentration ranged from 30 to 80 mg x L(-1), the distribution pattern was higher in the west, south and central lake and lower in the east lake; compared with the in situ measurements in the regions, and the relative error of retrieval model was 6.035%.
Zhang, Yueqing; Lu, Yonglong; Wang, Pei; Li, Qifeng; Zhang, Meng; Johnson, Andrew C
2018-01-01
Hexabromocyclododecane (HBCD) is used as a flame retardant with extensive industrial applications, which is mainly produced at facilities on the coast of China. Radially distributed soil samples and equidistant paired water and sediment samples were taken around one of the biggest HBCD production enterprises to reflect its environmental behavior via air deposition and wastewater discharge of HBCD diastereoisomers (α-, β- and γ-HBCD). Worldwide high concentrations of HBCD (11,700ng/g in the soil, 5080ng/L in the water and 6740ng/g in the sediment) were detected in these environmental samples. Concentrations dropped by two orders of magnitude over several kilometers distance from the plant. The diastereoisomer pattern varied in the three environmental compartments examined, such that γ-HBCD was the predominant diastereoisomer in the soil and sediment whilst α- and γ-HBCD shared the predominance in the water. The mass inventories of HBCD in the local soil and sediment were estimated to be 5006kg and 30kg respectively, suggesting that soil was the major sink of HBCD in the production area. As for the soil, the environmental burdens in the areas with radiuses of 2, 4 and 6km were 3210, 3770 and 4590kg respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
A sediment-dispersal model for the South Texas continental shelf, northwest Gulf of Mexico
Shideler, G.L.
1978-01-01
Textural-distribution patterns of sea-floor sediments on the South Texas continental shelf between Matagorda Bay and the U.S.-Mexico international boundary were evaluated as part of a regional environmental-studies program. Sediment textural gradients support a conceptual model for the regional sediment-dispersal system, which is characterized by both net offshore transport and net south-trending coastwise transport components on a wind-dominated shelf. Coastwise transport results in the net southward migration of both palimpsest sandy mud composing the ancestral Brazos-Colorado delta flank in the northern sector, and modern mud composing the central sector; these migrating sediments are encroaching southward onto immobile relict muddy sands composing the ancestral Rio Grande delta in the southern sector. In the proposed model, the suspension transport of modern silt-enriched mud derived mainly from coastal sources is the dominant dispersal mechanism. Net offshore transport is attributed both to diffusion, and to the advective ebb-tide discharge of turbid lagoonal-estuarine waters from coastal inlets. Net southward transport is attributed mainly to advection by seasonally residual coastwise drift currents reflecting a winter-dominated hydraulic regime. Frequent winter storms characterized by relatively high-speed northerly winds that accompany the passage of cold fronts appear to be dominant regional dispersal agents. ?? 1978.
NASA Astrophysics Data System (ADS)
Melick, J. J.; Gardner, M. H.
2008-12-01
Carbon capture and storage from the over 2000 power plants is estimated at 3-5 GT/yr, which requires large- scale geologic storage of greenhouse gasses in sedimentary basins. Unfortunately, determination of basin scale storage capacity is currently based on oversimplified geologic models that are difficult to validate. Simplification involves reducing the number of geologic parameters incorporated into the model, modeling with large grid cells, and treatment of subsurface reservoirs as homogeneous media. The latter problem reflects the focus of current models on fluid and/or fluid-rock interactions rather than fluid movement and migration pathways. For example, homogeneous models over emphasize fluid behavior, like the buoyancy of super-critical CO2, and hence overestimate leakage rates. Fluid mixing and fluid-rock interactions cannot be assessed with models that only investigate these reactions at a human time scale. Preliminary and conservative estimates of the total pore volume for the PRB suggest 200 GT of supercritical CO2 can be stored in this typical onshore sedimentary basin. The connected pore volume (CPV) however is not included in this estimate. Geological characterization of the CPV relates subsurface storage units to the most prolific reservoir classes (RCs). The CPV, number of well penetrations, supercritical storage area, and potential leakage pathways characterize each RC. Within each RC, a hierarchy of stratigraphic cycles is populated with stationary sedimentation regions that control rock property distributions by correlating environment of deposition (EOD) to CPV. The degree to which CPV varies between RCs depends on the geology and attendant heterogeneity retained in the fluid flow model. Region-based modeling of the PRB incorporates 28000 wells correlated across a 70,000 Km2 area, 2 km thick on average. Within this basin, five of the most productive RCs were identified from production history and placed in a fourfold stratigraphic framework (second- through fourth-order cycles). Within the small- scale 4th-order sequences (30-150-m thick, 16 total), sedimentation regions, each corresponding to an EOD, are defined by thickness, lithology and core-calibrated well-log patterns. This talk illustrates the workflow by focusing on one of the 16 layers in the basin-scale model. Isopach maps from this sample layer conform to depositional patterns confirmed through definition of five core-calibrated, well-log defined sedimentation regions. Lithology distributions also conform to thickness trends in nearshore deltas, but not in offshore regions, where sand-rich and sheet-like, but thin-bedded sandstones are flanked by mud-rich intervals of equivalent thickness. These maps represent sedimentation patterns confined by basal erosional sequence boundary and basin-wide bentonite, yet containing up to seven high-frequency sequence boundaries. To illustrate over simplification problems in this same layer, a 14000 km2 sample area is 600 km3 and using standard averaging methods, which are considered to be geologic in origin, the CPV is 16 km3. However, averaging increases connectivity with high CPV more uniformly distributed; significantly, the key mud belt region separating nearshore from offshore sandstones is not represented. Region-based modeling of this layer yields 13 km3 (110 Bbl). Furthermore, significant vertical leakage may exist from the 20000 well penetrations and faults and fractures along the western basin margin. This example illustrates the importance of accurately characterizing heterogeneity and distributing CPV using sedimentation regions.
Piper, D Z; Ludington, Steve; Duval, J S; Taylor, H E
2006-06-01
Stream-bed sediment for the size fraction less than 150 microm, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.
Piper, D.Z.; Ludington, S.; Duval, J.S.; Taylor, Howard E.
2006-01-01
Stream-bed sediment for the size fraction less than 150 ??m, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.
Cluzard, Melanie; Kazmiruk, Tamara N; Kazmiruk, Vasily D; Bendell, L I
2015-10-01
Microplastics are ubiquitous within the marine environment. The last 10 years have seen research directed at understanding the fate and effect of microplastics within the marine environment; however, no studies have yet addressed how concentrations of these particles could affect sedimentary processes such as nutrient cycling. Herein we first determine the concentration and spatial distribution of microplastics within Baynes Sound, a key shellfish-growing area within coastal British Columbia (BC). We also determined sediment grain size and % organic matter (OM) such that we could relate spatial patterns in sediment microplastic concentrations to sedimentary processes that determine zones of accretion and erosion. Using field-determined concentrations of microplastics, we applied laboratory microcosms studies, which manipulated sediment concentrations of microplastics, OM, and bivalves to determine the influence of sediment microplastics on ammonium cycling within intertidal sediments. Concentrations of microplastics determined within the intertidal sediment varied spatially and were similar to those found in other coastal regions of high urban use. Concentrations were independent of grain size and OM suggesting that physical processes other than those that govern natural sediment components determine the fate of microplastics within sediments. Under laboratory conditions, concentrations of ammonium were significantly greater in the overlying water of treatments with microplastics, clams, and OM compared with treatments without microplastics. These preliminary studies suggest that high concentrations of microplastics have the potential to alter key sedimentary processes such as ammonium flux. This could have serious implications, for example, contributing to eutrophication events in regions of the coast that are highly urbanized.
NASA Astrophysics Data System (ADS)
Chen, Wei; de Swart, Huib E.
2018-03-01
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.
Paulson, A.J.; Norton, D.
2008-01-01
Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.
Reconstructed Sediment Mobilization Processes in a Large Reservoir Using Short Sediment Cores
NASA Astrophysics Data System (ADS)
Cockburn, J.; Feist, S.
2014-12-01
Williston Reservoir in northern British Columbia (56°10'31"N, 124°06'33") was formed when the W.A.C. Bennett Dam was created in the late 1960s, is the largest inland body of water in BC and facilitates hydroelectric power generation. Annually the reservoir level rises and lowers with the hydroelectric dam operation, and this combined with the inputs from several river systems (Upper Peace, Finlay, Parsnip, and several smaller creeks) renews suspended sediment sources. Several short-cores retrieved from shallow bays of the Finlay Basin reveal near-annual sedimentary units and distinct patterns related to both hydroclimate variability and the degree to which the reservoir lowered in a particular year. Thin section and sedimentology from short-cores collected in three bays are used to evaluate sediment mobilization processes. The primary sediment sources in each core location is linked to physical inputs from rivers draining into the bays, aeolian contributions, and reworked shoreline deposits as water levels fluctuate. Despite uniform water level lowering across the reservoir, sediment sequences differed at each site, reflecting the local stream inputs. However, distinct organic-rich units, facilitated correlation across the sites. Notable differences in particle size distributions from each core points to important aeolian derived sediment sources. Using these sedimentary records, we can evaluate the processes that contribute to sediment deposition in the basin. This work will contribute to decisions regarding reservoir water levels to reduce adverse impacts on health, economic activities and recreation in the communities along the shores of the reservoir.
Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey.
Aytas, Sule; Yusan, Sabriye; Aslani, Mahmoud A A; Karali, Turgay; Turkozu, D Alkim; Gok, Cem; Erenturk, Sema; Gokce, Melis; Oguz, K Firat
2012-01-01
This article represents the first results of the natural radionuclides in the Maritza and Tundja river sediments, in the vicinity of Edirne city, Turkey. The aim of the article is to describe the natural radioactivity concentrations as a baseline for further studies and to obtain the distribution patterns of radioactivity in trans-boundary river sediments of the Maritza and Tundja, which are shared by Turkey, Bulgaria and Greece. Sediment samples were collected during the period of August 2007-April 2010. The riverbank sediment samples were analyzed firstly for their pH, organic matter content and soil texture. The gross alpha/beta and (238)U, (232)Th and (40)K activity concentrations were then investigated in the collected sediment samples. The mean and standard error of mean values of gross alpha and gross beta activity concentrations were found as 91 ± 11, 410 ± 69 Bq/kg and 86 ± 11, 583 ± 109 Bq/kg for the Maritza and Tundja river sediments, respectively. Moreover, the mean and standard error of mean values of (238)U, (232)Th and (40)K activity concentrations were determined as 219 ± 68, 128 ± 55, 298 ± 13 and as 186 ± 98, 121 ± 68, 222 ± 30 Bq/kg for the Maritza and Tundja River, respectively. Absorbed dose rates (D) and annual effective dose equivalent s have been calculated for each sampling point. The average value of adsorbed dose rate and effective dose equivalent were found as 191 and 169 nGy/h; 2 and 2 mSv/y for the Maritza and the Tundja river sediments, respectively.
NASA Astrophysics Data System (ADS)
Osborne, Anne H.; Hathorne, Ed C.; Schijf, Johan; Plancherel, Yves; Böning, Philipp; Frank, Martin
2017-04-01
Dissolved rare earth element (REE) concentration data from intermediate and deep seawater form an array characterized by higher middle-REE enrichments (MREE/MREE*) in the North Atlantic and a progressive increase in heavy-to-light REE ratios (HREE/LREE) as water masses age. The REEs in foraminifera are fractionated toward higher MREE/MREE* and lower HREE/LREE relative to seawater. Calculations based on a scavenging model show that the REE patterns in uncleaned core-top foraminifera resemble those adsorbed onto calcite, particulate organic material, and hydrous ferric oxides but the full extent of the REE fractionation measured in foraminifera was not reproduced by the model. However, differences in the HREE/LREE and MREE/MREE* ratios and the cerium anomaly between ocean basins are preserved and are in agreement with the seawater REE distribution. Under oxic conditions, the HREE/LREE and MREE/MREE* compositions of uncleaned foraminifera at the sediment/seawater boundary are preserved during burial but the cerium anomaly is sensitive to burial depth. In suboxic sedimentary environments, all uncleaned foraminiferal REE concentrations are elevated relative to core-top values indicating addition of REEs from pore waters. The HREE/LREE ratio is highest when sedimentation rates were greatest and when high Fe/Ca ratios in the uncleaned foraminifera indicate that Fe was mobile. In sediments that have not experienced suboxic conditions during burial, uncleaned foraminifera preserve the seawater signal taken up at the sediment/seawater interface and are therefore suggested to be a suitable archive of changes in the REE signal of past bottom waters.
Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary
Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.
2014-01-01
Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.
NASA Astrophysics Data System (ADS)
Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary
2018-04-01
Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.
Li, Huizhen; Sun, Baoquan; Lydy, Michael J; You, Jing
2013-04-01
Pesticide use patterns in China have changed in recent years; however, the study of the environmental fate of current-use pesticides (CUPs) and their ecotoxicological significance in aquatic ecosystems is limited. In the present study, sediments were collected from an urban stream in the Chinese city of Guangzhou. Sediment-associated legacy organochlorine pesticides and CUPs-including organophosphates, pyrethroids, fipronil, and abamectin-were analyzed. Additionally, the relative toxicity of the sediments was evaluated with 10-d bioassays using Chironomus dilutus. Fifteen of 16 sediments collected from the stream were acutely toxic to C. dilutus, with 81% of the samples causing 100% mortality. Abamectin, fipronil, and pyrethroids (mainly cypermethrin) were identified as the principal contributors to the noted toxicity in the midges, with median predicted toxic units of 1.63, 1.63, and 1.03, respectively. Sediments taken from downstream sites, where residential and industrial regions were located, had elevated CUP concentrations and sediment toxicity compared with upstream sites. The present study is the first of its kind to link sediment CUPs, fipronil, and abamectin concentrations with toxicity in urban streams in China with a focus on shifting pesticide usage patterns. Copyright © 2013 SETAC.
Temporal dynamics of suspended sediment transport in a glacierized Andean basin
NASA Astrophysics Data System (ADS)
Mao, Luca; Carrillo, Ricardo
2017-06-01
Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.
Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments
NASA Astrophysics Data System (ADS)
Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil
2017-04-01
The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Croissant, T.; Lague, D.; Davy, P.
2014-12-01
Numerical models of floodplain dynamics often use a simplified 1D description of flow hydraulics and sediment transport that cannot fully account for differential friction between vegetated banks and low friction in the main channel. Key parameters of such models are the friction coefficient and the description of the channel bathymetry which strongly influence predicted water depth and velocity, and therefore sediment transport capacity. In this study, we use a newly developed 2D hydrodynamic model, Floodos, whose efficiency is a major advantage for exploring channel morphodynamics from a flood event to millennial time scales. We evaluate the quality of Floodos predictions in the Whataroa river, New Zealand and assess the effect of a spatially distributed friction coefficient (SDFC) on long term sediment transport. Predictions from the model are compared to water depth data from a gauging station located on the Whataroa River in Southern Alps, New Zealand. The Digital Elevation Model (DEM) of the 2.5 km long studied reach is derived from a 2010 LiDAR acquisition with 2 m resolution and an interpolated bathymetry. The several large floods experienced by this river during 2010 allow us to access water depth for a wide range of possible river discharges and to retrieve the scaling between these two parameters. The high resolution DEM used has a non-negligible part of submerged bathymetry that airborne LiDAR was not able to capture. Bathymetry can be reconstructed by interpolation methods that introduce several uncertainties concerning water depth predictions. We address these uncertainties inherent to the interpolation using a simplified channel with a geometry (slope and width) similar to the Whataroa river. We then explore the effect of a SDFC on velocity pattern, water depth and sediment transport capacity and discuss its relevance on long term predictions of sediment transport and channel morphodynamics.
NASA Astrophysics Data System (ADS)
Groß, Jasmin; Konar, Brenda; Brey, Thomas; Grebmeier, Jacqueline M.
2017-10-01
The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.
Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei
2015-06-01
Sediments in estuaries, especially those containing a large reservoir of contaminants released from urban and industrial activities, have had great impacts on benthic fauna and associated species. A better understanding of the toxicity of contaminants in estuarine sediments is of great significance to ecological assessments. Here, based on the collected sediments from neap to spring tides in the South Passage, Changjiang Estuary, the toxicity of the sediments was first studied using the frog embryo teratogenesis assay-Xenopus (FETAX). The results showed that the extracts of estuarine sediments induced multiple malformations in the embryos and that the phenotypes of malformation had two distinct patterns of variations corresponding to the tidal cycles. The phenotypes in the first pattern were dominated by hypopigmentation and edema of the heart, and the pattern was mainly controlled by fine-grained fractions. The phenotypes in the second pattern were dominated by edema of the heart and enlarged proctodeum, and it was mostly controlled by coarse-grain fractions. The sediment toxicity was higher during the spring and flood tides, which may be influenced by the grain size and sediment resuspension. Furthermore, obvious periodicities existed in the changes of the percentages of hatching (14-16 h and 6 h), enlarged proctodeum (15-18 h), and bent tail (5-7 h) due to the influence of tidal cycles. Moreover, our results also suggested that FETAX is an appropriate cost-effective biological monitoring tool to assess estuarine ecological health in contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.
2006-01-01
The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.
Integrated Model for the Acoustics of Sediments
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Integrated Model for the Acoustics of Sediments...physics, and (3) the development and testing of sediment acoustic models through a series of at-sea experiments. APPROACH The approach may be...assess its impact on acoustic propagation and reverberation models . Practically, all underwater sediments are porous and water-permeable, therefore
LeBlanc, L.A.; Kuivila, K.M.
2008-01-01
The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001-2002. Three sampling stations-upriver, river mouth, and offshore-were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March-April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940-3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment pesticide concentrations were more sporadic than detected aqueous concentrations, seasonal trends were similar to those for dissolved concentrations. Generally, the pesticides detected on suspended sediments were the same as those on the bed sediments, and concentrations were similar, especially at the Alamo River upriver site. With a few exceptions, pesticides were not detected in suspended or bed sediments from the off-shore sites. The partitioning of pesticides between water and sediment was not predictable from solely the physical-chemical properties of individual pesticide compounds, but appear to be a complicated function of the quantity of pesticide applied in the watershed, residence time of sediments in the water, and compound solubility and hydrophobicity. Sediment concentrations of most pesticides were found to be 100-1,000 times lower than the low-effects levels determined in human health risk assessment studies. However, maximum concentrations of chlorpyrifos on suspended sediments were approximately half the low-effects level, suggesting the need for further sediment characterization of lake sediments proximate to riverine inputs. ?? 2008 Springer Science+Business Media B.V.
An Analytic Equation Partitioning Climate Variation and Human Impacts on River Sediment Load
NASA Astrophysics Data System (ADS)
Zhang, J.; Gao, G.; Fu, B.
2017-12-01
Spatial or temporal patterns and process-based equations could co-exist in hydrologic model. Yet, existing approaches quantifying the impacts of those variables on river sediment load (RSL) changes are found to be severely limited, and new ways to evaluate the contribution of these variables are thus needed. Actually, the Newtonian modeling is hardly achievable for this process due to the limitation of both observations and knowledge of mechanisms, whereas laws based on the Darwinian approach could provide one component of a developed hydrologic model. Since that streamflow is the carrier of suspended sediment, sediment load changes are documented in changes of streamflow and suspended sediment concentration (SSC) - water discharge relationships. Consequently, an analytic equation for river sediment load changes are proposed to explicitly quantify the relative contributions of climate variation and direct human impacts on river sediment load changes. Initially, the sediment rating curve, which is of great significance in RSL changes analysis, was decomposed as probability distribution of streamflow and the corresponding SSC - water discharge relationships at equally spaced discharge classes. Furthermore, a proposed segmentation algorithm based on the fractal theory was used to decompose RSL changes attributed to these two portions. Additionally, the water balance framework was utilized and the corresponding elastic parameters were calculated. Finally, changes in climate variables (i.e. precipitation and potential evapotranspiration) and direct human impacts on river sediment load could be figured out. By data simulation, the efficiency of the segmentation algorithm was verified. The analytic equation provides a superior Darwinian approach partitioning climate and human impacts on RSL changes, as only data series of precipitation, potential evapotranspiration and SSC - water discharge are demanded.
NASA Astrophysics Data System (ADS)
Elkina, D.; Piskarev, A.
2017-12-01
Accurate dating of marine sediments from the Arctic Basin continues to remain a subject of great debates over the last decades. Due to the lack of adequate materials for biostratigraphy, and isotope analyses, paleomagnetic reconstructions came on line here but still yielded ambivalent interpretations. Moreover, sedimentation rates, estimated for isolated morphological features in the Arctic Ocean, are often extended to the whole Basin and, therefore, lead to significant approximations of the sedimentation pattern distribution. Paleomagnetic study of two sediment cores up to 8 meter long, collected at the Mendeleev Rise, and the Lomonosov Ridge, have provided the opportunity to compare sedimentation regimes on these two profound structures of the Arctic Basin. Cores PS72/396 and PS87/023 were carried out along the cruises of RV Polarstern at the Mendeleev Rise (Stein et. al, 2010), and the Lomonosov Ridge (Stein, 2015) respectively. Measurements of natural remanent magnetization (NRM) and anhysteretic remanence (ARM) acquisition with the following alternating field (AF) demagnetization were performed on u-channel samples, obtained from the cores, at the Center for Geo-Environmental Research and Modeling (GEOMODEL) of the Research Park, St. Petersburg State University. According to preliminary results, core PS72/396 has shown a change from positive to negative inclinations at ca. 120 cm below sea floor (cmbsf), prevailed up to ca. 360 cmbsf where it gets back to the positive ones. This trend is comparable with some previous paleomagnetic results, conducted on cores from the Mendeleev Rise (Piskarev et al., 2013; Elkina, 2014). In contrast, for core PS87/023, a relevant drop to negative inclinations can be observed only after 330 cmbsf. That could signify a dramatic difference in sedimentation rates between the sites during the Quaternary and Pliocene. Nevertheless, a rather complicated picture of the AF data assumes effects of secondary overprints, having influenced the initial magnetization pattern for the both regions studied, manifested for the Lomonosov Ridge in great measure. AcknowledgmentsThe current study is conducted in collaboration with the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research.
Strauss, E.A.; Richardson, W.B.; Bartsch, L.A.; Cavanaugh, J.C.; Bruesewitz, D.A.; Imker, H.; Heinz, J.A.; Soballe, D.M.
2004-01-01
We measured nitrification rates in sediment samples collected from a variety of aquatic habitats in Navigation Pool 8 of the Upper Mississippi River (UMR) 7 times between May 2000 and October 2001. We also conducted nutrient-enrichment experiments and analyzed vertical profiles of sediment to determine factors regulating nitrification. Nitrification rates were relatively high compared to other ecosystems (ranging from 0-8.25 ??g N cm-2 h-1) and exhibited significant temporal and spatial patterns. Nitrification rates were greatest during the summer and spring compared to autumn and winter (ANOVA, p < 0.05) and were greater in contiguous backwater and impounded habitats compared to main and side-channel habitats (p < 0.05). Regression analysis indicated that nitrification rates were weakly (r 2 = 0.18, p < 0.0001) related to temperature and exchangeable NH4+ of the sediment. However, nutrient-enrichment experiments showed that NH4+ availability did not limit nitrification in 3 sediment types with variable organic matter. Vertical profiles of sediment cores demonstrated that oxygen concentration and nitrification had similar patterns suggesting that nitrification may be limited by oxygen penetration into sediments. We conclude that temperature and sediment NH4+ can be useful for predicting broad-scale temporal and spatial nitrification patterns, respectively, but oxygen penetration into the sediments likely regulates nitrification rates in much of the UMR. Overall, we estimated that nitrification produces 6982 mt N/y of NO3- or 7% of the total annual NO3- budget.
Chaharlang, Behnam Heidari; Bakhtiari, Alireza Riyahi; Mohammadi, Jahangard; Farshchi, Parvin
2017-09-01
This research focuses on the fractionation and distribution patterns of heavy metals (Zn, Cu, and Fe) in surficial sediments collected from Shadegan Wildlife Refuge, the biggest wetland in southern part of Iran, to provide an overall classification for the sources of metals in the study area using a sequential extraction method. For this purpose, a four-step sequential extraction technique was applied to define the partitioning of the metals into different geochemical phases of the sediment. The results illustrated that the average total level of Zn, Cu, and Fe in surface sediments were 55.20 ± 16.04, 22.86 ± 5.68, and 25,979.01 ± 6917.91 μg/g dw, respectively. On the average, the chemical partitioning of all metals in most stations was in the order of residual >oxidizable-organic > acid-reducible > exchangeable. In the same way, the results of calculated geochemical indices revealed that Cu, Zn, and Fe concentrations are mainly influenced by lithogenic origins. Compared with consensus-based SQGs, Cu was likely to result in occasionally harmful biological effects on the biota.
NASA Astrophysics Data System (ADS)
Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.
2011-12-01
Long chain n-alkanes (C21-C35) are well-known as biomarkers of terrestrial plants. They can be preserved across a wide range of terrestrial and marine environments, survive in the sedimentary record for millions of years, and can serve as proxies for ancient environments. Most n-alkane records are derived from sediments rather than directly from fossil leaves. However, little is known about the fidelity of the n-alkane record: how and where leaf preservation relates to n-alkane preservation and how patterns of n-alkane carbon isotope ratios (δ13C) compare to living relatives. To examine these questions, we analyzed n-alkanes from fluvial sediments and individual leaf fossils collected in the Bighorn Basin, Wyoming, across the Paleocene-Eocene Thermal Maximum (PETM) carbon isotope excursion. We assessed the fidelity of the n-alkane signature from individual fossil leaves via three separate means. 1) Spatial variations were assessed by comparing n-alkane concentrations on a fossil leaf and in sediments both directly adjacent to the leaf and farther away. Absolute concentrations were greater within the compression fossil than in the directly adjacent sediment, which were in turn greater than in more distant sediment. 2) n-Alkane abundances and distributions were examined in fossil leaves having a range of preservational quality, from fossils with intact cuticle to carbonized fossils lacking cuticle and higher-order venation. The best preserved fossils preserved a higher concentration of n-alkanes and showed the most similar n-alkane distribution to living relatives. However, a strong odd over even predominance suggests a relatively unmodified plant source occurred in all samples regardless of preservation state. 3) n-Alkane δ13C values were measured for both fossil leaves and their living relatives. Both the saw-tooth pattern of δ13C values between odd and even chain lengths and the general decrease in δ13C values with increasing chain length are consistent with modern plant data. These results suggest that n-alkanes extracted directly from a fossil leaf provide a true signature of an individual leaf fossil rather than a mixture from the entire plant community. Therefore, comparisons between fossil morphotypes and between fossil and related modern taxa should be robust. Furthermore, by placing fossil leaf data within the context of the chemostratigraphy of Bighorn Basin sediments across the P-E boundary, fossil leaf n-alkanes can be used to bridge the gap between our understanding of modern plant lipids and bulk lipid data from sediments across the PETM. It has been hypothesized that changes in the both the molecular distribution and carbon isotope composition of n-alkanes across the PETM were due to changes in the local plant community, which included a large proportion of deciduous gymnosperms before and after-but not during-the PETM. Analysis of fossils such as Ginkgo and angiosperms provides the opportunity to compare and distinguish the molecular and isotopic signatures of gymnosperms and angiosperms. These comparisons shed light on the dynamics of climate and ecosystem changes as they are recorded in the signatures of lipid biomarkers.
Denny, Jane F.; Schwab, William C.; Baldwin, Wayne E.; Barnhardt, Walter A.; Gayes, Paul T.; Morton, R.A.; Warner, John C.; Driscoll, Neal W.; Voulgaris, George
2013-01-01
High-resolution geophysical and sediment sampling surveys were conducted offshore of the Grand Strand, South Carolina to define the shallow geologic framework of the inner shelf. Results are used to identify and map Holocene sediment deposits, infer sediment transport pathways, and discuss implications for the regional coastal sediment budget. The thickest deposits of Holocene sediment observed on the inner shelf form shoal complexes composed of moderately sorted fine sand, which are primarily located offshore of modern tidal inlets. These shoal deposits contain ~67 M m3 of sediment, approximately 96% of Holocene sediment stored on the inner shelf. Due to the lack of any significant modern fluvial input of sand to the region, the Holocene deposits are likely derived from reworking of relict Pleistocene and older inner-shelf deposits during the Holocene marine transgression. The Holocene sediments are concentrated in the southern part of the study area, due to a combination of ancestral drainage patterns, a regional shift in sediment supply from the northeast to the southwest in the late Pleistocene, and proximity to modern inlet systems. Where sediment is limited, only small, low relief ridges have formed and Pleistocene and older deposits are exposed on the seafloor. The low-relief ridges are likely the result of a thin, mobile veneer of sediment being transported across an irregular, erosional surface formed during the last transgression. Sediment textural trends and seafloor morphology indicate a long-term net transport of sediment to the southwest. This is supported by oceanographic studies that suggest the long-term sediment transport direction is controlled by the frequency and intensity of storms that pass through the region, where low pressure systems yield net along-shore flow to the southwest and a weak onshore component. Current sediment budget estimates for the Grand Strand yield a deficit for the region. Volume calculations of Holocene deposits on the inner shelf suggest that there is sufficient sediment to balance the sediment budget and provide a source of sediment to the shoreline. Although the processes controlling cross-shelf sediment transport are not fully understood, in sediment-limited environments such as the Grand Strand, erosion of the inner shelf likely contributes significant sediment to the beach system.
Elements patterns of soil and river sediments as a tracer of sediment migration
NASA Astrophysics Data System (ADS)
Dordevic, Dragana; Pétursdóttir, Þórunn; Halldórsson, Guðmundur; Sakan, Sanja; Škrivalj, Sandra; Finger, David Christian
2017-04-01
Iceland is the small island on the mid Atlantic ridge, with strong natural catastrophes, such as floods, droughts, landslides, storms and volcanic eruptions that can have devastating impacts on natural and build environment. Rangárvellir area next to Mt Hekla and the glacier Tindfjallajökul has impacted by severe erosion processes but also rich of surface water that play a crucial role in sediment transport processes in the watersheds of the two rivers Eystri-Rangá and Ytri-Rangá. Their sediments consist of various materials originating from volcanoes ash and lava. Difference of contents of various chemical components in sediments and surrounding soil could be bases for identification of erosion processes and watersheds connectivity. River sediment is accumulator of chemical constituents from water in water-sediment interaction, making it as an important material for investigation their migration routes. In order to develop of methods for investigating of sediment migration using their chemical patterns the STSM of Connecteur COST Action ES1306-34336 have been approved. Samples of river sediments and surrounding soils of the Eystri-Rangá and Ytri-Rangá rivers in watersheds of Rangárvellir area as well as primarily volcanic ash from Eyafjallajökull were taken. Sequential extraction of heavy metals and trace elements from collected samples has been applied using the optimized procedure proposed by European Community Bureau of reference (BCR) in the next fractions: 1) soluble in acid - metals that are exchangeable or associated with carbonates; 2) reducible fraction - metals associated with oxides of Fe and Mn; 3) oxidizable fraction - metals associated with organic matter and sulfides and 4) residual fraction - metals strongly associated with the crystalline structure of minerals. Extracted solutions have analyzed by ICP/OES on next elements: Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, V, Zn. Distributions of Si is the same in all investigated samples of soils, river sediments and volcanic ash pointing to the same their geochemical basis. Some elements like Li and partly B exist in the first phase of volcanic ash and river sediments but no in the first phases of soils as if they were already washed from them and adsorbed on the river sediments surfaces. In the first phase of volcanic ash P was found but no exists in the first phase of soil and river sediments. Total content of Bi is found only in silicate matrix while total contents of As is found only in organic/sulphide form in all investigated samples.
Thieler, R.E.; Pilkey, O.H.; Cleary, W.J.; Schwab, W.C.
2001-01-01
The geologic framework and surficial morphology of the shoreface and inner continental shelf off the Wrightsville Beach, North Carolina, barrier island were mapped using high-resolution sidescansonar, bathyme??trie, and seismic-reflection surveying techniques, a suite of over 200 diver vibracores, and extensive seafloor observations by divers. The inner shelf is a sediment-starved, active surface of marine erosion; modern sediments, where present, form a patchy veneer over Tertiary and Quaternary units. The lithology of the underlying units exerts a primary control on the distribution, texture, and composition of surficial sediments, as well as inner-shelf bathymetry. The shoreface is dominated by a linear, cross-shore morphology of rippled scour depressions (RSDs) extending from just seaward of the surf zone onto the inner shelf. On the upper shoreface, the RSDs are incised up to l m below surrounding areas of fine sand, and have an asymmetric cross section that is steeper-sided to the north. On the inner shelf, the RSDs have a similar but more subdued cross-sectional profile. The depressions are floored primarily by shell hash and quartz gravel. Vibracore data show a thick (up to 1.5 m) sequence of RSD sediments that unconformably overlies ancient coastal lithosomes. In this sediment-starved inner shelf setting, rippled scour depressions probably form initially on preexisting coarse-sediment substrates such as modern lag deposits of paleofluvial channel lithosomes or ancient tidal inlet thalwegs. Interannual observations of seafloor morphologic change and the longer-term record contained in vibracores suggest that the present seafloor morphology is either relatively stable or represents a recurring, preferential morphologic state to which the seafloor returns after storm-induced perturbations. The apparent stability is interpreted to be the result of interactions at several scales that contribute to a repeating, self-reinforcing pattern of forcing and sedimentary response which ultimately causes the RSDs to be maintained as sediment-starved bedforms responding to both along-shore and acrossshore flows. Sediment accumulation from over 30 years of extensive beach nourishment at Wrightsville Beach appears to have exceeded the local shoreface accommodation space, resulting in the "leaking" of beach and shoreface sediment to the inner shelf. A macroscopically identifiable beach nourishment sediment on the shoreface and inner shelf was used to identify the decadal-scale pattern of sediment dispersal. The nourishment sediment is present in a seaward-thinning wedge that extends from the beach over a kilometer onto the inner shelf to waters depths of 14 m. This wedge is best developed offshore of the shoreline segment that has received the greatest volume of beach nourishment.
New Orleans, Louisiana, Mississippi River, and Lake Pontchartrain
1973-06-22
SL2-05-397 (22 June 1973) --- New Orleans, Louisiana, Mississippi River, and Lake Pontchartrain (31.0N, 91.0W) can all be seen in this single detailed view. The marshlands of the Atchafalaya Basin, previously the main drainage way for the Mississippi River, can be seen to be partially silted as a result of sediments. The long narrow field patterns fronting on the river is called the "Long Lot" system of equal land distribution based on the French Napoleonic Civil Code. Photo credit: NASA
Sediment Facies on a Steep Shoreface, Tairua/Pauanui Embayment, New Zealand
NASA Astrophysics Data System (ADS)
Trembanis, A. C.; Hume, T. M.; Gammisch, R. A.; Wright, L. D.; Green, M. O.
2001-05-01
Tairua/Pauanui embayment is a small headland-bound system on the Coromandel Peninsula on the east coast of the North Island of New Zealand. The shoreface in this area is steep ( ~0.85) and concave; however, where the profile is steepest, between 10-15-m water depth, the profile is slightly convex. A sedimentological study of the shoreface was conducted to provide baseline information for a sediment-dynamics study. Detailed swath mapping of the seabed sediment from the beach out to a water depth of ~50 m was conducted using side-scan sonar. Over 200 km of side-scan sonar data were collected by separate surveys in September 2000 and again in February 2001. Ground-truthing of side-scan sonar data was carried out by SCUBA, grab sampling ( ~100 samples) and drop-camera video. A digital terrain model (DTM) of the area was constructed using newly collected bathymetric data along with data from digitized nautical charts. The DTM exposes changes in bathymetry and variation in slope throughout the study area. The acoustic and sedimentologic data were used to identify and map 8 individual facies units. Shoreface facies distribution was found to be patchy and complex. Large-scale ( ~200-m wide x 1600-m long), slightly depressed, mega-rippled coarse-sand/shell-hash units were abruptly truncated by contacts with fine, featureless, continuous sand-cover units. The repeat survey in February indicated stability of the overall shape and location of large-scale facies units, while diver observations indicated that bedforms within units actively migrate. Bedform roughness is highly variable, including patchy reefs/rubble, sand-dollar fields mega-rippled coarse-gravel/sands, ripple scour depressions, and fields of dense tubeworms. The distribution of coarse shell-hash units is consistent with diabathic sediment transport. Three tripods supporting a range of instruments for measuring waves, currents, boundary-layer flows and sediment resuspension and settling were deployed on the shoreface during February 2001, for up to 3 months. Each tripod was situated on a different facies with a view to resolving spatial variability in sediment dynamics and establishing a link between spatially variable bed roughness, sediment mobility and sedimentation patterns. Our ultimate goal is to understand the interactions between substrate and driving flows in this spatially complex setting and how these interactions sculpt the shoreface and possibly control sediment transfers between the inner shelf and beach.
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Edmonds, D.; Millard, C.; Toms, L.; Fogaren, C.
2012-12-01
River mobility and avulsion are important controls on how course and fine sediment are distributed across alluvial basins. In some systems, broad distributary channel networks that form during channel avulsions contribute significantly to overbank aggradation within the basin and help transport relatively coarse sediment from the channel out onto the floodplain. In contrast, avulsion-related deposits are virtually absent in other systems, which primarily avulse either through incision or with no significant aggradational phase preceding channel relocation; in these systems, overbank sedimentation primarily comprises relatively fine floodplain deposits. In order to constrain the conditions under which distributary-channel networks develop during avulsions, we evaluate channel, avulsion, and floodplain deposits in several ancient units including the Ferris (Maastrichtian/Paleocene, Wyoming), Fort Union (Paleocene, Wyoming), Wasatch (Paleocene/Eocene, Colorado), and Willwood (Paleocene/Eocene, Wyoming) formations. Ancient deposits afford the opportunity to observe multiple (tens to hundreds) channel-avulsion realizations and evaluate characteristic spatial and temporal variability in channel, avulsion, and floodplain deposits within a basin. In each formation, spatial relationships and grain-size distributions of channel, proximal-overbank, distal-overbank, and, where present, avulsion deposits are compared. The thickness, width, and stratigraphic frequency of crevasse-splay and avulsion deposits are characterized in each formation, and paleosol development is documented in order to provide information about relative differences in floodplain conditions (particularly sedimentation rate and floodplain drainage) throughout each unit. We compare these results to modern systems and numerical models. Several formations contain abundant and distinctive evidence of prograding sediment wedges preceding avulsed channels (Willwood Formation and some members of the Wasatch formation), while others contain virtually no avulsion-associated deposits (Ferris Formation). The Fort Union Formation and one member of the Wasatch Formation show a mix of both. These results largely reflect depositional processes and not preservation bias within ancient deposits. Evidence from ancient deposits also suggests sediment partitioning between channels and floodplains was mediated by crevasse-splay production and avulsion, where some systems were "tuned" to produce large splay deposits and other systems produced only infrequent, small splays. Systems that readily produced splay deposits are associated with more prominent avulsion deposits, and splay production seems to be influenced by the particle-size distribution of sediment carried in the channel and floodplain drainage conditions (where abundant fine-sand and coarse-silt sediment and relatively well-drained floodplain conditions promote crevasse-splay production). Avulsion deposits reflect a transient distributary phase associated with a marked increase in local overbank sedimentation rates, but this phase is not ubiquitous to all avulsive systems. The persistence of conditions that promote or inhibit crevasse-splay and avulsion-deposit production may strongly influence channel-floodplain coupling in aggrading fluvial systems.
NASA Astrophysics Data System (ADS)
Krause, Stefan; Angermann, Lisa; Naden, Emma; Cassidy, Nigel; Blume, Theresa
2010-05-01
The mixing of groundwater and surface water in hyporheic zones often coincides with high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecological conditions. This study investigates the reactive transport of nitrate and a chlorinated solvent (Trichloroethylene - TCE) at the aquifer-river interface of a UK lowland river. In this study, distributed temperature sensor networks and hydro-geophysical methods, which have been applied for identifying structural streambed heterogeneity and tracing aquifer river exchange, were combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography has been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable "hyporheic super-reactors" of great importance for river restoration, water quality and ecology status.
NASA Astrophysics Data System (ADS)
Krause, S.; Angermann, L.; Naden, E.; Cassidy, N. J.
2009-12-01
The mixing of groundwater and surface water in hyporheic zones often coincides high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecology. This study investigates the reactive transport of nitrate and the chlorinated solvent Trichloroethylene (TCE) at the aquifer-river interface of a UK lowland river. The investigations are based on novel distributed sensor networks and hydro-geophysical methods for the identification of structural streambed heterogeneity and the tracing of aquifer river exchange combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography and Ground Penetrating Radar have been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable “hyporheic super-reactors” of great importance for river restoration, water quality and ecology status.
Anoxia stimulates microbially catalyzed metal release from Animas River sediments
Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; ...
2017-03-06
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less
Anoxia stimulates microbially catalyzed metal release from Animas River sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less
Sediment Acoustics: Wideband Model, Reflection Loss and Ambient Noise Inversion
2010-01-01
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment acoustics : Wideband model , reflection loss and...Physically sound models of acoustic interaction with the ocean floor including penetration, reflection and scattering in support of MCM and ASW needs...OBJECTIVES (1) Consolidation of the BIC08 model of sediment acoustics , its verification in a variety of sediment types, parameter reduction and
Sandy beaches: state of the art of nematode ecology.
Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M
2016-01-01
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.
NASA Astrophysics Data System (ADS)
Yang, Shuran; Danĕk, Tomáš; Yang, Xiaofeng; Cheng, Xianfeng
2016-10-01
Five heavy metal contents from five sediments and seven sediment profiles in an upstream reach of Zhedong river in Laowangzhai gold deposit were investigated in this research, along with analysis of the horizontal distribution, the surface distribution, the vertical distribution and the interlayer distribution of five heavy metal contents: arsenic (As), mercury (Hg), copper (Cu), lead (Pb) and zinc (Zn). The potential ecological risk of five heavy metals was evaluated to help understanding pollution control of Laowangzhai deposit.
NASA Astrophysics Data System (ADS)
Conway, Kim W.; Barrie, J. Vaughn; Krautter, Manfred
2005-09-01
Multibeam imagery of siliceous sponge reefs (Hexactinellida, Hexactinosida) reveals the setting, form, and organization of five reef complexes on the western Canadian continental shelf. The reefs are built by framework skeleton sponges which trap clay-rich sediments resulting in a distinctive pattern of low intensity backscatter from the reefs that colonize more reflective glacial sediments of higher backscatter intensity. Bathymetry and backscatter maps show the distribution and form of reefs in two large complexes in the Queen Charlotte Basin (QCB) covering hundreds of km2, and three smaller reef complexes in the Georgia Basin (GB). Ridges up to 7 km long and 21 m in height, together with diversely shaped, coalescing bioherms and biostromes form the principal reef shape in the QCB whereas chains of wave-form, streamlined mounds up to 14 m in height have developed in the GB. Reef initiation is dependent on the distribution of high backscatter-intensity relict glacial surfaces, and the variation in reef complex morphology is probably the result of tidally driven, near seabed currents.
NASA Astrophysics Data System (ADS)
Remo, Jonathan W. F.; Ryherd, Julia; Ruffner, Charles M.; Therrell, Matthew D.
2018-05-01
Sediment deposition and storage are important functions of batture lands (the land between the channel's low-water elevation and the flood mitigation levee). However, sedimentation processes within these areas are not fully understood. In this paper, we explore the spatiotemporal patterns, rates, and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio rivers) using three approaches: (1) comparison of historical to modern elevation data in order to estimate long-term (>100 yr) sedimentation rates; (2) estimation of medium- to short-term (<50 yr) sedimentation rates using dendrogeomorphological methods; and (3) geomorphic change detection (GCD) software to estimate short-term sedimentation rates ( 12 yr), spatial patterns of deposition, and volumes of geomorphic change within the batture lands. Comparison of long- to short-term sedimentation rates suggests up to a 300% increase in batture land sedimentation rates (from 6.2 to 25.4 mm yr-1) despite a substantial decrease in the MMR's suspended-sediment load (>70%) attributed largely to sediment trapping by dams during the second half of the twentieth century. The increase in MMR batture land sedimentation rates are attributed to at least two potential mechanisms: (1) the above average frequency and duration of low-magnitude floods (>2-yr and ≤5-yr flood) during the short-term assessment periods which allowed for more suspended sediment to be deposited within the batture lands; and (2) the construction of levees that substantially reduced the floodplain area ( 75%) available for storage of overbank deposits increasing the vertical accumulation and consequently the detectability of a given volume of sediment. The GCD estimated batture land sediment volumes were 9.0% of the suspended load at St. Louis. This substantial storage of sediment ( 8.5 Mt yr-1) along the MMR suggests batture lands are an important sink for suspended sediments.
NASA Astrophysics Data System (ADS)
Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid
2017-06-01
Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo-centre for fluvial sediments is instead located in the southern Argana Valley, possibly the Souss Basin. To effectively source the reservoir sandstones found in the Meskala Field, a more local provenance area has hence to be envisaged. Despite this, the direct comparison of the genetic evolution of sedimentary sequences in the Argana Valley and Essaouira Basin shows a similar progression from dominantly arid ephemeral depositional environments to humid perennial sedimentation, returning to prominent arid conditions. This suggests climatic control in both regions, where an enhanced humid signal drives perennial fluvial flow in otherwise arid dominated sequences. On a regional scale, this is suggested to record the impact of strong Triassic pluvial events previously recognised in other basins along the Central Atlantic margin during the Carnian to Norian periods.
NASA Astrophysics Data System (ADS)
Uenzelmann-Neben, Gabriele; Gohl, Karsten
2014-09-01
The distribution and internal architecture of seismostratigraphic sequences observed on the Antarctic continental slope and rise are results of sediment transport and deposition by bottom currents and ice sheets. Analysis of seismic reflection data allows to reconstruct sediment input and sediment transport patterns and to infer past changes in climate and oceanography. We observe four seismostratigraphic units which show distinct differences in location and shape of their depocentres and which accumulated at variable sedimentation rates. We used an age-depth model based on DSDP Leg 35 Site 324 for the Plio/Pleistocene and a correlation with seismic reflection characteristics from the Ross and Bellingshausen Seas, which unfortunately has large uncertainties. For the period before 21 Ma, we interpret low energy input of detritus via a palaeo-delta originating in an area of the Amundsen Sea shelf, where a palaeo-ice stream trough (Pine Island Trough East, PITE) is located today, and deposition of this material on the continental rise under sea ice coverage. For the period 21-14.1 Ma we postulate glacial erosion for the hinterland of this part of West Antarctica, which resulted in a larger depocentre and an increase in mass transport deposits. Warming during the Mid Miocene Climatic Optimum resulted in a polythermal ice sheet and led to a higher sediment supply along a broad front but with a focus via two palaeo-ice stream troughs, PITE and Abbot Trough (AT). Most of the glaciogenic debris was transported onto the eastern Amundsen Sea rise where it was shaped into levee-drifts by a re-circulating bottom current. A reduced sediment accumulation in the deep-sea subsequent to the onset of climatic cooling after 14 Ma indicates a reduced sediment supply probably in response to a colder and drier ice sheet. A dynamic ice sheet since 4 Ma delivered material offshore mainly via AT and Pine Island Trough West (PITW). Interaction of this glaciogenic detritus with a west-setting bottom current resulted in the continued formation of levee-drifts in the eastern and central Amundsen Sea.
NASA Astrophysics Data System (ADS)
Sandrini-Neto, L.; Lana, P. C.
2012-06-01
Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.
Echols, K.R.; Gale, R.W.; Schwartz, T.R.; Huckins, J.N.; Williams, L.L.; Meadows, J.C.; Morse, D.; Petty, J.D.; Orazio, C.E.; Tillitt, D.E.
2000-01-01
Three techniques of assessing bioavailable polychlorinated biphenyls (PCBs) in the Saginaw River, MI, were compared: sediments, caged fish, and semipermeable membrane devices (SPMDs). SPMDs and caged fish were placed in the river for 28 days at five sites where sediments were also sampled. The samples were analyzed for PCB congeners to determine concentrations and patterns. Total PCB concentrations ranged from 33 to 280 ng/g (dry weight) in sediments, 46 to 290 ng/g (wet weight) in caged fish, and 77 to 790 ng/g in SPMDs. Previously reported rates of PCB accumulation by SPMDs were used to estimate aqueous concentrations from the PCB concentrations detected in the SPMDs. Sediment-water partition coefficients were used to estimate aqueous PCB concentrations from sediment. Steady-state bioconcentration factors and depuration rate constants were used to estimate dissolved PCB concentrations from caged channel catfish. Relative PCB patterns from the SPMDs, caged fish, and sediment were compared using principal components analysis. SPMD and sediment samples provide complementary information. Sediments reflect long-term accumulation and weathering, while SPMDs integrate water concentrations only during the sampling period. Because of higher water solubilities of lower-chlorinated PCBs these predominate in the SPMDs as compared to in the fish and sediments. Contaminant profile differences between caged fish and SPMDs are likely due to metabolism and depuration of certain PCB congeners by fish.Three techniques of assessing bioavailable polychlorinated biphenyls (PCBs) in the Saginaw River, Ml, were compared: sediments, caged fish, and semipermeable membrane devices (SPMDs). SPMDs and caged fish were placed in the river for 28 days at five sites where sediments were also sampled. The samples were analyzed for PCB congeners to determine concentrations and patterns. Total PCB concentrations ranged from 33 to 280 ng/g (dry weight) in sediments, 46 to 290 ng/g (wet weight) in caged fish, and 77 to 790 ng/g in SPMDs. Previously reported rates of PCB accumulation by SPMDs were used to estimate aqueous concentrations from the PCB concentrations detected in the SPMDs. Sediment-water partition coefficients were used to estimate aqueous PCB concentrations from sediment. Steady-state bioconcentration factors and depuration rate constants were used to estimate dissolved PCB concentrations from caged channel catfish. Relative PCB patterns from the SPMDs, caged fish, and sediment were compared using principal components analysis. SPMD and sediment samples provide complementary information. Sediments reflect long-term accumulation and weathering, while SPMDs integrate water concentrations only during the sampling period. Because of higher water solubilities of lower-chlorinated PCBs these predominate in the SPMDs as compared to in the fish and sediments. Contaminant profile differences between caged fish and SPMDs are likely due to metabolism and depuration of certain PCB congeners by fish.At five sites in the Saginaw River, MI, PCB concentrations were determined in the summer of 1993 using three methods: sediment analysis, concentrations in caged fish, and concentrations in semipermeable membrane devices (SPMDs). On average, total PCB concentrations in the SPMDs were twice those found in caged fish, and the SPMD-to-fish concentration ratios of di-, tri-, tetra-, and pentaCB homologues were 10.0, 3.0, 2.5, and 1.4, respectively. Average concentrations in the sediments were approximately half those in the SPMDs, and the caged fish showed a greater preponderance of higher log octanol-water partition coefficient PCBs similar to the sediment pattern. On average, the water PCB concentrations estimated from sediment concentrations were five times higher than those calculated from SPMDs and three times higher than those estimated from caged fish. The total PCB concentrations in sediment, caged fish, and SPMDs ranged 33-280, 46-290, and 77-790 ng/g, respectiv
Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic bed sediment
Wong, C.S.; Garrison, A.W.; Foreman, W.T.
2001-01-01
Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Leitchenkov, G. L.; Sauermilch, I.; Whittaker, J. M.; De Santis, L.; Olivo, E.; Uenzelmann-Neben, G.; Davy, B. W.
2017-12-01
Although the Southern Ocean plays a fundamental role in the global climate and ocean current system, paleo-ocean circulation models of the Southern Ocean suffer from missing boundary conditions. A more accurate representation of the geometry of the seafloor and their dynamics over long time-scales are key for enabling more precise reconstructions of the development of the paleo-currents, the paleo-environment and the Antarctic ice sheets. The accurate parameterisation of these models controls the meaning and implications of regional and global paleo-climate models. The dynamics of ocean currents in proximity of the continental margins is also controlled by the development of the regional seafloor morphology of the conjugate continental shelves, slopes and rises. The reassessment of all available reflection seismic and borehole data from Antarctica as well as its conjugate margins of Australia, New Zealand, South Africa and South America, allows us to create paleobathymetric grids for various time slices during the Cenozoic. Those grids inform us about sediment distribution and volume as well a local sedimentation rates. The earliest targeted time slice of the Eocene/Oligocene Boundary marks a significant turning point towards an icehouse climate. From latest Eocene to earliest Oligocene the Southern Ocean changes fundamentally from a post greenhouse to an icehouse environment with the establishment of a vast continental ice sheet on the Antarctic continent. With the calculated sediment distribution maps, we can evaluate the dynamics of the sedimentary cover as well as the development of structural obstacles such as oceanic plateaus and ridges. The ultimate aim of this project is - as a community based effort - to create paleobathymetric grids at various time slices such as the Mid-Miocene Climatic Optimum and the Pliocene/Pleistocene, and eventually mimic the time steps used within the modelling community. The observation of sediment distribution and local sediment volumes open the door towards more sophisticated paleo-topograpy studies of the Antarctic continent and more detailed studies of the paleo-circulation. Local paleo - water depths at the oceanic gateways or the position of paleo-shelf edges highly influence the regional circulation patterns supporting more elaborated climate models.
Tao, J.; Huggins, D.; Welker, G.; Dias, J.R.; Ingersoll, C.G.; Murowchick, J.B.
2010-01-01
This is the first part of a study that evaluates the influence of nonpoint-source contaminants on the sediment quality of five streams within the metropolitan Kansas City area, central United States. Surficial sediment was collected in 2003 from 29 sites along five streams with watersheds that extend from the core of the metropolitan area to its development fringe. Sediment was analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), 3 common polychlorinated biphenyl mixtures (Aroclors), and 25 pesticide-related compounds of eight chemical classes. Multiple PAHs were detected at more than 50% of the sites, and concentrations of total PAHs ranged from 290 to 82,150 ??g/kg (dry weight). The concentration and frequency of detection of PAHs increased with increasing urbanization of the residential watersheds. Four- and five-ring PAH compounds predominated the PAH composition (73-100%), especially fluoranthene and pyrene. The PAH composition profiles along with the diagnostic isomer ratios [e.g., anthracene/(anthracene + phenanthrene), 0.16 ?? 0.03; fluoranthene/(fluoranthene + pyrene), 0.55 ?? 0.01)] indicate that pyrogenic sources (i.e., coal-tar-related operations or materials and traffic-related particles) may be common PAH contributors to these residential streams. Historical-use organochlorine insecticides and their degradates dominated the occurrences of pesticide-related compounds, with chlordane and dieldrin detected in over or nearly 50% of the samples. The occurrence of these historical organic compounds was associated with past urban applications, which may continue to be nonpoint sources replenishing local streams. Concentrations of low molecular weight (LMW; two or three rings) and high molecular weight (HMW; four to six rings) PAHs covaried along individual streams but showed dissimilar distribution patterns between the streams, while the historical pesticide-related compounds generally increased in concentration downstream. Correlations were noted between LMW and HMW PAHs for most of the streams and between historical-use organochlorine compounds and total organic carbon and clay content of sediments for one of the streams (Brush Creek). Stormwater runoff transport modes are proposed to describe how the two groups of contaminants migrated and distributed in the streambed. ?? 2010 Springer Science+Business Media, LLC.
NASA Astrophysics Data System (ADS)
Maloney, J. M.; Bentley, S. J.; Obelcz, J.; Xu, K.; Miner, M. D.; Georgiou, I. Y.; Hanegan, K.; Keller, G.
2014-12-01
Subaqueous mudflows are known to be ubiquitous across the Mississippi River delta front (MRDF) and have been identified as a hazard to offshore infrastructure. Among other factors, sediment accumulation rates and patterns play an important role in governing the stability of delta front sediment. High sedimentation rates result in underconsolidation, slope steepening, and increased biogenic gas production, which are all known to decrease stability. Sedimentation rates are highly variable across the MRDF, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River sediment into the Gulf of Mexico. Since the 1950s, the sediment load of the Mississippi River has decreased by ~50% due to dam construction upstream. The impact of this decreased sediment load on MRDF mudflow dynamics has yet to be examined. We compiled MRDF bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009, in order to identify historic trends in sedimentation patterns. The progradation of Southwest Pass (measured at 10 m depth contour) has slowed from ~66 m/yr between 1764 and 1940 to ~25 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre. Advancement of the delta also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward ~25 m/yr, but did not advance from 1979-2005. Furthermore, over the same area and time ranges, the sediment accumulation rate decreased by ~82%. We expect these sedimentation trends are occurring across the delta front, with potential impacts on spatial and temporal patterns of subaqueous mudflows. The MRDF appears to be entering a phase of decline, which will likely be accelerated by future upstream sediment diversion projects. New geophysical data will be required to assess potential mudflow hazards associated with new MRDF sedimentation rates and patterns (See Part 2, Obelcz et al.).
Kern, Volker D.; Smith, Jeffrey D.; Schwuchow, Jochen M.; Sack, Fred D.
2001-01-01
Little is known about whether or how plant cells regulate the position of heavy organelles that sediment toward gravity. Dark-grown protonemata of the moss Ceratodon purpureus displays a complex plastid zonation in that only some amyloplasts sediment along the length of the tip cell. If gravity is the major force determining the position of amyloplasts that sediment, then these plastids should be randomly distributed in space. Instead, amyloplasts were clustered in the subapical region in microgravity. Cells rotated on a clinostat on earth had a roughly similar non-random plastid distribution. Subapical clusters were also found in ground controls that were inverted and kept stationary, but the distribution profile differed considerably due to amyloplast sedimentation. These findings indicate the existence of as yet unknown endogenous forces and mechanisms that influence amyloplast position and that are normally masked in stationary cells grown on earth. It is hypothesized that a microtubule-based mechanism normally compensates for g-induced drag while still allowing for regulated amyloplast sedimentation. PMID:11299388
Chen, Yuyun; Jia, Rui; Yang, Shengke
2015-01-01
Weihe River is a typical river located in the arid and semi-arid regions of Northwest China. In this study, the distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) in Weihe River were investigated. The concentrations of ∑PAHs ranged from 351 to 4427 ng/L with a mean value of 835.4 ng/L in water dissolved phase (WDP), from 3557 ng/L to 147,907 ng/L with a mean value of 20,780 ng /L in suspended particulate matter (SPM), and from 362 to 15,667 ng/g dry weight (dw) with a mean value of 2000 ng/g dw in sediment, respectively. The concentrations of PAHs in Weihe River were higher compared with other rivers in the world. In both WDP and sediment, the highest concentrations of ∑PAHs were observed in the middle reach, while the lowest concentrations of ∑PAHs were found in the lower reach. For SPM, however, the PAHs concentrations in the lower reach were highest and the PAHs concentrations in the upper reach were lowest. The ratios of anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene) reflected a pattern of both pyrolytic and petrogenic input of PAHs in Weihe River. The potential ecosystem risk assessment indicated that harmful biological impairments occur frequently in Weihe River. PMID:26561824
NASA Astrophysics Data System (ADS)
Williams, R.; Claustre, H.
1991-03-01
Particulate samples were collected throughout the water column (0-4200 m)in June/July 1988 at the Biotrans site and their carotenoids and chlorophylls analysed by HPLC. These photosynthetic pigments were used as biomarkers to characterize the autotropiic pupolations, their utilization by heterotrophs snd sedimentation of particles out the euphotic zone. In the upper 50 m the pico- and nanophytoplankton accounted for 85% of the chlorophyll a biomass. The major pigment of the nanophytoplankton fraction was 19'-hexanolloxyfucoxanthin (prymnesiophytes), whereas the main pigment in the microphytoplankton was peridinin (dinoflagellates). The peaks in the distributions of phaeophorbide a and nanophytoplankton pigments (19'- hexanoyloxyfucoxanthin, 19'-butanoyloxyfucoxanthin, chlorophyll b,lutein and/or zeaxanthin) coincided between 75 and 100 m, which pointed to an active grazing of nanophytoplankton by zooplankton. These pigments were detected in particles >20 μm from the Double Longhurst Hardy Plankton Recorder down to 1000 m, probably as a consequence of their incorporation into sedimenting faecal material. In contrast, the vertical distributions of phaeophorbide a and peridinin (microphytoplankton pigment) did not coincide, and this carotenoid was not detected below 400 m in particles > 20μm. A vertical profile (0-4200 m) shows,at 2300 m, the presence of nanophytoplanktonic material similar in its pigment pattern and compositionto that of surface populations, suggesting fast sedimentation of Prymnesiophyte floc.
NASA Astrophysics Data System (ADS)
Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão
2013-12-01
Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.
NASA Astrophysics Data System (ADS)
Schrott, Lothar; Hufschmidt, Gabi; Hankammer, Martin; Hoffmann, Thomas; Dikau, Richard
2003-09-01
Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km 2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km 3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Ramon, Batalla; Araújo José C., De; da Costa Alexandre, Cunha; Till, Francke; Andreas, Güntner; Jose, Lopez-Tarazon; George, Mamede; Müller Eva, N.
2010-05-01
About one-third of the global population currently lives in countries which experience conditions of water stress. Such regions, often located within dryland ecosystems, are exposed to the hazard that the available freshwater resources fail to meet the water demand in domestic, agricultural and industrial sectors. Water availability often relies on the retention of river runoff in artificial lakes and reservoirs. However, the water storage in reservoirs is often adversely affected by sedimentation as a result of soil erosion. Erosion of the land surface due to natural or anthropogenic reasons and deposition of the eroded material in reservoirs threatens the reliability of reservoirs as a source of water supply. To sustain future water supply, a quantification of the sediment export from large dryland catchments becomes indispensable. A comprehensive modelling framework for water and sediment transport at the meso-scale, with a particular focus on dryland regions, has been developed from a German, Catalonian and Brazilian team during the last decade. It includes novel components for erosion from erosion-prone hillslopes, sediment transfer, retention and re-mobilization through the river system and sediment distribution, trapping and transfer through a reservoir. The parameterisation for pilot catchments is based on field monitoring campaigns of water and sediment fluxes, the analysis of land-use patterns, and the identification of the sediment hot spots through remotely sensed data. We present results of erosion-prone landscape units, the role of sediment transport in the river system, and the sedimentation processes in reservoirs. The modelling studies demonstrate the wide range of environmental problems where the model may be employed to develop sustainable management strategies for land and water resources. Evaluation of scenarios (land use, climate change) combined with an integrated assessment of options in reservoir management opens the opportunity to address relevant questions of water management including problems of water yield, reservoir capacity and economical comparison of on-/ offsite sediment management.
The Effects of Sediment Properties on Low Frequency Acoustic Propagation
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Effects of Sediment Properties on Low Frequency...investigations have indicated that water-borne acoustic arrival properties such as their Airy Phase are sensitive to sediment shear properties. Our major...goals of our research are to: • Improve inversion schemes for the estimation of sediment geoacoustic properties using low frequency broadband
RFID tags as a direct tracer for water and sediment dynamics
NASA Astrophysics Data System (ADS)
Sommerer, Erik; Plate, Simon; Güntner, Andreas
2014-05-01
RFID (Radio Frequency IDentification) is a wireless automatic identification system to track objects with widespread application in industrial operations, but also selected applications in ecological research (animal tracking) and for hydro-sedimentological studies (sediment transport with RFID tags embedded in bedload material). In this study, for the first time, we test and apply RFID tags as a direct tracer to track water pathways, erosion patterns and sediment transport on the surface at the hillslope and headwater scale. The RFID system used here consists of tags with a size of 12 x 2 mm and a combination of mobile and stationary antennas. The transport pathways and velocities of the RFID tags can be individually assessed due to their unique identification numbers. The study area is a badland of easily erodible marls and carbonates located in the Villacarli catchment (42 km²) in the Central Spanish Pyrenees. The badlands have been identified as one of the main sediment sources for siltation of the downstream Barasona Reservoir. More than 700 tags were placed in different terrain units using three experimental setups, including lab experiments: (i) intensive feasibility tests ranging from laboratory flume experiments to tracer studies under natural channel and slope conditions to compare the transport of RFID tags relative to colored particles of the natural sediment; (ii) several transects across the badland to investigate sediment transfer characteristics on different morphological units (i.e. channel, rills, slopes); (iii) a raster of 99 RFID tags covering a slope flank with vegetated and unvegetated parts to reveal the influence of vegetation to erosion and transport processes. The detection of transported tags was carried out with a mobile antenna system to map the spatial distribution of tags after selected rainfall events and with two stationary antennas in channel cross-sections for time-continuous observation of tag passage. From the observations, we derived transport distances and velocities for a one year period. The transport behavior of the RFID tags was similar to the micrite limestone material of the badland. These results indicate the important role of terrain position and vegetation patches for erosion patterns, sediment transfer and the associated time scales along the catchment. We assess the potentials and limitations of the RFID technique as a direct tracer for assessing water and sediment connectivity along hillslopes to first order channels.
Experiments on Transitional Subaqueous Density Flows and Resulting Sediment Deposits
NASA Astrophysics Data System (ADS)
Barnaal, Z. D.; Parker, G.
2016-12-01
Much remains unknown regarding the sedimentary deposits of submarine gravity flows. Flows with large concentrations of suspended sediment may transition from a more turbulent to a more coherent flow type. Such transitional flows may be produced when turbulence becomes suppressed due to entrainment of cohesive sediment or from flow deceleration. Argillaceous sandstones and linked turbidite-debrites are types of submarine sediment deposits in a category known as hybrid event beds, and are interpreted to be emplaced by transitional regime flows (Talling, 2007; Davis, 2009; Haughton, 2009; Hodgson, 2009; Sumner, 2009; Baas, 2011; Lee, 2013; and Talling, 2013). Here we report on the physical modelling of such transitional flows. The sediment consists of mixtures of non-cohesive silica flour with a median grain size of 30 microns and kaolin clay with a median size of 4 microns. These sediments were mixed in ratios including 100%, 70%, 60%, 50%, 30% and 0% kaolin. Total volume concentration of the input slurry varied from 0.01 to 0.2, allowing coverage of wide range of transitional flow types. The flow passed over a 4.9-m-long bed with a slope of 7 degrees, and continued another 4.9 m over a horizontal bed before exiting the tank. Measurements of flow velocity profiles, flow concentrations, deposit geometry, and deposit grain-size distributions were conducted. The results of experiments help us to better understand the rheology, and to determine the structure and patterns of deposits including argillaceous sandstones.
Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei
2013-09-01
The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.
Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain
Back, William
1966-01-01
Flow patterns of fresh ground water shown on maps and in cross sections have been deduced from available water-level data. These patterns are controlled by the distribution of the higher landmasses and by the depth to either bedrock or to the salt-water interface. The mapping of hydrochemical facies shows that at shallow depths within the Coastal Plain (less than about 200 ft) the calcium-magnesium cation facies generally predominates. The bicarbonate anion facies occurs within more of the shallow Coastal Plain sediments than does the sulfate or the chloride facies. In deeper formations, the sodium chloride character predominates. The lower dissolved-solids content of the ground water in New Jersey indicates less upward vertical leakage than in Maryland and Virginia, where the shallow formations contain solutions of higher concentration.
NASA Astrophysics Data System (ADS)
Chaichitehrani, N.; Li, C.; Xu, K.; Bentley, S. J.; Miner, M. D.
2017-12-01
Sandy Point southeast, an elongated sand resource, was dredged in November 2012 to restore Pelican Island, Louisiana. Hydrodynamics and wave propagation patterns along with fluvial sediments from the Mississippi River influence the sediment and bottom boundary layer dynamics over Sandy Point. A state-of-the-art numerical model, Delft3D, was implemented to investigate current variations and wave transformation on Sandy Point as well as sediment transport pattern. Delft3d FLOW and WAVE modules were coupled and validated using WAVCIS and NDBC data. Sediment transport model was run by introducing both bed and river sediments, consisted of mainly mud and a small fraction of sand. A sediment transport model was evaluated for surface sediment concentration using data derived from satellite images. The model results were used to study sediment dynamics and bottom boundary layer characteristics focused on the Sandy Point area during summer. Two contrasting bathymetric configurations, with and without the Sandy Point dredge pit, were used to conduct an experiment on the sediment and bottom boundary layer dynamics. Preliminary model results showed that the presence of the Sandy Point pit has very limited effect on the hydrodynamics and wave pattern at the pit location. Sediments from the Mississippi River outlets, especially in the vicinity of the pit, get trapped in the pit under the easterly to the northeasterly upcoast current which prevails in August. We also examined the wave-induced sediment reworking and river-borne fluvial sediment over Sandy Point. The effect of wind induced orbital velocity increases the bottom shear stress compared to the time with no waves, relatively small wave heights (lower than 1.5 meters) along the deepest part of the pit (about 20 meters) causes little bottom sediment rework during this period. The results showed that in the summertime, river water is more likely the source of sedimentation in the pit.
The problem of predicting the size distribution of sediment supplied by hillslopes to rivers
NASA Astrophysics Data System (ADS)
Sklar, Leonard S.; Riebe, Clifford S.; Marshall, Jill A.; Genetti, Jennifer; Leclere, Shirin; Lukens, Claire L.; Merces, Viviane
2017-01-01
Sediments link hillslopes to river channels. The size of sediments entering channels is a key control on river morphodynamics across a range of scales, from channel response to human land use to landscape response to changes in tectonic and climatic forcing. However, very little is known about what controls the size distribution of particles eroded from bedrock on hillslopes, and how particle sizes evolve before sediments are delivered to channels. Here we take the first steps toward building a geomorphic transport law to predict the size distribution of particles produced on hillslopes and supplied to channels. We begin by identifying independent variables that can be used to quantify the influence of five key boundary conditions: lithology, climate, life, erosion rate, and topography, which together determine the suite of geomorphic processes that produce and transport sediments on hillslopes. We then consider the physical and chemical mechanisms that determine the initial size distribution of rock fragments supplied to the hillslope weathering system, and the duration and intensity of weathering experienced by particles on their journey from bedrock to the channel. We propose a simple modeling framework with two components. First, the initial rock fragment sizes are set by the distribution of spacing between fractures in unweathered rock, which is influenced by stresses encountered by rock during exhumation and by rock resistance to fracture propagation. That initial size distribution is then transformed by a weathering function that captures the influence of climate and mineralogy on chemical weathering potential, and the influence of erosion rate and soil depth on residence time and the extent of particle size reduction. Model applications illustrate how spatial variation in weathering regime can lead to bimodal size distributions and downstream fining of channel sediment by down-valley fining of hillslope sediment supply, two examples of hillslope control on river sediment size. Overall, this work highlights the rich opportunities for future research into the controls on the size of sediments produced on hillslopes and delivered to channels.
USDA-ARS?s Scientific Manuscript database
Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...
A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...
Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas
NASA Astrophysics Data System (ADS)
Perez, N.; Teixell, A.; Gomez, D.
2016-12-01
Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.
Two-dimensional pH distributions and dynamics in bioturbated marine sediments
NASA Astrophysics Data System (ADS)
Zhu, Qingzhi; Aller, Robert C.; Fan, Yanzhen
2006-10-01
The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ˜150 to 225 cm 2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (˜5 d). H + concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H + fluxes around burrows up to ˜12 nmol cm -2 d -1 and maximum net reaction rates varying between -90 (consumption) to 120 (production) μM d -1 (˜90 nmol cm -1 d -1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and sedimentary structure.
NASA Astrophysics Data System (ADS)
Lehmkuhl, Frank
2017-04-01
In the cold and continental areas of Central and High Asia periglacial landform assembles, sediment structures and processes are mainly influenced and determinated by the existence of soil humidity during the freeze-thaw cycles. This results in cryogenic processes and periglacial landforms such as earth hummocks, patterned ground or solifluction. The distribution of rock glaciers as clear indicators of permafrost is also determined by rock fall or moraine debris composed of large boulders (e.g. granite). Periglacial features and landforms have been used to reconstruct past climatic conditions, e.g. relict involutions and ice-wedge casts provide evidence for the distribution of former permafrost, e.g. for the Last Glacial Maximum. Past temperatures, e.g. mean annual air temperatures, can be estimated from these periglacial features. Examples from late Holocene solifluction activity in the Altai, Khangai, and north-eastern Tibetan Plateau show different intensity of solifluction processes during the Late Holocene and Little Ice Age by decrease of temperature and more soil humidity. The distribution of past permafrost in some regions is still a matter of debate due to different interpretations of sediment structures: Sometimes features described as ice-wedge casts may be caused by roots or desiccation cracks due to drying of clay rich sediments. Seismically deformed unconsolidated deposits (seismites) can also be misinterpreted as periglacial involutions. The lack of certain landform assemblages and sediment structures does not necessarily mean that the area had no permafrost as moisture conditions also to a large degree govern periglacial landform generation and not only temperature. They can be ordered in Central Asia as follows (from highest moisture availability to lowest): solifluction - rock glacier - permafrost involutions - ice-wedge casts - sand wedge casts. Reference: LEHMKUHL, F. (2016): Modern and past periglacial features in Central Asia and their implication for paleoclimate reconstructions. - Progress in Physical Geography 40: 369-391. DOI: 10.1177/0309133315615778
Sediment dispersal in the northwestern Adriatic Sea
Harris, C.K.; Sherwood, C.R.; Signell, R.P.; Bever, A.J.; Warner, J.C.
2008-01-01
Sediment dispersal in the Adriatic Sea was evaluated using coupled three-dimensional circulation and sediment transport models, representing conditions from autumn 2002 through spring 2003. The calculations accounted for fluvial sources, resuspension by waves and currents, and suspended transport. Sediment fluxes peaked during southwestward Bora wind conditions that produced energetic waves and strengthened the Western Adriatic Coastal Current. Transport along the western Adriatic continental shelf was nearly always to the south, except during brief periods when northward Sirocco winds reduced the coastal current. Much of the modeled fluvial sediment deposition was near river mouths, such as the Po subaqueous delta. Nearly all Po sediment remained in the northern Adriatic. Material from rivers that drain the Apennine Mountains traveled farther before deposition than Po sediment, because it was modeled with a lower settling velocity. Fluvial sediment delivered to areas with high average bed shear stress was more highly dispersed than material delivered to more quiescent areas. Modeled depositional patterns were similar to observed patterns that have developed over longer timescales. Specifically, modeled Po sediment accumulation was thickest near the river mouth with a very thin deposit extending to the northeast, consistent with patterns of modern sediment texture in the northern Adriatic. Sediment resuspended from the bed and delivered by Apennine Rivers was preferentially deposited on the northern side of the Gargano Peninsula, in the location of thick Holocene accumulation. Deposition here was highest during Bora winds when convergences in current velocities and off-shelf flux enhanced delivery of material to the midshelf. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Li, Chuan-Shun; Shi, Xue-Fa; Kao, Shuh-Ji; Liu, Yan-Guang; Lyu, Hua-Hua; Zou, Jian-Jun; Liu, Sheng-Fa; Qiao, Shu-Qing
2013-06-01
Thirty-eight sediment samples from 15 primary rivers on Taiwan were retrieved to characterize the rare earth element (REE) signature of fluvial fine sediment sources. Compared to the three large rivers on the Chinese mainland, distinct differences were observed in the REE contents, upper continental crust normalized patterns and fractionation factors of the sediment samples. The average REE concentrations of the Taiwanese river sediments are higher than those of the Changjiang and Huanghe, but lower than the Zhujiang. Light rare earth elements (LREEs) are enriched relative to heavy rare earth elements (HREEs) with ratios from 7.48 to 13.03. We found that the variations in (La/Lu)UCC-(Gd/Lu)UCC and (La/Yb)UCC-(Gd/Yb)UCC are good proxies for tracing the source sediments of Taiwanese and Chinese rivers due to their distinguishable values. Our analyses indicate that the REE compositions of Taiwanese river sediments were primarily determined by the properties of the bedrock, and the intensity of chemical weathering in the drainage areas. The relatively high relief and heavy rainfall also have caused the REEs in the fluvial sediments from Taiwan to be transported to the estuaries down rivers from the mountains, and in turn delivered nearly coincidently to the adjacent seas by currents and waves. Our studies suggest that the REE patterns of the river sediments from Taiwan are distinguishable from those from the other sources of sediments transported into the adjacent seas, and therefore are useful proxies for tracing the provenances and dispersal patterns of sediments, as well as paleoenvironmental changes in the marginal seas.
Anderson, Donald M.; Keafer, Bruce A.; Kleindinst, Judith L.; McGillicuddy, Dennis J.; Martin, Jennifer L.; Norton, Kerry; Pilskaln, Cynthia H.; Smith, Juliette L.; Sherwood, Christopher R.; Butman, Bradford
2014-01-01
Here we document Alexandrium fundyense cyst abundance and distribution patterns over nine years (1997 and 2004–2011) in the coastal waters of the Gulf of Maine (GOM) and identify linkages between those patterns and several metrics of the severity or magnitude of blooms occurring before and after each autumn cyst survey. We also explore the relative utility of two measures of cyst abundance and demonstrate that GOM cyst counts can be normalized to sediment volume, revealing meaningful patterns equivalent to those determined with dry weight normalization. Cyst concentrations were highly variable spatially. Two distinct seedbeds (defined here as accumulation zones with>300 cysts cm−3) are evident, one in the Bay of Fundy (BOF) and one in mid-coast Maine. Overall, seedbed locations remained relatively constant through time, but their area varied 3–4 fold, and total cyst abundance more than 10 fold among years. A major expansion of the mid-coast Maine seedbed occurred in 2009 following an unusually intense A. fundyense bloom with visible red-water conditions, but that feature disappeared by late 2010. The regional system thus has only two seedbeds with the bathymetry, sediment characteristics, currents, biology, and environmental conditions necessary to persist for decades or longer. Strong positive correlations were confirmed between the abundance of cysts in both the 0–1 and the 0–3 cm layers of sediments in autumn and geographic measures of the extent of the bloom that occurred the next year (i.e., cysts→blooms), such as the length of coastline closed due to shellfish toxicity or the southernmost latitude of shellfish closures. In general, these metrics of bloom geographic extent did not correlate with the number of cysts in sediments following the blooms (blooms→cysts). There are, however, significant positive correlations between 0–3 cm cyst abundances and metrics of the preceding bloom that are indicative of bloom intensity or vegetative cell abundance (e.g., cumulative shellfish toxicity, duration of detectable toxicity in shellfish, and bloom termination date). These data suggest that it may be possible to use cyst abundance to empirically forecast the geographic extent of the forthcoming bloom and, conversely, to use other metrics from bloom and toxicity events to forecast the size of the subsequent cyst population as the inoculum for the next year's bloom. This is an important step towards understanding the excystment/encystment cycle in A. fundyense bloom dynamics while also augmenting our predictive capability for this HAB-forming species in the GOM.