Nowell, Lisa H.; Ludtke, Amy S.; Mueller, David K.; Scott, Jonathon C.
2012-01-01
Beach water and sediment samples were collected along the Gulf of Mexico coast to assess differences in contaminant concentrations before and after landfall of Macondo-1 well oil released into the Gulf of Mexico from the sinking of the British Petroleum Corporation's Deepwater Horizon drilling platform. Samples were collected at 70 coastal sites between May 7 and July 7, 2010, to document baseline, or "pre-landfall" conditions. A subset of 48 sites was resampled during October 4 to 14, 2010, after oil had made landfall on the Gulf of Mexico coast, called the "post-landfall" sampling period, to determine if actionable concentrations of oil were present along shorelines. Few organic contaminants were detected in water; their detection frequencies generally were low and similar in pre-landfall and post-landfall samples. Only one organic contaminant--toluene--had significantly higher concentrations in post-landfall than pre-landfall water samples. No water samples exceeded any human-health benchmarks, and only one post-landfall water sample exceeded an aquatic-life benchmark--the toxic-unit benchmark for polycyclic aromatic hydrocarbons (PAH) mixtures. In sediment, concentrations of 3 parent PAHs and 17 alkylated PAH groups were significantly higher in post-landfall samples than pre-landfall samples. One pre-landfall sample from Texas exceeded the sediment toxic-unit benchmark for PAH mixtures; this site was not sampled during the post-landfall period. Empirical upper screening-value benchmarks for PAHs in sediment were exceeded at 37 percent of post-landfall samples and 22 percent of pre-landfall samples, but there was no significant difference in the proportion of samples exceeding benchmarks between paired pre-landfall and post-landfall samples. Seven sites had the largest concentration differences between post-landfall and pre-landfall samples for 15 alkylated PAHs. Five of these seven sites, located in Louisiana, Mississippi, and Alabama, had diagnostic geochemical evidence of Macondo-1 oil in post-landfall sediments and tarballs. For trace and major elements in water, analytical reporting levels for several elements were high and variable. No human-health benchmarks were exceeded, although these were available for only two elements. Aquatic-life benchmarks for trace elements were exceeded in 47 percent of water samples overall. The elements responsible for the most exceedances in post-landfall samples were boron, copper, and manganese. Benchmark exceedances in water could be substantially underestimated because some samples had reporting levels higher than the applicable benchmarks (such as cobalt, copper, lead and zinc) and some elements (such as boron and vanadium) were analyzed in samples from only one sampling period. For trace elements in whole sediment, empirical upper screening-value benchmarks were exceeded in 57 percent of post-landfall samples and 40 percent of pre-landfall samples, but there was no significant difference in the proportion of samples exceeding benchmarks between paired pre-landfall and post-landfall samples. Benchmark exceedance frequencies could be conservatively high because they are based on measurements of total trace-element concentrations in sediment. In the less than 63-micrometer sediment fraction, one or more trace or major elements were anthropogenically enriched relative to national baseline values for U.S. streams for all sediment samples except one. Sixteen percent of sediment samples exceeded upper screening-value benchmarks for, and were enriched in, one or more of the following elements: barium, vanadium, aluminum, manganese, arsenic, chromium, and cobalt. These samples were evenly divided between the sampling periods. Aquatic-life benchmarks were frequently exceeded along the Gulf of Mexico coast by trace elements in both water and sediment and by PAHs in sediment. For the most part, however, significant differences between pre-landfall and post-landfall samples were limited to concentrations of PAHs in sediment. At five sites along the coast, the higher post-landfall concentrations of PAHs were associated with diagnostic geochemical evidence of Deepwater Horizon Macondo-1 oil.
Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments
Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.
2010-01-01
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.
Nowell, Lisa H.; Ludtke, Amy S.; Mueller, David K.; Scott, Jonathon C.
2011-01-01
Considering all the information evaluated in this report, there were significant differences between pre-landfall and post-landfall samples for PAH concentrations in sediment. Pre-landfall and post-landfall samples did not differ significantly in concentrations or benchmark exceedances for most organics in water or trace elements in sediment. For trace elements in water, aquatic-life benchmarks were exceeded in almost 50 percent of samples, but the high and variable analytical reporting levels precluded statistical comparison of benchmark exceedances between sampling periods. Concentrations of several PAH compounds in sediment were significantly higher in post-landfall samples than pre-landfall samples, and five of seven sites with the largest differences in PAH concentrations also had diagnostic geochemical evidence of Deepwater Horizon Macondo-1 oil from Rosenbauer and others (2010).
Gebler, Joseph B.
2000-01-01
Streambed-sediment samples from 13 sites and biological-tissue samples from 11 sites in the Gila River Basin in central Arizona were analyzed for 32 organochlorine compounds in streambed sediment and 28 compounds in biological tissue during 1996 as part of the U.S. Geological Survey's National Water-Quality Assessment program. The objectives of the study were to determine the occurrence and distribution of organochlorine compounds and their relation to land use. Sampling sites were categorized on the basis of major land uses in the basin or the source of water in the stream. Because land uses were mixed or had changed over time, some land-use categories were combined. Sites were categorized as forest/rangeland (6), forest/urban (1), urban (4), or agricultural/urban (2). Thirteen organochlorine compounds were detected in streambed-sediment samples, and 10 were detected in tissue samples. The number of compounds found in streambed-sediment samples from individual sites ranged from 0 to 10, and the range for individual tissue samples was 0 to 7. Comparison of the number of detections in streambed-sediment samples to the number of detections in tissue samples from particular sites where both were sampled yielded five instances where more compounds were detected in streambed sediment, six instances where more compounds were detected in tissue, and five instances where the number of detections in streambed sediment and tissue were equal. The frequency of detection of particular compounds for sites where both streambed sediment and tissue were sampled resulted in five compounds being detected more frequently in streambed sediment, five more frequently in tissue, and three compounds that were equally frequent in streambed sediment and in tissue. Few contaminants were detected in samples from the forest/rangeland sites; greater numbers of compounds were detected at the urban sites and at the forest/urban site. The greatest number of compounds and the highest concentrations of many contaminants were detected at agriculture/urban sites. The compound detected most frequently in streambed-sediment and tissue samples was p,p'-DDE. Streambed-sediment guideline values for the protection of aquatic life for p,p'-DDE and total DDT were exceeded at both agricultural/urban sites, The streambed-sediment guideline value for the protection of aquatic life for total chlordane was exceeded at one agricultural/urban site, one urban site, and the forest/urban site. The streambed-sediment guideline value for the protection of aquatic life for total PCB’s was exceeded at one agricultural/urban site. Guideline values for the protection of fish-eating wildlife for total DDT and for toxaphene were exceeded only in samples from the two agricultural/urban sites. The guideline value for the protection of fish-eating wildlife for total PCB’s was equaled or exceeded in samples from two sites—one urban and one agricultural/urban site. Screening values established by the U.S. Environmental Protection Agency for the protection of human health for edible portions of fish were exceeded by total DDT and by toxaphene in fish-tissue samples from both agricultural/urban sites. The human-health criterion for total PCB’s was exceeded in two fish-tissue samples from an agricultural site and from an urban site. Tissue samples analyzed in this study were for whole fish, and thus, concentration data are not entirely comparable to the screening values of the U.S. Environmental Protection Agency. Because these exceedences were an order of magnitude above the criteria, however, it is possible that concentrations in the edible portions of fish from these locations could present a human- health risk. Analyses of samples of edible portions of fish from these locations would be needed to adequately assess the presence or absence of a human-health risk. The similarity of the results of this study to the results of other studies of organochlorine compounds in the environment suggests that there is a correlation between contaminants in sediment and biological-tissue samples and land uses. As with other studies of the occurrence and distribution of organochlorine contaminants in streambed sediments and biological tissue, this study shows that many organochlorine compounds continue to persist in the environment and thus could pose a threat to aquatic life, fish-eating wildlife, and possibly to humans who consume contaminated fish.
Wilson, Jennifer T.
2011-01-01
Elevated concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. This report describes an assessment of selected sediment-associated contaminants in samples collected in Bexar County from sites on the following streams: Medio Creek, Medina River, Elm Creek, Martinez Creek, Chupaderas Creek, Leon Creek, Salado Creek, and San Antonio River. During 2007-09, the U.S. Geological Survey periodically collected surficial streambed-sediment samples during base flow and suspended-sediment (large-volume suspended-sediment) samples from selected streams during stormwater runoff. All sediment samples were analyzed for major and trace elements and for organic compounds including halogenated organic compounds and polycyclic aromatic hydrocarbons (PAHs). Selected contaminants in streambed and suspended sediments in watersheds of the eight major streams in Bexar County were assessed by using a variety of methods—observations of occurrence and distribution, comparison to sediment-quality guidelines and data from previous studies, statistical analyses, and source indicators. Trace elements concentrations were low compared to the consensus-based sediment-quality guidelines threshold effect concentration (TEC) and probable effect concentration (PEC). Trace element concentrations were greater than the TEC in 28 percent of the samples and greater than the PEC in 1.5 percent of the samples. Chromium concentrations exceeded sediment-quality guidelines more frequently than concentrations of any other constituents analyzed in this study (greater than the TEC in 69 percent of samples and greater than the PEC in 8 percent of samples). Mean trace element concentrations generally are lower in Bexar County samples compared to concentrations in samples collected during previous studies in the Austin and Fort Worth, Texas, areas, but considering the relatively large ranges and standard deviations associated with the concentrations measured in all three areas, the trace element concentrations are similar. On the basis of Mann-Whitney U test results, the presence of a military installation in a watershed was associated with statistically significant higher chromium, mercury, and zinc concentrations in streambed sediments compared to concentrations of the same elements in a watershed without a military installation. Halogenated organic compounds analyzed in sediment samples included pesticides (chlordane, dieldrin, DDT, DDD, and DDE), polychlorinated biphenyls (PCBs), and brominated flame retardants. Three or more halogenated organic compounds were detected in each sediment sample, and 66 percent of all concentrations were less than the respective interim reporting levels. Halogenated organic compound concentrations were mostly low compared to consensus-based sediment quality guidelines-;TECs were exceeded in 11 percent of the analyses and PECs were exceeded in 1 percent of the analyses. Chlordane compounds were the most frequently detected halogenated organic compounds with one or more detections of chlordane compounds in every watershed; concentrations were greater than the TEC in 6 percent of the samples. Dieldrin was detected in 50 percent of all samples, however all concentrations were much less than the TEC. The DDT compounds (p,p'-DDT, p,p'-DDD, and p,p'-DDE) were detected less frequently than some other halogenated organic compounds, however most detections exceeded the TECs. p,p'-DDT was detected in 13 percent of the samples (TEC exceeded in 67 percent); p,p'-DDD was detected in 19 percent of the samples (TEC exceeded in 78 percent); and p,p'-DDE was detected in 35 percent of the samples (TEC exceeded in 53 percent). p,p'-DDE concentrations in streambed-sediment samples correlate positively with population density and residential, commercial, and transportation land use. One or more PCB congeners were detected in
Webb, R.H.; Rink, G.R.; Favor, B.O.
1987-01-01
The concentrations of gross alpha radioactivity minus uranium equaled or exceeded 15 picoCuries/L (pCi/L) in five of 14 wells sampled. The concentration of radium-226 plus radium-228 exceeded the primary water quality standard of 5 pCi/L in one well. The concentration of uranium exceeded a recommended limit of 0.035 mg/L in two wells. Perennial grass and sediment samples had low concentrations of radionuclides. The concentration of trace elements in the sediment samples was not unusual. Water quality of surface water in the Puerco River at Chambers varied as a function of the suspended sediment concentration. Concentrations of total gross alpha radiation fluctuated from 12 to 11,200 pCi/L. Concentrations of total gross beta radiation fluctuated from 45 to 4,500 pCi/L. (Author 's abstract)
Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15
Hermosillo, Edyth; Coes, Alissa L.
2017-03-01
Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.
Robinson, G.R.; Ayuso, R.A.
2004-01-01
Arsenical pesticides and herbicides, principally Pb arsenate, Ca arsenate, and Na arsenate with lesser use of other metal-As pesticides, were widely applied on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Agricultural census data for this time period is used to define an agricultural index that identifies areas that are inferred to have used arsenical pesticides extensively. Factor analysis on metal concentrations in 1597 stream sediment samples collected throughout New England, grouped by agricultural-index categories, indicate a positive association of areas with stream sediment sample populations that contain higher As and Pb concentrations than samples from the region as a whole with sample site settings having high agricultural-index values. Population statistics for As and Pb concentrations and factor scores for an As-Pb factor all increase systematically and significantly with increasing agricultural-index intensity in the region, as tested by Kruskal-Wallis analysis. Lead isotope compositions for 16 stream sediments from a range of agricultural-index settings generally overlap the observed variation in rock sulfides and their weathering products; however, sediments collected from high agricultural-index settings have slightly more radiogenic Pb compositions, consistent with an industrial Pb contribution to these samples. Although weathering products from rocks are likely to be the dominant source of As and metals to most of the stream sediment samples collected in the region, the widespread use of arsenical pesticides and herbicides in New England during the early 1900-1960s appears to be a significant anthropogenic source of As and metals to many sediments in agricultural areas in the region and has raised background levels of As in some regions. Elevated concentrations of As in stream sediments are of concern for two reasons. Stream sediments with elevated As concentrations delineate areas with elevated background concentrations of As from both natural rock and anthropogenic sources that may contribute As to groundwater systems used for drinking water supplies. Conversion of agricultural land contaminated with arsenical pesticide residues to residential development may increase the likelihood that humans will be exposed to As. In addition, many stream sediment sites have As concentrations that exceed sediment quality guidelines established for freshwater ecosystems. Thirteen percent of the New England sediment sample sites exceed 9.79 mg/kg As, the threshold effects concentration (TEC), below which harmful effects are unlikely to be observed. Arsenic concentrations exceed 33 mg/kg, the probable effects concentration (PEC), above which harmful effects on sediment-dwelling organisms are expected to occur frequently, at 1.25% of the sediment sample sites. The sample sites that exceed the PEC value occur predominately in agricultural areas that used arsenical pesticides.
Fallon, James D.; Yaeger, Christine S.
2009-01-01
Mille Lacs Lake and its tributaries, located in east-central Minnesota, are important resources to the public. In addition, many wetlands and lakes that feed Mille Lacs Lake are of high resource quality and vulnerable to degradation. Construction of a new four-lane expansion of U.S. Highway 169 has been planned along the western part of the drainage area of Mille Lacs Lake in Crow Wing County. Concerns exist that the proposed highway could affect the resource quality of surface waters tributary to Mille Lacs Lake. Baseline water- and bed-sediment quality characteristics of surface waters tributary to Mille Lacs Lake were needed prior to the proposed highway construction. The U.S. Geological Survey, in cooperation with the Minnesota Department of Transportation, characterized the water- and bed-sediment quality at selected locations that the proposed route intersects from October 2003 to October 2006. Locations included Seguchie Creek upstream and downstream from the proposed route and three wetlands draining to Mille Lacs Lake. The mean streamflow of Seguchie Creek increased between the two sites: flow at the downstream streamflow-gaging station of 0.22 cubic meter per second was 5.6 percent greater than the mean streamflow at the upstream streamflow-gaging station of 0.21 cubic meter per second. Because of the large amount of storage immediately upstream from both gaging stations, increases in flow were gradual even during intense precipitation. The ranges of most constituent concentrations in water were nearly identical between the two sampling sites on Seguchie Creek. No concentrations exceeded applicable water-quality standards set by the State of Minnesota. Dissolved-oxygen concentrations at the downstream gaging station were less than the daily minimum standard of 4.0 milligrams per liter for 6 of 26 measurements. Constituent loads in Seguchie Creek were greater at the downstream site than the upstream site for all measured, including dissolved chloride (1.7 percent), ammonia plus organic nitrogen (13 percent), total phosphorus (62 percent), and suspended sediment (11 percent) during the study. All constituents had seasonal peaks in spring and fall. The large loads during the fall resulted from unusually large precipitation and streamflow patterns. This caused the two greatest streamflow peaks at both sites to occur during October (2004 and 2005). In Seguchie Creek, bed-sediment concentrations of five metals and trace elements (arsenic, cadmium, chromium, lead, and zinc) exceeded the Interim Sediment Quality Guidelines (ISQG) set by the Canadian Council of Ministers of the Environment. Bed-sediment samples from the upstream site had more exceedances of ISQGs for metals and trace elements than did samples from the downstream site (seven and two exceedances, respectively). Bed-sediment samples from the downstream site had more exceedances of ISQGs (20 exceedances) for semivolatile organic compounds than did samples from the upstream site (8 exceedances), indicating different sources for organic compounds than for metals and trace elements. Concentrations of 11 semivolatile organic compounds exceeded ISQGs: ancenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. In bed-sediment samples collected from three wetlands, concentrations of all six metals exceeded ISQGs: arsenic, cadmium, chromium, copper, lead, and zinc. Concentrations of three semivolatile organic compounds exceeded ISQGs: flouranthene, phenanthrene, and pyrene. Results indicate that areas appearing relatively undisturbed and of high resource value can have degraded quality from previous unknown land use.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
Paul, Angela P.; Thodal, Carl E.
2003-01-01
This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con
Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael
2006-01-01
As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to
Kennedy, Ben W.; Hall, Cassidee C.
2009-01-01
In 2002-03, the U.S. Geological Survey collected samples of streambed sediment at 18 sites in the lower Chena River watershed for analysis of selected nutrients, traces elements, and organic compounds. The purpose of the project was to provide Federal, State, and local agencies as well as neighborhood committees, with information for consideration in plans to improve environmental conditions in the watershed. The exploratory sampling program included analysis of streambed sediment from the Chena River and Chena Slough, a tributary to the Chena River. Results were compared to streambed-sediment guidelines for the protection of aquatic life and to 2001-02 sediment data from Noyes Slough, a side channel of the lower Chena River. The median total phosphorus concentration in Chena Slough sediment samples, 680 milligrams per kilogram (mg/kg), was two orders of magnitude greater than median total phosphorus concentration in Chena River sediment samples of 5.2 mg/kg. Median concentrations of chloride and sulfate also were greater in Chena Slough samples. Low concentrations of nitrate were detected in most of the Chena Slough samples; nitrate concentrations were below method reporting limits or not detected in Chena River sediment samples. Streambed-sediment samples were analyzed for 24 trace elements. Arsenic, nickel, and zinc were the only trace elements detected in concentrations that exceeded probable-effect levels for the protection of aquatic life. Concentrations of arsenic in Chena Slough samples ranged from 11 to 70 mg/kg and concentrations in most of the samples exceeded the probable-effect guideline for arsenic of 17 mg/kg. Arsenic concentrations in samples from the Chena River ranged from 9 to 12 mg/kg. The background level for arsenic in the lower Chena River watershed is naturally elevated because of significant concentrations of arsenic in local bedrock and ground water. Sources of elevated concentrations of zinc in one sample, and of nickel in two samples, are unknown. With the exception of elevated arsenic levels in samples from Chena Slough, the occurrence and concentration of trace elements in the streambed sediments of Chena Slough and Chena River were similar to those in Noyes Slough sediment. Sediment samples were analyzed for 78 semivolatile organic compounds and 32 organochlorine pesticides and polychlorinated biphenyls (PCBs). Low concentrations of dimethylnaphthalene and p-Cresol were detected in most Chena Slough and Chena River sediment samples. The number of semivolatile organic compounds detected ranged from 5 to 21 in most Chena Slough sediment samples. In contrast, three or fewer semivolatile organic compounds were detected in Chena River sediment samples, most likely because chemical-matrix interference resulted in elevated reporting limits for organochlorine compounds in the Chena River samples. Low concentrations of fluoranthene, pyrene, and phenanthrene were detected in Chena Slough sediment. Relatively low concentrations of DDT or its degradation products, DDD and DDE, were detected in all Chena Slough samples. Concentrations of total DDT (DDT+DDD+DDE) in two Chena Slough sediment samples exceeded the effectsrange median aquatic-life criteria of 46.1 micrograms per kilogram (ug/kg). DDT concentrations in Chena River streambed-sediment samples were less than 20 ug/kg. Low concentrations of PCB were detected in two Chena Slough streambed-sediment samples. None of the concentrations of the polychlorinated biphenyls or semivolatile organic compounds for which the samples were analyzed exceeded available guidelines for the protection of aquatic life. With the exception of elevated total DDT in two Chena Slough samples, the occurrence and concentration of organochlorine compounds in Chena Slough and Chena River sediment were similar to those in samples collected from Noyes Slough in 2001-02.
Water-Quality Conditions of Chester Creek, Anchorage, Alaska, 1998-2001
Glass, Roy L.; Ourso, Robert T.
2006-01-01
Between October 1998 and September 2001, the U.S. Geological Survey's National Water-Quality Assessment Program evaluated the water-quality conditions of Chester Creek, a stream draining forest and urban settings in Anchorage, Alaska. Data collection included water, streambed sediments, lakebed sediments, and aquatic organisms samples from urban sites along the stream. Urban land use ranged from less than 1 percent of the basin above the furthest upstream site to 46 percent above the most downstream site. Findings suggest that water quality of Chester Creek declines in the downstream direction and as urbanization in the watershed increases. Water samples were collected monthly and during storms at a site near the stream's mouth (Chester Creek at Arctic Boulevard) and analyzed for major ions and nutrients. Water samples collected during water year 1999 were analyzed for selected pesticides and volatile organic compounds. Concentrations of fecal-indicator bacteria were determined monthly during calendar year 2000. During winter, spring, and summer, four water samples were collected at a site upstream of urban development (South Branch of South Fork Chester Creek at Tank Trail) and five from an intermediate site (South Branch of South Fork Chester Creek at Boniface Parkway). Concentrations of calcium, magnesium, sodium, chloride, and sulfate in water increased in the downstream direction. Nitrate concentrations were similar at the three sites and all were less than the drinking-water standard. About one-quarter of the samples from the Arctic Boulevard site had concentrations of phosphorus that exceeded the U.S. Environmental Protection Agency (USEPA) guideline for preventing nuisance plant growth. Water samples collected at the Arctic Boulevard site contained concentrations of the insecticide carbaryl that exceeded the guideline for protecting aquatic life. Every water sample revealed a low concentration of volatile organic compounds, including benzene, toluene, tetrachloroethylene, methyl tert-butyl ether, and chloroform. No water samples contained volatile organic compounds concentrations that exceeded any USEPA drinking-water standard or guideline. Fecal-indicator bacteria concentrations in water from the Arctic Boulevard site commonly exceeded Federal and State guidelines for water-contact recreation. Concentrations of cadmium, copper, lead, and zinc in streambed sediments increased in the downstream direction. Some concentrations of arsenic, chromium, lead, and zinc in sediments were at levels that can adversely affect aquatic organisms. Analysis of sediment chemistry in successive lakebed-sediment layers from Westchester Lagoon near the stream's mouth provided a record of water-quality trends since about 1970. Concentrations of lead have decreased from peak levels in the mid-1970s, most likely because of removing lead from gasoline and lower lead content in other products. However, concen-trations in recently-deposited lakebed sediments are still about 10 times greater than measured in streambed sediments at the upstream Tank Trail site. Zinc concentrations in lakebed sediments also increased in the early 1970s to levels that exceeded guidelines to protect aquatic life and have remained at elevated but variable levels. Pyrene, benz[a]anthracene, and phenanthrene in lakebed sediments also have varied in concentrations and have exceeded protection guidelines for aquatic life since the 1970s. Concentrations of dichloro-diphenyl-trichloroethane, polychlorinated biphenyls (PCBs), or their by-products generally were highest in lakebed sediments deposited in the 1970s. More recent sediments have concentrations that vary widely and do not show distinct temporal trends. Tissue samples of whole slimy sculpin (Cottus cognatus), a non-migratory species of fish, showed con-centrations of trace elements and organic contaminants. Of the constituents analyzed, only selenium concentra-tions showed levels of potential concern for
Thodal, Carl E.
2017-12-28
The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service collected data on water and bottom-sediment chemistry to be used to evaluate a new water rights acquisition program designed to enhance wetland habitat in Stillwater National Wildlife Refuge and in Lahontan Valley, Churchill County, Nevada. The area supports habitat critical to the feeding and resting of migratory birds travelling the Pacific Flyway. Information about how water rights acquisitions may affect the quality of water delivered to the wetlands is needed by stakeholders and Stillwater National Wildlife Refuge managers in order to evaluate the effectiveness of this approach to wetlands management. A network of six sites on waterways that deliver the majority of water to Refuge wetlands was established to monitor the quality of streamflow and bottom sediment. Each site was visited every 4 to 6 weeks and selected water-quality field parameters were measured when flowing water was present. Water samples were collected at varying frequencies and analyzed for major ions, silica, and organic carbon, and for selected species of nitrogen and phosphorus, trace elements, pharmaceuticals, and other trace organic compounds. Bottom-sediment samples were collected for analysis of selected trace elements.Dissolved-solids concentrations exceeded the recommended criterion for protection of aquatic life (500 milligrams per liter) in 33 of 62 filtered water samples. The maximum arsenic criterion (340 micrograms per liter) was exceeded twice and the continuous criterion was exceeded seven times. Criteria protecting aquatic life from continuous exposure to aluminum, cadmium, lead, and mercury (87, 0.72, 2.5, and 0.77 micrograms per liter, respectively) were exceeded only once in filtered samples (27, 40, 32, and 36 samples, respectively). Mercury was the only trace element analyzed in bottom-sediment samples to exceed the published probable effect concentration (1,060 micrograms per kilogram).
Smith, D. Charlie
2016-12-14
Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek, Tar Creek, and Spring River in order to characterize the vertical extent of mine waste in select streams in the TSMD. The largest concentrations of lead, zinc, and cadmium in gravel bar-sediment samples generally were detected in Turkey Creek and Tar Creek and the smallest concentrations were detected in Shoal Creek followed by the Spring River. Gravel bar-sediment samples from Turkey Creek exceeded the CPEC for cadmium (minimum of 70 percent of samples), lead (94 percent), and zinc (99 percent) at a slightly higher frequency than similar samples from Tar Creek (69 percent, 88 percent, and 96 percent, respectively). Gravel bar-sediment samples from Turkey Creek also contained the largest concentrations of cadmium (174 milligrams per kilogram [mg/kg]) and lead (7,520 mg/kg) detected; however, the largest zinc concentration (46,600 mg/kg) was detected in a gravel bar-sediment sample from Tar Creek. In contrast, none of the 65 gravel bar-sediment samples from Shoal Creek contained cadmium above the x-ray fluorescence reporting level of 12 mg/kg, and lead and zinc exceeded the CPEC in only 12 percent and 74 percent of samples, respectively. In most cases, concentrations of lead and zinc above the CPEC or TPEC were present at the maximum depth of boring, which indicated that nearly the entire thickness of sediment in the stream has been contaminated by mine wastes. Approximately 284,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the CPEC and approximately 236,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the TPEC were estimated along 37.6 of the 55.1 miles of Center Creek, Turkey Creek, Shoal Creek, and Tar Creek examined in this study. Mine-waste contamination reported along additional reaches of these streams is beyond the scope of this study. Flood-plain cores collected in the TSMD generally only had exceedances of the CPEC and TPEC for lead and zinc in the top 1 or 2 feet of soil with a few exceptions, such as cores in low areas near the stream or cores in areas disturbed by past mining.
Sediment studies in the Assabet River, central Massachusetts, 2003
Zimmerman, Marc J.; Sorenson, Jason R.
2005-01-01
From its headwaters in Westborough, Massachusetts, to its confluence with the Sudbury River, the 53-kilometer-long Assabet River passes through a series of small towns and mixed land-use areas. Along the way, wastewater-treatment plants release nutrient-rich effluents that contribute to the eutrophic state of this waterway. This condition is most obvious where the river is impounded by a series of dams that have sequestered large amounts of sediment and support rooted and floating macrophytes and epiphytic algae. The water in parts of these impoundments may also have low concentrations of dissolved oxygen, another symptom of eutrophication. All of the impoundments had relatively shallow maximum water depths, which ranged from approximately 2.4 to 3.4 meters, and all had extensive shallow areas. Sediment volumes estimated for the six impoundments ranged from approximately 380 cubic meters in the Aluminum City impoundment to 580,000 cubic meters in the Ben Smith impoundment. The other impoundments had sediment volumes of 120,000 cubic meters (Powdermill), 67,000 cubic meters (Gleasondale), 55,000 cubic meters (Hudson), and 42,000 cubic meters (Allen Street). The principal objective of this study was the determination of sediment volume, extent, and chemistry, in particular, the characterization of toxic inorganic and organic chemicals in the sediments. To determine the bulk-sediment chemical-constituent concentrations, more than one hundred sediment cores were collected in pairs from the six impoundments. One core from each pair was sampled for inorganic constituents and the other for organic constituents. Most of the cores analyzed for inorganics were sectioned to provide information on the vertical distribution of analytes; a subset of the cores analyzed for organics was also sectioned. Approximately 200 samples were analyzed for inorganic constituents and 100 for organics; more than 10 percent were quality-control replicate or blank samples. Maximum bulk-sediment phosphorus concentrations in surface samples from the impoundments increased along a downstream gradient, with the exception of samples from the last impoundment, where the concentrations decreased. In addition, the highest phosphorus concentrations were generally in the surface samples; this finding may prove helpful if surface dredging is selected as a means to control phosphorus release from sediments. There is no known relation, however, between bulk-sediment concentration of phosphorus and the concentrations of phosphorus available to biota. Potentially toxic metals, including arsenic, cadmium, chromium, copper, nickel, lead, and zinc were frequently measured at concentrations that exceeded U.S. Environmental Protection Agency sediment-quality guidelines for the protection of aquatic life and that occasionally exceeded Massachusetts Department of Environmental Protection guidelines governing landfill disposal (reuse). Due to the effects of matrix interference and sample dilution on laboratory analyses, neither pesticides nor volatile organic compounds were detected at any sites. However, samples collected in other studies from nearby streams indicated the possibility that pesticides might have been detected in the impoundments if not for these analytical problems. Although polychlorinated biphenyl concentrations, as individual Aroclors, generally exceeded published U.S. Environmental Protection Agency guideline concentrations for potential effects on aquatic life, the U.S. Environmental Protection Agency guideline concentrations for human contact or the Massachusetts guidelines for landfill reuse were rarely exceeded. Concentrations of polycyclic aromatic hydrocarbons, both individually and total, frequently were greater than guideline concentrations. Concentrations of total extractable petroleum hydrocarbons did not exceed Massachusetts guideline concentrations in any samples. When the sediment analytes from surface samples are considered togethe
Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.
2011-01-01
A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed sediment samples from most nonreference sites exceeded concentrations in samples from reference sites at Fort Gordon. Bed sediments from one of the nonreference sites sampled contained the highest concentrations of copper and lead with elevated levels of zinc and chromium relative to reference sites. The percentage change of major ions, trace elements, and total organic carbon that had been detected at sites previously sampled in May 1998 and current bed sediment sites ranged from -4 to 8 percent with an average percentage change of less than 1 percent. Concentrations of major ions and trace elements in bed sediments exceeded probable effect levels for aquatic life (based on the amphipod Hyalella azteca) established by the U.S. Environmental Protection Agency at 46 and 69 percent of the current and previously sampled locations, respectively. The greatest frequency of exceedances for major ions and trace elements in bed sediments was observed for lead. Concentrations of semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls were detected in bed sediment samples at 94 percent of the sites currently sampled. Detections of these organic compounds were reported with greater frequency in bed sediments at upstream sampling locations, when compared to downstream locations. The greatest number of detections of these compounds was reported for bed sediment samples collected from two creeks above a lake. The percentage change of semivolatile organic compounds detected at previously sampled and current bed sediment sites ranged from -68 to 100 percent with the greatest percentage increase reported for one of the creeks above the lake. Concentrations of semivolatile organic compounds and polychlorinated biphenyls in bed sediments exceeded aquatic life criteria established by the U.S. Environmental Protection Agency at three sites. Contaminant compounds exceeding aquatic life criteria included fluoranthene, phenanthrene, anthracene, benzo(a)anthracene
Selenium in irrigated agricultural areas of the western United States
Nolan, B.T.; Clark, M.L.
1997-01-01
A logistic regression model was developed to predict the likelihood that Se exceeds the USEPA chronic criterion for aquatic life (5 ??g/L) in irrigated agricultural areas of the western USA. Preliminary analysis of explanatory variables used in the model indicated that surface-water Se concentration increased with increasing dissolved solids (DS) concentration and with the presence of Upper Cretaceous, mainly marine sediment. The presence or absence of Cretaceous sediment was the major variable affecting Se concentration in surface-water samples from the National Irrigation Water Quality Program. Median Se concentration was 14 ??g/L in samples from areas underlain by Cretaceous sediments and < 1 ??g/L in samples from areas underlain by non-Cretaceous sediments. Wilcoxon rank sum tests indicated that elevated Se concentrations in samples from areas with Cretaceous sediments, irrigated areas, and from closed lakes and ponds were statistically significant. Spearman correlations indicated that Se was positively correlated with a binary geology variable (0.64) and DS (0.45). Logistic regression models indicated that the concentration of Se in surface water was almost certain to exceed the Environmental Protection Agency aquatic-life chronic criterion of 5 ??g/L when DS was greater than 3000 mg/L in areas with Cretaceous sediments. The 'best' logistic regression model correctly predicted Se exceedances and nonexceedances 84.4% of the time, and model sensitivity was 80.7%. A regional map of Cretaceous sediment showed the location of potential problem areas. The map and logistic regression model are tools that can be used to determine the potential for Se contamination of irrigated agricultural areas in the western USA.
NASA Astrophysics Data System (ADS)
Valder, J.; Kenner, S.; Long, A.
2008-12-01
Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.
Clark, Gregory M.; Maret, Terry R.
1998-01-01
Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.
Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.
2008-01-01
Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth that extends south from the main body of the lake. Two previous reports documented ele-vated polychlorinated biphenyl (PCB) concentrations in surficial sediment in Woods Inlet relative to those in surficial sediment in other parts of Lake Worth. This report presents the results of another USGS study, done in cooperation with the U.S. Air Force, to indicate the degree of PCB contamination of Meandering Road Creek and Woods Inlet and to identify possible sources of PCBs in Meandering Road Creek and Woods Inlet on the basis of suspended, streambed, and lake-bottom sediment samples collected there in 2004 and 2006-07. About 40 to 80 percent of total PCB concentrations (depending on how total PCB concentration is computed) in suspended sediment exceed the threshold effect concentration, a concentration below which adverse effects to benthic biota rarely occur. About 20 percent of total PCB concentrations (computed as sum of three Aroclors) in suspended sediment exceed the probable effect concentration, a concentration above which adverse effects to benthic biota are expected to occur frequently. About 20 to 30 percent of total PCB concentrations in streambed sediment exceed the threshold effect concentration; and about 6 to 20 percent of total PCB concentrations in lake-bottom (Woods Inlet) sediment exceed the threshold effect concentration. No streambed or lake-bottom sediment concentrations exceed the probable effect concentration. The sources of PCBs to Meandering Road Creek and Woods Inlet were investigated by comparing the relative distributions of PCB congeners of suspended sediment to those of streambed and lake-bottom sediment. The sources of PCBs were identified using graphical analysis of normalized concentrations (congener ratios) of 11 congeners. For graphical analysis, the sampling sites were divided into three groups with each group associated with one of the three outfalls sampled: SSO, OF4, and OF5. The variations of normalized PCB congener concentrations from Woods Inlet, from outfalls along Meandering Road Creek, and from streambed sediment sampling sites along Meandering Road Creek generally form similar patterns within sample groups, which is indicative of a common source of PCBs to each group. Overall, the variations in congener ratios indicate that PCBs in surficial lake-bottom sediment of Woods Inlet probably entered Woods Inlet primarily from Meandering Road Creek, and that runoff from AFP4 is a prominent source of PCBs in Meandering Road Creek. Sixteen of the 20 box core sites in Woods Inlet had lower PCB concentrations in the 2006 cores compared to those in the 2003 cores.
Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.
1998-01-01
In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi
McNellis, R.P.; Fallon, J.D.; Lee, K.E.
2001-01-01
Streambed sediments and fish tissues were collected in part of the Upper Mississippi River Basin to assess the presence and distribution of organochlorine compounds (OCs) including PCBs. A total of 13 OCs were detected among 14 of 27 streambed sediment sampling locations. In fish tissues analyzed, 9 OCs were detected among 17 of 24 sites sampled. Eight OCs were detected in both fish and streambed sediment samples, they were: cis-chlordane, o,p'-DDD; p,p'-DDD; p,p'-DDE; p,p'-DDT; hexachlorobenzene; transnonachlor; and PCBs. The most frequently detected OCs were: p,p'-DDE; and p,p'-DDD in streambed sediment and p,p'-DDE and PCBs in fish tissues. No OCs were detected in streambed sediment at agricultural sites; however, the agricultural sites had 17 detections of OCs in fish tissue. Urban streams had concentrations of total DDT and metabolites in streambed sediment that exceed guidelines for classification of sites with high probabilities of adverse effects to aquatic organisms. Total DDT was the only OC within an urban land use that exceeded guidelines for piscivorous wildlife.
Thodal, Carl E.; Tuttle, Peter L.
1996-01-01
A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated in several biological samples collected throughout the Basin, although concentrations in water and bottom sediment were below analytical reporting limits. Sources of arsenic, boron, and mercury in the Basin are uncertain, but ambient levels reported for a variety of sample matrices collected from western Nevada generally exceed ranges cited as natural background levels. Because these potentially toxic constituents exceeded concern levels in areas that do not directly receive irrigation drainage, concentrations measured in samples collected for this study may not necessarily be attributable to agricultural activities. Diversion of river water for irrigation may have greater effects on beneficial uses of water and on fish and wildlife than does drainage from agricultural areas on the Reservation. In 1994, agricultural water consumption precluded dilution of ground-water seepage to the river channel. This resulted in concentrations of potentially toxic solutes that exceeded levels of concern. Diversion of irrigation water also may have facilitated leaching of potentially toxic solutes from irrigated soil on the Reservation, but during this study all water applied for irrigation on the Reservation was either consumed by evapotranspiration or infiltrated to recharge shallow ground water. No irrigation drainage was found on the Reservation during this study. However, because 1994 samples of ground-water seepage to the Walker River channel exceeded at least six Nevada waterquality standards, water-quality problems may result should ground-water levels rise enough to cause ground-water discharge to the agricultural drain on the Reservation. Nevertheless, the potential for adverse effects from irrigation drainage on the Reservation is believed to be small because surface-water rights for the Walker River Indian Reservation amount to only 2 percent of total surface- water rights in the entire Walker River Basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crecelius, E.A.; Fortman, T.J.; Kiesser, S.L.
1989-07-01
Concentrations of Cu, Pb, Zn, PAH's, TBT and FC bacteria were measured in surface sediment, sediment-trap, and water-column samples at two marinas in Puget Sound during summer of 1988. Levels of contaminants inside the marinas were compared with levels outside. TBT had greatest elevation in marina sediments compared to reference sediments. Few of sediments exceeded Puget Sound AET sediment quality values but most did exceed PSDDA screening levels for in-water disposal of dredged sediment. All marinas estimated to contribute less than one percent of total mass loading of Cu, Pb and Zn to main basin of Puget Sound. Contribution ofmore » TBT may be much more significant if antifouling paints are the major source for Puget Sound.« less
Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Jensen, E.G.
1995-01-01
Water, bottom-sediment, and biota samples were collected in 1990-91 to identify water-quality problems associated with irrigation drainage in the Dolores Project area. Concentrations of cadmium, mercury, and selenium in some water samples exceeded aquatic-life criteria. Selenium was associated with irrigaton drainage from the Dolores Project, but other trace elements may be transported into the area in the irrigation water supply. Selenium concentrations exceeded the chronic aquatic-life criterion in water samples from lower McElmo Creek and Navajo Wash, which drain the Montezuma Valley, from newly irrigated areas, and from the Mancos River. The maximum selenium con- centration in water was 88 micrograms per liter from Navajo Wash. Concentrations of herbicides in water were less than concentrations harmful to aquatic life. Selenium concentrations in four bottom-sediment samples exceeded the baseline concentrations for soils in the Western United States. The largest selenium concentrations in biota were in samples from Navajo Wash, from newly irrigated areas north of the Montezuma Valley, and from the Mancos River basin. Selenium concentrations in aquatic-invertebrate samples from the newly irrigated areas exceeded a guideline for food items consumed by fish and wildlife. Selenium concen- trations in whole-body suckers were larger in the San Juan River downstream from the Dolores Project than upstream from the project at Four Corners. Selenium concentrations in fathead minnow samples from two sites were at adverse-effect levels. Mercury concentrations in warm-water game fish in reservoirs in the study area may be of concern to human health. Some concentrations of other trace elements exceeded background concentrations, but the concentrations were not toxicologically significant or the toxicologic significance is not known.
Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui
2013-12-01
Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.
Bothner, Michael H.; Butman, Bradford; Casso, Michael A.
2010-01-01
During the period August 14-23, 2002, the discharge of total suspended solids (TSS) from the Massachusetts Water Resources Authority sewage-treatment plant ranged from 32 to 132 milligrams per liter, causing the monthly average discharge to exceed the limit specified in the National Pollution Discharge Elimination System permit. Time-series monitoring data collected by the U.S. Geological Survey in western Massachusetts Bay were examined to evaluate changes in environmental conditions during and after this exceedance event. The rate of sediment trapping and the concentrations of near-bottom suspended sediment measured near the outfall in western Massachusetts Bay increased during this period. Because similar increases in sediment-trapping rate were observed in the summers of 2003 and 2004, however, the increase in 2002 cannot be definitively attributed to the increased TSS discharge. Concentrations of copper and silver in trapped sediment collected 10 and 20 days following the 2002 TSS event were elevated compared to those in pre-event samples. Maximum concentrations were less than 50 percent of toxicity guidelines. Photographs of surficial bottom sediments obtained before and after the TSS event do not show sediment accumulation on the sea floor. Concentrations of silver, Clostridium perfringens, and clay in surficial bottom sediments sampled 10 weeks after the discharge event at a depositional site 3 kilometers west of the outfall were unchanged from those in samples obtained before the event. Simulation of the TSS event by using a coupled hydrodynamic-wave-sediment-transport model could enhance understanding of these observations and of the effects of the exceedance on the local marine environment.
Giddings, Elis M.P.; Hornberger, Michelle I.; Hadley, Heidi K.
2001-01-01
The spatial distribution of metals in streambed sediment and surface water of Silver Creek, McLeod Creek, Kimball Creek, Spring Creek, and part of the Weber River, near Park City, Utah, was examined. From the mid-1800s through the 1970s, this region was extensively mined for silver and lead ores. Although some remediation has occurred, residual deposits of tailing wastes remain in place along large sections of Silver Creek. These tailings are the most likely source of metals to this system. Bed sediment samples were collected in 1998, 1999, and 2000 and analyzed using two extraction techniques: a total extraction that completely dissolves all forms of metals in minerals and trace elements associated with the sediment; and a weak-acid extraction that extracts the metals and trace elements that are only weakly adsorbed onto the sediment surface. This latter method is used to determine the more biologically relevant fraction of metal complexed onto the sediment. Water samples were collected in March and August 2000 and were analyzed for total and dissolved trace metals.Concentrations of silver, cadmium, copper, lead, mercury, and zinc in the streambed sediment of Silver Creek greatly exceeded background concentrations. These metals also exceeded established aquatic life criteria at most sites. In the Weber River, downstream of the confluence with Silver Creek, concentrations of cadmium, lead, zinc, and total mercury in streambed sediment also exceeded aquatic life guidelines, however, concentrations of metals in streambed sediment of McLeod and Kimball Creeks were lower than Silver Creek. Water-column concentrations of zinc, total mercury, and methylmercury in Silver Creek were high relative to unimpacted sites, and exceeded water quality criteria for the protection of aquatic organisms. Qualitative measurements of the macroinvertebrate community in Silver Creek were compared to the spatial distribution of metals in streambed sediment. The data indicate that impairment related to metal concentration exists in Silver Creek.
Regaldo, Luciana; Gutierrez, María F; Reno, Ulises; Fernández, Viviana; Gervasio, Susana; Repetti, María R; Gagneten, Ana M
2018-03-01
The present study focuses on the evaluation of metal (chromium, copper, and lead), arsenic, and pesticide (atrazine and endosulfan) contamination in freshwater streams of one of the most important agricultural and industrial areas of central-eastern Argentina, which has not been reported earlier. The environmental fate of inorganic microcontaminants and pesticides was assessed. Samples were collected monthly for a year. Pesticide concentrations were measured in water; metal and arsenic concentrations were measured in water and sediments, and physicochemical variables were analyzed. In most cases, metals and arsenic in water exceeded the established guideline levels for the protection of aquatic biota: 98 and 56.25% of the samples showed higher levels of Cr and Pb, while 81.25 and 85% of the samples presented higher values for Cu and As, respectively. Cr, Pb, Cu, and As exceeded 181.5 times, 41.6 times, 57.5 times, and 12.9 times, respectively, the guideline level values. In sediment samples, permitted levels were also surpassed by 40% for Pb, 15% for As, 4% for Cu, and 2% for Cr. Geoaccumulation Index (Igeo) demonstrated that most of the sediment samples were highly polluted by Cr and Cu and very seriously polluted by Pb, which indicates progressive deterioration of the sediment quality. Atrazine never exceeded them, but 27% of the 48 water samples contained total endosulfan that surpassed the guidelines. The findings of this study suggest risk to the freshwater biota over prolong periods and possible risk to humans if such type of contaminated water is employed for recreation or human use. Improper disposal of industrial effluents and agricultural runoffs need to be controlled, and proper treatment should be done before disposal to avoid further deterioration of the aquifers of this area.
Do antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic environment?
Langford, Katherine H; Øxnevad, Sigurd; Schøyen, Merete; Thomas, Kevin V
2014-07-15
Aquaculture production is an important industry in many countries and there has been a growth in the use of medicines to ensure the health and cost effectiveness of the industry. This study focused on the inputs of sea lice medication to the marine environment. Diflubenzuron, teflubenzuron, emamectin benzoate, cypermethrin, and deltamethrin were measured in water, sediment, and biota samples in the vicinity of five aquaculture locations along the Norwegian coast. Deltamethrin and cypermethrin were not detected above the limits of detection in any samples. Diflubenzuron, teflubenzuron, and emamectin benzoate were detected, and the data was compared the UK Environmental Quality Standards. The concentrations of emamectin benzoate detected in sediments exceed the environmental quality standard (EQS) on 5 occasions in this study. The EQS for teflubenzuron in sediment was exceeded in 67% of the samples and exceeded for diflubenzuron in 40% of the water samples collected. A crude assessment of the concentrations detected in the shrimp collected from one location and the levels at which chronic effects are seen in shrimp would suggest that there is a potential risk to shrimp. It would also be reasonable to extrapolate this to any species that undergoes moulting during its life cycle.
NASA Astrophysics Data System (ADS)
Youssef, Mohamed; El-Sorogy, Abdelbaset; Al-Kahtany, Khaled
2016-12-01
In order to assess the distribution of mercury along the Tarut coast, Arabian Gulf, Thirty eight (38) sediment samples, twenty six (26) seawater samples, and forty (40) Mollusca specimens were collected from the Tarut coast. The concentrations of Mercury in the sediments of the studied area (average = 0.55 μg/g) are generally high comparing to the reported values from the Gulf of Oman, Red Sea, and the Gulf of Finland. The concentrations of Hg exceeded the wet threshold safety values (median effect concentration (MEC), and probable effect concentration (PEC) indicating possible Hg contamination. According to the Swedish Environmental Protection Agency (SEPA), thirty four (34) samples occur in class 4 and four (4) samples occur in class 5, which means that the sediments of the Tarut Island are largely contaminated with Hg. Enrichment factor (EF) results (average = 1.76) suggested that, the coastal sediments of the Tarut Island are considered to entirely originate from the crustal materials or natural processes. The studied sediments show lower values (Igeo<0) indicating that the sediments are unpolluted. These sediments according to contamination factor (Cf) are considered contaminated with Hg (1 < CF < 3). The Hg concentration in water samples (average = 30 μg/g) considered high. Comparison with Hg contents in coastal sediments, seawaters and molluscs in the Red Sea, the Arabian Gulf suggested that the studied samples have higher concentrations of Hg. The suggested natural sources of Hg in the study area are the weathering and decomposition of neighboring deserts. The anthropogenic sources are the land reclamation, petrochemical industries, boat exhaust emissions, oil leakage, desalination plants and sewage effluents exceeded in the study area and in Al Jubail industrial city to the north.
Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.
2016-12-01
Sediment samples and samples for water-toxicity testing were collected during 2014 from several streams in San Antonio, Texas, known locally as the Westside Creeks (Alazán, Apache, Martínez, and San Pedro Creeks) and from the San Antonio River. Samples were collected during base flow and after periods of stormwater runoff (poststorm conditions) to determine baseline sediment- and water-quality conditions. Streambed-sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, polychlorinated biphenyls (PCBs), brominated flame retardants, and polycyclic aromatic hydrocarbons (PAHs). Potential risks of contaminants in sediment were evaluated by comparing concentrations of contaminants in sediment to two effects-based sediment-quality guidelines: (1) a lower level, called the threshold effect concentration, below which, harmful effects to benthic biota are not expected, and (2) a higher level, the probable effect concentration (PEC), above which harmful effects are expected to occur frequently. Samples for water-toxicity testing were collected from each stream to provide information about fish toxicity in the study area. The trace metal lead was detected at potentially toxic concentrations greater than the PEC in both the base-flow and poststorm samples collected at two sites sampled on San Pedro Creek. The PECs for the pesticides dichlorodiphenyldichloroethane, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, and chlordane were exceeded in some of the samples at the same two sites on San Pedro Creek. Brominated flame retardants and polybrominated diphenyl ether (PBDE) 85, 153, and 154 were found in all streambed-sediment samples. Federal Environmental Quality Guidelines established by Environment Canada for PBDE 99 and PBDE 100 were exceeded in all samples in which PBDE 99 was detected and in a majority of the samples in which PBDE 100 was detected; the greatest concentrations occurred in samples collected at the same two sites on San Pedro Creek where the samples containing elevated lead and pesticide concentrations were collected. All concentrations of total PCBs (computed as the sum of the 18 reported PCB congeners) in the individual streambed-sediment samples were less than the threshold effect concentration, but the concentrations were elevated in the two sites on San Pedro Creek compared to concentrations at other sites. At one site on Apache Creek, 6 of the individual PAHs measured in the sample collected during base-flow conditions exceeded the PECs and 8 of the 9 PECs were exceeded in the sample collected during poststorm conditions. The total PAH concentration in the sample collected at the site during poststorm conditions was 3.3 times greater than the PEC developed for total PAHs. Average PAH profiles computed for base-flow samples and poststorm samples most closely resemble the parking lot coal-tar sealcoat dust PAH source profile, defined as the average PAH concentrations in dust swept from parking lots in six cities in the United States that were sealed with a black, viscous liquid containing coal-tar pitch. Six of ten water samples collected during base-flow conditions caused reductions in Pimephales promelas (fathead minnow) survival and were considered to be toxic.
Denton, Gary R W; Emborski, Carmen A; Habana, Nathan C; Starmer, John A
2014-04-15
Heavy metals were examined in sediments from the southern half of Saipan Lagoon. These waters provided tactical access for US troops during WWII and were heavily shelled at the time. Mercury profiles in sediments were, to some extent, reflective of this event. Samples from the southern end of the lagoon, where an old post-war dumpsite once existed, were found to be substantially enriched with Pb, Cu and Zn. Further north, the lagoon was primarily impacted by urban runoff. Metal enrichment in sediments from this region was generally highest at storm drain outlets and attenuated seawards. Moderate enrichment was rarely exceeded for any element other than Hg beyond the 50 m mark. Sediment quality guidelines used to flag potentially adverse ecological health effects revealed no PEL exceedances. TEL exceedances for Pb and Cu were identified in sediments near the former dumpsite. The public health implications of the data are briefly addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Investigation into Heavy Metal Contamination and Mobilization in the Lower Rouge River, Michigan
NASA Astrophysics Data System (ADS)
Shihadeh, M.; Forrester, J.; Napieralski, J. A.
2010-12-01
Similar to many densely populated watersheds in the Great Lakes Basin, the Rouge River in Michigan drains a heavily urbanized watershed, which, over time, has accumulated a substantial amount of contamination due to decades of manufacturing and refining industries. Statistically significant levels of heavy metals have been found in the bed sediment of the Rouge; however, little is known about the mobilization of these contaminated bed sediments. The goal of this study was to ascertain the extent to which these potentially contaminated sediments are mobilized and transported downstream. Suspended sediment samples were collected at four sites along the lower Rouge River using composite depth integrated sediment samples three times per week, resulting in a total of twenty samples from each site. Turbidity was measured simultaneously using a YSI datalogger at all sampling locations. Sediment was also extracted from floodplain soil pits and silted vegetation, as well as river bed sediment cores along stream channel cross-sections. Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Zn) were analyzed using ICP-MS and compared against both background characteristics for Michigan soils and EPA Hazardous Criteria Limits. As expected, a positive correlation exists between turbidity and heavy metal concentrations. Even in the sampling sites furthest upstream, heavy metal concentrations exceeded background soil characteristics, with a few also exceeding hazardous criteria limits. The heavy metal concentrations found in the Lower Rouge affirm the elevated pollution classification of the river, depict the overall influence of industrialization on stream health, and verify that contaminated sediments are being deposited in aquatic and floodplain environments during variable flow or high discharge events. Results from this study emphasize the need to remediate bed sediments in the Rouge and suggest that there may be significant bioaccumulation potential for organisms inhabiting the floodplain corridor.
Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000
Frenzel, Steven A.
2002-01-01
Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.
NASA Astrophysics Data System (ADS)
Stepanova, N. Yu; Nikitin, O. V.; Latypova, V. Z.; Vybornova, I. B.; Galieva, G. S.; Okunev, R. V.
2018-01-01
The recovery of 1-, 4-, 6,-, and 8-d-old ostracods (Heterocypris incongruens) from sediments with different texture has been evaluated. The recovery of ostracods at all ages has been in agreement with the acceptability criterion of 80% of survival for sediment tests. The recovery of ostracods has turned out to be equal to or more than 80% for sand and silt sediments, respectively. The comparison of survival rates between ostracods and amphipods has shown good convergence in the tests of heavily contaminated sediments (R2=0.75, p<0.05). The sediment quality criteria (TEC) have been exceeded mostly for total petroleum hydrocarbons (100% samples), Cr (100%), Ni (87%), Cu (87%), Pb (47%), and Cd (53%). The content of acid volatile sulfides (AVS) has been significantly higher than that of simultaneously extracted metals (SEM). The obtained results have indicated that, metals (Cu, Zn, Cd, Ni, and Pb) are non-bioavailable. Only one sample has exceeded TEC for PAHs (dibenz[a,h]anthracene). It was observed that, no significant correlation between the effect of toxicity and the chemical content.
Hoffman, Emma; Lyons, James; Boxall, James; Robertson, Cam; Lake, Craig B; Walker, Tony R
2017-06-01
A bleached kraft pulp mill in Nova Scotia has discharged effluent wastewater into Boat Harbour, a former tidal estuary within Pictou Landing First Nation since 1967. Fifty years of effluent discharge into Boat Harbour has created >170,000 m 3 of unconsolidated sediment, impacted by inorganic and organic contaminants, including metal[loid]s, polycyclic aromatic hydrocarbons (PAHs), dioxins, and furans. This study aimed to characterize metal(loid)-impacted sediments to inform decisions for a $89 million CAD sediment remediation program. The remediation goals are to return this impacted aquatic site to pre-mill tidal conditions. To understand historical sediment characteristics, spatiotemporal variation covering ~quarter century, of metal(loid) sediment concentrations across 103 Boat Harbour samples from 81 stations and four reference locations, were assessed by reviewing secondary data from 1992 to 2015. Metal(loid) sediment concentrations were compared to current Canadian freshwater and marine sediment quality guidelines (SQGs). Seven metal(loid)s, As, Cd, Cr, Cu, Pb, Hg, and Zn, exceeded low effect freshwater and marine SQGs; six, As, Cd, Cr, Pb, Hg, and Zn, exceeded severe effect freshwater SQGs; and four, Cd, Cu, Hg, and Zn, exceeded severe effect marine SQGs. Metal(loid) concentrations varied widely across three distinct temporal periods. Significantly higher Cd, Cu, Pb, Hg, and Zn concentrations were measured between 1998 and 2000, compared to earlier, 1992-1996 and more recent 2003-2015 data. Most samples, 69%, were shallow (0-15 cm), leaving deeper horizons under-characterized. Geographic information system (GIS) techniques also revealed inadequate spatial coverage, presenting challenges for remedy decisions regarding vertical and horizontal delineation of contaminants. Review of historical monitoring data revealed that gaps still exist in our understanding of sediment characteristics in Boat Harbour, including spatial, vertical and horizontal, and temporal variation of sediment contamination. To help return Boat Harbour to a tidal estuary, more detailed sampling is required to better characterize these sediments and to establish appropriate reference (background) concentrations to help develop cost-effective remediation approaches for this decades-old problem.
Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike
2010-06-15
Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.
An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI.
Hartwell, S Ian; Apeti, Dennis A; Mason, Andrew L; Pait, Anthony S
2016-11-01
Tributyltin (TBT) concentrations near a marina complex in Benner Bay on St. Thomas, US Virgin Islands, were elevated relative to other areas in a larger study of the southeastern shore of the island. At the request of the USVI Coastal Zone Management Program, sediment cores and surface sediment samples were collected to better define the extent and history of TBT deposition in the vicinity of Benner Bay. The sediment cores were sectioned into 2-cm intervals and dated with 210 Pb and 137 Cs. The core sections and the surface samples were analyzed for butyltins and 16 elements. Deposition rates varied from 0.07-5.0 mm/year, and were highest in the marina complex. Core ages ranged from 54 to 200 years. The bottoms of the cores contained shell hash, but the top layers all consisted of much finer material. Surface concentrations of TBT exceeded 2000 ng Sn/g (dry weight) at two locations. At a depth of 8 cm TBT exceeded 8800 ng Sn/g in the marina complex sediment. Based on the ratio of tributyltin to total butyltins, it appears that the marina sediments are the source of contamination of the surrounding area. There is evidence that vessels from neighboring islands may also be a source of fresh TBT. Copper concentrations increase over time up to the present. Gradients of virtually all metals and metalloids extended away from the marina complex. NOAA sediment quality guidelines were exceeded for As, Pb, Cu, Zn, and Hg.
Ingersoll, C.G.; MacDonald, D.D.; Brumbaugh, W.G.; Johnson, B. Thomas; Kemble, N.E.; Kunz, J.L.; May, T.W.; Wang, N.; Smith, J.R.; Sparks, D.W.; Ireland, D.S.
2002-01-01
The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox® Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3.4 (based on concentrations of metals, PAHs, and PCBs) was exceeded in 33% of the sediment samples and a mean quotient of 0.63 was exceeded in 70% of the thirty sediment samples from the assessment area. A 50% incidence of toxicity has been previously reported in a database for sediment tests with H. azteca at a mean quotient of 3.4 in 10-day exposures and at a mean quotient of 0.63 in 28-day exposures. Among the Indiana Harbor samples, most of the samples with a mean PEC quotient above 0.63 (i.e., 15 of 21; 71%) and above 3.4 (i.e., 10 of 10; 100%) were toxic to amphipods. Results of this study and previous studies demonstrate that sediments from this assessment area are among the most contaminated and toxic that have ever been reported.
Oscillatory erosion and transport flume with superimposed unidirectional flow
Jepsen, Richard A.; Roberts, Jesse D.
2004-01-20
A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.
Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides
Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.
2016-01-01
Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics of sediment, and uncertainty in TEB values. Additional evaluations of benchmarks in relation to sediment chemistry and toxicity are ongoing.
Alonso Castillo, M L; Sánchez Trujillo, I; Vereda Alonso, E; García de Torres, A; Cano Pavón, J M
2013-11-15
Concentrations of heavy metals were measured in sediment and water from Málaga Bay (South Spain). In the later twentieth century, cities such as Málaga, have suffered the impact of mass summer tourism. The ancient industrial activities, and the actual urbanization and coastal development, recreation and tourism, wastewaters treatment facilities, have been sources of marine pollution. In sediments, Ni was the most disturbing metal because Ni concentrations exceeded the effects range low (ERL), concentration at which toxicity could start to be observed in 85% of the samples analyzed. The metal bioavailability decreased in the order: Cd>Ni>Pb>Cu>Cr. In the sea water samples, Cd and Pb were the most disturbing metals because they exceeded the continuous criteria concentration (CCC) of US EPA in a 22.5% and 10.0% of the samples, respectively. Statistical analyses (ANOVA, PCA, CA) were performed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.
1996-01-01
Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.
Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne
2008-01-01
The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of aluminum, cadmium, chromium, nickel, selenium, and zinc exceeded the Texas Surface Water Quality Standards criteria for aquatic life-use protection or human health. The only trace elements detected in the water samples at concentrations exceeding the Texas Surface Water Quality Standards criterion for human health (fish consumption use) was lead at one site and mercury at 10 of 12 sites. Relatively high mercury concentrations distributed throughout the area might indicate sources of mercury in addition to abandoned mining areas. Streambed-sediment samples were collected from 12 sites and analyzed for 44 major and trace elements. In general, the trace elements detected in streambed-sediment samples were low in concentration, interpreted as consistent with background concentrations. Concentrations at two sites, however, were elevated compared to Texas Commission on Environmental Quality criteria. Concentrations of antimony, arsenic, cadmium, lead, silver, and zinc in the sample from San Carlos Creek downstream from La Esperanza (San Carlos) Mine exceeded the Texas Commission on Environmental Quality screening levels for sediment. The sample from Rough Run Draw, downstream from the Study Butte Mine, also showed elevated concentrations of arsenic, cadmium, and lead, but these concentrations were much lower than those in the San Carlos Creek sample and did not exceed screening levels. Elevated concentrations of multiple trace elements in streambed-sediment samples from San Carlos Creek and Rough Run Draw indicate that San Carlos Creek, and probably Rough Run Draw, have been adversely affected by mining activities. Fourteen mine-tailing samples from 11 mines were analyzed for 25 major and trace elements. All trace elements except selenium and thallium were detected in one or more samples. The highest lead concentrations were detected in tailings samples from the Boquillas, Puerto Rico, La Esperanza (San Carlos), and Tres Marias Mines, as might be expected because the tailings ar
Maret, Terry R.; Skinner, K.D.
2000-01-01
Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.
Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.
2012-01-01
The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.
Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William
1997-01-01
Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con
Gray, John E.; Eppinger, Robert G.
2012-01-01
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Bortleson, Gilbert Carl; Cox, S.E.; Munn, M.D.; Schumaker, R.J.; Block, E.K.
2001-01-01
Elevated concentrations of trace elements were found in bed sediment of Lake Roosevelt and the Columbia River, its principal source of inflow. Trace-element concentrations in whole water samples did not exceed criteria for freshwater organisms. Bed sediments of Lake Roosevelt were analyzed for organic compounds associated with wood-pulp waste. Dioxins and furans were found in suspended sediment and water of the Columbia River. Abundance and diversity of benthic invertebrate communities were analyzed.
Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur
2013-01-01
Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (<500 km) exhibit broad similarity ( stream gauge samples; CRN samples). Nearly two-thirds of CRN-derived sediment loads exceed historic loads measured at the same locations (). Excessive longer-term sediment loads likely are a result of longer-term recurrence of large-magnitude sediment-transport events. Nearly 80% of sediment loads measured at approximately the same locations exhibit stream gauge loads that are within an order of magnitude of CRN loads, likely as a result of the buffering capacity of large flood plains. Catchments in which space for deposition exceeds sediment supply have greater buffering capacity. Superior locations in which to evaluate anthropogenic influences on landscape evolution might be buffered catchments, in which temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.
Arsenic contamination in New Orleans soil: temporal changes associated with flooding.
Rotkin-Ellman, Miriam; Solomon, Gina; Gonzales, Christopher R; Agwaramgbo, Lovell; Mielke, Howard W
2010-01-01
The flooding of New Orleans in late August and September 2005 caused widespread sediment deposition in the flooded areas of the city. Post-flood sampling by US EPA revealed that 37% of sediment samples exceeded Louisiana corrective screening guidelines for arsenic of 12mg/kg, but there was debate over whether this contamination was pre-existing, as almost no pre-flood soil sampling for arsenic had been done in New Orleans. In this study, archived soil samples collected in 1998-1999 were location-matched with 70 residential sites in New Orleans where post-flood arsenic concentrations were elevated. Those same locations were sampled again during the recovery period 18 months later. During the recovery period, sampling for arsenic was also done for the first time at school sites and playgrounds within the flooded zone. Every sample of sediment taken 1-10 months after the flood exceeded the arsenic concentration found in the matched pre-flood soils. The average difference between the two sampling periods was 19.67mg/kg (95% CI 16.63-22.71) with a range of 3.60-74.61mg/kg. At virtually all of these sites (97%), arsenic concentrations decreased substantially by 18 months into the recovery period when the average concentration of matched samples was 3.26mg/kg (95% CI 1.86-4.66). However, 21 (30%) of the samples taken during the recovery period still had higher concentrations of arsenic than the matched sample taken prior to the flooding. In addition, 33% of samples from schoolyards and 13% of samples from playgrounds had elevated arsenic concentrations above the screening guidelines during the recovery period. These findings suggest that the flooding resulted in the deposition of arsenic-contaminated sediments. Diminution of the quantity of sediment at many locations has significantly reduced overall soil arsenic concentrations, but some locations remain of concern for potential long-term soil contamination.
Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Thompson, A.L.; Formea, J.J.; Wickman, D.W.
1993-01-01
During 1988-89, water, bottom sediment, biota, soil, and plants were sampled for a reconnaissance investigation of the Pine River Project area in southwestern Colorado. Irrigation drainage does not seem to be a major source of dissolved solids in streams. Concentrations of manganese, mercury, and selenium exceeded drinking-water regulations in some streams. The maximum selenium concentration in a stream sample was 94 microg/L in Rock Creek. Irrigation drainage and natural groundwater are sources of some trace elements to streams. Water from a well in a nonirrigated area had 4,800 microg/L of selenium. Selenium concentrations in soil on the Oxford Tract were greater in areas previously or presently irrigated than in areas never irrigated. Some forage plants on the Oxford Tract had large selenium concentrations, including 180 mg/km in alfalfa. Most fish samples had selenium concentrations greater than the National Contaminant Biomonitoring Program 85th percentile. Selenium concentrations in aquatic plants, aquatic inverte- brates, and small mammals may be of concern to fish and wildlife because of possible food-chain bioconcentration. Selenium concentrations in bird samples indicate selenium contamination of biota on the Oxford Tract. Mallard breasts had selenium concentrations exceeding a guideline for human consumption. The maximum selenium concentration in biota was 50 microg/g dry weight in a bird liver from the Oxford Tract. In some fish samples, arsenic, cadmium, copper, and zinc exceeded background concentrations, but concentrations were not toxic. Mercury concentrations in 16 fish samples exceeded the background concentration. Ten mercury concentrations in fish exceeded a guideline for mercury in food for consumption by pregnant women.
Adikaram, Madurya; Pitawala, Amarasooriya; Ishiga, Hiroaki; Jayawardana, Daham
2017-01-01
The present paper is the first documentation of distribution and contamination status of environmentally important elements of superficial sediments in the Batticaloa lagoon that is connected to the largest bay of the world. Surface sediment samples were collected from 34 sites covering all over the lagoon. Concentrations of elements such as As, Cr, Cu, Fe, Nb, Ni, Pb, Sc, Sr, Th, V, Y, Zn, and Zr were measured by X-ray florescence analysis. Geochemically, the lagoon has three different zones that were influenced mainly by fresh water sources, marine fronts, and intermediate mixing zones. The marine sediment quality standards indicate that Zr and Th values are exceeded throughout the lagoon. According to the freshwater sediment quality standards, Cr levels of all sampling sites exceed the threshold effect level (TEL) and 17 % of them are even above the probable effect level (PEL). Most sampling sites of the channel discharging areas show minor enrichment of Cu, Ni, and Zn with respect to the TEL. Contamination indices show that the lagoon mouth area is enriched with As. Statistical analysis implies that discharges from agricultural channel and marine fluxes of the lagoon effects on the spatial distribution of measured elements. Further research is required to understand the rate of contamination in the studied marine system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, W.H.; Mullins, W.H.
1990-01-01
The report presents results of a reconnaissance investigation to determine whether potentially toxic concentrations of selected trace elements or organochlorine compounds associated with irrigation drainage exist in surface and ground water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds in the American Falls Reservoir area. American Falls Reservoir was selected for investigation in part because several previous investigations of fish in the reservoir indicated that mercury and cadmium concentrations exceeded human health standards and periodic botulism-related die-offs of waterbirds have been known to occur. Also, rocks south and southeast of the reservoir contain naturally occurring selenium concentrations many timesmore » greater than those in the continental crust. Samples of water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds were collected from nine sites in the American Falls Reservoir area. The samples were analyzed for selected inorganic and organic constituents to determine whether concentrations exceeded known standards or criteria.« less
Environmental contamination associated with a marine landfill ('seafill') beside a coral reef.
Jones, Ross
2010-11-01
In Bermuda, bulk waste such as scrap metal, cars, etc., and blocks of cement-stabilized incinerator ash (produced from burning garbage) are disposed of in a foreshore reclamation site, i.e., a seafill. Chemical analyses show that seawater leaching out of the dump regularly exceeds water quality guidelines for Zn and Cu, and that the surrounding sediments are enriched in multiple contaminant classes (metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, dioxins and furans, polychlorinated biphenyls and an organochlorine pesticide), i.e., there is a halo of contamination. When compared against biological effects-based sediment quality guidelines (SQGs), numerous sediment samples exceeded the low-range values (where biological effects become possible), and for Hg and Zn exceeded the mid-range value (where they become probable). A few metres away from the edge of the 25 acre dump lies a small coral patch reef, proposed here as most contaminated coral reef in the world. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mercury in Fish, Bed Sediment, and Water from Streams Across the United States, 1998-2005
Scudder, Barbara C.; Chasar, Lia C.; Wentz, Dennis A.; Bauch, Nancy J.; Brigham, Mark E.; Moran, Patrick W.; Krabbenhoft, David P.
2009-01-01
Mercury (Hg) was examined in top-predator fish, bed sediment, and water from streams that spanned regional and national gradients of Hg source strength and other factors thought to influence methylmercury (MeHg) bioaccumulation. Sampled settings include stream basins that were agricultural, urbanized, undeveloped (forested, grassland, shrubland, and wetland land cover), and mined (for gold and Hg). Each site was sampled one time during seasonal low flow. Predator fish were targeted for collection, and composited samples of fish (primarily skin-off fillets) were analyzed for total Hg (THg), as most of the Hg found in fish tissue (95-99 percent) is MeHg. Samples of bed sediment and stream water were analyzed for THg, MeHg, and characteristics thought to affect Hg methylation, such as loss-on-ignition (LOI, a measure of organic matter content) and acid-volatile sulfide in bed sediment, and pH, dissolved organic carbon (DOC), and dissolved sulfate in water. Fish-Hg concentrations at 27 percent of sampled sites exceeded the U.S. Environmental Protection Agency human-health criterion of 0.3 micrograms per gram wet weight. Exceedances were geographically widespread, although the study design targeted specific sites and fish species and sizes, so results do not represent a true nationwide percentage of exceedances. The highest THg concentrations in fish were from blackwater coastal-plain streams draining forests or wetlands in the eastern and southeastern United States, as well as from streams draining gold- or Hg-mined basins in the western United States (1.80 and 1.95 micrograms THg per gram wet weight, respectively). For unmined basins, length-normalized Hg concentrations in largemouth bass were significantly higher in fish from predominantly undeveloped or mixed-land-use basins compared to urban basins. Hg concentrations in largemouth bass from unmined basins were correlated positively with basin percentages of evergreen forest and also woody wetland, especially with increasing proximity of these two land-cover types to the sampling site; this underscores the greater likelihood for Hg bioaccumulation to occur in these types of settings. Increasing concentrations of MeHg in unfiltered stream water, and of bed-sediment MeHg normalized by LOI, and decreasing pH and dissolved sulfate were also important in explaining increasing Hg concentrations in largemouth bass. MeHg concentrations in bed sediment correlated positively with THg, LOI, and acid-volatile sulfide. Concentrations of MeHg in water correlated positively with DOC, ultraviolet absorbance, and THg in water, the percentage of MeHg in bed sediment, and the percentage of wetland in the basin.
Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S
2018-01-15
Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.
2001-01-01
Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.
Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.
2014-01-01
Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations at depth for Bi, Cd, Cu, Hg, In, Pb, Sb, Sn, Te, and Zn. Radioisotope dating indicates that the elevated metal and trace element concentrations are associated with sediments deposited before 1963. Arsenic concentration was greater in cattail roots compared with surrounding sediment at Tavasci Marsh. Concentrations of As, Ni, and Se from yellow bullhead catfish (Ameiurus natalis) in Tavasci Marsh exceeded the 75th percentile of several other regional studies. Mercury concentration in dragonfly larvae and fish from Tavasci Marsh were similar to or greater than in Tavasci Marsh sediment. Future work includes a biologic risk assessment utilizing the data collected in this study to provide the monument management with additional information for their restoration plan.
Skrobialowski, Stanley C.
2002-01-01
Bed-sediment samples from 21 selected streams in southern Louisiana were collected and analyzed for the presence of trace elements and organic compounds during 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Concentrations of selected trace elements and organic compounds were compared on the basis of sediment-quality criteria, land use, and grain size; concentrations of selected trace elements also were compared with concentrations from previous studies. Concentrations of seven selected trace elements and 21 organic compounds were evaluated with sediment-quality criteria established by the Canadian Council of Ministers of the Environment. Concentrations of selected trace elements and organic compounds were highest at sites draining urban and agricultural areas and may result from cumulative effects of relatively high percentages of fine-grained material, iron, and organic material. Concentrations exceeding sediment-quality criteria for the protection of aquatic life occurred most frequently at Bayou Grosse Tete at Rosedale and Bayou Lafourche below weir at Thibodaux. Exceedance of Interim Sediment Quality Guidelines occurred most frequently for arsenic and chromium. Trace-element concentrations in fine-grained samples were compared with concentrations in bulk samples and were determined to be significantly different, and concentrations were generally higher in finegrained sediment. Shapiro-Wilk, paired t-test, and Wilcoxon rank sum statistical procedures, with an alpha of 0.05, were used to compare concentrations of 21 trace elements, total organic carbon, and total carbon in finegrained and bulk sediment samples for 19 sites. Significant differences were determined between fine-grained and bulk sediment samples for aluminum, barium, beryllium, chromium, copper, iron, lithium, nickel, phosphorus, selenium, titanium, and zinc concentrations. Of 133 paired concentrations, 69 percent were greater in fine-grained samples, and 23 percent were greater in bulk samples. Comparisons with data from previous studies indicate increases by more than 20 percent in concentrations of antimony at Bayou Lafourche below weir at Thibodaux, arsenic and chromium at Tickfaw River at Liverpool, lead at Bayou Lafourche below weir at Thibodaux, and zinc at Bayou Lafourche below weir at Thibodaux and Vermilion River at Perry. Historic comparisons also indicate decreases by more than 20 percent in concentrations of chromium at Bayou des Cannes near Eunice and mercury at Mermentau River at Mermentau.
Gino Graziano; Paul Twardock; Rusty Myers; Roman Dial; David Scheel
2007-01-01
Human waste disposal is a health concern in many backcountry areas. This study measured Clostridium perfringens in beach sediments of Prince William Sound, Alaska, to detect fecal contamination resulting from intertidal disposal. Analysis involved holding times that exceeded eight hours. In repeatedly sampled stored sediments, C. perfringens...
Sediment quality in the north coastal basin of Massachusetts, 2003
Breault, Robert F.; Ashman, Mary S.; Heath, Douglas
2004-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.
Sullivan, Daniel J.; Stinson, Troy W.; Crawford, J. Kent; Schmidt, Arthur R.; Colman, John A.
1998-01-01
The distribution of pesticides and other synthetic organic compounds in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin was examined from 1987 through 1990 as part of the pilot National Water-Quality Assesssment Program conducted by the U.S. Geological Survey. Historical data for water and sediment collected from 1975 through 1986 were similar to data collected from 1987 through 1990. Some compounds were detected in concentrations that exceed U.S. Environmental Protection Agency water-quality criteria. Results from pesticide sampling at four stations in 1988 and 1989 identified several agricultural pesticides that were detected more frequently and at higher concentrations in urban areas than in agricultural areas. Results from herbicide sampling at 17 stations in the Kankakee and Iroquois River Basins in 1990 indicated that atrazine concentrations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water during runoff periods. Results from sampling for volatile and semivolatile organic compounds in water indicate that, with one exception, all stations at which more than one compound was detected were within 2 miles downstream from the nearest point source. Detections at two stations in the Chicago urban area accounted for 37 percent of the total number of detections. Concentrations of tetrachloroethylene, trichloroethylene, and 1,2-dichlorethane from stations in the Des Plaines River Basin exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water in one and two samples from the two stations in the Chicago area. Phenols and pentachlorophenols were detected most frequently in the Des Plaines River Basin where point-source discharges were common. Phenol concentrations were significantly different among the Des Plaines, Kankakee, and Fox River Basins. Phenols and pentachlorophenols never exceeded the general use and secondary contact standards. Results from a 1989 synoptic survey of semivolatile organic compounds in sediment indicate that these compounds were detected most frequently at sites in the Chicago urban area. Of the 17 stations at which 10 or more compounds were detected, 14 were located in the Des Plaines River subbasin, and 1 was on the Illinois River mainstem. As was the case with organic compounds in water, each of these sites was located within 2 miles downstream from point sources. Biota samples were collected and analyzed for organochlorines and polynuclear aromatic hydrocarbons in 1989 and 1990. The most commonly detected compound in both years was p,p'-DDE. National Academy of Science recommendations for chlordane and dieldrin for protection of predators were exceeded in 19 and 10 samples, respectively, when the 1989 and 1990 data were combined. In the nine fish-fillet samples collected in 1989, concentrations exceeded U.S. Environmental Protection Agency fish-tissue criteria in nine fillets for p,p'-DDE and five fillets for dieldrin.
Results of the basewide monitoring program at Wright-Patterson Air Force Base, Ohio, 1993-1994
Schalk, C.W.; Cunningham, W.L.
1996-01-01
Geologic and hydrologic data were collected at Wright-Patterson Air Force Base (WPAFB), Ohio, as part of Basewide Monitoring Program (BMP) that began in 1992. The BMP was designed as a long-term project to character ground-water and surface-water quality (including streambed sediments), describe water-quality changes as water enters, flows across, and exits the Base, and investigate the effects of activities at WPAFB on regional water quality. Ground water, surface ware, and streambed sediment were sampled in four rounds between August 1993 and September 1994 to provide the analytical data needed to address the objectives of the BMP. Surface-water-sampling rounds were designed to include most of the seasonal hydrologic conditions encountered in southwestern Ohio, including baseflow conditions and spring runoff. Ground-water-sampling rounds were scheduled for times of recession and recharfe. Ground-water data were used to construct water-table, potentiometric, and vertical gradient maps of the WPAFB area. Water levels have not changed significantly since 1987, but the effects of pumping on and near the Base can have a marked effect on water levels in localized areas. Ground-ware gradients generally were downward throughout Area B (the southwestern third of the Base) and in the eastern third of Areas A and C (the northeastern two-thirds of the Base), and were upward in the vicinity of Mad River. Stream-discharge measurements verified these gradients. Many of the U.S. Environmental Protection Agency maximum contaminant level (MCL) exceedances of inorganic constituents in ground water were associated with water from the bedrock. Exceedances of concentrations of chromium and nickel were found consistently in five wells completed in the glacial aquifer beneath the Base. Five organic compounds [trichloroethylene (TCE), tetrachloroethylene (PCE), vinyl chloride, benzene, and bis(2-ethylhexyl) phthalate] were detected at concentrations that exceeded MCLs; all of the TCE, PCE, and vinyl chloride exceedances were in water from glacial aquifer, whereas the benzene exceedance and most of the bis(2-ethylhexyl) phthalate exceedances were in water from the bedrock. TCE (16 exceedances) and PCE (11 exceedances) most frequently exceeded the MCLs and were detected in the most samples. A decrease in concentrations of inorganic and organic compounds with depth suggest that many constituents detected in ground-water samples are associated partly with human activities, in addition to their natural occurrence. Included in the list of these constituents are nickel, chromium, copper, lead vanadium, zinc, bromide, and nitrate. Many constituents are not found at depths greater than 60 to 80 feet, possibly indicating that human effects on ground-water quality are limited to shallow flow systems. Organic compounds detected in shallow or intermediate-depth wells were aligned mostly with flowpaths that pass through or near identified hazardous-waste sites. Few organic contaminants were detected in surface water. The only organic compound to exceed MCLs for drinking water was bis(2-ethylhexyl) phthalate, but it was detected at concentrations just above the MCL. Inorganic constituents detected at concentration exceeding MCLs include beryllium (twice), lead (once), thallium (once), and gross alpha radiation (once). No polycyclic aromatic (PAHs) were detected in surface-water samples. The highest concentrations of contaminants detected during a storm event were in samples from upgradient locations, indicating that off-Base sources may contribute to surface-water contamination. Inorganic and organic contaminants were found in streambed sediments at WPAFB, primarily in Areas A and C. Trace metals such as lead, mercury, arsenic, and cadmium were detected at 16 locations at concentrations considered 'elevated' according to a ranking scheme for sediments. PAHS were the organic compounds detected most frequently and in highest concentrations organo
100 Area Columbia River sediment sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, S.G.
1993-09-08
Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RLmore » 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.« less
Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher
2013-01-01
An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.
Leeth, David C.; Holloway, Owen G.
2000-01-01
In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).
Graf, Julia B.; Wirt, Laurie; Swanson, E.K.; Fisk, G.G.; Gray, J.R.
1996-01-01
Samples collected at streamflow-gaging stations in the Puerco and Little Colorado rivers show that radioactivity of suspended sediment at gaging stations downstream from inactive uranium mines was not significantly higher than at gaging stations where no mining has occurred upstream. Drinking-water standards for many constituents, however, commonly are exceeded during runoff because concentration of these constituents on sediment from natural processes is high and suspended-sediment loads are high during runoff.
Burton, Carmen A.
2002-01-01
Organcochlorine compounds, semivolatile-organic compounds (SVOC), and trace elements were analyzed in reservoir sediment cores, streambed sediment, and fish tissue in the Santa Ana River Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Three reservoirs were sampled in areas that have different degrees of urbanization. Streambed sediment and fish tissue collected at 12 sites were divided into two groups, urban and nonurban. More organochlorine compounds were detected in reservoir sediment cores, streambed sediment and fish tissue, and at higher concentrations at urban sites than at nonurban sites. At all sites, except West Street Basin, concentrations of organochlorine compounds were lower than the probable-effect concentration (PEC). At the highly urbanized West Street Basin, chlordane and p,p'-DDE exceeded the PEC throughout the historical record. The less stringent threshold-effect concentration (TEC) was exceeded for six compounds at eight sites. Most of the organochlorine compounds detected in streambed sediment and fish tissue were at urban sites on the Santa Ana River as opposed to its tributaries, suggesting accumulation and persistence in the river. More SVOCs were detected in reservoir sediment cores and streambed sediment, and at higher concentrations, at urban sites than at nonurban sites. At all the sites, except West Street Basin, concentrations of SVOCs were lower than the PEC. At West Street Basin, chrysene, pyrene, and total polycyclic-aromatic hydrocarbons exceeded the PEC throughout the historical record. The TEC was exceeded for 10 compounds at 3 sites. Most of the SVOCs were detected in streambed sediment at urban sites on tributaries to the Santa Ana River rather than the mainstem itself. The less frequent occurrence and lower concentrations in the Santa Ana River suggest that SVOCs are less persistent than organochlorine compounds, possibly as a result of volatization, gradation, or dilution. Most trace-element detections in reservoir sediment cores and streambed sediment were at urban sites, and the concentrations were generally higher than at nonurban sites. Lead and zinc exceeded their PECs at West Street Basin throughout the historical record; copper exceeded its PEC at Canyon Lake, an area of urban growth. The TEC was exceeded for 10 compounds at 11 sites. Frequency of detection and concentration did not differ between tributary and Santa Ana River sites, which may be attributed to the fact that trace elements occur naturally. Four trace elements (arsenic, copper, mercury, and selenium) had higher concentrations in fish tissue at nonurban sites than at urban sites. Concentrations decreased over time for organochlorine compounds at all three reservoirs, probably a result of the discontinued use of many of the compounds. Decreasing trends in SVOCs and trace elements were observed at West Street Basin, but increasing trends were observed at Canyon Lake. Concentrations of organochlorine compounds, SVOCs, and trace elements were higher during periods of above average rainfall at both West Street Basin and Canyon Lake.
Sediment quality assessment studies of Tampa bay, Florida
Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.
1996-01-01
A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.
Rodríguez Castro, M C; Marcó P, L; Ranieri, M C; Vázquez, C; Giorgi, A
2017-10-07
A survey of arsenic and phosphorus in Pampean streams of Buenos Aires province was performed. Nitrates and ammonia were also determined. Stream water was sampled as well as stream sediment and filamentous algae. Results show that 32 streams exceeded the arsenic recommended guidelines for human consumption of 10 μg L -1 and six exceeded recommended values for aquatic organisms' protection of 50 μg L -1 . The average concentration found was 36.54 μg L -1 and areas with more concentration of As are located in the southern region of the province, in streams that are tributaries of the Atlantic Ocean. Other regions with high As concentration are the Matanza River tributaries and the Arrecifes River tributaries. No differences of As concentration was found between stream sediments. Also, no seasonal pattern of As concentration was observed in one stream sampled during a year, but a positive correlation between As and the conductivity (p = 0.0002) and pH (p = 0.01) of the streams was found. Also, As bioaccumulation was detected for all the algae sampled, but no correlation between As accumulated and As in the stream water was found. Ammonia levels exceeded recommended guidelines for human consumption in the Argentinean law in 30 streams. The characterization performed in this study provides relevant information on the distribution of arsenic and its origin and mobility.
Labunska, Iryna; Harrad, Stuart; Santillo, David; Johnston, Paul; Brigden, Kevin
2013-02-01
Electronic waste recycling operations in some parts of Asia are conducted using rudimentary techniques which result in workplace and environmental contamination with toxic metals and persistent organic pollutants. This study reports concentrations of 14 polybrominated diphenyl ethers (PBDEs), from tri- to deca-brominated, in 31 samples of soil, sediment, dust or ash collected in the vicinity of e-waste recycling sites in Guiyu (southeast China) which were engaged in common activities such as dismantling, shredding, solder recovery, acid processing and open burning. The concentrations detected in this study far exceed those reported previously in urban soil and sediment and are consistent with or exceed those reported in previous studies around e-waste processing facilities. Some of the highest PBDE concentrations reported to date (e.g. 390 000 ng g (-1) dw (∑ 14 PBDEs)) were found in a sample collected from a site used for open-burning of e-waste, while an average concentration of 220 000 ng g (-1) dw (∑ 14 PBDEs) occurred in sediments impacted by circuit board shredding. A decrease in PBDE concentrations observed with increasing distance from workshops in samples associated with acid processing of wastes provides evidence that such operations are a significant source of PBDEs to the environment. Principal components analysis reveals a complex PBDE congener distribution, suggesting contamination by two or even three commercial formulations consistent with the diverse range of wastes processed.
Allinson, Graeme; Zhang, Pei; Bui, AnhDuyen; Allinson, Mayumi; Rose, Gavin; Marshall, Stephen; Pettigrove, Vincent
2015-07-01
Samples of water and sediments were collected from 24 urban wetlands in Melbourne, Australia, in April 2010, and tested for more than 90 pesticides using a range of gas chromatographic (GC) and liquid chromatographic (LC) techniques, sample 'hormonal' activity using yeast-based recombinant receptor-reporter gene bioassays, and trace metals using spectroscopic techniques. At the time of sampling, there was almost no estrogenic activity in the water column. Twenty-three different pesticide residues were observed in one or more water samples from the 24 wetlands; chemicals observed at more than 40% of sites were simazine (100%), atrazine (79%), and metalaxyl and terbutryn (46%). Using the toxicity unit (TU) concept, less than 15% of the detected pesticides were considered to pose an individual, short-term risk to fish or zooplankton in the ponds and wetlands. However, one pesticide (fenvalerate) may have posed a possible short-term risk to fish (log10TUf > -3), and three pesticides (azoxystrobin, fenamiphos and fenvalerate) may have posed a risk to zooplankton (logTUzp between -2 and -3); all the photosystem II (PSII) inhibiting herbicides may have posed a risk to primary producers in the ponds and wetlands (log10TUap and/or log10TUalg > -3). The wetland sediments were contaminated with 16 different pesticides; no chemicals were observed at more than one third of sites, but based on frequency of detection and concentrations, bifenthrin (33%, maximum 59 μg/kg) is the priority insecticide of concern for the sediments studied. Five sites returned a TU greater than the possible effect threshold (i.e. log10TU > 1) as a result of bifenthrin contamination of their sediments. Most sediments did not exceed Australian sediment quality guideline levels for trace metals. However, more than half of the sites had threshold effect concentration quotients (TECQ) values >1 for Cu (58%), Pb (50%), Ni (67%) and Zn (63%), and 75% of sites had mean probable effect concentration quotients (PECQ) >0.2, suggesting that the collected sediments may have been having some impact on sediment-dwelling organisms.
Water and sediment study of the Snake River watershed, Colorado, Oct. 9-12, 2001
Fey, D.L.; Church, S.E.; Unruh, D.M.; Bove, D.J.
2002-01-01
The Snake River watershed, located upstream from Dillon Reservoir in the central mountains of Colorado, has been affected by historical base-metal mining. Trout stocked in the Snake River for recreational purposes do not survive through the winter. Sediment cores analyzed by previous investigators from the reservoir revealed elevated concentrations of base metals and mercury. We collected 36 surface water samples (filtered and unfiltered) and 38 streambed-sediment samples from streams in the Snake River watershed. Analyses of the sediment and water samples show that concentrations of several metals exceed aquatic life standards in one or both media. Ribbon maps showing dissolved concentrations of zinc, cadmium, copper, and manganese in water (0.45-micron filtered and corrected for the ameliorating effect of hardness), and copper, cadmium, and zinc in sediment indicate reaches where toxic effects on trout would be expected and stream reaches where toxicity standards for rainbow, brown, and brook trout are exceeded. Instantaneous loads for sulfate, strontium, iron, cadmium, copper, and zinc were calculated from 0.45-micron-filtered water concentrations and discharge measurements were made at each site. Sulfate and strontium behave conservatively, whereas copper, cadmium, and zinc are reactive. The dissolved copper load entering the reservoir is less than 20 percent of the value calculated from some upper reaches; copper is transferred to suspended and or streambed sediment by sorption to iron oxyhydroxides. Higher percentages of zinc and cadmium reach the reservoir in dissolved form; however, load calculations indicate that some of these metals are also precipitated out of solution. The most effective remediation activities should be concentrated on reducing the dissolved loads of zinc, cadmium, and copper in two reaches of lower Peru Creek between the confluence with the Snake River and Cinnamon Gulch. We analyzed all streambed sediment for mercury and selected streambed-sediment and reservoir core samples for lead isotope signatures. Results indicate that the mercury anomaly in the reservoir sediment was not from any known source in the Snake River, Blue River, or Tenmile Creek watersheds. Its source remains an enigma.
Waddell, Kidd M.; Giddings, Elise M.
2004-01-01
A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently.Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s.The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining, including sites on Little Cottonwood Creek in the Jordan River basin, Silver Creek in the Weber River basin, and the Weber River below the confluence with Silver Creek. There was significant correlation of lead concentrations in streambed sediment and fish tissue, but other trace elements did not correlate well. Streambed sediment and fish tissue collected from sites in the Bear River basin, which is predominantly rangeland and agriculture, generally had low concentrations of most elements.Sediment-quality guidelines were used to assess the relative toxicity of streambed-sediment sites to aquatic communities. Sites affected by mining exceeded the Probable Effect Concentration (PEC), the concentration at which it is likely there will be a negative effect on the aquatic community, for arsenic, cadmium, copper, lead, silver, mercury, and zinc. Sites that were not affected by mining did not exceed these criteria. Concentrations of trace elements in samples collected from the Great Salt Lake Basins study unit (GRSL) are high compared to those of samples collected nationally with the NAWQA program. Nine of 15 streambed-sediment samples and 11 of 14 fish-tissue samples had concentrations of at least one trace element greater than the concentration of 90 percent of the samples collected nationally during 1993-2000.Organic compounds that were examined in streambed sediment and fish-tissue samples also were examined in bed-sediment cores. A bed-sediment core from Farmington Bay of Great Salt Lake showed an increase in total polycyclic aromatic hydrocarbon (PAH) concentrations coincident with the increase in population in Salt Lake Valley, which drains into this bay. Analysis of streambed-sediment samples showed that the highest concentrations of PAHs were detected at urban sites, including two sites in the lower Jordan River (the Jordan River flows into Farmington Bay), the Weber River at Ogden Bay, and the Provo River near Provo. Other organic compounds detected in streambed sediment in the lower Jordan River were PCBs, DDT compounds, and chlordane compounds.Organic compounds were detected more frequently in fish tissue than in streambed sediment. Chlordane compounds and PCBs were detected more frequently at urban sites. DDT compounds were detected at 13 of 15 sites including urban and agricultural sites. Concentrations of total DDT in fish tissue exceeded the guideline for protection of fish-eating wildlife at two urban sites. The concentration of organic compounds in the GRSL study unit is low compared with that of samples collected nationally.
May, T W; Wiedmeyer, R H; Gober, J; Larson, S
2001-01-01
Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 microg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 microg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 microg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.
May, T.W.; Wiedmeyer, Ray H.; Gober, J.; Larson, S.
2001-01-01
Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 μg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 μg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 μg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.
Lee, Casey J.; Ziegler, Andrew C.
2010-01-01
The U.S. Geological Survey, in cooperation with the Johnson County, Kansas, Stormwater Management Program, investigated the effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County from February 2006 through November 2008. Streamgages and continuous turbidity sensors were operated at 15 sites within the urbanizing 57-square-mile Mill Creek Basin, and 4 sites downstream from the other largest basins (49 to 66 square miles) in Johnson County. The largest sediment yields in Johnson County were observed downstream from basins with increased construction activity. Sediment yields attributed to the largest (68 acre) active construction site in the study area were 9,300 tons per square mile in 2007 and 12,200 tons per square mile in 2008; 5 to 55 times larger than yields observed at other sampling sites. However, given erodible soils and steep slopes at this site, sediment yields were relatively small compared to the range in historic values from construction sites without erosion and sediment controls in the United States (2,300 to 140,000 tons per square mile). Downstream from this construction site, a sediment forebay and wetland were constructed in series upstream from Shawnee Mission Lake, a 120-acre reservoir within Shawnee Mission Park. Although the original intent of the sediment forebay and constructed wetland were unrelated to upstream construction, they were nonetheless evaluated in 2008 to characterize sediment removal before stream entry into the lake. The sediment forebay was estimated to reduce 33 percent of sediment transported to the lake, whereas the wetland did not appear to decrease downstream sediment transport. Comparisons of time-series data and relations between turbidity and sediment concentration indicate that larger silt-sized particles were deposited within the sediment forebay, whereas smaller silt and clay-sized sediments were transported through the wetland and into the lake. Data collected at sites up and downstream from the constructed wetland indicated that hydraulic retention alone did not substantially reduce sediment loading to Shawnee Mission Lake. Mean-daily turbidity values at sampling sites downstream from basins with increased construction activity were compared to U.S. Environmental Protection Agency turbidity criteria designed to reduce discharge of pollutants from construction sites. The U.S. Environmental Protection Agency numeric turbidity criteria specifies that effluent from construction sites greater than 20 acres not exceed a mean-daily turbidity value of 280 nephelometric turbidity units beginning in 2011; this criteria will apply to sites greater than 10 acres beginning in 2014. Although numeric criteria would not have been applicable to data from sampling sites in Johnson County because they were not directly downstream from construction sites and because individual states still have to determine additional details as to how this criteria will be enforced, comparisons were made to characterize the potential of construction site effluent in Johnson County to exceed U.S. Environmental Protection Agency Criteria, even under extensive erosion and sediment controls. Numeric criteria were exceeded at sampling sites downstream from basins with increased construction activity for multiple days during the study period, potentially indicating the need for additional erosion and sediment controls and (or) treatment to bring discharges from construction sites into compliance with future numeric turbidity criteria. Among sampling sites in the Mill Creek Basin, sediment yields from the urbanizing Clear Creek Basin were approximately 2 to 3 times those from older, more stable urban or rural basins. Sediments eroded from construction sites adjacent to or surrounding streams appear to be more readily transported downstream, whereas sediments eroded from construction sites in headwater areas are more likely to
Van Metre, P.C.; Horowitz, A.J.; Mahler, B.J.; Foreman, W.T.; Fuller, C.C.; Burkhardt, M.R.; Elrick, K.A.; Furlong, E.T.; Skrobialowski, S.C.; Smith, J.J.; Wilson, J.T.; Zaugg, S.D.
2006-01-01
The effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana, on the sediment chemistry of Lake Pontchartrain were evaluated by chemical analysis of samples of street mud and suspended and bottom sediments. The highest concentrations of urban-related elements and compounds (e.g., Pb, Zn, polycyclic aromatic hydrocarbons, and chlordane) in bottom sediments exceeded median concentrations in U.S. urban lakes and sediment-quality guidelines. The extent of the elevated concentrations was limited, however, to within a few hundred meters of the mouth of the 17th Street Canal, similar to results of historical assessments. Chemical and radionuclide analysis of pre- and post-Hurricane Rita samples indicates that remobilization of near-shore sediment by lake currents and storms is an ongoing process. The effects of Hurricanes Katrina and Rita on the sediment chemistry of Lake Pontchartrain are limited spatially and are most likely transitory. ?? 2006 American Chemical Society.
Carter, L.F.; Anderholm, S.K.
1997-01-01
The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.
Development and evaluation of sediment quality guidelines for Florida coastal waters
MacDonald, Donald D.; Carr, R. Scott; Calder, Fred D.; Long, Edward R.; Ingersoll, Christopher G.
1996-01-01
The weight-of-evidence approach to the development of sediment quality guidelines (SQGs) was modified to support the derivation of biological effects-based SQGs for Florida coastal waters. Numerical SQGs were derived for 34 substances, including nine trace metals, 13 individual polycyclic aromatic hydrocarbons (PAHs), three groups of PAHs, total polychlorinated biphenyls (PCBs), seven pesticides and one phthalate ester. For each substance, a threshold effects level (TEL) and a probable effects level (PEL) was calculated. These two values defined three ranges of chemical concentrations, including those that were (1) rarely, (2) occasionally or (3) frequently associated with adverse effects. The SQGs were then evaluated to determine their degree of agreement with other guidelines (an indicator of comparability) and the percent incidence of adverse effects within each concentration range (an indicator of reliability). The guidelines also were used to classify (using a dichotomous system: toxic, with one or more exceedances of the PELs or non-toxic, with no exceedances of the TELs) sediment samples collected from various locations in Florida and the Gulf of Mexico. The accuracy of these predictions was then evaluated using the results of the biological tests that were performed on the same sediment samples. The resultant SQGs were demonstrated to provide practical, reliable and predictive tools for assessing sediment quality in Florida and elsewhere in the southeastern portion of the United States.
Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil
Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.
1998-01-01
Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.
Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.
1998-01-01
Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.
Weston, Donald P; Ding, Yuping; Zhang, Minghua; Lydy, Michael J
2013-01-01
Few currently used agricultural pesticides are routinely monitored for in the environment. Even if concentrations are known, sediment LC(50) values are often lacking for common sediment toxicity testing species. To help fill this data gap, sediments in California's Central Valley were tested for nine hydrophobic pesticides seldom analyzed: abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin. Most were detected, but rarely at concentrations acutely toxic to Hyalella azteca or Chironomus dilutus. Only abamectin, fenpropathrin, and methyl parathion were found at concentrations of potential concern, and only in one or two samples. One-quarter of over 100 samples from agriculture-affected waterways exhibited toxicity, and in three-fourths of the toxic samples, pyrethroids exceeded concentrations expected to cause toxicity. The pyrethroid Bi-fen-thrin in particular, as well as lambda-cyhalothrin, cypermethrin, esfenvalerate, permethrin, and the organophosphate chlorpyrifos, were primarily responsible for the observed toxicity, rather than the more novel analytes, despite the fact that much of the sampling targeted areas of greatest use of the novel pesticides. Copyright © 2012 Elsevier Ltd. All rights reserved.
Juracek, Kyle E.
2006-01-01
For about 100 years (1850-1950), the Tri-State Mining District in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma was one of the primary sources of lead and zinc ore in the world. The mining activity in the Tri-State District has resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Empire Lake in Cherokee County, southeast Kansas. The environmental contamination caused by the decades of mining activity resulted in southeast Cherokee County being listed on the U.S. Environmental Protection Agency's National Priority List as a superfund hazardous waste site in 1983. To provide some of the information needed to support efforts to restore the ecological health of Empire Lake, a 2-year study was begun by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and the Kansas Department of Health and Environment. A combination of sediment-thickness mapping and bottom-sediment coring was used to investigate sediment deposition and the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Empire Lake. The total estimated volume and mass of bottom sediment in Empire Lake were 44 million cubic feet and 2,400 million pounds, respectively. Most of the bottom sediment was located in the main body and the Shoal Creek arm of the reservoir. Minimal sedimentation was evident in the Spring River arm of the reservoir. The total mass of cadmium, lead, and zinc in the bottom sediment of Empire Lake was estimated to be 78,000 pounds, 650,000 pounds, and 12 million pounds, respectively. In the bottom sediment of Empire Lake, cadmium concentrations ranged from 7.3 to 76 mg/kg (milligrams per kilogram) with an overall median concentration of 29 mg/kg. Compared to an estimated background concentration of 0.4 mg/kg, the historical mining activity increased the median cadmium concentration by about 7,200 percent. Lead concentrations ranged from 100 to 950 mg/kg with an overall median concentration of 270 mg/kg. Compared to an estimated background concentration of 33 mg/kg, the median lead concentration was increased by about 720 percent as a result of mining activities. The range in zinc concentrations was 1,300 to 13,000 mg/kg with an overall median concentration of 4,900 mg/kg. Compared to an estimated background concentration of 92 mg/kg, the median zinc concentration was increased by about 5,200 percent. Within Empire Lake, the largest sediment concentrations of cadmium, lead, and zinc were measured in the main body of the reservoir. Within the Spring River arm of the reservoir, increased concentrations in the downstream direction likely were the result of tributary inflow from Short Creek, which drains an area that has been substantially affected by historical lead and zinc mining. Compared to nonenforceable sediment-quality guidelines, all Empire Lake sediment samples (representing 21 coring sites) had cadmium concentrations that exceeded the probable-effects guideline (4.98 mg/kg), which represents the concentration above which toxic biological effects usually or frequently occur. With one exception, cadmium concentrations exceeded the probable-effects guideline by about 180 to about 1,400 percent. With one exception, all sediment samples had lead concentrations that exceeded the probable-effects guideline (128 mg/kg) by about 10 to about 640 percent. All sediment samples had zinc concentrations that exceeded the probable-effects guideline (459 mg/kg) by about 180 to about 2,700 percent. Overall, cadmium, lead, and zinc concentrations in the bottom sediment of Empire Lake have decreased over time following the end of lead and zinc mining in the area. However, the concentrations in the most recently deposited bottom sediment (determined for 4 of 21 coring sites) still exceeded the probable-effects guideline by about 440 to 640 percent for cadmium, about 40 to 80 percent for lead, and about 580
Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.
2009-01-01
This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. ?? 2009 US Government.
Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes
2013-01-01
The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.
Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California
Kratzer, C.R.
1999-01-01
Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochlorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.
Toxicity of sediments and pore water from Brunswick Estuary, Georgia
Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey
1993-01-01
A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.
Frenzel, Steven A.
2000-01-01
Organochlorines, semivolatile organic compounds (SVOCs), and trace elements were investigated in streambed sediments and fish tissues at selected sites in the Cook Inlet Basin, Alaska, during 1998. At most sites, SVOCs and organochlorine compounds were either not detected or detected at very low concentrations. Chester Creek at Arctic Boulevard at Anchorage, which was the only site sampled with a significant degree of development in the watershed, had elevated levels of many SVOCs in streambed sediment. Coring of sediments from two ponds on Chester Creek confirmed the presence of elevated concentrations of a variety of organic compounds. Moose Creek, a stream with extensive coal deposits in its watershed, had low concentrations of numerous SVOCs in streambed sediment. Three sites located in national parks or in a national wildlife refuge had no detectable concentrations of SVOCs. Trace elements were analyzed in both streambed sediments and tissues of slimy sculpin. The two media provided similar evidence for elevated concentrations of cadmium, lead, and zinc at Chester Creek. In this study, 'probable effect levels '(PELs) were determined from sediments finer than 0.063 millimeters, where concentrations tend to be greatest. Arsenic and chromium concentrations exceeded the PEL at eight and six sites respectively. Zinc exceeded the PEL at one site. Cadmium and copper concentrations were smaller than the PEL at all sites. Mercury concentrations in streambed sediments from the Deshka River were near the PEL, and selenium concentrations at that site also appear to be elevated above background levels. At half the sites where slimy sculpin were sampled, selenium concentrations were at levels that may cause adverse effects in some species.
Sediment quantity and quality in three impoundments in Massachusetts
Zimmerman, Marc James; Breault, Robert F.
2003-01-01
As part of a study with an overriding goal of providing information that would assist State and Federal agencies in developing screening protocols for managing sediments impounded behind dams that are potential candidates for removal, the U.S Geological Survey determined sediment quantity and quality at three locations: one on the French River and two on Yokum Brook, a tributary to the west branch of the Westfield River. Data collected with a global positioning system, a geographic information system, and sediment-thickness data aided in the creation of sediment maps and the calculation of sediment volumes at Perryville Pond on the French River in Webster, Massachusetts, and at the Silk Mill and Ballou Dams on Yokum Brook in Becket, Massachusetts. From these data the following sediment volumes were determined: Perryville Pond, 71,000 cubic yards, Silk Mill, 1,600 cubic yards, and Ballou, 800 cubic yards. Sediment characteristics were assessed in terms of grain size and concentrations of potentially hazardous organic compounds and metals. Assessment of the approaches and methods used at study sites indicated that ground-penetrating radar produced data that were extremely difficult and time-consuming to interpret for the three study sites. Because of these difficulties, a steel probe was ultimately used to determine sediment depth and extent for inclusion in the sediment maps. Use of these methods showed that, where sampling sites were accessible, a machine-driven coring device would be preferable to the physically exhausting, manual sediment-coring methods used in this investigation. Enzyme-linked immunosorbent assays were an effective tool for screening large numbers of samples for a range of organic contaminant compounds. An example calculation of the number of samples needed to characterize mean concentrations of contaminants indicated that the number of samples collected for most analytes was adequate; however, additional analyses for lead, copper, silver, arsenic, total petroleum hydrocarbons, and chlordane are needed to meet the criteria determined from the calculations. Particle-size analysis did not reveal a clear spatial distribution pattern at Perryville Pond. On average, less than 65 percent of each sample was greater in size than very fine sand. The sample with the highest percentage of clay-sized particles (24.3 percent) was collected just upstream from the dam and generally had the highest concentrations of contaminants determined here. In contrast, more than 90 percent of the sediment samples in the Becket impoundments had grain sizes larger than very fine sand; as determined by direct observation, rocks, cobbles, and boulders constituted a substantial amount of the material impounded at Becket. In general, the highest percentages of the finest particles, clays, occurred in association with the highest concentrations of contaminants. Enzyme-linked immunosorbent assays of the Perryville samples showed the widespread presence of petroleum hydrocarbons (16 out of 26 samples), polycyclic aromatic hydrocarbons (23 out of 26 samples), and chlordane (18 out of 26 samples); polychlorinated biphenyls were detected in five samples from four locations. Neither petroleum hydrocarbons nor polychlorinated biphenyls were detected at Becket, and chlordane was detected in only one sample. All 14 Becket samples contained polycyclic aromatic hydrocarbons. Replicate quality-control analyses revealed consistent results between paired samples. Samples from throughout Perryville Pond contained a number of metals at potentially toxic concentrations. These metals included arsenic, cadmium, copper, lead, nickel, and zinc. At Becket, no metals were found in elevated concentrations. In general, most of the concentrations of organic compounds and metals detected in Perryville Pond exceeded standards for benthic organisms, but only rarely exceeded standards for human contact. The most highly contaminated samples were
Voelker, David C.; Renn, Danny E.
2000-01-01
During this study, 369 benthic-invertebrate samples were collected at 21 sites and 33 streambed-sediment samples were collected at 14 sites to help develop and evaluate control strategies to mediate the impact of point and nonpoint sources of pollution on the White River and selected tributaries in and near Indianapolis, Indiana. Data analyses show that 124 taxa were identified and that most of the benthic invertebrates found belong to one of three taxa: the pollution-tolerant Diptera and the pollution-intolerant Ephemeroptera and Trichoptera. The Hilsenhoff Biotic Index, which was calculated from the number of arthropods and their tolerance to pollution, ranged from 4.4 (very good) to 9.4 (very poor) on the White River, and from 4.9 (good) to 9.1 (very poor) on the tributaries. The Ephemeroptera, Plecoptera, and Trichoptera (EPT) Richness Index, which was calculated from the number of taxa in pollution-intolerant species, ranged from 0 to 9 for the White River and from 0 to 9 for the tributaries. A high EPT Richness Index value reflects a great diversity of pollution-intolerant invertebrates at a site and generally indicates good water quality. A comparison of data collected during the 1994 through 1996 study to data collected during a 1981 through 1987 study indicates that the proportion of pollution-tolerant taxa increased in the immediate vicinity of Indianapolis. This increase may be an indicator that the water quality in the immediate vicinity of Indianapolis has declined since the earlier study. Comparison of the Hilsenhoff Biotic Index values, however, indicates there has been no change since the previous study. In the analysis of streambed sediments, small amounts of 12 metals were detected. Of those, only lead exceeded sediment-quality guidelines for the protection of aquatic life in three samples from two sites. Thirteen insecticides were detected in the streambed sediments, and of those only chlordane exceeded sediment-quality guidelines for the protection of aquatic life. Seventeen semivolatile organic compounds also were detected in streambed sediments at nine sites: four on the White River and five on the tributaries. Six of these compounds exceeded sedimentquality guidelines for the protection of aquatic life.
2004-10-01
severe ISQG, but were of the same order of magnitude. For mercury , only 3 samples, all in Jimmy Lake, exceeded the ISQG. Sed-JL-3 even exceeded the most...but can also be part of bomb painting as pointed out by Boggs [29]. The vegetation analyses revealed that some metals are phytoremediated from
Sedimentation rates and patterns in beaver ponds in a mountain environment
NASA Astrophysics Data System (ADS)
Butler, David R.; Malanson, George P.
1995-09-01
Sediment depth was measured at several sites within each of eight beaver ponds in Glacier National Park, Montana, and sediment samples wen; collected from five of these ponds. Accumulation rates of sediments far exceeded published rates from boreal forest landscapes in eastem and central North America. Pond area strongly predicts volume of sedimentation. Textural differences illustrated spatial variations associated with position in a pond and along a pond sequence. Organic matter content was significantly higher in older ponds, and has ramifications for the development of the benthos and the long-term storage of matter in ponds. The role of beavers as biogeomorphic agents is profound, but requires further elucidation to distinguish between fluvial sediment deposition in ponds and sediment deposition associated with beaver excavational activity.
Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.
2005-01-01
Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.
The Patroon Creek Contamination Migration Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufek, K.; Zafran, A.; Moore, J.T.
2006-07-01
Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areasmore » of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and the Three Mile Reservoir indicate that no further action is required in these areas. The data was also compared to ecological screening criteria. None of the contaminants of concern (U-238, Th-232, and U-235) had concentrations exceeding the screening values. The evaluation indicates no adverse impacts to ecological receptors. (authors)« less
Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.
Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian
2012-09-01
Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huang, Ting-lin; Liu, Fei; Shi, Jian-chao
2016-01-15
The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.
O'Neill, A; Phillips, D H; Bowen, J; Sen Gupta, B
2015-04-15
A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO3-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. Copyright © 2015 Elsevier B.V. All rights reserved.
Williams, Shannon D.; Harris, Robin M.
1996-01-01
In 1989, the U.S. Geological Survey began a cooperative study with the Tennessee Department of Agriculture to assess the impact of agricultural activities on water quality in the Beaver Creek watershed in West Tennessee. Quantification of the transport of nutrients, sediment, and pesticides from agricultural fields was one of the objectives of the study. This report presents nutrient, sediment, and pesticide data collected during selected storm events from 1990 through 1995 at four relatively small, agricultural basins (28 to 422 acres) in the Beaver Creek watershed. Approximately 3,000 water samples (500 to 1,000 at each site) were analyzed for nitrogen and phosphorus species. Total nitrogen (N) concentrations ranged from 0.2 to 41.2 milligrams per liter (mg/L). Median concentrations for samples from each site ranged from 2.0 to 2.7 mg/L for total nitrogen, 1.2 to 1.9 mg/L for organic nitrogen, 0.05 to 0.14 mg/L for ammonia (measured as N), and 0.2 to 0.8 mg/L for nitrate plus nitrite (measured as N). Total phosphorus (P) concentrations ranged from 0.03 to 16.0 mg/L. Median concentrations for samples from each site ranged from 0.80 to 1.2 mg/L for total phosphorus and 0.15 to 0.72 for orthophosphate (measured as P). Approximately 6,000 water samples (1,300 to 1,800 at each site) were analyzed for suspended sediment. Suspended-sediment concentrations ranged from 8.0 to 98,353 mg/L. Concentrations exceeded 1,000 mg/L in 33 percent of the samples collected and exceeded 10,000 mg/L in 6 percent of the samples. Median concentrations ranged from 347 to 713 mg/L at the four sites. Several herbicides and insecticides were detected in water samples. Maximum concentrations detected were 37 micrograms per liter for metolachlor, 3.2 for trifluralin, 150 for fluometuron, and 430 for aldicarb. Aldicarb metabolites were also detected in several samples. The maximum aldicarb sulfoxide and aldicarb sulfone concentrations detected were 68.4 and 14.3 micrograms per liter, respectively.
Heavy metal contamination of sediments in the upper connecting channels of the Great Lakes
Nichols, S. Jerrine; Manny, Bruce A.; Schloesser, Donald W.; Edsall, Thomas A.
1991-01-01
In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.
NASA Astrophysics Data System (ADS)
Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.
2018-03-01
Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged
; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged
value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged
at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false
turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.
Voichick, Nicholas; Topping, David; Griffiths, Ronald
2018-01-01
Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.
Peterson, David A.; Boughton, Gregory K.
2000-01-01
A comprehensive water-quality investigation of the Yellowstone River Basin began in 1997, under the National Water-Quality Assessment (NAWQA) Program. Twenty-four sampling sites were selected for sampling of fish tissue and bed sediment during 1998. Organic compounds analyzed included organochlorine insecticides and their metabolites and total polychlorinated biphenyls (PCBs) from fish-tissue and bed-sediment samples, and semivolatile organic compounds from bed-sediment samples. A broad suite of trace elements was analyzed from both fish-tissue and bed-sediment samples, and a special study related to mercury also was conducted. Of the 12 organochlorine insecticides and metabolites detected in the fish-tissue samples, the most compounds per site were detected in samples from integrator sites which represent a mixture of land uses. The presence of DDT, and its metabolites DDD and DDE, in fish collected in the Yellowstone Park area likely reflects long-term residual effects from historical DDT-spraying programs for spruce budworm. Dieldrin, chlordane, and other organic compounds also were detected in the fish-tissue samples. The compound p, p'-DDE was detected at 71 percent of the sampling sites, more than any other compound. The concentrations of total DDT in fish samples were low, however, compared to concentrations from historical data from the study area, other NAWQA studies in the Rocky Mountains, and national baseline concentrations. Only 2 of the 27 organochlorine insecticides and metabolites and total PCBs analyzed in bed sediment were detected. Given that 12 of the compounds were detected in fish-tissue samples, fish appeared to be more sensitive indicators of contamination than bed sediment.Concentrations of some trace elements in fish and bed sediment were higher at sites in mineralized areas than at other sites. Concentrations of selenium in fish tissue from some sites were above background levels. Concentrations of arsenic, chromium, copper, and lead in some of the bed-sediment samples potentially exceeded criteria for the protection of aquatic life.
Skrobialowski, Stanley C.; Mize, Scott V.; Demcheck, Dennis K.
2004-01-01
The U.S. Geological Survey collected data from 29 wells and 24 surface-water sites in the Mermentau River Basin, 1998-2001, to better understand ground-water and surface-water quality; aquatic invertebrate communities; and habitat conditions, in relation to land use. This study was apart of the National Water-Quality Assessment Program, which was designed to assess water quality as it relates to various land uses. Water-quality data were evaluated with criteria established for the protection of drinking water and aquatic life, and bed-sediment data were compared to aquatic life criteria. Water-quality and ecological data were analyzed statistically in relation to drainage area and agricultural land-use integrity. Concentrations of nutrients and major inorganic ions in ground water and surface water generally were highest in the southeastern part of the study area where soils contain thick loess deposits. Peak concentrations of nutrients in surface water occurred March-may at two sites with high agricultural intensity; the lowest concentrations occurred August-January. The greatest potential for eutrophic conditions in surface water, based on nutrient concentrations, existed March-May, at about the same time or shortly after ricefields were drained. Secondary Maximum Contaminant Levels established by the U.S. Environmental Protection Agency (USEPA) were exceeded for sulfate, chloride, iron, or manganese in samples from 20 wells, and for iron or manganese in samples from all surface-water sites. Fewer pesticides were detected in ground water than in surface water. In 11 of of the 29 wells sampled, at least one pesticide or pesticide degradation product was detected. The most frequently detected pesticides or pesticide degradation products in ground water were the herbicides benzaton and atrazine. Concentrations of 47 pesticides and degradation products were detected in surface water. At least 3 pesticides were detected in all surface-water samples. In 72 percent of the samples at least 5 hydrophilic pesticides were detected, and in more than 70 percent of the samples at least 3 hydrophobic pesticides were detected. Although atrazine concentrations in three samples collected in the spring exceeded 3 micrograms per liter, the USEPA Maximum Contaminant Level of 3 micrograms per liter was not exceeded because it is based on an annual average of quarterly samples. Concentrations larger than 3.0 micrograms per liter were not detected in samples collected during other times of the year. Tebuthiuron was detected at all surface-water sites; the largest concentration (6.33 micrograms per liter) was detected at a site on Bayou des Cannes, and was the only detection that exceeded the criterion (1.6 micrograms per liter) for the protection of aquatic life. Malathion was detected at 16 surface-water sites; the largest concentration (0.113 micrograms per liter) was detected at a site on Bayou Lacassine and was the only detection that exceeded the criterion (0.1 micrograms per liter) for the protection of aquatic life. Concentrations of fipronil exceeded numeric targets for acute total maximum daily loads (2.3 micrograms per liter) at 3 sites and chronic total maximum daily loads (4.6 micrograms per liter) at 14 sites. Maximum pesticide concentrations in surface water usually occurred in the spring at about the same time or shortly after ricefields were drained. Concentrations of DDE in bed sediment at two sites exceeded interim freshwater sediment quality guidelines for the protection of aquatic life. Fipronil sulfide and desulfinylpronil were detected at all 17 sites from which bed-sediment samples were collected, but there are no current (2002) guidelines with which to evaluate the environmental effects of fipronil and degradation products. Two methods were used to group the ecological data-collection sites: (1) Sites were grouped before data collection (according to the study design) using drainage area
Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.
2017-01-01
Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin. PMID:28953889
Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.
2017-01-01
Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.
Bradford, David F; Stanley, Kerri A; Tallent, Nita G; Sparling, Donald W; Nash, Maliha S; Knapp, Roland A; McConnell, Laura L; Massey Simonich, Staci L
2013-03-01
Contaminants used at low elevation, such as pesticides on crops, can be transported tens of kilometers and deposited in adjacent mountains in many parts of the world. Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The authors sampled shallow-water sediment and tadpoles (Pseudacris sierra) for pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls in four high-elevation sites in Yosemite National Park in the central Sierra Nevada twice during the summers of 2006, 2007, and 2008. Both historic- and current-use pesticides showed a striking pattern of lower concentrations in both sediment and tadpoles in Yosemite than was observed previously in Sequoia-Kings Canyon National Parks in the southern Sierra Nevada. By contrast, PAH concentrations in sediment were generally greater in Yosemite than in Sequoia-Kings Canyon. The authors suggest that pesticide concentrations tend to be greater in Sequoia-Kings Canyon because of a longer air flow path over agricultural lands for this park along with greater pesticide use near this park. Concentrations for DDT-related compounds in some sediment samples exceeded guidelines or critical thresholds in both parks. A general pattern of difference between Yosemite and Sequoia-Kings Canyon was not evident for total tadpole cholinesterase activity, an indicator of harmful exposure to organophosphorus and carbamate pesticides. Variability of chemical concentrations among sites, between sampling periods within each year, and among years, contributed significantly to total variation, although the relative contributions differed between sediment and tadpoles. Copyright © 2013 SETAC.
Lewis, M; Chancy, C
2008-02-01
Total mercury concentrations are summarized for environmental media and biota collected from near-coastal areas, several impacted by contaminant sources common to the Gulf of Mexico. Water, sediment, fish, blue crabs, oysters, clams, mussels, periphyton and seagrasses were collected during 1993-2002 from targeted areas affected by point and non-point source contaminants. Mean concentrations in water and sediment were 0.02 (+/-1 standard deviation=0.06) microg l(-1) and 96.3 (230.8) ng g(-1) dry wt, respectively. Mean total mercury concentrations in fish, blue crabs, brackish clams and mussels were significantly greater than those in sediment, seagrass, colonized periphyton and oysters. Concentrations (ng g(-1) dry wt) averaged 23.1 (two seagrass species), 220.1 (oysters), 287.8 (colonized periphyton), 604.0 (four species of freshwater mussels), 772.4 (brackish clam), 857.9 (blue crabs) and 933.1 (nine fish species). Spatial, intraspecific and interspecific variability in results limited most generalizations concerning the relative mercury contributions of different stressor types. However, concentrations were significantly greater for some biota collected from areas receiving wastewater discharges and golf course runoff (fish), agricultural runoff (oysters) and urban stormwater runoff (colonized periphyton and sediment). Marine water quality criteria and proposed sediment quality guidelines were exceeded in 1-12% of total samples. At least one seafood consumption guideline, criteria or screening value were exceeded in edible tissues of blue crabs (6% total samples) and nine fish species (8-33% total samples) but all residues were less than the US Federal Drug Administration action limit of 1.0 ppm and the few reported toxic effect concentrations available for the targeted biota.
Quality of bottom material and elutriates in the lower Willamette River, Portland Harbor, Oregon
Fuhrer, Gregory J.
1989-01-01
In October 1983 the U.S. Geological Survey, in cooperation with the U.S. Army Corp of Engineers, collected bottom-material and water samples from Portland Harbor, Oregon to determine concentrations of trace metals and organic compounds in elutriate-test filtrate and bottom material. Of the trace metals examined in bottom material, concentrations of cadmium slightly exceed those of local rocks, whereas lead and zinc exceedance is substantially larger. Of the organochlorine compounds examined in bottom material chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were detected and quantified in at least 30% of the samples tested. A large DDT concentration (2,700 microgram/kilogram) near Doane Lake outlet is indicative of recent contamination. Polychlorinated biphenyls are ubiquitous in bottom sediments; median concentrations are nearly 65 micrograms/kilogram and as large as 550 microgram/kilogram. PCB loading to the Columbia River from Willamette River suspended sediment has been estimated to be 72 kilograms/year, nearly five times the PCB dredge load of 15 kilogram/year. The acid and base-neutral extractable di-n-butyl phthalate and bis (2-ethylhexyl)phthalate occur in sediments of Terminal No. 2 in concentrations as large as 1,965 and 2,200 micrograms/kilogram, respectively. Of the trace metals examined in both standard and oxic elutriate-test filtrate, only copper concentration in an oxic elutriate-test filtrate (19 micrograms/L) exceeded the water quality criteria (5.7 micrograms/L). (USGS)
De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.
2005-01-01
Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O'ahu, Hawai'i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.
Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA.
Sapozhnikova, Yelena; Bawardi, Ola; Schlenk, Daniel
2004-05-01
The Salton Sea, the largest manmade lake in California, is officially designated by the State of California as an agricultural drainage reservoir. The purpose of this study was to determine organochlorine and organophosphorous pesticides, as well as polychlorinated biphenyl (PCB) concentrations in sediments and fish tissues in the Salton Sea and evaluate the relative ecological risk of these compounds. Sediment samples were taken during 2000-2001 and fish tissues (Tilapia mossambique, Cynoscion xanthulu) were collected in May 2001. All samples were analyzed for 12 chlorinated pesticides, 6 organophosphorus pesticides, and 55 polychlorinated biphenyl (PCB) congeners. SigmaDichlorodiphenyltrichloroethane (SigmaDDT) and total PCB concentrations observed in sediments ranged from 10 to 40 and 116 to 304 ng/g dry wt, respectively. DDT/DDD ratios in sediments and fish tissues of the northern Sea in 2001 indicated recent DDT exposure. Lindane, dieldrin, dichlorodiphenylethane (DDE) and total PCB concentrations detected in sediments exceeded probable effect levels established for freshwater ecosystems, and pp-DDE and total PCB concentrations were higher than effect range-median values developed for marine and estuarine sediments. In fish liver, concentrations of endrin and SigmaDDT exceeded threshold effect level established for invertebrates. SigmaDDT concentrations detected in fish tissues were higher than threshold concentrations for the protection of wildlife consumers of aquatic biota. DDE concentrations in fish muscles tissues were above the 50 ng/g concentration threshold for the protection of predatory birds. Dimethoate, diazinon, malathion, chlorpyrifos, disulfoton varied from < or = 0.15 to 9.5 ng/g dry wt in sediments and from < or = 0.1 to 80.3 ng/g wet wt in fish tissues. Disulfoton was found in relatively high concentrations (up to 80.3 ng/g) in all organs from Tilapia and Corvina. These results demonstrate continued contamination of specific organochlorine compounds in sediments and resident fish species of the Salton Sea.
Kampire, E; Rubidge, G; Adams, J B
2015-02-15
Sediment and Mytilus galloprovincialis samples collected from the Port Elizabeth Harbour were analysed for six indicator PCB congeners to assess their contamination status. The concentrations of total PCBs in sediments and M. galloprovincialis ranged from 0.56 to 2.35 ng/g dry weight and 14.48 to 21.37 ng/g wet weight, respectively. Congeners 138 and 153 were dominant and accounted for an average of 29% and 24% of total PCBs in M. galloprovincialis; 32% and 30% in sediments, respectively. Sediments are home to a wide variety of aquatic life. None of the sediments analysed exceeded the PCB limits recommended the Canadian interim sediment quality guideline and the South African recommended sediment guidelines (21.6 ng/g). Both humans and aquatic life are sensitive to the toxic effects of PCBs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Community Heavy Metal Exposure, San Francisco, California
NASA Astrophysics Data System (ADS)
Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.
2008-12-01
Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.
Fallon, J.D.; Fong, A.L.; Andrews, W.J.
1997-01-01
Atrazine was the only pesticide that equaled or exceeded a maximum contaminant level (of 3.0 micrograms per liter) for drinking water. Two stream samples from a small urban watershed in Minneapolis had atrazine concentrations of 3.6 and 3.8 micrograms per liter, and one ground-water sample had a concentration of 3.0 micrograms per liter. Trace concentrations (less than 0.06 micrograms per liter) of the organochlorine insecticides chlordane, dieldrin, endrin, and heptachlor exceeded chronic freshwater-quality criteria in stream samples from the Mississippi, Minnesota, St. Croix, and Vemillion Rivers in 1981 and 1990.
Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.
Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic
2018-03-29
Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.
Klein, Terry L.; Cannon, Michael R.; Fey, David L.
2004-01-01
Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and zinc typically are adsorbed to the surface coatings of streambed-sediment grains. Mine waste and mill tailings contain high concentrations of arsenic, cadmium, copper, lead, and zinc in a quartz-rich matrix. Most of the waste sites that were sampled had low acid-generating capacity, although one site (fine-grained mill tailings from the Nellie Grant mine deposited in the upper part of lower Frohner Meadows) had extremely high acid-generating potential because of abundant fine-grained pyrite. Two distinct sites were identified as metal sources based on streambed-sediment samples, cores in the meadow substrate, and mine and mill-tailings samples. The Frohner mine and mill site contribute material rich in arsenic and lead; similar material from the Nellie Grant mine and mill site is rich in cadmium and zinc.
Hall, Lenwood W; Anderson, Ronald D; Killen, William D
2017-06-07
The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.
NASA Astrophysics Data System (ADS)
Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai
2018-05-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
Fulton, M; Key, P; Wirth, E; Leight, A K; Daugomah, J; Bearden, D; Sivertsen, S; Scott, G
2006-10-01
Toxic contaminants may enter estuarine ecosystems through a variety of pathways. When sediment contaminant levels become sufficiently high, they may impact resident biota. One approach to predict sediment-associated toxicity in estuarine ecosystems involves the use of sediment quality guidelines (ERMs, ERLs) and site-specific contaminant chemistry while a second approach utilizes site-specific ecological sampling to assess impacts at the population or community level. The goal of this study was to utilize an integrated approach including chemical contaminant analysis, sediment quality guidelines and grass shrimp population monitoring to evaluate the impact of contaminants from industrial sources. Three impacted sites and one reference site were selected for study. Grass shrimp populations were sampled using a push-netting approach. Sediment samples were collected at each site and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Contaminant levels were then compared to sediment quality guidelines. In general, grass shrimp population densities at the sites decreased as the ERM quotients increased. Grass shrimp densities were significantly reduced at the impacted site that had an ERM exceedance for chromium and the highest Mean ERM quotient. Regression analysis indicated that sediment chromium concentrations were negatively correlated with grass shrimp density. Grass shrimp size was reduced at two sites with intermediate levels of contamination. These findings support the use of both sediment quality guidelines and site-specific population monitoring to evaluate the impacts of sediment-associated contaminants in estuarine systems.
Crain, Angela S.
2006-01-01
Water samples were collected in streams and springs in the karst terrane of the Sinking Creek Basin in 2004 as part of study in cooperation with the Kentucky Department of Agriculture. A total of 48 water samples were collected at 7 sites (4 springs, 2 streams, and 1 karst window) from April through November 2004. The karst terrane of the Sinking Creek Basin (also known as Boiling Spring Basin) encompasses about 125 square miles in Breckinridge County and portions of Meade and Hardin Counties in Kentucky. Fourteen pesticides were detected of the 52 pesticides analyzed in the stream and spring samples. Of the 14 detected pesticides, 12 were herbicides and 2 were insecticides. The most commonly detected pesticides?atrazine, simazine, metolachlor, and acetochlor?were those most heavily used on crops during the study. Atrazine was detected in 100 percent of all samples; simazine, metolachlor, and acetochlor were detected in more than 35 percent of all samples. The pesticide-transformation compound, deethylatrazine, was detected in 98 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 30 percent of the samples. Malathion, the most commonly detected insecticide, was found in 4 percent of the samples, which was followed by carbofuran (2 percent). Most of the pesticides were present in low concentrations; however, atrazine was found in springs exceeding the U.S. Environmental Protection Agency?s (USEPA) standards for drinking water. Atrazine exceeded the USEPA?s maximum contaminant level 2 times in 48 detections. Concentrations of nitrate greater than 10 milligrams per liter (mg/L) were not found in water samples from any of the sites. Concentrations of nitrite plus nitrate ranged from 0.21 to 3.9 mg/L at the seven sites. The median concentration of nitrite plus nitrate for all sites sampled was 1.5 mg/L. Concentrations of nitrite plus nitrate generally were higher in the springs than in the main stem of Sinking Creek. Forty-two percent of the concentrations of total phosphorus at all seven sites exceeded the USEPA?s recommended maximum concentration of 0.1 mg/L. The median concentration of total phosphorus for all sites sampled was 0.09 mg/L. The highest median concentrations of total phosphorus were found in the springs. Median concentrations of orthophosphate followed the same pattern as concentrations of total phosphorus in the springs. Concentrations of orthophosphate ranged from <0.006 to 0.192 mg/L. Concentrations of suspended sediment generally were low throughout the basin; the median concentration of suspended sediment for all sites sampled was 23 mg/L. The highest concentration of suspended sediment (1,486 mg/L) was measured following a storm event at Sinking Creek near Lodiburg, Ky.
Barringer, J.L.; Reilly, P.A.; Eberl, D.D.; Blum, A.E.; Bonin, J.L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M.
2011-01-01
Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100mg/kg, and total As concentrations (up to 5.95??g/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical " fingerprints" were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl-) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust. ?? 2011.
Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha
2015-02-15
Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, Enrichment Factors and Principal Component Analysis-Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.
Barker, James L.
1977-01-01
Blue Marsh Lake is planned as a multipurpose impoundment to be constructed on Tulpehocken Creek near Bernville, Berks County, Pennsylvania. Prior to construction, samples of water, bed material, and soil were collected throughout the impoundment site to determine concentrations of nutrients, insecticides, trace metals, suspended sediment, and bacteria. Analyses of water suggest the Tulpehocken Creek basin to be a highly fertile environment. Nitrogen and phosphorus concentrations near the proposed dam site had median values of 4.5 and 0.13 mg/L, respectively. Suspended sediment discharges average between 100 and 200 tons (90.7 to 181.4 metric tons) per day during normal flows but may exceed 10,000 tons (9,070 metric tons) per day during storm runoff. Highest yields were measured during winter and early spring. Concentrations range from 3 mg/L to more than 500 mg/L. Bed material samples contain trace quantities of aldrin, DDT, DDD, DDE, dieldrin, and chlordane. Polychlorinated biphyenyls (PCB's) ranged from 10 to 100 μg/kg. Soils at the impoundment site are of average fertility. However, the silt loam texture is ideal for attachment and growth of aquatic plants. Bacteria populations indicative of recent fecal contamination are prevalent in the major inflows to the proposed lake. Fecal Coliform exceeded the standards recommended by the Federal Water Pollution Administration Committee on Water Quality Criteria for public water supply in 29 percent of the monthly samples, and exceeded the recommended public bathing waters standard in 83 percent of the samples collected from June to September. Arsenic from an industrial waste was found in the water, suspended sediment, and bed material of Tulpehocken Creek in concentrations of 0 to 30 μg/l, 2 to 879 μg/l, and 1 to 79 μg/g, respectively. It represents a potential environmental hazard; however, the measured concentrations are less than that known to be harmful to man, fish, or wildlife, according to published water quality criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairey, R.; Roberts, C.; Jacobi, M.
1998-08-01
Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less
Rheaume, S.J.; Button, D.T.; Myers, Donna N.; Hubbell, D.L.
2001-01-01
Concerns about elevated concentrations of contaminants such as polychlorinated biphenyls and mercury in aquatic bed sediments throughout the Great Lakes Basin have resulted in a need for better understanding of the scope and severity of the problem. Various organochlorine pesticides, polychlorinated biphenyls, trace metals, and polycyclic aromatic hydrocarbons are a concern because of their ability to persist and accumulate in aquatic sediments and their association with adverse aquatic biological effects. The areal distribution and concentrations in surficial bed sediments of 20 contaminants of concern with established bed-sediment-toxicity guidelines were examined in relation to their potential effects on freshwater aquatic biota. Contaminants at more than 800 sampling locations are characterized in this report. Surficial bed-sediment-quality data collected from 1990 to 1997 in the Lake Erie?Lake Saint Clair Drainages were evaluated to reflect recent conditions. In descending order, concentrations of total polycyclic aromatic hydrocarbons, phenanthrene, total polychlorinated biphenyls, chrysene, benz[a]anthracene, benzo[a]pyrene, cadmium, lead, zinc, arsenic, and mercury were the contaminants that most commonly exceeded levels associated with probable adverse effects on aquatic benthic organisms. The highest concentrations of most of these contaminants in aquatic bed sediments are confined to the 12 specific geographic Areas of Concern identified in the 1987 Revisions to the Great Lakes Water Quality Agreement of 1972. An exception is arsenic, which was detected at concentrations exceeding threshold effect levels at many locations outside Areas of Concern.
Ecological risk of heavy metals in sediments of the Luan River source water.
Liu, Jingling; Li, Yongli; Zhang, Bao; Cao, Jinling; Cao, Zhiguo; Domagalski, Joseph
2009-08-01
Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security.
Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments
Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.
2005-01-01
The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.
Braun, Christopher L.; Wilson, Jennifer T.
2010-01-01
Meandering Road Creek is an intermittent stream and tributary to Lake Worth, a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. U.S. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth. Meandering Road Creek gains inflow from several stormwater outfalls as it flows across AFP4. Several studies have characterized polychlorinated biphenyls (PCBs) in the water and sediments of Lake Worth and Meandering Road Creek; sources of PCBs are believed to originate primarily from AFP4. Two previous U.S. Geological Survey (USGS) reports documented elevated PCB concentrations in surficial sediment samples from Woods Inlet relative to concentrations in surficial sediment samples from other parts of Lake Worth. The second of these two previous reports also identified some of the sources of PCBs to Lake Worth. These reports were followed by a third USGS report that documented the extent of PCB contamination in Meandering Road Creek and Woods Inlet and identified runoff from outfalls 4 and 5 at AFP4 as prominent sources of these PCBs. This report describes the results of a fourth study by the USGS, in cooperation with the Lockheed Martin Corporation, to investigate PCBs in suspended-sediment samples in storm runoff from outfalls 4 and 5 at AFP4 following the implementation of engineering controls designed to potentially alleviate PCB contamination in the drainage areas of these outfalls. Suspended-sediment samples collected from outfalls 4 and 5 during storms on March 2 and November 10, 2008, were analyzed for selected PCBs. Sums of concentrations of 18 reported PCB congeners (Sigma PCBc) in suspended-sediment samples collected before and after implementation of engineering controls are compared. At both outfalls, the Sigma PCBc before engineering controls was higher than the Sigma PCBc after engineering controls. The Sigma PCBc in suspended-sediment samples collected at AFP4 before and after implementation of engineering controls also is compared to the threshold effect concentration (TEC), the concentration below which adverse effects to benthic biota rarely occur. Sigma PCBc exceeded the TEC for 75 percent of the samples collected at outfall 4 and 67 percent of the samples collected at outfall 5 before the implementation of engineering controls. Sigma PCBc did not exceed the TEC in samples collected at either outfall 4 or outfall 5 after the implementation of engineering controls. The relative prominence of 10 selected PCB congeners was evaluated by graphical analysis of ratios of individual concentrations of the 10 PCB congeners to the sum of these PCB congeners. An overall decrease in concentrations of PCB congeners at outfalls 4 and 5 after implementation of engineering controls, as well as a shift in prominence from lighter, less chlorinated congeners to a heavier, more chlorinated congener might have resulted from the implementation of engineering controls. Because of the small number of samples collected and lack of runoff and precipitation data to evaluate comparability of sampling conditions before and after implementation of engineering controls, all conclusions are preliminary.
Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun
2016-02-01
High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.
Miller, Cherie V.; Weyers, Holly S.; Blazer, Vicki; Freeman, Mary E.
2006-01-01
Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded threshold or chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.
Miller, C.V.; Weyers, H.S.; Blazer, V.S.; Freeman, M.E.
2006-01-01
Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded thresholdor chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.
Influence of rice field agrochemicals on the ecological status of a tropical stream.
Rasmussen, Jes Jessen; Reiler, Emilie Marie; Carazo, Elizabeth; Matarrita, Jessie; Muñoz, Alejandro; Cedergreen, Nina
2016-01-15
Many tropical countries contain a high density of protected ecosystems, and these may often be bordered by intensive agricultural systems. We investigated the chemical and ecological status of a stream connecting an area with conventional rice production and a downstream protected nature reserve; Mata Redonda. Three sites were sampled: 1) an upstream control, 2) in the rice production area and 3) a downstream site in Mata Redonda. We sampled benthic macroinvertebrates and pesticides in water and sediments along with supporting physical and chemical data. Pesticide concentrations in water exceeded current safety thresholds at sites 2 and 3, especially during the rainy season, and sediment associated pesticide concentrations exceeded current safety thresholds in three of six samples. Importantly, the highest predicted pesticide toxicity in sediments was observed at site 3 in the Mata Redonda confirming that the nature reserve received critical levels of pesticide pollution from upstream sections. The currently used macroinvertebrate index in Costa Rica (BMWP-CR) and an adjusted version of the SPecies At Risk index (SPEAR) were not significantly correlated to any measure of anthropogenic stress, but the Average Score Per Taxon (ASPT) index was significantly correlated with the predicted pesticide toxicity (sumTUD.magna), oxygen concentrations and substrate composition. Our results suggest that pesticide pollution was likely involved in the impairment of the ecological status of the sampling sites, including site 3 in Mata Redonda. Based on our results, we give guidance to biomonitoring in Costa Rica and call for increased focus on pesticide transport from agricultural regions to protected areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrogeochemical assessment of mine-impacted water and sediment of iron ore mining
NASA Astrophysics Data System (ADS)
Nur Atirah Affandi, Fatin; Kusin, Faradiella Mohd; Aqilah Sulong, Nur; Madzin, Zafira
2018-04-01
This study was carried out to evaluate the hydrogeochemical behaviour of mine-impacted water and sediment of a former iron ore mining area. Sampling of mine water and sediment were carried out at selected locations within the mine including the former mining ponds, mine tailings and the nearby stream. The water samples were analysed for their hydrochemical facies, major and trace elements including heavy metals. The water in the mining ponds and the mine tailings was characterised as highly acidic (pH 2.54-3.07), but has near-neutral pH in the nearby stream. Results indicated that Fe and Mn in water have exceeded the recommended guidelines values and was also supported by the results of geochemical modelling. The results also indicated that sediments in the mining area were contaminated with Cd and As as shown by the potential ecological risk index values. The total risk index of heavy metals in the sediment were ranked in the order of Cd>As>Pb>Cu>Zn>Cr. Overall, the extent of potential ecological risks of the mining area were categorised as having low to moderate ecological risk.
Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04
Stanton, Jennifer S.; Qi, Sharon L.
2007-01-01
An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard, 22 percent exceeded the manganese standard, 19 percent exceeded the sulfate standard, 26 percent exceeded the uranium standard, and 38 percent exceeded the dissolved-solids standard. In addition, 78 percent of samples had at least one detectable pesticide and 22 percent of samples had at least one detectable VOC. In the Eastern Nebraska unit, 30 percent of the samples collected had dissolved-solids concentrations larger than the standard, 23 percent exceeded the iron standard, 13 percent exceeded the manganese standard, 10 percent exceeded the arsenic standard, 7 percent exceeded the sulfate standard, 7 percent exceeded the uranium standard, and 7 percent exceeded the selenium standard. No samples exceeded the nitrate standard. Thirty percent of samples had at least one detectable pesticide compound and 10 percent of samples had at least one detectable VOC. In contrast, the Sand Hills and Ogallala Formation units had fewer detections of anthropogenic compounds and drinking-water exceedances. In the Sand Hills unit, 15 percent of the samples exceeded the arsenic standard, 4 percent exceeded the nitrate standard, 4 percent exceeded the uranium standard, 4 percent exceeded the iron standard, and 4 percent exceeded the dissolved-solids standard. Fifteen percent of samples had at least one pesticide compound detected and 4 percent had at least one VOC detected. In the Ogallala Formation unit, 6 percent of water samples exceeded the arsenic standard, 4 percent exceeded the dissolved-solids standard, 3 percent exceeded the nitrate standard, 2 percent exceeded the manganese standard, 1 percent exceeded the iron standard, 1 percent exceeded the sulfate standard, and 1 percent exceeded the uranium standard. Eight percent of samples collected in the Ogallala Formation unit had at least one pesticide detected and 6 percent had at least one VOC detected. Differences in ground-water chemistry among the hydrogeologic units were attributed to variable depth to water, depth of the well screen below the water table, reduction-oxidation conditions, ground-water residence time, interactions with surface water, composition of aquifer sediments, extent of cropland, extent of irrigated land, and fertilizer application rates.
Wilson, Jordan L.; Schumacher, John G.; Burken, Joel G.
2016-01-01
The Missouri Department of Natural Resources (MDNR) has closed or posted advisories at public beaches at Lake of the Ozarks State Park in Missouri because of Escherichia coli (E. coli) concentration exceedances in recent years. Spatial and temporal patterns of E. coliconcentrations, microbial source tracking, novel sampling techniques, and beach-use patterns were studied during the 2012 recreational season to identify possible sources, origins, and occurrence of E. coli contamination at Grand Glaize Beach (GGB). Results indicate an important source of E. coli contamination at GGB was E. coli released into the water column by bathers resuspending avian-contaminated sediments, especially during high-use days early in the recreational season. Escherichia coli concentrations in water, sediment, and resuspended sediment samples all decreased throughout the recreational season likely because of decreasing lake levels resulting in sampling locations receding away from the initial spring shoreline as well as natural decay and physical transport out of the cove. Weekly MDNR beach monitoring, based solely on E. coli concentrations, at GGB during this study inaccurately predicted E. coli exceedances, especially on weekends and holidays. Interestingly, E. coli of human origin were measured at concentrations indicative of raw sewage in runoff from an excavation of a nearby abandoned septic tank that had not been used for nearly two years.
Beisner, Kimberly R.; Gray, Floyd
2018-03-13
The Old Yuma Mine is an abandoned copper, lead, zinc, silver, and gold mine located within the boundaries of Saguaro National Park, Tucson Mountain District, Arizona. This study analyzed the geochemistry of sediments associated with the Old Yuma Mine and assessed hydrologic and geochemical conditions of groundwater to evaluate the area surrounding the Old Yuma Mine. The purpose of the study was to establish the geochemical signature of material associated with the Old Yuma Mine and to compare it with background material and groundwater in the area. Few groundwater samples exceeded the U.S. Environmental Protection Agency (EPA) drinking water standards. Concentrations of several elements were elevated in the waste rock and mine tailings compared with concentrations in sediments collected in background areas. A subset of 15 sediment samples was leached to simulate precipitation interacting with the solid material. Analysis of leachate samples compared to groundwater samples suggests that groundwater samples collected in this study are distinct from leachate samples associated with mining related material. Results suggest that at this time groundwater samples collected during this investigation are not influenced by elements leached from Old Yuma Mine materials.
Benzer, Semra
2017-06-01
In this study, the concentrations of arsenic and boron were determined in the water and the sediment, as well as in the muscle tissues of Squalius cephalus, Alburnoides bipunctatus, Barbus plebejus and Capoeta tinca from Emet Stream. The fish samples were caught in May 2011 and September 2012. The metal concentrations in the water samples were as follows: arsenic was 137.1-1002 µg L -1 , and boron was 2421-14490 µg L -1 . The metal concentrations in the sediment samples were as follows: arsenic was 14.51-3317.1 mg kg -1 , and boron was 14.22-1014.01 mg kg -1 . The mean tissue concentration of arsenic was lower than the TFC and WHO limits. Boron has been identified in fish tissues at concentrations between 0.26 and 2.96 mg kg -1 . The bioaccumulation in the muscle tissues of all fish species caught from Emet Stream did not exceed the limit values.
Wells, Frank C.; Jackson, Gerry A.; Rogers, William J.
1988-01-01
Toxaphene was detected in 11 fish samples; detectable concentrations ranged from 0.98 to 5.1 micrograms per gram, wet weight. DOT also was detected in 11 fish samples with concentrations ranging from 0.021 to 0.066 micrograms per gram, wet weight. ODD was detected in 21 fish samples; concentrations ranged from 0.015 to 0.16 micrograms per gram, wet weight. DDE was detected in all 22 fish samples, and concentrations ranged from 0.36 to 9.9 micrograms per gram, wet weight. The maximum concentrations of DOT and ODD exceeded the 1980-81 baseline concentrations. The median and maximum concentrations of toxaphene and DDE exceeded the 1980-81 baseline concentrations. The largest concentrations of toxaphene, ODD, and DDE in fish were all measured in samples collected at the Main Floodway near Progreso.
Landmeyer, James E.; Falls, W. Fred; Ratliff, W. Hagan; Wellborn, John B.
2011-01-01
Inorganic concentrations in all four soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were two to three times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.
Gray, John R.; Fisk, Gregory G.
1992-01-01
From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.
From streets to streams: assessing the toxicity potential of urban sediment by particle size
Corsi, Steven R.; Selbig, William R.; Roger T. Bannerman,; ,
2013-01-01
Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines. This study measured concentrations of select trace metals and PAHs in both the silt and sand fractions of urban sediment from four sources: stormwater bed, stormwater suspended, street dirt, and streambed. Concentrations were used to assess the toxic potential of sediment based on published sediment quality guidelines. All sources of sediment showed some level of toxic potential with stormwater bed sediment the highest followed by stormwater suspended, street dirt, and streambed. Both metal and PAH concentration distributions were highly correlated between the four sampling locations suggesting the presence of one or perhaps only a few sources of these pollutants which remain persistent as sediment is transported from street to stream. Comparison to other forms of combustion- and vehicle-related sources of PAHs revealed coal tar sealants to have the strongest correlation, in both the silt and sand fractions, at all four sampling sites. This information is important for environmental managers when selecting the most appropriate Best Management Practice (BMP) as a way to mitigate pollution conveyed in urban stormwater from source to sink.
Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages.
Carpenter, Kurt D; Kuivila, Kathryn M; Hladik, Michelle L; Haluska, Tana; Cole, Michael B
2016-06-01
Insecticide use in urban areas results in the detection of these compounds in streams following stormwater runoff at concentrations likely to cause toxicity for stream invertebrates. In this 2013 study, stormwater runoff and streambed sediments were analyzed for 91 pesticides dissolved in water and 118 pesticides on sediment. Detections included 33 pesticides, including insecticides, fungicides, herbicides, degradates, and a synergist. Patterns in pesticide occurrence reveal transport of dissolved and sediment-bound pesticides, including pyrethroids, from upland areas through stormwater outfalls to receiving streams. Nearly all streams contained at least one insecticide at levels exceeding an aquatic-life benchmark, most often for bifenthrin and (or) fipronil. Multiple U.S. EPA benchmark or criterion exceedances occurred in 40 % of urban streams sampled. Bed sediment concentrations of bifenthrin were highly correlated (p < 0.001) with benthic invertebrate assemblages. Non-insects and tolerant invertebrates such as amphipods, flatworms, nematodes, and oligochaetes dominated streams with relatively high concentrations of bifenthrin in bed sediments, whereas insects, sensitive invertebrates, and mayflies were much more abundant at sites with no or low bifenthrin concentrations. The abundance of sensitive invertebrates, % EPT, and select mayfly taxa were strongly negatively correlated with organic-carbon normalized bifenthrin concentrations in streambed sediments. Our findings from western Clackamas County, Oregon (USA), expand upon previous research demonstrating the transport of pesticides from urban landscapes and linking impaired benthic invertebrate assemblages in urban streams with exposure to pyrethroid insecticides.
Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages
Carpenter, Kurt; Kuivila, Kathryn; Hladik, Michelle; Haluska, Tana L.; Michael B. Cole,
2016-01-01
Insecticide use in urban areas results in the detection of these compounds in streams following stormwater runoff at concentrations likely to cause toxicity for stream invertebrates. In this 2013 study, stormwater runoff and streambed sediments were analyzed for 91 pesticides dissolved in water and 118 pesticides on sediment. Detections included 33 pesticides, including insecticides, fungicides, herbicides, degradates, and a synergist. Patterns in pesticide occurrence reveal transport of dissolved and sediment-bound pesticides, including pyrethroids, from upland areas through stormwater outfalls to receiving streams. Nearly all streams contained at least one insecticide at levels exceeding an aquatic-life benchmark, most often for bifenthrin and (or) fipronil. Multiple U.S. EPA benchmark or criterion exceedances occurred in 40 % of urban streams sampled. Bed sediment concentrations of bifenthrin were highly correlated (p < 0.001) with benthic invertebrate assemblages. Non-insects and tolerant invertebrates such as amphipods, flatworms, nematodes, and oligochaetes dominated streams with relatively high concentrations of bifenthrin in bed sediments, whereas insects, sensitive invertebrates, and mayflies were much more abundant at sites with no or low bifenthrin concentrations. The abundance of sensitive invertebrates, % EPT, and select mayfly taxa were strongly negatively correlated with organic-carbon normalized bifenthrin concentrations in streambed sediments. Our findings from western Clackamas County, Oregon (USA), expand upon previous research demonstrating the transport of pesticides from urban landscapes and linking impaired benthic invertebrate assemblages in urban streams with exposure to pyrethroid insecticides.
Khairy, Mohammed; Barrett, Kirk; Lohmann, Rainer
2016-03-01
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in sediments (surface and deeper sediments) and porewater of the lower Passaic River and Newark Bay (New Jersey, USA) to apportion their sources and conduct an ecological risk assessment. Positive matrix factorization was applied to identify sources of PCDD/Fs. Five source profiles were extracted from the positive matrix factorization model applied to the sediment samples including chloranil, combustion, polychlorinated biphenyl impurities, mixed urban sources, and the historical contamination from the former Diamond Alkali plant. The ecological risk assessment was estimated using several lines of evidence depending on site-specific data (blue crab and fish samples representing different feeding habits and positions in the trophic wood web of the river). Porewater concentrations gave the best estimates of lipid concentrations especially in the blue crab samples (with an average factor difference of 3.8). Calculated hazard quotients (HQs) for the fish samples and blue crab were >1 based on the no-effect concentration and tissue screening concentration approaches. At the same time, calculated porewater toxic units were >1. Sediment concentrations exceeded the published sediment quality guidelines for the protection of fish and benthic species, indicating the existence of significant risk to the aquatic life in the Passaic River. Accordingly, further actions and control measures are needed to reduce the emission of PCDD/Fs from ongoing sources. © 2015 SETAC.
Robertson, J.F.
1996-01-01
Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for laboratory analysis and field-property determinations. Petroleum hydrocarbons and lead were detected at concentrations exceeding regulatory limits for drinking water in ground water from Site 1062 only. Petroleum hydrocarbons were detected in ground water from three wells at Site 1062, with the highest concentrations occurring in the area of the former underground storage tanks. Benzene was detected at concentrations as much as 28 micrograms per liter; toluene as much as 558 micrograms per liter; para- and meta-xylenes as much as 993 micrograms per liter; and naphthalene as much as 236 micrograms per liter. Ethylbenzene and ortho-xylene were detected in one well at concentrations of 70 and 6 micrograms per liter, respectively. Dissolved lead was detected in ground water from four wells at concentrations from 5 to 152 micrograms per liter. Analysis of ground-water samples collected from Sites 2438 and 2444 showed little evidence of petroleum-hydrocarbon contamination. Petroleum hydrocarbons were not detected in any of the ground-water samples collected from Site 2438. With the exception of a low concentration of naphthalene (11 micrograms per liter) detected in ground water from one well, petroleum hydrocarbons and lead were not detected in ground water collected from Site 2444.
NASA Astrophysics Data System (ADS)
Schwartz, J. S.; Simon, A.; Klimetz, L.
2009-12-01
Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning behaviors. Using these results, TMDL targets were proposed such as < 19 mg/l SSC and 1,500 mg/l-day dosage at the 95% recurrence frequency for feeding generalists and omnivores. In general, traits correlated with: 1) a broad range of SSC exceedance frequencies and flow stages, 2) exceedance frequencies near 90-95% occurring at moderate flow stages; and 3) exceedance frequencies near 0.01-10 % occurring during floods. Unstable channels were found to be greater in transported suspended sediment than stable channels over a range of concentration exceedance frequencies, and likely influence physical habitat quality. Pool-preference and gravel spawner traits were greater in stable channels than unstable channels. Overall, a functional traits-based approach utilizing concentration-duration-frequency characteristics of suspended sediment transport was successful in identifying potential “targets” for biological impairment due to excessive sediment, and will aid in developing sediment TMDLs.
Miller, Lisa D.; Stogner, Sr., Robert W.
2017-09-01
From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment concentrations were measured during cold-season flow and warm-season flow between Upper Fountain Creek site 07103707 (FoCr_8th) and Lower Fountain Creek site 07105500 (FoCr_Nevada) because of inflows from Monument Creek with higher suspended-sediment concentrations. Median suspended-sediment concentrations between sites 07104905 (MoCr_Bijou) and 07105500 (FoCr_Nevada) increased significantly during warm-season flow but showed no significant differences during cold-season flow and stormflow. Significant decreases in median suspended-sediment concentrations were measured between sites 07105500 (FoCr_Nevada) and 07105530 (FoCr_Janitell) during all flow regimes.Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with warm-season flow. Although large spatial variations in suspended-sediment yields occurred during warm-season flows, the suspended-sediment yield associated with stormflow were as much as 1,000 times larger than the suspended-sediment yields that occurred during warm-season flow.
Kusin, Faradiella Mohd; Rahman, Muhammad Syazwan Abd; Madzin, Zafira; Jusop, Shamshuddin; Mohamat-Yusuff, Ferdaus; Ariffin, Mariani; Z, Mohd Syakirin Md
2017-01-01
Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo ). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
Hoard, C.J.
2008-01-01
In August 2006, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, collected sediment?core samples from the bed of the Detroit River adjacent to Grassy Island. The goal of the sampling was to assess the distribution and concentration of chemical constituents in sediment adjacent to Grassy Island, which was operated from 1960 to 1982 as a confined disposal facility to hold dredge spoils. On August 31, 2006, seven samples were collected at four locations in the Detroit River on the north, south, east, and west sides of the island. Metals concentrations in the riverbed sediment tended to be higher on the west side of the island, whereas organic?compound concentrations were generally higher on the east side. Comparison of results from this sampling to concentrations reported in previous studies indicates that the concentrations of inorganic constituents, mainly metals, in the riverbed sediment around Grassy Island fell within the range of concentrations found regionally throughout the Detroit River and in most cases have lower mean and median values than found elsewhere regionally in the Detroit River. Comparison of results from the August 31, 2006, sampling to U.S. Environmental Protection Agency risk?based sediment?quality guidelines indicates that 18 organic constituents for which an ecological screening level (ESL), and (or) a threshold effect concentration (TEC), and (or) a probable effect concentration (PEC) has been defined exceeded one or more of these guidelines at least once. Further work would be needed to determine whether constituent concentrations in the river sediment are related to constituent runoff from Grassy Island.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed inmore » water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.« less
NASA Astrophysics Data System (ADS)
Thodal, C.; Morway, E. D.
2015-12-01
The Carson River Mercury Site in western Nevada was added to the US Environmental Protection Agency (USEPA) "Superfund" List in 1990 due to contamination from mercury used to amalgamate silver and gold from Comstock Lode ores milled during the late 1800s. The U.S. Geological Survey (USGS) has monitored concentrations of suspended sediment (SS), total mercury (THg) and methylmercury (MeHg) as well as streamflow upstream and downstream of Lahontan Reservoir since 1997 in support of USEPA Remedial Investigations. Differences between inflow and outflow concentrations indicate that nearly 90 percent of SS and unfiltered THg, and at least 50 percent of unfiltered MeHg and filtered (<0.45 μm) THg and MeHg is retained in the reservoir. However, outflow MeHg concentrations exceeded mean inflow concentration (2.9 nanograms per liter; ng/L) in 10 of 135 samples, indicating augmented mercury methylation. During August 2010 and June-September 2011, limnological profiles were measured and water samples collected from discrete depths in each of the reservoir's 3 sub-basins, the inflow delta and 2 shallow and rarely inundated overflow basins to investigate mercury distribution and methylation. In most samples, MeHg concentrations were less than 5 ng/L and increased by less than 1 ng/L in deeper samples. After temperature, oxygen, and Eh profiles indicated thermal stratification in the deep (~25 m) lower basin, samples from the top 1 m still had less than 2 ng/L MeHg but samples collected from 2 m above the sediment-water interface yielded concentrations as high as 220 ng/L in filtered water samples, accounting for 100 percent of filtered and 65 percent of unfiltered THg concentrations in concurrently-sampled water. We hypothesize that anoxic conditions and decomposition of mercury-contaminated plankton and sulfate-reduction in the hypolimnion provide carbon and mercury necessary for mercury methylation that exceeds diffusion from bottom sediment.
Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad
2015-11-01
Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bradfield, A.D.; Flexner, N.M.; Webster, D.A.
1993-01-01
An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated 43 to 420 micrograms per liter. Sediment elutriate samples were toxic to Ceriodaphnia dubta, Pimephales promelas, Photobacterium phosphoreum, and Salenastrum capricornulum.
Kapia, Samuel; Rao, B K Rajashekhar; Sakulas, Harry
2016-10-01
This study reports the heavy metal (Hg, Cd, Cr, Cu, and Pb) contamination risks to and safety of two species of fresh water fish (tilapia, Oreochromis mossambicus and carp, Cyprinus carpio) that are farmed in the Yonki Reservoir in the Eastern Highlands of Papua New Guinea (PNG). The upper reaches of the reservoir are affected by alluvial and large-scale gold mining activities. We also assessed heavy metal levels in the surface waters and sediments and in selected aquatic plant species from the reservoir and streams that intersect the gold mining areas. The water quality was acceptable, except for the Cr concentration, which exceeded the World Health Organization (WHO) standard for water contamination. The sediments were contaminated with Cd and Cu in most of the sampling stations along the upstream waters and the reservoir. The Cd concentration in the sediments exceeded the US Environmental Protection Agency's Sediment Quality Guideline (SQG) values, and the geoaccumulation index (Igeo) values indicated heavy to extreme pollution. In addition, the Cd, Cu, and Pb concentrations in aquatic plants exceeded the WHO guidelines for these contaminants. Between the fish species, tilapia accumulated significantly higher (P < 0.05) Cu in their organ tissues than carp, confirming the bioaccumulation of some metals in the aquatic fauna. The edible muscles of the fish specimens had metal concentrations below the maximum permissible levels established by statutory guidelines. In addition, a human health risk assessment, performed using the estimated weekly intake (EWI) values, indicated that farmed fish from the Yonki Reservoir are safe for human consumption.
NASA Astrophysics Data System (ADS)
Luna Varela, R.; Muñoz Sevilla, N.; Campos Villegas, L.; Rodriguez Espinosa, P.; Gongora Gomez, A.; MP, J.
2013-05-01
This present study was performed in a culture of Crassostrea gigas in La Pitahaya, Sinaloa, México. The main objective is to identify the enrichment pattern of trace elements (Cu, Cd, Cr, Ni, Pb, Zn, Hg, As, V) also was determine concentrations thereof in oyster. Four sampling sites were selected, two smaller channels which connect the lagoon directly , the region of culture and connection with the sea ; and each sampling consisted of 4 sample sediments and 50 oysters of commercial size per mounth . Concentrations of trace metals were determined using atomic absorption spectrophotometry (AAS). The higher concentration of elements in certain samples clearly suggests that they are directly fed by the smaller channels which connect the lagoon directly. These small channels often carry the contaminants which are absorbed and deposited in the sediments. The results were also compared with the Effect Range Low (ERL) and Effect Range Medium (ERM) of NOAA and it indicates that Ni is above the ERL values. Cadmium, lead, chrome and copper concentrations exceeded the limits permissible of bivalbe mollusks established by the sanitary regulations
Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer.
Malard, Florian; Datry, Thibault; Gibert, Janine
2005-10-01
Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.
O'Connor, T P
1991-01-01
Mean concentrations of PAHs, PCBs, and DDT in mollusks and sediments at sites in the National Status and Trends Program (NST) are distributed in log-normal fashion. The dry weight-based chlorinated organic concentrations in mollusks generally exceed those in nearby sediments by an order of magnitude. PAHs are found at similar concentrations in sediments and mollusks. Highest concentrations of PCBs and DDT in mollusks are in the ranges of 1000 to 4000 ng/g (dry) and 400 to 1000 ng/g (dry), respectively. The highest PAH concentrations in sediments are in the 10,000 to 50,000 ng/g (dry) range. While higher concentrations of contaminants can be found by sampling localized hot spots, the NST data represent the distribution of concentrations over general areas of the coastal United States.
Stevens, Michael R.
2013-01-01
The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.
Nilsen, Elena B.; Alvarez, David A.
2011-01-01
Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post-removal sampling compared to the pre-removal sampling. * Several PAHs were detected at relatively high concentrations in core samples, likely indicating historical sources. * Most commonly detected PAHs in sediments were 2,6-dimethylnaphthalene, fluoranthene, perylene, and pyrene. * Most commonly detected AWIs in sediments were 3-methyl-1h-indole (skatol), acetophenone, indole, phenol, and paracresol. * Sedimentary concentrations of perylene exceeded available sediment quality guidelines. Perylene is widespread in the environment and has large potential natural sources in addition to its anthropogenic sources. * Concentrations of metals did not exceed sediment quality guidelines. * Multiple organochlorine pesticides, both banned and currently used, were detected at each site using passive samplers. * Commonly detected pesticides included hexachlorobenzene, pentachloroanisole (a degradation product of pentachlorophenol), diazinon, cis-chlordane, endosulfan, DDD, and endosulfan sulfate. * PBDE concentrations detected in passive sampler extracts were less than the method detection limit at all sites with the exception of PBDE-99, detected at a concentration less than the reporting limit. * The fragrance galaxolide was detected at a concentration greater than the method detection limit. * Common PAHs, such as phenanthrene, fluoranthene, and pyrene, were detected in every passive sampler. * Dissolved oxygen concentration was slightly higher at site CCS1 compared to site CCS2 in both years. * Overall, there was no systematic increase in chemicals of concern at the restoration site during post-removal monitoring compared to conditions during pre-removal monitoring. Any immediate, short-duration effects of piling removal on water quality could not be determined because monitoring was not conducted during the removal.
Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John
2015-09-01
Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.
Reichelt-Brushett, Amanda J; Stone, Jane; Howe, Pelli; Thomas, Bernard; Clark, Malcolm; Male, Yusthinus; Nanlohy, Albert; Butcher, Paul
2017-01-01
Artisanal small-scale gold mining (ASGM) using mercury (Hg) amalgamation has been occurring on Buru Island, Indonesia since early 2012, and has caused rapid accumulation of high Hg concentrations in river, estuary and marine sediments. In this study, sediment samples were collected from several sites downstream of the Mount Botak ASGM site, as well as in the vicinity of the more recently established site at Gogrea where no sampling had previously been completed. All sediment samples had total Hg (THg) concentrations exceeding Indonesian sediment quality guidelines and were up to 82 times this limit at one estuary site. The geochemistry of sediments in receiving environments indicates the potential for Hg-methylation to form highly bioavailable Hg species. To assess the current contamination threat from consumption of local seafood, samples of fish, molluscs and crustaceans were collected from the Namlea fish market and analysed for THg concentrations. The majority of edible tissue samples had elevated THg concentrations, which raises concerns for food safety. This study shows that river, estuary and marine ecosystems downstream of ASGM operations on Buru Island are exposed to dangerously high Hg concentrations, which are impacting aquatic food chains, and fisheries resources. Considering the high dietary dependence on marine protein in the associated community and across the Mollucas Province, and the short time period since ASGM operations commenced in this region, the results warrant urgent further investigation, risk mitigation, and community education. Copyright © 2016 Elsevier Inc. All rights reserved.
Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki
2015-01-01
Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.
Mau, D.P.
2002-01-01
The Lake Olathe watershed, located in northeast Kansas, was investigated using bathymetric survey data and reservoir bottom-sediment cores to determine sediment deposition, water-quality trends, and transport of nutrients (phosphorus and nitrogen species), selected trace elements, selected pesticides, and diatoms as indicators of eutrophic (organic-enriched and depleted oxygen supply) conditions. To determine sediment deposition and loads, bathymetric data from Cedar Lake and Lake Olathe, both located in the Lake Olathe watershed, were collected in 2000 and compared to historical topographic data collected when the lakes were built. Approximately 338 acre-feet of sediment deposition has occurred in Cedar Lake since dam closure in 1938, and 317 acre-feet has occurred at Lake Olathe since 1956. Mean annual sediment deposition was 5.45 acre-feet per year (0.89 acre-feet per year per square mile) for Cedar Lake and 7.0 acre-feet per year (0.42 acre-feet per year per square mile) for Lake Olathe. Mean annual sediment loads for the two reservoirs were 9.6 million pounds per year for Cedar Lake and 12.6 million pounds per year for Lake Olathe. Mean concentrations of total phosphorus in bottom-sediment samples from Cedar Lake ranged from 1,370 to 1,810 milligrams per kilogram, and concentrations in bottom-sediment samples from Lake Olathe ranged from 588 to 1,030 milligrams per kilogram. The implication of large total phosphorus concentrations in the bottom sediment of Cedar Lake is that inflow into Cedar Lake is rich in phosphorus and that adverse water-quality conditions could affect water quality in downstream Lake Olathe through discharge of water from Cedar Lake to Lake Olathe via Cedar Creek. Mean annual phosphorus loads transported from the Lake Olathe watershed were estimated to be 14,700 pounds per year for Cedar Lake and 9,720 pounds per year for Lake Olathe. The mean annual phosphorus yields were estimated to be 3.74 pounds per acre per year for Cedar Lake and 0.91 pound per acre per year for Lake Olathe. Phosphorus yields in the Cedar Lake watershed were largest of the six Kansas impoundment watersheds recently studied. Concentrations of total ammonia plus organic nitrogen as nitrogen in bottom sediment increased from upstream to downstream in both Cedar Lake and Lake Olathe. Mean concentrations of total ammonia plus organic nitrogen as nitrogen (N) ranged from 2,000 to 2,700 milligrams per kilogram in bottom-sediment samples from Cedar Lake and from 1,300 to 2,700 milligrams per kilogram in samples from Lake Olathe. There was no statistical significance between total ammonia plus organic nitrogen as nitrogen and depth of bottom sediment. Concentrations of six trace elements in bottom sediment from Cedar Lake and Lake Olathe (arsenic, chromium, copper, lead, nickel, and zinc) exceeded the U.S. Environmental Protection Agency Threshold Effects Levels (TELs) sediment-quality guidelines for aquatic organisms in sediment except for one lead concentration. Probable Effects Levels (PELs) for trace elements, however, were not exceeded at either lake. Organochlorine and organophosphate insecticides were not detected in bottom-sediment samples from either Cedar Lake or Lake Olathe, but the acetanilide herbicides alachlor and metolachlor were detected in sediment from both lakes. The U.S. Environmental Protection Agency has not proposed TEL or PEL guideline concentrations for bottom sediment for any of the organophosphate, acetanilide, or triazine pesticides. The diatoms (microscopic, single-celled organisms) Cyclotella bodanica, an indicator of low organic-enriched water, and Cyclotella meneghiniana, an indicator of organic-enriched water, were both present in bottom sediment from Lake Olathe. The presence of both of these diatoms suggests varying periods of low and high eutrophication in Lake Olathe from 1956 to 2000. The concentrations of two species in bottom sediment from Cedar Lake, Aulacoseira cf alpigena and Cyclotella meneg
Monferran, Magdalena V; Garnero, Paola Lorena; Wunderlin, Daniel A; Bistoni, María de los Angeles
2016-07-01
The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health. Copyright © 2016 Elsevier Inc. All rights reserved.
Content Heavy Metal Pb, Cd In Perna viridis And Sediments In Semarang Bay
NASA Astrophysics Data System (ADS)
Suprapto, D.; Suryanti, S.; Latifah, N.
2018-02-01
Waste disposal from human activities, generally contain heavy metals such as Pb and Cd which derived from industrial activities. The aims of the study were to know the concentration of Pb and Cd heavy metals contained in Perna viridis tissue, sediment and water at Semarang Bay. This study was conducted in May 2017 at Semarang Bay. - Samples were collected using purposive sampling method. The heavy metal content in the water and clam was observed using- APHA method and was analyzed using AAS (Atomic Absorption Spectrophotometer). The results showed that concentration of heavy metal of Pb in the water was 0.00-50.5mg/L and the Cd content was of 26.9-51.7 mg/L, whereas the concentration of Pb in the sediment is 445.5-2.053.0mg/L and Cd 963.3-2,150.0 mg/L. Pb content in soft tissue of Perna viridis - is 67.1-1.933.9 mg/L and the concentration of Cd was 203.5-5.787.3 mg/L. The analysis of Pb and Cd in seawater, sediment and soft tissue of Perna viridis according to Enviroment Ministerial decree (KepMenLH ) number 51 of 2004 and applied by NOAA 1999 does not exceed the quality standard, that meant that the Perna viridis has been contaminated by metal Pb it is controversial with the above sentence and Cd. It concluded that the metal content of Pb and Cd in Perna viridis tissue exceeds the quality standard, so it is not suitable to be consumed, especially in high quantity
Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A
2010-06-01
The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.
Ecological risk of heavy metals in sediments of the luan river source water
Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, Joseph L.
2009-01-01
Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security. ?? 2009 Springer Science+Business Media, LLC.
Trends in suspended-sediment concentration at selected stream sites in Kansas, 1970-2002
Putnam, James E.; Pope, Larry M.
2003-01-01
Knowledge of erosion, transport, and deposition of sediment relative to streams and impoundments is important to those involved directly or indirectly in the development and management of water resources. Monitoring the quantity of sediment in streams and impoundments is important because: (1) sediment may degrade the water quality of streams for such uses as municipal water supply, (2) sediment is detrimental to the health of some species of aquatic animals and plants, and (3) accumulation of sediment in water-supply impoundments decreases the amount of storage and, therefore, water available for users. One of the objectives of the Kansas Water Plan is to reduce the amount of sediment in Kansas streams by 2010. During the last 30 years, millions of dollars have been spent in Kansas watersheds to reduce sediment transport to streams. Because the last evaluation of trends in suspended-sediment concentrations in Kansas was completed in 1985, 14 sediment sampling sites that represent 10 of the 12 major river basins in Kansas were reestablished in 2000. The purpose of this report is to present the results of time-trend analyses at the reestablished sediment data-collection sites for the period of about 1970?2002 and to evaluate changes in the watersheds that may explain the trends. Time-trend tests for 13 of 14 sediment sampling sites in Kansas for the period from about 1970 to 2002 indicated that 3 of the 13 sites tested had statistically significant decreasing suspended-sediment concentrations; however, only 2 sites, Walnut River at Winfield and Elk River at Elk Falls, had trends that were statistically significant at the 0.05 probability level. Increasing suspended-sediment concentrations were indicated at three sites although none were statistically significant at the 0.05 probability level. Samples from five of the six sampling sites located upstream from reservoirs indicated decreasing suspended-sediment concentrations. Watershed impoundments located in the respective river basins may contribute to the decreasing suspended-sediment trends exhibited at most of the sampling sites because the impoundments are designed to trap sediment. Both sites that exhibited statistically significant decreasing suspended-sediment concentrations have a large number of watershed impoundments located in their respective drainage basins. The relation between percentage of the watershed affected by impoundments and trend in suspended-sediment concentration for 11 sites indicated that, as the number of impoundments in the watershed increases, suspended-sediment concentration decreases. Other conser-vation practices, such as terracing of farm fields and contour farming, also may contribute to the reduced suspended-sediment concentrations if their use has increased during the period of analysis. Regression models were developed for 13 of 14 sediment sampling sites in Kansas and can be used to estimate suspended-sediment concentration if the range in stream discharge for which they were developed is not exceeded and if time trends in suspended-sediment concentrations are not significant. For those sites that had a statistically significant trend in suspended-sediment concentration, a second regression model was developed using samples collected during 2000?02. Past and current studies by the U.S. Geological Survey have shown that regression models can be developed between in-stream measurements of turbidity and laboratory-analyzed sediment samples. Regression models were developed for the relations between discharge and suspended-sediment concentration and turbidity and suspended-sediment concentration for 10 sediment sampling sites using samples collected during 2000?02.
Rogowska, Justyna; Wolska, Lidia; Namieśnik, Jacek
2010-11-01
In 1943 the German hospital ship s/s Stuttgart (Lazaretschiff "C") was sunk close to the port of Gdynia (Gulf of Gdańsk - Polish coast). This and other actions (undertaken after the war to remove the wreck) led to pollution of the sea bottom with oil derivatives. During our studies (2009) 11 surface sediment and water samples were collected as well as sediment core samples at 4 locations in order to determine the concentration levels of priority pollutants belonging to polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). The concentrations of 16 PAH and 7 PCB were analysed with GC-MS. ΣPAH varied between 11.54 ± 0.39 and 206.7 ± 6.5mg/kg dry weight in the surface sediments, and from 0.686 ± 0.026 to 1291 ± 53 mg/kg dry weight in the core samples. Contamination in the core samples collected may reach a depth of at least 230-240 cm (deepest sample studied). The PAH-group profiles in all surface sediment samples suggest a pyrolytic source of PAH, while the results obtained for core samples indicate a mixed pattern of pyrolytic and petrogenic inputs of PAH. Results obtained may suggest also that fuel residues being present at sea bottom is not crude oil derived but results from coal processing (synthetic fuel). The sum of PCB in surface sediments ranged from 0.761 ± 0.068 to 6.82 ± 0.28 μg/kg dry weight (except for sampling point W2, where ΣPCB was 108.8 ± 4.4 μg/kg dry weight). The strong correlation between PAH and PCB levels, and the fact that PCB are present only in the surface sediments, suggest that the compounds in these sediments got there as a result of emission from urban areas, entering the aquatic environment via atmospheric deposition. PCB levels in the sediment core samples were generally very low and in most cases did not exceed the method quantification limit. Copyright © 2010 Elsevier B.V. All rights reserved.
Source and Fate of Sediments in the Bahia de Anasco, Puerto Rico
NASA Astrophysics Data System (ADS)
Webb, R. M.
2005-12-01
Sediments and wastewater mix in the insular marine waters of the Bah'{i}a de Añasco near Mayag{u}ez, Puerto Rico. Trace metal concentrations in fine sediments deposited in the bay were measured to assess potential impact of the ocean outfall on the biota and habitats that include coral reefs. A Q-mode factor analysis of elemental compositions identified three sediment sources and their relative proportions in 51 core and surficial samples collected from the bay and within the coral reefs: (1) sediments discharged by the R'{i}o Grande de Añasco; (2) calcareous skeletal remains; and (3) sediments discharged by the R'{i}o Guanajibo. The nickel and chromium derived from laterite deposits provide a unique fingerprint for sediments discharged from the R'{i}o Guanajibo. Naturally occurring concentrations of these elements exceed Probable Effect Limits (PEL's: 42 mg/kg for nickel and 160 mg/kg for chromium) in sediments deposited near the river mouth. The detection of mercury at 1 mg/kg in one sample from a core recovered near the wastewater outfall was the only indication of a possible outfall source in the data set. The temporal and spatial variations in source fractions proved useful in determining relative frequencies of historic floods and steady-state circulation patterns off the west coast of Puerto Rico.
Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp
2014-10-07
Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.
Gill, Amy C.; Robinson, John A.; Redmond, Jymalyn E.; Bradley, Michael W.
2008-01-01
The watershed of Fivemile Creek (FMC), a tributary to the Locust Fork of the Black Warrior River, is located north of Birmingham, Alabama. Areas that have been previously coal-mined border the creek, and portions of the upper watershed have been and are currently (2007) being used for industrial and urban uses. The U.S. Geological Survey (USGS), in cooperation with the City of Tarrant, the Freshwater Land Trust, and the Jefferson County Commission, conducted a water-quality assessment of 12 sites along FMC during 2003?2005. Water samples were analyzed for basic physical and chemical properties and concentrations of major ions, nutrients, fecal indicator bacteria, organic wastewater compounds, pesticides, trace elements, and semivolatile organic compounds. Streambed-sediment samples were analyzed for concentrations of trace elements and semivolatile organic compounds. Benthic invertebrate communities were evaluated for taxonomic composition and relation to water-quality conditions. Nutrient concentrations in the FMC watershed reflect the influences of natural and anthropogenic sources. Concentrations of total nitrogen in all samples and total Kjeldahl nitrogen in at least one sample each collected from FMC at Hewitt Park, FMC below Springdale Road, FMC at Lewisburg, FMC near Republic, FMC at Brookside, and FMC at Linn Crossing exceeded U.S. Environmental Protection Agency (USEPA) ecoregion nutrient criteria. Total phosphorus concentrations in about 58 percent of all samples were above the ecoregion nutrient criteria. Concentrations of chlorophyll a, an indicator of algal biomass, in the FMC watershed were below the appropriate USEPA ecoregion criteria. Fecal indicator bacteria concentrations occasionally exceeded criteria established by the Alabama Department of Environmental Management (ADEM) and the USEPA to protect human health and aquatic life. Median fecal-coliform concentrations equaled or exceeded USEPA criteria at four of the six sites with multiple samples. Maximum Escherichia coli (E. coli) concentrations usually occurred during high-flow conditions and exceeded the single-sample criterion for infrequently-used whole-body contact (576 colonies per 100 milliliters) at all but one site. Median E. coli concentrations for two of the seven sites with multiple samples exceeded USEPA criteria. Twenty-nine samples were collected from sites along FMC and analyzed by the USGS National Water Quality Laboratory for the presence of 57 organic wastewater compounds. Forty-six of the 57 organic wastewater compounds, representing all 11 general-use categories, were detected in samples from FMC. All detections of organic wastewater compounds were estimated below laboratory reporting limits except for several detections of the herbicide bromacil. Herbicides accounted for approximately 62 percent of the number of pesticide detections in the FMC study area. Two herbicides, atrazine and simazine, were detected most frequently, in 100 percent of the surface-water samples. Fipronil sulfide was the most commonly detected insecticide-derived compound, occurring in 52 percent of the surface-water samples. Concentrations of one insecticide, dieldrin, exceeded the USEPA?s health advisory level for drinking water in one sample at FMC at Hewitt Park and in one sample at FMC below Springdale Road. Concentrations of carbaryl in two samples and malathion in one sample exceeded aquatic-life criteria. Only a few trace element concentrations measured in FMC exceeded established standards or criteria. Some concentrations of aluminum and manganese were above secondary drinking-water standards. One cadmium concentration and three selenium concentrations measured at FMC at Lewisburg exceeded ADEM chronic aquatic-life criteria. Streambed-sediment samples were collected at seven sites along FMC, and analyzed for selected semivolatile organic compounds and trace elements. Forty-nine of 98 semivolatile organic compounds were detected in stre
Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh
2014-01-01
Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278
Koterba, Michael T.; Andres, A. Scott; Vrabel, Joseph; Crilley, Dianna M.; Szabo, Zoltan; DeWild, John F.; Aiken, George R.; Reyes-Padro, Betzaida
2006-01-01
In January 2001, mercury (Hg) was detected (500 nanograms per liter, ng/L, or greater) in the distribution system of the Long Neck Water Company (LNWC), Pot Nets, Delaware. By April 2001, two LNWC production wells had been taken off-line because discharge concentrations of total mercury (HgT) either had exceeded or approached the Federal limit of 2,000 ng/L. From October 2003 through January 2005, the U.S. Geological Survey, Delaware Geological Survey, and Delaware Department of Natural Resources and Environmental Control conducted a cooperative study to (a) determine if the Hg contamination was widespread, (b) identify possible forms of Hg in ground water, and (c) examine Hg occurrence in relation to (geo)chemical conditions and characteristics of ground water and sediment in the surficial aquifer on the Long Neck Peninsula, Sussex County, Delaware. An initial water-quality survey conducted with samples from 22 production wells revealed that concentrations of HgT in ground water in the surficial aquifer ranged from 0.11 to 1,820 ng/L. Shallow ground water (less than 120 feet below land surface) throughout most of the peninsula, including that which contained elevated concentrations of HgT (exceeding 100 ng/L), appeared to be affected by human activities. All samples contained volatile organic compounds (VOCs) and elevated nitrate-nitrogen (NO3-N, exceeding 0.4 milligrams per liter, mg/L). Most (16 of 22) samples had elevated specific conductance (SC, in excess of 100 microsiemens per centimeter at 25 degrees Celsius). Elevated concentrations of HgT, however, only occurred in five production wells in the Pot Nets Bayside and Lakeside communities. The vertical distribution of HgT in shallow ground water (less than 80 feet below land surface) was determined with samples collected at 5 to 6 vertical-nest short-screened (2 - 5-foot length) monitoring wells installed near Bayside and Lakeside production wells with the highest HgT concentrations (exceeding 1,000 ng/L). Elevated concentrations ofHgT (100-6,380 ng/L) occurred in the shallow aquifer near each well at different depths. Chemical analyses of selected soil, fill, and aquifer sediment samples, obtained during the installation of nested wells, indicated that little HgT occurred in soil or fill at either site (40 micrograms per kilogram, ?g/kg, or less). No HgT was detected (less than 20 ?g/kg) in aquifer sediment samples. These low HgT concentrations imply that neither the soil, fill, nor aquifer sediment was a likely source of the elevated Hg in ground water. Given Hg occurrence appeared to be a ground-water transport phenomenon, the forms of Hg in transport were investigated. Differences in HgT concentrations between raw and filtered (0.1- and (or) 0.4-absolute micrometer pore size) samples from nested wells were random in sign and similar in magnitude to the variability in measuring HgT attributed to field and laboratory methods (? 5-10 percent, for HgT concentrations exceeding 100 ng/L). Thus, Hg transport likely occurred in a dissolved or fine-colloidal nonparticulate phase. Methyl mercury (HgMe) only was detected at low concentrations (0.06 ng/L or less) in nested-well samples with low to moderate concentrations of HgT (less than 366 ng/L). Whether HgMe occurred at similar concentrations in samples with high HgT concentrations was unresolved due to a sample-matrix interference problem. Potential complex forms of Hg were investigated in relation to the occurrence of selected ligands (organic carbon, sulfide, and chloride concentrations) and geochemical conditions (for example, pH and dissolved oxygen concentrations). Only dissolved organic carbon (DOC) appeared directly related to Hg occurrence. Elevated concentrations of HgT and DOC co-occurred in ground water at both Pot Nets sites. The average concentration of DOC was about four times greater in samples from the Pot Nets wells with the highest HgT concentrations (exceeding 1,000 ng/L) than in most Pot Nets o
Trace-element concentrations in streambed sediment across the conterminous United States
Rice, Karen C.
1999-01-01
Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.
Birch, Gavin F; Taylor, Stuart E
2002-06-01
Sediments in the Port Jackson estuary are polluted by a wide range of toxicants and concentrations are among the highest reported for any major harbor in the world. Sediment quality guidelines (SQGs), developed by the National Oceanographic and Atmospheric Administration (NOAA) in the United States are used to estimate possible adverse biological effects of sedimentary contaminants in Port Jackson to benthic animals. The NOAA guidelines indicate that Pb, Zn, DDD, and DDE are the most likely contaminants to cause adverse biological effects in Port Jackson. On an individual chemical basis, the detrimental effects due to these toxicants may occur over extensive areas of the harbor, i.e., about 40%, 30%, 15% and 50%, respectively. The NOAA SQGs can also be used to estimate the probability of sediment toxicity for contaminant mixtures by determining the number of contaminants exceeding an upper guideline value (effects range medium, or ERM), which predicts probable adverse biological effects. The exceedence approach is used in the current study to estimate the probability of sediment toxicity and to prioritize the harbour in terms of possible adverse effects on sediment-dwelling animals. Approximately 1% of the harbor is mantled with sediment containing more than ten contaminants exceeding their respective ERM concentrations and, based on NOAA data, these sediments have an 80% probability of being toxic. Sediment with six to ten contaminants exceeding their respective ERM guidelines extend over approximately 4% of the harbor and have a 57% probability of toxicity. These areas are located in the landward reaches of embayments in the upper and central harbor in proximity to the most industrialised and urbanized part of the catchment. Sediment in a further 17% of the harbor has between one and five exceedences and has a 32% probability of being toxic. The application of SQGs developed by NOAA has not been tested outside North America, and the validity of using them in Port Jackson has yet to be demonstrated. The screening approach adopted here is to use SQGs to identify contaminants of concern and to determine areas of environmental risk. The practical application and management implications of the results of this investigation are discussed.
Sediment transport and deposition in the lower Missouri River during the 2011 flood
Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.
2013-01-01
Floodwater in the Missouri River in 2011 originated in upper-basin regions and tributaries, and then travelled through a series of large flood-control reservoirs, setting records for total runoff volume entering all six Missouri River main-stem reservoirs. The flooding lasted as long as 3 months. The U.S Geological Survey (USGS) examined sediment transport and deposition in the lower Missouri River in 2011 to investigate how the geography of floodwater sources, in particular the decanting effects of the Missouri River main-stem reservoir system, coupled with the longitudinal characteristics of civil infrastructure and valley-bottom topography, affected sediment transport and deposition in this large, regulated river system. During the flood conditions in 2011, the USGS, in cooperation with the U.S. Army Corps of Engineers, monitored suspended-sediment transport at six primary streamgages along the length of the lower Missouri River. Measured suspended-sediment concentration (SSC) in the lower Missouri River varied from approximately 150 milligrams per liter (mg/L) to 2,000 mg/L from January 1 to September 30, 2011. Median SSC increased in the downstream direction from 355 mg/L at Sioux City, Iowa, to 490 mg/L at Hermann, Missouri. The highest SSCs were measured downstream from Omaha, Nebraska, in late February when snowmelt runoff from tributaries, which were draining zones of high-sediment production, was entering the lower Missouri River, and releases of water at Gavins Point Dam were small. The combination of dilute releases of water at Gavins Point Dam and low streamflows in lower Missouri River tributaries caused sustained lowering of SSC at all streamgages from early July through late August. Suspended-sediment ranged from 5 percent washload (PW; percent silt and clay) to as much as 98 percent in the lower Missouri River from January 1 to September 30, 2011. Median PW increased in the downstream direction from 24 percent at Sioux City, Iowa, to 78 percent at Hermann, Missouri. Measurements made in early January, when SSC was low, indicate that suspended sediment mostly was composed of bed material, but by mid-February, runoff from the plains caused PW to increase at most streamgages. Total suspended-sediment discharge (SSD) during water year 2011 at the selected streamgages in the lower Missouri River ranged from approximately 29 to 64 million tons. Total estimated SSD had the lowest exceedance frequencies in the reaches between Gavins Point Dam and Nebraska City, Nebraska, but exceedance frequencies increased substantially downstream. In 2011, total SSD with low exceedance frequencies were reported at Sioux City, Iowa, Omaha, Nebraska, and Nebraska City, Nebraska, despite moderate-to-high exceedance frequencies for annual average SSC, indicating that the duration of high-magnitude flooding was the primary driver of total SSD. Comparison of median SSC for samples from water year 2011 with samples in the 20 years prior indicated that median SSC for high-action streamflows (streamflows likely to produce a stage exceeding the National Weather Service’s “action stage”) in 2011 were lower than those typical for high-action streamflows. Multiple-comparison analysis indicated that median SSC values for low-action streamflows (streamflows likely to produce stages lower than the National Weather Service’s “action stage”) and high-action streamflows sampled in 2011 at 4 of 6 streamgages were not significantly distinguishable from median SSC values for low-action streamflows in the previous 20 years. Longitudinal comparison of streamflow and SSD exceedance frequencies for 2011 with corresponding frequencies for 2008 and 1993 indicated the important role of tributary contributions to total SSD in the lower Missouri River. In 1993 and 2008, tributaries were the primary source of floodwater in the lower Missouri River, which resulted in a 20-fold increase in total SSD from Sioux City, Iowa, to Hermann, Missouri. In 2011, releases at Gavins Point Dam were the primary source of floodwater in the lower Missouri River, and total SSD at Hermann, Missouri, was only twice that estimated for Sioux City, Iowa. Sand deposition was estimated using analysis of multispectral satellite imagery collected in October and November 2011. Distributions of sand in the flood plain of the lower Missouri River also were quantified in relation to distance from the banks of the main channel for seven discrete river segments bounded by Gavins Point Dam and selected downstream tributaries. The areal extent of overbank flooding and flood-plain sand deposits increased downstream from Sioux City, Iowa to a broad peak near Rulo, Nebraska, and then decreased to levels near the lower limit of quantification downstream from Kansas City, Missouri. Most of the flood plain inundation and sediment-deposition damage to agricultural fields was observed between river miles 480 and 700, where 2011 peak streamflows had low exceedance frequencies, and the lower Missouri River channel was less incised or had aggraded recently. As channel capacity increased in the downstream direction, the relative magnitude of the flood decreased downstream, and overbank flooding was less extensive. In the constricted reaches, flood-plain sand deposits mainly were observed in association with levee breaks.
Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn
2008-01-01
Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended-sediment samples, including pyrethroid insecticides and fungicides. Fourteen legacy organochlorine pesticides also were detected in the suspended-sediment samples. Greater numbers of current-use and organochlorine pesticides were observed in the Alamo River samples in comparison with the New River samples. Maximum concentrations of current-use pesticides in suspended-sediment samples ranged from below their method detection limits to 174 micrograms per kilogram (pendimethalin). Most organochlorine pesticides were detected at or below their method detection limits, with the exception of p,p'-DDE, which had a maximum concentration of 54.2 micrograms per kilogram. The most frequently detected current-use pesticides in the suspended-sediment samples were chlorpyrifos, permethrin, tetraconazole, and trifluralin, which were observed in more than 83 percent of the samples. The organochlorine degradates p,p'-DDD and p,p'-DDE were detected in all suspended-sediment samples.
Broshears, R.E.
1991-01-01
To better-understand and predict the potential effect of dredging on water quality at Reelfoot Lake, chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water. Chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water collected at five stations in the lake during November 1988. Lake water was of the calcium magnesium bicarbonate type with an average dissolved-solids concentration of 120 milligrams per liter. Trace constituents were present in bottom sediments at concentrations representative of their average relative abundance in the earth?s crust. Elutriate waters prepared by mixing bottom sediment and lake water had suspended-solids concentrations as high as 2,000 milligrams per liter which exerted significant oxygen demand Trace constituents in the unfiltered elutriate waters were elevated with respect to lake water; elevated concentrations were attributable to the increased suspended-solids concentrations. Concentrations of total-recoverable copper, lead., and zinc in many elutriate waters exceeded U.S. Environmental Protection Agency?s water-quality criteria for the protection of freshwater aquatic life. The toxicity of elutriate waters, as measured by a 48-hour bioassay with Ceriodaphnia dubia, was low.
20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.
Molnia, B.F.; Post, A.; Carlson, P.R.
1996-01-01
Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations exceeds 10 m year-1.
Sterols of a contemporary lacustrine sediment. [in English postglacial lake
NASA Technical Reports Server (NTRS)
Gaskell, S. J.; Eglinton, G.
1976-01-01
Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Dan
1999-05-28
The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).
Duris, Joseph W.; Reeves, Howard W.; Kiesler, James L.
2005-01-01
The U.S. Geological Survey (USGS) sampled multiple stream sites across the St. Joseph and Galien River Basins to detect and quantify the herbicide atrazine using a field enzyme-linked immunosorbent assay (ELISA) triazine test. In May 2001, July 2001, April 2002, August 2002, August 2003 and September 2003, composite samples were collected across streams at USGS streamflow-gaging stations. Concentrations and instantaneous loading for atrazine sampled in stream water throughout the St. Joseph River and Galien River Basins in Michigan and Indiana ranged from nondetection (< 0.05 part per billion (ppb)) with an associated load less than 0.001 kilogram per day (kg/d) to 6 ppb and a maximum load of 10 kg/d. Atrazine concentrations were highest in May 2001 just after the planting season. The lowest concentration was found in April 2002 just before planting. Atrazine concentrations in streambed-sediment pore water were not spatially connected with atrazine concentrations in stream-water samples. This study showed that atrazine concentrations were elevated from May to July in the St. Joseph and Galien River Basins. At many sites, concentrations exceeded the level that has been shown to feminize frog populations (0.2 ppb). There were 8 sites where concentrations exceeded 0.2 ppb atrazine in May 2001 and July 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.; Blas, S.
The upper portion of Lower Three Runs includes several ponds, reservoirs, and canals that were formerly used as a cooling system for nuclear production reactors. This area was divided into nine exposure areas (EAs) for the assessment of environmental contamination resulting from past reactor operations and other industrial processes. A tiered screening process identified several contaminants of potential concern including aluminum, cyanide, lead, manganese, mercury, DDD, DDE, and DDT. Risks posed by these contaminants to ecological receptors (river otter, belted kingfisher, raccoon, and blue heron) were assessed using contaminant exposure models that estimated contaminant intake resulting from ingestion of food,more » water, and sediment/ soil and compared these intakes with toxicity reference values (TRVs). The contaminant exposure models showed that the TRVs were not exceeded in the otter model, exceeded by aluminum in EA 7 (Pond 2 and associated canals) in the raccoon model, and exceeded by mercury in EAs 2, 3 (Pond B), 6 (Par Pond), and 8 (Ponds 4 and 5 and Canal to Pond C) in both the kingfisher and blue heron models. Hazard quotients (total exposure dose divided by the TRV) were 2.8 for aluminum and 1.7- 3.6 for mercury. The primary route of exposure for aluminum was the ingestion of soil, and the primary route of exposure for mercury was the ingestion of mercury contaminated fish. Elevated levels of mercury in fish were at least partly the result of the aerial deposition of mercury onto Lower Three Runs and its watershed. The atmospheric deposition of mercury creates pervasive contamination in fish throughout the Savannah River basin. Another possible source of mercury was the discharge of mercury contaminated Savannah River water into the Lower Three Runs cooling ponds and canals during previous years of reactor operation. This contamination originated from industries located upstream of the SRS. The aluminum exceedance for the raccoon was likely the result of naturally high aluminum levels in SRS soils rather than SRS operations. Aluminum exceedances have previously been observed in relatively undisturbed background locations as well as areas affected by SRS operations. Aluminum exceedances are more likely with the raccoon than the other receptors because it consumes more soil as a result of its feeding habits. Sensitivity analysis showed that model uncertainty can be reduced by adequate sampling of key variables (e.g., fish and sediments). Although sediment samples were collected from all EAs, fish samples were not collected from three EAs and some analytes (pesticides and cyanide) were not measured in fish. Water-to-fish concentration ratios were used to estimate contaminant levels in fish when direct measurements from fish were unavailable; however, such estimates are potentially less accurate than direct measurements.« less
Manav, Ramazan; Uğur Görgün, Aysun; Filizok, Işık
2016-11-09
The pollution level of Lake Bafa was investigated by collecting fish samples { Dicentrarchus labrax (sea bass), Liza ramada (mullet) and Anguilla anguilla (eel)}, surface sediment, and core samples. In all these samples, 210 Po and 210 Pb concentrations were estimated, and total annual dose rates were obtained for each species. Some heavy metal (Cr, Ni, Pb, Cd, Mn, Fe, and Zn) concentration levels were obtained for the fish and a core sample. The sediment mass accumulation rate was found to be 3.27 g·m -2 ·day -1 (0.119 g·cm -2 ·y -1 ) from a core sample. The heavy metal concentrations in the vertical profile of samples from the core were also observed. The measured concentration of Zn, Pb, Cd, and Cr were between the ERL (effects range low) and ERM (effects range median) limits, while Ni concentrations were higher than the ERM limit. The observed concentrations of Cd, Pb, and Zn in fish samples did not exceed the limits in accordance with Turkish Food Regulations. Further, the maximum effective dose equivalent of 210 Po in the area was found to be 1.169 µSv·y -1 .
Agricultural land use doubled sediment yield of western China's rivers
NASA Astrophysics Data System (ADS)
Schmidt, A. H.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Rood, D. H.; Martin, J.; Hill, M.
2017-12-01
Land use changes, such as deforestation and agriculture, increase soil erosion rates on the scale of hillslopes and small drainage basins; however, the effects of these changes on the sediment load in larger rivers is poorly quantified, with a few studies scattered globally, and only 10 data points in the world's most populous nation, China. At 20 different sites in western China, we compare contemporary (1945-1987) fluvial sediment yield data collected daily over 4 to 26 years (median = 19 years) to long-term measures of erosion (sediment generation) based on new isotopic measurements of in situ 10Be in river sediments. We find that median sediment transport at these sites exceeds background sediment generation rates by a factor of two (from 0.13 to 5.79 times, median 1.85 times) and that contemporary sediment yield is statistically significantly different from long-term sediment yield (p < 0.05). Agricultural land use is directly and significantly proportional to the ratio of contemporary sediment yield to long term sediment generation rates (Spearman correlation coefficient rho = 0.52, p < 0.05). We support these findings by calculating erosion indices (following Brown et al., 1988), which compare the delivery of meteoric 10Be to each watershed with the export of meteoric 10Be bound to riverine sediment. Erosion indices are also directly and significantly proportional to agricultural land use (rho = 0.58, p < 0.05). We measured unsupported 210Pb and 137Cs in 130 detrital samples from throughout the region. We find that only 4 samples (those from high elevation, low relief watersheds) have detectable 137Cs and 31 samples have detectable unsupported 210Pb. The lack of 137Cs in most samples suggests high rates of erosion in the 1950s-1960s when 137Cs would have been delivered to the landscape. Detectable 210Pb in 25% of the watersheds suggests that in some areas erosion rates have slowed since that time allowing 210Pb to accumulate to measurable levels. Together, these data sets demonstrate that upstream agricultural land use has significantly increased sediment supply to rivers in western China, likely increasing turbidity and decreasing ecosystem services such as fisheries.
NASA Astrophysics Data System (ADS)
Dahri, Noura; Atoui, Abdelfattah; Ellouze, Manel; Abida, Habib
2018-04-01
This study deals with the assessment of the behaviour of seven heavy metals (Cd, Zn, Cu, Pb, Ni, Cr and As) in streambed sediments within the Gabes Catchment, located in South-eastern Tunisia. To understand the effect of intense human activities in the Gabes Basin on the quality of the environment, 22 sediment samples, spread all over the study basin, were taken and analyzed for heavy metals. Heavy metal concentrations were shown to vary in the following order: Zn > Pb > Cu > Cr > Ni > Cd > As. Sediment quality was assessed based on the evaluation of various indices. A total of 27% of the sampling stations are characterised by sediment Enrichment Factors (EF) exceeding 40, reflecting extremely severe pollution. This result was also confirmed by different indices, including Sediment Pollution Index (SPI), Pollution Load Index (PLI) and Geo-accumulation index. The calculation of Mean Effect Range-Median Quotient (M-ERM-Q) indicated that in stream discharge, all metals have a probability of 21% to be toxic. The ecological toxicity risk of heavy metals increases close to urban (traffic activity) and industrial activities (industrial complex of Gabes). Close to Gabes City, the situation and the degree of contamination that may be transferred into marine ecosystems is worrisome and requires immediate intervention.
Bretzel, Francesca; Benvenuti, Stefano; Pistelli, Laura
2014-02-01
Taraxacum officinale Weber (dandelion) is a very ubiquitous species, and it can grow in urban environments on metal-polluted sediments deposited in the gutters. This study represents a preliminary step to verify the presence of metals in sediments collected in urban streets in Pisa and to assess the alteration in dandelion metabolites in order to understand its adaptation to polluted environments. The soil and sediments were collected at three urban streets and analyzed for total and extractable Cr, Pb, Cu, Ni, and Zn. The total values of Pb and Zn in street sediments exceeded the limits for residential areas of soils. Zn was the most mobile of the metals analyzed. Floating cultivations trials were set up with dandelion seedlings and street sediments. The metals were analyzed in roots and leaves. Antioxidant power, anthocyanins, polyphenols, non-protein thiols (NP-TH) and chlorophylls were measured in dandelion leaves. The first two parameters (anthocyanins and antioxidant power) were higher in the polluted samples compared to the control; chlorophyll content was lower in the treated samples, whereas NP-TH showed no differences. NP-TH groups determined in roots were associated with the root content of Zn and Pb. These results indicate that dandelion can tolerate plant stress by altering its metabolite content.
Chen, Qianqian; Liu, Xiaodong; Xu, Liqiang; Sun, Liguang; Yan, Hong; Liu, Yi; Luo, Yuhan; Huang, Jing
2012-08-01
This study determined the distribution and main source of methylmercury in ornithogenic coral sand sediments and pure guano collected from Guangjin and Jinqing islets of the South China Sea. Results showed that the levels of methylmercury (MeHg) and total mercury (THg), as well as the percentage of MeHg relative to THg (%MeHg), are high in both fresh and ancient guano samples. %MeHg in ancient guano exceeded 70 %, much greater than that in fresh seabird droppings (~45 %). These results suggest that excretion through feces likely plays an important role in the cycling of MeHg by seabirds. Guano has been identified as the major source of MeHg in the ornithogenic coral sand sediments in the Xisha Islands. The close relationship between MeHg and guano-derived phosphorus has weakened considerably since 1840 AD. This is probably caused by a significant increase in THg and MeHg in modern guano samples due to the recent increase of Hg pollution. %MeHg in the ornithogenic coral sand sediments is extremely high, ranging from 10 to 30 % (average 20 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichelt-Brushett, Amanda J., E-mail: amanda.reich
Artisanal small-scale gold mining (ASGM) using mercury (Hg) amalgamation has been occurring on Buru Island, Indonesia since early 2012, and has caused rapid accumulation of high Hg concentrations in river, estuary and marine sediments. In this study, sediment samples were collected from several sites downstream of the Mount Botak ASGM site, as well as in the vicinity of the more recently established site at Gogrea where no sampling had previously been completed. All sediment samples had total Hg (THg) concentrations exceeding Indonesian sediment quality guidelines and were up to 82 times this limit at one estuary site. The geochemistry ofmore » sediments in receiving environments indicates the potential for Hg-methylation to form highly bioavailable Hg species. To assess the current contamination threat from consumption of local seafood, samples of fish, molluscs and crustaceans were collected from the Namlea fish market and analysed for THg concentrations. The majority of edible tissue samples had elevated THg concentrations, which raises concerns for food safety. This study shows that river, estuary and marine ecosystems downstream of ASGM operations on Buru Island are exposed to dangerously high Hg concentrations, which are impacting aquatic food chains, and fisheries resources. Considering the high dietary dependence on marine protein in the associated community and across the Mollucas Province, and the short time period since ASGM operations commenced in this region, the results warrant urgent further investigation, risk mitigation, and community education. - Highlights: • Mercury contamination of sediments and seafood due to artisanal gold mining. • Considerable risks to human and ecosystem health are identified. • Results emphasise the urgent need for risk mitigation and community education.« less
Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas
2003-01-01
In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life. Data collected by the NIWQP studies indicated that, in surface water, filtered and unfiltered samples had nearly the same concentrations of arsenic, boron, molybdenum, and selenium for concentrations greater than about 10 micrograms per liter. Therefore, in this concentration range, filtered concentrations can be directly compared to biological-effect levels developed for unfiltered samples. In the range of 1 to 10 micrograms per liter there may be a tendency for unfiltered arsenic concentrations to be greater than filtered concentrations. For selenium, however, the data suggest differences from equality in that range result from analytical imprecision and not a general tendency for unfiltered concentrations to be greater than filtered concentrations. This relation may not be true in lentic, nutrient-rich waters because in such settings algae can bioaccumulate large amounts of selenium and other trace elements. Selenium was the trace element in surface water that most commonly exceeded chronic criteria for the protection of freshwater aquatic life; more than 40 percent of the selenium concentrations in surface-water samples exceeded the U.S. Environmental Protection Agency (USEPA) aquatic-life chronic criterion (5 micrograms per liter). In 12 of the 26 areas at least 25 percent of the surface water-samples had selenium concentrations that either equaled or exceeded the chronic criterion (5 micrograms per liter). More than 28 percent of boron concentrations and almost 17 percent of the molybdenum concentrations exceeded the aquatic life criteria established by the State of California (550 and 19 micrograms per liter, respectively). In ground water, more than 22 percent of the arsenic concentrations and more than 35 percent of the selenium concentrations exceeded the MCL (10 and 50 micrograms per liter, respectively). Few samples of uranium in surface water exceeded a criterion for the protection of aquatic life (300 micrograms per liter), but 44 percent
Lee, Kenneth; Wohlgeschaffen, Gary; Tremblay, Gilles H.; Johnson, B. Thomas; Sergy, Gary A.; Prince, Roger C.; Guenette, Chantal C.; Owens, Edward H.
2003-01-01
Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery––no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56′ N, 16°45′ E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.
Okoh, A. I.
2017-01-01
Petroleum hydrocarbon status of the Buffalo River Estuary in East London, South Africa, was evaluated from January to May, 2016. Surface water and sediment samples were collected from five points in the estuary and extracted using standard methods. The extracts were subsequently analyzed by gas chromatography-flame ionization detection. Results showed that total petroleum hydrocarbon (TPH) varied from 7.65 to 477 μg/L in the water and 12.59 to 1,100 mg/kg in the sediments, with mean values of 146.50 ± 27.96 μg/L and 209.81 ± 63.82 mg/kg, respectively. Concentrations of TPH in the sediments correlated significantly with organic carbon (OC) in both seasons. TPH and OC levels were slightly lower in summer than in autumn in the two environmental matrices, and the average amount of TPH in the water samples collected from all the sampling stations was generally lower than the EU standard limit of 300 μg/L. However, the levels in the sediments exceeded the EGASPIN target value (50 mg/kg) for mineral oil but were below the intervention value (5,000 mg/kg), indicating a serious impact of industrial growth and urbanization on the area, although the n-alkane ratios and indexes used for source tracking revealed excessive flow from both natural and anthropogenic sources. PMID:28638675
Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson
2014-05-14
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.
2010-01-01
This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity. ?? 2010 Springer Science+Business Media, LLC.
Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.
1996-01-01
Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other invertebrates. Concentrations of other elements were below their respective toxicity levels. Plants, invertebrates, fish, and fish fillets were collected and analyzed. These analyses were compared to diagnostic criteria and to each other to determine the extent of bioaccumulation of trace elements. Plants contained larger dry weight concentrations of aluminum, arsenic, boron, chromium, iron, lead, magnesium, manganese, nickel, and vanadium than invertebrates and fish. Adult brine flies, gathered from playas, contained larger geometric mean dry weight concentrations of boron, magnesium, and selenium than other invertebrates. Of all samples collected, the largest mercury concentrations were found in fish fillets, although these concentrations were below levels of concern. Mercury and selenium bioaccumulation was evident in various habitats of the study area. Biological samples from Natural playa, an endemic wetland, and Half playa, a playa that receives additional water through seepage and irrigation delivery canals, generally had elevated concentrations of boron, iron, magnesium, and selenium than samples from reservoir and river sites. Selenium concentrations were lowest in biota from the two reservoir sites, although a wetland immediately downstream from the dam impounding Lake No. 13 (created by seepage from the reservoir) had elevated concentrations of selenium in biota. The geometric mean selenium concentration of whole-fish samples, except those from Lakes No. 13 and No. 14, exceeded the 5-mg/g dry weight selenium concentration that demarcates the approximate lower limit of the threshold range of concentrations that have been associated with adverse effects on piscine reproduction. Biota collected on and in the area around Maxwell National Wildlife Refuge contained concentrations of selenium that are in the low
Marine sediment sample preparation for analysis for low concentrations of fine detrital gold
Clifton, H. Edward; Hubert, Arthur; Phillips, R. Lawrence
1967-01-01
Analyses by atomic absorption for detrital gold in more than 2,000 beach, offshore, marine-terrace, and alluvial sands from southern Oregon have shown that the values determined from raw or unconcentrated sediment containing small amounts of gold are neither reproducible nor representative of the initial sample. This difficulty results from a 'particle sparsity effect', whereby the analysis for gold in a given sample depends more upon the occurrence of random flakes of gold in the analyzed portion than upon the actual gold content of the sample. The particle sparsity effect can largely be eliminated by preparing a gold concentrate prior to analysis. A combination of sieve, gravimetric, and magnetic separation produces a satisfactory concentrate that yields accurate and reproducible analyses. In concentrates of nearly every marine and beach sand studied, the gold occurs in the nonmagnetic fraction smaller than 0.124 mm and with a specific gravity greater than 3.3. The grain size of gold in stream sediments is somewhat more variable. Analysis of concentrates provides a means of greatly increasing the sensitivity of the analytical technique in relation to the initial sample. Gold rarely exceeds 1 part per million in even the richest black sand analyzed; to establish the distribution of gold (and platinum) in marine sediments and its relationship to source and environmental factors, one commonly needs to know their content to the part per billion range. Analysis of a concentrate and recalculation to the value in the initial sample permits this degree of sensitivity.
Usero, José Antonio; Rosado, Daniel; Usero, José; Morillo, José
2016-09-15
This research applies an integrated sediment quality assessment method using a weight of evidence approach to Cadiz and Algeciras Bays (southern Spain). The method is composed of several analyses (particle size profile, aqua regia extractable metals, acid labile metals, total organic carbon, toxicity bioassay with Photobacterium phosphoreum and macrobenthic community alteration). The proposed method provides a single result, the environmental degradation index (EDI). EDI defined samples as low degraded (outer areas of both bays) and moderately degraded (Inner Bay of Cadiz Bay, the surroundings of Algeciras port and the northern part of Algeciras Bay). These samples showed the highest concentration of aqua regia extractable metals, which exceeded effects range-low (ERL) for Zn (51-176mg/l), Cu (11-54mg/l), As (4.3-9.5mg/l), Hg (0.17-0.28mg/l), Ni (23-82mg/l), and. Cr (37-134mg/l). They also exceeded some quality criteria for total organic carbon (4.0-6.5%) and toxicity (120-240TU/g) and showed poor results for macrobenthic community. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ouali, Naouel; Belabed, Bourhane-Eddine; Chenchouni, Haroun
2018-05-18
Heavy metals are a serious hazard for aquatic ecosystems and human health. They negatively affect aquatic life functioning through accumulation resulting physiological/growth disturbances in aquatic lifeforms. This survey focused on the assessment of heavy metal pollution in the Gulf of Annaba (northeastern Algeria), the largest and most diversified industrial hub in Africa, using a multi-compartment approach (water-sediment-biota). The study aims to characterize the spatiotemporal variation of trace metal (TM) contamination and its effects on the growth of the Flathead grey mullet (Mugil cephalus). It reviewed TM concentrations in upper sediments and organs of M. cephalus from various hydrosystems worldwide. Five sites distributed along the Gulf were sampled to determine water physicochemical parameters as well as the contamination of surficial sediments and muscles of M. cephalus by zinc, copper, lead, cadmium and mercury. The spatiotemporal variations of the measured parameters were tested and discussed following the synergetic effects of water, sediment and muscle variables on fish biometrics. The sediments at the Port, Joinoville and Sidi-Salem sites were classified as heavily polluted by lead, copper, zinc and cadmium, whereas only at the Port by mercury. Muscular lead concentrations exceeded international standard values in Joinoville and Port, and zinc in Port. The increase of water dissolved oxygen induced a significant decrease in sediment TM. The increase of sediment TM caused a significant increase in muscle TM levels. The S-shaped logistic models indicated that muscle contaminations reached a saturation plateaus following the current sediment pollution. TM concentrations in fish muscles negatively affected fish weight, but only copper and cadmium significantly influenced fish length. The consumption of fish from the Port, Joinoville and Sidi-Salem can be dangerous because concentrations of lead, zinc and cadmium exceeded the international standards. This study validates the effectiveness of biomonitoring using M. cephalus as bioindicator in polluted coasts. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Guoqiang; Hu, Xinqi; Zhu, Yi; Jiang, Hong; Wang, Hongqi
2018-06-21
Heavy metal contamination in sediments is progressively being recognized as a challenging problem in large parts of the developing world, particularly in Asian countries. A drinking water lake in Yunnan-Guizhou plateau, China named Hongfeng Lake was selected as the research target. Forty surface sediment samples and 4 sediment cores were collected to reveal the accumulation of heavy metals in the sediments of the lake. The mean concentrations of Cr, Cu, Pb, Cd, As, and Hg in surface sediments were 81.67, 45.61, 29.78, 0.53, 22.71, and 0.25 mg/kg, respectively, which exceeded the background levels of sediment 1.1~3.3 times. The calculation of geoaccumulation (I geo ) and potential ecological risk (PER) index analysis were preformed, and the results showed a considerable risk for Cd and Hg on the whole. Spatially, the northern part showed a higher risk than the southern part and tributaries of the lake, and a moderate risk in the overall sediment of the lake. The historical level of heavy metals in Hongfeng Lake was traced by vertical sediments study and it was dated back approximately 35 years. The EF trends of a feature sampling site HF8 showed strong temporal variations, and peaked in the year 1995. After that, the EFs exhibited a declining trend, which reflects productive environmental protection and management by the local government. For the Hongfeng Lake, a typical lake with heavy metal-contaminated sediments, the in-situ remediation technique could be a suitable method for its remediation.
Geomorphological assessment of sediment contamination in an urban stream system
Rhoads, B.L.; Cahill, R.A.
1999-01-01
Little is known about the influence of fluvial-geomorphological features on the dispersal of sediment-related contaminants in urban drainage systems. This study investigates the relation between reach-scale geomorphological conditions and network-scale patterns of trace-element concentrations in a partially urbanized stream system in East-Central Illinois, USA Robust statistical analysis of bulk sediment samples reveals levels of Cr, Cu, Pb, Ni, and Zn exceed contamination thresholds in the portion of the watershed in close proximity to potential sources of pollution-in this case storm-sewer outfalls. Although trace-element concentrations decrease rapidly downstream from these sources, substantial local variability in metal levels exists within contaminated reaches. This local variability is related to reach-scale variation in fluvial-geomorphic conditions, which in turn produces variation in the degree of sorting and organic-matter content of bed material. Metal concentrations at contaminated sites also exhibit considerable variability over time. Analytical tests on specific size fractions of material collected at a highly contaminated site indicate that Cr and Ni are concentrated in the 0.063 to 0.250 mm fraction of the sediment. This fraction also has elevated concentration of Zr. SEM analysis shows that the fine sand fraction contains shards of stainless steel within a matrix of zircon sand, an industrial material associated with a nearby alloy casting operation. Samples of suspended load and bedload at the contaminated site also have elevated amounts of trace metals, but concentrations of Ni and Cr in the bedload are less than concentrations in the bed material, suggesting that these trace elements are relatively immobile. Off the other hand, amounts of CU and Zn in the bedload exceed concentrations in the bed material, implying that these trace metals are preferentially mobilized during transport events.
Boron in Pariette Wetland Sediments, Aquatic Vegetation & Benthic Organisms
NASA Astrophysics Data System (ADS)
Vasudeva, P.; Jones, C. P.; Powelson, D.; Jacobson, A. R.
2015-12-01
The Pariette Wetlands are comprised of 20 ponds located in Utah's Uintah Basin. Boron concentration in the Pariette Wetlands have been observed to exceed the total maximum daily limit of 750 µg L-1. Considering water flow in and out of the wetlands, boron is accumulating within the wetlands where it is sorbed to sediments and bioconcentrated by wetland plant and macro invertebrates. Since boron is an avian teratogen, an estimate of boron ingestion exposure is warranted. Samples from 3 of the 23 Pariette Wetland ponds with one pond near the inlet, one near the outlet, and one in the middle were collected. Five sampling points were designated along a 100 m transect of each pond. At each sampling point duplicate (or triplicate) samples of water, sediments, benthic organisms and wetland vegetation were collected. The sediments were collected with a KB-corer and divided at depths of 0-2 cm, 2-7 cm, and 7+ cm from the sediment surface. Sample splits were sent to the USU Bug lab for identification of invertebrate species. Whenever this transect was not intercepting vegetation, 2-3 additional sample sites were identified at the pond within stands of representative vegetation where bird nests are located. The plant parts used for boron analyses will include seeds, shoot and roots of vascular plants, as well as algae or duckweeds skimmed from the surface. Samples were processed within 2 days of collection. Water samples filtered through a 0.45 μ membrane filter were analyzed for DOC, pH and ECe. The dried and washed vegetation samples were ground and stored. The benthic organisms and macro invertebrates were netted at the water surface. The dried samples were weighed, ground and stored. Samples were weighed, oven dried and reweighed. For plant and macro-invertebrate samples, a nitric and hydrogen peroxide digestion procedure is used to dissolve environmentally available elements. The Hot Water extraction and DTPA-Sorbitol extraction were compared to estimate wetland plant available boron in the sediments. Boron in water, soil/sediment extracts and digested plant materials was analyzed by Azomethine-H colorimetric method. Additional Sample Characterization Analyses were conducted to interpret results and explain differences in the fate of boron among the sample sites.
Assessment of grass root effects on soil piping in sandy soils using the pinhole test
NASA Astrophysics Data System (ADS)
Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean
2017-10-01
Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.
Stevens, Michael R.
2001-01-01
The Guanella Pass road, located about 40 miles west of Denver, Colorado, between the towns of Georgetown and Grant, has been designated a scenic byway and is being considered for reconstruction. The purpose of this report is to present an assessment of hydrologic and water-quality conditions in the Guanella Pass area and provide baseline data for evaluation of the effects of the proposed road reconstruction. The data were collected during water years 1995-97 (October 1, 1995, to September 30, 1997).Based on Colorado water-quality standards, current surface-water quality near Guanella Pass road was generally acceptable for specified use classifications of recreation, water supply, agriculture, and aquatic life. Streams had small concentrations of dissolved solids, nutrients, trace elements, and suspended sediment. An exception was upper Geneva Creek, which was acidic and had relatively large concentrations of iron, zinc, and other trace elements related to acid-sulfate weathering. Concentrations of many water-quality constituents, especially particle-related phases and suspended sediment, increased during peak snowmelt and rainstorm events and decreased to prerunoff concentrations at the end of runoff periods. Some dissolved (filtered) trace-element loads in Geneva Creek decreased during rainstorms when total recoverable loads remained generally static or increased, indicating a phase change that might be explained by adsorption of trace elements to suspended sediment during storm runoff.Total recoverable iron and dissolved zinc exceeded Colorado stream-water-quality standards most frequently. Exceedances for iron generally occurred during periods of high suspended-sediment transport in several streams. Zinc standards were exceeded in about one-half the samples collected in Geneva Creek 1.5 miles upstream from Grant.Lake-water quality was generally similar to that of area streams. Nitrogen and phosphorus ratios calculated for Clear and Duck Lakes indicated that phytoplankton in the lakes were probably phosphorus-limited. Measures of trophic status (secchi depth, total phosphorus, and chlorophyll-a) indicated that Duck and Clear Lakes were oligotrophic in 1997.Ground water had relatively low specific conductance (range 24 to 584 microsiemens per centimeter) and did not exceed U.S. Environmental Protection Agency drinking-water standards, except for samples collected from a single well, which exceeded the Proposed Maximum Contaminant Level for uranium.Runoff from the Guanella Pass road enters streams through surface channels connected to culverts and roadside ditches. Fifty-six percent of the total number of culvert and roadside-ditch drainage features on the Guanella Pass road showed evidence of recent surface runoff connection to an adjacent stream. Road runoff is generated during snowmelt and during summer rainstorms.At a road cross-drain culvert monitored continuously for discharge (water years 1996-97), most runoff (77 to 96 percent) was a result of snowmelt, and runoff from the road preceded the basinwide peak streamflow, resulting in sediment and water-quality constituent inputs to the stream when the stream?s capacity for dilution of the road runoff was low. Specific conductance of road-runoff samples ranged from 14 to 468 microsiemens per centimeter. Major-ion composition of some samples indicated effects from deicing salt (sodium chloride) and dust inhibitor (magnesium chloride) applied to sections of the road, but changes in the stream concentrations that might be attributed to the runoff were brief and relatively small.Nutrients were commonly measured in road-runoff samples at larger concentrations than in streamflow. Concentrations of nitrate and ammonia, especially during rainfall-generated road runoff, were more similar to the concentrations in precipitation than to the concentrations in stream water. Concentrations of ammonia plus organic nitrogen (total as N) (range less than 0.2 to 24 milligrams per liter) and t
Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.
Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R
2014-05-15
Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carnahan, E.A.; Hoare, A.M.; Hallock, P.; Lidz, B.H.; Reich, C.D.
2008-01-01
Heavy-metal pollution is an issue of concern in estuaries influenced by agriculture, urban, and harbor activities. Foraminiferal assemblages have been shown to be effective indicators of pollution. Sediment samples (n = 110) from Biscayne Bay were analyzed for heavy metals, foraminiferal assemblages, and grain-size distribution. Highest Cu, Zn, Cr, Hg, Pb, and Ni concentrations were found closest to Miami and near the mouths of several canals along the western margin of the bay. Few samples exceeded limits of possible biological effects as defined by previous studies. Ammonia and Cribroelphidium, two known stress-tolerant genera, correlated positively with Cu, Zn, Hg, and Ni (r ??? 0.43). Symbiont-bearing foraminifers, Archaias, Laevipeneroplis, and Androsina, correlated negatively with Cu, Zn, Hg, and Ni (r ??? -0.26).
Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana
2015-06-01
The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.
Fitzpatrick, Faith A.; Arnold, Terri L.; Colman, John A.
1998-01-01
Geochemical data for the upper Illinois River Basin are presented for concentrations of 39 elements in streambed sediment collected by the U.S. Geological Survey in the fall of 1987. These data were collected as part of the pilot phase of the National Water-Quality Assessment Program. A total of 372 sites were sampled, with 238 sites located on first- and second-order streams, and 134 sites located on main stems. Spatial distribution maps and exceedance probability plots are presented for aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, carbon (total, inorganic, and organic), cerium, chromium, cobalt, copper, gallium, iron, lanthanum, lead, lithium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, niobium, phosphorus, potassium, scandium, selenium, silver, sodium, strontium, sulfur, thorium, titanium, uranium, vanadium, yttrium, and zinc. For spatial distribution maps, concentrations of the elements are grouped into four ranges bounded by the minimum concentration, the 10th, 50th, and 90th percentiles, and the maximum concentrations. These ranges were selected to highlight streambed sediment with very low or very high element concentrations relative to the rest of the streambed sediment in the upper Illinois River Basin. Exceedance probability plots for each element display the differences, if any, in distributions between high- and low-order streams and may be helpful in determining differences between background and elevated concentrations.
Etheridge, Alexandra B.
2015-12-07
Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.
A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia.
Cukrov, Neven; Frančišković-Bilinski, Stanislav; Hlača, Bojan; Barišić, Delko
2011-01-01
We studied metal pollution in the sediments of Rijeka harbor, including anthropogenic influence during recent decades and at the present time. Sediment profiles were collected at ten sampling points. The concentrations of 63 elements in bulk sediment were obtained using ICP-MS, and the concentrations of selected elements were evaluated by statistical factor analyses. We also calculated metal-enrichment factors and geoaccumulation indices and constructed spatial-distribution maps. Mercury (Hg) was the heaviest pollutant, with concentrations exceeding 4 mg/kg. Silver (Ag) was the second most important pollutant, with constantly increasing values. The average concentrations of the most toxic elements were comparable to those found in sediments of other ports throughout the world, and their toxicity ranged from threshold values [chromium (Cr), arsenic (As)] and midrange-effect values [cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni)] to extreme-effect values (Hg). Metal pollution has decreased during recent decades, except for Ag and barium (Ba). Copyright © 2010 Elsevier Ltd. All rights reserved.
Pérez-Tribouillier, Habacuc; Shumilin, Evgueni; Rodríguez-Figueroa, Griselda Margarita
2015-07-01
To determine the actual concentrations of trace elements in surface sediments from the La Paz Lagoon, as well as their associations and possible origins, 91 sediment samples were analyzed for more than 50 elements using a combination of ICP-MS and ICP-AES. The results of a principal component analysis are used to distinguish four associative groups within the elements. Natural enrichment of As, Cd and U occurs due to the supply of weathered phosphorites from the El Cien formation located to the north-west of the lagoon. Sediment quality indices for potentially toxic trace elements do not show any probable impact on the biota of the lagoon. Only the concentrations of As in 30 % of the stations and Cu in 20 % of them exceed related effect range low levels. The highest concentration of Pb (36.8 mg kg(-1)) was measured in the sediments near the City of La Paz.
Water and bed-sediment quality in the vicinity of Berlin Lake, Ohio, 2001
Darner, Robert A.
2002-01-01
Berlin Lake, in northeast Ohio, was created by the U.S. Army Corps of Engineers in 1943 and is used primarily for flood control for the upper reaches of the Mahoning River. The area surrounding and under the lake has been tapped for oil and natural gas production. One of the by-products of oil and gas production is concentrated salt water or brine, which might have an effect on the chemical quality of area potable-water sources. This report presents the results of a U.S. Geological Survey baseline study to collect current (2001) water and sediment-quality data and to characterize water quality in the Berlin Lake watershed. Chloride-to-bromide ratios were used to detect the presence of brine in water samples and to indicate possible adverse effects on water quality. Analyses of ground-water samples from domestic wells in the area indicate a source of chloride and bromide, but defining the source would require more data collection. Analyses of specific conductance and dissolved solids indicate that 78 percent (14 of 18) of the ground-water samples exceeded the Secondary Maximum Contaminant Level for dissolved solids in public water supplies of 500 milligrams per liter (mg/L), compared to 6 percent of samples exceeding 500 mg/L in two nearby studies. Surface water was analyzed twice, once each during low-flow and surface runoff conditions. A comparison of the 2001 data to historical chloride concentrations, accounting for seasonal changes, does not indicate an increase in chloride loads for surface water in the area of Berlin Lake. Polycyclic aromatic hydrocarbons were found in bed-sediment samples collected from the mouths of major tributaries to Berlin Lake. Polycyclic aromatic hydrocarbons are produced during the incomplete combustion of organic carbon materials such as wood and fossil fuels, and they are components of petroleum products.
Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy
2015-01-01
Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.
Sneck-Fahrer, Debra A.; East, Jeffery W.
2007-01-01
The U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, collected water-quality, stream-habitat, and biological data from six sites (downstream order M6-M1) primarily in Brazoria County southeast of Houston, Texas, during September 2004-August 2005 and collected bed sediment data from one site in September 2005. Water-quality data collection consisted of continuously monitored (for periods of 24 hours to several days, six times) water temperature, pH, specific conductance, and dissolved oxygen and periodically collected samples of several properties and constituents. Monitored dissolved oxygen measurements were below minimum and 24-hour criteria at all sites except M2. Nitrogen compounds, phosphorus, biochemical oxygen demand, chlorophyll-a, E. coli, chloride, sulfate, solids, suspended sediment concentration, and pesticides were assessed at all sites. Concentrations of nitrogen compounds and phosphorus did not exceed Texas State screening levels. Biochemical oxygen demand was less than 4.0 milligrams per liter at all sites except M6, where the maximum concentration was 8.1 milligrams per liter. Concentrations of chlorophyll-a were less than the State screening level at all sites except M6, where four of eight samples equaled or exceeded the screening level. Twenty of 48 samples from Mustang Bayou had E. coli densities that exceeded the State single-sample water-quality standard. Median chloride concentrations from each site were between 42.2 and 123 milligrams per liter. Fifteen pesticide compounds (six herbicides and nine insecticides) were detected in 24 water samples. The most frequently detected pesticide was atrazine, which was found in every sample. Other frequently detected pesticides were 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT), prometon, tebuthiuron, fipronil, and the pesticide degradates, fipronil sulfide and fipronil sulfone. Sediment samples were collected from the stream bottom at M1 and analyzed for concentrations of trace elements (metals), polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. No organochlorine pesticides or polychlorinated biphenyls were detected. No concentrations of metals exceeded State screening levels. Measurable concentrations of 11 polycyclic aromatic hydrocarbon (PAH) compounds were detected, and three other PAH compounds were detected but not quantified by the laboratory. Stream habitat and aquatic biota (benthic macroinvertebrates and fish) were surveyed at each site three times during the study to evaluate aquatic life use. Characteristics of habitat measured during each survey were scored using a habitat quality index. Average aquatic-life-use scores were 'limited' for M3-M6 and 'intermediate' for M1 and M2. A total of 2,557 macroinvertebrate individuals were identified from Mustang Bayou. Benthic macroinvertebrate assemblages were scored using indexes specified by the Texas Commission on Environmental Quality. Average aquatic-life-use scores were 'limited' at M1, 'intermediate' at M3-M6, and 'high' at M2. Forty-six species of fish representing 20 families were collected from Mustang Bayou. A total of 4,115 fish were collected. Sunfish (Centrarchidae) was the most abundant family, accounting for about 28 percent. Aquatic-life-use scores at sites in Mustang Bayou were determined using the regional index of biotic integrity for ecoregion 34 and were 'high' for all sites.
Juracek, Kyle E.; Becker, Mark F.
2009-01-01
After over 100 years of continuous activity, lead and zinc mining in the Tri-State Mining District (hereafter referred to as the TSMD) in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma ended in the 1970s. The mining activity resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Grand Lake O' the Cherokees (hereafter referred to as Grand Lake), a large reservoir in northeast Oklahoma. To help determine the extent and magnitude of contamination in Grand Lake, a one-year study was conducted by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service. Bottom-sediment coring at five sites was used to investigate the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Grand Lake. Cadmium concentrations in the bottom sediment of Grand Lake ranged from 2.3 to 3.6 mg/kg (milligrams per kilogram) with a median of 3.5 mg/kg (5 samples). Compared to an estimated local background concentration of 0.6 mg/kg, the historical mining activity increased cadmium concentrations by about 280 to 500 percent. Lead concentrations ranged from 35 to 102 mg/kg with a median of 59 mg/kg (50 samples). Compared to an estimated local background concentration of 20 mg/kg, the historical mining activity increased lead concentrations by about 75 to 410 percent. The range in zinc concentrations was 380 to 986 mg/kg with a median of 765 mg/kg (50 samples). Compared to an estimated local background concentration of 100 mg/kg, the historical mining activity increased zinc concentrations by about 280 to 890 percent. With the exception of the most upstream coring site, the lead and zinc depositional profiles generally were similar in terms of the range in concentrations measured and the temporal pattern observed. Depositional profiles for lead and zinc indicated mid-core peaks followed by concentrations that decreased since about the 1980s. The depositional profiles reflect the complex interaction of several factors including historical mining and related activities, mine drainage, remediation, landscape stabilization, precipitation and associated runoff, and the erosion and transport of contaminated and clean sediments within the basin. Compared to sediment-quality guidelines, the Grand Lake samples had cadmium concentrations that were substantially less than the general probable-effects concentration (PEC) (4.98 mg/kg) and a TSMD-specific PEC (11.1 mg/kg). The PECs represent the concentration above which toxic biological effects are likely to occur. Likewise, all sediment samples had lead concentrations that were substantially less than the general PEC (128 mg/kg) and a TSMD-specific PEC (150 mg/kg). Zinc concentrations typically exceeded the general PEC (459 mg/kg), but were substantially less than a TSMD-specific PEC (2,083 mg/kg). Throughout the history of Grand Lake, lead and zinc concentrations in the deposited sediment did not approach or exceed the TSMD-specific PECs. As of 2008, legacy effects of mining still included the delivery of contaminated sediment to Grand Lake by the Spring and Neosho Rivers. The Neosho River, with its larger flows and less-contaminated sediment, likely dilutes the load of contaminated sediment delivered to Grand Lake by the Spring River. The information contained in this report provides a baseline of Grand Lake conditions with which to compare future conditions that may represent a response to changes in mining-related activity in the Grand Lake Basin.
Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming
2018-05-01
Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.
Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water
NASA Astrophysics Data System (ADS)
El-Tahawy, M. S.; Farouk, M. A.; Ibrahiem, N. M.; El-Mongey, S. A. M.
1994-07-01
Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238U series, 232Th series and 40K did not exceed 16.0, 15.5 and 500.0 Bq kg-1 dry weight for sediments. The activity concentration of 238U series and 40K did not exceed 0.6 and 18.0 Bq 1-1 for stream water.
Wulff, Marissa L.; Brown, Larry R.
2015-01-01
After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin, and results for copper exceeded the U.S. Environmental Protection Agency Office of Pesticide Programs' aquatic-life chronic and acute benchmarks for invertebrates. One sediment sample contained detections of pyrethroid pesticides bifenthrin, lambda-cyhalothrin, and total permethrin at concentrations above published chronic toxicity thresholds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Payne, G.A.
1994-01-01
The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.
McPherson, Ann K.; Abrahamsen, Thomas A.; Journey, Celeste A.
2002-01-01
The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of highly intensive residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham?Fivemile Creek and Little Cahaba River, both of which drain less-urbanized areas. Stream samples were analyzed for major ions, nutrients, fecal bacteria, trace and major elements, pesticides, and selected organic constituents. Bed-sediment and fish-tissue samples were analyzed for trace and major elements, pesticides, polychlorinated biphenyls, and additional organic compounds. Aquatic-community structure was evaluated by conducting one survey of the fish community and in-stream habitat and two surveys of the benthic-invertebrate community. Bed-sediment and fish-tissue samples, benthic-invertebrates, and habitat data were collected between June 2000 and October 2000 at six of the nine water-quality sites; fish communities were evaluated in April and May 2001 at the six sites where habitat and benthic-invertebrate data were collected. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. The structure of the aquatic communities, the physical condition of the fish, and the chemical analyses of fish tissue provided an indication of the cumulative effects of water quality on the aquatic biota. Water chemistry was similar at all sites, characterized by strong calcium-bicarbonate component and magnesium components. Median concentrations of total nitrogen and total phosphorus were highest at the headwaters of Valley Creek and lowest at the reference site on Fivemile Creek. In Village Creek, median concentrations of nitrite and ammonia increased in a downstream direction. In Valley Creek, median concentrations of nitrate, nitrite, ammonia, organic nitrogen, suspended phosphorus, and orthophosphate decreased in a downstream direction. Median concentrations of Escherichia coli and fecal coliform bacteria were highest at the most upstream site of Valley Creek and lowest at the reference site on Fivemile Creek. Concentrations of enterococci exceeded the U.S. Environmental Protection Agency criterion in 80 percent of the samples; concentrations of Escherichia coli exceeded the criterion in 56 percent of the samples. Concentrations of bacteria at the downstream sites on Village and Valley Creeks were elevated during high flow rather than low flow, indicating the presence of nonpoint sources. Surface-water samples were analyzed for chemical compounds that are commonly found in wastewater and urban runoff. The median number of wastewater indicators was highest at the most upstream site on Valley Creek and lowest at the reference site on Fivemile Creek. Concentrations of total recoverable cadmium, copper, lead, and zinc in surface water exceeded acute and chronic aquatic life criteria in up to 24 percent of the samples that were analyzed for trace and major elements. High concentrations of trace and major elements in the water column were detected most frequently during high flow, indicating the presence of nonpoint sources. Of the 24 pesticides detected in surface water, 17 were herbicides and 7 were insecticides. Atrazine, simazine, and prometon were the most commonly detected herbicides; diazinon, chlorpyrifos, and carbaryl were the most commonly detected insecticides. Concentrations of atrazine, carbaryl, chlorpyrifos, diazinon, and malathion periodically exceeded criteria for the protection of aquatic life. Trace-element priority pollutants, pesticides, and other organic compounds were detected in higher concentrations in bed sediment at the Village and Valley Creek sites t
Butler, D.L.; Osmundson, B.C.; Krueger, R.P.
1997-01-01
A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in theenvironment; however, waterfowl were reproducing at the two ponds. Three tributary streams of Mc Elmo Creek that drain irrigated areas of the Montezuma Valley south of the creek were sampled in 1994. Mud Creek probably is the largest source of selenium to Mc Elmo Creek. Most biota samples from Mud Creek had elevated selenium concentrations when compared to guidelines for dietary items and freshwater fish. Selenium concentrations in water samples collected in the Mancos River Basin upstream from Navajo Wash, which includes the Mancos Project, ranged from less than 1 to 10 micrograms per liter. Mud Creek contributed about 74 percent of the selenium load to the upper Mancos River in March 1994.Selenium concentrations were much higher in Navajo Wash; a sample collected in March had 97 micrograms per liter of selenium. Bottom-sediment samples from two ponds in the Mancos Projectexceeded the concentration of concern of 4 micrograms per gram. The highest selenium concentrations in biota samples from streams in the Mancos River Basin were for samples from Navajo Wash. Mostconcentrations in biota in the upper Mancos River Basin were less than guidelines. Mean selenium concentrations in eggs from aquatic birds collected at three ponds in the Mancos Project slightly exceed the guideline associated with reduced hatchability.Five bird livers had a mean selenium concentration of 32.6 micrograms per gram dry weight, whichslightly exceeded the mean concentration of 30 micrograms per gram dry weight that is associated with reproductive impairment. Two of the pondshad a high selenium hazard rating; however, mallard reproduction was observed in 1994 at one of the ponds that had a high selenium-hazard rating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauziah, Faiza, E-mail: faiza.fauziah@gmail.com; Choesin, Devi N., E-mail: faiza.fauziah@gmail.com
2014-03-24
Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At eachmore » station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO{sub 3} acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing)« less
Kim, Sunmi; Lee, Sangwoo; Kim, Cheolmin; Liu, Xiaoshan; Seo, Jihyun; Jung, Hyorin; Ji, Kyunghee; Hong, Seongjin; Park, Jinsoon; Khim, Jong Seong; Yoon, Seokmin; Lee, Woojin; Park, Jeongim; Choi, Kyungho
2014-02-01
The influence of industrial and/or municipal contaminant inputs on the aquatic environment of Pohang, Korea was investigated, with a focus on bioassay combined with instrumental analysis. Pohang is the most heavily populated city in Gyeongsangbuk-do province of Korea, with more than half a million residents, and also hosts the nation's biggest steel manufacturer and related industries. Sediment (n=15) and surface water samples (n=17) were collected from Hyeongsan River which runs across the Pohang city, in two separate events, i.e., June 2010 and February 2011. Sediment samples were first Soxhlet-extracted (raw extract) and were measured for estrogenicity using H295R cell line, and also analyzed for alkylphenols (APs), bisphenol A (BPA), PAHs, and PCBs. For sediment samples which exhibited greatest effects in the cell line, further fractionation was performed into non-polar, mid-polar, and polar portions. In surface water samples, heavy metals were also analyzed. Among 15 sediment samples, station S2 near the steel industry complex and station M3 near the municipal area showed the greatest sex hormone changes, and these changes were generally explained by the fractions which contained APs and BPA. Principal component analysis (PCA) however suggests that chemicals that were not analyzed in the present study would better explain endocrine disruption capacity of sediments. In water samples, adverse effects on hatchability and growth of Japanese medaka fish, and on Daphnia reproduction were noted following exposure to six water samples collected from stations near industrial and municipal areas. Several heavy metals and nonylphenol (NP) concentrations exceeded surface water quality guidelines, suggesting adverse effects of contamination inputs from both industrial and municipal activities. Observed estrogenicities in stations such as S2 and M3 warrant further investigations on longer term ecosystem impacts near industrial and municipal areas. The levels of major organic chemicals in sediments are quite comparable to those reported in ~10 years ago, emphasizing a need for source control. © 2013 Elsevier B.V. All rights reserved.
Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand
NASA Astrophysics Data System (ADS)
Abrahim, G. M. S.; Parker, R. J.; Nichol, S. L.
2007-07-01
Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.
An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee
Carmichael, J.K.
1989-01-01
Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)
Hinkle, Stephen R.
1999-01-01
Ten sites on small South Umpqua River tributaries were sampled for inorganic constituents in water and streambed sediment. In aqueous samples, high concentrations (concentrations exceeding U.S. Environmental Protection Agency criterion continuous concentration for the protection of aquatic life) of zinc, copper, and cadmium were detected in Middle Creek at Silver Butte, and the concentration of zinc was high at Middle Creek near Riddle. Similar patterns of trace-element occurrence were observed in streambed-sediment samples.The dissolved aqueous load of zinc carried by Middle Creek along the stretch between the upper site (Middle Creek at Silver Butte) and the lower site (Middle Creek near Riddle) decreased by about 0.3 pounds per day. Removal of zinc from solution between the upper and lower sites on Middle Creek evidently was occurring at the time of sampling. However, zinc that leaves the aqueous phase is not necessarily permanently lost from solution. For example, zinc solubility is pH-dependent, and a shift between solid and aqueous phases towards release of zinc to solution in Middle Creek could occur with a perturbation in stream-water pH. Thus, at least two potentially significant sources of zinc may exist in Middle Creek: (1) the upstream source(s) producing the observed high aqueous zinc concentrations and (2) the streambed sediment itself (zinc-bearing solid phases and/or adsorbed zinc). Similar behavior may be exhibited by copper and cadmium because these trace elements also were present at high concentrations in streambed sediment in the Middle Creek Basin.
High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities
McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.
2011-01-01
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470
Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico.
Rangel-Peraza, Jesús Gabriel; de Anda, José; González-Farías, Fernando A; Rode, Michael; Sanhouse-García, Antonio; Bustos-Terrones, Yaneth A
2015-03-01
The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations. The metal concentrations (mg kg(-1)) in the sampling stations ranged as follows: Al, 27,600-7760; Ba, 190.0-15.9; Cd, 0.27-0.02; Cr, 18.30-0.22; Cu, 60.80-0.79; Fe, 15,900-4740; Hg, 0.04-0.01; Mg, 7590-8.05; Ni, 189.00-0.24; Pb, 13.6-1.64; and Zn, 51.8-14.8. Significant spatial variation in concentrations was observed for Al, Fe, and Pb. Sediment pollution was evaluated using the enrichment factor, the geo-accumulation index, the pollution load index, and sediment quality guidelines. Based on geo-accumulation and pollution load indexes, Aguamilpa sediments were found, in some sampling stations, as unpolluted to moderately polluted with Ni, Cd, Cu, and Mg. Enrichment factors showed that Cd is highly related to agricultural activities that take place in the surrounding areas of the Aguamilpa reservoir. Despite these results, none of the heavy metals evaluated exceeded international concentrations limits, indicating that the Aguamilpa reservoir surface sediments are not contaminated.
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Chen, Liang; Wang, Weiping; Li, Tuanjie; Zu, Tingting
2017-04-01
We analyzed heavy metal concentrations in a number of surface sediments and cores from the Qiongzhou Strait and surrounding marine areas. The areas of high concentrations are primarily outside the eastern mouth of the Qiongzhou Strait and on the west side of the Leizhou Peninsula, whereas the areas of low concentrations are located primarily in the eastern Qiongzhou Strait. The maximum Cd, Pb and Zn concentrations in the samples collected in our study do not exceed the official standards for marine sediments, whereas the concentrations of Cr and Cu slightly exceed the standards. Correlations exist between the concentrations of Cu, Pb, Zn, Cr and Cd, and the concentrations of these metals are positively correlated with the mean particle size (φ value), indicating that the finer sediments have adsorbed greater amounts of heavy metal elements than the coarser sediments. An evaluation of the potential environmental risks demonstrates that certain indices of heavy metal pollution and environmental risks are relatively low and may be assigned low risk levels, thereby indicating that, in terms of heavy metals, the marine sedimentary environment in this region is only mildly impacted. Our analysis of the contaminant origins shows that the heavy metals in this region primarily originate in the Pearl River Estuary and that a small amount of them is derived from local runoff. The elevated heavy metal concentrations from the upper sections of the cores started 130 years ago, which indicats that heavy metals in the surface sediments are primarily due to human activities associated with industrialization.
NASA Astrophysics Data System (ADS)
Wang, Y.; Chang, J.; Guo, A.
2017-12-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on flood control systems. Given this focus, a univariate and copula-based bivariate hydrological risk framework focusing on flood control and sediment transport is proposed in the current work. Additionally, the conditional probabilities of occurrence of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula model. Moreover, a Monte Carlo-based algorithm is used to evaluate the uncertainties of univariate and bivariate hydrological risk. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The results indicate that (1) 2-day and 3-day consecutive rainfall are highly correlated with the annual maximum flood discharge (AMF) in UCX and UCH, respectively; and (2) univariate and bivariate return periods, risk and reliability for the purposes of flood control and sediment transport are successfully estimated. Sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the AMF, exceeding the design flood of downstream hydraulic structures in the UCX and UCH. Most importantly, there was considerable sampling uncertainty in the univariate and bivariate hydrologic risk analysis, which would greatly challenge measures of future flood mitigation. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls
NASA Astrophysics Data System (ADS)
Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.
2012-12-01
In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.
Besser, John M.; Giesy, John P.; Kubitz, Jody A.; Verbrugge, David A.; Coon, Thomas G.; Braselton, W. Emmett
1996-01-01
The “sediment quality triad” approach was used to assess the effects of dredging on the sediment quality of a new marina in the Trenton Channel of the Detroit River, and to evaluate spatial and temporal variation in sediment quality in the Trenton Channel. Samples were collected in November of 1993 (10 months after dredging) and characterized by chemical analysis, sediment bioassays, and assessment of benthic invertebrate communities. The three study components indicated little difference in sediment quality at dredged sites in the marina relative to nearby areas in the Trenton Channel, and little change in sediment quality of Trenton Channel sites relative to conditions reported in the mid-1980s. These results suggest that improvement in sediment quality in the Trenton Channel, due to dredging or natural processes, will depend on elimination of sediment “hot spots” and other upstream contaminant sources. Concentrations of chemical contaminants, especially metals and polycyclic aromatic hydrocarbons, exceeded concentrations associated with effects on biota and were significantly correlated with results of sediment bioassays and characteristics of benthic communities. Laboratory sediment bioassays with Hyalella azteca andChironomus tentans produced better discrimination among sites with differing degrees of contamination than did characterization of benthic communities, which were dominated by oligochaetes at all sites in the marina and the Trenton Channel.
NASA Astrophysics Data System (ADS)
Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.
1998-11-01
The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.
Gonul, L T
2015-12-01
Total arsenic, arsenic(III) and (V), Fe, and Mn were measured in 17 surface sediment samples from Izmir Bay. The concentrations and ecological risk of As were characterized in the sediment affected by urban and agricultural activities. Total As ranged from 8.87 to 28.3 μg g(-1) dry weight (96.5-99.9 % as inorganic As). Distribution of total As and total As/Fe followed a different trend in sediments at all sampling sites. Arsenite (As(III)) was the most dominant form followed by As(V), while organic arsenic represented a minor constituent (0.03 to 3.49 %). The highest concentration of total As was observed at Gediz River estuary and exceeded lower threshold value (threshold effects level (TEL)). Due to the biological reduction of As(V) and abundance of Fe (oxyhydr)oxides in the sediments, most inorganic As in the Izmir Bay was present as As(III). Besides, the levels of As were >TEL and
Lewis, M A; Russell, M J
2015-06-15
Contaminant concentrations are reported for surface water, sediment, flora and fauna collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay, Florida. Concentrations of trace metals, chlorinated pesticides, atrazine, total polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were species-, chemical- and location-specific. Contaminants in sediments did not exceed proposed individual sediment quality guidelines. Most sediment quality assessment quotients were less than one indicating the likelihood of no inhibitory effect based on chemical measurements alone. Faunal species typically contained more contaminants than plant species; seagrass usually contained more chemicals than mangroves. Bioconcentration factors for marine angiosperms were usually less than 10 and ranged between 1 and 31. Mercury concentrations (ppm) in blue crabs and fish did not exceed the U.S. Environmental Protection Agency fish tissue criterion of 0.3 and the U.S. Food and Drug Administration action level of 1.0. In contrast, total mercury concentrations in faunal species often exceeded guideline values for wildlife consumers of aquatic biota. Published by Elsevier Ltd.
Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco
2014-01-01
Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.
Edsall, Thomas A.; Manny, Bruce A.; Schloesser, Donald W.; Nichols, Susan J.; Frank, Anthony M.
1991-01-01
In April through October 1986, we sampled sediments and populations of nymphs of the burrowing mayfly, Hexagenia limbata (Serville), at 11 locations throughout the connecting channels of the upper Great Lakes, to determine if sediment contaminants adversely affected nymph production. Production over this period was high (980 to 9231 mg dry wt m-2) at the five locations where measured sediment levels of oil, cyanide, and six metals were below the threshold criteria of the U.S. Environmental Protection Agency and the Ontario Ministry of Environment for contaminated or polluted sediments, and also where the criterion for visible oil given in the Water Quality Agreement between the U.S.A. and Canada for connecting waters of the Great Lakes was not exceeded. At the other six locations where sediments were polluted, production was markedly lower (359 to 872 mg dry wt m-2). This finding is significant because it indicates that existing sediment quality criteria can be applied to protect H. limbata from oil, cyanide, and metals in the Great Lakes and connecting channels where the species fulfills a major role in secondary production and trophic transfer of energy.
Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington
Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.
2009-01-01
Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.
Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont
Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.
2013-01-01
The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moncur, Michael C.; Paktunc, Dogan; Jean Birks, S.
Arsenic (As) concentrations as high as 179 μg/L have been observed in shallow groundwater in the Alberta’s Southern Oil Sand Regions. The geology of this area of Alberta includes a thick cover (up to 200 m) of unconsolidated glacial deposits, with a number of regional interglacial sand and gravel aquifers, underlain by marine shale. Arsenic concentrations observed in 216 unconsolidated sediment samples ranged from 1 and 17 ppm. A survey of over 800 water wells sampled for As in the area found that 50% of the wells contained As concentrations exceeding drinking water guidelines of 10 μg/L. Higher As concentrationsmore » in groundwater were associated with reducing conditions. Measurements of As speciation from 175 groundwater samples indicate that As(III) was the dominant species in 74% of the wells. Speciation model calculations showed that the majority of groundwater samples were undersaturated with respect to ferrihydrite, suggesting that reductive dissolution of Fe-oxyhydroxides may be the source of some As in groundwater. Detailed mineralogical characterization of sediment samples collected from two formations revealed the presence of fresh framboidal pyrite in the deeper unoxidized sediments. Electron microprobe analysis employing wavelength dispersive spectrometry indicated that the framboidal pyrite had variable As content with an average As concentration of 530 ppm, reaching up to 1840 ppm. In contrast, the oxidized sediments did not contain framboidal pyrite, but exhibited spheroidal Fe-oxyhydroxide grains with elevated As concentrations. The habit and composition suggest that these Fe-oxyhydroxide grains in the oxidized sediment were an alteration product of former framboidal pyrite grains. X-ray absorption near edge spectroscopy (XANES) indicated that the oxidized sediments are dominated by As(V) species having spectral features similar to those of goethite or ferrihydrite with adsorbed As, suggesting that Fe-oxyhydroxides are the dominant As carriers. XANES spectra collected on unoxidized sediment samples, in contrast, indicated the presence of a reduced As species (As(-I)) characteristic of arsenopyrite and arsenian pyrite. The results of the mineralogical analyses indicate that the oxidation of framboidal pyrite during weathering may be the source of As released to shallow aquifers in this region.« less
NASA Astrophysics Data System (ADS)
Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas
2017-01-01
Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.
Embrey, S.S.; Block, E.K.
1995-01-01
The reconnaissance investigation results indicated that irrigation drainage generally has not adversely affected biota in the Columbia Basin Project. Hazards to biota from large concentrations of certain trace elements in water and bottom sediment, and caused by high evaporation rates in irrigated arid lands, are reduced by imported, dilute Columbia River water. However, boron concentrations in aquatic plants might affect waterfowl feeding on these plants and arsenic concentrations in juvenile coots were similar to those in mallard ducklings who exhibited abnormalities after being fed an arsenic-supplemented diet. During irrigation season, concentrations of boron, nitrate, and dissolved solids in water were increased in the southern wasteways because of water reuse. During non-irrigation season, constituent concentrations were large when stream flows are sustained by return water from tile drains and ground water. However, concentrations of dissolved constituents typically did not exceed standards or criteria for humans, freshwater life, or beneficial uses of the water. In water, the herbicide 2,4-D was detected more than any other pesticide and in concentrations from 0.01 to 1.0 microgram per liter. In bottom sediment, organochlorine insecticides were detected in samples from 19 of 21 sites. In fish collected from some wasteways, chlordane, DDT, and dieldrin concentrations occasionally exceeded freshwater protection criteria.
Background radioactivity in sediments near Los Alamos, New Mexico.
McLin, Stephen G
2004-07-26
River and reservoir sediments have been collected annually by Los Alamos National Laboratory since 1974 and 1979, respectively. These background samples are collected from five river stations and four reservoirs located throughout northern New Mexico and southern Colorado. Analyses include 3H, 90Sr, 137Cs, total U, 238Pu, 239,240Pu, 241Am, gross alpha, gross beta, and gross gamma radioactivity. Surprisingly, there are no federal or state regulatory standards in the USA that specify how to compute background radioactivity values on sediments. Hence, the sample median (or 0.50 quantile) is proposed for this background because it reflects central data tendency and is distribution-free. Estimates for the upper limit of background radioactivity on river and reservoir sediments are made for sampled analytes using the 0.95 quantile (two-tail). These analyses also show that seven of ten analytes from reservoir sediments are normally distributed, or are normally distributed after a logarithmic or square root transformation. However, only three of ten analytes from river sediments are similarly distributed. In addition, isotope ratios for 137Cs/238Pu, 137Cs/239,240Pu, and 239,240Pu/238Pu from reservoir sediments are independent of clay content, total organic carbon/specific surface area (TOC/SSA) and cation exchange capacity/specific surface area (CEC/SSA) ratios. These TOC/SSA and CEC/SSA ratios reflect sediment organic carbon and surface charge densities that are associated with radionuclide absorption, adsorption, and ion exchange reactions on clay mineral structures. These latter ratio values greatly exceed the availability of background radionuclides in the environment, and insure that measured background levels are a maximum. Since finer-grained reservoir sediments contain larger clay-sized fractions compared to coarser river sediments, they show higher background levels for most analytes. Furthermore, radioactivity values on reservoir sediments have remained relatively constant since the early 1980s. These results suggest that clay contents in terrestrial sediments are often more important at concentrating background radionuclides than many other environmental factors, including geology, climate and vegetation. Hence, reservoirs and floodplains represent ideal radionuclide sampling locations because fine-grained materials are more easily trapped here. Ultimately, most of these differences still reflect spatial and temporal variability originating from global atmospheric nuclear weapons testing and disintegration of nuclear-powered satellites upon atmospheric reentry. Copyright 2004 Elsevier B.V.
Wirt, Laurie
1994-01-01
This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.
Liang, Peng; Wu, Sheng-Chun; Zhang, Jin; Cao, Yucheng; Yu, Shen; Wong, Ming-Hung
2016-04-01
Thirty-six sediment samples were collected from six mariculture sites and corresponding reference sites (approximately 200-300 m away from each mariculture site) to study the effects of mariculture on heavy metal: copper (Cu), zinc (Zn), chromium (Cr) and lead (Pb) distribution in sediments and cultured fish around the Pearl River Delta region, south China. The mean concentrations of Cu, Zn, Cr and Pb in all mariculture sediment samples were 109, 273, 99 and 33 mg/kg, compared with 63, 209, 56 and 23 mg/kg for reference sediment samples, respectively. The Pollution Load Index of sediment for each site was over 1, implying substantial heavy metal pollution. The results of principal component analysis and hierarchical clustering analysis indicate that marine aquaculture activities have enriched the surface sediments underneath mariculture rafts with Cu, Zn and Pb, possibly due to the accumulation of unconsumed fish feeds, fish excreta and antifouling paints (except Cr). Two kinds of fish feeds, feed pellets and trash fish commonly used in Hong Kong were analyzed. The concentrations of Zn and Cu contained in feed pellets were significantly higher (p < 0.05) than in trash fish due to addition of these elements as growth promoters during pellet production. However, the Pb content in trash fish (due to contamination) was significantly higher (p < 0.05) than in feed pellets. Three cultured fish species, namely red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii), were collected from each mariculture site for metal analysis. Lead concentrations in 21 fish samples exceeded the Chinese safety guideline (0.5 mg/kg, GB18406.4-2001), indicating that Pb contamination in cultured fish would be a public health concern. Copyright © 2015. Published by Elsevier Ltd.
El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul
2017-10-01
This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.
O'Leary, David; Izbicki, John A.; Metzger, Loren F.
2015-01-01
As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.
Bierman, P.R.; Reuter, J.M.; Pavich, M.; Gellis, A.C.; Caffee, M.W.; Larsen, J.
2005-01-01
Analysis of in-situ-produced 10Be and 26Al in 52 fluvial sediment samples shows that millennial-scale rates of erosion vary widely (7 to 366 m Ma-1) through the lithologically and topographically complex Rio Puerco Basin of northern New Mexico. Using isotopic analysis of both headwater and downstream samples, we determined that the semi-arid, Rio Puerco Basin is eroding, on average, about 100 m Ma-1. This rapid rate of erosion is consistent with estimates made using other techniques and is likely to result from a combination of easily eroded lithologies, sparse vegetation, and monsoon-dominated rainfall. Data from 331 stream water samples collected by the US Geological Survey between 1960 and 1995 are consistent with basin-wide, average chemical denudation rates of only about 1??4 m Ma-1; thus, the erosion rates we calculate may be considered rates of sediment generation because physical weathering accounts for almost 99 per cent of mass loss. The isotopic data reveal that sediment is generally well mixed downstream with the area-weighted average sediment generation rate for 16 headwater samples (234 ton km-2 a-1 for basin area 170 to 1169 km2) matching well that estimated from a single sample collected far downstream (238 ton km-2 a-1, basin area = 14 225 km2). A series of 15 samples, collected from an arroyo wall and representing deposition through the late Holocene, indicates that 10Be concentration in sediment delivered by the fluvial system has not changed appreciably over the last 1200 years despite at least two cycles of arroyo cutting and filling. Other samples (n = 21) were collected along the drainage network. Rio Puerco erosion rates scale directly with a variety of metrics describing vegetation, precipitation, and rock erodibility. Using the headwater basins for calibration, the erosion rates for both the downstream samples and also the data set as a whole, are best modelled by considering a combination of relief and vegetation metrics, both of which co-vary with precipitation and erodibility as inferred from lithology. On average, contemporary sediment yields, determined by monitoring suspended-sediment discharge, exceed cosmogenically determined millennial-scale erosion rates by nearly a factor of two. This discrepancy, between short-term rates of sediment yield and long-term rates of erosion, suggests that more sediment is currently being exported from the basin than is being produced. Because the failure of incised channel walls and the head cutting of arroyo complexes appear to be the main sources of channel sediment today, this incongruence between rates of sediment supply and sediment yield is likely to be transitory, reflecting the current states of the arroyo cycle and perhaps the influence of current or past land-use patterns. Copyright ?? 2005 John Wiley & Sons, Ltd.
Domagalski, Joseph L.; Dileanis, Peter D.
2000-01-01
Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater concentrations of mercury were mostly higher than the criterion. Exceedances of water-quality standards happened most frequently during winter when suspended-sediment concen-trations also were elevated. Most mercury is found in association with suspended sediment. The greatest loading or transport of mercury out of the Sacramento River Basin to the San Francisco Bay occurs in the winter and principally follows storm events.
Juracek, Kyle E.
2004-01-01
Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased toward the top of the sediment core) was indicated in one reservoir for total nitrogen and in two reservoirs for total phosphorus. Also, a possible positive trend for total nitrogen was indicated in two other reservoirs. These trends in nutrient concentrations may be related to a statewide increase in fertilizer use. Alternatively, the trends may be indicative of diagenesis (that is, postdepositional changes in the sediment caused by various processes including decomposition). Nutrient loads and yields also varied substantially among the five reservoirs for which loads and yields were estimated. Estimated mean annual net loads of total nitrogen deposited in the bottom sediment ranged from 4,080 to 49,100 pounds. Estimated mean annual net loads of total phosphorus deposited in the bottom sediment ranged from 1,120 to 20,800 pounds. Estimated mean annual net yields of total nitrogen from the basins ranged from 2,210 to 6,800 pounds per square mile. Estimated mean annual net yields of total phosphorus from the basins ranged from 598 to 2,420 pounds per square mile. Compared to nonenforceable sediment-quality guidelines adopted by the U.S. Environmental Protection Agency, bottom-sediment concentrations of arsenic, chromium, copper, and nickel in samples from all 10 reservoirs typically exceeded the threshold-effects levels (TELs) but were less than the probable-effects levels (PELs). TELs represent the concentrations above which toxic biological effects occasionally occur in aquatic organisms, whereas PELs represent the concentrations above which toxic biological effects usually or frequently occur. Concentrations of cadmium, lead, and zinc exceeded the TELs but were less than the PELs in sediment samples from about one-half of the reservoirs and were less than the TELs in samples from the remaining reservoirs. Mercury concentrations were less than the TEL (information only available for four reservoirs). Silver was not detected in the bottom sediment fro
Juracek, Kyle E.
2011-01-01
A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, cyanobacterial akinetes, and the radionuclide cesium-137 in the bottom sediment of Clinton Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1977 through 2009 in the conservation (multi-purpose) pool of the reservoir was 438 million cubic feet and 18 billion pounds, respectively. The estimated sediment volume occupied about 8 percent of the conservation-pool, water-storage capacity of the reservoir. Sedimentation in the conservation pool has occurred about 70 percent faster than originally projected at the time the reservoir was completed. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 0.25 percent annually. Mean annual net sediment deposition since 1977 in the conservation pool of the reservoir was estimated to be 563 million pounds per year. Mean annual net sediment yield from the Clinton Lake Basin was estimated to be 1.5 million pounds per square mile per year. Typically, the bottom sediment sampled in Clinton Lake was at least 99 percent silt and clay. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Clinton Lake were estimated to be 1.29 million pounds per year and 556,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Clinton Lake Basin were 3,510 pounds per square mile per year and 1,510 pounds per square mile per year, respectively. Throughout the history of Clinton Lake, total nitrogen concentrations in the deposited sediment generally were uniform and indicated consistent inputs to the reservoir over time. Likewise, total phosphorus concentrations in the deposited sediment generally were uniform. Although, for two of three coring sites, a possible positive trend in phosphorus deposition was indicated. The Wakarusa River possibly was a larger contributor of nitrogen and phosphorus to Clinton Lake than was Rock Creek. As a principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. Trace-element concentrations in the bottom sediment of Clinton Lake generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Zinc concentrations frequently exceeded the threshold-effects guideline. Trace-element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Cyanobacterial akinetes (cyanobacteria resting stage) in the bottom sediment of Clinton Lake, combined with historical water-quality data on chlorophyll-a and total phosphorus concentrations, indicated that the reservoir likely has been eutrophic throughout most of its history. A statistically significant increase in cyanobacterial akinetes in the bottom sediment indicated that Clinton Lake may have become more eutrophic over the life of the reservoir. The increase in cyanobacterial akinetes may, in part, be related to a possible increase in total phosphorus concentrations.
Silicone passive equilibrium samplers as 'chemometers' in eels and sediments of a Swedish lake.
Jahnke, Annika; Mayer, Philipp; McLachlan, Michael S; Wickström, Håkan; Gilbert, Dorothea; MacLeod, Matthew
2014-03-01
Passive equilibrium samplers deployed in two or more media of a system and allowed to come to equilibrium can be viewed as 'chemometers' that reflect the difference in chemical activities of contaminants between the media. We applied silicone-based equilibrium samplers to measure relative chemical activities of seven 'indicator' polychlorinated biphenyls (PCBs) and hexachlorobenzene in eels and sediments from a Swedish lake. Chemical concentrations in eels and sediments were also measured using exhaustive extraction methods. Lipid-normalized concentrations in eels were higher than organic carbon-normalized concentrations in sediments, with biota-sediment accumulation factors (BSAFs) of five PCBs ranging from 2.7 to 12.7. In contrast, chemical activities of the same pollutants inferred by passive sampling were 3.5 to 31.3 times lower in eels than in sediments. The apparent contradiction between BSAFs and activity ratios is consistent with the sorptive capacity of lipids exceeding that of sediment organic carbon from this ecosystem by up to 50-fold. Factors that may contribute to the elevated activity in sediments are discussed, including slower response of sediments than water to reduced emissions, sediment diagenesis and sorption to phytoplankton. The 'chemometer' approach has the potential to become a powerful tool to study the thermodynamic controls on persistent organic chemicals in the environment and should be extended to other environmental compartments.
Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia).
Youssef, Mohamed; El-Sorogy, Abdelbaset; Al Kahtany, Khaled; Al Otiaby, Naif
2015-07-15
Thirty eight surface sediments samples have been collected in the area around Tarut Island, Saudi Arabian Gulf to determine the spatial distribution of metals, and to assess the magnitude of pollution. Total concentrations of Fe, Mn, As, B, Cd, Co, Cr, Cu, Hg, Mo, Pb, Se, and Zn in the sediments were measured using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Nature of sediments and heavy metals distribution reflect marked changes in lithology, biological activities in Tarut bay. Very high arsenic concentrations were reported in all studied locations from Tarut Island. The concentrations of Mercury are generally high comparing to the reported values from the Gulf of Oman, Red Sea. The concentrations of As and Hg exceeded the wet threshold safety values (MEC, PEC) indicating possible As and Hg contamination. Dredging and land filling, sewage, and oil pollution are the most important sources of pollution in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tramonte, Keila Modesto; Figueira, Rubens Cesar Lopes; de Lima Ferreira, Paulo Alves; Ribeiro, Andreza Portella; Batista, Miriam Fernanda; de Mahiques, Michel Michaelovitch
2016-02-15
The Cananéia-Iguape system is located in a Southeastern Brazilian coastal region, acknowledged by UNESCO as Biosphere Reserve of the Atlantic Rainforest. This system underwent important environmental changes due to the opening of the artificial channel of Valo Grande and by past intensive Pb ore mining activities. In view of this scenario, this study evaluated Cu, Pb and Zn availability in sediments from Cananéia-Iguape system, based on the content associated with the main components of the sediments. Moreover, in order to assess local contamination, the metals' contents were compared to Canadian quality guidelines, the past levels of metals preceding the mining activities and background sediment values. Concerning Cu and Zn in a state of chemical remobilization, both elements would possibly present no harm to the local communities. However, Pb available content exceeded the comparison values in various sampling sites, suggesting the need of monitoring regarding its bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jones, Ross J
2011-06-01
There is a recognized dearth of standard environmental quality data in the wider Caribbean area, especially on coral atolls/small island states. Extensive surveys of sediment contamination (n=109 samples) in Bermuda revealed a wide spectrum of environmental quality. Zinc and especially copper levels were elevated at some locations, associated with boating (antifouling paints and boatyard discharges). Mercury contamination was surprisingly prevalent, with total levels as high as 12mg kg(-1)DW, although methyl mercury levels were quite low. PAH, PCB and PCDD/PCDF contamination was detected a several hotspots associated with road run-off, a marine landfill, and a former US Naval annexe. NOAA sediment quality guidelines were exceeded at several locations, indicating biological effects are possible, or at some locations probable. Overall, and despite lack of industrialization, anthropogenic chemicals in sediments of the atoll presented a risk to benthic biodiversity at a number of hotspots suggesting a need for sediment management strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W
2014-10-01
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...
2014-06-07
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Church, Stan E.; Choate, LaDonna M.; Marot, Marci E.; Fey, David L.; Adams, Monique; Briggs, Paul H.; Brown, Zoe Ann
2005-01-01
In October 2004, we sampled stream-bed sediment, terrace sediment, and sediment from the San Carlos Reservoir to determine the spatial and chronological variation of six potentially toxic metals-Cu, Pb, Zn, Cd, As, and Hg. Water levels in the San Carlos Reservoir were at a 20-year low at an elevation of 2,409 ft (734.3 m). Four cores were taken from the reservoir: one from the San Carlos River arm, one from the Gila River arm, and two from the San Carlos Reservoir just west of the Pinal County line. Radioisotope chronometry (7Be, 137Cs, and 210Pb) conducted on sediment from the reservoir cores provides a good chronological record back to 1959. Chronology prior to that, during the 1950s, is based on our interpretation of the 137Cs anomaly in reservoir cores. During and prior to the 1950s, the reservoir was dry and sediment-accumulation rates were irregular; age control based on radioisotope data was not possible. We recovered sediment at the base of one 4-m-long core that may date back to the late 1930s. The sedimentological record contains two discrete events, one about 1978-83 and one about 1957, where the Cu concentration in reservoir sediment exceeded recommended sediment quality guidelines and should have had an effect on sensitive aquatic and benthic organisms. Concentrations of Zn determined in sediment deposited during the 1957(?) event also exceeded recommended sediment quality guidelines. Concentration data for Cu from the four cores clearly indicate that the source of this material was upstream on the Gila River. Lead isotope data, coupled with the geochemical data from a 2M HCl-1 percent H2O2 leach of selected sediment samples, show two discrete populations of data. One represents the dominant sediment load derived from the Safford Valley, and a second reflects sediment derived from the San Francisco River. The Cu concentration spikes in the reservoir cores have chemical and Pb isotope signatures that indicate that deposits in a porphyry copper deposit from the Morenci district is the likely source of these Cu-rich sedimentary deposits. Copper concentrations and Pb isotope data in premining terrace-sediment deposits indicate that the Cu peaks could not have resulted from erosion of premining sediment from terrace deposits downstream on the Gila River. The chemical and Pb isotope data also indicate that agricultural practices in the Safford Valley have resulted in an increased sediment load to the Gila River since large-scale farming began, prior to the time when the San Carlos Reservoir was built. Analyses of dioxin, which is an impurity in one of the herbicides used in the late 1960s and early 1970s, were completed in sediment from one of the cores in the reservoir to determine whether any of these pesticide residues have accumulated in the reservoir sediment. Dioxin concentration is expressed in terms of its toxicity (toxic equivalent concentration or TEQ). Concentrations of dioxin in the sediment ranged from 0.68 to 1.37 pg/g and are less than any of the benchmark concentrations recommended as threshold values for adverse effects of dioxin in sediment (> 2.5-10 pg/g).
Low, Walton H.; Mullins, William H.
1990-01-01
Increased concern about the quality of irrigation drainage and its potential effects on human health, fish, and wildlife prompted the Department of the Interior to begin a program during late 1985 to identify irrigation-induced water-quality problems that might exist in the Western States. During `988, the Task Group on Irrigation Drainage selected the American Falls Reservoir area, Idaho, for study to determine whether potentially toxic concentrations of trace elements or organochlorine compounds existed in water, bottom sediment, and biota. The 91-square mile American Falls Reservoir has a total capacity of 1.7 million acre-feet and is used primarily for irrigation-water supply and power generation. Irrigated land upstream from the reservoir totals about 550,000 acres. Total water inflow to the reservoir is about 5.8 million acre-feet per year, of which about 63 percent is from surface-water runoff, 33 percent is from ground-water discharge, and about 4 percent is from ungaged tributaries, canals, ditches, sloughs, and precipitation. Ground-water discharge to the reservoir originates, in part, from irrigation of land upstream from and adjacent to the reservoir. The 1988 water year was a drought year, and water discharge was about 34 percent less than during 1939-88. Water samples were collected during the post-irrigation (October 1987) and irrigation (July 1988) seasons and were analyzed for major ions and trace elements. Bottom-sediment samples were collected during the irrigation season and were analyzed for trace elements and organochlorine compounds. Biota samples were collected during May, June, July, and August 1988 and were analyzed for trace elements and organochlorine compounds. Dissolved-solids concentrations in water ranged from 216 to 561 milligrams per liter. The similarity of dissolved-solids concentrations between the irrigation and post-irrigation seasons can be attributed to the large volume of ground-water discharge in the study area. Most trace-element concentrations in water were near analytical reporting limits; none exceeded State or Federal water-quality standards or criteria. Trace elements that were present at all sites in analytically detectable concentrations (in micrograms per liter) included arsenic (2 to 7), boron (40 to 130), uranium (0.7 to 3.5), vanadium (1 to 6) and zinc (less than 3 to 42). The ranges of arsenic, cadmium, and mercury concentrations in water analyzed during previous investigations. Selenium concentrations ranged from less than 1 (the reporting limit) to 6 micrograms per liter and did not exceed State of Federal water-quality standards or criteria. Concentrations of most trace elements in bottom sediment were similar to geometric mean concentrations in study area soils and were within the expected 95-percent range of concentrations in soils in the Western United States. Mercury concentrations in 9 of the 18 bottom-sediment samples exceeded the 95th-percentile concentration for mercury in area soils. Selenium concentration for selenium in area soils and, in 1 sample, exceeded the upper limit of the expected 95-percent range for selenium in Western United States soils. Most organochlorine compunds in bottom sediment were lower than analytical reporting limits. Only DDE (0.2 micrograms per kilogram) and DDT (0.3 micrograms per kilogram) were detected in bottom sediment from the Portneuf River. Except for mercury and selenium, concentrations of most trace elements in biota were not considered high enough to be harmful to humans or wildlife. Some mercury concentrations in fish exceeded the U.S. Fish and Wildlife Service National Contaminant Biomonitoring Program 85th-percentile concentration and were at levels that might not be safe for human consumption, especially for pregnant women. Elevated mercury concentrations in fish-eating waterbirds, such as double-crested cormorants, indicates biomagnification in the food chain. Selenium concentrations generally were low except in mallard livers (6.6 to 41.8 micrograms per gram, dry weight). This range is within the range of selenium concentrations (19 to 43 micrograms per gram, dry weight) reported in livers of ducks from Kesterson National Wildlife Refuge, California, where waterbird deformities, moralities, and reproductive impairment were observed. Selenium concentrations in mayfly nymphs were at or near dietary concentrations (5 to 8 micrograms per gram, dry weight) that had adverse reproductive effects on mallards during laboratory toxicity studies. p,p'DDE was detected in all waterbird eggs and juvenile mallared carcasses. Highest concentrations were in cormorant eggs (0.59 to 5.70 micrograms per gram, wet weight). p,p'DDE concentrations in four of five cormorant eggs exceeded the National Academy of Sciences, National Academy of Engineering criterion for protection of aquatic wildlife (1 microgram per gram, wet weight, for p,p'DDT and its metabolites). p,p'DDE was detected in all fish samples except rainbow trout. p,p'DDE was detected in one sample of Utah suckers. No concentrations of p,p'DDE or p,p'DDT in fish exceeded the criterion for protection of aquatic life. Total PCB's were detected in all cormorant eggs and all fish samples. PCB's were not detected in other waterbird eggs. PCB concentrations in cormorant eggs (0.28 to 1.8 micro per gram, wet weight) were lower than concentrations that would be expected to cause adverse effects. Two of the three carp samples contained PCB concntrations higher than the recommended level for protection of fish and wildlife (0.4 micrograms per gram, wet weight). Eggshell thinning was noted in cormorant and mallard eggs but was not considered great enough to cause reporductive problems. Observations of the general health of fish and waterbird populations during the study indicated that the area did not appear to have a serious contaminant problem that could be associated with irrigation grainage. No waterbird or fish die-offs were observed, and nesting waterbird populations were noted to be increasing. Selenium concentrations in mallard livers, however, are of concern, as are p,p'DDE residues in cormorant eggs.
Holocene sedimentation in the shallow nearshore zone off Nauset Inlet, Cape Cod, Massachusetts
Aubrey, D.G.; Twichell, D.C.; Pfirman, S.L.
1982-01-01
Present conditions and sedimentary evolution of the shallow offshore region near Nauset Inlet on Cape Cod, Massachusetts were clarified using high-resolution seismic-reflection profiles, sidescan-sonar records, surface grab samples and current meter measurements. The study area contains three provinces: (1) a nearshore province (shallower than 18 m) with a relatively steep slope (0.6°) and a cover of medium sand; (2) a northern offshore province covered with coarse sand, gravel, and boulders, interpreted to be glacial drift; and (3) a southern offshore province with a gentle seaward-dipping slope (0.3°) and a surface sediment of coarse sand. The glacial drift exposed in the northern offshore province can be traced southward under the coarse sand province. The overlying fill is comprised of either outwash sediment derived from the Pleistocene South Channel ice lobe to the east or Holocene-aged marine sediments eroded from seacliffs to the north. Latest Holocene sediment appears to be limited to the zone shoreward of 18 m where the medium sand occurs.Near-bottom mean flows (measured over two winter months in 10 m water depth) average 6 cm sec−1 to the south. Mean flows exceeded 20 cm sec−1approx. 23% of the time. Ninety percent of the flows exceeding 20 cm sec−1were directed to the south, reflecting the dominant atmospheric forcing during these winter months. Waves had an average variance of 650 cm2 with variance exceeding 5000 cm2, 3% of the time, indicating moderate wave activity.Present processes are actively reshaping the nearshore province, which is characterized by many east to northeast-trending shore-oblique channels that do not extend seaward of the 18-m contour. Coarse sand in the floors of these channels suggests they may be erosional features, and the presence of megaripples oriented perpendicular to the channel axes indicates active transport in these channels. Megaripple orientation and the current and wave regime of the study area support a rip-current origin for these channels.
Martinez, Edward A; Shu-Nyamboli, Chemanji
2011-09-01
Since the reduction of the arsenic standard from 50 to 10 μg L(-1) by the US Environmental Protection Agency in 2006 many small town and rural water municipalities were left with the task of preventing or mitigating arsenic contamination of drinking water supplies. In this study macrophytes and sediments were used to determine the concentration and distribution of heavy metals (As, Cd, Cu, Pb, and Zn) within the primary source of drinking water (Gallinas River watershed) to the residents of Las Vegas, New Mexico. Sampling was done in the spring and fall at four sites, two above the city and two below, and samples were analyzed using ICP-MS. Results showed significantly higher (p<.05) metal concentrations in plant roots than shoots for most metals. Spearman's correlation showed positive correlations (r>.3) between plant and sediment concentrations of Cd, Pb, Zn, As, and a negative correlation for Cu. The site above waste water treatment plant (AWWTP) had the highest plant tissue concentrations of Cd, Pb, Zn, and As. All of these concentrations attained critical toxicity levels exceeding sediment quality guidelines. High concentration factor values and levels of metals detected in macrophyte tissues indicate that heavy metals within sediments in the Gallinas River occur in bioavailable forms. Correlations between plant and sediment metal concentrations indicate that metal concentrations in macrophyte tissues are a good reflection of metal concentrations within the sediment in the Gallinas River. Copyright © 2011 Elsevier Inc. All rights reserved.
Gilliom, R.J.; Clifton, D.G.
1987-01-01
The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)
Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.
1996-01-01
Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs calculated using sediment concentrations normalized to total organic carbon (TOC) concentrations did not improve the reliability compared to SECs calculated using dry-weight concentrations. The range of TOC concentrations in our database was relatively narrow compared to the ranges of contaminant concentrations. Therefore, normalizing dry-weight concentrations to a relatively narrow range of TOC concentrations had little influence on relative concentra of contaminants among samples. When SECs are used to conduct a preliminary screening to predict the potential for toxicity in the absence of actual toxicity testing, a low number of SEC exceedances should be used to minimize the potential for false negatives; however, the risk of accepting higher false positives is increased.
Lim, Wan Ying; Aris, Ahmad Zaharin; Zakaria, Mohamad Pauzi
2012-01-01
This paper determines the controlling factors that influence the metals' behavior water-sediment interaction facies and distribution of elemental content (75As, 111Cd, 59Co, 52Cr, 60Ni, and 208Pb) in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals' concentration varied among stations. Metal concentrations of water ranged between 0.08–24.71 μg/L for As, <0.01–0.53 μg/L for Cd, 0.06–6.22 μg/L for Co, 0.32–4.67 μg/L for Cr, 0.80–24.72 μg/L for Ni, and <0.005–6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47–30.04 mg/kg for As, 0.02–0.18 mg/kg for Cd, 0.87–4.66 mg/kg for Co, 4.31–29.04 mg/kg for Cr, 2.33–8.25 mg/kg for Ni and 5.57–55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb) were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans. PMID:22919346
Zhao, Qingqing; Bai, Junhong; Lu, Qiongqiong; Gao, Zhaoqin; Jia, Jia; Cui, Baoshan; Liu, Xinhui
2016-06-01
PCBs (polychlorinated biphenyls) were determined in sediment/soil profiles to a depth of 30 cm from three different wetlands (i.e., ditch wetlands, riparian wetlands and reclaimed wetlands) of the Pearl River Estuary to elucidate their levels, distribution and toxic risks along a 100-year chronosequence of reclamation. All detected PCB congeners and the total 15 PCBs (∑15 PCBs) decreased with depth along sediment/soil profiles in these three wetlands. The ∑15 PCBs concentrations ranged from 17.68 to 169.26 ng/g in surface sediments/soils. Generally, old wetlands tended to have higher PCB concentrations than younger ones. The dominant PCB congeners at all sampling sites were light PCB homologues (i.e., tetra-CBs and tri-CBs). According to the sediment quality guideline, the average PCB concentrations exceeded the threshold effects level (TEL, 21.6 ng/g) at most of the sampling sites, exhibiting possible adverse biological effects, which were dominantly caused by light PCB congeners. The total toxic equivalent (TEQ) concentrations of 10 dioxin-like PCBs (DL-PCBs) detected at all sampling sites ranged from 0.04 to 852.7 (10(-3) ng/g), mainly affected by PCB126. Only DL-PCB concentrations in ditch and riparian wetland sediments with 40-year reclamation histories (i.e., D40 and Ri40) exhibited moderate adverse biological effects according to SQGQ values. Principal component analysis indicated that PCBs in three wetland sediments/soils mainly originated from Aroclor 1016, 1242, and 1248. Correlation analysis showed that sediment/soil organic carbon content had a significant correlation with the concentrations of several PCB congeners (P < 0.05), whereas no significant correlations were observed between any PCBs congeners and grain size or aggregate content (P > 0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.
Chiffre, Axelle; Degiorgi, François; Morin-Crini, Nadia; Bolard, Audrey; Chanez, Etienne; Badot, Pierre-Marie
2015-11-01
This study investigates the variations of polycyclic aromatic hydrocarbon (PAH) levels in surface water, suspended particulate matter (SPM) and sediment upstream and downstream of the discharges of two wastewater treatment plant (WWTP) effluents. Relationships between the levels of PAHs in these different matrices were also investigated. The sum of 16 US EPA PAHs ranged from 73.5 to 728.0 ng L(-1) in surface water and from 85.4 to 313.1 ng L(-1) in effluent. In SPM and sediment, ∑16PAHs ranged from 749.6 to 2,463 μg kg(-1) and from 690.7 μg kg(-1) to 3,625.6 μg kg(-1), respectively. Investigations performed upstream and downstream of both studied WWTPs showed that WWTP discharges may contribute to the overall PAH contaminations in the Loue and the Doubs rivers. Comparison between gammarid populations upstream and downstream of WWTP discharge showed that biota was impacted by the WWTP effluents. When based only on surface water samples, the assessment of freshwater quality did not provide evidence for a marked PAH contamination in either of the rivers studied. However, using SPM and sediment samples, we found PAH contents exceeding sediment quality guidelines. We conclude that sediment and SPM are relevant matrices to assess overall PAH contamination in aquatic ecosystems. Furthermore, we found a positive linear correlation between PAH contents of SPM and sediment, showing that SPM represents an integrating matrix which is able to provide meaningful data about the overall contamination over a given time span.
Bailon, Mark Xavier; David, Anneschel Sheehan; Park, Yeongeon; Kim, Eunhee; Hong, Yongseok
2018-04-11
Heavy metal contamination in aquatic systems is a big problem in many areas around the world. In 2016, high mercury concentrations were reported in bivalves (Corbicula leana) and sediments near the confluence of the Hyeongsan River and Chilseong Creek located in Pohang, a steel industrial city in the south-east coast of the Korean peninsula. Given that both the Chilseong and Gumu creeks run through the Pohang industrial complex and ultimately flow to the Hyeongsan River, it is imperative to determine if the industrial effluents have any impact on the mercury contamination in these two streams and the Hyeongsan River. In this work, we investigated the concentration levels of different heavy metals using cold vapor atomic fluorescence spectroscopy and inductively coupled plasma-mass spectroscopy. The metal concentration in the water samples from the Hyeongsan River, Gumu Creek, and Chilseong Creek did not exceed the limits for drinking water quality set by the US EPA and World Health Organization. However, the sediment samples were found to be heavily contaminated by Hg with levels exceeding the toxic effect threshold. Gumu Creek was found to be heavily contaminated. The concentrations of the different heavy metals increased downstream, and the samples collected from the sites in the Hyeongsan River near the Gumu Creek, an open channel for wastewater discharge of companies in the Pohang Industrial Complex, showed higher contamination levels, indicating that the effluents from the industrial complex are a possible source of contamination in the river.
Garrett, Jessica D.
2012-01-01
Excess nutrients, suspended-sediment loads, and the presence of pesticides in Iowa rivers can have deleterious effects on water quality in State streams, downstream major rivers, and the Gulf of Mexico. Fertilizer and pesticides are used to support crop growth on Iowa's highly productive agricultural landscape and for household and commercial lawns and gardens. Water quality was characterized near the mouths of 10 major Iowa tributaries to the Mississippi and Missouri Rivers from March 2004 through September 2008. Stream loads were calculated for select ions, nutrients, and sediment using approximately monthly samples, and samples from storm and snowmelt events. Water-quality samples collected using standard streamflow-integrated protocols were analyzed for major ions, nutrients, carbon, pesticides, and suspended sediment. Statistical data summaries of sample data used parametric and nonparametric techniques to address potential bias related to censored data and multiple levels of censoring of data below analytical detection limits. Constituent stream loads were computed using standard pre-defined models in S-LOADEST that include streamflow and time terms plus additional terms for streamflow variability and streamflow anomalies. Streamflow variability terms describe the difference in streamflow from recent average conditions, whereas streamflow anomaly terms account for deviations from average conditions from long- to short-term sequentially. Streamflow variability or anomaly terms were included in 44 of 80 site/constituent individual models, demonstrating the usefulness of these terms in increasing accuracy of the load estimates. Constituent concentrations in Iowa streams exhibit streamflow, seasonal, and spatial patterns related to the landform and climate gradients across the studied basins. The streamflow-concentration relation indicated dilution for ions such as chloride and sulfate. Other constituent concentrations, such as dissolved organic carbon and suspended sediment, increased with streamflow. Nitrogen concentrations (total nitrogen and nitrate plus nitrite) increased with low and moderate streamflows, but decreased with high streamflows. Seasonal patterns observed in constituent concentrations were affected by streamflow, algae blooms, and pesticide application. The various landform regions produced different water-quality responses across the study basins; for example, total phosphorus, suspended sediment, and turbidity were greatest from the steep, loess-dominated southwestern Iowa basins. Nutrient concentrations, though not regulated for drinking water at the study sites, were high compared to drinking-water limits and criteria for protection of aquatic life proposed for other Midwestern states (Iowa criteria for aquatic life have not been proposed). Nitrate plus nitrite concentrations exceeded the drinking-water limit [10 milligrams per liter (mg/L)] in 11 percent of all samples at the 10 sites, and exceeded Minnesota's proposed aquatic life criteria (4.9 mg/L) in 68 percent of samples. The Wisconsin standard for total phosphorus (0.1 mg/L) was exceeded in 92 percent of samples. Ammonia standards, current during sample collection and at publication of this report, for protection of aquatic life were met for all samples, but draft criteria proposed in 2009 to protect more sensitive species like mussels, were exceeded at three sites. Loads and yields also differed among sites and years. The Big Sioux, Little Sioux, and Des Moines Rivers produced the greatest sulfate yields. Mississippi River tributaries had greater chloride yields than Missouri River tributaries. The Big Sioux River also had the lowest silica yields and total nitrogen and nitrate yields, whereas nitrogen yields were greater in the northeastern rivers. The Boyer and Nishnabotna River total phosphorus yields were the greatest in the study. The Boyer River orthophosphate yields were greatest except in 2008, when the Maquoketa River produced the greatest yield. Rivers in southwestern Iowa's Western Loess Hills and Steeply Rolling Loess Prairie ecoregions had the greatest suspended-sediment yields, whereas the smallest yields were in the Big Sioux and Wapsipinicon Rivers. In the 10 Iowa rivers studied, combined annual total nitrogen stream transport ranged from 3.68 to 9.95 tons per square mile per year, and total phosphorus transport ranged from 0.138 to 0.570 tons per square mile per year. Six-month loads relative to fertilizer use ranged from 8 to 56 percent for nitrogen, and 1.0 to 11.1 percent for phosphorus. The smallest loads relative to fertilizer use for both nitrogen and phosphorus occurred in July-December of dry years, and the largest nitrogen and phosphorus loads relative to use were in wet years from January-June.
Banas, D; Marin, B; Skraber, S; Chopin, E I B; Zanella, A
2010-02-01
Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu(diss)) and total Cu (Cu(tot)) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu(tot) concentrations in entering water was 53.6 microg/L whereas it never exceeded 2.4 microg/L in seepage. Cu(tot) concentrations in basin water (>100 microg/L in 24% of the samples) exceeded LC(50) values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu(tot)). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu(diss) variability and could help predicting Cu mobilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Garn, H.S.; Jacobi, G.Z.
1996-01-01
Upper Gallinas Creek in north-central New Mexico serves as the public water supply for the City of Las Vegas. The majority of this 84-square-mile watershed is within national forest lands managed by the U.S. Forest Service. In 1985, the Forest Service planned to conduct timber harvesting in the headwaters of Gallinas Creek. The City of Las Vegas was concerned about possible effects from logging on water quality and on water-supply treatment costs. The U.S. Geological Survey began a cooperative study in 1987 to (1) assess the baseline water-quality characteristics of Gallinas Creek upstream from the Las Vegas water-supply diversion, (2) relate water quality to State water- quality standards, and (3) determine possible causes for spatial differences in quality. During 1987-90, water-quality constituents and aquatic benthic macroinvertebrates were collected and analyzed at five sampling sites in the watershed. Specific conductance, pH, total hardness, total alkalinity, and calcium concentrations increased in a downstream direction, probably in response to differences in geology in the watershed. The water-quality standard for temperature was exceeded at the two most downstream sites probably due to a lack of riparian vegetation and low streamflow conditions. The standards for pH and turbidity were exceeded at all sites except the most upstream one. Concentrations of nitrogen species and phosphorus generally were small at all sites. The maximum total nitrogen concentration of 2.1 milligrams per liter was at the mouth of Porvenir Canyon; only one sample at this site exceeded the water-quality standard for total inorganic nitrogen. At each of the sites, 10 to 15 percent of the samples exceeded the total phosphorus standard of less than 0.1 milligram per liter. Except for aluminum and iron, almost all samples tested for trace elements contained concentrations less than the laboratory detection limit. No trace-element concentrations exceeded the State standard for domestic water supplies. Suspended-sediment concentrations appeared to increase with distance downstream; suspended sediment increased significantly from the uppermost site to the second site near the national forest boundary, most probably caused by runoff from the unpaved forest road adjacent to Gallinas Creek. The aquatic macroinvertebrate assessment indicated that the three upstream sites had good biological conditions and were nonimpaired, whereas the two downstream sites had lowered biological conditions and were slightly impaired. The water- quality and biological assessments provided similar results.
Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States
Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.
2016-01-01
At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.
Pesticides in amphibian habitats of Central and Northern California, USA
Fellers, Gary M.; Sparling, W; McConnell, Laura; Kleeman, Patrick M.; Drakeford, Leticia
2013-01-01
Previous studies have indicated that toxicity from pesticide exposure may be contributing to amphibian declines in California and that atmospheric deposition could be a primary pathway for pesticides to enter amphibian habitats. We report on a survey of California wetlands sampled along transects associated with Lassen Volcanic National Park, Lake Tahoe, Yosemite National Park, and Sequoia National Park. Each transect ran from the Pacific coast to the Cascades or Sierra Nevada mountains. Pacific chorus frogs (Pseudacris regilla), water, and sediment were collected from wetlands in 2001 and 2002. Twenty-three pesticides were found in frog, water, or sediment samples. Six contaminants including trifluralin, α-endosulfan, chlordanes, and trans-nonachlor were found in adult P. regilla. Seventeen contaminants were found in sediments, including endosulfan sulfate, chlordanes, 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4′-DDE), and chlorpyrifos. The mean number of chemicals detected per pond in sediments was 2.4 (2.5, standard deviation). In water, 17 chemicals were detected, with β-endosulfan being present in almost all samples. Trifluralin, chlordanes, and chlorpyrifos were the next most common. The mean number of chemicals in water per pond was 7.8 (2.9). With the possible exception of chlorpyrifos oxon in sediments and total endosulfans, none of the contaminants exceeded known lethal or sublethal concentrations in P. regilla tissue. Endosulfans, chlorpyrifos, and trifluralin were associated with historic and present day population status of amphibians. Cholinesterase, an essential neurological enzyme that can be depressed by certain pesticides, was reduced in tadpoles from areas with the greatest population declines.
Sediment concentration and turbidity changes during culvert removals
Randy B. Foltz; Kristina A. Yanosek; Timothy M. Brown
2008-01-01
The concentrations of sediment and turbidity in stream water were monitored during culvert removals to determine the short term effects of road obliteration. Sediment concentration was measured at 11 stream crossings among two locations in Idaho and one in Washington. Sediment concentration immediately below the culvert outlet exceeded levels above the culvert outlet...
Erosion, sedimentation, and cumulative effects in the Northern Rocky Mountains
Walter F. Megahan; John G. King
2004-01-01
Erosion and sedimentation are natural geomorphic processes characterized by large temporal and spatial variability. Recent radionuclide studies suggest that rare episodic events, such as large wildfires, produce massive sediment yields over time scales of thousands of years, thereby causing long-term average sediment production to exceed present-day average erosion...
Baseline aquatic contamination and endocrine status in a resident fish of Biscayne National Park
Bargar, Timothy A.; Whelan, Kevin R.T.; Alvarez, David; Echols, Kathy R.; Peterman, Paul H.
2017-01-01
Surface water, sediment, and fish from Biscayne Bay, coastal wetlands adjacent to the Bay, and canals discharging into the Bay were sampled for determination of baseline contamination in Biscayne National Park. While the number of contaminants detected in canal waters was greater during the wet season than the dry season, no seasonal difference was evident for Biscayne Bay or coastal wetland waters. Estrogen equivalency (as 17β-estradiol equivalents), as predicted by the Yeast Estrogen Screen, for extracts of passive water samplers deployed in canals and wetlands was elevated during the wet relative to the dry season. Generally, contamination in water, sediments, and fish was greater in the canals than in Biscayne Bay and the wetlands. Guideline levels for sediment contaminant were exceeded most frequently in canals relative to the coastal wetlands and the Bay. Further investigation is necessary to better understand the impact of contaminants in Biscayne National Park.
Copper use and accumulation in catfish culture in the Mekong Delta, Vietnam.
Marcussen, Helle; Løjmand, Helle; Dalsgaard, Anders; Hai, Dao M; Holm, Peter E
2014-01-01
Aquaculture of Pangasius hypophthalmus (striped catfish) in Vietnam reached 1.1 million tonnes in 2011 and catfish fillets are exported worldwide. The intensive cultures of catfish mainly in earth ponds have made it necessary to apply CuSO4 and other chemicals to control external parasites and other pathogens. However, accumulation of Cu in aquaculture ponds may pose a hazard to growth of fish or to the aquatic environment. The aim of this study was to determine accumulation of Cu in sediment, water and fish in a catfish pond with a history of repeated treatment with CuSO4 in the Mekong Delta, Vietnam. Copper concentrations in pond sediment were in the interval 21.3-45.7 mg kg(-1) dw and did not exceed the Vietnamese values for soil to be used for agricultural production (70 mg kg(-1) dw.). During three samplings the total mean concentration of Cu in pond water (4 μg L(-1)) did not exceed the LC50-value (70 μg L(-1)) for catfish and the mean dissolved concentration of Cu (0.986 μg L(-1)) did not seem to constitute a risk for the stability of the aquatic ecosystem. No significant variation in Cu concentrations between sampling sites in the pond and depth of sediment profile were determined. The accumulation of Cu in catfish was highest in the liver compared to the skin, gills and muscle tissue. With the current practice of removing pond sludge three to four times during a production cycle little if any Cu seems to accumulate in catfish ponds despite repeated anti-parasite treatments with CuSO4. Further studies are needed to assess the eco-toxicity and impact on agricultural production when pond sediment is discharged into aquatic recipients and used as soil fertilizer.
Schein, Allison; Sinclair, Jesse A.; MacDonald, Donald D.; Ingersoll, Christopher G.; Kemble, Nile E.; Kunz, James L.
2015-01-01
The Anniston Polychlorinated Biphenyl (PCB) Site is located in the vicinity of the municipality of Anniston in Calhoun County, in the north-eastern portion of Alabama. Although there are a variety of land-use activities within the Choccolocco Creek watershed, environmental concerns in the area have focused mainly on releases of PCBs to aquatic and riparian habitats. PCBs were manufactured by Monsanto, Inc. at the Anniston facility from 1935 to 1971. The chemicals of potential concern (COPCs) in sediments at the Anniston PCB Site include: PCBs, mercury, metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorous pesticides, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). The purpose of this study was to evaluate the toxicity of PCB-contaminated sediments to the juvenile fatmucket mussel (Lampsilis siliquoidea) and to characterize relationships between sediment chemistry and the toxicity of sediment samples collected from the Anniston PCB Site using laboratory sediment testing. Samples were collected in August 2010 from OU-4 of the Anniston PCB Site, as well as from selected reference locations. A total of 32 samples were initially collected from six test sites and one reference site within the watershed. A total of 23 of these 32 samples were evaluated in 28-day whole-sediment toxicity tests conducted with juvenile mussels (L. siliquoidea). Physical and chemical characterization of whole sediment included grain size, total organic carbon (TOC), nutrients, PCBs, parent and alkylated PAHs, organochlorine pesticides, PCDD/PCDFs, total metals, simultaneously extracted metals (SEM), and acid volatile sulfide (AVS). Sediment collected from Snow Creek and Choccolocco Creek contained a variety of COPCs. Organic contaminants detected in sediment included PCBs, organochlorine pesticides, PCDDs/PCDFs, and PAHs. In general, the highest concentrations of PCBs were associated with the highest concentrations of PAHs, PCDDs/PCDFs, and organochlorine pesticides. Specifically, sediments 08, 18, and 19 exceeded probable effect concentration quotients (PEC-Qs) of 1.0 for all organic classes of contaminants. These three sediment samples also had high concentrations of mercury and lead, which were the only metals found at elevated concentrations (i.e., above the probable effect concentration [PEC]) in the samples collected. Many sediment samples were highly contaminated with mercury, based on comparisons to samples collected from reference locations. The whole-sediment laboratory toxicity tests conducted with L. siliquoidea met the test acceptability criteria (e.g., control survival was greater than or equal to 80%). Survival of mussels was high in most samples, with 4 of 23 samples (17%) classified as toxic based on the survival endpoint. Biomass and weight were more sensitive endpoints for the L. siliquoidea toxicity tests, with both endpoints classifying 52% of the samples as toxic. Samples 19 and 30 were most toxic to L. siliquoidea, as they were classified as toxic according to all four endpoints (survival, biomass, weight, and length). Mussels were less sensitive in toxicity tests conducted with sediments from the Anniston PCB Site than Hyalella azteca and Chironomus dilutus. Biomass of L. siliquoidea was less sensitive compared to biomass of H. azteca or biomass of larval C. dilutus. Based on the most sensitive endpoint for each species, 52% of the samples were toxic to L. siliquoidea, whereas 67% of sediments were toxic to H. azteca (based on reproduction) and 65% were toxic to C. dilutus (based on adult biomass). The low-risk toxicity threshold (TTLR) was higher for L. siliquoidea biomass (e.g., 20,400 µg/kg dry weight [DW]) compared to that for H. azteca reproduction (e.g., 499 µg/kg DW) or C. dilutus adult biomass (e.g., 1,140 µg/kg DW; MacDonald et al. 2014). While mussels such as L. sili
Sediment retention in a bottomland hardwood wetland in Eastern Arkansas
Kleiss, B.A.
1996-01-01
One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.
Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve
2013-01-01
Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels.
Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian
2017-01-01
The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.
Water quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14
Moorman, Michelle C.; Fitzgerald, Sharon A.; Gurley, Laura N.; Rhoni-Aref, Ahmed; Loftin, Keith A.
2017-01-23
The Albemarle Sound region was selected in 2012 as one of two demonstration sites in the Nation to test and improve the design of the National Water Quality Monitoring Council’s National Monitoring Network (NMN) for U.S. Coastal Waters and Tributaries. The goal of the NMN for U.S. Coastal Waters and Tributaries is to provide information about the health of our oceans, coastal ecosystems, and inland influences on coastal waters for improved resource management. The NMN is an integrated, multidisciplinary, and multi-organizational program using multiple sources of data and information to augment current monitoring programs.This report presents and summarizes selected water-quality and bed sediment-quality data collected as part of the demonstration project conducted in two phases. The first phase was an occurrence and distribution study to assess nutrients, metals, pesticides, cyanotoxins, and phytoplankton communities in the Albemarle Sound during the summer of 2012 at 34 sites in Albemarle Sound, nearby sounds, and various tributaries. The second phase consisted of monthly sampling over a year (March 2013 through February 2014) to assess seasonality in a more limited set of constituents including nutrients, cyanotoxins, and phytoplankton communities at a subset (eight) of the sites sampled in the first phase. During the summer of 2012, few constituent concentrations exceeded published water-quality thresholds; however, elevated levels of chlorophyll a and pH were observed in the northern embayments and in Currituck Sound. Chlorophyll a, and metals (copper, iron, and zinc) were detected above a water-quality threshold. The World Health Organization provisional guideline based on cyanobacterial density for high recreational risk was exceeded in approximately 50 percent of water samples collected during the summer of 2012. Cyanobacteria capable of producing toxins were present, but only low levels of cyanotoxins below human health benchmarks were detected. Finally, 12 metals in surficial bed sediments were detected at levels above a published sediment-quality threshold. These metals included chromium, mercury, copper, lead, arsenic, nickel, and cadmium. Sites with several metal concentrations above the respective thresholds had relatively high concentrations of organic carbon or fine sediment (silt plus clay), or both and were predominantly located in the western and northwestern parts of the Albemarle Sound.Results from the second phase were generally similar to those of the first in that relatively few constituents exceeded a water-quality threshold, both pH and chlorophyll a were detected above the respective water-quality thresholds, and many of these elevated concentrations occurred in the northern embayments and in Currituck Sound. In contrast to the results from phase one, the cyanotoxin, microcystin was detected at more than 10 times the water-quality threshold during a phytoplankton bloom on the Chowan River at Mount Gould, North Carolina in August of 2013. This was the only cyanotoxin concentration measured during the entire study that exceeded a respective water-quality threshold.The information presented in this report can be used to improve understanding of water-quality conditions in the Albemarle Sound, particularly when evaluating causal and response variables that are indicators of eutrophication. In particular, this information can be used by State agencies to help develop water-quality criteria for nutrients, and to understand factors like cyanotoxins that may affect fisheries and recreation in the Albemarle Sound region.
Juracek, K.E.
2008-01-01
A combination of sediment-thickness measurement and bottom-sediment coring was used to investigate sediment storage and severity of contamination in Empire Lake (Kansas), a shallow reservoir affected by historical Pb and Zn mining. Cd, Pb, and Zn concentrations in the contaminated bottom sediment typically exceeded baseline concentrations by at least an order of magnitude. Moreover, the concentrations of Cd, Pb, and Zn typically far exceeded probable-effects guidelines, which represent the concentrations above which toxic biological effects usually or frequently occur. Despite a pre-1954 decrease in sediment concentrations likely related to the end of major mining activity upstream by about 1920, concentrations have remained relatively stable and persistently greater than the probable-effects guidelines for at least the last 50 years. Cesium-137 evidence from sediment cores indicated that most of the bottom sediment in the reservoir was deposited prior to 1954. Thus, the ability of the reservoir to store the contaminated sediment has declined over time. Because of the limited storage capacity, Empire Lake likely is a net source of contaminated sediment during high-inflow periods. The contaminated sediment that passes through, or originates from, Empire Lake will be deposited in downstream environments likely as far as Grand Lake O' the Cherokees (Oklahoma). ?? 2007 Springer-Verlag.
Sediment concentration and turbidity changes during culvert removals.
Foltz, Randy B; Yanosek, Kristina A; Brown, Timothy M
2008-05-01
The concentrations of sediment and turbidity in stream water were monitored during culvert removals to determine the short term effects of road obliteration. Sediment concentration was measured at 11 stream crossings among two locations in Idaho and one in Washington. Sediment concentration immediately below the culvert outlet exceeded levels above the culvert outlet by at least three orders of magnitude at all stream crossings. Sediment yields ranged from 170 to less than 1kg in the 24-h period following culvert removal. Turbidity exceeded the regulatory limits during culvert removal at all locations monitored in this study and remained above the limits beyond the monitoring periods of 24h at four of the locations. Sediment concentrations 100m downstream of the culvert outlet were reduced by an order of magnitude, but did not change the turbidity values sufficiently to meet regulatory limits. Sediment concentrations an average of 810m downstream of the culvert outlet were similar to sediment concentrations above the culvert for the entire excavation period and turbidity regulations were met. Mitigation consisting of two straw bales placed in the stream caused a significant reduction in sediment yield from an average of 67kg to an average of 1.6kg.
Ground-water quality, Cook Inlet Basin, Alaska, 1999
Glass, Roy L.
2001-01-01
As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations exceeding drinking-water standards or guidelines. Water samples from one-half of the wells sampled had no detectable concentrations of pesticides or volatile organic carbons, at the parts-per-billion level. Concentrations of stable isotopes of hydrogen and oxygen in ground-water samples were similar to concentrations expected for modern precipitation and for water that has been affected by evaporation. Tritium activities and concentrations of chlorofluorocarbons indicated that the water samples collected from most wells were recharged less than 50 years ago.
Barringer, Julia L.; MacLeod, Cecilia L.
2001-01-01
Water from 265 domestic wells that tap the unconfined Kirkwood-Cohansey aquifer system in the Coastal Plain of New Jersey contained concentrations of mercury that are equal to or exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 2 ug/L (micrograms per liter). The wells range in depth from 50 to 200 feet, and are located in 32 discrete, mostly residential, areas that were developed primarily on former agricultural land during the 1950?s through the 1970?s. Concentrations in two other areas exceeded 1 ug/L. Naturally occurring mercury concentrations in ground water from the Kirkwood-Cohansey aquifer system typically are less than 0.01 ug/L, but concentrations in water from some wells were as much as 42 ug/L. No evidence currently exists that conclusively links known point sources such as landfills, industrial operations, or commercial enterprises to most of the elevated concentrations of mercury in ground water in the residential areas. Possible sources of the mercury include pesticides and atmospheric deposition. Analysis of water from wells in 6 of the 34 areas for other constituents indicates that nitrate concentrations also commonly are elevated above background levels (which typically are undetectable at 0.01 milligrams per liter), and exceed the MCL of 10 milligrams per liter in some samples. Several volatile organic compounds (VOCs), including chloroform, also have been measured in water from wells at many of the 34 sites. Analytical results for water samples collected at several depths from boreholes at 2 of the 34 sites indicate elevated concentrations of calcium, magnesium, barium, strontium, nitrate, and chloride, which may be related to both agricultural chemical applications and septic-system effluent. Determinations of tritium and helium concentrations indicate that water containing elevated concentrations of mercury recharged the aquifer between 9.4 and 79 years ago, which includes the period during which many of the 34 sites were undergoing a change from agricultural or undeveloped to residential land use. Batch equilibrium experiments were used to measure adsorption of dissolved mercury, mercuric chloride, and phenylmercuric acetate by aquifer sediments at pH 3.5-4.0, 4.5-5.0, and 5.5-6.0. In nearly all cases, 55 to 95 percent of the mercury added to the sediments was adsorbed. Mercury mobilization from aquifer sediments inoculated with mercury was investigated by leaching the sediments with two concentrations of nitric acid (a component of acid rain), a sodium chloride solution (simulating road salt), and three fertilizer solutions. A solution of 20-20-20 (nitrogenphosphorous-potassium) fertilizer removed virtually all of the mercury with which the sediments had been inoculated. The sodium chloride solution was moderately effective in removing applied mercury from the sediments, as was a solution of nitric acid. A more dilute nitric acid solution and two sodium nitrate fertilizer solutions were less effective. Results of these experiments indicate that mercury adsorbs to aquifer sediments, but that varying amounts can be removed by infiltrating solutions, some of which can be related to specific land uses. Land-use history at the 34 sites generally indicates a change from agricultural or undeveloped settings to residential settings. Whatever the source of mercury to these sites, a change in the geochemical environment of the soil and aquifer brought about by land-use change probably provides mechanisms for mobilizing the mercury from soils and sediments to ground water.
Mize, Scott V.; Deacon, Jeffrey R.
2002-01-01
Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL), except at two mining sites where concentrations of copper and zinc were below the PEL. Concentrations of arsenic, copper, iron, and lead in transplanted bryophytes were significantly different between nonmining and mining sites. Bioconcentration factors calculated for 15-day exposure using one-half of the minimum reporting level were significantly different between nonmining and mining sites. In general, concentrations of trace elements in streambed sediment and transplanted bryophytes were more closely correlated than were the concentrations of trace elements in the water column with streambed sediments or concentrations in the water column with transplanted bryophytes. Stream habitat was rated as optimal to suboptimal using the U.S. Environmental Protection Agency Rapid Bioassessment Protocols for all sites in the study area. Generally, stream habitat conditions were similar at nonmining compared to mining sites and were suitable for diverse macroinvertebrate communities. All study sites had optimal instream habitat except two mining sites with suboptimal instream habitat because of disturbances in stream habitat. The benthic macroinvertebrate community composition at nonmining sites and mining sites differed. Mining sites had significantly lower total abundance of macroinvertebrates, fewer numbers of taxa, and lower dominance of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), and a larger percentage of tolerant species than did nonmining sites. The predominance of Baetis sp. (mayflies), Hydropsychidae (caddisflies), and large percentage of Orthocladiinae chironomids (midges) at mining sites indicated that these species may be tolerant to elevated trace-element concentrations. The absence of Heptageniidae (mayflies), Chloroperlidae (stoneflies), and Rhyacophila sp. (caddisflies) at mining sites indicated that these species may be sensitive to elevated trace-element concentrations. Comparison of field parameters and
Tracking spatial variation in river load from Andean highlands to inter-Andean valleys
NASA Astrophysics Data System (ADS)
Tenorio, Gustavo E.; Vanacker, Veerle; Campforts, Benjamin; Álvarez, Lenín; Zhiminaicela, Santiago; Vercruysse, Kim; Molina, Armando; Govers, Gerard
2018-05-01
Mountains play an important role in the denudation of continents and transfer erosion and weathering products to lowlands and oceans. The rates at which erosion and weathering processes take place in mountain regions have a substantial impact on the morphology and biogeochemistry of downstream reaches and lowlands. The controlling factors of physical erosion and chemical weathering and the coupling between the two processes are not yet fully understood. In this study, we report physical erosion and chemical weathering rates for five Andean catchments located in the southern Ecuadorian Andes and investigate their mutual interaction. During a 4-year monitoring period, we sampled river water at biweekly intervals, and we analyzed water samples for major ions and suspended solids. We derived the total annual dissolved, suspended sediment, and ionic loads from the flow frequency curves and adjusted rating curves and used the dissolved and suspended sediment yields as proxies for chemical weathering and erosion rates. In the 4-year period of monitoring, chemical weathering exceeds physical erosion in the high Andean catchments. Whereas physical erosion rates do not exceed 30 t km-2 y-1 in the relict glaciated morphology, chemical weathering rates range between 22 and 59 t km-2 y-1. The variation in chemical weathering is primarily controlled by intrinsic differences in bedrock lithology. Land use has no discernible impact on the weathering rate but leads to a small increase in base cation concentrations because of fertilizer leaching in surface water. When extending our analysis with published data on dissolved and suspended sediment yields from the northern and central Andes, we observe that the river load composition strongly changes in the downstream direction, indicating large heterogeneity of weathering processes and rates within large Andean basins.
Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.
1996-01-01
Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.
Miller, Ronald L.; McPherson, Benjamin F.
2001-01-01
Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.
NASA Astrophysics Data System (ADS)
Catianis, Irina; Secrieru, Dan; Pojar, Iulian; Grosu, Dumitru; Scrieciu, Albert; Pavel, Ana Bianca; Vasiliu, Dan
2018-03-01
Razim Lake is the biggest of Romania's freshwater lakes and along with other basins as Golovita, Zmeica and Sinoie constitutes a system of great ecological significance, playing also an essential role in the supply of water for irrigation, fishery exploitation, farming, flood prevention, recreational navigation and water tourism. Due to their importance, the environmental conditions in the Razim - Sinoie coastal lakes have attracted an increased public attention in contemporary society. To assess the levels, dissemination and potential sources of contamination in the above-mentioned lagoon system, random sampling was used to collect water and sediment samples from every lake and several analytical techniques were performed to investigate their environmental characteristics. The results obtained from this study indicated that, in water, concentrations of various physico-chemical parameters are, mostly, in agreement with correlated environmental standards. Slight variations and/or occasional exceeding of the maximum admissible limits were generally limited to small areas showing levels that would not warrant special concern. In sediments, the mean concentrations of some specific trace metals were below the levels of potential effect. Benthic samples revealed 31 taxa belonging to 16 zoo-benthal subdivisions. The results of this study showed good ecological status despite local several natural and anthropogenic stressors as fishery exploitation, farming, recreational navigation and water tourism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, L.A.; Ciborowski, J.J.H.; Corkum, L.D.
1995-12-31
The major source of contaminants to the sediments of the western basin of Lake Erie is the Detroit River. In order to determine if contaminant levels are reflected in incidences of genotoxicity of benthic invertebrates, the authors examined larvae of chironomids for mouthpart (mentum) deformities. Sediment genotoxicity is indicated when incidence of deformities in susceptible genera exceeds 5%. Samples were collected from three locations along the contaminant gradient extending from the Detroit River along the main shipping channel of the western basin. A composite sample was taken from several central locations in the western basin. Chironomids were hand-picked from ponarmore » grab or box core samples. The heads were mounted, identified to genus and examined for mentum deformities (extra or missing teeth). Chironomus dominated all samples. The incidence of deformities ({+-}SE) in Chironomus was greatest in the Trenton Channel of the Detroit River (7.8 {+-} 2.2%, n = 153), declined to 5.2 {+-} 1.4% (n = 233) in the center of the basin and was the lowest off East Sister Island (1.9 {+-} 0.9%, n = 210). The incidence of deformities was 4.4 {+-} 0.8% (n = 610) at a reference site on the Canadian side of the Detroit River (Crystal Bay). The spatial pattern of chironomid mentum deformities suggests that sediment genotoxicity declines from west to east in western Lake Erie.« less
Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.
2008-01-01
Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were all less than laboratory reporting limits in the deeper sediment sample, but 15 compounds were detected in the uppermost 0.2 foot of sediment. Published concentrations determined to affect benthic aquatic life also were exceeded for copper, zinc, benz[a]anthracene, phenanthrene, and pyrene in the shallow sediment sample. Isotopic composition of water (oxygen 18/16 and hydrogen 2/1 ratios) for samples of shallow ground water, lakewater, and interstitial water from Lake Tahoe indicate the lake was well mixed with a slight ground-water signature in samples collected near the lakebed. One interstitial sample from 0.8 foot beneath the lakebed was nearly all ground water and concentrations of nitrogen and phosphorus were comparable to concentrations in shallow ground-water samples. However, ammonium represented 65 percent of filtered nitrogen in this interstitial sample, but only 10 percent of the average nitrogen in ground-water samples. Nitrate was less than reporting limits in interstitial water, compared with mean nitrate concentration of 750 micrograms per liter in ground-water samples, indicating either active dissimilative nitrate reduction to ammonium by micro-organisms or hydrolysis of organic nitrogen to ammonium with concomitant nitrate reduction. The other interstitial sample falls along a mixing line between ground water and lake water and most of the nitrogen was organic nitrogen.
Smith, Tyler B; Owens, Philip N
2014-10-15
The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. Copyright © 2014 Elsevier B.V. All rights reserved.
Cox, S.E.; Dinicola, R.S.; Huffman, R.L.
2007-01-01
The potential for contamination of ground water from remnant sewage sludge in re-graded sediments of a deconstructed sewage-treatment lagoon was evaluated. Ground-water levels were measured in temporary drive-point wells, and ground-water samples were collected and analyzed for nutrients and other water-quality characteristics. Composite soil and sediment samples were collected and analyzed for organic carbon and nitrogen species. Multiple lines of evidence, including lack of appreciable organic matter in sediments of the former lagoon, agronomic analysis of nitrogen, the sequestration of nitrogen in the developing soils at the former lagoon, and likely occurrence of peat deposits within the aquifer material, suggest that the potential for substantial additions of nitrogen to ground water beneath the former sewage lagoon resulting from remnant sewage sludge not removed from the former lagoon are small. Concentrations of nitrogen species measured in ground-water samples were small and did not exceed the established U.S. Environmental Protection Agency's maximum contaminant levels for nitrate (10 milligrams per liter). Concentrations of nitrate in ground-water samples were less than the laboratory reporting limit of 0.06 milligram per liter. Seventy to 90 percent of the total nitrogen present in ground water was in the ammonia form with a maximum concentration of 7.67 milligrams per liter. Concentrations of total nitrogen in ground water beneath the site, which is the sum of all forms of nitrogen including nitrate, nitrite, ammonia, and organic nitrogen, ranged from 1.15 to 8.44 milligrams per liter. Thus, even if all forms of nitrogen measured in ground water were converted to nitrate, the combined mass would be less than the maximum contaminant level. Oxidation-reduction conditions in ground water beneath the former sewage lagoon were reducing. Given the abundant supply of ambient organic carbon in the subsurface and in ground water at the former lagoon, any nitrate that may leach from residual sludge and be transported to ground water with recharge is expected to be quickly denitrified or transformed to nitrite and ammonia under the strongly reducing geochemical conditions that are present. Concentrations of organic carbon, the primary constituent of sewage sludge, in sediments of the former sewage lagoon were less than 1 percent, indicating a near absence of organic matter. The amount of total nitrogen present in the sediments at the former sewage lagoon was only about 25 percent of the amount typically present in developed agricultural soils. The lack of substantial carbon and nitrogen in sediments of the former sewage lagoon indicates that surficial sediments of the former lagoon are essentially devoid of residual sewage sludge. The largest concentration of total nitrogen measured in soil samples from the former sewage lagoon (330 milligrams per kilogram) was used to calculate an estimate of the amount of nitrogen that might be leached from residual sewage sludge by recharge. During the first two years following deconstruction of the former sewage lagoon, the concentration of total nitrogen in recharge leachate might exceed 10 milligrams per liter but the recharge leachate would not likely result in substantial increases in the nitrate concentration in ground water to concentrations greater than the drinking-water maximum contaminant level of 10 milligrams per liter.
Otte, Jens C.; Keiter, Steffen; Faßbender, Christopher; Higley, Eric B.; Rocha, Paula Suares; Brinkmann, Markus; Wahrendorf, Dierk-Steffen; Manz, Werner; Wetzel, Markus A.; Braunbeck, Thomas; Giesy, John P.; Hecker, Markus; Hollert, Henner
2013-01-01
The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02–0.906 µg/g dw). Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ) with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported. PMID:24146763
Radtke, D.B.; Kepner, W.G.; Effertz, R.J.
1988-01-01
The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)
Davis, Jerri V.; Richards, Joseph M.
2002-01-01
In 1998, an 8-mile reach of the Jacks Fork was included on Missouri?s list of impaired waters as required by Section 303(d) of the Federal Clean Water Act. The identified pollutant on the Jacks Fork was fecal coliform bacteria. Potential sources of fecal contamination to the Jacks Fork include a wastewater treatment plant; campground pit-toilet or septic-system effluent; a large commercial, cross-country horseback trail riding facility; canoeists, boaters, and tubers; and cows.The U.S. Geological Survey, in cooperation with the National Park Service, conducted a study to better understand the extent and sources of microbiological contamination within the Jacks Fork from Alley Spring to the mouth, which includes the 8-mile 303(d) reach. Identification of the sources would provide the National Park Service and the State of Missouri with the information needed to craft a solution of abatement, regulation, prevention, and mitigation with the end result being the removal of the Jacks Fork from the 303(d) list. Fifteen sites were sampled from November 1999 through December 2000. An additional site was sampled one time. Samples were collected mostly during base-flow conditions during a variety of nonrecreational and recreational season river uses. Samples were analyzed for selected fecal indicator bacteria, physical properties, nutrients, and wastewater organic compounds. During the sampling period, the whole-body-contact recreation standard for fecal coliform (200 colonies per 100 milliliters of sample) was exceeded at three sites on August 10, 2000, and also at one site on May 11, June 7, and October 3, 2000. Fecal coliform densities and instantaneous loads generally increased from background concentrations at the Eminence site, peaked about 2 river miles downstream, and then decreased until the most downstream site sampled. Generally, the largest densities and loads at sites downstream from Eminence not related to wet-weather flow were observed during a trail ride held August 6 to12, 2000. A 24-hour sample collection effort was conducted the weekend of July 15 and 16, 2000, to investigate the effect that large numbers of swimmers, canoeists, and tubers had on fecal coliform densities in the Jacks Fork. Five or six samples were collected at six sites between Saturday morning and the following Sunday afternoon. No fecal coliform density at any of the sites sampled exceeded the whole-body-contact recreation standard. Because bacteria survive longer in stream-bed sediments than in water, a source of bacteria in the water column could be from resuspension of accumulated bacteria from streambed sediments. Water and streambed-sediment samples were collected at three sites on August 3, 2000, 1 week before a trail ride and again at three sites on 2 Assessment of Possible Sources of Microbiological Contamination of the Jacks Fork, Missouri?Phase II August 8, 2000, during a trail ride. Results indicate that fecal coliform bacteria densities increased substantially in the streambed sediment and the water column during the trail ride.Sixty-five Escherichia coli isolates obtained from water samples collected at 9 sites and 23 Escherichia coli isolates obtained from stream-bed-sediment samples collected at 5 sites were submitted for ribotyping analysis. Samples were collected in 2000 during a variety of nonrecreational and recreational season river uses, including trail rides, canoeing, tubing, and swimming. Of the 65 isolates from water samples, 40 percent were identified as originating from sewage, 29 percent from horse, 11 percent from cow, and 20 percent from an unknown source. Of the 23 isolates from streambed-sediment samples, 39 percent were identified as originating from sewage, 35 percent from horse, 13 percent from cow, and 13 percent from unknown sources.Analysis of physical property (dissolved oxygen, pH, specific conductance, and temperature) and nutrient (dissolved nitrite plus nitrate and total phosphorus) data
Colby, B.R.
1963-01-01
This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c
Munn, M.D.; Gruber, S.J.
1997-01-01
We analyzeds streambed sediment and fish in the Central Columbia Plateau in eastern Washington and Idaho for or ganochlorine pesticides and polychlorinated biphenyls (ΣPCB). Our objective was to assess the effects of land use on the occurrence and distribution of these compounds; land uses in the study area included forest, dryland and irrigated farming, and urban. We detected 16 organochlorine compounds in streambed sediment and fish tissue; fish usually had more compounds and a greater frequency of detection. The most frequently detected compound was ΣDDT (sum of six isomers), which was found in 52% of bed sediment samples and 94% of whole fish composite samples. The other commonly detected compounds were dimethyl tetrachloroterephthalate (DCPA), dieldrin, hexachlorobenzene, and Σchlordane (sum of cis- and trans-chlordane, cis- and trans-nonachlor oxychlordane, heptachlor, and heptachlor epoxide). Forest was the only land use with no detections of organochlorine compounds in either fish or bed sediment. Hexachlorobenzene was the only organochlorine pesticide detected at concentrations that differed significantly among land uses: concentrations were higher in the dryland farming areas than in the irrigated farming or urban areas. In agricultural areas irrigated by surface water, ΣDDT concentrations in both streambed sediment and fish tissue were related to the percentage of land irrigated by water delivered via furrows (gravity irrigation), although ΣDDT was not detectable in bed sediments until gravity irrigation exceeded 30%. Because of the relation between gravity irrigation and soil erosion, our study supports the importance of controlling soil erosion in order to reduce the overall loading of organochlorine compounds to surface waters.
Wilson, Jordan L.; Schumacher, John G.; Burken, Joel G.
2014-01-01
In the past several years, the Missouri Department of Natural Resources has closed two popular public beaches, Grand Glaize Beach and Public Beach 1, at Lake of the Ozarks State Park in Osage Beach, Missouri when monitoring results exceeded the established Escherichia coli (E. coli) standard. As a result of the beach closures, the U.S. Geological Survey and Missouri University of Science and Technology, in cooperation with the Missouri Department of Natural Resources, led an investigation into the occurrence and origins of E. coli at Grand Glaize Beach and Public Beach 1. The study included the collection of more than 1,300 water, sediment, and fecal source samples between August 2011 and February 2013 from the two beaches and vicinity. Spatial and temporal patterns of E. coli concentrations in water and sediments combined with measurements of environmental variables, beach-use patterns, and Missouri Department of Natural Resources water-tracing results were used to identify possible sources of E. coli contamination at the two beaches and to corroborate microbial source tracking (MST) sampling efforts. Results from a 2011 reconnaissance sampling indicate that water samples from Grand Glaize Beach cove contained significantly larger E. coli concentrations than adjacent coves and were largest at sites at the upper end of Grand Glaize Beach cove, indicating a probable local source of E. coli contamination within the upper end of the cove. Results from an intensive sampling effort during 2012 indicated that E. coli concentrations in water samples at Grand Glaize Beach cove were significantly larger in ankle-deep water than waist-deep water, trended downward during the recreational season, significantly increased with an increase in the total number of bathers at the beach, and were largest during the middle of the day. Concentrations of E. coli in nearshore sediment (sediment near the shoreline) at Grand Glaize Beach were significantly larger in foreshore samples (samples collected above the shoreline) than in samples collected in ankle-deep water below the shoreline, significantly larger in the left and middle areas of the beach than the right area, and substantially larger than similar studies at E. coli- contaminated beaches on Lake Erie in Ohio. Concentrations of E. coli in the water column also were significantly larger after resuspension of sediments. Results of MST indicate a predominance of waterfowl-associated markers in nearshore sediments at Grand Glaize Beach consistent with frequent observations of goose and vulture fecal matter in sediment, especially on the left and middle areas of the beach. The combination of spatial and temporal sampling and MST indicate that an important source of E. coli contamination at Grand Glaize Beach during 2012 was E. coli released into the water column by bathers resuspending E. coli-contaminated sediments, especially during high-use days early in the recreational season.
Orlando, James L.; Smalling, Kelly L.; Reilly, Timothy J.; Boehlke, Adam; Meyer, Michael T.; Kuivila, Kathryn
2013-01-01
Surface-water, groundwater, and suspended- and bedsediment samples were collected in three targeted-use areas in the United States where potatoes were grown during 2009 and analyzed for an extensive suite of fungicides and other pesticides by gas chromatograph/mass spectrometry and liquid chromatography with tandem mass spectrometry. Fungicides were detected in all environmental matrices sampled during the study. The most frequently detected fungicides were azoxystrobin, boscalid, chlorothalonil, and pyraclostrobin. Other pesticides that were detected frequently included amino phosphonic acid (AMPA), atrazine, metolaclor, and the organochlorine insecticide p,p’-DDT and its degradates p,p’-DDD and p,p’-DDE. A greater number of pesticides were detected in surface water relative to the other environmental matrices sampled, and at least one pesticide was detected in 62 of the 63 surfacewater samples. The greatest numbers of pesticides and the maximum observed concentrations for most pesticides were measured in surface-water samples from Idaho. In eight surface- water samples (six from Idaho and two from Wisconsin), concentrations of bifenthrin, metolachlor, or malathion exceeded U.S. Environmental Protection Agency freshwater aquatic-life benchmarks for chronic toxicity to invertebrates. Thirteen pesticides, including seven fungicides, were detected in groundwater samples. Shallow groundwater samples collected beneath recently harvested potato fields contained more pesticides and had higher concentrations of pesticides than samples collected from other groundwater sources sampled during the study. Generally, pesticide concentrations were lower in groundwater samples than in surfacewater or sediment samples, with the exception of the fungicide boscalid, which was found to have its highest concentration in a shallow groundwater sample collected in Wisconsin. Thirteen pesticides, including four fungicides, were detected in suspended-sediment samples. The most frequently detected compounds were the fungicides boscalid, pyraclostrobin, and zoxamide, and the degradates p,p’-DDD and p,p’-DDE. Twenty pesticides, including six fungicides, were detected in bed-sediment samples. The most frequently detected compounds were pyraclostrobin, p,p’-DDT, p,p’-DDD, and p,p’-DDE.
Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007
Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.
2009-01-01
The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective
NASA Astrophysics Data System (ADS)
Andresen, Höpke
2010-05-01
In the course of the Volga-Rhine-Project sediment, water and pore water samples were collected on the Volga as well as the Moskva and Oka river systems. The sampling area discussed here is located south east of the city of Moscow. Sediment samples were taken along the Moskva River between Moscow and the city of Kolomna, which is approximately 100 km to the southeast of Moscow and in the Oka River close to the confluence with the Moskva River (Kolomna). The first sampling campaign in this region took place in 1993, followed by further sampling in 1997 and 2007. For evaluation of sediment quality classification systems are often used. The geo-accumulation index proposed by Mueller (1979) is a classification system which consists of seven classes given by the following expression: I = log2×Cn- geo 1.5×Bn Where Cn = measured concentration; Bn = background value (Turekian & Wedepol 1961) of element n and 1.5 = background matrix correction factor. The geo-accumulation index consists of seven grades (0-6) which indicate the enrichment of an element compared to the background value. These grades range from 'not polluted' to 'very strongly polluted'. Another possibility to express sediment contamination is to evaluate the effects on the ecosystem. The lowest effect level (LEL) gives the concentrations of the heavy metals in sediment below which no effect on the majority of the sediment dwelling organisms is expected. The probable effect level (PEL) represents the concentration of heavy metals above which the organisms frequently will show adverse effects. Both of these approaches were used to evaluate the results of the Volga-Rhine-Project. In the last two decades the concentrations of heavy metals in the sediments decreased by up to 60%. In 1993 sediments revealed high concentrations of several heavy metals such as chromium, cadmium, lead, zinc, arsenic, nickel and cobalt, whereas in 2007 only two sediment samples were classified as 'very strongly polluted' regarding lead and cadmium concentrations. Additionally six other sediment samples were found to be 'strongly polluted' with cadmium, zinc and lead, respectively. Using the ecotoxicological approach on the sediments, chromium, cadmium and zinc are above the PEL, whereas the content of lead exceeds the LEL. Thus, these metals may still cause toxic effects on the fresh water system. Although the input of heavy metals into the river systems has clearly decreased during the last 20 years, there are still some locations where high concentrations of heavy metals are found, suggesting point sources. Especially cadmium still shows significantly higher concentrations than the background value in the entire sampling area. There are even two sampling points where the cadmium concentrations reach approximately 100x the background value. To determine the temporal variation of the heavy metal input, sediment cores were taken. Heavy metal concentrations increase with depth in the cores and show a maximum at a depth of about 35-40 cm. Some part of this increase may be a result of early diagenesis as well as a result of reduced heavy metal input. The nature of the decline of the heavy metal concentrations is still in progress. Despite all the improvements achieved in environmental protection in Russia, still some problems have to be addressed. Especially in urban areas like the Moscow region the number and the size of illegal dump sites is increasing dramatically, leading to strong inputs of heavy metals and other pollutants into the river systems, with consequences for the sensitive eco systems.
Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.
1993-01-01
A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.
Diagenesis in subrecent marine sediments in the Eastern Scheldt, Southwest Netherlands
NASA Astrophysics Data System (ADS)
Oenema, O.
The diagenesis in fine-grained sediments from a 300 to 400-years-old Dunkirk deposit, exposed on the intertidal flat, was studied at a site in the Eastern Scheldt. A new in situ pore water sampling technique that allowed repeated sampling at exactly the same place was used to monitor the seasonal fluctuations in interstitial water composition. Concentrations of organic carbon (1.5 to 2%), nitrogen (C/N = 19), phosphorus (500 μg·g -1) and manganese (250 μg·g -1) in the subrecent anoxic sediments were low, probably because they had already been depleted during earlier stages of diagenesis. Rates of organic carbon mineralization by sulphate reduction (0.1 Mole·m -2·y -1) and rates of nutrient regeneration were 1 to 2 orders of magnitude lower than in recent fine-grained sediments elsewhere in the Eastern Scheldt. Pore water NH 4+ and ΣPO 4 concentrations were controlled by mineralization, uptake by Zostera noltii and sediment-seawater exchange. During the summer the uptake exceeded the mineralization rate at 0 to 5 cm. Mineralization and diffusional processes dominated the changes in the NH 4+ and ΣPO 4 profiles in the other seasons. Dissolved manganese and iron concentrations showed a typical subsurface maximum at 0 to 3 cm, and low (<5 μMole) concentrations below this depth. Dissolved iron concentrations were probably controlled by the solubility of iron sulphides, and manganese probably by the solubility of Mn, Ca-carbonate.
Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems
NASA Astrophysics Data System (ADS)
Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.
2016-10-01
Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.
Staniszewska, Marta; Boniecka, Helena
2018-05-01
It has been shown that the current approach to the assessment of contamination in the sediments obtained during the dredging works in the Baltic countries indicates the presence of "non-contaminated" dredged material. The concentration limits of heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) have been exceeded only in 1% of the samples obtained during the dredging works (2005-2015) within the Polish coastal zone. After 2008, no contaminated sediments have been found. Also, in the remaining Baltic countries, sediments are very rarely contaminated. As a result of this assessment, the sediments can be stored in the sea or have a practical application. However, it has been questioned whether the large cost of determining the numerous chemical parameters is justified. It has been proposed to carry out simple screening tests. Following the preliminary screening, the decision on more detailed (and expensive) chemical tests of individual pollutants would be made. Copyright © 2018 Elsevier Ltd. All rights reserved.
Masood, Najat; Zakaria, Mohamad Pauzi; Halimoon, Normala; Aris, Ahmad Zaharin; Magam, Sami M; Kannan, Narayanan; Mustafa, Shuhaimi; Ali, Masni Mohd; Keshavarzifard, Mehrzad; Vaezzadeh, Vahab; Alkhadher, Sadeq Abdullah Abdo; Al-Odaini, Najat Ahmed
2016-01-15
Polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs) were used as anthropogenic markers of organic chemical pollution of sediments in the Selangor River, Peninsular Malaysia. This study was conducted on sediment samples from the beginning of the estuary to the upstream river during dry and rainy seasons. The concentrations of ƩPAHs and ƩLABs ranged from 203 to 964 and from 23 to 113 ng g(-1) dry weight (dw), respectively. In particular, the Selangor River was found to have higher sedimentary levels of PAHs and LABs during the wet season than in the dry season, which was primarily associated with the intensity of domestic wastewater discharge and high amounts of urban runoff washing the pollutants from the surrounding area. The concentrations of the toxic contaminants were determined according to the Sediment Quality Guidelines (SQGs). The PAH levels in the Selangor River did not exceed the SQGs, for example, the effects range low (ERL) value, indicating that they cannot exert adverse biological effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti).
Mahdi Ahmed, Moussa; Doumenq, Pierre; Awaleh, Mohamed Osman; Syakti, Agung Dhamar; Asia, Laurence; Chiron, Serge
2017-07-15
Selected heavy metals and polycyclic aromatic hydrocarbons (PAHs) were determined in marine sediment from 28 sites Djibouti city. The concentrations of trace elements varied from 0 to 288.1mg/kg with relative abundance of trace metals in sediments was in the order of Zn>Cu>Ni>Cr>Co>Pb>Cd. Zn, Cu and Ni exceeded consensus based sediment quality guideline values 7, 14, 15 sites respectively. Enrichment factor and pollution load index showed relatively low to moderate contamination. The concentrations of total 16 PAHs varied widely depending on the sample location and ranged from 2.65 to 3760.11ng·g -1 , with the mean concentration value of 387.87ng·g -1 . Compositions and relative abundance of individual PAH using molecular diagnostic ratio using congener's m/z 178 and 202 indicated pyrolytic origin and reflecting a petroleum combustion, grass/wood and coal combustion and a petrogenic source. This study represents the first pollution baseline and a reference for future studies in Djibouti. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl
2014-02-01
Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.
Targeting sediment management strategies using sediment quantification and fingerprinting methods
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.
2016-04-01
Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were statistically un-mixed using FR2000, an uncertainty-inclusive algorithm, and combined with sediment yield data. Results showed sediment contributions from channel, field and road groups were 70%, 25% and 5% in the poorly-drained catchment, 59%, 22% and 19% in the well-drained catchment, and 17%, 74% and 9% in the moderately-drained catchment. Higher channel contributions in the poorly-drained catchment were attributed to bank erosion accelerated by the rapid diversion of surface runoff into channels, facilitated by surface and sub-surface artificial drainage networks, and bank seepage from lateral pressure gradients due to confined groundwater. Despite the greatest proportion of arable soils in the well-drained catchment, this source was frequently hydrologically disconnected as well-drained soils largely infiltrated rainfall and prevented surface soil erosion. Periods of high and intense rainfall were associated with greater proportions of field losses in the well-drained catchment likely due to infiltration exceeding the saturated hydraulic conductivity of soils and establishment of surface hydrological connectivity. Losses from field topsoils dominated in the moderately-drained catchment as antecedent soil wetness maintained surface flow pathways and coincided with low groundcover on arable soils. For cost-effective management of sediment pressures to aquatic ecosystems, catchment specific variations in sediment sources must be considered.
Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.
2004-01-01
Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment patterns were similar to those observed in water. Concentrations of tHg were higher in samples from the urbanized areas. In the more forested areas, MeHg concentrations were higher than in other land-use areas. Concentrations of tHg in bed sediment were positively correlated with urbanization factors (population, urban land cover, and impervious land surface) and negatively correlated with forested land cover and elevation. Forested land cover and latitude were positively correlated with concentrations of MeHg. The methylation efficiency was higher in samples from the forested areas and was negatively correlated with urbanization. Analyses within land-use groups showed that tHg concentrations in fish fillets from the urban sites were positively correlated with forested land cover and wetland cover. Urbanization factors within the agricultural group were positively correlated with tHg in fish; concentrations of tHg in fish from sites in the low intensity-agricultural group were negatively correlated with urbanization factors. Within the agricultural land-use group, tHg concentrations in water were negatively correlated with septic density, and MeHg concentrations were negatively correlated with elevation. In the forested and low intensity-agricultural groups, MeHg in water was negatively correlated with forested and agricultural land cover. Methylation efficiency in water also was negatively correlated with forested land cover but positively correlated with agricultural land cover. Bed sediment concentrations of tHg in the forested and low-agricultural groups were positively correlated with agricultural land cover and negatively correlated with forested land cover. Concentrations of MeHg in bed sediment were positively correlated with septic density and drainage area and negatively correlated with forested land cover. Methylation efficiency was negatively correlated with population density, a
Pollutants in Plastics within the North Pacific Subtropical Gyre.
Chen, Qiqing; Reisser, Julia; Cunsolo, Serena; Kwadijk, Christiaan; Kotterman, Michiel; Proietti, Maira; Slat, Boyan; Ferrari, Francesco F; Schwarz, Anna; Levivier, Aurore; Yin, Daqiang; Hollert, Henner; Koelmans, Albert A
2018-01-16
Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.
Characterization of major offensive odorants released from lake sediment
NASA Astrophysics Data System (ADS)
Susaya, Janice; Kim, Ki-Hyun; Chang, Yoon-Seok
2011-02-01
The amount of odorants effused from Lake Sihwa during the low tide period was estimated using sediment samples collected from various sites. A wide variety of odorants released from lake sediment were measured such as reduced sulfur compounds (RSCs), aldehydes, nitrogenous compounds, volatile organic compounds (VOCs), and volatile fatty acids (VFAs). A comparison of emission rates (μg m -2 min -1) showed large mean values from such species as NH 3 (14,550), toluene (370), and DMS (106), while the lowest values were seen from VFAs and some VOCs. If their emission concentrations are converted into odor intensity (OI), the OI values were dominated by such odorants as NH 3 (2.07), H 2S (1.65), DMS (1.80), acetaldehyde (1.52), butyric acid (1.59), butyraldehyde (1.28), isovaleric acid (1.15), and valeric acid (0.78). The dilution to threshold (D/T) ratio derived on the basis of the air dilution sensory (ADS) test yielded a mean of 62 (range: 10-173); 19 out of 21 samples were seen to exceed the guideline D/T value of 15. The sum of odor intensities derived from individual odorants exhibited strong compatibilities with the D/T ratio ( r2 = 0.87; α = 0.003). The overall results of this study confirm that the sediment can play an important role in the malodor phenomenon in the area surrounding the Lake Sihwa.
Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.
2007-01-01
This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration
Lam, Nguyen Hoang; Jeong, Hui-Ho; Kang, Su-Dong; Kim, Dae-Jin; Ju, Mi-Jo; Horiguchi, Toshihiro; Cho, Hyeon-Seo
2017-08-15
A simultaneous monitoring study on organotins (butyltins and phenyltins) and most frequently used alternative antifouling biocides (Irgarol 1051, Diuron, Sea-Nine 211 and M1) in water and sediments (n=44) collected from three Special Management Sea Areas operated by Korean government. The lower concentration of butyltins (BTs) than that of new antifouling biocides (NEW) was found in water but the significant greater concentration of BTs than that of NEW was still found in sediments. The tributyltin (TBT) levels in water exceeded the chronic criterion to protect seawater aquatic life at several sites. Even ten years after the ban of the use of TBT-based antifouling paint, the concentrations of TBT, Diuron and Irgarol 1051 in sediments from shipyards exceeded global sediment quality guidelines and potentially poses adverse risks on marine organisms and extremely high concentration of TBT up to 2304ng/g was found for a sediment collected at a shipyard. Copyright © 2017 Elsevier Ltd. All rights reserved.
A new instrument system to investigate sediment dynamics on continental shelves
Cacchione, D.A.; Drake, D.E.
1979-01-01
A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development. Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 - October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves. ?? 1979.
Marshall, Bruce G; Veiga, Marcello M; Kaplan, Robert J; Adler Miserendino, Rebecca; Schudel, Gary; Bergquist, Bridget A; Guimarães, Jean R D; Sobral, Luis G S; Gonzalez-Mueller, Carolina
2018-04-25
In Portovelo in southern Ecuador, 87 gold processing centers along the Puyango-Tumbes River produce an estimated 6 tonnes of gold per annum using a combination of mercury amalgamation and/or cyanidation and processing poly-metallic ores. We analysed total Hg, Hg isotopes, total arsenic, cadmium, copper, lead and zinc in water and sediment along the Puyango in 2012-2014. The highest total mercury (THg) concentrations in sediments were found within a 40 km stretch downriver from the processing plants, with levels varying between 0.78-30.8 mg kg-1 during the dry season and 1.80-70.7 mg kg-1 during the wet season, with most concentrations above the CCME (Canadian Council of Ministers of the Environment) Probable Effect Level (PEL) of 0.5 mg kg-1. Data from mercury isotopic analyses support the conclusion that mercury use during gold processing in Portovelo is the source of Hg pollution found downstream in the Tumbes Delta in Peru, 160 km away. The majority of the water and sediment samples collected from the Puyango-Tumbes River had elevated concentrations of, arsenic, cadmium, copper, lead and zinc exceeding the CCME thresholds for the Protection of Aquatic Life. At monitoring points immediately below the processing plants, total dissolved concentrations of these metals exceeded the thresholds by 156-3567 times in surface waters and by 19-740 times in sediment. The results illustrate a significant transboundary pollution problem involving Hg and other toxic metals, amplified by the fact that the Puyango-Tumbes River is the only available water source in the semi-arid region of northern Peru.
Ross Schmidt, Heather C.
2004-01-01
Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.
Ecotoxicological assessment of bluegill sunfish inhabiting a selenium-enriched fly ash stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reash, R.J.; Lohner, T.W.; Wood, K.V.
1999-07-01
Little Scary Creek (LSC), a 2nd-order tributary of the Kanawha River in West Virginia, receives treated fly ash produced during coal combustion. Selenium and other trace metals were determined in water column and sediment samples, caddisflies, and bluegill sunfish liver and gonads during 1995--96 to estimate pathways of selenium exposure and assess the likelihood of toxic effects. Selenium levels in LSC water and sediment samples, and in caddisflies were elevated compared to reference sites. Mean dry weight selenium concentrations in bluegill liver, ovary, and tested tissue equaled or exceeded published toxic thresholds. Other trace metals were significantly higher in LSCmore » bluegill. Leukopenia, elevated serum salts, and lowered liver weight were found in LSC bluegill. Fewer older bluegill were found in LSC. Sunfish in LSC are experiencing various kinds of sublethal stress, presumably due to metals exposure. However, major toxic effects that would be predicted to occur based on tissue selenium levels (complete reproductive failure or mortality) have not been observed in this population.« less
Bartlett, A J; Rochfort, Q; Brown, L R; Marsalek, J
2012-01-01
The Terraview-Willowfield Stormwater Management Facility (TWSMF) receives inputs of multiple contaminants, including metals, polycyclic aromatic hydrocarbons (PAHs), road salt, and nutrients, via highway and residential runoff. Contaminant concentrations in runoff are seasonally dependent, and are typically high in early spring, coinciding with the snowmelt. In order to investigate the seasonal fluctuations of contaminant loading and related changes in toxicity to benthic invertebrates, overlying water and sediment samples were collected in the fall and spring, reflecting low and high contaminant loading, respectively, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed here; the effects of salts, nutrients, and water quality are discussed in a companion paper. Survival and growth of Hyalella after exposure to fall samples were variable: survival was significantly reduced (64-74% of controls) at three out of four sites, but there were no significant growth effects. More dramatic effects were observed after Hyalella were exposed to spring samples: survival was significantly reduced at the two sites furthest downstream (0-75% of controls), and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site sediment with overlying site water versus site sediment with overlying control water. These seasonal changes in toxicity were not related to metals or PAHs: 1. levels of bioavailable metals were below those expected to cause toxicity, and 2. levels of PAHs in sediment were lowest at sites with the greatest toxicity and highest in water and sediment at sites with no toxicity. Although not associated with toxicity, some metals and PAHs exceeded probable and severe effect levels, and could be a cause for concern if contaminant bioavailability changes. Toxicity in the TWSMF appeared to be primarily associated with water-borne contaminants. The cause(s) of these effects are discussed in our companion manuscript. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Su, Zhiguo; Dai, Tianjiao; Tang, Yushi; Tao, Yile; Huang, Bei; Mu, Qinglin; Wen, Donghui
2018-06-01
Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
Melis, T.S.; Topping, D.J.; Rubin, D.M.; Bogen, J.; Fergus, T.; Walling, D.
2003-01-01
High-resolution monitoring of sand mass balance in the Colorado River below Glen Canyon Dam, Arizona, USA, is needed for environmental management. In the Grand Canyon, frequent collection of suspended-sediment samples from cableways is logistically complicated, costly and provides limited spatial and temporal resolution. In situ laser sensors were tested in the Colorado River as an alternative method for monitoring the river's suspended transport. LISST data were collected at a fixed-depth, near-shore site while isokinetic measurements were simultaneously made from a nearby cableway. Diurnal variations in LISST grain size and concentration data compared well with depth-integrated, cross-section data. Tbe LISST was also successfully used to electronically trigger an ISCO 6712 pump sampler to provide continuous monitoring during periods when suspended concentrations exceeded the LISST's measurement range. Initial results indicate that the LISST can provide useful high-resolution suspended-sediment data within the Colorado River, when optics are maintained on a weekly basis.
Delistraty, Damon; Yokel, Jerry
2007-01-01
Columbia River sediments were characterized (metals, organics, porewater toxicity) with samples (n=12) from four dams below the Hanford site. Analyses were supplemented with colocated radionuclide data, along with comparable data from the Priest Rapids dam, immediately upriver from Hanford. Although not statistically significant (Bonferroni P>0.05), metals were generally highest at Priest Rapids, relative to downriver dams. Semivolatiles, Aroclors, and organochlorine pesticides were below method reporting limits. Radionuclide differences across locations were minor (Bonferroni P>0.05). Whereas Microtox showed little toxicity, Daphnia IQ tests exhibited measurable toxicity at all locations (EC50 = 22 - 78% porewater). Ecotoxicological benchmarks for metals were exceeded at several locations, most notably at Priest Rapids. Except for K-40, radionuclides were below benchmarks. Overall, chemistry and ecotoxicity results suggested that sediments may pose a risk to benthic biota, likely due to metals (derived largely from upriver mining) or factors associated with a reducing environment (e.g., low oxygen, high ammonia).
Modelling the fate of micropollutants in the marine environment using passive sampling.
Claessens, Michiel; De Laender, Frederik; Monteyne, Els; Roose, Patrick; Janssen, Colin R
2015-07-15
Polydimethylsiloxane sheets were used to determine freely dissolved concentrations (C(diss)) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the Belgian coastal zone. Equilibrium models were used to predict the whole water concentrations (C(ww)) of these compounds as well as their concentrations in sediment, suspended particulate matter (SPM) and biota. In general, contaminant concentrations were predicted well for whole water and biota. C(ww) was increasingly underpredicted as K(oc) increased, possibly because of the presence of black carbon. Concentrations in biota were overestimated by the equilibrium approach when logK(ow) exceeded 6.5, suggesting an increasing role of transformation processes. Concentrations of PAHs and PCBs in sediment and SPM were consistently underpredicted although a good correlation between measured and predicted values was observed. This was potentially due to the use of experimental K(oc) values which have been found to underestimate partitioning of hydrophobic substances to sediment in field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hall, Lenwood W; Anderson, Ronald D; Alden, Raymond W
2002-06-01
The goal of this study was to identify the relative toxicity of ambient areas in the Chesapeake Bay watershed by using a suite of concurrent water column and sediment toxicity tests at seventy-five ambient stations in 20 Chesapeake Bay rivers from 1990 through 1999. Spatial and temporal variability was examined at selected locations throughout the 10 yr study. Inorganic and organic contaminants were evaluated in ambient water and sediment concurrently with water column and sediment tests to assess possible causes of toxicity although absolute causality can not be established. Multivariate statistical analysis was used to develop a multiple endpoint toxicity index (TOX-INDEX) at each station for both water column and sediment toxicity data. Water column tests from the 10 yr testing period showed that 49% of the time, some degree of toxicity was reported. The most toxic sites based on water column results were located in urbanized areas such as the Anacostia River, Elizabeth River and the Middle River. Water quality criteria for copper, lead, mercury, nickel and zinc were exceeded at one or more of these sites. Water column toxicity was also reported in localized areas of the South and Chester Rivers. Both spatial and temporal variability was reported from the suite of water column toxicity tests. Some degree of sediment toxicity was reported from 62% of the tests conducted during the ten year period. The Elizabeth River and Baltimore Harbor stations were reported as the most toxic areas based on sediment results. Sediment toxicity guidelines were exceeded for one or more of the following metals at these two locations: arsenic, cadmium, chromium, copper, lead, nickel and zinc. At the Elizabeth River stations nine of sixteen semi-volatile organics and two of seven pesticides measured exceeded the ER-M values in 1990. Ambient sediment toxicity tests in the Elizabeth River in 1996 showed reduced toxicity. Various semi-volatile organics exceeded the ER-M values at a number of Baltimore Harbor sites; pyrene and dibenzo(a,h)anthracene were particularly high at one of the stations (Northwest Harbor). Localized sediment toxicity was also reported in the Chester, James, Magothy, Rappahannock, and Potomac Rivers but the link with contaminants was not determined. Both spatial and temporal variability was less for sediment toxicity data when compared with water column toxicity data. A comparison of water column and sediment toxicity data for the various stations over the 10 yr study showed that approximately half the time agreement occurred (either both suite of tests showed toxicity or neither suite of tests showed toxicity).
Trefry, John H; Neff, Jerry M
2018-06-19
Impacts from oil exploration, development and production in the Beaufort Sea, Alaska, are assessed using concentrations of metals in sediments collected during 2014-15, combined with a large dataset for 1985-2006. Concentrations of 7 (1980 s) or 17 (1999-2015) metals in 423 surface sediments from 134 stations, plus 563 samples from 30 cores were highly variable, primarily as a function of sediment granulometry with naturally greater metal concentrations in fine-grained, Al-rich sediment. Metals versus Al correlation plots were used to normalize metal concentrations and identify values significantly above background. Barium, Cr, Cu, Hg and Pb concentrations were above background, but variable, within 250 m of some offshore sites where drilling occurred between 1981-2001; these areas totaled <6 km 2 of 11,000 km 2 in the total lease area. Random and fixed sampling along the coastal Beaufort Sea from 1985-2015 yielded 40 positive anomalies for metals in surface sediments (∼0.8% of 5,082 data points). About 85% of the anomalies were from developed areas. Half the anomalies were for the five metals found enhanced near drilling sites. No metals concentrations, except As, exceeded accepted sediment quality criteria. Interannual shifts in metals values for surface sediments at inner shelf sites were common and linked to storm-induced transitions in granulometry; however, metal/Al ratios were uniform during these shifts. Sediment cores generally recorded centuries of background values, except for As, Fe and Mn. These three metals were naturally enriched in sediments from deeper water (>100 m) via diagenetic remobilization at sediment depths of 5-15 cm, upward diffusion, and precipitation in surface oxic layers. Minimal evidence for anthropogenic inputs of metals, except near some exploratory drilling sites, is consistent with extraction of most oil from land or barrier islands in the Alaskan Arctic and restricted offshore activity to date. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mondal, Rahul; Mukherjee, Ayan; Biswas, Subrata; Kole, Ramen Kumar
2018-04-30
A liquid-liquid extraction (LLE) for water and modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method for sediment combined with gas chromatography-tandem mass spectrometry (GC-MS/MS) detection in multiple reaction monitoring (MRM) mode was standardized for determination of 31 pesticides. Performance characteristics for the selected pesticides were acceptable according to European Commission's (EC) guidelines for method validation (recovery 70-120%, RSD <20% and R 2 value ≥ 0.99). River, pond and tubewell water and river sediment samples (64 nos.) were collected from Hooghly River basin in West Bengal, India during 2014-2016. About 42% of the samples showed the presence of 19 pesticides with the highest loading of total pesticides (T-pesticides) in river water (3.01 ng mL -1 ) followed by sediment (1.25 ng g -1 ), pond (0.40 ng mL -1 ) and tubewell (0.02 ng mL -1 ) water. The non-agricultural OC (organochlorine) insecticides were detected in all river water and sediment samples mainly due to HCHs (hexachlorocyclohexane) from old source and fresh use of DDTs (dichlorodiphenyltrichloroethane) in local areas. No OC insecticides were detected in pond and tubewell water. Maximum residues of some recommended pesticides in agriculture were obtained in pond water. Most of the river water samples (93.7%) were in excess of EC limit (0.50 ng mL -1 ) of T-pesticides for drinking followed by pond water samples (56.2%). Tubewell water samples were free from T-pesticide threat but exceeded the EC limit (0.10 ng mL -1 ) for single pesticide in case of chlorpyrifos only. Ecological risk on aquatic animals was observed for OCs in river and chlorpyrifos in pond aquatic ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chalmers, A. T.; Van Metre, P. C.; Callender, E.
2007-04-01
Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.
Otieno, Peter O; Owuor, P Okinda; Lalah, Joseph O; Pfister, Gerd; Schramm, Karl-Werner
2013-03-01
This study reports evidence of increased chlorpyrifos contamination in sediment and water in Lake Naivasha following its intensive application in the horticultural farms in the catchment area. Analytical results show that levels of chlorpyrifos residues were influenced by climate-induced rainfall pattern with higher levels reported during period of heavy precipitation with significant decrease during low rainfall. On average, the levels ranged between 14.8 and 32.8 ng g(-1) in sediment during rainy season compared to a range of 8.5-16.6 ng g(-1) in the dry season. Additionally, the mean concentration of chlorpyrifos in water ranged between 8.61 and 22.4 μg L(-1) during rainy season and below detection limit (bdl) -13.6 μg L(-1) in dry season as quantified by enzyme-linked immunosorbent assay. Meanwhile, independent t test analysis indicated that there was significant difference in concentration at p ≤ 0.05 between the seasons with respect to sediment and water samples. This demonstrated that climate-induced variations had considerable influence on contamination. While diazinon and carbofuran were equally applied intensively, their levels were below the detection limit in the all the samples analyzed. ELISA results were validated by the capillary-HPLC photodiode-array detector instrument analysis, and statistical comparison showed no significant difference between them. It was evident that chlorpyrifos residues determination in water and sediment by ELISA can be a useful strategy in environmental management and monitoring program, and a complimentary analytical tool to high performance liquid chromatography. Levels of chlorpyrifos detected in sediment and water were found to exceed recommended criteria for protection of aquatic life and preservation of water quality and may be hazardous if not regularly monitored.
Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill
Mason, Olivia U; Scott, Nicole M; Gonzalez, Antonio; Robbins-Pianka, Adam; Bælum, Jacob; Kimbrel, Jeffrey; Bouskill, Nicholas J; Prestat, Emmanuel; Borglin, Sharon; Joyner, Dominique C; Fortney, Julian L; Jurelevicius, Diogo; Stringfellow, William T; Alvarez-Cohen, Lisa; Hazen, Terry C; Knight, Rob; Gilbert, Jack A; Jansson, Janet K
2014-01-01
The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using 14C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of 14C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem. PMID:24451203
Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Olivia U.; Scott, Nicole M.; Gonzalez, Antonio
The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ~4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using 14C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, bothmore » of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of 14C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)’s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem.« less
Chalmers, A.T.; Van Metre, P.C.; Callender, E.
2007-01-01
Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place. ?? 2006 Elsevier B.V. All rights reserved.
Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L
2014-01-01
BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.
Hwang, Hyun-Min; Green, Peter G; Holmes, Robert W
2009-01-01
To investigate the occurrence of contaminants and to assess their toxicity potential to benthic organisms, streambed sediments were collected from three agricultural and one urban influenced small waterways in the lower Sacramento River watershed and analyzed for PAHs, organochlorine (OC) and organophosphorus (OP) pesticides, pyrethroids, and metals. These sites had low benthic biotic index scores in earlier field surveys. The occurrence patterns of these contaminants and iron normalized enrichment factors of metals reflect the land use patterns around study sites. DDTs were detected in all samples while chlordanes were found only at the urban influenced site. No OP pesticides were found in any sediment presumably due to their high water solubilities and low solid-water partitioning. DDTs, PAHs, and metals at sites in the Biggs/West Gridley Canal showed a gradient increasing toward downstream. Distribution patterns of individual PAHs and their ratios found in sediment from the Biggs/West Gridley Canal downstream site resemble those of petroleum. PAHs in this site might originate from petroleum oils that have been used as agricultural pesticides. The enrichment factor of vanadium, which is an indicator of petroleum residue, was also higher in this site. The anthropogenic enrichment of copper at all Biggs/West Gridley Canal sites might be because of significant use of copper based pesticides. The high enrichment factor of lead at the urban influenced Dry Creek site might be related to historical use of leaded gasoline. All sediment samples had at least one chemical that exceed the threshold effects concentration (TEC). Total probable effects concentration quotients (tPECQs) were greater than 1 at all sites, indicating that sediment bound contaminants in the study sites can possibly pose toxic effects. This finding can be linked to lower biotic index scores observed in previous regional monitoring studies.
Sediment flux measurements at the oceanic boundary of a large estuary
NASA Astrophysics Data System (ADS)
Downing-Kunz, M.; Work, P. A.; Schoellhamer, D. H.
2016-12-01
Sediment is an important resource for San Francisco Bay (SFB), in the context of wetland restoration projects, dredging operations, ecosystem health, and contaminant transport and fate. One way to help manage sediment (and sediment-associated contaminants) in SFB is by developing a quantitative sediment budget to account for sources, sinks, and storage of sediment. Previously developed sediment budgets have shown that sediment exchange at the oceanic boundary of SFB (Golden Gate) is the most poorly understood element of the SFB sediment budget, owing to logistical challenges that inhibit routine field observations. In this study, field observations of suspended-sediment flux at the Golden Gate were conducted on ebb and flood tides during two distinct periods of the 2016 hydrograph: peak (4,000 m3/s) and low (200 m3/s) rates of freshwater inflow to SFB. Suspended-sediment flux was estimated from a boat-mounted acoustic Doppler current profiler that provided measurements of discharge and acoustic backscatter (ABS) at a cross-section near the oceanic boundary. Discrete water samples were analyzed for suspended-sediment concentration (SSC) and related to ABS. During the period of peak freshwater inflow, maximum discharge observed at Golden Gate reached 130,000 m3/s during ebb tide; observed SSC (20-40 mg/L) were lower than expected compared to upstream conditions. A network of five SSC monitoring stations extending 5-80 km upstream demonstrated a watershed-sourced sediment pulse (SSC reaching 200 mg/L) moved downstream to within 20 km of the oceanic boundary, an observation corroborated by concurrent satellite imagery. This finding, combined with lower SSC near the Golden Gate, suggests the sediment pulse was trapped within SFB, indicating a freshwater inflow threshold exceeding 4,000 m3/s for sediment export at the oceanic boundary. Such trapping could provide additional sediment to benefit wetland restoration efforts.
NASA Astrophysics Data System (ADS)
Jacobson, A. R.; Jones, C. P.; Vasudeva, P.; Powelson, D.; Grossl, P.
2014-12-01
The Pariette Wetlands located in the Uinta Basin, UT, were developed by the BLM in part to mitigate salinity associated with irrigation drainage and runoff from flowing to the Green River, a tributary of the Colorado River. The wetlands are fed by runoff from upstream agricultural irrigation, and natural subsurface and overland flow through the Uintah formation, which is seleniferous, and saline. Concentrations of Total Dissolved Salts (TDS), boron (B) and selenium (Se) in the wetlands exceed the total maximum daily loads developed to meet the US EPA's water quality planning and management regulations (40CFR 130). This is of concern because the wetlands are home to populations of migratory birds, waterfowl, raptors, and numerous small mammals. A mass balance of the Se concentrations of water flowing into and out of the wetlands indicates that 80% of the Se is stored or lost within the system. Additional data suggest that the majority of the Se is associated with the sediments. Little information is available regarding the TDS and B. Therefore we will determine the whether B and other salts are accumulating in the wetland systems, and if so where. We sampled water, sediment, benthic organisms, and wetland plants, in 4 of the 23 ponds from the flood control inlet to water flowing out to the Green River. Sediments were collected at 3 depths (0-2 cm, 2-7 cm, and 7+ cm) at 3-4 locations within each pond including the inlet, outlet and at least one site near a major wetland plant community. Benthic organisms were sampled from the 0-2 cm and 2-7 cm sediment layers. Sediment and organism samples were digested with HNO3 and HClO4 prior to analysis of total Se by HGAAS. Hot water extractable B and DPTA extractable B were analyzed by ICP-AES. TDS was estimated from EC in the sediment and organisms extracts and direct analysis in the water. Preliminary results found that Se in the sediments decreases with depth. Se concentrations in the benthic organisms is approximately 4 times higher than in the associated sediments. Data from this study will contribute to a water quality risk assessment to the wetland fish and birds.
Voichick, Nicholas; Topping, David J.
2010-01-01
Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range of turbidity encountered in the Colorado River in Grand Canyon. Relating turbidity to acoustic attenuation and suspended-silt and clay concentration provides an additional benefit in that data outliers are revealed that likely identify inflow events from anomalous sources with unusual sediment characteristics.
Response and recovery of streams to an intense regional flooding event
NASA Astrophysics Data System (ADS)
Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Kantack, K. M.
2015-12-01
Determining the relative roles of frequent and infrequent events on landscape form and material transport has implications for understanding landscape development, and informs planning and infrastructure decisions. Flooding due to Tropical Storm Irene in 2011 provides a unique opportunity to examine the effects of a rare, major disturbance across a broad area (14,000 km2). Intense flooding caused variable but widespread channel and riparian reconfiguration, including 995 channel-adjacent mass-wasting events, collectively referred to here as landslides, that mostly occurred in glacial deposits. Of these, about half involved reactivation of existing scars. Landslides were generally small, ranging from 60 - 26,000 m2 in planform, and covered less than 0.01 % of land in the region, yet sediment input from landslides alone (131 mm/kyr when integrated over the study area) exceeded inferred local background erosion rates by 60 times. If Irene inputs are included in a thirty-year erosion record, the estimated erosion rate, 7.2 mm/kyr, aligns closely with long-term regional rates of 5-10 mm/kyr. Landslides also input trees to streams, increasing large wood influence on those reaches. Combined wood and sediment inputs contributed to channel changes downstream of landslides. In four years since Irene, terrestrial lidar and suspended sediment sampling has documented continued large wood and sediment input. Erosion occurred on each of seventeen monitored landslides during snowmelt, but is otherwise limited except during intense precipitation and/or flood events. Repeat lidar models have recorded erosion of up to 5,000 m3 on a single slide in one year, including as much as 4000 m3 during a single event. Tree fall on scarps during erosion events creates sediment traps at the base of landslides, contributing to an observed return to equilibrium slopes. Despite trapping, substantial sediment continues to enter streams. Ninety-five suspended sediment samples from forty sites show that landslides remain important sediment sources. Across a range of flows, 2014 - 2015 sediment flux for a given discharge is an order of magnitude higher than pre-Irene flux. Though landslide slope relaxation suggests incipient recovery from Irene, persistent rapid erosion of large wood and sediment indicates that recovery is still on-going.
In-situ Observations of Swash-zone Flow Velocities and Sediment Transport on a Steep Beach
NASA Astrophysics Data System (ADS)
Chardon-Maldonado, P.; Puleo, J. A.; Figlus, J.
2014-12-01
A 45 m scaffolding frame containing an array of instruments was installed at South Bethany Beach, Delaware, to obtain in-situ measurements in the swash zone. Six cross-shore stations were established to simultaneously measure near-bed velocity profiles, sediment concentration and water level fluctuations on a steep beach. Measurements of swash-zone hydrodynamics and morphological change were collected from February 12 to 25, 2014, following a large Nor'easter storm with surf zone significant wave height exceeding 5 m. Swash-zone flow velocities (u,v,w) were measured at each cross-shore location using a Nortek Vectrino profiling velocimeter that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles were used to quantify the vertical flow structure over the foreshore and estimate hydrodynamic parameters such as bed shear stress and turbulent kinetic energy dissipation. Sediment concentrations were measured using optical backscatter sensors (OBS) to obtain spatio-temporal measurements during both uprush and backwash phases of the swash cycle. Cross-shore sediment transport rates at each station were estimated by taking the product of cross-shore velocity and sediment concentration. Foreshore elevations were sampled every low tide using a Leica GPS system with RTK capability. Cross-shore sediment transport rates and gradients derived from the velocities and bed shear stress estimates will be related to the observed morphological change.
NASA Astrophysics Data System (ADS)
Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F. M. G.; Verloo, M. G.
2008-05-01
The effect of the flood water salinity on the mobility of heavy metals was studied for intertidal sediments of the Scheldt estuary (Belgium). Soils and sediments of 4 sampling sites were flooded with water of different salinities (0.5, 2.5, and 5 g NaCl L -1). Metal concentrations were monitored in pore water and surface water. To study the potential effects of flood water salinity on metal bioavailability, duckweed ( Lemna minor) was grown in the surface water. The salinity was found to primarily enhance the mobility of Cd and its uptake by duckweed. Cadmium concentrations in pore water of soils and sediments and surrounding surface waters significantly exceeded sanitation thresholds and quality standards during flooding of initially oxidized sediments. Moreover, the effect was observed already at lower salinities of 0.5 g NaCl L -1. This implies that risks related to Cd uptake by organisms and Cd leaching to ground water are relevant when constructing flooding areas in the brackish zones of estuaries. These risks can be reduced by inducing sulphide precipitation because Cd is then immobilised as sulphide and its mobility becomes independent of flood water salinity. This could be achieved by permanently flooding the polluted sediments, because sulphates are sufficiently available in the river water of the brackish part of the estuary.
Zhao, Xingjuan; Gao, Bo; Xu, Dongyu; Gao, Li; Yin, Shuhua
2017-09-01
The Three Gorges Dam in China is the world's largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.
NASA Astrophysics Data System (ADS)
Kowalewski, Michal; Azzarone, Michele; Kusnerik, Kristopher; Dexter, Troy; Wittmer, Jacalyn; Scarponi, Daniele
2017-04-01
Absolute fossil abundance [AFA] can be defined as a relative concentration of identifiable fossils per unit of sediment. AFA, or "sediment shelliness", is controlled by the interplay between the rate of input of skeletal remains (biological productivity), pace of shell destruction (taphonomy), rate of sedimentation, and sediment compaction. Understanding the relative importance of those drivers can augment both stratigraphic and biological interpretations of the fossil record. Using 336 samples from a network of late Quaternary cores drilled in Po Plain (Italy), we examined the importance of those factors in controlling the stratigraphic distribution of fossils. All samples were vertically and volumetrically equivalent, each representing a 10 cm long interval of a core with a diameter of 7 cm ( 0.375 dm3 sediment per sample). Sample-level estimates of AFA (1) varied over 4 orders of magnitudes (from <4 to 44200 specimens per dm3 of sediment); (2) appeared invariant to core depth (rho=-0.04, p=0.72); (3) were statistically indistinguishable (chi-square=1.53, p=0.46) across systems tracts; and (4) did not vary substantially across facies (chi-square=6.04, p=0.20) representing a wide range of depositional and taphonomic settings. These outcomes indicate that compaction (which should increase downcore), sedimentation rates (which vary predictably across systems tracts), and pace of shell destruction (expected to differ across depositional settings) are unlikely to have played important role in controlling fossils density in the sampled cores. In contrast, samples with very high shell density (AFA > 4000 specimens per dm3) were characterized by exceedingly low evenness reflecting dominance by one super-abundant species (Berger-Parker index > 0.8 in all cases). These super-abundant species were limited to small r-selective mollusks capable of an explosive population growth: the marine corbulid bivalve Lentidium mediterraneum and the brackish hyrdobiid gastropod Ecrobia ventrosa. Moreover, despite high mollusk diversity (534 species total), >80% of samples are dominated by one of the five mollusk species, which all represent small, r-selective, deposit and suspension feeders. Trends in absolute fossil abundance within late Quaternary deposits of the Po Plain appear to have been driven primarily by biological productivity of opportunistic shelly species from lowest trophic levels. In the studied system, biodiversity and shelliness of samples is unlikely to reflect stratigraphic or taphonomic overprints, but rather records the ecological importance of r-selective species that dominated the investigated area throughout the late Quaternary. The joint consideration of sequence stratigraphy, facies architecture, and paleontological data, can provide insights regarding both stratigraphic (the origin of sedimentary biofabrics) and biological (the drivers of bio-productivity and observed biodiversity) aspects of the fossil record.
Apitz, Sabine E; Barbanti, Andrea; Bocci, Martina; Carlin, Anna; Montobbio, Laura; Bernstein, Alberto Giulio
2007-07-01
A number of studies carried out in recent years have shown the presence of a wide range of contaminants in the Venice Lagoon. It is important to have a good understanding of the ecological quality of Venice Lagoon sediments in order to 1) define and locate areas where a threat to the environment is present and therefore an intervention is needed (i.e., in situ assessment and management); and 2) define sustainable and environmentally correct ways of managing sediments that are to be dredged for navigational purposes or in relation to other interventions (i.e., ex situ management). This study reports on a critical comparison of chemical quality of sediments in Venice Lagoon and its subregions. Data on the Venice Lagoon were compiled from several studies conducted during the past decade on surface sediment contamination; temporal variation and risks for contaminants at depth were not addressed. The comparison of observed pollutant concentrations with local and internationally used sediment quality guidelines (SQGs) was used as a tool to benchmark different sites and for a tier I (screening) ecological risk assessment. Meaning and relevance of a number of SQGs are discussed, together with the options available for carrying out the comparison with sediment data. The screening of the Venice Lagoon sediment quality is discussed from a risk-assessment perspective and appropriate values for use in an in situ-ex situ management framework are suggested. Although there were some differences depending upon which specific SQGs were applied, different SQGs provided the same general picture of screening risk in Venice Lagoon: Although there are geographic differences, median levels for several contaminants in surface sediments exceeded a number of SQGs. Many contaminants exceed threshold effects SQGs, and Hg exceeds probable effects SQGs in most sub-basins except the southern Lagoon. Venice Lagoon south has the lowest screening risk levels, Venice Lagoon central/north has the highest (and is nearest to the Porto Marghera and Venice City Canals sites). Ranges are high in all areas, therefore any remedial or disposal decision should use site-specific data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California Statemore » Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were dramatically lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. The lowest levels were found at the Richmond Inner Harbor Channel station (4.1 {micro}g/kg total DDT and 0.59 {micro}g/kg dieldrin, wet weight; mean of resident and transplant mussels). Mean chlorinated pesticide concentrations were highest at Lauritzen Canal/End (82 {micro}g/kg total DDT and 7.1 {micro}g/kg dieldrin, wet weight), followed by Lauritzen Canal/Mouth (22 {micro}/kg total DDT and 1.7 {micro}g/kg dieldrin, wet weight) and Santa Fe Channel/End (7.5 {micro}g/kg total DOT and 0.61 {micro}g/kg dieldrin, wet weight). These levels are 95% to 99% lower than those recorded by the California State Mussel Watch program prior to EPA's response actions. The levels of PCBs in mussel tissue were also reduced by 93% to 97% from preremediation levels. Surface sediment concentrations of dieldrin and DDT in November 1998 were highest in samples from the head or north end of Lauritzen Canal and progressively lower toward the mouth, or south end. Total DDT ranged from 130 ppm (dry weight) at the north end to 3 ppm at the south end. Dieldrin concentrations decreased from 3,270 ppb (dry weight) at the north end to 52 ppb at the south end. These results confirmed elevated pesticide concentrations in sediments collected from Lauritzen Channel by Anderson et al. (1999). The pesticide concentrations were lower than maximum concentrations found in the 1993 Remedial Investigation but comparable to the median levels measured before remediation was completed. Sediment analyses also showed the presence of elevated PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.« less
Dagnino, Alessandro; Bo, Tiziano; Copetta, Andrea; Fenoglio, Stefano; Oliveri, Caterina; Bencivenga, Mauro; Felli, Angelo; Viarengo, Aldo
2013-10-01
With the aim of supporting decision makers to manage contamination in freshwater environments, an innovative expert decision support system (EDSS) was developed. The EDSS was applied in a sediment quality assessment along the Bormida river (NW, Italy) which has been heavily contaminated by an upstream industrial site for more than a century. Sampling sites were classified by means of comparing chemical concentrations with effect-based target values (threshold and probable effect concentrations). The level of each contaminant and the combined toxic pressure were used to rank sites into three categories: (i) uncontaminated (8 sites), (ii) mildly contaminated (4) and (iii) heavily contaminated (19). In heavily contaminated sediments, an environmental risk index (EnvRI) was determined by means of integrating chemical data with ecotoxicological and ecological parameters (triad approach). In addition a sediment risk index (SedRI) was computed from combining chemical and ecotoxicological data. Eight sites exhibited EnvRI values ≥0.25, the safety threshold level (range of EnvRI values: 0.14-0.31) whereas SedRI exceeded the safety threshold level at 6 sites (range of SedRI values: 0.16-0.36). At sites classified as mildly contaminated, sublethal biomarkers were integrated with chemical data into a biological vulnerability index (BVI), which exceeded the safety threshold level at one site (BVI value: 0.28). Finally, potential human risk was assessed in selected stations (11 sites) by integrating genotoxicity biomarkers (GTI index falling in the range 0.00-0.53). General conclusions drawn from the EDSS data include: (i) in sites classified as heavily contaminated, only a few exhibited some significant, yet limited, effects on biodiversity; (ii) restrictions in re-using sediments from heavily contaminated sites found little support in ecotoxicological data; (iii) in the majority of the sites classified as mildly contaminated, tested organisms exhibited low response levels; (iv) preliminary results on genotoxicity biomarkers indicate possible negative consequences for humans if exposed to river sediments from target areas. © 2013.
Rate, Andrew W
2018-06-15
Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.
Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.
2014-01-01
Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water-quality sampling results, bottom-sediment samples analyzed for contaminants of emerging concern indicated that adjacent land uses can affect in-stream conditions. Contaminants of emerging concern were detected in four categories: urban compounds, industrial compounds, fecal steroids, and personal care products. Compounds in one or more of the four contaminant categories were detected at higher concentrations in upstream sites than in downstream sites in the tributaries and in the lower Boise River. High concentrations of compounds in upstream locations indicated that adjacent land use might be an important factor in contributing contaminants of emerging concern to the lower Boise River watershed. Expanded monitoring at Mason Creek near the mouth included a streamgage, a continuous water-quality monitor, and monthly water-quality sample collection. Data collected during expanded monitoring efforts at Mason Creek near the mouth provided information to develop and compare water-quality models. Regression models were developed using turbidity, discharge, and seasonality as surrogates to estimate concentrations of water-quality constituents. Daily streamflow also was used in a load model to estimate daily loads of water-quality constituents. Surrogate regression models may be useful for long-term monitoring and generally performed better than other models to estimate concentrations and loads of total phosphorus, total nitrogen, and suspended sediment in Mason Creek. Biological sampling results from Mason Creek showed low periphyton biomass and chlorophyll-a concentrations compared to those historically measured in the Boise River near Parma, Idaho, during October and November. The most abundant invertebrate found in Mason Creek was the highly tolerant and invasive New Zealand mudsnail (Potamopyrgus antipodarum). The presence of small rainbow trout (90 millimeters) may indicate salmonid spawning in Mason Creek. The rangeland-fish-index score of 58 for Mason Creek is comparable to rangeland-fish-index scores calculated for the Boise River near Middleton, indicating intermediate biotic condition.
Insights into microbial communities involved in mercury methylation in the San Francisco Bay estuary
NASA Astrophysics Data System (ADS)
Machak, C.; Francis, C. A.
2013-12-01
San Francisco Bay (SFB) estuary is the largest estuary on the western coast of the United States, draining a watershed covering more than one third of the state of California. Mercury (Hg) contamination in SFB, as a result of gold and mercury mining in the Coast Range and Sierra Nevada region, has been observed for at least 150 years. Additional sources of Hg contamination to SFB come from active oil refineries, manufacturing, and wastewater treatment plants in the area. Concentrations of methylmercury in the sediment at the time of sample collection for the present study ranged from 0.011-3.88 μg/kg (dry weight). At some sites, the concentration exceeds wetland toxicity limits, posing a threat to the health of the ecosystem and potentially endangering humans that use the estuary for food and recreation. This study attempts to understand the factors that control the transformation of Hg to methylmercury by microorganisms in aquatic sediments, where the majority of Hg methylation is known to occur. Under anoxic conditions, some sulfate- and iron-reducing bacteria have the capacity to transform Hg into methylmercury. To better understand the microbial communities involved in Hg methylation, an extensive library of 16S rRNA sequences was generated (via Illumina sequencing) from sediment samples at 20 sites throughout the SFB estuary. In addition to genomic data, we have access to a massive database of geochemical measurements made by the SFB Regional Monitoring Program at the sampling locations. These measurements show that our sediment samples have varying methylmercury concentrations and span gradients in porewater sulfate and Fe(III), which are the two known alternative electron acceptors for mercury-methylating anaerobic bacteria. The sampling sites also span gradients in other geochemical factors known to influence microbial community composition (and potentially Hg mercury methylation), such as available organic carbon, pH, and salinity. We will present the results of our analysis of the effect of various physical and geochemical parameters on the microbial community composition and abundance of known Hg methylators throughout SFB sediments.
Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.
1995-01-01
This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.
Understanding Himalayan erosion and the significance of the Nicobar Fan
NASA Astrophysics Data System (ADS)
McNeill, Lisa C.; Dugan, Brandon; Backman, Jan; Pickering, Kevin T.; Pouderoux, Hugo F. A.; Henstock, Timothy J.; Petronotis, Katerina E.; Carter, Andrew; Chemale, Farid; Milliken, Kitty L.; Kutterolf, Steffen; Mukoyoshi, Hideki; Chen, Wenhuang; Kachovich, Sarah; Mitchison, Freya L.; Bourlange, Sylvain; Colson, Tobias A.; Frederik, Marina C. G.; Guèrin, Gilles; Hamahashi, Mari; House, Brian M.; Hüpers, Andre; Jeppson, Tamara N.; Kenigsberg, Abby R.; Kuranaga, Mebae; Nair, Nisha; Owari, Satoko; Shan, Yehua; Song, Insun; Torres, Marta E.; Vannucchi, Paola; Vrolijk, Peter J.; Yang, Tao; Zhao, Xixi; Thomas, Ellen
2017-10-01
A holistic view of the Bengal-Nicobar Fan system requires sampling the full sedimentary section of the Nicobar Fan, which was achieved for the first time by International Ocean Discovery Program (IODP) Expedition 362 west of North Sumatra. We identified a distinct rise in sediment accumulation rate (SAR) beginning ∼9.5 Ma and reaching 250-350 m/Myr in the 9.5-2 Ma interval, which equal or far exceed rates on the Bengal Fan at similar latitudes. This marked rise in SAR and a constant Himalayan-derived provenance necessitates a major restructuring of sediment routing in the Bengal-Nicobar submarine fan. This coincides with the inversion of the Eastern Himalayan Shillong Plateau and encroachment of the west-propagating Indo-Burmese wedge, which reduced continental accommodation space and increased sediment supply directly to the fan. Our results challenge a commonly held view that changes in sediment flux seen in the Bengal-Nicobar submarine fan were caused by discrete tectonic or climatic events acting on the Himalayan-Tibetan Plateau. Instead, an interplay of tectonic and climatic processes caused the fan system to develop by punctuated changes rather than gradual progradation.
Humphries, Marc S
2013-11-01
Maputaland in northern KwaZulu-Natal is a biodiversity hotspot and host to a number of ecologically important systems, including Lake Sibaya, southern Africa's largest natural freshwater lake. The region is malaria endemic and this study reports the presence of DDT and its metabolites in the sediments of Lake Sibaya that have resulted from the widespread and continued use of DDT in the region. DDT residues (p,p'-DDT, p,p'-DDD, and p,p'-DDE) were detected at all 11 sites sampled, with total concentrations ranging from 0.8 to 123 ng g(-1). Total DDT concentrations at Lake Sibaya represent some of the highest levels reported in South Africa, with most samples exceeding sediment quality guideline values. The findings from this study raise concerns and indicate that urgent further work is needed to investigate the potential for bioaccumulation, which could adversely affect breeding fish, bird, and crocodile populations in the region. While this study represents the first report on DDT contamination in Lake Sibaya, results have important implications for a number of other aquatic ecosystems within the Maputaland ecoregion, as well as the many local people who depend on them. Copyright © 2013 Elsevier Ltd. All rights reserved.
Radioactive equilibrium in ancient marine sediments
Breger, I.A.
1955-01-01
Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.
Environmental impact of the Midia Port - Black Sea (Romania), on the coastal sediment quality
NASA Astrophysics Data System (ADS)
Catianis, Irina; Ungureanu, Constantin; Magagnini, Luca; Ulazzi, Elisa; Campisi, Tiziana; Stanica, Adrian
2016-03-01
The aim of the study was to evaluate the impact of potential pollution sources, mainly from the upstream anthropogenic sources and port-related activities. The in-vestigated area covered a wide range of anthropogenic im-pacts (e.g., industrial wastes, storm water runoff, acciden-tal oil spills, intentional discharges and shipping activities). The quality of water and Sediments was assessed us-ing Standard methods, as physical-chemical parameters, chemistry and biology (microbiology, ecotoxicology) aim-ing to figure the level of pollution and the effect of port-related activities. Seawater quality results agreed generally with environmental Standards. Though, in some samples the concentrations of sulphates (mg/1) and heavy metals (μg/1), as B, As and Se exceeded the recommended lim-its, without posing a serious environmental concern. Most of the surface sediment samples contain critical levels of hydrocarbons (C>12), (mg/kg), polycyclic aromatic hydrocarbons (ng/g) and polychlorobiphenyls (ng/g). For some heavy metals (mg/kg), exchangeable concentrations were found to be very close or above the regulations. The signifi-cance of this study is incontestable taking into account the lack of previous relevant historical data of this area. In this sense, it was possible to indicate, in general, good environmental conditions, despite the industrial and concentrated local port-related activities in the investigated area.
Development of an Integrated Suspended Sediment Sampling System - Prototype Results
NASA Astrophysics Data System (ADS)
Nerantzaki, Sofia; Moirogiorgou, Konstantia; Efstathiou, Dionissis; Giannakis, George; Voutsadaki, Stella; Zervakis, Michalis; Sibetheros, Ioannis A.; Zacharias, Ierotheos; Karatzas, George P.; Nikolaidis, Nikolaos P.
2015-04-01
The Mediterranean region is characterized by a unique micro-climate and a complex geologic and geomorphologic environment caused by its position in the Alpine orogenesis belt. Unique features of the region are the temporary rivers that are dry streams or streams with very low flow for most of the time over decadal time scales. One of their key characteristics is that they present flashy hydrographs with response times ranging from minutes to hours. It is crucial to monitor flash-flood events and observe their behavior since they can cause environmental degradation of the river's wider location area. The majority of sediment load is transferred during these flash events. Quantification of these fluxes through the development of new measuring devices is of outmost importance as it is the first step for a comprehensive understanding of the water quality, the soil erosion and erosion sources, and the sediment and nutrient transport routes. This work proposes an integrated suspended sediment sampling system which is implemented in a complex semi-arid Mediterranean watershed (i.e. the Koiliaris River Basin of Crete) with temporary flow tributaries and karstic springs. The system consists of sensors monitoring water stage and turbidity, an automated suspended sediment sampler, and an online camera recording video sequence of the river flow. Water stage and turbidity are continuously monitored and stage is converted to flow with the use of a rating curve; when either of these variables exceeds certain thresholds, the pump of the sediment sampler initiates sampling with a rotation proportional to the stage (flow weighted sampling). The water passes through a filter that captures the sediment, the solids are weighted after each storm and the data are converted to a total sediment flux. At the same time, the online camera derives optical measurements for the determination of the two-dimensional river flow velocity and the spatial sediment distribution by analyzing the Hue, Saturation and Intensity (HSI color model) components of the image. Suspended sediment concentration is correlated to both turbidity and image color analysis output data, while the suspended sediment sampler offers the possibility of laboratory analysis for the retained sediment. Each component cooperates with the others in an integrated manner, aiming for the quantification of the suspended sediment and the determination of its spatial distribution throughout a flood event. The innovative system, which has been made compact and portable, is currently tested at the Koiliaris River Basin and the results of the first trials will be presented. This work is elaborated through an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Social Fund - ESF and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social fund.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
Frenzel, Steven A.
1996-01-01
Surface and ground water in Nebraska may contain contaminants resulting from human activities. For purposes of this publication, a contaminant is any element or compound whose presence may affect the water's suitability for certain uses. For example, herbicide concentrations may exceeed the U.S. Environmental Protection Agency's (USEPA) Health Advisory Levels (HAL) for drinking water or trace-element concentrations may exceed guidelines for the protection of aquatic life. In general, the contaminats discussed in this report enter the aquatic system through nonpoint-source runoff from agricultural lands that dominate the Nebraska landscape. However,because this assessment was conducted as part of a larger, national program, a screening for contaminants with non-agricultural origins was included.The measurement of water quality involves a variety of steps, each contributing unique information while also aggregating to an overall assessment. One aspect of water-quality assesment is to describe the occurrence and distribution of contaminants. Some contaminants may be hundreds or thousands of times more concentrated in the tissues of aquatic organisms or in fine sediments than they are in the water. As a result, fish tissue and streambed sediments are well suited for the detection of certain contaminants. For example, pesticides used in the United States prior to the early 1970's, such as DDT, may have degraded into more stable but still toxic compounds that are highly concentrated in fish tissues. Conversely, other contaminants are not concentrated in sediments or tissues but are readily detected in water samples. Organonitrogen herbicides (such as atrazine), the most commonly used herbicides in Nebraska, are examples of water-soluble contaminants.Several sampling strategies were used to address specific questions. Some sites were sampled repeatedly through time and during all hydrologic conditions, whereas others were sampled only once to determine presence of contaminants. Because a strong relation between concentration and streamflow often exists for contaminants originating from nonpoint sources, streams typically were sampled near gaging stations that monitor streamflow.
NASA Astrophysics Data System (ADS)
Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea
2017-01-01
The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).
Kennedy, Ben W.; Whitman, Matthew S.; Burrows, Robert L.; Richmond, Sharon A.
2004-01-01
During 2001-2002, the U.S. Geological Survey sampled streambed sediment at 23 sites, measured water quality at 26 sites, and assessed fish habitat for the entire length of Noyes Slough, a 5.5-mile slough of the Chena River in Fairbanks, Alaska. These studies were undertaken to document the environmental condition of the slough and to provide information to the public for consideration in plans to improve environmental conditions of the waterway. The availability of physical habitat for fish in the slough does not appear to be limited, although some beaver dams and shallow water may restrict movement, particularly during low flow. Elevated water temperatures in summer and low dissolved-oxygen concentrations are the principle factors adversely affecting water quality in Noyes Slough. Increased flow mitigated poor water-quality conditions and reduced the number of possible fish barriers. Flow appears to be the most prominent mechanism shaping water quality and fish habitat in Noyes Slough. Streambed sediment samples collected at 23 sites in 2001 were analyzed for 24 trace elements. Arsenic, lead, and zinc were the only trace elements detected in concentrations that exceed probable effect levels for the protection of aquatic life. The background concentration for arsenic in Noyes Slough is naturally elevated because of significant concentrations of arsenic in local bedrock and ground water. Sources of the zinc and lead contamination are uncertain, however both lead and zinc are common urban contaminants. Streambed-sediment samples from 12 sites in 2002 were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds (SVOCs). The concentration of bis(2-ethylhexyl)phthalate of 2,600 micrograms per kilogram (?g/kg) for one sample from the site above Aurora Drive approached the aquatic-life criterion of 2,650 ?g/kg. Low concentrations of p-cresol, chrysene, and fluoranthene were detected in most of the sediment samples. The presence of these compounds in Noyes Slough sediment was expected because cresols are emitted to the atmosphere in the exhaust from motor vehicles and chrysene and fluoranthene are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances. Low-level concentrations of DDT or its degradation products DDD and DDE were detected in all samples collected during 2002. However, total DDT (DDT+DDD+DDE) concentrations are less than the effects range median aquatic-life criterion of 46.1 ?g/kg. In general, total DDT concentrations were less than 10 ?g/kg, except for samples from two sites that have estimated concentrations of about 14 and 20 ?g/kg.
Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.
2008-01-01
In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg/kg. Comparing the mean mercury concentration present in post-hurricane samples with regional background data from the U.S. Geological Survey National Geochemical Dataset, indicates that mercury concentrations in post-hurricane sediment generally are larger. Sequential extraction analysis of 51 samples for arsenic indicate that 54.5 percent of the total arsenic concentration is contained in the extremely mobile iron-manganese oxide fraction. Pesticide and polychlorinated biphenyl Arochlor concentrations in post-hurricane samples were small. Prometon was the most frequently detected pesticide with concentrations ranging from 2.4 to 193 micrograms per kilogram (µg/kg). Methoxychlor was present in 22 samples with a concentration ranging from 3.5 to 3,510 µg/kg. Although methoxychlor had the largest detected pesticide concentration, it was well below the U.S. Environmental Protection Agency’s High-Priority Screening Level for residential soils. Arochlor congeners were not detected for any sample above the minimum detection level of 7.9 µg/kg.
NASA Astrophysics Data System (ADS)
Mead, R. N.; Kipp, L. E.; Liberatore, H.; Sherard, S.; Steagall, M.; Skrabal, S. A.
2016-02-01
A state-funded project to analyze a suite of metal and organic contaminants in oyster tissues and ambient sediments was carried out nearly exclusively by over 10 undergraduates at the University of North Carolina Wilmington. This study will present Concentrations of various trace metals (most notably arsenic, copper, mercury, and zinc) and organic contaminants (polycyclic aromatic hydrocarbons and the antibacterial, triclosan) have been determined in oyster tissues and adjacent sediments in New Hanover and Brunswick counties, southeastern North Carolina. Trace metals that exceeded national median levels at multiple sites in this study included arsenic, copper, and zinc. Elevated levels of arsenic (exceeding the national median and, often, the national 85th percentiles) in oyster tissues are characteristic of much of the southeastern United States; these elevations are attributed to high natural background levels in the underlying bedrock and sediments as well as historical contamination by arsenic-containing agricultural pesticides. Another metal of national concern is mercury; however, concentrations of this metal were mostly at the national median for oyster tissue. Polycyclic aromatic hydrocarbons (PAHs) barely exceeded or were near the national median at only 3 sites, 2 in Lockwood Folly estuary, Brunswick County and 1 at Bradley Creek, New Hanover County. Concentrations at the remaining sites were 4 to >10 times less than the national median. Triclosan, an antibacterial compound used in many consumer products, was found in oyster tissues and sediments at the 4 sites at which it was examined. Oyster tissues contained triclosan at levels 2 to 43 times as high as adjacent sediments, indicating its bioaccumulation potential. Levels of metals and PAHs in oyster tissues are consistently elevated near more urbanized areas but are unlikely to be at levels harmful for human consumption.
Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York
Wall, G.R.; Nystrom, E.A.; Litten, S.
2008-01-01
Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery from tributaries and the Federal Dam to the ETM and harbor may be high for those years with extreme tributary high-flow events. ?? 2008 Coastal and Estuarine Research Federation.
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
Changing agricultural practices: Potential consequences to aquatic organisms
Lasier, Peter J.; Urich, Matthew L.; Hassan, Sayed M.; Jacobs, Whitney N.; Bringolf, Robert B.; Owens, Kathleen M.
2016-01-01
Agricultural practices pose threats to biotic diversity in freshwater systems with increasing use of glyphosate-based herbicides for weed control and animal waste for soil amendment becoming common in many regions. Over the past two decades, these particular agricultural trends have corresponded with marked declines in populations of fish and mussel species in the Upper Conasauga River watershed in Georgia/Tennessee, USA. To investigate the potential role of agriculture in the population declines, surface waters and sediments throughout the basin were tested for toxicity and analyzed for glyphosate, metals, nutrients, and steroid hormones. Assessments of chronic toxicity with Ceriodaphnia dubia and Hyalella azteca indicated that few water or sediment samples were harmful and metal concentrations were generally below impairment levels. Glyphosate was not observed in surface waters, although its primary degradation product, aminomethyl phosphonic acid (AMPA), was detected in 77% of the samples (mean = 509 μg/L, n = 99) and one or both compounds were measured in most sediment samples. Waterborne AMPA concentrations supported an inference that surfactants associated with glyphosate may be present at levels sufficient to affect early life stages of mussels. Nutrient enrichment of surface waters was widespread with nitrate (mean = 0.7 mg NO3-N/L, n = 179) and phosphorus (mean = 275 μg/L, n = 179) exceeding levels associated with eutrophication. Hormone concentrations in sediments were often above those shown to cause endocrine disruption in fish and appear to reflect the widespread application of poultry litter and manure. Observed species declines may be at least partially due to hormones, although excess nutrients and herbicide surfactants may also be implicated.
Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia
2017-06-01
Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.
Schmidt, T.S.; Church, S.E.; Clements, W.H.; Mitchell, K.A.; Fey, D. L.; Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Klein, T.L.; deWitt, E.H.; Rockwell, B.W.
2009-01-01
Stream water and sediment toxicity to aquatic insects were quantified from central Colorado catchments to distinguish the effect of geologic processes which result in high background metals concentrations from historical mining. Our sampling design targeted small catchments underlain by rocks of a single lithology, which allowed the development of biological and geochemical baselines without the complication of multiple rock types exposed in the catchment. By accounting for geologic sources of metals to the environment, we were able to distinguish between the environmental effects caused by mining and the weathering of different mineralized areas. Elevated metal concentrations in water and sediment were not restricted to mined catchments. Impairment of aquatic communities also occurred in unmined catchments influenced by hydrothermal alteration. Hydrothermal alteration style, deposit type, and mining were important determinants of water and sediment quality and aquatic community structure. Weathering of unmined porphyry Cu-Mo occurrences resulted in water (median toxic unit (TU) = 108) and sediment quality (TU = 1.9) that exceeded concentrations thought to be safe for aquatic ecosystems (TU = 1). Metalsensitive aquatic insects were virtually absent from streams draining catchments with porphyry Cu-Mo occurrences (1.1 individuals/0.1 m2 ). However, water and sediment quality (TU = 0.1, 0.5 water and sediment, respectively) and presence of metalsensitive aquatic insects (204 individuals/0.1 m2 ) for unmined polymetallic vein occurrences were indistinguishable from that for unmined and unaltered streams (TU = 0.1, 0.5 water and sediment, respectively; 201 individuals/0.1 m2 ). In catchments with mined quartz-sericite-pyrite altered polymetallic vein deposits, water (TU = 8.4) and sediment quality (TU = 3.1) were degraded and more toxic to aquatic insects (36 individuals/0.1 m2 ) than water (TU = 0.4) and sediment quality (TU = 1.7) from mined propylitically altered polymetallic vein deposits. The sampling approach taken in this study distinguishes the effects of different mineral deposits on ecosystems and can be used to more accurately quantify the effect of mining on the environment.
NASA Astrophysics Data System (ADS)
Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie
2017-12-01
The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.
Field assessment of alternative bed-load transport estimators
Gaeuman, G.; Jacobson, R.B.
2007-01-01
Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.
Floods of May 1978 in southeastern Montana and northeastern Wyoming
Parrett, Charles; Carlson, D.D.; Craig, G.S.; Chin, E.H.
1984-01-01
Heavy rain and some snow fell on previously saturated ground over southeastern Montana and northeastern Wyoming during May 16-19, 1978. The maximum amount of 7.60 inches within a 72-hour period observed at Lame Deer, Montana, set a record for the month of May in that region. Heavy flooding occurred in the drainages of the Yellowstone River and its tributaries as well as the Belle Fourche, Cheyenne, and North Platte Rivers. The previous maximum flood of record was exceeded at 48 gaged sites, and the 1-percent chance flood was equaled or exceeded at 24 sites. Flood damage was extensive, exceeding $33 million. Nineteen counties in the two States were declared major disaster areas. Mean daily suspended-sediment discharges exceeded previously recorded maximum mean daily values at four sites on the Powder River. The maximum daily suspended-sediment discharge of 2,810,000 tons per day occurred on May 20 at the Site Powder River near Arvada, Wyoming. (USGS)
Hinkey, Lynne M; Zaidi, Baqar R
2007-02-01
Two US Virgin Islands marinas were examined for potential metal impacts by comparing sediment chemistry data with two sediment quality guideline (SQG) values: the ratio of simultaneously extractable metals to acid volatile sulfides (SEM-AVS), and effects range-low and -mean (ERL-ERM) values. ERL-ERMs predicted the marina/boatyard complex (IBY: 2118 microg/g dry weight total metals, two exceeded ERMs) would have greater impacts than the marina with no boatyard (CBM: 231 microg/g dry weight total metals, no ERMs exceeded). The AVS-SEM method predicted IBY would have fewer effects due to high AVS-forming metal sulfide complexes, reducing trace metal bioavailability. These contradictory predictions demonstrate the importance of validating the results of either of these methods with other toxicity measures before making any management or regulatory decisions regarding boating and marina impacts. This is especially important in non-temperate areas where sediment quality guidelines have not been validated.
History of Inuit Community Exposure to Lead, Cadmium, and Mercury in Sewage Lake Sediments
Hermanson, Mark H.; Brozowski, James R.
2005-01-01
Exposure to lead, cadmium, and mercury is known to be high in many arctic Inuit communities. These metals are emitted from industrial and urban sources, are distributed by long-range atmospheric transport to remote regions, and are found in Inuit country foods. Current community exposure to these metals can be measured in food, but feces and urine are also excellent indicators of total exposure from ingestion and inhalation because a high percentage of each metal is excreted. Bulk domestic sewage or its residue in a waste treatment system is a good substitute measure. Domestic waste treatment systems that accumulate metals in sediment provide an accurate historical record of changes in ingestion or inhalation. We collected sediment cores from an arctic lake used for facultative domestic sewage treatment to identify the history of community exposure to Pb, Cd, and Hg. Cores were dated and fluxes were measured for each metal. A nearby lake was sampled to measure combined background and atmospheric inputs, which were subtracted from sewage lake data. Pb, Cd, and Hg inputs from sewage grew rapidly after the onset of waste disposal in the late 1960s and exceeded the rate of population growth in the contributing community from 1970 to 1990. The daily per-person Pb input in 1990 (720,000 ng/person per day) exceeded the tolerable daily intake level. The Cd input (48,000 ng/person per day) and Hg input (19,000 ng/person per day) were below the respective TDI levels at the time. PMID:16203239
Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T
2017-10-01
Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.
Giddings, Elise M.; Oblinger, Carolyn J.
2004-01-01
Water quality in the Newfound Creek watershed has been shown to be affected by bacteria, sediment, and nutrients. In this study, Escherichia coli (E. coli) bacteria were sampled at five sites in Newfound Creek and five tributary sites during low flow on May 28, 2003, and high flow on November 19, 2003. In addition, a subset of five sites was sampled for fecal coliform bacteria, E. coli bacteria in streambed sediments (low flow only), and coliphage virus for serotyping. Coliphage virus serotyping has been used to identify human and animal sources of bacterial contamination. A streamflow gage was installed and operated to support ongoing water-quality studies in the watershed. Fecal coliform densities ranged from 92 to 27,000 colony-forming units per 100 milliliters of water for E. coli and 140 to an estimated 29,000 colony-forming units per 100 milliliters of water for fecal coliform during the two sampling visits. Ninety percent of the E. coli and fecal coliform samples exceeded corresponding U.S. Environmental Protection Agency or North Carolina water-quality criteria for recreational and ambient waters. During low flow, the middle part of the Newfound Creek watershed and the Dix Creek tributary had the highest densities of E. coli bacteria. During the high-flow sampling, all tributaries contained high densities of E. coli bacteria, although Dix Creek and Round Hill Branch were the largest contributors of these bacteria to Newfound Creek. Coliphage virus serotyping results were inconclusive because most samples did not contain the male-specific RNA coliphage needed for serotyping. Positive results indicated, however, that during low flow, non-human sources of bacteria were present in Sluder Branch, and during high flow, human sources of bacteria were present in Round Hill Branch. Sampling of bacteria in streambed sediments during low flow indicated that sediments do not appear to be a substantial source of bacteria relative to the water column, with the exception of an area near the confluence of Sluder Branch and Newfound Creek.
Transitional Benthic Boundary Layers and their Influence on Nutrient Flux in Tidal Estuaries
NASA Astrophysics Data System (ADS)
Koetje, K. M.; Foster, D. L.; Lippmann, T. C.; Kalnejais, L. H.
2016-12-01
Quantifying the coupled physical and geochemical processes in the fluid-sediment interface is critical to managing coastal resources. This is of particular importance during times of enhanced hydrodynamic forcing where extreme tide or wind events can have a significant impact on water quality. A combination of field and laboratory experiments were used to examine the relationship between large-scale fluid shear stresses and geochemical fluxes at the fluid-sediment interface in the Great Bay Estuary, New Hampshire. Sediment geochemical measurements paired with flow field observations along estuary-wide transects over several tidal cycles provide nutrient load estimates that can be scaled to represent the whole Bay. Three-dimensional flow field measurements collected using a maneuverable personal watercraft were used to determine the spatial and temporal variability of the shear stress throughout the Bay. High-resolution bottom boundary layer dynamics were observed using a suite of acoustic Doppler current profilers (ADCP) in order to improve the accuracy of diffusive flux estimates by directly measuring the thickness of the benthic boundary layer. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak mean flows ranged from 0.2 m/s to 1 m/s at the sampling sites. The dominant contribution of hydrodynamic forcing to the Bay is due to tidal flows, which are largely unidirectional during flood tide. Sediment grain size analysis characterized the bed at sampling sites as fine-grained sandy mud (d50 = 47 μm). Sampling during typical tidal flow conditions, a smooth turbulent flow field was observed and the threshold of motion was not exceeded. Along with sediment characterization, porosity profiles and erosion chamber experiments were used to characterize nutrient release. This host of data provides shear stress estimates that can constrain nutrient loads under variable hydrodynamic conditions.
Yang, Yuangen; He, Zhenli; Lin, Youjian; Phlips, Edward J; Stoffella, Peter J; Powell, Charles A
2009-01-01
Lead (Pb), zinc (Zn), copper (Cu), and cadmium (Cd) often seriously deteriorate water quality. Spatial and temporal fluctuations of the metal concentrations in the Ten Mile Creek (Florida) (TMC) were monitored on a weekly basis at 7 sampling sites, from June 2005 to September 2007. River sediment samples were also collected from these sites in April, June, and October 2006 and January 2007, and analyzed for water, Mehlich 1 (M1), and Mehlich 3 (M3)-extractable metals (Mehlich, 1953, 1984), to examine the role of sediments as sources or sinks of the metals. The concentrations of lead, zinc, copper, and cadmium in the water samples were
Rajaee, Mozhgon; Obiri, Samuel; Green, Allyson; Long, Rachel; Cobbina, Samuel J; Nartey, Vincent; Buck, David; Antwi, Edward; Basu, Niladri
2015-07-31
This paper is one of three synthesis documents produced via an integrated assessment (IA) that aims to increase understanding of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities surrounding ASGM, an integrated assessment (IA) framework was utilized to analyze socio-economic, health, and environmental data, and co-develop evidence-based responses with stakeholders. This paper focuses on the causes, status, trends, and consequences of ecological issues related to ASGM activity in Ghana. It reviews dozens of studies and thousands of samples to document evidence of heavy metals contamination in ecological media across Ghana. Soil and water mercury concentrations were generally lower than guideline values, but sediment mercury concentrations surpassed guideline values in 64% of samples. Arsenic, cadmium, and lead exceeded guideline values in 67%, 17%, and 24% of water samples, respectively. Other water quality parameters near ASGM sites show impairment, with some samples exceeding guidelines for acidity, turbidity, and nitrates. Additional ASGM-related stressors on environmental quality and ecosystem services include deforestation, land degradation, biodiversity loss, legacy contamination, and potential linkages to climate change. Though more research is needed to further elucidate the long-term impacts of ASGM on the environment, the plausible consequences of ecological damages should guide policies and actions to address the unique challenges posed by ASGM.
Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz
2016-04-01
Immunosuppresive therapy following organ transplant frequently includes treatment with tacrolimus and mycophenolic acid derivatives. These pharmaceuticals may enter the environment through wastewater treatment plant (WWTP) effluents and may have a potentially harmful effect on aquatic biota. Tacrolimus, mycophenolic acid and their metabolites were measured at specific points of a large Polish river (Vistula), a smaller river (Utrata) and in tap water samples from the Warsaw region. Analysis was performed using liquid chromatography tandem mass spectrometry, after solid phase extraction for water samples, or QuEChERS extraction for sediments. Residues of tacrolimus were below quantitation limits in both water and sediment samples. However, in water samples mycophenolic acid concentrations were measured at up to 180 ng L(-1) downstream of WWTP outfalls. No immunosuppressive drugs were detected in tap water. Concentrations of mycophenolic acid exceeded the predicted no effect concentration (PNEC) value in some Polish surface water, and risk calculations predicted at least twice higher concentrations in some other countries of the European Union. To the best of the authors' knowledge, this is the first report of these immunosuppressive drug concentrations in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marziali, L; Rosignoli, F; Drago, A; Pascariello, S; Valsecchi, L; Rossaro, B; Guzzella, L
2017-09-01
The determination of sediment toxicity is challenging due to site-specific factors affecting pollutants distribution and bioavailability, especially when contamination levels are close to expected non-effect concentrations. Different lines of evidence and sensitive tools are necessary for a proper toxicity risk assessment. We examined the case study of the Toce River (Northern Italy), where past industrial activities determined Hg, DDT and As enrichment in sediments. A triad approach comprising chemical, ecotoxicological and ecological analyses (benthic invertebrates) was carried out for risk assessment of residual contamination in river sediments. A "blank" site upstream from the industrial site was selected to compare the other sites downstream. Sediment, water and benthic invertebrate samplings were carried out following standard protocols. Results emphasized that despite the emissions of the industrial site ceased about 20years ago, sediments in the downstream section of the river remain contaminated by Hg, DDT and As with concentrations exceeding Threshold Effect Concentrations. A chronic whole-sediment test with Chironomus riparius showed decreased development rate and a lower number of eggs per mass in the contaminated sediments. Benthic community was analyzed with the calculation of integrated (STAR_ICMi) and stressor-specific metrics (SPEAR pesticide and mean sensitivity to Hg), but no significant differences were found between upstream and downstream sites. On the other hand, multivariate analysis (partial Redundancy Analysis and variation partitioning) emphasized a slight impact on invertebrate community, accounting for 5% variation in taxa composition. Results show that legacy contaminants in sediments, even at low concentrations, may be bioavailable and possibly toxic for benthic invertebrates. At low concentration levels, sensitive and site-specific tools need to be developed for a proper risk analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Streamflow and Water-Quality Characteristics for Wind Cave National Park, South Dakota, 2002-03
Heakin, Allen J.
2004-01-01
A 2-year study of streamflow and water-quality characteristics in Wind Cave National Park was performed by the U.S. Geological Survey in cooperation with the National Park Service. During this study, streamflow and water-quality data were collected for three of the park's perennial streams (Cold Spring, Beaver, and Highland Creeks) from January 2002 through November 2003. The potential influence of parking lot runoff on cave drip within Wind Cave also was investigated by collecting and analyzing several time-dependent samples from a drainage culvert downstream from the parking lot and from Upper Minnehaha Falls inside the cave following a series of simulated runoff events. The primary focus of the report is on data collected during the 2-year study from January 2002 to November 2003; however, data collected previously also are summarized. Losing reaches occur on both Beaver and Highland Creeks as these streams flow across outcrops of bedrock aquifers within the park. No streamflow losses occur along Cold Spring Creek because its confluence with Beaver Creek is located upstream from the outcrop of the Madison aquifer, where most streamflow losses occur. Physical properties, major ions, trace elements, nutrients, bacteria, benthic macroinvertebrates, organic (wastewater) compounds, bottom sediment, and suspended sediment are summarized for samples collected from 2 sites on Cold Spring Creek, 2 sites on Beaver Creek, and 1 site on Highland Creek. None of the constituent concentrations for any of the samples collected during 2002-03 exceeded any of the U.S. Environmental Protection Agency drinking-water standards, with the exception of the Secondary Maximum Contaminant Level for pH, which was exceeded in numerous samples from Beaver Creek and Highland Creek. Additionally, the pH values in several of these same samples also exceeded beneficial-use criteria for coldwater permanent fisheries and coldwater marginal fisheries. Water temperature exceeded the coldwater permanent fisheries criterion in numerous samples from all three streams. Two samples from Highland Creek also exceeded the coldwater marginal fisheries criterion for water temperature. Mean concentrations of ammonia, orthophosphate, and phosphorous were higher for the upstream site on Beaver Creek than for other water-quality sampling sites. Concentrations of E. coli, fecal coliform, and total coliform bacteria also were higher at the upstream site on Beaver Creek than for any other site. Samples for the analysis of benthic macroinvertebrates were collected from one site on each of the three streams during July 2002 and May 2003. The benthic macroinvertebrate data showed that Beaver Creek had lower species diversity and a higher percentage of tolerant species than the other two streams during 2002, but just the opposite was found during 2003. However, examination of the complete data set indicates that the quality of water at the upstream site was generally poorer than the quality of water at the downstream site. Furthermore, the quality of water at the upstream site on Beaver Creek is somewhat degraded when compared to the quality of water from Highland and Cold Spring Creeks, indicating that anthropogenic activities outside the park probably are affecting the quality of water in Beaver Creek. Samples for the analysis of wastewater compounds were collected at least twice from four of the five water-quality sampling sites. Bromoform, phenol, caffeine, and cholesterol were detected in samples from Cold Spring Creek, but only phenol was detected at concentrations greater than the minimum reporting level. Concentrations of several wastewater compounds were estimated in samples collected from sites on Beaver Creek, including phenol, para-cresol, and para-nonylphenol-total. Phenol was detected at both sites on Beaver Creek at concentrations greater than the minimum reporting level. Bromoform; para-cresol; ethanol,2-butoxy-phosphate; and cholesterol were detected
Barazzetti Barbieri, Cristina; de Souza Sarkis, Jorge Eduardo
2018-07-01
The forensic interpretation of environmental analytical data is usually challenging due to the high geospatial variability of these data. The measurements' uncertainty includes contributions from the sampling and from the sample handling and preparation processes. These contributions are often disregarded in analytical techniques results' quality assurance. A pollution crime investigation case was used to carry out a methodology able to address these uncertainties in two different environmental compartments, freshwater sediments and landfill leachate. The methodology used to estimate the uncertainty was the duplicate method (that replicates predefined steps of the measurement procedure in order to assess its precision) and the parameters used to investigate the pollution were metals (Cr, Cu, Ni, and Zn) in the leachate, the suspect source, and in the sediment, the possible sink. The metal analysis results were compared to statutory limits and it was demonstrated that Cr and Ni concentrations in sediment samples exceeded the threshold levels at all sites downstream the pollution sources, considering the expanded uncertainty U of the measurements and a probability of contamination >0.975, at most sites. Cu and Zn concentrations were above the statutory limits at two sites, but the classification was inconclusive considering the uncertainties of the measurements. Metal analyses in leachate revealed that Cr concentrations were above the statutory limits with a probability of contamination >0.975 in all leachate ponds while the Cu, Ni and Zn probability of contamination was below 0.025. The results demonstrated that the estimation of the sampling uncertainty, which was the dominant component of the combined uncertainty, is required for a comprehensive interpretation of the environmental analyses results, particularly in forensic cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Gray, J.E.; Hines, M.E.; Biester, H.
2006-01-01
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 ??g/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 ??g/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region. ?? 2006 Elsevier Ltd. All rights reserved.
Morra, Matthew J; Carter, Meghan M; Rember, William C; Kaste, James M
2015-09-01
Mining that began in the late 1800s intensified during World War II contaminating Lake Coeur d'Alene sediments with potentially toxic elements. We used 80y of the sediment record to reconstruct metal(loid) loadings to the lake and quantitatively evaluate the effectiveness of tailings management. Sediment core analysis for pollen, chronological markers, and metal(loid)s permitted stratigraphic reconstruction showing that contaminant loading decreased after tailings pond construction, but that most metal(loid) concentrations exceed recommended limits. Arsenic concentrations (250-450 mg kg(-)(1)) at the sediment-water interface are potentially toxic; however, low P concentrations in recent sediments (1.0-1.4 mg kg(-)(1)) inhibit eutrophication and the concomitant release of soluble As. Zinc (3 g kg(-)(1)), Cd (10 mg kg(-)(1)), Ag (10 mg kg(-)(1)), and Cu (90 mg kg(-)(1)) concentrations are now lower than in sediments deposited during active mining, but remain an environmental concern. Sedimentary Cr and Pb concentrations have not changed in the last 50y, because tailings continue to enter the lake. Although modern Cr concentrations (40 mg kg(-)(1)) are unlikely to cause toxicity, current Pb concentrations (4 g kg(-)(1)) exceed acceptable limits, creating challenges for remediation. Strategies to manage other mining-contaminated watersheds should include consideration of elemental differences when evaluating remediation effectiveness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walters, D.M.; Mills, M.A.; Fritz, K.M.; Raikow, D.F.
2010-01-01
We investigated aquatic insect utilization and PCB exposure in riparian spiders at the Lake Hartwell Superfund site (Clemson, SC). We sampled sediments, adult chironomids, terrestrial insects, riparian spiders (Tetragnathidae, Araneidae, and Mecynogea lemniscata), and upland spiders (Araneidae) along a sediment contamination gradient. Stable isotopes (?13C, ? 15N) indicated that riparian spiders primarily consumed aquatic insects whereas upland spiders consumed terrestrial insects. PCBs in chironomids (mean 1240 ng/g among sites) were 2 orders of magnitude higher than terrestrial insects (15.2 ng/g), similar to differences between riparian (820?2012 ng/g) and upland spiders (30 ng/g). Riparian spider PCBs were positively correlated with sediment concentrations for all taxa (r2 = 0.44?0.87). We calculated spider-based wildlife values (WVs, the minimum spider PCB concentrations causing physiologically significant doses in consumers) to assess exposure risks for arachnivorous birds. Spider concentrations exceeded WVs for most birds at heavily contaminated sites and were ?14-fold higher for the most sensitive species (chickadee nestlings, Poecile spp.). Spiders are abundant and ubiquitous in riparian habitats, where they depend on aquatic insect prey. These traits, along with the high degree of spatial correlation between spider and sediment concentrations we observed, suggest that they are model indicator species for monitoring contaminated sediment sites and assessing risks associated with contaminant flux into terrestrial ecosystems. ?? This article not subject to U.S. Copyright. Published 2009 by the American Chemical Society.
Zhen, Xiaomei; Tang, Jianhui; Xie, Zhiyong; Wang, Runmei; Huang, Guopei; Zheng, Qian; Zhang, Kai; Sun, Yongge; Tian, Chongguo; Pan, Xiaohui; Li, Jun; Zhang, Gan
2016-06-01
The distribution characteristics and potential sources of polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) were investigated in 54 surface sediment samples from four bays (Taozi Bay, Sishili Bay, Dalian Bay, and Jiaozhou Bay) of North China's Yellow Sea. Of the 54 samples studied, 51 were collected from within the four bays and 3 were from rivers emptying into Jiaozhou Bay. Decabromodiphenylethane (DBDPE) was the predominant flame retardant found, and concentration ranged from 0.16 to 39.7 ng g(-1) dw and 1.13-49.9 ng g(-1) dw in coastal and riverine sediments, respectively; these levels were followed by those of BDE 209, and its concentrations ranged from n.d. to 10.2 ng g(-1) dw and 0.05-7.82 ng g(-1) dw in coastal and riverine sediments, respectively. The levels of DBDPE exceeded those of decabromodiphenyl ether (BDE 209) in most of the samples in the study region, whereas the ratio of DBDPE/BDE 209 varied among the four bays. This is indicative of different usage patterns of brominated flame retardants (BFRs) and also different hydrodynamic conditions among these bay areas. The spatial distribution and composition profile analysis indicated that BFRs in Jiaozhou Bay and Dalian Bay were mainly from local sources, whereas transport from Laizhou Bay by coastal currents was the major source of BFRs in Taozi Bay and Sishili Bay. Both the ∑PBDEs and ∑aBFRs (sum of pentabromotoluene (PBT), 2,3-diphenylpropyl-2,4,6-tribromophenyl ether (DPTE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB)) were at low concentrations in all the sediments. This is probably attributable to a combination of factors such as low regional usage of these products, atmospheric deposition patterns, coastal currents transportation patterns, and degradation processes for higher BDE congeners. This paper is the first study that has investigated the levels of DBDPE in the coastal sediments of China's Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.
1990-01-01
A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)
The use of Ampelisca abdita growth rate as an indicator of sediment quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, D.P.; Thompson, B.
1995-12-31
Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs.more » the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.« less
Acetate concentrations and oxidation in salt marsh sediments
NASA Technical Reports Server (NTRS)
1992-01-01
Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.
Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia
Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.
2012-01-01
Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, L.; Ramial, K.; Wilkinson, P.
Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less
Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.
2017-09-06
Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.
Mau, David P.; Ziegler, Andrew C.; Porter, Stephen D.; Pope, Larry M.
2004-01-01
Surface water in the Lake Olathe watershed, located in northeast Kansas, was sampled from June 2000 through December 2002 to characterize water-quality conditions in relation to physical properties, major ions, sediment, nutrients, selected trace elements, selected pesticides, fecal indicator bacteria, phytoplankton, and taste-and-odor compounds. In addition, two continuous real-time water-quality monitors were operated?one in Cedar Creek at Highway 56, the main tributary to Lake Olathe, and one in Lake Olathe, a supplemental domestic water supply and recreational resource for the city of Olathe. Median concentrations of dissolved and total forms of nitrogen and phosphorus in samples from Cedar Creek were larger than in samples from Lake Olathe, indicating that nutrients in the watershed were transported to Lake Olathe by Cedar Creek from June 2000 through December 2002. Increased concentrations of total phosphorus in samples from the hypolimnion of Lake Olathe compared to the epilimnion indicated that release of total phosphorus from bottom sediments occurred in the lake. Of the 50 pesticides analyzed in water samples from Cedar Creek and Lake Olathe, 10 pesticides were detected at concentrations greater than 0.01 microgram per liter in samples from Cedar Creek, and 9 pesticides were detected at concentrations greater than 0.01 microgram per liter in Lake Olathe, including four herbicides with concentrations exceeding 1.0 microgram per liter. Atrazine was detected at larger concentrations than any other pesticide in samples from both Cedar Creek and Lake Olathe during 2001 and 2002. Concentrations did not exceed the U.S. Environmental Protection Agency drinking-water annual average criterion of 3.0 micrograms per liter; however, concentrations in single samples were larger than 3.0 micrograms per liter. Regression analysis was used to assist in the estimation of sediment and chemical loads and yields. The estimated mean orthophosphate load for 2001 and 2002 represented 29 percent of the total phosphorus load to Lake Olathe. Estimated yields to Lake Olathe of both total nitrogen and total phosphorus, 13.0 and 1.1 pounds per acre per year, respectively, were consistent with mixed agricultural land use occurring in the watershed. Concentrations of fecal coliform bacteria samples from Lake Olathe were less than both primary and secondary single-sample criteria for recreational water in Kansas in place at the time of sampling. Sufficient samples were not collected to compare to the December 2003 Kansas Department of Health and Environment criteria, but single-sample Escherichia coli samples collected from Cedar Creek during storm runoff exceeded 2,000 colonies per 100 milliliters of water (former secondary recreation water-quality criterion for fecal coliform bacteria) in four of the seven samples collected. Water from Cedar Creek and Lake Olathe was analyzed in 2002 by enzyme-linked immunosorbent assay for microcystin-LR, a toxic algal compound. Concentrations of microcystin-LR in Lake Olathe during 2002 ranged from less than 0.1 to 0.41 microgram per liter, which is not considered a significant health risk according to guidelines published by the World Health Organization. Regression models were developed for four taste-and-odor phytoplankton species detected frequently in Lake Olathe? Melosira granulata, Anabaena, Oscillatoria, and Cryptomonas. The coefficient of determinations, R2, ranged from 0.64 to 0.89, and p-values ranged from less than 0.001 to 0.014, indicating a statistically significant relation with lake-residence time, specific conductance, turbidity, Secchi transparency depth, real-time continuous fluorescence, and total ammonia plus organic nitrogen as nitrogen. Actinomycetes, filamentous bacteria that are known producers of geosmin and 2-methylisoborneol (MIB), were sampled and analyzed in 2002 in water from Cedar Creek and Lake Olathe. In Lake Olathe, actinomycetes concentrations rang
Zhang, Ting; Yang, Wen-Long; Chen, She-Jun; Shi, Dian-Long; Zhao, Hu; Ding, Yi; Huang, Ye-Ru; Li, Nan; Ren, Yue; Mai, Bi-Xian
2014-08-01
Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esser, Bradley K.; Bibby, Richard K.; Fish, Craig
Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevatedmore » Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al and of Fe with Al in storm water and air particulates and the strong association of Mg, Fe, and Al with Eu in air particulates strongly suggests that a dominant source of the Mg in storm water is associated with mineral phases of natural origin. These observations all point to Mg exceedances being associated with natural sources and processes and not with anthropogenic processes or pollutant sources.« less
NASA Astrophysics Data System (ADS)
Avramidis, Pavlos; Barouchas, Pantelis; Dünwald, Thomas; Unkel, Ingmar
2017-04-01
In the study area, in order farmers to keep their olive trees healthy, the first measure is to keep their olive trees well-fed that is the best initial defense against diseases. Copper-based fungicides are the most common fungicides to protect olive plantations against diseases such as the olive leaf spot. Pathogens are controlled by farmers with strategically timed disease control programs rely on copper sprays to protect the foliage and fruit from infection Successful disease control depends on even distribution and good retention of the copper over all of the plant surfaces before the disease develops. Artificially added copper has the ability to accumulate in soils and aquatic sediments and can cause adverse effects on flora and fauna in its environment. For the present study soil and aquatic sediments field campaign was carried out in the Aetoliko Lagoon ecosystem which is exclusively dominated by olive orchards. It is for the first time in Greece that soil as well as aquatic sediments samples of one coherent protected aquatic ecosystem were taken and compared. To determine the influence that the usage of copper-based fungicides have on the lagoon and surrounding areas, ten (10) sediment samples from the bottom of the lagoon and twenty five (25) soil samples at the different olive orchards that are bordering the water body were taken. The samples were analyzed for total copper content (total digestion) and extractable copper (DTPA and NH4NO3). Furthermore, soil / sedimentological and geochemical analyses such as pH, grain size, total organic carbon, total nitrogen and calcium carbonate content were carried out. The results show in over 80 % of the orchard soils a critical accumulation of the total amount of copper. In some of the examined soils the value of 140 mg/kg(as set by the European Union as a limit for total copper in farmland) is exceeded by the factors of 2 to 4.5. Copper content in the aquatic sediments is generally lower and varies between 43.85 mg/kg and 71.87 mg/kg. The values for DTPA-extractable copper are relatively very low, while the highest fractions of bioavailable copper are found on the eastern shore of the lagoon. Our study can be used as a valuable reference for future studies on this subject at the Aetoliko lagoon and similar ecosystems.
Littin, Gregory R.; McVay, Jason C.
2009-01-01
In cooperation with the Sac and Fox Tribe of the Mississippi in Iowa (Meskwaki Nation), the U.S. Geological Survey conducted a 2-year baseline assessment of the chemical and biological quality of streams within the Meskwaki Settlement in central Iowa. The Meskwaki Nation is a federally recognized tribe that wishes to establish water-quality standards to safeguard the integrity of surface waters and aquatic biota within the settlement for the health and welfare of the tribal community. The settlement is drained by the Iowa River and four tributaries (Onion, Cattail, Raven, and Bennett Creeks). Water-quality samples were collected at three sites on the Iowa River, two sites on Onion Creek, and one site each on Cattail, Raven, and Bennett Creeks from April 2006 through July 2007. Biological and habitat assessments were conducted at all three sites on the Iowa River and the downstream-most site on Onion Creek from June through August 2007. Analysis of physical properties, major ions, nutrients, trace compounds, bacteria, and total suspended solids in water, and trace metals and organic compounds in streambed sediment provided information about the effects of anthropogenic (human related) activities on the water quality of settlement streams. Analysis of biological samples collected during the summer of 2007, including fish community, benthic macroinvertebrates, and periphyton samples, as well as physical habitat characteristics, provided information on the effects of water quality on the condition of the aquatic environment. The majority of surface water sampled within the settlement was predominately a calcium bicarbonate type. Nitrates (nitrate plus nitrite as nitrogen) exceeded the U.S. Environmental Protection Agency's (USEPA) primary drinking-water Maximum Contaminant Level of 10 ug/L in 19 of 36 samples from sites on the Iowa River and Raven and Bennett Creeks but not in samples from Onion and Cattail Creeks. None of the samples analyzed for pesticides, trace metals, wastewater, or fuel contaminants were found to exceed drinking-water regulations for the USEPA or State of Iowa targeted constituents. Bacteria densities for Escherichia coli (E. coli) ranged from less than 10 to more than 600,000 colony-forming units per 100 milliliters of water and were largest following intense rainfall runoff. The largest densities were recorded in samples collected from the tributaries, most notably from Cattail Creek downstream from the tribal headquarters area and Onion Creek downstream from the sewage lagoons. Arsenic and nickel concentrations in bottom sediment from Onion Creek exceeded the USEPA threshold effects level in a composite sample collected during the habitat assessment in July 2007. Suspended-sediment concentration was estimated in terms of total suspended solids. Overall, Onion and Bennett Creeks were the least turbid, whereas the ephemeral Cattail Creek had the most turbid samples. Aquatic-community data were collected at four sites on the Meskwaki Settlement during the summer of 2007 to provide a baseline biological assessment of stream conditions. This assessment was based on sampling of the fish, benthic macroinvertebrate, and periphyton communities along with physical habitat characteristics. Individual biological metrics were derived from the data collected during the community surveys. These metrics were used to calculate Indexes of Biological Integrity (IBIs). The calculated values from the IBIs provided a numerical value that was used to provide an assessment of the biological condition at each biological sampling site. The fish community samples indicated that all of the sampling sites would be considered in fair condition, with one exception being a collection site on the Iowa River at Highway 49 near Tama, Iowa, which was classified in poor condition. The benthic macroinvertebrate IBI indicated a classification of good for three of the four biological sampling sites, with the Iowa River near Montour, Iowa,
Covault, J.A.; Romans, B.W.; Graham, S.A.; Fildani, A.; Hilley, G.E.
2011-01-01
Sediment routing from terrestrial source areas to the deep sea influences landscapes and seascapes and supply and filling of sedimentary basins. However, a comprehensive assessment of land-to-deep-sea sediment budgets over millennia with significant climate change is lacking. We provide source to sink sediment budgets using cosmogenic radionuclide-derived terrestrial denudation rates and submarine-fan deposition rates through sea-level fluctuations since oxygen isotope stage 3 (younger than 40 ka) in tectonically active, spatially restricted sediment-routing systems of Southern California. We show that source-area denudation and deep-sea deposition are balanced during a period of generally falling and low sea level (40-13 ka), but that deep-sea deposition exceeds terrestrial denudation during the subsequent period of rising and high sea level (younger than 13 ka). This additional supply of sediment is likely owed to enhanced dispersal of sediment across the shelf caused by seacliff erosion during postglacial shoreline transgression and initiation of submarine mass wasting. During periods of both low and high sea level, land and deep-sea sediment fluxes do not show orders of magnitude imbalances that might be expected in the wake of major sea-level changes. Thus, sediment-routing processes in a globally significant class of small, tectonically active systems might be fundamentally different from those of larger systems that drain entire orogens, in which sediment storage in coastal plains and wide continental shelves can exceed millions of years. Furthermore, in such small systems, depositional changes offshore can reflect onshore changes when viewed over time scales of several thousand years to more than 10 k.y. ?? 2011 Geological Society of America.
Spatial distribution of chemical constituents in the Kuskokwim River, Alaska
Wang, Bronwen
1999-01-01
The effects of lithologic changes on the water quality of the Kuskokwim River, Alaska, were evaluated by the U.S. Geological Survey in June 1997. Water, suspended sediments, and bed sediments were sampled from the Kusko-kwim River and from three tributaries, the Holitna River, Red Devil Creek, and Crooked Creek. Dissolved boron, chromium, copper, manganese, zinc, aluminum, lithium, barium, iron, antimony, arsenic, mercury, and strontium were detected. Dissolved manganese and iron concentrations were three and four times higher in the Holitna River than in the Kusko-kwim River. Finely divided ferruginous materials found in the graywacke and shale units of the Kuskokwim Group are the probable source of the iron. The highest concentrations of dissolved strontium and barium were found at McGrath, and the limestone present in the upper basin was the most probable source of strontium. The total mercury concentrations on the Kuskokwim River decreased downstream from McGrath. Dissolved mercury was 24 to 32 percent of the total concentration. The highest concentrations of total mercury, and of dissolved antimony and arsenic were found in Red Devil Creek. The higher concentrations from Red Devil Creek did not affect the main stem mercury transport because the tributary was small relative to the Kuskokwim River. In Red Devil Creek, total mercury exceeded the concentration at which the U.S. Environmental Protection Agency (USEPA) indicates that aquatic life is affected and dissolved arsenic exceeded the USEPA's drinking-water standard. Background mercury and antimony concentrations in bed sediments ranged from 0.09 to 0.15 micrograms per gram for mercury and from 1.6 to 2.1 micrograms per gram for antimony. Background arsenic concentrations were greater than 27 micrograms per gram. Sites near the Red Devil mercury mine had mercury and antimony concentrations greater than background concentrations. These concentrations probably reflect the proximity to the ore body and past mining. Crooked Creek had mercury concentrations greater than the background concentration. The transport of suspended sediment-associated trace elements was lower for all elements in the lower river than in the upper river, indicating storage of sediments and their associated metals within the river system.
Zhang, Zhaoyong; Juying, Li; Mamat, Zulpiya; QingFu, Ye
2016-04-01
The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697 µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EF(S)), the Geo-accumulation index (I(geo)), and the potential ecological risk coefficient (E(r)(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world. Copyright © 2015 Elsevier Inc. All rights reserved.
Variability in form and growth of sediment waves on turbidite channel levees
Normark, W.R.; Piper, D.J.W.; Posamentier, H.; Pirmez, C.; Migeon, S.
2002-01-01
Fine-grained sediment waves have been observed in many modern turbidite systems, generally restricted to the overbank depositional element. Sediment waves developed on six submarine fan systems are compared using high-resolution seismic-reflection profiles, sediment core samples (including ODP drilling), multibeam bathymetry, 3D seismic-reflection imaging (including examples of burried features), and direct measurements of turbidity currents that overflow their channels. These submarine fan examples extend over more than three orders of magnitude in physical scale. The presence or absence of sediment waves is not simply a matter of either the size of the turbidite channel-levee systems or the dominant initiation process for the turbidity currents that overflow the channels to form the wave fields. Both sediment-core data and seismic-reflection profiles document the upslope migration of the wave forms, with thicker and coarser beds deposited on the up-current flank of the waves. Some wave fields are orthogonal to channel trend and were initiated by large flows whose direction was controlled by upflow morphology, whereas fields subparallel to channel levees resulted from local spillover. In highly meandering systems, sediment waves may mimic meander planform. Larger sediment waves form on channel-levee systems with thicker overflow of turbidity currents, but available data indicate that sediment waves can be maintaned during conditions of relatively thin overflow. Coarser-grained units in sediment waves are typically laminated and thin-bedded sand as much as several centimetres thick, but sand beds as thick as several tens of centimetres have been documented from both modern and buried systems. Current production of hydrocarbons from sediment-wave deposits suggests that it is important to develop criteria for recognising this overbank element in outcrop exposures and borehole data, where the wavelength of typical waves (several kilometres) generally exceeds outcrop scales and wave heights, which are reduced as a result of consolidation during burial, may be too subtle to recognise. Crown Copyright ?? 2002 Published by Elsevier Science B.V. All rights reserved.
Seiler, Ralph L.; Wood, James L.
2009-01-01
Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.
A giant sediment trap in the Florida keys
Shinn, E.A.; Reich, C.D.; Locker, S.D.; Hine, A.C.
1996-01-01
Aerial photography, high-resolution seismic profiling, coring and jet probing have revealed a large sediment-filled sinkhole in the Key Largo National Marine Sanctuary off Key Largo, Florida. The 600-m-diameter feature straddles coral reef and carbonate-sand facies and contains >55 m of marine lime sand and aragonite mud. Bulk 14C age determinations of mud from a 30- m sediment core indicate infilling rates exceeding 20 m/ka between 3 and 5.6 ka. The total thickness and nature of the sediment near the base of the sinkhole are not known.
Zeiger, Sean; Hubbart, Jason A
2016-01-15
Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sebei, Abdelaziz; Helali, Mohamed Amine; Oueslati, Walid; Abdelmalek-Babbou, Chiraz; Chaabani, Fredj
2018-01-01
Tessa River is seen as one of the important rivers in Tunisia. Its catchment is known for its agricultural and mining activities, especially the Bougrine and Fedj Lahdhoum mines. Eighteen (18) surface sediments and five (5) water samples were collected from the Tessa River, near these two mining sites. Sediments are essentially sandy (>80%), the most important mineral is quartz (20-73%), then calcite (41%) and dolomites (4%). Heavy metal contents are relatively high near the mining sites, 356 μg g-1 for Pb, 3000 μg g-1 for Zn, and 5 μg g-1 for Cd. These values are lower downstream due to watercourse dilution effects. Other heavy metals: Cu, Ni and Cr, are low, and values are relatively constant in all the studied samples, even near the mining sites. The metals originate from natural sources and not from mining activities. This trend is confirmed by the enrichment factor (EF) where EFNi, EFCu and EFCr are lower or equal to 1, unlike EFPb, EFZn or EFCd where values are much higher (>20). Chemical speciation of these metals does not show any spatial variation. Except for cadmium which is bound to the residual fraction and in the carbonates; all other heavy metals are bound to the five sediment chemical fractions: the residual fraction (>52%), followed by the oxyhydroxides fraction (21%) and carbonates (16%), and finally bound to the organic matter and to the exchangeable fraction (<10%). The bioavailable fraction of the studied heavy metals exceeds 45%, which present risk of toxicity.
Yu, Shang-yun; Zhou, Yan-mei
2015-08-01
This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.
Mullins, William H.
1998-01-01
Agricultural land and water use, wastewater treatment facility discharges, land development, road construction, urban runoff, confined-animal feeding operations, reservoir operations, and river channelization affect the water quality and biotic integrity of the lower Boise River between Lucky Peak Dam and the river's mouth at Parma, Idaho. During May 1994 through February 1997, 4 sites on the Boise River, 12 tributary/drain sites, and 3 wastewater treatment facilities were sampled at various intervals during the irrigation (high-flow) and post-irrigation (low-flow) seasons to determine sources, concentrations, and relative loads of nutrients and suspended sediment. Discharge entering the Boise River from the 12 tributary/drain sites and 3 wastewater treatment facilities was measured to determine the nutrient loads being contributed from each source. Total nitrogen, total phosphorus, and suspended sediment concentrations and loads tended to increase in a downstream direction along the Boise River. Among the 15 sources of discharge to the Boise River, 3 southside tributary/drains and the West Boise wastewater treatment facility contributed the largest loads of total nitrogen; the median daily load was more than 2,000 pounds per day. The West Boise wastewater treatment facility contributed the largest median daily load of total phosphorus (810 pounds per day); Dixie Drain contributed the largest median daily load of suspended sediment (26.4 tons per day). Nitrogen-to-phosphorus ratios at the four Boise River sites indicated that phosphorus could be limiting algal growth at the Diversion Dam site, whereas nitrogen could be limiting algal growth at the Glenwood and Middleton sites during some parts of the year. Algal growth in the Boise River near Parma did not appear to be nutrient limited. Because of the complexity of the plumbing system in the lower Boise River (numerous diversions and inflow points), accurate comparisons between discharge and nutrient loads entering the river at measured sites during high-flow sampling periods were difficult. During low-flow sampling periods, southside tributary/drains contributed most of the discharge and total nitrogen load, and wastewater treatment facilities contributed most of the total phosphorus load to the Boise River. During the 50-day period July 18 through September 5, 1996, the Idaho State standard for maximum daily average temperature for coldwater biota was exceeded by 34 percent at Middleton, 48 percent at Caldwell, and 80 percent near Parma. Violations of State standards for primary and secondary contact recreation were observed at all tributary/ drains and in the Boise River near Parma. Median instantaneous concentrations of fecal coliform bacteria exceeded State standards for primary contact recreation at five tributary/drains and exceeded standards for secondary contact recreation at one tributary/drain (Dixie Drain).
Semipermeable membrane devices used to estimate bioconcentration of polychlorinated biphenyls
Chambers, D.B.
1999-01-01
Aquatic organisms passively accumulate hydrophobic organic compounds, such as polychlorinated biphenyls, even when ambient water concentrations of the contaminant are below analytical detection limits. However, contaminant concentrations in tissue samples are subject to an inherently high level of variability due to differences in species, life stage, and gender bioconcentration potentials. Semipermeable membrane devices (SPMDs) were used to sample Aroclor 1254, a mixture of readily bioconcentrated polychlorinated biphenyls (PCBs), in a contaminated wetland near Flat Top, WV. The devices consisted of triolein, a lipid found in fish, enclosed in a polyethylene membrane. SPMDs were deployed in the water column and in direct contact with wetland sediments along a previously identified concentration gradient of PCBs. The devices were retrieved after a 25-day exposure period. Analytes were recovered by dialyzing the devices in nanograde hexane. Hexane dialysates were condensed and analyzed by gas chromatography. All deployed devices sequestered quantifiable amounts of Aroclor 1254. Water-column SPMDs accumulated PCBs far in excess of ambient water concentrations. The devices contacting sediments accumulated PCBs at all sites, though accumulated concentrations did not exceed concentrations in sediment. Patterns of PCB concentration in the devices corresponded to the identified gradient at the site. Results from the water-column SPMDs were used to estimate the concentration of the dissolved, bioavailable fraction of PCBs present in the water column. These concentrations ranged from 0.01 to 0.09 ??g/L of bioavailable Aroclor 1254.
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0...) and (uu). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0...) and (uu). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0...) and (uu). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Nilsen, Elena; Zaugg, Steven; Alvarez, David; Morace, Jennifer; Waite, Ian; Counihan, Timothy; Hardiman, Jill; Torres, Leticia; Patiño, Reynaldo; Mesa, Matthew; Grove, Robert
2014-06-15
We investigated occurrence, transport pathways, and effects of polybrominated diphenyl ether (PBDE) flame retardants and other endocrine disrupting chemicals (EDCs) in aquatic media and the foodweb in the lower Columbia River. In 2009 and 2010, foodweb sampling at three sites along a gradient of contaminant exposure near Skamania (Washington), Columbia City (Oregon) and Longview (Washington) included water (via passive samplers), bed sediment, invertebrate biomass residing in sediment, a resident fish species (largescale suckers [Catostomus macrocheilus]), and eggs from osprey (Pandion haliaetus). This paper primarily reports fish tissue concentrations. In 2009, composites of fish brain, fillet, liver, stomach, and gonad tissues revealed that overall contaminant concentrations were highest in livers, followed by brain, stomach, gonad, and fillet. Concentrations of halogenated compounds in tissue samples from all three sites ranged from <1 to 400nanograms per gram of wet tissue. Several chemical classes, including PBDEs, organochlorine pesticides, and polychlorinated biphenyls (PCBs), were detected at all sites and in nearly all fish tissues sampled. In 2010, only fish livers were sampled and inter-site concentration differences were not as pronounced as in 2009. Chemical concentrations in sediments, fish tissues, and osprey eggs increased moving downstream from Skamania to the urbanized sites near Columbia City and Longview. Numerous organochlorine (OC) pesticides, both banned and currently used, and PBDEs, were present at each site in multiple media and concentrations exceeded environmental quality benchmarks in some cases. Frequently detected OC compounds included hexachlorobenzene, pentachloroanisole, dichlorodiphenyltrichloroethane (DDT) and its degradates, chlorpyrifos, and oxyfluorofen. Biomagnification of BDE47, 100, 153, and 154 occurred in largescale suckers and osprey eggs. Results support the hypothesis that contaminants in the environment lead to bioaccumulation and potential negative effects in multiple levels of the foodweb. Published by Elsevier B.V.
Nilsen, Elena B.; Zaugg, Steven D.; Alvarez, David A.; Morace, Jennifer L.; Waite, Ian R.; Counihan, Timothy D.; Hardiman, Jill M.; Torres, Leticia; Patino, Reynaldo; Mesa, Matthew G.; Grove, Robert
2014-01-01
We investigated occurrence, transport pathways, and effects of polybrominated diphenyl ether (PBDE) flame retardants and other endocrine disrupting chemicals (EDCs) in aquatic media and the foodweb in the lower Columbia River. In 2009 and 2010, foodweb sampling at three sites along a gradient of contaminant exposure near Skamania (Washington), Columbia City (Oregon) and Longview (Washington) included water (via passive samplers), bed sediment, invertebrate biomass residing in sediment, a resident fish species (largescale suckers [Catostomus macrocheilus]), and eggs from osprey (Pandion haliaetus). This paper primarily reports fish tissue concentrations. In 2009, composites of fish brain, fillet, liver, stomach, and gonad tissues revealed that overall contaminant concentrations were highest in livers, followed by brain, stomach, gonad, and fillet. Concentrations of halogenated compounds in tissue samples from all three sites ranged from < 1 to 400 nanograms per gram of wet tissue. Several chemical classes, including PBDEs, organochlorine pesticides, and polychlorinated biphenyls (PCBs), were detected at all sites and in nearly all fish tissues sampled. In 2010, only fish livers were sampled and inter-site concentration differences were not as pronounced as in 2009. Chemical concentrations in sediments, fish tissues, and osprey eggs increased moving downstream from Skamania to the urbanized sites near Columbia City and Longview. Numerous organochlorine (OC) pesticides, both banned and currently used, and PBDEs, were present at each site in multiple media and concentrations exceeded environmental quality benchmarks in some cases. Frequently detected OC compounds included hexachlorobenzene, pentachloroanisole, dichlorodiphenyltrichloroethane (DDT) and its degradates, chlorpyrifos, and oxyfluorofen. Biomagnification of BDE47, 100, 153, and 154 occurred in largescale suckers and osprey eggs. Results support the hypothesis that contaminants in the environment lead to bioaccumulation and potential negative effects in multiple levels of the foodweb.
Flood Plain Lakes Along the Elbe River - a Forgotten Risk
NASA Astrophysics Data System (ADS)
Heise, Susanne
2014-05-01
Flood Plain Lakes Along the Elbe River - a Forgotten Risk Introduction: Along the German part of the Elbe River, more than 1000 "side structures" form potential sinks of contaminated sediment. They are mostly remains of previous river courses which have been cut off by natural causes or anthropogenic alterations of the river (oxbow lakes), or are floodplain lakes that were formed during high water conditions. These water bodies sometimes have a small opening towards the Elbe, or are hydrodynamically connected only in situations of high discharges. High discharges in the Elbe River, however, are mainly responsible for transporting historic contaminants along with suspended matter from former historic sources in the middle Elbe downstream. As these may settle when the current dies down at the end of a high discharge period, side structures have been under suspicion to have accumulated contaminated material over the last decades. Until this study was conducted, nothing was known about erodibility and contamination of sediment in these lakes even though they could have a large impact on the Elbe River itself: A preliminary investigation showed that the total surface of side structures in the Elbe floodplain adds up to about 50 km2. In case that deposited sediment is contaminated and only the upper 20 cm are prone to resuspension and transport during flooding, 10 Mio m3 of contaminated sediment could potentially be added to the contaminant load during a high water event. This study was carried out to evaluate the risk from these side structures for the environmental quality of the Elbe River. Methods: 15 side structures were investigated. Sediment cores were taken on 1 to 3 locations per water body in order to obtain the following information: • Depth of sediment layer • Erodibility of surface sediment, measured immediately after sampling - using the "Gust Microcosm", • Eroded mass at over-critical shear stress, measured in the lab by eroding a sediment core for one hour and collecting the suspended sediment matter. • Chemical contamination • Ecotoxicological effects Results and Discussion All side structures that were sampled exceeded the national quality guidelines for sediments which have been set by the International Commission for the Protection of the Elbe. In some cases very high concentrations were reached such as 1300 µg/kg dw for p,p-DDD, up to 61 mg/kg for Hg and 39 mg/kg for Cd. Erodibility varied a lot with critical shear stresses of less than 1 cm/s to more than 2 cm/s. Ecotoxicological data were also very different between side structures and sampling locations, but partly indicating very high inhibitions. Methanol extracts of sediments on all locations were screened using the luminescence bacteria test with Vibrio fischeri. Selected sediemt samples were tested applying the sediment contact test with Arthrobacter globiformes and the algae growth inhibition test with Pseudokirchneriella subcapitata. An integrated evaluation of all information led to a classification of 7 sites out of 15 to be of high risk, 7 to be of medium risk and only one site to be of low risk for the environmental quality of the Elbe River.
Scheuhammer, A M; Lord, S I; Wayland, M; Burgess, N M; Champoux, L; Elliott, J E
2016-03-01
We investigated mercury (Hg) concentrations in small fish (mainly yellow perch, Perca flavescens; ∼60% of fish collected) and in blood of common loons (Gavia immer) that prey upon them during the breeding season on lakes in 4 large, widely separated study areas in Canada (>13 lakes per study area; total number of lakes = 93). Although surface sediments from lakes near a base metal smelter in Flin Flon, Manitoba had the highest Hg concentrations, perch and other small fish and blood of common loon chicks sampled from these same lakes had low Hg concentrations similar to those from uncontaminated reference lakes. Multiple regression modeling with AIC analysis indicated that lake pH was by far the most important single factor influencing perch Hg concentrations in lakes across the four study areas (R(2) = 0.29). The best model was a three-variable model (pH + alkalinity + sediment Se; Wi = 0.61, R(2) = 0.85). A single-variable model (fish Hg) best explained among-lake variability in loon chick blood Hg (Wi = 0.17; R(2) = 0.53). From a toxicological risk perspective, all lakes posing a potential Hg health risk for perch and possibly other small pelagic fish species (where mean fish muscle Hg concentrations exceeded 2.4 μg/g dry wt.), and for breeding common loons (where mean fish muscle Hg concentrations exceeded 0.8 μg/g dry wt., and loon chick blood Hg exceeded 1.4 μg/g dry wt.) had pH < 6.7 and were located in eastern Canada. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.
2014-01-01
Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines River at Jackson. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong relations with SSC at 10 of 14 sites and was superior to streamflow for estimating SSC at all sites. These results indicate that turbidity may be beneficial as a surrogate for SSC in many of Minnesota’s rivers. Suspended-sediment loads and annual basin yields indicated that the Minnesota River had the largest average annual sediment load of 1.8 million tons per year and the largest mean annual sediment basin yield of 120 tons of sediment per year per square mile. Annual TSS loads were considerably lower than suspended-sediment loads. Overall, the largest suspended-sediment and TSS loads were transported during spring snowmelt runoff, although loads during the fall and summer seasons occasionally exceeded spring runoff at some sites. This study provided data from which to characterize suspended sediment across Minnesota’s diverse geographical settings. The data analysis improves understanding of sediment transport relations, provides information for improving sediment budgets, and documents baseline data to aid in understanding the effects of future land use/land cover on water quality. Additionally, the data provides insight from which to evaluate the effectiveness and efficiency of best management practices at the watershed scale.
A Field Investigation of Water and Salt Movement in Permafrost and the Active Layer
1993-02-01
in the submerged continental shelves of the Arctic and Antarctic land masses where pore water salinities of shelf sediments may exceed that of the...thawed sediments would have wanned at all depths, and permafrost would have started to thaw from both the top and the bottom. Eventually, gas...exploration wells (Osterkamp at al., 1985). Destabilization of gas hydrates (by warming the sediments in the continental shelves) during periods of high
Zhu, Xiaolei; Shan, Baoqing; Tang, Wenzhong
2016-12-01
The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.
Hu, Jianfang; Xiao, Xiao; Peng, Ping'an; Huang, Weilin; Chen, Deyi; Cai, Ying
2013-10-01
Workshop dust, soil and sediment samples were collected to investigate the level and spatial distribution of PCDDs/Fs at an intensive electronic waste (e-waste) recycling site in Southern China, and also to characterize the dioxin emission in different e-waste recycling procedures. The concentrations of total PCDDs/Fs ranged from 1866 to 234292 ng kg(-1) for the dust samples, from 3187 to 63998 ng kg(-1) dry wt for the top soils, and 33718 ng kg(-1) for the surface sediment. All the samples were characterized by abnormally high concentrations of OCDD and an extremely low portion of PCDFs. Different e-waste recycling procedures may generate different congener profiles. Open burning and dismantling were the two procedures emitting relatively higher concentrations of PCDDs/Fs in this case, indicating that low-tech recycling operations were one of the major contributors of PCDDs/Fs to the environment. The variation and distinction of the concentrations and homologue/congener profiles among different environmental matrices reveal the characteristics of contaminant environmental behavior and fate during the transportation from "source" to "sink". Daily intake of PCDDs/Fs through soil ingestion and dermal absorption was negligible, but the rough estimated total PCDD/F intake dose far exceeded the tolerance daily intake value of 4 pg-TEQ per kg per day recommended by WHO, indicating that residents in Longtang were at a high risk of exposure to dioxins, especially children.
Geochemical control on the reduction of U(VI) to mononuclear U(IV) species in lacustrine sediments
NASA Astrophysics Data System (ADS)
Stetten, L.; Mangeret, A.; Brest, J.; Seder-Colomina, M.; Le Pape, P.; Ikogou, M.; Zeyen, N.; Thouvenot, A.; Julien, A.; Alcalde, G.; Reyss, J. L.; Bombled, B.; Rabouille, C.; Olivi, L.; Proux, O.; Cazala, C.; Morin, G.
2018-02-01
Contaminated systems in which uranium (U) concentrations slightly exceed the geochemical background are of particular interest to identify natural processes governing U trapping and accumulation in Earth's surface environments. For this purpose, we examined the role of early diagenesis on the evolution of U speciation and mobility in sediments from an artificial lake located downstream from a former mining site. Sediment and pore water chemistry together with U and Fe solid state speciation were analyzed in sediment cores sampled down to 50 cm depth at four locations in the lake. These organic-rich sediments (∼12% organic C) exhibited U concentrations in the 40-80 mg kg-1 range. The sediment columns were anoxic 2-3 mm below the sediment-water interface and pore waters pH was circumneutral. Pore water chemistry profiles showed that organic carbon mineralization was associated with Fe and Mn reduction and was correlated with a decrease in dissolved U concentration with depth. Immobilization of U in the sediment was correlated with the reduction of U(VI) to U(IV) at depth, as shown by U LIII-edge XANES spectroscopic analysis. XANES and EXAFS spectroscopy at the Fe K-edge showed the reduction of structural Fe(III) to Fe(II) in phyllosilicate minerals with depth, coincident with U(VI) to U(IV) reduction. Thermodynamic modeling suggests that Fe(II) could act as a major reducing agent for U(VI) during early diagenesis of these sediments, leading to complete U reduction below ∼30 cm depth. Shell-by-shell and Cauchy-Wavelet analysis of U LIII-EXAFS spectra indicates that U(VI) and U(IV) are mainly present as mononuclear species bound to C, P or Si ligands. Chemical extractions confirmed that ∼60-80% of U was present as non-crystalline species, which emphasizes that such species should be considered when evaluating the fate of U in lacustrine environments and the efficiency of sediment remediation strategies.
Brown, L.R.
1997-01-01
Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of ??DDT (sum of o,p'- and p, p' forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal- Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ??DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ??DDT in tissue, as a function of ??DDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ??DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States.
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10–170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.
Aqueous and solid phase speciation of arsenic in a Bengali aquifer using IC-ICP-MS and EXAFS
NASA Astrophysics Data System (ADS)
Gault, A. G.; Davidson, L. E.; Lythgoe, P. R.; Charnock, J. M.; Chatterjee, D.; Abou-Shakra, F. R.; Walker, H. J.; Polya, D. A.
2003-04-01
Contamination of groundwater and drinking water supplies with arsenic has been reported in many parts of the world and constitutes a serious public health threat. Nowhere is this more apparent than in West Bengal and Bangladesh where arsenic concentrations exceed both World Health Organisation (WHO) and national limits in drinking water supplies leading to what has been described as the worst mass poisoning of a human population in history. Knowledge of both aqueous and solid phase speciation of arsenic in such hazardous arsenic-rich groundwaters is crucial to understanding the processes controlling arsenic release. We report here preliminary work involving the determination of dissolved arsenic speciation in West Bengali groundwaters and extended X-ray absorption fine structure (EXAFS) analysis of the associated sediment. Groundwater samples collected from Nadia district, West Bengal were analysed for arsenic speciation by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS) within 14 days of collection. Total arsenic concentrations exceeding 850 ug/L were determined; inorganic arsenic constituted the bulk of the dissolved arsenic burden with As(III) as the dominant form. Minor amounts of methylated arsenicals were also detected, however, their concentration did not exceed 5 ug/L. The local coordination environment of arsenic in sediment associated with such groundwaters was probed using K-edge As EXAFS. This revealed that arsenic exists predominantly in its oxidised form, As(V), most likely adsorbed as bidentate arsenate tetrahedra on metal (Fe and/or Al) oxide/hydroxide surfaces, although incorporation of arsenic into a metal oxide structure cannot be unequivocally ruled out. Arsenic was found to occur in several different coordination environments and this, together with the low concentration (< 5 ug/g) of arsenic in the sediment, prevented the unambiguous assignment of the second coordination sphere. The analysis of the trends of key groundwater constituents in our data suggest that arsenic is released due to the reductive dissolution of arsenic laden-hydrous ferric oxides, however, further work is required to fully evaluate the mode of arsenic release.
Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt
NASA Astrophysics Data System (ADS)
Kasem Mahmoud, Esawy; Ghoneim, Adel Mohamed
2016-04-01
The discharge of untreated waste water in Zefta drain and drain no. 5 is becoming a problem for many farmers in the El-Mahla El-Kobra area, Egypt. The discharged water contains high levels of contaminants considered hazardous to the ecosystem. Some plants, soil, water, and sediment samples were collected from the El-Mahla El-Kobra area to evaluate the contamination by heavy metals. The results showed that the heavy metals, pH, sodium adsorption ratio (SAR), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in the water of Zefta drain and drain no. 5 exceeded permissible limits for irrigation. In rice and maize shoots grown in soils irrigated by contaminated water from Zefta drain and drain no. 5, the bioaccumulation factors for Cd, Pb, Zn, Cu, and Mn were higher than 1.0. The heavy metals content of irrigated soils from Zefta drain and drain no. 5 exceeded the upper limit of background heavy metals. In this study, the mean contaminant factor values of the drain no. 5 sediments revealed that Zn, Mn, Cu, Cd, Pb, and Ni > 6, indicating very high contamination. The bioaccumulation coefficient values of Cynodon dactylon, Phragmites australis, and Typha domingensis aquatic plants growing in Zefta drain are high. These species can be considered as hyperaccumulators for the decontamination of contaminated water.
Water quality and hydrology of the Silver River Watershed, Baraga County, Michigan, 2005-08
Weaver, Thomas L.; Sullivan, Daniel J.; Rachol, Cynthia M.; Ellis, James M.
2010-01-01
The Silver River Watershed comprises about 69 square miles and drains part of northeastern Baraga County, Michigan. For generations, tribal members of the Keweenaw Bay Indian Community have hunted and fished in the watershed. Tribal government and members of Keweenaw Bay Indian Community are concerned about the effect of any development within the watershed, which is rural, isolated, and lightly populated. For decades, the area has been explored for various minerals. Since 2004, several mineral-exploration firms have been actively investigating areas within the watershed; property acquisition, road construction, and subsurface drilling have taken place close to tributary streams of the Silver River. The U.S. Geological Survey, in cooperation with Keweenaw Bay Indian Community, conducted a multi-year water-resources investigation of the Silver River Watershed during 2005-08. Methods of investigation included analyses of streamflow, water-quality sampling, and ecology at eight discrete sites located throughout the watershed. In addition, three continuous-record streamgages located within the watershed provided stage, discharge, specific conductance, and water-temperature data on an hourly basis. Water quality of the Silver River Watershed is typical of many streams in undeveloped areas of Upper Michigan. Concentrations of most analytes typically were low, although several exceeded applicable surface-water-quality standards. Seven samples had concentrations of copper that exceeded the Michigan Department of Environmental Quality standards for wildlife, and one sample had concentrations of cyanide that exceeded the same standards. Concentrations of total mercury at all eight sampling sites exceeded the Great Lakes Basin water-quality standard, but the ratio of methylmercury to total mercury was similar to the 5 to 10 percent found in most natural waters. Concentrations of arsenic and chromium in bed sediments were near the threshold-effect concentration. A qualitative ecological assessment of fishes and macroinvertebrates showed that intolerant salmonids were present at most sampled sites, and macroinvertebrate communities were indicative of near-excellent or excellent conditions at all eight sites. This baseline information will aid in an ongoing monitoring effort designed to protect the water resources of the
Rajaee, Mozhgon; Obiri, Samuel; Green, Allyson; Long, Rachel; Cobbina, Samuel J.; Nartey, Vincent; Buck, David; Antwi, Edward; Basu, Niladri
2015-01-01
This paper is one of three synthesis documents produced via an integrated assessment (IA) that aims to increase understanding of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities surrounding ASGM, an integrated assessment (IA) framework was utilized to analyze socio-economic, health, and environmental data, and co-develop evidence-based responses with stakeholders. This paper focuses on the causes, status, trends, and consequences of ecological issues related to ASGM activity in Ghana. It reviews dozens of studies and thousands of samples to document evidence of heavy metals contamination in ecological media across Ghana. Soil and water mercury concentrations were generally lower than guideline values, but sediment mercury concentrations surpassed guideline values in 64% of samples. Arsenic, cadmium, and lead exceeded guideline values in 67%, 17%, and 24% of water samples, respectively. Other water quality parameters near ASGM sites show impairment, with some samples exceeding guidelines for acidity, turbidity, and nitrates. Additional ASGM-related stressors on environmental quality and ecosystem services include deforestation, land degradation, biodiversity loss, legacy contamination, and potential linkages to climate change. Though more research is needed to further elucidate the long-term impacts of ASGM on the environment, the plausible consequences of ecological damages should guide policies and actions to address the unique challenges posed by ASGM. PMID:26264012
Seyfried, Erin E.; Newton, Ryan J.; Rubert, Kennedy F.; Pedersen, Joel A.; McMahon, Katherine D.
2014-01-01
The contribution of human activities to environmental reservoirs of antibiotic resistance is poorly understood. The purpose of this study was to determine if oxytetracycline (OTC) use in aquaculture facilities increased the detection frequency (i.e. prevalence) of tetracycline resistance genes relative to facilities with no recent OTC treatment. We used PCR to screen water and sediment from four non-commercial fish farms in northwestern Wisconsin for the presence of ten tetracycline resistance determinants (tetR): tet(A), tet(B), tet(D), tet(E), tet(G), tet(M), tet(O), tet(Q), tet(S) and tet(W). Water from farms with recent OTC use had significantly higher tetR detection frequencies than did water from farms without recent OTC use, with prevalence in raceways and rearing ponds of farms with recent OTC use exceeded by more than two-fold that of farms not using OTC. Effluent from all farms, regardless of treatment regime, had higher tetR detection frequencies than their corresponding influent for all genes, but the specific combinations of tetR genes detected in a sample were not different from their corresponding influent. Although OTC use was associated with the increased occurrence and diversity of tetR genes in water samples, it was not found to relate to tetR gene occurrence in sediment samples. Sediment samples from facilities with no recent OTC use had significantly higher frequencies of tetR gene detection than did samples from facilities with recent OTC use. All of the tetR genes were detected in both the medicated and non-medicated feed samples analyzed in this study. These findings suggest that both OTC treatment in aquaculture facilities, and the farms themselves, may be sources of tetR gene introduction to the environment. To our knowledge, this is the first study to use genotypic and cultivation-independent methods to examine tetR gene occurrence associated with OTC use in aquaculture. PMID:20217406
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Marcelo J.; Santamarina, J. Carlos
Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (alsomore » through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.« less
Detection of recycled marine sediment components in crater lake fluids using 129I
NASA Astrophysics Data System (ADS)
Fehn, U.; Snyder, G. T.; Varekamp, J. C.
2002-06-01
Crater lakes provide time-integrated samples of volcanic fluids, which may carry information on source components. We tested under what circumstances 129I concentrations can be used for the detection of a signal derived from the recycling of marine sediments in subduction zone magmatism. The 129I system has been successfully used to determine origin and pathways in other volcanic fluids, but the application of this system to crater lakes is complicated by the presence of anthropogenic 129I, related to recent nuclear activities. Results are reported from four crater lakes, associated with subducting crust varying in age between 23 and 98 Ma. The 129I/I ratios determined for Copahue, Argentina, (129I/I=700×10-15) and White Island, New Zealand, (129I/I=284×10-15) demonstrate the presence of iodine in the crater lakes that was derived from recycled marine sediments. A comparison to the ages of the subducted sediments in these two cases indicates that the ratios likely reflect iodine remobilization from the entire sediment column that was undergoing subduction. While the 129I signals in Poás and Rincón de la Vieja, Costa Rica also demonstrate the presence of recycled iodine, the relatively high percentage of meteoric water in these lakes prevents a reliable determination of source ages. The observed high concentrations of iodine and 129I/I ratios substantially below current surface values strongly argue for the presence of recycled marine components in the arc magmas of all four cases. Components from subducted marine sediments can be quantified and related to specific parts of the sediment column in cases where the iodine concentration in the lake waters exceeds 5 μM.
Langland, Michael J.; Hainly, Robert A.
1997-01-01
The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not...). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal olefin... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Code of Federal Regulations, 2014 CFR
2014-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not...). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal olefin... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Code of Federal Regulations, 2012 CFR
2012-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not...). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal olefin... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Recent DDT and PCB contamination in the sediment and biota of the Como Bay (Lake Como, Italy).
Bettinetti, R; Quadroni, S; Boggio, E; Galassi, S
2016-01-15
Due to its peculiar geographical and morphological characteristics, Lake Como (Northern Italy) represents an interesting study-case for investigating the sub-basin scale circulation of persistent organic pollutants (POPs) that, despite being banned since the 1970s, have reached surprisingly high concentrations in some southern alpine lakes as a consequence of their release from melting glaciers in recent years. In particular, the Como Bay, which is located in the city of Como, seems noteworthy because its waters have a longer residence time than the other areas of the lake. The analyses of the historical concentration of PCBs, pp′DDT and its metabolites in a sediment core sampled from the Como Bay covering a time-period from their ban to recent times, showed that the DDTs have never experienced a significant (p < 0.05) decrease over time, with concentrations of the most abundant homologue, pp′DDE, ranging from 27 to 75 ng g(-1) d.w. Conversely PCBs significantly (p < 0.05) decreased towards recent times, reaching concentrations around 80 ng g(-1) d.w. The contribution of high altitude and local sources was recorded also in the food web: both zooplankton and the zooplanktivorous fish agone were mainly contaminated by pp′DDE (81.4 ng g(-1) w.w. and 534.6 ng g(-1) w.w. respectively) and by the PCB metabolite hexa-CB (449.7 ng g(-1) w.w. and 1672.1 ng g(-1) w.w. respectively). The DDT concentrations in the agone (sampled during the years 2006–2009) never exceeded the limits for human consumption in Italy, while concentrations of six selected PCBs exceeded human health advisory recommendations in one of the fish samples analysed, when it was approximately two times higher than the recommended value of 125 ng g(-1) w.w.
Aydin-Onen, S; Kucuksezgin, F; Kocak, F; Açik, S
2015-06-01
In the present study, the bioaccumulation of six heavy metals (Cd, Cr, Cu, Hg, Pb, and Zn) in Hediste (Nereis) diversicolor (O.F. Müller, 1776) and also in the muscle and liver of Mugil cephalus (Linnaeus, 1758) collected from seven stations in the Bafa Lake was investigated. Sediment samples were also collected in each site to assess heavy metal levels and to provide additional information on pollution of the lake. The mean concentrations of heavy metals in sediment, H. diversicolor, and muscle and liver of the fish were found to be in the magnitude of Cr>Pb>Zn>Cu>Cd>Hg, Zn>Cu>Cr>Pb>Hg>Cd, Zn>Cu>Pb>Cr >Hg>Cd, and Cu>Zn>Cr>Cd>Pb>Hg, respectively. Hg, Cu, and Zn in H. diversicolor and Hg and Zn in muscle and also Hg, Cd, Cu, and Zn in liver of fish accumulated in a higher degree than in sediment. There was no clear relationship between metal concentrations in sediments, polychaetes, and fish, except Cr. According to international criteria and Turkish regulations, Pb and Zn values in edible muscle of the fish collected from stations S6 and S5 exceeded the food safety limits, respectively. The results of this study suggest that these sentinel species can be considered as good anthropogenic biological indicators for heavy metal pollution along the Bafa Lake.
Water quality and landscape processes of four watersheds in eastern Puerto Rico
Murphy, Sheila F.; Stallard, Robert F.; Contributions by Buss, Heather L.; Gould, William A.; Larsen, Matthew C.; Liu, Zhigang; Martinuzzi, Sebastian; Pares-Ramos, Isabel K.; White, Arthur F.; Zou, Xiaoming
2012-01-01
Humid tropical regions occupy about a quarter of Earth's land surface, yet they contribute a substantially higher fraction of the water, solutes, and sediment discharged to the world's oceans. Nearly half of Earth's population lives in the tropics, and development stresses can potentially harm soil resources, water quality, and water supply and in addition increase landslide and flood hazards. Owing to Puerto Rico's steep topography, low water storage capacity, and dependence on trade-wind precipitation, the island's people, ecosystems, and water supply are vulnerable to extreme weather such as hurricanes, floods, and droughts. Eastern Puerto Rico offers a natural laboratory for separating geologic and land-cover influences from regional- and global-scale influences because of its various bedrock types and the changing land cover surrounding intact, mature forest of the Luquillo Experimental Forest. Accordingly, a multiyear assessment of hydrological and biogeochemical processes was designed to develop an understanding of the effects of these differences on local climate, streamflow, water quality, and ecosystems, and to form the basis for a long-term and event-based program of climate and hydrologic monitoring. Because infrequent, large storms play a major role in this landscape, we focused on high-runoff events, sampling 263 storms, including all major hurricanes from 1991 through 2005. The largest storms have profound geomorphic consequences, such as landslides, debris flows, deep gullying on deforested lands, excavation and suspension of sediment in stream channels, and delivery of a substantial fraction of annual stream sediment load. Large storms sometimes entrain ocean foam and spray causing high concentrations of seasalt-derived constituents in stream waters during the storm. Past deforestation and agricultural activities in the Cayaguás and Canóvanas watersheds accelerated erosion and soil loss, and this material continues to be remobilized during large storms. Nearly 5,000 routine and event samples were analyzed for parameters that allow determination of denudation rates based on suspended and dissolved loads; 860 of these samples were analyzed for a comprehensive suite of chemical constituents. The rivers studied are generally similar in water-quality characteristics, and windward or leeward aspect appears to exert a stronger influence on water quality than geology or land cover. Of samples analyzed for comprehensive chemistry and for sediment, 543 were collected at runoff rates greater than 1 millimeter per hour, 256 at rates exceeding 10 millimeters per hour, and 3 at rates exceeding 90 millimeters per hour. Streams have rarely been sampled during events with such high runoff rates. Rates of physical and chemical weathering are especially high, and physical denudation rates, forested watersheds included, are considerably greater than is expected for a steady-state system. The elevated physical erosion drives an increased particulate organic carbon flux, one that is large, important to the carbon cycle, and sustainable, because soil-carbon regeneration is rapid. The 15-year Water, Energy, and Biogeochemical Budget dataset, which includes discharge, field parameters, suspended sediment, major cations and anions, and nutrients, is available from the U.S. Geological Survey's National Water Information System (http://waterdata.usgs.gov/nwis). The dataset provides a baseline for characterizing future environmental change and will improve our understanding of the interdependencies of land, water, and biological resources and their responses to changes in climate and land use. Because eastern Puerto Rico resembles many tropical regions in terms of geology and patterns of development, implications from this study are transferable to other tropical regions facing deforestation, rapid land-use change, and climate change.
Gerner, Steven J.; Spangler, Lawrence E.
2006-01-01
Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.
Black, Robert W.; Barnes, Abby; Elliot, Colin; Lanksbury, Jennifer
2018-06-26
Chemicals such as metals and organics (polychlorinated biphenyl [PCBs], polybrominated diphenyl ethers [PBDEs], polycyclic aromatic hydrocarbons [PAHs], and phthalates) continue to enter Puget Sound, western Washington, from point sources (such as industrial and municipal outfalls) and combined sewer outfalls and non-point sources (such as stormwater runoff). Runoff during storm events has been identified as a major source of contamination entering Puget Sound and has been implicated in the degradation of nearshore habitats and biota. Metals, organic chemicals, and other pollutants are known to accumulate in sediments such as those present along the shoreline of Puget Sound. In addition to chemical contaminants, small plastic particles (known as microplastics), found in marine waters of Puget Sound and suspected of being in aquatic sediments, are a potential concern because they can be ingested by animals and are suspected of transporting sorbed chemicals such as PCBs and metals.The Stormwater Work Group of Puget Sound (SWG) (composed of State and municipal stormwater permittees, and other stakeholders) developed a strategy to address sediment conditions in the nearshore environment of Puget Sound. As part of this strategy, the SWG developed a regional stormwater monitoring strategy designed to inform monitoring requirements in National Pollutant Discharge Elimination System (NPDES) stormwater permits issued by the Washington State Department of Ecology (Ecology). The monitoring program is referred to as the Stormwater Action Monitoring (SAM).The overall focus of the work described in this report is to address one of the goals of SAM, which is to characterize the status, spatial extent, and quality of Puget Sound sediment chemicals in the nearshore urban areas. The nearshore urban areas are defined as areas parallel to established Urban Growth Areas (UGAs) using a spatially balanced probabilistic Generalized Random Tessellation Stratified (GRTS) sampling design. One of the benefits of the GRTS sampling design used for this study is that it allows one to efficiently extrapolate from a relatively small number of sampled nearshore sites to the entire nearshore shoreline within the 2011 defined UGA boundaries of Puget Sound. In addition to characterizing nearshore sediment chemical concentrations, this study also characterized the abundance of microplastics in the nearshore sediment.A total of 41 randomly selected sites were sampled throughout Puget Sound in summer and early autumn of 2016. All sampling sites were located at 6 feet below the Mean Lower Low Water line. The top 2–3 centimeters of sediment were collected using a boat-mounted, pre-cleaned stainless-steel box corer. All chemical samples were sieved to 2 millimeters and placed in appropriate containers for chemical analysis for PCBs, PBDEs, PAHs, phthalates, metals, total organic carbon, and grain size. Pre-sieved sediment samples were stored in glass containers for microplastic analysis. Nearshore sediment chemical concentrations were summarized using numerous statistical approaches to examine the minimum, mean, and maximum concentrations for each of the compounds analyzed and to compare the results to criteria and other nearshore and marine sediment studies. The GRTS sampling design also allowed the authors to assess the percentage of the UGA nearshore environment that did not meet established standards or criteria for each chemical analyzed. Additionally, regression and machine learning statistical analyses were used to examine relations between measured chemical concentrations, and land cover and geologic features at multiple scales within the watersheds adjacent to sampling sites. The influence of marine hydrodynamic factors on nearshore sediment chemical concentrations was statistically evaluated with nonparametric methods by assigning each sampling site to one of five nearshore drift cell types based on its location. The Puget Sound shoreline can be divided into segments, referred to as drift cells, based on the movement of sediment along the shore by waves. Each drift cell type has a unique influence on nearshore sediment transport.The nearshore sediment chemical concentrations for organics and metals generally were low, and in most cases less than Washington State criteria. The concentrations of some PAHs were greater than the criteria, but these exceedances were limited to one or two sites. The results of the probabilistic study design determined that, for the PAHs examined, 96 percent or more of the 1,344 km of shoreline represented by this study had concentrations less than any established criteria. For the remaining organics (PCBs and PBDEs), the probabilistic study design indicates that more than 98 percent of shoreline examined had concentrations less than criteria or proposed standards. For the metals, the results of the study indicate that 100 percent of the nearshore sediment had concentrations less than the criteria. The relations between sediment organic and metal concentrations, and adjacent watershed land cover and the particle size of the samples, were determined to be weakly related. Although weakly related, the particle size of the sediment in a sample typically explained more of the variation in metal concentrations than organics. While the measured watershed attributes adjacent to the sampling sites and sediment size of the samples were weakly related to chemical concentrations, they were significantly related to unique drift cells along the shoreline of Puget Sound known as drift cells. Each drift cell represents a long-term directional transport of sediment from its source to its depositional zone. Sediment chemical concentrations were significantly higher in drift cells with limited sediment movement compared to those with higher sediment transport energy.Microplastics in the nearshore sediment ranged from 0.02 to 0.65 pieces per gram of sediment, with a mean of 0.19 pieces per gram of sediment, and were dominated by small fibers (355–1,000 micrometers). Like chemical concentrations, microplastics concentrations in the nearshore sediment were poorly related to watershed land cover. Although not significantly different, microplastics concentrations generally were higher in the low energy drift cells compared to the high energy drift cells.The results of this study provide a statistically valid status assessment of current nearshore sediment chemical conditions throughout Puget Sound in those areas adjacent to defined UGAs. In addition to the study findings of relatively low concentrations of PCBs, PBDEs, PAHs, phthalates, and metals, the study design provides a statistically valid tool for evaluating changes in these compounds over time if future nearshore sediment assessments are done. Furthermore, the assessment of microplastic abundance represents the first study of its kind that can be used as a benchmark for future evaluations. The results of this study will help inform Ecology in the implementation of monitoring requirements as part of its NPDES stormwater permitting process.
Persistent organic pollutants in wetlands of the Mekong Basin
Triet, Tran; Barzen, Jeb Anthony; Choowaew, Sansanee; Engels, Jon Michael; Ni, Duong Van; Mai, Nguyen Anh; Inkhavilay, Khamla; Soben, Kim; Sethik, Rath; Gomotean, Bhuvadol; Thuyen, Le Xuan; Kyi, Aung; Du, Nguyen Huy; Nordheim, Richard; Lam, Ho Si Tung; Moore, Dorn M.; Wilson, Scott
2013-01-01
In this study, the presence and concentration of persistent organic pollutants (POP) were assessed in surface sediments collected from a wide variety of wetlands located throughout the Mekong Basin in Myanmar, Lao People’s Democratic Republic (PDR), Thailand, Cambodia, and Vietnam. Of the 39 POPs tested in 531 sediment samples, dichlorodiphenyltrichloroethane (DDT) and its metabolites endosulfan, hexachlorobenzene (HCB), and endrin were most commonly detected. Even though DDT was banned in the 1990s, some use of DDT may still be occurring in the Mekong Basin. The amount of metabolites for DDT—dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)—found, however, suggests that use of DDT is on the decline throughout the region. HCB and endrin were found distributed broadly throughout the Mekong Basin but not in high amounts. The concentration and distribution of endosulfan and its metabolites represent a serious problem requiring further study and management action. While the total loading of POPs in wetland sediments of the Mekong Basin was generally low, hotspot sites occurred where concentrations exceeded established ecological risk thresholds. For example, wetlands of the open, dry dipterocarp forest of northern Cambodia and Vietnam as well as wetlands in the Mekong Delta of Vietnam contained high concentrations of some POPs. High concentrations of POPs were detected in some wetlands important for biodiversity conservation. Hotspots identified in wetlands such as the Tonle Sap not only had concentrations of DDT and DDE that exceeded Canadian and U.S. benchmarks, but fauna sampled in the area also showed high degrees of bioaccumulation of the same substances. Further and more extensive attention to monitoring POP presence in water birds, fish, and other aquatic organisms is warranted because of the bioaccumulation of these chemicals at higher levels in the food chain. This study represents a collaboration of eight universities from five countries in the Mekong Region (Myanmar, Lao PDR, Thailand, Cambodia and Vietnam) and four universities and research institutions from the United States. Funding for the study came from the Lower Mekong Initiative, U.S. Department of State.
Occurrence and distribution of selected metals in streams near Huntsville, Alabama
German, E.R.; Knight, Alfred L.
1973-01-01
Arsenic, cadmium, chromium, cobalt, lead, mercury, and zinc are widely distributed around Huntsville, Ala. However, concentrations of these metals in streamflow in the vicinity of the Huntsville municipal water intake during June, August, and September 1971 did not exceed the limits recommended for a public drinking water supply. The occurrence of these metals in general is related to man's activities. Information gained during this study suggests that cadmium and the other metals are associated with and transported with suspended sediment, bed material, and airborne dust particles. Lead and zinc were the most abundant of the selected metals in streamflow, bed material, and rainwater samples. The highest concentration of cadmium was detected downstream from an industrial park in the Flint River basin; rainwater samples also contained a relatively high level of cadmium.
Large sulfur isotope fractionations in Martian sediments at Gale crater
NASA Astrophysics Data System (ADS)
Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.
2017-09-01
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.
Páez-Osuna, F; Bojórquez-Leyva, H; Bergés-Tiznado, M; Rubio-Hernández, O A; Fierro-Sañudo, J F; Ramírez-Rochín, J; León-Cañedo, J A
2015-05-01
Concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), silver (Ag) and zinc (Zn) were evaluated in water and suspended sediments of the upper waters of San Lorenzo River in NW Mexico following a mine tailing spill. Except As (6.64-35.9 µg L(-1)), dissolved metal concentrations were low (Ag <0.06-0.22; Cd 0.01-0.34; Cu 4.71-10.2; Hg 0.02-0.24; Pb <0.15-0.65; Zn 86-1,080 µg L(-1)) and were less than the upper limits established by UNEP (Water quality for ecosystem and human health, 2nd edn. United Nations Environment Programme Global Environment Monitoring System/Water Programme, Burlington, 2008), EPA (2014) and the Mexican regulation (NOM 1994). In contrast, the suspended metal concentrations were high (As 91.4-130; Ag 22.1-531; Cd 3.14-6.30; Cu 65-123; Hg 0.47-1.09; Pb 260-818; Zn 742-1,810 mg kg(-1)) and most of samples exceeded the probable effect level of the Canadian Sediment Quality Guidelines for the Protection of Aquatic Life.
May, T.W.; Fairchild, J.F.; Petty, J.D.; Walther, M.J.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.
2008-01-01
The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin. ?? Springer Science+Business Media B.V. 2007.
Establishing the environmental risk of metal contaminated river bank sediments
NASA Astrophysics Data System (ADS)
Lynch, Sarah; Batty, Lesley; Byrne, Patrick
2016-04-01
Climate change predictions indicate an increase in the frequency and duration of flood events along with longer dry antecedent conditions, which could alter patterns of trace metal release from contaminated river bank sediments. This study took a laboratory mesocosm approach. Chemical analysis of water and sediment samples allowed the patterns of Pb and Zn release and key mechanisms controlling Pb and Zn mobility to be determined. Trace metal contaminants Pb and Zn were released throughout flooded periods. The highest concentrations of dissolved Pb were observed at the end of the longest flood period and high concentrations of dissolved Zn were released at the start of a flood. These concentrations were found to exceed environmental quality standards. Key mechanisms controlling mobility were (i) evaporation, precipitation and dissolution of Zn sulphate salts, (ii) anglesite solubility control of dissolved Pb, (iii) oxidation of galena and sphalerite, (iv) reductive dissolution of Mn/Fe hydroxides and co-precipitation/adsorption with Zn. In light of climate change predictions these results indicate future scenarios may include larger or more frequent transient 'pulses' of dissolved Pb and Zn released to river systems. These short lived pollution episodes could act as a significant barrier to achieving the EU Water Framework Directive objectives.
Mercury pollution for marine environment at Farwa Island, Libya.
Banana, Adel A S; Mohamed, R M S Radin; Al-Gheethi, A A S
2016-01-01
Farwa is an Island in Libya receives petrochemical wastes generated from General Company of Chemical Industries (GCCI) since more than 40 years. The present work aimed to determine the concentrations of mercury (Hg(+2)) in fish, marine plants and sediment collected from Farwa lagoon to evaluate effect of industrial wastewater from GCCI on the marine environment. Hundred and twelve samples of fish, pearl oyster, cuttlefish sediments and marine plants were analyzed to determine Hg(2+) concentration during the period from January to August 2014 by using Atomic Absorption Spectrometer (AAS). The highest concentration of Hg(2+) was detected in Pinctada radiata (11.67 ± 3.30 μgg (-1)) followed by Serranus scriba (6.37 ± 0.11 μg g (-1)) and Epinephelus marginatus (6.19 ± 0.02 μg g (-1)). About 75 % of marine plants contained the maximum contaminations during the summer season. In fish samples Hg(2+) concentrations exceeded the levels provided by international standards. The fish at Farwa lagoon is heavily contaminated with Hg(2+) which may represent a source for mercury poisoning for human.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, David Charles
In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. Themore » area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.« less
May, T W; Walther, M J; Petty, J D; Fairchild, J F; Lucero, J; Delvaux, M; Manring, J; Armbruster, M; Hartman, D
2001-11-01
The Republican River Basin of Colorado, Nebraska, and Kansas lies in a valley which contains Pierre Shale as part of its geological substrata. Selenium is an indigenous constituent in the shale and is readily leached into surrounding groundwater. The Basin is heavily irrigated through the pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water, sediment, benthic invertebrates, and/or fish were collected from 46 sites in the Basin and were analyzed for selenium to determine the potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects of selenium in biota. Resulting selenium concentrations were compared to published guidelines or biological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 microg L(-1), which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3-5 microg L(-1), constituting a moderate hazard. Selenium concentrations in sediment indicated little to no hazard for selenium accumulation from sediments into the benthic food chain. Ninety-five percent of benthic invertebrates collected exhibited selenium concentrations exceeding 3 microg g(-1), a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 microg g(-1) selenium, indicating a high potential for toxicity and reproductive effects. However, examination of weight profiles of various species of collected individual fish suggested successful recruitment in spite of selenium concentrations that exceeded published biological effects thresholds for health and reproductive success. This finding suggested that universal application of published guidelines for selenium may be inappropriate or at least may need refinement for systems similar to the Republican River Basin. Additional research is needed to determine the true impact of selenium on fish and wildlife resources in the Basin.
Seiler, Ralph L.; Lico, Michael S.; Wiemeyer Evers, David C.
2004-01-01
Mercury is one of the most serious contaminants of water, sediment, and biota in Nevada because of its use during 19th century mining activities to recover gold and silver from ores. In 1998, mercury problems were discovered in the Walker River Basin of California and Nevada when blood drawn from three common loons from Walker Lake was analyzed and found to have severely elevated mercury levels. From 1999 to 2001, the U.S. Geological Survey and the U.S. Fish and Wildlife Service collected water, sediment, and biological samples to determine mercury sources, distribution, and potential effects on the Walker River Basin ecosystem. Total-mercury concentrations ranged from 0.62 to 57.11 ng/L in streams from the Walker River system and ranged from 1.02 to 26.8 ng/L in lakes and reservoirs. Total-mercury concentrations in streambed sediment ranged from 1 to 13,600 ng/g, and methylmercury concentrations ranged from 0.07 to 32.1 ng/g. The sediment-effects threshold for mercury for fresh-water invertebrates is 200 ng/g, which was exceeded at nine stream sites in the Walker River Basin. The highest mercury concentrations were in streams with historic mines and milling operations in the watershed. The highest mercury concentration in sediment, 13,600 ng/g, was found in Bodie Creek near Bodie, Calif., a site of extensive gold mining and milling activities during the 19th century. Sediment cores taken from Walker Lake show total-mercury concentrations exceeding 1,000 ng/g at depths greater than 15 cm below lake bottom. The presence of 137Cs above 8 cm in one core indicates that the upper 8 cm was deposited sometime after 1963. The mercury peak at 46 cm in that core, 2,660 ng/g, likely represents the peak of mining and gold extraction in the Bodie and Aurora mining districts between 1870 and 1880. Mercury concentrations in aquatic invertebrates at all sites downstream from mining activities in the Rough Creek watershed, which drains the Bodie and Aurora mining districts, were elevated (range 0.263 to 0.863 ?g/g, dry weight). Mercury concentrations in the Walker Lake tui chub, the most abundant and likely prey for common loons, ranged from approximately 0.09 ?g/g to approximately 0.9 ?g/g (wet weight). Larger tui chub in the lake, which are most likely older, had the highest mercury concentrations. Blood samples from 94 common loons collected at Walker Lake between 1998 and 2001 contained a mean mercury concentration of 2.96 ?g/g (standard deviation 1.72 ?g/g). These levels were substantially higher than those found in more than 1,600 common loons tested across North America. Among the 1,600 common loons, the greatest blood mercury concentration, 9.46 ?g/g, was from a loon at Walker Lake. According to risk assessments for northeastern North America, blood mercury concentrations exceeding 3.0 ?g/g cause behavioral, reproductive, and physiological effects. At least 52 percent of the loons at Walker Lake are at risk for adverse effects from mercury on the basis of their blood-mercury concentrations. The larger loons staging in the spring are the most at risk group. The elevated mercury levels found in tui chub and common loons indicate that there is a potential threat to the well being and reproduction of fish and wildlife that use Walker Lake. Wildlife that use Weber Reservoir may also be at risk because it is the first reservoir downstream from mining activities in the Bodie and Aurora areas and mercury concentrations in sediment were elevated. Additional data on mercury concentrations in top level predators, such as piscivorous fish and birds, are needed to assess public health and other environmental risks.
Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough
Santamarina, J.C.; Dai, Shifeng; Terzariol, M.; Jang, Jeonghwan; Waite, William F.; Winters, William J.; Nagao, J.; Yoneda, J.; Konno, Y.; Fujii, T.; Suzuki, K.
2015-01-01
Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh < 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation before dissociation to gas saturation after dissociation. In a proof-of-concept study, sediment microbial communities were successfully extracted and stored under high-pressure, anoxic conditions. Depressurized samples of these extractions were incubated in air, where microbes exhibited temperature-dependent growth rates.
Abdallah, Maha Ahmed Mohamed
2011-07-01
Sediment quality of Lake Maryout (one of the four Nile Delta shallow brackish water lakes on the south-eastern coast of the Mediterranean Sea) is of concern as this lake is used for land reclamation and aquaculture and is an important fishing source. The magnitude and ecological relevance of metal pollution in Lake Maryout Main Basin was investigated by applying different sediment quality assessment approaches. The aim of this study was to estimate ecological risk of trace elements (Cd, Ni, Pb, Cr, Cu and Zn) in the surficial sediments (<63 jtm fraction) of Lake Maryout. Heavily contaminated sediments were evaluated by the Sediment Quality Guideline (SQG) of the US Environmental Protection Agency. The degree of contamination (Cd) was estimated as very high for each site. Two sets of SQGs effect range-low/effect range-median values and threshold effect concentration (TEC) and probable effect concentration (PEC) values were used in this study. Sediments from each site were judged toxic when more of the PEC values exceeded EPA guidelines. Based on the geoaccumulation index (Ieo) of target trace elements, the Main Basin of Lake Maryout has to be considered as extremely polluted with Cd (Igeo > or =5), strongly polluted with Zn (2 < or = Igeo < or =3), moderately polluted with Cu (1 < or = Igeo < or = 2), unpolluted to moderately polluted with Cr and Pb (0 < or = Igeo < or = 1 for each) and unpolluted with Ni (Igeo < or = 0). Lake Maryout sediments had heavy accumulations of Cd, which apparently come from drains that include industrial and raw domestic wastes. Therefore, a sequential extraction technique was applied to assess the five fractions (exchangeable, metals bound to carbonate, acid-reducible, oxidizable-organic and residual) of Cd in surface sediments. The Cd concentration in most sampling stations was dominated by the non-resistant fraction (anthropogenic). The result showed that those stations located in the vicinity of municipal and mixed waste drains posed a high potential risk to fauna and flora of Maryout Lake.
NASA Astrophysics Data System (ADS)
Wilcox, A. C.
2010-12-01
The removal of Milltown Dam in 2008 from the Clark Fork River, Montana, USA, lowered base level at the dam site by 9 m and triggered erosion of nearly 600,000 metric tons of predominantly fine reservoir sediment. Bedload and bed-material sampling, repeat topographic surveys, sediment transport modeling, geochemical fingerprinting of downstream sediments, and Lidar analysis have all been applied to study the upstream and downstream effects of the dam removal. In the years since dam breaching, successive years with similar peak flows (3-year recurrence interval) were followed by a third year with below-average runoff. Nearly all of the documented reservoir erosion occurred in the first year, when sand and silt was eroded and transported downstream. In subsequent years, minimal reservoir erosion occurred, in part as a result of active management to prevent further reservoir erosion, but coarse material eroded from the reservoir has dispersed downstream. Upstream responses in this system have been strongly mediated by Superfund remediation activities in Milltown Reservoir, in which over two million metric tons of contaminated sediments have been mechanically excavated. Downstream aggradation has been limited in the main channel but was initially substantial in bars and side channels of a multi-thread reach 21 to 25 km downstream of the dam site, suggesting that channel change has been influenced far more by the antecedent depositional environment than by proximity to the source of the sediment pulse. Comparison of observed erosion with pre-removal modeling shows that reservoir erosion exceeded model predictions by two orders of magnitude in the unconfined Clark Fork arm of the reservoir. In addition, fine reservoir sediments predicted to move exclusively in suspension traveled as bedload at lower transport stages. The resulting fine sediment deposition in substrate interstices, on bars, and in side channels of the gravel- and cobble-bed Clark Fork River is the most significant and lasting change to downstream geomorphic and ecological systems.
Habibullah-Al-Mamun, Md; Ahmed, Md Kawser; Raknuzzaman, Mohammad; Islam, Md Saiful; Negishi, Junya; Nakamichi, Shihori; Sekine, Makoto; Tokumura, Masahiro; Masunaga, Shigeki
2016-11-15
This study reports the first evidence of perfluoroalkyl acids (PFAAs) in surface waters and sediments collected from the coastal area of Bangladesh. Fifteen target PFAAs, including C4-14-PFCAs (perfluoroalkyl carboxylates) and C4, C6, C8, and C10-PFSAs (perfluoroalkyl sulfonates), were quantified by HPLC-MS/MS. The ΣPFAAs in surface water and sediment samples were in the range of 10.6 to 46.8ng/L and 1.07 to 8.15ng/gdw, respectively. PFOA in water (3.17-27.8ng/L) and PFOS in sediment samples (0.60-1.14ng/gdw) were found to be the most abundant PFAAs, and these concentrations were comparable to or less than most other reported values, particularly those recorded from the coastal areas of China, Japan, Korea and Spain. The majority of the monitored PFAAs did not show clear seasonal variation. The southeastern part (Cox's Bazar and Chittagong) of the Bangladeshi coastal area was more contaminated with PFAAs than the southern (Meghna Estuary) and southwestern parts (Sundarbans). Industrial and municipal wastewater effluents, ship breaking and port activities were identified as potential sources of the PFAA contamination in this region. Field-based sediment water distribution coefficients (KD) were calculated and corrected for organic carbon content (KOC), which reduced the variability between samples. The values of log KD (1.63-2.88) and log KOC (4.02-5.16) were higher than previously reported values, which may indicate that the partitioning of PFAAs in a tropical coastal ecosystem is different from other ecosystems, such as temperate and sub-tropical regions. Although a preliminary environmental hazard assessment indicated that PFOA or PFOS levels do not currently exceed the acute safety thresholds, we should keep in mind that they are bioavailable and can accumulate in the food chain. Therefore, the ubiquity of PFAAs in the coastal area of Bangladesh warrants further studies characterizing their specific sources and the potential long-term risks they present to both humans and wildlife. Copyright © 2016 Elsevier B.V. All rights reserved.
Impacts of pesticides in a Central California estuary.
Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron
2014-03-01
Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured in the estuary. This study suggests that the same pyrethroid and organophosphate pesticides that have been shown to cause water and sediment toxicity in urban and agriculture water bodies throughout California, have the potential to affect estuarine habitats. The results establish baseline data in the Santa Maria River estuary to allow evaluation of ecosystem improvement as management initiatives to reduce pesticide runoff are implemented in this watershed.
Tcaciuc, A Patricia; Borrelli, Raffaella; Zaninetta, Luciano M; Gschwend, Philip M
2018-01-24
Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13 C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs ( 13 C-labeled PCBs, 13 C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13 C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d -1 at 0-10 cm and 1.4 d -1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.
Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China.
Liu, Xiao; Liu, Yu; Xu, Jian-Rong; Ren, Ke-Jun; Meng, Xiang-Zhou
2016-12-01
Aquaculture in mangrove wetlands has been developed rapidly, causing various environmental problems (e.g., antibiotic residue). In the present study, the levels and distributions of a well-known class of antibiotics (fluoroquinolones; FQs), including norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR), were examined in sediment and mangrove plant (Aegiceras corniculatum) from a mangrove wetland in the Zhanjiang Mangrove National Nature Reserve, South China. NOR and CIP were detected in all sediment samples, with concentrations ranging from 4.3 to 64.2 ng/g and from 7.62 to 68.5 ng/g on a basis of dry weight (dw), respectively, whereas ENR was found with relatively lower frequency (<78%) and lower concentrations (<19.3 ng/g). Sediments in mangrove rhizosphere area contained considerably higher concentrations of all FQs (except for ENR). FQs were largely varied in mangrove plant tissues; NOR and ENR were not detected in leaf and root samples, respectively. CIP featured an increasing tendency from the root to the upper parts of plants, whereas a decreasing trend was found for NOR. Three bioconcentration factors (BCF s ) of FQs, including BCFs for roots (BCF r ), branches (BCF b ), and leaves (BCF l ) were calculated, and most of them exceeded 1. Especially for NOR, its BCF r can reach up to 9.9, indicating that Aegiceras corniculatum has a strong ability to accumulate FQs from sediment and/or surrounding environment. For NOR and CIP, strong positive relationships were observed between BCF r and concentrations in root, but no significant correlations were observed between BCF r and root lipid of mangrove plant. More studies are needed to investigate the uptake mechanism of antibiotics in mangrove plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aranda da Silva, A.; Gooday, A. J.
2009-03-01
The genus Gromia includes large marine protists ('gromiids') with filose pseudopodia and sack-like organic tests. The first deep-water species were discovered in the 1990s on the Oman Margin of the Arabian Sea and subsequently found on the Pakistan Margin. We present a survey of gromiids in samples collected off Oman in 2002 and off Pakistan in 2003. In addition to the two species ( Gromia sphaerica and Gromia pyriformis) already described from this area, at least eight undescribed gromiid species were present. Sausage shaped, grape shaped and spherical morphotypes were represented among this material. On the Oman Margin, gromiids occurred in densities up to several thousand individuals m -2 at 1400 and 1700 m but were much less common at 1100 and 2000 m. Apart from G. pyriformis, which was fairly common (several hundred individuals m -2) at 1000 m, gromiids were uncommon in core samples taken off Pakistan, with 11 indiv. m -2 at 1200 m and 19 indiv. m -2 at 1850 m. On both margins, these protists occurred at depths >1000 m where bottom-water oxygen concentrations exceeded ˜0.2 ml l -1 (=8.92 μM l -1) land sediments were fully bioturbated and oxidised. However, they were not observed at similar oxygen levels above the OMZ. Most gromiids lived on the sediment surface with their apertures facing down and their pseudopodia presumably deployed into the sediment to feed on surficial material and associated bacteria. We conclude that these large protists may play an important ecological role in the bathyal Arabian Sea, particularly in carbon cycling but also in structuring the surficial sediments. In addition, their tests, particularly those of G. sphaerica, provide substrates for attached Foraminifera.
Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.
2005-01-01
Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge from WWTFs with trickling-filter secondary treatment processes had the largest concentrations of many potential contaminants during base-flow conditions. Samples from two of three trickling-filter WWTFs exceeded Kansas Department of Health and Environment pH- and temperature-dependent chronic aquatic-life criteria for ammonia when early-life stages of fish are present. Discharge from trickling-filter facilities generally had the most detections and largest concentrations of many organic wastewater-indicator compounds in Johnson County stream-water samples. Caffeine (stimulant), nonylphenol-diethoxylate (detergent surfactant), and tris(2-butoxyethyl) phosphate (floor polish, flame retardant, and plasticizer) were found at concentrations larger than maximum concentrations in comparable studies. Land use and seasonality affected the occurrence and magnitude of many potential water-quality contaminants originating from nonpoint sources. Base-flow samples from urban sites located upstream from WWTF discharges had larger indicator bacteria densities and wastewater-indicator compound concentrations than did base-flow samples from sites in nonurban areas. Dissolved-solids concentrations were the largest in winter stormflow samples from urban sites and likely were due to runoff from road-salt application. One sample from an urban watershed had a chloride concentration of 1,000 milligrams per liter, which exceeded the Kansas Department of Health and Environment's acute aquatic-life use criterion (860 milligrams per liter) likely due to effects from road-salt application. Pesticide concentrations were the largest in spring stormflow samples collected in nonurban watersheds. Although most wastewater-indicator compounds were found at the largest concentrations in samples from WWTF discharges, the compounds 9-10, anthraquinone (bird repellent), caffeine (stimulant), carbazole (component of coal tar, petroleum products), nonylphenol-diethoxylate (detergent surfactant),
Twichell, David C.; Cross, VeeAnn A.; Rudin, Mark J.; Parolski, Kenneth F.
1999-01-01
Sidescan sonar imagery and high-resolution seismic-reflection profiles were collected in Las Vegas Bay and Boulder Basin of Lake Mead to determine the surficial geology as well as the distribution and thickness of sediment that has accumulated in these areas of the lake since the completion of Hoover Dam in 1935 (Gould, 1951). Results indicate that the accumulation of post-impoundment sediment is restricted to the original Colorado River bed which runs down the axis of Boulder Basin from Boulder Canyon to Hoover Dam, and the old Las Vegas Creek bed that bisects Las Vegas Bay. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10-m thick throughout much of its length with the thickness in some areas exceeding 35 meters. The flat-lying nature of the deposits suggests that they are the result of turbidity currents that flow the length of the lake. The sediment cover in Las Vegas Bay is much thinner (rarely exceeding 2 m in thickness) and more discontinuous. The source for these sediments presumably is Las Vegas Wash and a series of other ephemeral washes that empty into this part of the lake. The presence of sediments along the entire length of the Las Vegas Creek bed suggests that turbidity currents probably are active here as well, and that sediment has been transported from these streams at least 10 km down the axis of this valley to where it enters Boulder Basin. Alluvial deposits and rock outcrops are still exposed on large parts of the lake floor.
Characterizing Cretaceous Glaciation Events: K-Ar Ages of Southern Ocean Sediments
NASA Astrophysics Data System (ADS)
Wright, M. A.; Hemming, S. R.; Barbeau, D. L.; Torfstein, A.; Pierce, E. L.; Williams, T.; McManus, J. F.; Gombiner, J.
2012-12-01
Evidence from paleosols and carbonate weathering models suggest that the Late Cretaceous had a supergreenhouse climate due to atmospheric CO2 concentrations two to four times greater than modern levels, tropical sea surface temperatures exceeding 35°C, and high-latitude temperatures exceeding 20°C. Despite this warmth, the Late Cretaceous was apparently punctuated by large (>25 m) and rapid (<<1 million year) sea-level changes, as recorded by marginal marine stratigraphic architectures and pelagic stable isotope compositions. The magnitude and tempo of these changes suggest a glacio-eustatic control, presumably from the growth and decay of continental ice sheets on Antarctica. Because continental glaciation tends to increase the weathering of bedrock and production of sediment delivered to the oceans, circum-Antarctic marine sediment flux would be expected to increase during periods of glaciation. In order to identify a Late Cretaceous glaciation signal from such marine records, we must first constrain the compositional signal of continental detritus in marine sediments. Here we report the results of downcore K-Ar analysis of the terrigenous sediments of Quaternary Weddell Sea cores PS1170-1 and PS1388-3 in order to identify the compositional signature of continent-derived detritus deposited in the Weddell Sea during a known glacial period. Further, we use our K-Ar analyses of circum-Antarctic Quaternary sediment cores to pinpoint potential sediment source areas. Having constrained this glaciation signal, we also present preliminary K-Ar and Sm-Nd analysis of the Campanian-Maastrictian boundary event (69 Ma) at Ocean Drilling Project site 690C to assess the controversial hypothesis of Late Cretaceous glaciation of Antarctica.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
Van Metre, P.C.; Callender, E.; Fuller, C.C.
1997-01-01
This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DOT (DDT+DDD+DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat bogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.
Risch, Martin R.
2004-01-01
A base-wide assessment of surface-water quality at the U.S. Army Atterbury Reserve Forces Training Area near Edinburgh, Indiana, examined short-term and long-term quality of surface water flowing into, across, and out of a 33,760-acre study area. The 30-day geometric-mean concentrations of fecal-indicator bacteria (Escherichia coli) in water samples from all 16 monitoring sites on streams in the study area were greater than the Indiana recreational water-quality standard. None of the bacteria concentrations in samples from four lakes exceeded the standard. Half the samples with bacteria concentrations greater than the single-sample standard contained chemical tracers potentially associated with human sewage. Increased turbidity of water samples was related statistically to increased bacteria concentration. Lead concentrations ranging from 0.5 to 2.0 micrograms per liter were detected in water samples at seven monitoring sites. Lead in one sample collected during high-streamflow conditions was greater than the calculated Indiana water-quality standard. With the exception of Escherichia coli and lead, 211 of 213 chemical constituents analyzed in water samples did not exceed Indiana water-quality standards. Out of 131 constituents analyzed in streambed-sediment and fish-tissue samples from three sites in the Common Impact Area for weapons training, the largest concentrations overall were detected for copper, lead, manganese, strontium, and zinc. Fish-community integrity, based on diversity and pollution tolerance, was rated poor at one of those three sites. Compared with State criteria, the fish-community data indicated 8 of 10 stream reaches in the study area could be categorized as "fully supporting" aquatic-life uses.
Water-quality investigations of the Jordan River, Salt Lake County, Utah, 1980-82
Stephens, D.W.
1984-01-01
Water-quality studies were conducted on the Jordan River, Utah, to investigate specific problems: dissolved oxygen, toxic substances, sanitary quality, and turbidity and suspended sediment. The dissolved oxygen decreased from 8 milligrams per liter at the Jordan Narrows to less than 5 milligrams per liter at 500 North Street. Chemical oxygen demand increased about 23 percent and biochemical oxygen demand increased 90 percent. Nearly 78 percent of the water samples analyzed for total mercury exceeded the State intended-use standard of 0.05 microgram per liter. Concentrations of ammonia, cadmium, copper, lead, and zinc exceeded the standards periodically. The pesticides DDD, DDE, DDT, dieldrin, methoxychlor, and 2,4-D were occasionally detected in bottom materials. Most were present in quantities of less than 15 micrograms per kilogram. Concentrations of three indicator bacteria (total coliform, fecal coliform, and fecal streptococcus) increased in a downstream direction. Concentrations of total coliform bacteria often exceeded 5,000 colonies per 100 milliliters and concentrations of fecal coliform bacteria often exceeded 2,000 colonies per 100 milliliters. The primary sources of turbidity in the Jordan River are Utah Lake and discharges from the wastewater-treatment plants. Large values of turbidity were measured at the Jordan Narrows with a summer mean value of 88 nephelometer turbidity units (NTU) and a winter mean value of 43 NTU. (USGS)
Sedimentary controls on modern sand grain coat formation
NASA Astrophysics Data System (ADS)
Dowey, Patrick J.; Worden, Richard H.; Utley, James; Hodgson, David M.
2017-05-01
Coated sand grains can influence reservoir quality evolution during sandstone diagenesis. Porosity can be reduced and fluid flow restricted where grain coats encroach into pore space. Conversely pore-lining grain coats can restrict the growth of pore-filling quartz cement in deeply buried sandstones, and thus can result in unusually high porosity in deeply buried sandstones. Being able to predict the distribution of coated sand grains within petroleum reservoirs is thus important to help find good reservoir quality. Here we report a modern analogue study of 12 sediment cores from the Anllóns Estuary, Galicia, NW Spain, collected from a range of sub-environments, to help develop an understanding of the occurrence and distribution of coated grains. The cores were described for grain size, bioturbation and sedimentary structures, and then sub-sampled for electron and light microscopy, laser granulometry, and X-ray diffraction analysis. The Anllóns Estuary is sand-dominated with intertidal sand flats and saltmarsh environments at the margins; there is a shallowing/fining-upwards trend in the estuary-fill succession. Grain coats are present in nearly every sample analysed; they are between 1 μm and 100 μm thick and typically lack internal organisation. The extent of grain coat coverage can exceed 25% in some samples with coverage highest in the top 20 cm of cores. Samples from muddy intertidal flat and the muddy saltmarsh environments, close to the margins of the estuary, have the highest coat coverage (mean coat coverage of 20.2% and 21.3%, respectively). The lowest mean coat coverage occurs in the sandy saltmarsh (10.4%), beyond the upper tidal limit and sandy intertidal flat environments (8.4%), close to the main estuary channel. Mean coat coverage correlates with the concentration of clay fraction. The primary controls on the distribution of fine-grained sediment, and therefore grain coat distribution, are primary sediment transport and deposition processes that concentrate the clay fraction in the sediment towards the margins of the estuary. Bioturbation and clay illuviation/mechanical infiltration are secondary processes that may redistribute fine-grained sediment and produce grain coats. Here we have shown that detrital grain coats are more likely in marginal environments of ancient estuary-fills, which are typically found in the fining-upward part of progradational successions.
Bell, Richard W.; Davis, Jerri V.; Femmer, Suzanne R.; Joseph, Robert L.
1997-01-01
Organic-compound samples, including pesticides and semi-volatiles, were collected from 1992-95 at 43 surface-water and 27 bed-sediment and biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Most surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus. At most surface-water sampling sites, one to three pesticide samples were collected in the spring and early summer of 1994 and 1995; two sites had additional samples collected either weekly, biweekly, or monthly from February 1994 through December 1994. At most bed-sediment and biological-tissue sampling sites, a single organic-compounds sample was collected. Agricultural pesticide use was approximately 4.9 million pounds of active ingredients per year from 1987-91 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Atrazine was the second most frequently applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 85 percent of the pesticides applied within the study unit. The highest pesticide application rate occurred on these crops in the Mississippi Alluvial and Osage Plains. Pastureland was the crop type that received the greatest amount of pesticides in 53 of the 96 counties in the study unit. The most commonly detected herbicide (63 samples) in surface water was atrazine. Five other pesticides--desethylatrazine, tebuthiuron, prometon, metolachlor, and simazine--were detected in 15 or more samples. The most commonly detected insecticide (13 samples) was p,p'-DDE. Two other insecticides, diazinon and cis-permethrin, were detected in seven or more samples. Pesticides were detected at 39 surface-water sites; samples collected at Yocum Creek near Oak Grove, Ark. had the most pesticide detections (13). Seventeen other sites had samples with six or more pesticide detections. Analysis of pesticide data collected at surface-water sites indicates that the largest variety of different pesticides detected (18) was in small, agricultural drainage basins; the largest percentage of detections of a single pesticide (about 80) was in medium, agricultural basins. Pesticide concentrations were small, and in most cases, at or near the detection limit. Maximum concentrations ranged from 0.001 to 0.007 micrograms per liter (mg/L) at small, forest sites; 0.001 to 0.029 mg/L at medium, forest sites; 0.001 to 0.079 mg/L at small, agricultural sites; and 0.003 to 0.29 mg/L at medium, agricultural sites. Pesticides were detected significantly more often in medium, agricultural basins in the Springfield Plateau. The most commonly detected (13 samples) organic compound in bed sediment, in concentrations noticeably above background levels, was 2,6-dimethylnaphthalene; the maximum concentration of 2,6-dimethylnaphthalene was 130 micrograms per kilogram. Seventeen or more compounds were detected in bed-sediment samples collected at three sites. Four compounds were detected in biological-tissue samples: p,p'-DDT in Corbicula fluminea (Asiatic clam) tissue collected at the Osage River near St. Thomas, Mo. and cis-chlordane, trans-chlordane, and trans-nonachlor in C. fluminea tissue collected at the James River near Boaz, Mo. Organic compounds collected at surface-water, bed-sediment, or biological-tissue sampling sites were not detected in concentrations that exceeded any health criteria or standards. Based on this information, organic compounds do not pose any widespread or persistent problems in the study unit.
Nel, L; Strydom, N A; Bouwman, H
2015-12-30
Urban estuaries are susceptible to metal and organic pollution, yet most remain understudied in South Africa with respect to the presence, concentrations and distribution of contaminants. Metal and organic chemical concentrations were assessed in sediment and organisms from different trophic levels in the lower reaches of the Swartkops Estuary. Species sampled included Upogebia africana (Malacostraca: Upogebiidae), Gilchristella aestuaria (Clupeidae), Psammogobius knysnaensis (Gobiidae), Mugil cephalus (Mugilidae), Lichia amia (Carangidae), Argyrosomus japonicus (Sciaenidae), Pomadasys commersonnii (Haemulidae) and Larus dominicanus (Avis: Laridae). This study is one of the most comprehensive studies to date assessing pollution levels in a food web in estuaries in South Africa. Due to biomagnification, higher concentrations of Arsenic, Lead, Mercury and Cadmium were found in the juveniles stages of popular angling fishes. High concentrations of Cadmium and Arsenic were recorded in the liver of L. amia, A. japonicus and P. commersonnii which exceed international quality food guidelines. Eggs from the gull, L. dominicanus, showed detectable concentrations of PCBs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Xiumei; Zheng, Rong; Zhao, Jiale; Ma, Chao; Gao, Xiaojiang
2014-09-01
Sixteen surface sediment samples were collected and analysed to evaluate the residues of organochlorine pesticides (OCPs) from intertidal flat in Jiangsu Province. Overall, 22 OCPs were detected with total concentrations of OCPs ranging widely from 0.96 to 12.14 ng/g (dry wt). Total hexachlorocyclohexane (HCH) and total dichlorodiphenyltrichloroethane (DDT) levels varied from <0.01 to 0.67 ng/g and from 0.23 to 4.85 ng/g, respectively. DDTs were the predominant compounds. The dominance of β-HCH indicated a history of HCH pollution. According to the ratios of ( p, p'-DDD+ p, p'-DDE)/ p, p'-DDT and o,p'-DDT/ p, p'-DDT, new input of DDTs did not occur in most sites, and the main sources were historical usage of technical DDTs. OCPs such as dieldrin, endrin, p, p'-DDD, and p, p'-DDT exceeded the effects range low, showing adverse biological effects that would occasionally occur at some sites of the study area.
Storm Water Quality in Los Alamos Canyon following the Cerro Grande Fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Johansen; B. Enz; B. Gallaher
In May 2000, the Cerro Grande Fire burned about 7400 acres of forest on the Los Alamos National Laboratory (LANL) and about 10,000 acres in watersheds above LANL on Santa Fe National Forest lands. The resulting burned landscapes raised concerns of increased storm water runoff and transport of contaminants by runoff in the canyons traversing LANL. On June 2 and 3, 2000, rain fell in the Los Alamos Canyon watershed generating storm water runoff in the canyon bottom. This event was important in that it was the first significant runoff on LANL following the fire and occurred in a canyonmore » containing known legacy waste sites. Samples from this runoff were analyzed for radionuclide, metal, inorganic, and organic constituents. Results show radionuclide concentrations at or below previous (pre-fire) maximum levels at locations on LANL and downstream. However, greater concentrations of some fallout-associated radionuclides (cesium-137 and strontium-90) were seen arriving on LANL from upstream areas compared to pre-fire conditions. Tests indicate most of the radionuclides in the samples were bound to sediments, not dissolved in water. Most radionuclide concentrations in sediments were below LANL Screening Action Levels, with cesium-137 and strontium-90 as exceptions. Most radionuclide concentrations in samples taken at LANL's downstream boundary were greater than those taken upstream, indicating the presence of contributing sources on LANL. For comparison purposes, doses were calculated on a mrem per liter of unfiltered water basis for 11 radionuclides commonly associated with atmospheric fallout and with LANL operations. The maximum dose was 0.094 mrem per liter unfiltered water and was largely associated with plutonium-239/240. In contrast, all filtered samples had total doses less than 0.001 mrem per liter. Compared to past data, potential doses were not increased by the fire during this initial runoff event. Of the 25 metals tested for, seven were above pre-fire levels, including copper, lead, manganese, selenium, strontium, uranium, and zinc. However, dissolved metal concentrations did not exceed State livestock and wildlife standards. Of the 18 general chemistry parameters tested, eight exceeded historic norms, including calcium, potassium, total phosphorus, cyanide, and magnesium.« less
Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.
1993-01-01
Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite. Radon-222 is primarily from the decay of 226Ra in the aquifer materials. Radium in the ground water is thought to be mainly from alpha recoil associated with the decay of Th in the aquifer material. Some Ra may be from dissolution (or desorption) or Ra-rich coatings on sediments. ?? 1993.
Geology and geochemistry of gas-charged sediment on Kodiak Shelf, Alaska
Hampton, M.A.; Kvenvolden, K.A.
1981-01-01
Methane concentrations in some sediment cores from the Kodiak Shelf and adjacent continental slope increase with depth by three or four orders of magnitude and exceed the solubility in water at ambient conditions. Acoustic anomalies in seismic-reflection records imply that methane-rich sediment is widespread. Molecular composition of hydrocarbon gases and isotopic composition of methane indicate gas formation by shallow biogenic processes. Stratigraphic positions of acoustic anomalies in Quaternary glacial and posttransgressive sediments suggest that these units are likely sources of gas. A seep along the extension of a fault may be gas venting from a deeper thermogenic source. ?? 1981 A.M. Dowden, Inc.
Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.
1996-01-01
In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for transport to streams and irrigation drains that are tributary to the Gunnison, Uncompahgre, and Colorado Rivers. Selenium concentrations in about 64\\x11percent of water samples collected from the lower Gunnison River and about 50 percent of samples from the Colorado River near the Colorado-Utah State line exceeded the U.S.\\x11Environmental Protection Agency criterion of 5\\x11micrograms per liter for protection of aquatic life. Almost all selenium concentrations in samples collected during the nonirrigation season from Mancos Shale areas exceeded the aquatic-life criterion. The maximum selenium concentrations in surface-water samples were 600\\x11micrograms per liter in the Uncompahgre Project area and 380\\x11micrograms per liter in the Grand Valley. Irrigation drainage from the Uncompahgre Project and the Grand Valley might account for as much as 75 percent of the selenium load in the Colorado River near the Colorado-Utah State line. The primary source areas of selenium were the eastern side of the Uncompahgre Project and the western one-half of the Grand Valley, where there is extensive irrigation on soils derived from Mancos Shale. The largest mean selenium loads from tributary drainages were 14.0 pounds per day from Loutsenhizer Arroyo in the Uncompahgre Project and 12.8 pounds per day from Reed Wash in the Grand Valley. Positive correlations between selenium loads and dissolved-solids loads could indicate that salinity-control projects designed to decrease dissolved-solids loads also could decrease selenium loads from the irrigated areas. Selenium concentrations in irrigation drainage in the Grand Valley were much higher than concentrations predicted by simple evaporative concentration of irrigation source water. Selenium probably is removed from pond water by chemical and biological processes and incorporated into bottom sediment. The maximum selenium concentration in bottom sediment was 47 micrograms per gram from a pond on the eastern side of the
Lewis, Michael E.; Garrett, Jerry W.; Hoos, Anne B.
1992-01-01
An investigation of the concentration and loads of nitrogen, phosphorus, and suspended sediment in storm runoff to Reelfoot Lake, in western Tennessee, was conducted from October 1987 through September 1989. Concentrations of selected herbicides also were defined. Reelfoot Lake, with a sur$ace area of about 15,500 acres, is the largest natural lake in Tennessee and an important recreation and fisheries resource. Previous studies showed that the lake is hypereutrophic, a condition caused by high concentrations of nutrients in water and sediments discharged from the three principal tributaries (South Reelfoot Creek, North Reelfoot Creek, and Running Slough) to the lake. Pesticides, including herbicides, have been detected in the lake?s bottom sediments. Storm runoff contributed about 87percent of the total water discharge of the three main tributaries to Reelfoot Lake. South Reelfoot Creek contributed about 4.7 tons per acre per year of suspended sediment, while North Reelfoot Creek contributed about 1.9 tons per acre per year. Running Slough contributed only about 0.31 ton per acre per year of suspended sediment. Most of the suspended sediment was transported by storm runoff between October and March. About 80 percent of the annual streamflow of the three tributaries occurs during these months. The North Reelfoot Creek basin contributed 8.2 pounds per acre per year of total nitrogen and 2.4 pounds per acre per year of total phosphorus. South Reelfoot Creek basin contributed about 6.5 and 1.3 pounds per acre per year of total nitrogen and phosphorus, respectively, while Running Slough basin contributions were 3.4 and 0.86 pounds per acre per year, respectively. The differences in nutrient yields appear to result from more row-crop agriculture and the relatively steeply sloping agricultural land in the North Reelfoot Creek basin. Ninety-one percent of the total nitrogen load and 95 percent of the total phosphorus load in the three streams was transported by storm runof/ Significant diflerences in the mean concentrations of nutrients in runoff were defined between the active agricultural months (April through September) and the inactive months (October through March). Storm-runofS samples were analyzed for II selected triazine herbicides. Alachlor and atrazine were the most commonly detected herbicides. Thirty-two percent of the samples contained detectable levels of alachlor and 93 percent of the samples contained detectable levels of atrazine. Ninety percent of the samples collected during the active agricultural months contained detectable leveki of alachlor and all 29 samples contained detectable levels of atrazine. Sixteen samples exceeded lifetime health-advisory levels for atrazine in drinking water (3 micrograms per liter); two samples collected from the April IS, 1988, storm at North Reelfoot Creek and South Reelfoot Creek contained 42 and 57 micrograms per liter of atrazine, respectively. Concentrations of the other nine triazine herbicides were generally less than the level of detection (0.1 microgram per liter).
Hemming, C.H.; Bunde, R.L.; Liszewski, M.J.; Rosentreter, J.J.; Welhan, J.
1997-01-01
The effect of experimental technique on strontium distribution coefficients (K(d)'s) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium K(d)'s at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium K(d)'s ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium K(d)'s were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium K(d)'s may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium K(d)'s.The effect of experimental technique on strontium distribution coefficients (Kd's) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium Kd's at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium Kd's ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium Kd's were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium Kd's may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium Kd's.
Price, Don; Plantz, G.G.
1987-01-01
The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)
Campbell, T.R.
1996-01-01
A number of potentially hazardous chemicals were used at an asphalt plant on the Fort Bragg U.S. Army Reservation near Fayetteville, North Carolina. This plant was demolished in the late 1960's. Samples collected from soil, ground water, surface water, and streambed sediment were tested for the presence of contaminants. The sediment immediately underlying the demolished asphalt plant site consists mainly of sands, silts, and clayey sands with interbedded clay occurring at various depths. About 12 inches of rainfall per year infiltrate the unconfined surficial aquifer. The water table in this area is about 233 to 243 feet above sea level. Local ground water moves laterally, mainly towards the north- to-northwest at a rate of about 35 feet per year. where it discharges to Tank Creek, Little River, or one of their tributaries. A series of confining clays separate the surficial aquifer from the underlying upper Cape Fear aquifer. These clays help retard vertical migration of constituents dissolved in ground water. The saprolite-bedrock aquifer lies below the upper Cape Fear aquifer. In general ground water in the seven monitoring wells screened in the upper and lower part of the surficial aquifer did not contain detectable concentrations of chemicals related to past asphalt-plant activities. A small number of chemicals that were assumed to be unrelated to the asphalt plant were present in some of the study area monitoring wells. Ground water in four wells contained concentrations of organochlorine pesticides. Of these pesticides, concentrations of gamma-benzene hexachloride (lindane) (maximum of 0.76 micrograms per liter) exceeded the U.S. Environmental Protection Agency maximum contaminant level of 0.2 micrograms per liter in two wells. In addition, one well contained a trichloroethane concentration (7.7 micrograms per liter) that is assumed to be unrelated to demolished asphalt-plant operations, but exceeded the U.S. Environmental Protection Agency maximum contaminant level of 5.0 micrograms per liter. One well contained a fluoride concentration of 5.2 milligrams per liter that exceeded the U.S. Environmental Protection Agency maximum contaminant level of 4.0 milligrams per liter. Total and dissolved metals concentrations were generally typical of background levels. Some of the wells contained elevated levels of chloride (maximum of 749 milligrams per liter), specific conductance (maximum of 2,780 microsiemens per centimeter at 25 degrees Celsius), and dissolved solids (maximum of 1,520 milligrams per liter). Twelve of twenty-two soil samples that were collected at various depths at monitoring-well locations did not contain volatile organic compounds or polynuclear aromatic hydrocarbons. The remaining ten soil samples contained very low concentrations of polynuclear aromatic hydrocarbons and (or) analytical laboratory-related volatile organic compounds. The maximum concentrations were for fluoranthene and pyrene, at 780 and 750 micrograms per kilogram, respectively. In general, the polynuclear aromatic hydrocarbon concentrations were in sediment near the land surface. Streambed sediment from an unnamed, eastern tributary to Tank Creek in the eastern part of the site contained a small number of organochlorine pesticide compounds (a maximum of 1,400 milligrams per kilogram of 4,4'-DDD) and total petroleum hydrocarbons (113 milligrams per kilogram). Concentrations of metals and other inorganic constituents were generally typical of background concentrations. Surface water in this tributary did not contain elevated concentrations of anthropogenic chemicals.
Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew
2011-01-01
This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.
NASA Astrophysics Data System (ADS)
McBeth, J. M.; Emerson, D.
2011-12-01
Microbiologically influenced corrosion (MIC) of mild steel is a complex process involving biogeochemical interactions between bacteria, steel surfaces, and biogenic and abiotically produced minerals. The role of neutrophilic iron-oxidizing bacteria (FeOB) in this process is poorly understood, and surprisingly, little is known about the microbial ecology of corroding steel in marine environments. Based on previous work (McBeth et al 2011), we hypothesized that coastal sediments act as reservoirs for marine FeOB of the candidatus class 'Zetaproteobacteria', and that these bacteria will colonize and become numerically abundant on steel surfaces. To test this, mild steel coupons were incubated in a salt marsh and sampled over 40 days in summer 2010. DNA extracted from the steel surfaces was analyzed for overall bacterial diversity by pyrosequencing of the V4 variable region of the 16S rRNA gene, and relevant communities were quantified using qPCR. The qPCR analyses were done using 16S primers specific to prokaryotes (Takai & Horikoshi 2000) and Zetaproteobacteria (Kato et al 2009), and a dsrA gene specific primer (Ben-Dov et al 2007) to assess the population of sulfate-reducing bacteria (SRB). Pyrosequencing data analyses showed Zetaproteobacteria were present on steel samples throughout the incubations and were also present in adjacent sediments; however, the diversity of Zetaproteobacteria was lower on the steel in comparison with sediments, indicating specific populations were enriched on the steel coupons. Iron oxyhydroxide stalk biosignatures were observed on the steel and in enrichment cultures, evidence that the Zetaproteobacteria identified using molecular techniques were likely FeOB. Relatives of the H2-oxidizing genus Hydrogenophaga and members of the family Rhodobacterales were also identified as important members of the biocorrosion community and were present both on steel and in sediments. The diversity of these organisms on steel surfaces increased with incubation time. The populations assessed with qPCR remained fairly constant in the sediments during the course of the study. The number of Zetaproteobacteria in the sediments was approximately 10 fold lower than the SRB numbers. In contrast, the proportion of Zetaproteobacteria present on the steel increased rapidly over the first 10 days, exceeding the copy numbers present in the sediment by an order of magnitude. The SRB numbers on the steel were 10 fold lower than in sediments during the first days of incubation, but increased with time to near the sediment numbers of SRB at 40 days. The proportion of SRB in sediments was relatively high and constant. This work illustrates that coastal sediments may be a hitherto unrecognized reservoir for Zetaproteobacteria who, though numerically low in the sediment, can quickly colonize environments where free Fe(II) is abundant.
Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C
1999-01-01
A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions.
Becker, Jesse C; Groeger, Alan W; Nowlin, Weston H; Chumchal, Matthew M; Hahn, Dittmar
2011-10-01
Patterns of spatial variation of mercury and methylmercury (MeHg) were examined in sediments and muscle tissue of largemouth bass (Micropterus salmoides) from Amistad International Reservoir, a large and hydrologically complex subtropical water body in the Rio Grande drainage. The distributions of both Hg and MeHg were compared with environmental and biological factors known to influence production of MeHg. The highest concentrations of total Hg (THg) in sediment were found in the Rio Grande arm of the reservoir, whereas MeHg was highest at sites in the Devils River arm and inundated Pecos River (often more than 3.0 ng/g). Conditions in the sediments of the Devils River arm and Pecos River channel were likely more favorable to the production of MeHg, with higher sediment porewater dissolved organic carbon, and porewater sulfate levels in the optimal range for methylation. Although the detection of different groups of sulfate-reducing bacteria by polymerase chain reaction (PCR) was generally correlated with MeHg concentrations, bacterial counts via fluorescent in situ hybridization (FISH) did not correlate with MeHg. A sample of 156 largemouth bass (<30 cm) showed a spatial pattern similar to that of MeHg in sediments, where fish from the Devils River arm of the reservoir had higher muscle Hg concentrations than those collected in the Rio Grande arm. In 88 bass of legal sport fishing size (>35 cm), 77% exceeded the 0.3 mg/kg U.S. Environmental Protection Agency screening value. This study shows that significant variation in sediment MeHg and biotic Hg concentration can exist within lakes and reservoirs and that it can correspond to variation in environmental conditions and Hg methylation. Copyright © 2011 SETAC.
Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C
1999-01-01
A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions. Images Figure 1 Figure 2 Figure 3 PMID:9872714
Evaluation of toxicity of polluted marine sediments from Bahia Salina Cruz, Mexico.
Gonzalez-Lozano, Maria Cristina; Mendez-Rodriguez, Lia C; Maeda-Martinez, Alejandro M; Murugan, Gopal; Vazquez-Botello, Alfonso
2010-01-01
Bahia Salina Cruz, Oaxaca, Mexico is a major center of oil and refined product distribution on the Mexican Pacific coast. From the start of oil industry operations in 1979, negative effects from discharges of treated effluents in the bay have been a constant concern for local communities. We analyzed 28 surface sediment samples obtained in June, 2002 to evaluate the level of toxicity in the littoral zone, port-harbor, and La Ventosa estuary in Bahia Salina Cruz. The extractable organic matter concentration was high (1,213 to 7,505 micro g g(-1)) in 5 of 7 stations from the port and harbor, whereas it was low in 12 of 16 stations in the littoral zone (36 to 98 micro g g(-1)). The total aromatic hydrocarbon concentration was highest (57 to 142 micro g g(-1)) in the port and harbor compared to the La Ventosa estuary and the littoral zone. Among the heavy metals analyzed, cadmium exceeded the effects range-low values associated with adverse biological effects. The geo-accumulation index of sediments was moderate to strong contamination at 5 stations in the nonlittoral and 6 stations in the littoral zone. The enrichment of lead, zinc, and cadmium at 5 stations from the littoral, port, and harbor suggest that these metals are of anthropogenic origin. Bioassay tests of elutriates of sediments on nauplii of Artemia franciscana and Artemia sp. showed that the port and harbor were more toxic than the La Ventosa estuary and the coastal zone. The Microtox test (Vibrio fischeri) did not show a similar response with the solid phase of the sediments. The results of this study indicate that the high levels of organic content and metals in the sediments of port-harbor and the La Ventosa estuary are mainly caused by anthropogenic activities.
NASA Astrophysics Data System (ADS)
Arismendi, Ivan; Groom, Jeremiah D.; Reiter, Maryanne; Johnson, Sherri L.; Dent, Liz; Meleason, Mark; Argerich, Alba; Skaugset, Arne E.
2017-08-01
Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time periods ("before", "after road construction/improvement", and "after forest harvest and hauling"). We hypothesized that the combined effects of road construction/improvement and the hauling following forest harvest would increase turbidity and SSC in these streams. We tested whether the differences between paired samples from above and below road crossing exceeded various biological thresholds, using literature values of biological responses to increases in SSC and turbidity. Overall, we found minimal increases of both turbidity and SSC after road improvement, forest harvest, and hauling. Because flow is often used as a surrogate for turbidity or SSC we examined these relationships using data from locations above road crossings that were unaffected by roads or forest harvest and hauling. In addition, we examined the association between turbidity and SSC for these background locations. We found a positive, but in some cases weak association between flow and turbidity, and between flow and SSC; the relationship between turbidity and SSC was more robust, but also inconsistent among sites over time. In these low order streams, the concentrations and transport of suspended sediment seems to be highly influenced by the variability of local conditions. Our study provides an expanded understanding of current forest road management practice effects on fine-grained sediment in streams and introduces alternative metrics using multiple thresholds to evaluate potential indicators of biological relevance.
Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.; P. McKinley, Michael
2008-01-01
Development of coal‐bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water‐management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 × 106 kg of chloride and 52 × 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation‐exchange‐enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.
NASA Astrophysics Data System (ADS)
Covelli, Stefano; Protopsalti, Ioanna; Acquavita, Alessandro; Sperle, Marcelo; Bonardi, Maurizio; Emili, Andrea
2012-03-01
As part of the "TAGUBAR" (TAngential GUanabara Bay Aeration Recovery) project, surface and long core sediments of the Guanabara Bay (Rio de Janeiro, Brazil) were investigated for mercury (Hg). The main, but not the only, input of Hg into the Bay's waters is known to be a Chlor-Alkali Plant (CAP) located in the Acarì-São João de Merití River system, on the northwestern side of the Bay. Mercury distribution in surface sediments (<0.1-3.22 mg kg-1, average 0.87±0.80, n=40) seems to be controlled by the organic component, along with sulfur rather than grain-size, where Hg concentrations are less than 1 mg kg-1. Conversely, where the metal contents are higher than 1 mg kg-1, accumulation in surface sediments is mostly related to the presence of nearby contamination sources, such as industrial and urban settlements in the western sector of the Bay. Although total Hg contents in surface sediments exceed the values suggested by the effects-based standard quality guidelines as potentially toxic for the benthic community, results from a sequential extraction procedure showed that the contribution of the more soluble, easily exchangeable and eventually bioavailable Hg phases was found almost negligible (<0.1%). Most of the metal is strongly bound to the mineral lattice of the sedimentary matrix and should therefore be considered almost immobilized. The reduction in Hg accumulation in bottom sediments, expected as a consequence of the adoption of contamination control policies (i.e. Hg-free technologies in the CAP and sewage treating facilities), has not been clearly observed in the core profiles. Current estimates of Hg accumulation rates at the core top range from approximately 1 to 18 mg m-2 yr-1. Pre-industrial bottom core samples indicate that the central and northeastern sectors of the Bay are strongly affected by Hg enrichment: concentrations exceed the estimated baseline concentration by up to 20 factors. A cumulative Hg inventory suggests that the metal content has increased with the same order of magnitude in the vicinity of potential contamination sources on the western side of the Bay, but at a different rate; this is apparently determined by local conditions. A natural attenuation of Hg concentrations to background levels is not predictable in the near future.
Xu, Elvis Genbo; Bui, Cindy; Lamerdin, Cassandra; Schlenk, Daniel
2016-07-15
The Salton Sea, the largest inland surface water body in California, has been designated as a sensitive ecological area by federal and state governments. Its two main tributaries, the New River and Alamo River are impacted by urban and agriculture land use wastes. The purpose of this study was to temporally and spatially evaluate the ecological risks of contaminants of concern in water, sediments and fish tissues. A total of 229 semivolatile organic compounds and 12 trace metals were examined. Among them Selenium, DDTs, PAHs, PCBs, chlorpyrifos and some current-use pesticides such as pyrethroids exceeded risk thresholds. From 2002 to 2012, measurements of chlorpyrifos in sediments generally declined and were not observed after 2009 at the river outlets. In contrast, pyrethroid concentrations in sediments rose consistently after 2009. In water samples, the outlets of the two rivers showed relatively higher levels of contamination than the main water body of the Salton Sea. However, sediments of the main water body of the Salton Sea showed relatively higher sediment concentrations of contaminants than the two rivers. This was particularly true for selenium which showed reductions in concentrations from 2002 to 2007, but then gradual increases to 2012. Consistent with water evaluations, contaminant concentrations in fish tissues tended to be higher at the New River boundary and at the drainage sites for the Alamo River compared to sites along each river. The persistent contaminants DDTs, PAHs, chlorpyrifos and several pyrethroid insecticides were associated with the toxicity of sediments and water collected from the rivers. Overall, assessment results suggested potential ecological risk in sediments of the Salton Sea as well as in water and fish from the two rivers. Copyright © 2016 Elsevier B.V. All rights reserved.
Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA
Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.
2015-01-01
The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.
Justus, B.G.; Stanton, Gregory P.
2005-01-01
The Fort Chaffee Maneuver Training Center is a facility used to train as many as 50,000 Arkansas National Guardsmen each year. Due to the nature of ongoing training and also to a poor understanding of environmental procedures that were practiced in the World War II era, areas within Fort Chaffee have the potential to be sources of a large number of contaminants. Because some streams flow on to Fort Chaffee, there is also the potential for sources that are off post to affect environmental conditions on post. This study evaluates constituent concentrations in water, fish tissue, and bed sediment collected from waterbodies on Fort Chaffee between September 2002 and July 2004. Constituent concentrations detected in the three media and measured at nine stream sites and four lake sites were compared to national and regional criteria when available. Two of the larger streams, Big and Vache Grasse Creeks, were sampled at multiple sites. All three sampled media were analyzed for insecticides, PCBs, explosives, and trace elements. Additionally, water samples were analyzed for nutrients and herbicides. The different constituents detected in the three sample media (water, fish tissue, and bed sediment) indicate that land-use activities both on and off post are influencing environmental conditions. Contaminants such as explosives that were sometimes detected in water samples have an obvious relation to military training; however, the occurrence and locations of some nutrients, insecticides, and trace elements suggest that land use both on and off post also could be influencing environmental conditions to some degree. Constituent concentrations at sites on Vache Grasse Creek, and particularly the most upstream site, which was located immediately downstream from an off-post wastewater-treatment facility, indicate that environmental conditions were being influenced by an off-post source. The most upstream site on Vache Grasse Creek had both the highest number of detections and the highest concentrations detected of all sites sampled. Event-mean storm concentrations and storm loads calculated from storm-flow samples at two sites each for Big and Vache Grasse Creeks indicate that storm loads were highest at the two Vache Grasse Creek sites for 24 of the 25 constituents detected. Further evaluation by normalizing storm loads at Big Creek to storm loads at Vache Grasse Creek by stream flow indicate that event loads at Vache Grasse Creek were about two or more times higher than those on Big Creek for 15 of the 25 constituents measured. Low concentrations of arsenic and lead were detected in water samples, but all detections for the two trace elements occurred in samples collected at the upstream site on Vache Grasse Creek. The nickel concentration in fish livers collected from the upstream site on Vache Grasse Creek was 45 percent higher than the median of a national study of 145 sites. Mercury concentrations in edible fish tissue, which are a widespread concern in the United States, exceeded an USEPA criterion for methylmercury of 300 ?g/kg in four of nine samples; however, concentrations are typical of mercury concentrations in fish tissues for the State of Arkansas. Constituent concentrations at some sites indicate that environmental conditions are being influenced by on-post activities. Of the 55 (excluding total organic carbon) organic constituents analyzed in water samples, only 10 were detected above the minimum detection limit but four of those were explosives. Bed-sediment samples from one site located on Grayson Creek, and nearest the administrative and residential (cantonment) area, had detections for arsenic, copper, lead, manganese, nickel, and zinc that were above background concentrations, and concentrations for arsenic and nickel at this site exceeded lowest effect level criteria established by the U.S. Environmental Protection Agency. The site on Grayson Creek also had the only detections of DDT metabolites in bed sedi
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
NASA Astrophysics Data System (ADS)
Patault, Edouard; Alary, Claire; Franke, Christine; Gauthier, Arnaud; Abriak, Nor-Edine
2016-04-01
In France, erosion by water run-off is estimated to 1.5 t ha-1yr-1 and can exceed 10 t ha-1yr-1 in large growing areas, such as the North of France (Nord-Pas-de-Calais). In this region, the Canche watershed (1294 km2) sustains heavy loss of fertile soils. The land use is mainly dominated by arable lands (80%) and in 2013, 104 kt of suspended sediment transited to the estuary. As demonstrated in literature, agricultural soil erosion leads to the gradual disappearance and depletion of fertile soil, which constitute a non-renewable resource at human time scale. Additionally, water erosion can significantly damage the aquatic habitat and can be responsible for the input of nutrients, bacteria, pesticides, heavy metals and radionuclides into surface waters. Conscious of these effects, many programs have emerged in the Nord-Pas-de-Calais to reduce erosion. This study presents a combination of environmental magnetic proxy parameters and geochemical analyses on sediments and suspended particulate matter. The aim is to develop effective tools to trace erosion by water run-off and quantify this process. In order to identify the respective sediment sources in the Canche watershed, sediment trap samples of suspended particulate matter were recovered at key positions along the Canche watershed. The preliminary results show that magnetic concentration (Mrs) shows typical values for the agricultural soils in the region, but these variations in magnetic concentrations and total irons concentrations are not always correlated, which may be explained by the iron speciation. In calculating the so-called S-ratio for each sample we can distinguish changes in magneto-mineralogy (and thus iron speciation) from magnetite-dominated assemblages in the mainstream Canche (naturel background signal) to high-coercivity-dominated assemblages in the tributaries, typical for soil erosion material rich in hematite/goethite. In combination with the element concentrations from ICP analyses, this proxy parameter may give valuable insight into the tracing of the suspended sediment sources. In perspective, the seasonal variability and the discharge in the Canche watershed have to be taken into account.
Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England
Robinson, Gilpin R.; Ayotte, Joseph D.
2007-01-01
The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to elevated arsenic in drinking water in New England. However, the extreme local variability of arsenic concentrations in ground water from these rock sources indicate that arsenic concentrations in ground water are affected by other factors in addition to arsenic concentrations in rock.
A weight of evidence approach for assessing remediation of ...
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation project took place in the lower 8.8 miles of the river where urban and industrial activities impacted the river as a beneficial resource. Sediment was removed at designated locations based on a surface weighted average concentration model where PCB and PAH levels exceeded targeted levels. This presentation will focus on three biological tools: assessing response of tissue concentrations of PCBs and PAHs, DNA damage in Brown Bullhead and macroinvertebrate biotic condition as measured by Ohio EPA Lacustrine Index of Community Integrity (LICI). From 2009-2013 and again in 2015, pre- and post-remedy sampling of fishes representative of different trophic levels was conducted via electroshocking and fyke net sampling. The study area was divided into 3 river reaches (reaches 2, 3, & 4 numbered from down- to upstream). Fish were collected by electro-shocking or fyke netting across an entire reach where Largemouth Bass, Brown Bullhead, White Sucker, Pumpkinseed, Gizzard Shad, Bluntnose Minnow and Emerald Shiner. Blood samples were collected from 10 Brown Bullheads from each reach and processed in the field and laboratory using Comet Assay methods.Two different configurations of multiplate samplers (Hest
Selenium in soil, water, sediment, and biota of the lower Sun River area, West-Central Montana
Nimick, David A.; Lambing, John H.; Palawski, Donald U.
1993-01-01
A U.S. Department of the Interior study started in 1990 examined the source, movement, fate, and possible biological effects of selenium associated with irrigation drainage from the Sun River Irrigation Project in west-central Montana. Concentrations of total selenium in soil samples ranged from 0.1 to 8.5 micrograms per gram; the maximum concentrations were measured in nonirrigated areas overlying geologic formations containing seleniferous shale. In irrigated areas, concentrations of dissolved selenium in ground water flowing toward Freezeout Lake ranged from less than 1 to 18 micrograms per liter (??g/L) in terrace gravel and from 1 to 190 ??g/L in glacial deposits derived from seleniferous shale. Concentrations of total selenium ranged from less than 1 to 180 ??g/L in surface irrigation drainage, and from less than 1 to 1,000 ??g/L in natural flows from nonirrigated land. Selenium concentrations in water from lakes generally were less than the aquatic-life criterion for chronic toxicity. The range of selenium concentrations in bottom sediment of lakes was similar to that of local soils. However, biological samples indicate that selenium is accumulating through the aquatic food chain. Selenium concentrations indicative of biological risk were exceeded in at least 80 percent of the freshwater-invertebrate, bird-egg, and bird-liver samples collected from all wetland sites.
Sando, Steven K.; Williamson, Joyce E.; Dickerson, Kimberly K.; Wesolowski, Edwin A.
2001-01-01
The U.S. Department of the Interior started the National Irrigation Water Quality Program in 1985 to identify the nature and extent of irrigation-induced water-quality problems that might exist in the western U.S. The Angostura Reclamation Unit (ARU) and Belle Fourche Reclamation Project (BFRP) in western South Dakota were included as part of this program. The ARU and BFRP reconnaissance studies were initiated in 1988, during below-normal streamflow conditions in both study areas. Surface water, bottom sediment, and fish were resampled in 1994 at selected sites in both study areas during generally near-normal streamflow conditions to compare with 1988 study results. Concentrations of major ions in water for both the ARU and BFRP study areas are high relative to national baseline levels. Major-ion concentrations for both areas generally are lower for 1994 than for 1988, when low-flow conditions prevailed, but ionic proportions are similar between years. For ARU, dissolved-solids concentrations probably increase slightly downstream from Angostura Reservoir; however, the available data sets are insufficient to confidently discern effects of ARU operations on dissolved-solids loading. For BFRP, dissolved-solids concentrations are slightly higher at sites that are affected by irrigation drainage; again, however, the data are inconclusive to determine whether BFRP operations increase dissolved-solids loading. Most trace-element concentrations in water samples for both study areas are similar between 1988 and 1994, and do not show strong relations with discharge. ARU operations probably are not contributing discernible additional loads of trace elements to the Cheyenne River. For BFRP, concentrations of some trace elements are slightly higher at sites downstream from irrigation operations than at a site upstream from irrigation operations. BFRP operations might contribute to trace-element concentrations in the Belle Fourche River, but available data are insufficient to quantify increases. For both study areas, concentrations of several trace elements occasionally exceed National Irrigation Water Quality Program guidelines. Selenium routinely occurs in concentrations that could be problematic at sites upstream and downstream from both study areas. Elevated selenium concentrations at sites upstream from irrigation operations indicate that naturally occurring selenium concentrations are relatively high in and near the study areas. While ARU operations probably do not contribute discernible additional loads of selenium to the Cheyenne River, BFRP operations might contribute additional selenium loads to the Belle Fourche River. Concentrations of most trace elements in bottom sediment, except arsenic and selenium, are similar to typical concentrations for western U.S. soils for both study areas. Bottom-sediment arsenic and selenium (1988) concentrations in both study areas can reach levels that might be of concern; however, there is insufficient information to determine whether irrigation operations contribute to these elevated concentrations. Concentrations of most trace elements in fish in both study areas are less than values known to adversely affect fish or birds, although there are occasional exceedances of established criteria. However, selenium concentrations in fish samples routinely are within the National Irrigation Water Quality Program level of concern, and also commonly exceed the dietary guideline for avian consumers for both study areas. Selenium concentrations in fish samples generally are higher at sites downstream from irrigation operations. For BFRP, arsenic and mercury concentrations are elevated in fish samples from site B-18, which is influenced by mine tailings.
Brabets, Timothy P.; Ourso, Robert T.
2013-01-01
The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the dominant cations, and bicarbonate and sulfate are the dominant anions. Water samples indicate that the water from Rock Creek, Moose Creek, Slate Creek, and Eldorado Creek is a calcium bicarbonate-type water. The remaining sites are a calcium sulfate type water. U.S. Environmental Protection Agency guidelines for arsenic and antimony in drinking water were exceeded in water at Slate Creek and Eureka Creek. Concentrations of arsenic, cadmium, chromium, copper, lead, nickel, and zinc in streambed sediments at many sites exceed sediment quality guideline thresholds that could be toxic to aquatic life. However, assessment of these concentrations, along with the level of organic carbon detected in the sediment, indicate that only concentrations of arsenic and chromium may be toxic to aquatic life at many sites. In 2008 and 2009, 104 macroinvertebrate taxa and 164 algae taxa were identified from samples collected from seven sites. Of the macroinvertebrates, 86 percent were insects and most of the algae consisted of diatoms. Based on the National Community Index, Rock Creek, a reference site, and Caribou Creek, and a mined stream that had undergone some reclamation, exhibited the best overall stream conditions; whereas Slate Creek and Friday Creek, two small streams that were mined extensively, exhibited the worst stream conditions. A non-metric multi-dimensional scaling analysis of the macroinvertebrate and algae data showed a distinct grouping between the 2008 and 2009 samples, likely because of differences between a wet, cool summer in 2008 and a dry, warm summer in 2009.
Harvey, J.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; McPhillips, L.E.
2011-01-01
Flow interactions with aquatic vegetation and effects on sediment transport and nutrient redistribution are uncertain in shallow aquatic ecosystems. Here we quantified sediment transport in the Everglades by progressively increasing flow velocity in a field flume constructed around undisturbed bed sediment and emergent macrophytes. Suspended sediment 100 μm became dominant at higher velocity steps after a threshold shear stress for bed floc entrainment was exceeded. Shedding of vortices that had formed downstream of plant stems also occurred on that velocity step which promoted additional sediment detachment from epiphyton. Modeling determined that the potentially entrainable sediment reservoir, 46 g m−2, was similar to the reservoir of epiphyton (66 g m−2) but smaller than the reservoir of flocculent bed sediment (330 g m−2). All suspended sediment was enriched in phosphorus (by approximately twenty times) compared with bulk sediment on the bed surface and on plant stems, indicating that the most easily entrainable sediment is also the most nutrient rich (and likely the most biologically active).
Deutzmann, Jörg S.; Wörner, Susanne; Schink, Bernhard
2011-01-01
The activity and community structure of aerobic methanotrophic communities were investigated at methane seeps (pockmarks) in the littoral and profundal zones of an oligotrophic freshwater lake (Lake Constance, Germany). Measurements of potential methane oxidation rates showed that sediments inside littoral pockmarks are hot spots of methane oxidation. Potential methane oxidation rates at littoral pockmark sites exceeded the rates of the surrounding sediment by 2 orders of magnitude. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the pmoA gene revealed major differences in the methanotrophic community composition between littoral pockmarks and the surrounding sediments. Clone library analysis confirmed that one distinct Methylobacter-related group dominates the community at littoral pockmarks. In profundal sediments, the differences between pockmarks and surrounding sediments were found to be less pronounced. PMID:21335392