Sample records for sediment toxicity testing

  1. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.

    PubMed

    Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G

    2009-02-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  2. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  3. Sediment Toxicity Testing

    EPA Science Inventory

    Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...

  4. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    USGS Publications Warehouse

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  5. Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, H.L.; Word, J.Q.; Kohn, N.P.

    1993-10-01

    The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less

  6. An overview of the refinements and improvements to the USEPA’s sediment toxicity methods for freshwater sediment

    EPA Science Inventory

    Sediment toxicity tests are used for contaminated sediments, chemical registration, and water quality criteria evaluations and can be a core component of ecological risk assessments at contaminated sediments sites. Standard methods for conducting sediment toxicity tests have been...

  7. Sediment quality assessment studies of Tampa bay, Florida

    USGS Publications Warehouse

    Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.

    1996-01-01

    A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.

  8. Characterizing toxicity of metal-contaminated sediments from mining areas

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction of acid-volatile sulfide (AVS), termed simultaneously-extracted metals (SEM), are widely used to estimate the ‘potentially-bioavailable’ fraction of metals that is not bound to sulfides (i.e., SEM-AVS). Metal concentrations in pore water are widely considered to be direct measures of metal bioavailability, and predictions of toxicity based on pore-water metal concentrations may be further improved by modeling interactions of metals with other pore-water constituents using Biotic Ligand Models. Data from sediment toxicity tests and metal analyses has provided the basis for development of sediment quality guidelines, which estimate thresholds for toxicity of metals in sediments. Empirical guidelines such as Probable Effects Concentrations or (PECs) are based on associations between sediment metal concentrations and occurrence of toxic effects in large datasets. PECs do not model bioavailable metals, but they can be used to estimate the toxicity of metal mixtures using by calculation of probable effect quotients (PEQ = sediment metal concentration/PEC). In contrast, mechanistic guidelines, such as Equilibrium Partitioning Sediment Benchmarks (ESBs) attempt to predict both bioavailability and mixture toxicity. Application of these simple bioavailability models requires more extensive chemical characterization of sediments or pore water, compared to empirical guidelines, but may provide more reliable estimates of metal toxicity across a wide range of sediment types.

  9. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 1, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21--30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  10. A TOXICITY ASSESSMENT APPROACH TO EVALUATING IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity tests were used to measure baseline toxicity of sediment samples collected from New Jersey/New York Harbor (NJ/NY) (non-PAH- contaminated) sediment (ERC). Four freshwater toxicity tests were used: 1) amphipod (Hyalella azteca) mortality and...

  11. A COMPARISON OF BULK SEDIMENT TOXICITY TESTING METHODS AND SEDIMENT ELUTRIATE TOXICITY

    EPA Science Inventory

    Bulk sediment toxicity tests are routinely used to assess the level and extent of contamination in natural sediments. While reliable, these tests can be resource intensive, requiring significant outlays of time and materials. The purpose of this study was to compare the results ...

  12. Sediment toxicity testing with the amphipod Ampelisca abdita in Calcasieu Estuary, Louisiana

    USGS Publications Warehouse

    Redmond, M.S.; Crocker, P.A.; McKenna, K.M.; Petrocelli, E.A.; Scott, K.J.; Demas, C.R.

    1996-01-01

    Discharges from chemical and petrochemical manufacturing facilities have contaminated portions of Louisiana's Calcasieu River estuary with a variety of organic and inorganic contaminants. As part of a special study, sediment toxicity testing was conducted to assess potential impact to the benthic community. Ten-day flow-through sediment toxicity tests with the amphipod Ampelisca abdita revealed significant toxicity at 68% (26 of 38) of the stations tested. A. abdita mortality was highest in the effluent-dominated bayous, which are tributaries to the Calcasieu River. Mortality was correlated with total heavy metal and total organic compound concentrations in the sediments. Ancillary experiments showed that sediment interstitial water salinity as low as 2.5 o/o-o did not significantly affect A. abdita's, response in the flow-through system; sediment storage for 7 weeks at 4??C did not significantly affect toxicity. Sediment toxicity to A. abdita was more prevalent than receiving water toxicity using three short-term chronic bioassays. Results suggest that toxicity testing using this amphipod is a valuable tool when assessing sediments containing complex contaminant mixtures and for assessing effects of pollutant loading over time. In conjunction with chemical analyses, the testing indicated that the effluent-dominated, brackish bayous (Bayou d'Inde and Bayou Verdine) were the portions of the estuary most impacted by toxicity.

  13. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation

    USGS Publications Warehouse

    Kemble, N.E.; Hardesty, D.G.; Ingersoll, C.G.; Johnson, B. Thomas; Dwyer, F.J.; MacDonald, D.D.

    2000-01-01

    Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox® were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site. Though the sediments were generally not lethal, there were still sublethal effects of contaminants in sediments at this site observed on amphipods in long-term exposures (associated with elevated concentrations of metals, PCBs, and PAHs).

  14. A ten year summary of concurrent ambient water column and sediment toxicity tests in the Chesapeake Bay watershed: 1990-1999.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Alden, Raymond W

    2002-06-01

    The goal of this study was to identify the relative toxicity of ambient areas in the Chesapeake Bay watershed by using a suite of concurrent water column and sediment toxicity tests at seventy-five ambient stations in 20 Chesapeake Bay rivers from 1990 through 1999. Spatial and temporal variability was examined at selected locations throughout the 10 yr study. Inorganic and organic contaminants were evaluated in ambient water and sediment concurrently with water column and sediment tests to assess possible causes of toxicity although absolute causality can not be established. Multivariate statistical analysis was used to develop a multiple endpoint toxicity index (TOX-INDEX) at each station for both water column and sediment toxicity data. Water column tests from the 10 yr testing period showed that 49% of the time, some degree of toxicity was reported. The most toxic sites based on water column results were located in urbanized areas such as the Anacostia River, Elizabeth River and the Middle River. Water quality criteria for copper, lead, mercury, nickel and zinc were exceeded at one or more of these sites. Water column toxicity was also reported in localized areas of the South and Chester Rivers. Both spatial and temporal variability was reported from the suite of water column toxicity tests. Some degree of sediment toxicity was reported from 62% of the tests conducted during the ten year period. The Elizabeth River and Baltimore Harbor stations were reported as the most toxic areas based on sediment results. Sediment toxicity guidelines were exceeded for one or more of the following metals at these two locations: arsenic, cadmium, chromium, copper, lead, nickel and zinc. At the Elizabeth River stations nine of sixteen semi-volatile organics and two of seven pesticides measured exceeded the ER-M values in 1990. Ambient sediment toxicity tests in the Elizabeth River in 1996 showed reduced toxicity. Various semi-volatile organics exceeded the ER-M values at a number of Baltimore Harbor sites; pyrene and dibenzo(a,h)anthracene were particularly high at one of the stations (Northwest Harbor). Localized sediment toxicity was also reported in the Chester, James, Magothy, Rappahannock, and Potomac Rivers but the link with contaminants was not determined. Both spatial and temporal variability was less for sediment toxicity data when compared with water column toxicity data. A comparison of water column and sediment toxicity data for the various stations over the 10 yr study showed that approximately half the time agreement occurred (either both suite of tests showed toxicity or neither suite of tests showed toxicity).

  15. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  16. Anodonta imbecillis QA Test 1, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21-30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment.« less

  17. Can interpreting sediment toxicity tests a mega sites benefit from novel approaches to normalization to address batching of tests?

    EPA Science Inventory

    Sediment toxicity tests are a key tool used in Ecological Risk Assessments for contaminated sediment sites. Interpreting test results and defining toxicity is often a challenge. This is particularly true at mega sites where the testing regime is large, and by necessity performed ...

  18. Hyalella IQ Toxicity Test{trademark} as a predictor of whole sediment toxicity with diversely contaminated sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, W.S.; Hayes, K.R.

    1994-12-31

    The IQ TOXICITY TEST{trademark} is a toxicity screening test that evaluates the organism`s galactosidase enzyme system functionality as a predictor of acute toxicity. Organisms are exposed to a potentially toxic solution for approximately one hour. Following the exposure, the organisms are exposed to a slurry of a galactoside sugar tagged with a fluorescent marker (methylumbelliferyl galactoside) for 15--20 minutes. A black light can then be used to examine whether the hemolymph of the organism contains free umbelliferone, which brightly fluoresces. The organisms are then scored as ``on`` or ``off`` with respect to free umbelliferone. This endpoint can then be usedmore » to calculate an EC50, which is comparable to a whole effluent, pure compound, or sediment toxicity test. Slightly different methodologies are used for different toxicity test organisms. The objective of this presentation is to discuss the use of the IQ{trademark} methodology with porewater extract exposures of the amphipod Hyalella azteca as a predictor of results of whole sediment toxicity tests. The results of over thirty 10 and 28-day whole sediment toxicity tests and the concurrent Hyalella azteca 10 TOXICITY TESTS{trademark} are compared and discussed. The use of screening tests as a reduced cost method for initial site assessment will be discussed.« less

  19. Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays.

    PubMed

    Picone, Marco; Bergamin, Martina; Losso, Chiara; Delaney, Eugenia; Arizzi Novelli, Alessandra; Ghirardini, Annamaria Volpi

    2016-01-01

    Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were significantly affected by high ammonia concentrations found in the elutriates extracted from some mudflat and industrial sediments. No significant temporal variation of the toxicity was observed within the experimental period. Amendments to the set of bioassays, with inclusion of chronic tests, can certainly provide more reliability and consistency to the characterization of the (possible) toxic effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    The U.S. Environmental Protection Agency (USEPA) requested that as part of the remedial investigation for the Anniston, Alabama Polychlorinated Biphenyl (PCB) Site (Anniston PCB Site), that Pharmacia Corporation and Solutia Inc. (P/S) perform long-term reproduction toxicity tests with the amphipod, Hyalella azteca, and the midge, Chironomus dilutus, and bioaccumulation tests with the oligochaete, Lumbriculus variegatus, using sediment samples collected from reference locations and from Operable Unit 4 of the Anniston PCB Site. The sediment toxicity testing and sediment bioaccumulation results will be used by ARCADIS U.S., Inc. (ARCADIS) as part of a weight-of-evidence assessment to evaluate risks and establish sediment remediation goals for contaminants to sediment-dwelling organisms inhabiting the Anniston PCB Site. The goal of this study was to characterize relations between sediment chemistry and sediment toxicity and relations between sediment chemistry and sediment bioaccumulation in samples of sediments collected from the Anniston PCB Site. A total of 32 samples were evaluated from six test sites and one reference site to provide a wide range in concentrations of chemicals of potential concern (COPCs) including PCBs in samples of whole sediment. The goal of this study was not to determine the extent of sediment contamination across the Anniston PCB Site. Hence, the test sites or samples collected from within a test site were not selected to represent the spatial extent of sediment contamination across the Anniston PCB Site. Sediment chemistry, pore-water chemistry, and sediment toxicity data were generated for 26 sediment samples from the Anniston PCB Site. All of the samples were evaluated to determine if they qualified as reference sediment samples. Those samples that met the chemical selection criteria and biological selection criteria were identified as reference samples and used to develop the reference envelope for each toxicity test endpoint. Physical characterization of samples of whole sediment included analyses of grain size, TOC, and nutrients. Organic chemical characterization of samples of whole sediment included PCB homologs and select (13) PCB congeners, parent and alkylated polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, and polychlorinated dibenzo-p-dioxins; and dibenzofurans. The PCB aroclors analyzed included 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 and 1268. Analyses of whole sediment also included total metals, simultaneously extracted metals, and acid volatile sulfide. Chemical characterization of samples of pore water isolated from samples of whole sediment at the start of the sediment toxicity exposures or at the start of the sediment bioaccumulation exposures included metals, major cations, major anions, dissolved organic carbon, and additional water-quality characteristics. Concentrations of metals or PCBs in pore water during the sediment toxicity exposures or during sediment bioaccumulation exposures also were determined using peeper samples (for metals) or solid-phase microextraction (SPME) samplers (for PCBs). The bioavailability and bioaccumulation of PCBs in 14 sediment samples were investigated using SPME passive samplers and the 28-d L. variegatus whole-sediment bioaccumulation exposures In general the accumulation of PCBs consistently was predicted through the use of organic carbon normalization and equilibrium partitioning. In these sediments, PCB homologs were accumulated differently based on bioavailability and potential to accumulate in oligochaetes. As part of this assessment homolog specific biota sediment accumulation factor values were developed that could be applied across the larger site to predict tissue levels of PCBs. The whole-sediment toxicity tests done with H. azteca and C. dilutus met the established ASTM and USEPA test acceptability criteria. The most responsive H. azteca endpoints were day 42 survival normalized young per female and day 28 biomass and that the most responsive C. dilutus endpoints were adult biomass and percent adult emergence. Overall, between the two species, the most responsive endpoint assessed for these two species was H. azteca survival-normalized young per female (67 percent of the samples classified as toxic). Concentration-response models (CRMs) and site-specific sediment toxicity thresholds (TTs) were generated with matching sediment chemistry and sediment toxicity data. Sediment chemistry, pore-water chemistry, and sediment toxicity data were evaluated for as many as 26 sediment samples from the Anniston PCB Site. The reference-envelope approach was used to identify the sediment samples that were toxic to benthic invertebrates. This procedure involved identification of reference sediment samples, normalizing the toxicity data to reflect control responses, developing a reference envelope for each toxicity test endpoint, and designating each sediment sample as toxic or not toxic for each toxicity test endpoint, for each species, and for all species combined. These results demonstrated percent emergence of adult C. dilutus, biomass of adult C. dilutus, and reproduction of H. azteca normalized to percent survival were among the most responsive endpoints that were evaluated. Therefore, these endpoints were selected for CRM development. The site-specific TTs for whole sediment provide a reliable basis for identifying toxic and not toxic sediment samples in the Anniston PCB Site (that is, for correctly classifying the sediment samples used to derive the TTs as toxic or not toxic, for the endpoint used to derive the TTs). Among the 69 TTs for sediment, the TTLRs for total PCB homologs [499 to 1,870 micrograms per kilogram dry weight (μg/kg DW)] and for lead [(9.48 to 10.3 milligrams per kilogram (mg/kg) DW] based on reproduction of H. azteca or based on emergence or biomass of adult C. dilutus, were the most reliable. Such TTs had low rates of false negative errors (that is, only 0 to 11 percent of the samples below the TT were toxic to benthic invertebrates), low rates of false positive errors (only 0 to 6 percent of the samples greater than the TT were not toxic to benthic invertebrates), and high rates of correct classification (that is, 92 to 96 percent). The site-specific TTs for PCBs and other COPCs derived in this study also were compared to empirically based sediment quality guidelines (SQGs), to equilibrium-partitioning based SQGs, and to the results of spiked-sediment toxicity tests. The results of this evaluation indicated that the site-specific sediment TTs for PCBs were comparable to the consensus-based SQGs that were derived for PCBs. In addition, the site-specific sediment TTs for PCBs are well within the range of SQGs derived using the equilibrium partitioning approach. The site-specific sediment TTs for PCBs also are consistent with the results of chronic TTs that have been estimated for benthic invertebrates using the results of spiked-sediment toxicity tests. As the site-specific sediment TTs for PCBs are consistent with empirically based SQGs, equilibrium-partitioning based SQGs, and results of sediment-spiking studies, these site- specific sediment TTs likely represent the concentrations of PCBs that are sufficient to cause toxicity to benthic invertebrates (as opposed to simply being correlated with adverse effects on the survival, weight, or reproduction of benthic invertebrates). Importantly, such site-specific sediment TTs have been demonstrated to accurately classify sediment samples as toxic or not toxic to benthic invertebrates at the Anniston PCB Site. In contrast, the TTs for metals, PAHs, and organochlorine pesticides were generally lower than consensus-based SQGs (that is, probable effect concentrations), and LC50s (median lethal effect concentrations) generated in spiked-sediment toxicity tests, indicating that these COPCs are likely not the main contributors to the observed toxicity of the site sediments evaluated in this study. The reproduction endpoint for H. azteca provided lower TTs compared to the day 28 biomass endpoint for H. azteca and the emergence or biomass endpoints for adult C. dilutus provided lower TTs compared to the day 13 biomass endpoint for C. dilutus.

  1. The Influence of Test Conditions on the Performance of Chironomus dilutus and Hyalella azteca in Sediment Toxicity Tests

    EPA Science Inventory

    In most all sediment toxicity assessments, the performance of organisms in control sediments is a key parameter in defining sediment toxicity, whether through direct statistical comparison to control or by normalizing to control performance to compare results across sites or batc...

  2. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.

  3. Use of porewater extracts to identify the cause of toxicity in marine and estuarine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, W.S.

    1994-12-31

    Amphipod toxicity tests in the evaluation of dredged material proposed for ocean disposal has come under increased scrutiny by the regulated community in the Port of NY/NJ. In recent large-scale assessments of sediment quality in the harbor, the vast majority of locations were deemed highly contaminated when tested with Ampelisca abdita. Toxicity tests, by themselves, do not provide data regarding the cause of toxicity of these sediments. The enormous potential costs associated with most proposed alternatives to ocean disposal of dredged sediments has prompted the investigation of the causative agents of toxicity in sediments of the NY/NJ Harbor. Sediment frommore » five locations in the harbor, selected in consultation with local regulatory agencies to represent diverse potential contamination scenarios, was collected and tested for toxicity to the amphipods Ampelisca abdita, Leptocheirus plumulosus, Eohaustorius estuadus, Rhepoxynius abronius, and the mysid shrimp, Mysidopsis bahia, using 10-day static bioassays. Porewater from each of the five sediments was extracted under centrifugation and used in water-only toxicity tests with A. abdita, L. plumulosus, R. abronius, E. estuadus, M. bahia, M. beryllina, and Microtox. A Phase 1 Toxicity Identification Evaluation of the three most toxic porewater samples was conducted using several of the species tested. Results from the preliminary investigations and the ongoing TIE`s will be presented. Species selection, porewater toxicity test procedures, and Phase 1, 2, and 3 paradigms will be discussed.« less

  4. Toxicity of contaminated sediments in dilution series with control sediments

    USGS Publications Warehouse

    Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.

    1993-01-01

    The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.

  5. Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity tests, microtox, mutatox and semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Petty, Jimmie D.; Johnson, B. Thomas; Lebo, Jon A.; Orazio, Carl E.; Dionne, Jane

    1997-01-01

    Eight whole sediment samples from Antarctica (four from Winter Quarters Bay and four from McMurdo Sound) were toxicologically and chemically evaluated. Also, the influence of ultraviolet radiation on the toxicity and bioavailability of contaminants associated with the sediment samples was assessed. The evaluations were accomplished by use of a 10-day whole sediment test with Leptocheirus plumulosus, Microtox®, Mutatox® and semipermeable membrane devices (SPMDs). Winter Quarters Bay sediments contained about 250 ng g−1 (dry weight) total PCBs and 20 μg g−1 total PAHs. These sediments elicited toxicity in the Microtox test and avoidance and inhibited burrowing in the L. plumulosus test. The McMurdo Sound sediment samples contained only trace amounts of PCBs and no PAHs, and were less toxic in both the L. plumulosus and Microtox tests compared to the Winter Quarters Bay sediments. The sediments from McMurdo Sound apparently contained some unidentified substance which was photolytically modified to a more toxic form. The photolytic modification of sediment-associated contaminants, coupled with the polar ozone hole and increased incidence of ultraviolet radiation could significantly increase hazards to Antarctic marine life.

  6. A SEDIMENT TOXICITY METHOD USING LEMNA MINOR, DUCKWEED

    EPA Science Inventory

    We developed a Lemna minor sediment toxicity test method to assess sediment contaminants which may affect plants. This 96-hour test used 15 ml of sediment and 2 ml of overlying water which was renewed after 48 hours. Sand was used as the control sediment and also to dilute test ...

  7. Coastal circulation and sediment dynamics in Hanalei Bay, Kaua'i, Hawaii, part III, studies of sediment toxicity

    USGS Publications Warehouse

    Carr, Robert S.; Nipper, Marion; Field, Michael; Biedenbach, James M.

    2006-01-01

    Toxicity tests are commonly conducted as a measure of the bioavailability of toxic chemicals to biota in an environment. Chemical analyses alone are insufficient to determine whether contaminants pose a threat to biota. Porewater toxicity tests are extremely sensitive to a broad range of contaminants in marine environments and provide ecologically relevant data on sensitive life stages. The inclusion of porewater toxicity testing as an additional indicator of sediment quality provides a more comprehensive picture of contaminant effects in these sensitive habitats. In this study purple-spined sea urchin (Arbacia punctulata) fertilization and embryological development porewater toxicity tests were used to evaluate the sediments collected from the coastal environment around Hanalei Bay, Kaua’i, Hawaii. These tests have been used previously to assess the bioavailability of contaminants associated with sediments in the vicinity of coral reefs.

  8. Sediment quality assessment using survival and embryo malformation tests in amphipod crustaceans: The Gulf of Riga, Baltic Sea AS case study

    NASA Astrophysics Data System (ADS)

    Strode, Evita; Jansons, Mintauts; Purina, Ingrida; Balode, Maija; Berezina, Nadezhda A.

    2017-08-01

    The aim of this study was to assess the toxicity of bottom sediment and to estimate the potential effects of contaminated sediment on health of benthic organisms in the Gulf of Riga (eastern Baltic Sea). Two endpoints were used: survival rate (acute toxicity test) of five crustacean amphipod species and frequency of embryo malformation (samples were collected from the field) in the two species. Toxic resistance of living animals to sediment quality was measured as survival rate (%) at 25 study sites from 2010-2012. Significant differences in the toxic resistance between species were found: 80-100% for Monoporeia affinis, 70-95% for Corophium volutator, 38-88% for Pontogammarus robustoides, 38-100% for Bathyporeia pilosa and 60-100% for Hyalella azteca. Reproductive disorders, measured as percentage (%) of malformed embryos per female, varied in the ranges of 0.0-9.5% in deep water species M. affinis and 0.3-7.5% in littoral species P. robustoides. Both the acute toxicity test and embryo malformation test (only M. affinis was used) indicated moderate and poor sediment quality at 20% and 12% accordingly in the study sites, low toxicity of sediment was estimated in 64% of cases, and no toxicity was recorded in the rest of the cases (4%). Additionally, sediment toxicity test using aquatic organisms was combined with sediment chemical analysis (trace metals) and the Benthic Quality Index (macrozoobenthos) was based on data collected from 13 sites in the Gulf of Riga in 2010 and used for triad sediment quality assessment. According to this combined approach, 23% of the bottom sediments were classified as likely impacted and 23% as possibly impacted (central and southern part of the Gulf). However, the remaining 54% was identified as likely un-impacted. The sediment quality assessment with single survival test or chemical analyses showed better sediment quality in the Gulf than the triad method. The embryo malformation test appeared to be more sensitive to pollution than acute toxicity survival test, that allow us to recommend the inclusion of this novel biomarker in environmental monitoring, while combining it with other tests. In general, our results indicate good or moderate states of sediments and minimal effects of the toxic contamination in them on the Gulf of Riga ecosystem.

  9. Comparison of bulk sediment and sediment elutriate toxicity testing methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  10. SEDIMENT TOXICITY ASSESSMENT: COMPARISON OF STANDARD AND NEW TESTING DESIGNS

    EPA Science Inventory

    Standard methods of sediment toxicity testing are fairly well accepted; however, as with all else, evolution of these methods is inevitable. We compared a standard ASTM 10-day amphipod toxicity testing method with smaller, 48- and 96-h test methods using very toxic and reference ...

  11. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  12. Sediment Toxicity Identification Evaluations (TIEs): Manipulating Bioavailability to Whole Organisms to Identify Environmental Toxins

    EPA Science Inventory

    Toxicity tests are a common method for determining whether sediment contaminants represent an environmental risk. Toxicity tests indicate if contaminants in sediments are bioavailable and capable of causing adverse biological effects to whole aquatic organisms. Several environmen...

  13. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  14. Comparisons of Sediment Test Volumes for Freshwater Solid Phase Sediment Toxicity Tests

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the potential toxicity of contaminated sediments, and detailed standard test procedures have been developed for various species. For freshwater, two benthic organisms, Hyalella azteca and Chironomus dil...

  15. Toxicity of sediment collected upriver and downriver of major cities along the lower Mississippi River

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1998-01-01

    The Lower Mississippi River contributes significantly to the biodiversity and ecological stability of the alluvial valley. Agricultural, industrial and municipal developments have historically impacted environmental quality of the river. Toxicity of sediment and sediment pore water was used to assess the current effects of major cities on sediment quality along the Lower Mississippi River. Composite sediment samples were collected from four sites upriver and four sites downriver of five major cities: Cairo, IL; Memphis, TN; Vicksburg, MS; Baton Rouge, LA; and New Orleans, LA. Following EPA's standard methods for acute toxicity testing of freshwater solid-phase sediment, Hyalella azteca were exposed to the sediments for 10 d with two water renewals per day. Hyalella azteca were also exposed for 96 h to pore water extracted from the sediments. After the initial tests, the animals were exposed to ultraviolet light for 12 h. Sediments were analyzed for organics (organochlorine pesticides, PCBs, organophosphate insecticides, and PAHs) and metals (Cr, Cu, Pb, Mn, Ni, Zn). With the exception of upriver from Memphis, solid-phase sediments were not toxic to H. azteca. Pore water from sediments collected upriver of Memphis showed slight toxicity. Exposure of H. azteca to ultraviolet light did not increase the toxicity of the sediment or pore-water samples, indicating a lack of PAH toxicity. Chemical analyses did not reveal any contaminant levels of concern in the sediments. Based on toxicity testing and chemical analyses, quality of sediments collected from the Lower Mississippi was good, with the exception of sites sampled upriver of Memphis.

  16. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments

    USGS Publications Warehouse

    Carr, Robert Scott; Chapman, Duane C.

    1992-01-01

    As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.

  17. Optimizing the performance of the amphipod, Hyalella azteca, in chronic toxicity tests: Results of feeding studies with various foods and feeding regimes

    EPA Science Inventory

    The freshwater amphipod, Hyalella azteca, is a common organism used for sediment toxicity testing. Standard methods for 10-d and 42-d sediment toxicity tests with H. azteca were last revised and published by USEPA/ASTM in 2000. While Hyalella azteca methods exist for sediment tox...

  18. A FIELD VALIDATION OF TWO SEDIMENT-AMPHIPOD TOXICITY TESTS

    EPA Science Inventory

    A field validation study of two sediment-amphipod toxicity tests was conducted using sediment samples collected subtidally in the vicinity of a polycyclic aromatic hydrocarbon (PAH)-contaminated Superfund site in Elliott Bay, WA, USA. Sediment samples were collected at 30 stati...

  19. Impacts of toxic thresholds of sediment-associated contaminants to robust redhorse (Moxostoma robustum) in the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.; Winger, P.; Bogenrieder, K.; Shelton, J.

    2000-01-01

    The robust redhorse is a ?Species-at-Risk? in the lower Oconee River, GA. The population is composed of aging adults with little natural recruitment. Factors contributing to the loss of early-life stages are unknown, but contaminants associated with fine sediments may play a role. The objectives of this study were to determine toxicities of sediments and pore waters from the Oconee River to early-life stages of robust redhorse and to establish toxic thresholds of metals (Cd, Cu, Mn, Zn) and ammonia, elements potentially threatening this species. Depositional sediments were collected from the only known spawning site and three sites downstream of major tributaries. Sediment pore waters were extracted in the laboratory from all sites and in situ at two sites. Toxicity tests with sediments, pore waters and metal solutions were initiated with eggs, yolk-sac fry and swim-up fry to determine effects on the life stage initially exposed as well as effects manifested in later developmental stages. Survival and growth were test endpoints, and toxicity was observed in both sediments and pore waters. Although the yolk- sac stage was the most sensitive across all tests, sediment toxicity was elicited only in tests initiated with eggs that developed through the yolk-sac stage. Toxicity appeared to be due to Mn in sediment and pore water exposures, but was more prevalent in pore waters. Sediment handling and the associated effects on redox potential contributed to the elevated concentrations of Mn in pore waters. Pore waters extracted in situ had significantly less Mn and were less toxic than laboratory-extracted pore waters. These data suggest that sediment-associated Mn may impact early-life stages of robust redhorse in the Oconee River.

  20. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.

    2000-04-01

    A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers,more » the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.« less

  1. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning

    USGS Publications Warehouse

    Brumbaugh, William G.; Besser, John M.; Ingersoll, Christopher G.; May, Thomas W.; Ivey, Chris D.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.

  2. Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry.

    PubMed

    Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M; del Olmo, Iván; Grimalt, Joan O; Piña, Benjamín; Barata, Carlos

    2009-08-13

    A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.

  3. A tropical sediment toxicity test using the dipteran Chironomus crassiforceps to test metal bioavailability with sediment pH change in tropical acid-sulfate sediments.

    PubMed

    Peck, Mika R; Klessa, David A; Baird, Donald J

    2002-04-01

    The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.

  4. Pilot study for ambient toxicity testing in Chesapeake bay. Year two report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W.; Ziegenfuss, M.C.; Fischer, S.A.

    1992-11-01

    The primary goal of the ambient toxicity testing pilot study was to identify toxic areas in living resource habitats of the Chesapeake Bay watershed by using a battery of standardized, directly modified or recently developed water column, sediment and suborganismal toxicity tests. Tests were conducted twice at the following stations: Potomac River-Morgantown, Potomac River-Dahlgren, Patapsco River and Wye River. A suite of inorganic and organic contaminants was evaluated in the water column and sediment during these tests. Standard water quality conditions were also evaluated in water and sediment from all stations.

  5. Contaminants in stream sediments from seven U.S. metropolitan areas: Data summary of a National Pilot Study

    USGS Publications Warehouse

    Moran, Patrick W.; Calhoun, Dan L.; Nowell, Lisa H.; Kemble, Nile E.; Ingersoll, Chris G.; Hladik, Michelle; Kuivila, Kathryn; Falcone, James A.; Gilliom, Robert J.

    2012-01-01

    This report presents data collected as a part of a synoptic survey of stream sediment contaminants, associated watershed characteristics and invertebrate responses in laboratory sediment toxicity tests from 98 streams (sites) in seven metropolitan study areas across the continental United States. The report presents methods, data, and sediment-quality guidelines, including the derivation of a new sediment pyrethroid probable effects concentration, for the purposes of relating measured contaminants to land use and toxicity evaluation. The study evaluated sites that ranged in their degree of relative urbanization within the study areas of Atlanta, Boston, Dallas-Fort Worth, Denver, Milwaukee-Green Bay, Salt Lake City, and Seattle-Tacoma. In all, 108 chemical analytes quantified in the study are presented, by class and number of individual compounds, as follows: polyaromatic hydrocarbons (PAHs) (28), organochlorine pesticides (OCs) (18), polychlorinated biphenyls (Aroclors) (3), pyrethroid insecticides (14), fipronil compounds (4), priority trace and other major elements (41). The potential of these sediments to cause toxicity to sediment-dwelling invertebrates was evaluated using two standard sediment toxicity tests: a 28-day growth and survival toxicity test with the amphipod Hyalella azteca, and a 10-day growth and survival toxicity test with the midge Chironomus dilutus. Further, approximately 95 relevant watershed and reach-level characteristics were generated and are presented to aid in interpretation and explanation of contaminant and toxicity patterns. Interpretation of the findings of this study, including the relationships with urbanization and other factors, the relationship between sediment toxicity and sediment chemistry in the seven study areas, and the sources and occurrence of pyrethroid insecticides, are discussed in detail in a forthcoming series of journal articles.

  6. Flow-through bioassay for measuring bioaccumulation of toxic substances from sediment

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.; Hesselberg, Robert J.; Sayers, Richard E.

    1984-01-01

    Over 10 million cubic meters of sediment are dredged annually from Great Lakes waterways. Because much of this material is taken from harbors, connecting channels, and other nearshore areas that often are contaminated with toxic substances, the sediments proposed for dredging need to be evaluated for the presence of bioavailable contaminants and the potential for toxicity to the biota. Sound decisions on the appropriate disposal of the dredged material can be made only after such an evaluation. Presently, no standardized procedure exists for evaluating dredged material in freshwater systems although current criteria for discharge of dredged material into marine water have been developed (USEPA/CE 1977). In the ocean discharge guideline, it is recommended that bioassays be conducted on liquid, solid, and suspended particulate phases of dredged material. because it appears that the solid phase has the greatest potential for environmental damage and because measurement of bioaccumulation must be made to evaluate sediments for disposal (USEPA/CE 1977, Seeyle and Mac 1983), we developed a bioassay for testing the solid phase of dredged material that measures the survival of organisms and, perhaps more important, the bioaccumulation of toxic substances by aquatic organisms from naturally contaminated sediments (Peddicord et al. 1980; Rubinstein et al. 1980, 1983; Seeyle st al. 1982), several have used testing methods that result in unacceptable mortality to control organisms (Bahnick et al. 1981, Prater et al. 1983). Our bioassay is intended to estimate the potential for bioaccumlation of contaminants from sediments that are not acutely toxic to test organisms, but are suspected of containing persistent contaminants. By using test organisms that are not highly susceptible to toxic compounds, the bioaccumulation test allows estimation of the potential food-chain accumulation of contaminants that may occur in local biota from surficial sediments. In practice, bioaccumulation observed in this bioassay by organisms exposed to test sediments (sediments to be dredged) would be compared to bioaccumulation observed from sediments collected from a reference site (e.g. a disposal site or open lake), and also from control sediments (relatively clean sediment). Decisions could then be based on a comparison of results between tests and reference sediments to determine if disposal would cause dehydration to the habitat, and between reference and control sediment to determine if even the reference material is seriously contaminated. Although the test is not intended to be a toxicity test per se, use of test, reference, and control sediments enables interpretation of any mortality of organisms that may occur during the bioassays. High mortality in bioassays with test or reference sediment would indicate acute toxicity of sediments in the project area. However if high mortality occurs in all three sediments, it can be assumed that the organisms were not in a healthy state at the time of testing. We describe the results of 10-day sediment bioassays in which both mortality and bioaccumulation were measured in four aquatic organisms. We exposed two infaunal organisms and two species of fish to test and control sediments in the laboratory.

  7. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Brumbaugh, W.G.; Johnson, B. Thomas; Kemble, N.E.; Kunz, J.L.; May, T.W.; Wang, N.; Smith, J.R.; Sparks, D.W.; Ireland, D.S.

    2002-01-01

    The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox® Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3.4 (based on concentrations of metals, PAHs, and PCBs) was exceeded in 33% of the sediment samples and a mean quotient of 0.63 was exceeded in 70% of the thirty sediment samples from the assessment area. A 50% incidence of toxicity has been previously reported in a database for sediment tests with H. azteca at a mean quotient of 3.4 in 10-day exposures and at a mean quotient of 0.63 in 28-day exposures. Among the Indiana Harbor samples, most of the samples with a mean PEC quotient above 0.63 (i.e., 15 of 21; 71%) and above 3.4 (i.e., 10 of 10; 100%) were toxic to amphipods. Results of this study and previous studies demonstrate that sediments from this assessment area are among the most contaminated and toxic that have ever been reported.

  8. Analysis of the ecotoxicity data submitted within the framework of the REACH Regulation. Part 3. Experimental sediment toxicity assays.

    PubMed

    Cesnaitis, Romanas; Sobanska, Marta A; Versonnen, Bram; Sobanski, Tomasz; Bonnomet, Vincent; Tarazona, Jose V; De Coen, Wim

    2014-03-15

    For the first REACH registration deadline, companies have submitted registrations with relevant hazard and exposure information for substances at the highest tonnage level (above 1000 tonnes per year). At this tonnage level, information on the long-term toxicity of a substance to sediment organisms is required. There are a number of available test guidelines developed and accepted by various national/international organisations, which can be used to investigate long-term toxicity to sediment organisms. However instead of testing, registrants may also use other options to address toxicity to sediment organisms, e.g. weight of evidence approach, grouping of substances and read-across approaches, as well as substance-tailored exposure-driven testing. The current analysis of the data provided in ECHA database focuses on the test methods applied and the test organisms used in the experimental studies to assess long-term toxicity to sediment organisms. The main guidelines used for the testing of substances registered under REACH are the OECD guidelines and OSPAR Protocols on Methods for the Testing of Chemicals used in the Offshore Oil Industry: "Part A: A Sediment Bioassay using an Amphipod Corophium sp." explaining why one of the mostly used test organisms is the marine amphipod Corophium sp. In total, testing results with at least 40 species from seven phyla are provided in the database. However, it can be concluded that the ECHA database does not contain a high enough number of available experimental data on toxicity to sediment organisms for it to be used extensively by the scientific community (e.g. for development of non-testing methods to predict hazards to sediment organisms). © 2013.

  9. Annotated Bibliography of Bioassays Related to Sediment Toxicity Testing in Washington State

    DTIC Science & Technology

    1990-10-01

    effects of sediments contaminated with heavy metals, petroleum hydrocarbons , synthetic organic compounds and radionuclides. It also provides an... molluscs (adults only), echinoderm larvae and fish), and bioassay procedures with selected toxicants (metals, petrochemicals, pesticides, contaminated...reference sediment + 15 mm test sediment. Bioaccumulation tests (with same organisms) are a’so discussed. EPA/COE (U.S. Environmental Protection Agency

  10. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests—extraction, storage, and handling techniques

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.

    1995-01-01

    A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.

  11. What food and feeding rates are optimum for the Chironomus dilutus sediment toxicity test method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates conducted using standard toxicity test procedures are used to assess the potential toxicity of contaminated sediments. Results are compared across sites or for batches of samples, and the performance of organisms in control treatme...

  12. INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING AMPHIPOD AMPELISCA ABDITA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison wa...

  13. A TOXICITY ASSESSMENT APPROACH FOR THE EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity test were used to measure baseline toxicity of sediment samples collected from New York/New Jersey Harbor (NY/NJH) and East River (ER) (PAH contaminated) sediments and to determine the effectiveness of the developed biotreatment strategies ...

  14. Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters

    USGS Publications Warehouse

    Nipper, M.; Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.

    2002-01-01

    Toxicological and chemical studies were performed with a silty and a sandy marine sediment spiked with 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrophenylmethylnitramine (tetryl), or 2,4,6-trinitrophenol (picric acid). Whole sediment toxicity was analyzed by the 10-day survival test with the amphipod Ampelisca abdita, and porewater toxicity tests assessed macro-algae (Ulva fasciata) zoospore germination and germling growth, sea urchin (Arbacia punctulata) embryological development, and polychaete (Dinophilus gyrociliatus) survival and reproduction. Whole sediments spiked with 2,6-DNT were not toxic to amphipods. The fine-grained sediment spiked with tetryl was also not acutely toxic. The tetryl and picric acid LC50 values in the sandy sediment were 3.24 and 144 mg/kg dry weight, respectively. The fine-grained sediment spiked with picric acid generated a U-shaped concentration-response curve in the amphipod test, with increased survival both in the lowest and highest concentration. Grain-size distribution and organic carbon content strongly influenced the behavior of ordnance compounds in spiked sediments. Very low concentrations were measured in some of the treatments and irreversible binding and biodegradation are suggested as the processes responsible for the low measurements. Porewater toxicity varied with its sedimentary origin and with ordnance compound. The sea urchin embryological development test tended to be the least sensitive. Tetryl was the most toxic chemical in all porewater tests, and picric acid the least toxic. Samples spiked with 2,6-DNT contained a degradation product identified as 2-methyl-3-nitroaniline (also known as 2-amino-6-nitrotoluene), and unidentified peaks, possibly degradation products, were also seen in some of the picric acid- and tetryl-spiked samples. Degradation products may have played a role in observed toxicity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. The SED-TOX: Toxicity-directed management tool to assess and rank sediments based on their hazard -- concept and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bombardier, M.; Bermingham, N.

    1999-04-01

    This article introduces the sediment Toxicity (SED-TOX) Index for the assessment and ranking of toxic hazards in sediment. Major features include expression of toxicity responses on a single scale of measurement (dry weight-based toxic units), consideration of multiple routes of exposure (pore water, organic extract, wet sediment, and whole sediment), application of differential treatments to toxicity data depending on the level of response, and use of weighting factors to discriminate sediment exposure phases and effect endpoints on the basis of sensitivity. A battery of seven bioassays with four test species (Vibrio fischeri, Escherichia coli, Lytechinus pictus, and Amphiporeia virginiana) wasmore » conducted on 49 marine sediment samples collected from six sites at Anse-a-Beaufils and Cap-aux-Meules, which are in the Gulf of St. Lawrence. The SED-TOX scores were calculated for each sampling station and compared with sediment contaminant concentrations. Results indicate that physico-chemical characterization is not sufficient to assess contaminated-sediment hazard for organisms; furthermore, using several exposure phases and test species belonging to various trophic levels increases the possibility of correctly identifying toxic sediments. The results of this study indicate that the SED-TOX approach is valuable as a toxicity assessment and ranking tool for sediments. It could easily be combined with other measures of ecosystem disturbance to discriminate between polluted and unpolluted sites.« less

  16. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA

    USGS Publications Warehouse

    Moran, Patrick W.; Nowell, Lisa H.; Kemble, Nile E.; Mahler, Barbara J.; Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and multivariate community analysis) suggest that elevated contaminant concentrations in sediments, in particular bifenthrin, is limiting macroinvertebrate communities in several of these Midwest streams.

  17. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    PubMed

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  18. Interlaboratory evaluation of Hyalella azteca and Chironomus tentans short-term and long-term sediment toxicity tests

    USGS Publications Warehouse

    Norberg-King, T. J.; Sibley, P.K.; Burton, G.A.; Ingersoll, C.G.; Kemble, N.E.; Ireland, S.; Mount, D.R.; Rowland, C.D.

    2006-01-01

    Methods for assessing the long-term toxicity of sediments to Hyalella azteca and Chironomus tentans can significantly enhance the capacity to assess sublethal effects of contaminated sediments through multiple endpoints. Sublethal tests allow us to begin to understand the relationship between short-term and long-term effects for toxic sediments. We present an interlaboratory evaluation with long-term and 10-d tests using control and contaminated sediments in which we assess whether proposed and existing performance criteria (test acceptability criteria [TAC]) could be achieved. Laboratories became familiar with newly developed, long-term protocols by testing two control sediments in phase 1. In phase 2, the 10-d and long-term tests were examined with several sediments. Laboratories met the TACs, but results varied depending on the test organism, test duration, and endpoints. For the long-term tests in phase 1, 66 to 100% of the laboratories consistently met the TACs for survival, growth, or reproduction using H. azteca, and 70 to 100% of the laboratories met the TACs for survival and growth, emergence, reproduction, and hatchability using C. tentans. In phase 2, fewer laboratories participated in long-term tests: 71 to 88% of the laboratories met the TAC for H. azteca, whereas 50 to 67% met the TAC for C. tentans. In the 10-d tests with H. azteca, and C. tentans, 82 and 88% of the laboratories met the TAC for survival, respectively, and 80% met the TAC for C. tentans growth. For the 10-d and long-term tests, laboratories predicted similar toxicity. Overall, the interlaboratory evaluation showed good precision of the methods, appropriate endpoints were incorporated into the test protocols, and tests effectively predicted the toxicity of sediments.

  19. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basinmore » and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.« less

  20. POREWATER TOXICITY TESTING: AN OVERVIEW

    EPA Science Inventory

    Sediments act as sinks for contaminants, where they may build up to toxic levels. Sediments containing toxic levels of contaminants pose a risk to aquatic life, human health, and wildlife. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are re...

  1. An interlaboratory comparison of sediment elutriate preparation and toxicity test methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  2. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Wang, N.; Crane, J.L.; Field, L.J.; Haverland, P.S.; Kemble, N.E.; Lindskoog, R.A.; Severn, C.; Smorong, D.E.

    2001-01-01

    The objectives of this study were to compare approaches for evaluating the combined effects of chemical mixtures on the toxicity in field-collected sediments and to evaluate the ability of consensus-based probable effect concentrations (PECs) to predict toxicity in a freshwater database on both a national and regional geographic basis. A database was developed from 92 published reports, which included a total of 1,657 samples with high-quality matching sediment toxicity and chemistry data from across North America. The database was comprised primarily of 10- to 14-day or 28- to 42-day toxicity tests with the amphipod Hyalella azteca (designated as the HA10 or HA28 tests) and 10- to 14-day toxicity tests with the midges Chironomus tentans or C. riparius (designated as the CS10 test). Mean PEC quotients were calculated to provide an overall measure of chemical contamination and to support an evaluation of the combined effects of multiple contaminants in sediments. There was an overall increase in the incidence of toxicity with an increase in the mean quotients in all three tests. A consistent increase in the toxicity in all three tests occurred at a mean quotient > 0.5, however, the overall incidence of toxicity was greater in the HA28 test compared to the short-term tests. The longer-term tests, in which survival and growth are measured, tend to be more sensitive than the shorter-term tests, with acute to chronic ratios on the order of six indicated for H. azteca. Different patterns were observed among the various procedures used to calculate mean quotients. For example, in the HA28 test, a relatively abrupt increase in toxicity was associated with elevated polychlorinated biphenyls (PCBs) alone or with elevated polycyclic aromatic hydrocarbons (PAHs) alone, compared to the pattern of a gradual increase in toxicity observed with quotients calculated using a combination of metals, PAHs, and PCBs. These analyses indicate that the different patterns in toxicity may be the result of unique chemical signals associated with individual contaminants in samples. Though mean quotients can be used to classify samples as toxic or nontoxic, individual quotients might be useful in helping identify substances that may be causing or substantially contributing to the observed toxicity. An increase in the incidence of toxicity was observed with increasing mean quotients within most of the regions, basins, and areas in North America for all three toxicity tests. The results of these analyses indicate that the consensus-based PECs can be used to reliably predict toxicity of sediments on both a regional and national basis.

  3. Comparative performances of eggs and embryos of sea urchin (Paracentrotus lividus) in toxicity bioassays used for assessment of marine sediment quality.

    PubMed

    Khosrovyan, A; Rodríguez-Romero, A; Salamanca, M J; Del Valls, T A; Riba, I; Serrano, F

    2013-05-15

    The potential toxicity of sediments from various ports was assessed by means of two different liquid-phase toxicity bioassays (acute and chronic) with embryos and eggs of sea urchin Paracentrotus lividus. Performances of embryos and eggs of P. lividus in these bioassays were compared for their interchangeable applicability in integrated sediment quality assessment. The obtained endpoints (percentages of normally developed plutei and fertilized eggs) were linked to physical and chemical properties of sediments and demonstrated dependence on sediment contamination. The endpoints in the two bioassays were strongly correlated and generally exhibited similar tendency throughout the samples. Therein, embryos demonstrated higher sensitivity to elutriate exposure, compared to eggs. It was concluded that these tests could be used interchangeably for testing toxicity of marine sediments. Preferential use of any of the bioassays can be determined by the discriminatory capacity of the test or vulnerability consideration of the test subject to the surrounding conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13-22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments.

  5. MINIATURIZED SEDIMENT PROCEDURES FOR ASESSING TOXICITY USING MARINE AND FRESHWATER AMPHIPODS AND EMBRYO/LARVAL FISH

    EPA Science Inventory

    Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...

  6. Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods

    DTIC Science & Technology

    2008-04-01

    Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Research Program ERDC/EL TR-08-16 April 2008 Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity Methods Jeffery...potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of dredged material

  7. Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods

    DTIC Science & Technology

    2008-07-01

    Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Environmental Research Program ERDC/EL TR-08-16 July 2008 Revised Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity ...insight into the potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of

  8. TOXICITY TESTS FOR SEDIMENT QUALITY ASSESSMENTS

    EPA Science Inventory

    Toxic sediments have contributed to a wide-variety of environmental problems around the world. The observed effects include direct toxic effects to aquatic life, bio-magnification of toxicants in the food chain, and economic impacts. This chapter discusses the use of toxicity...

  9. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment.

    PubMed

    Diepens, Noël J; Koelmans, Albert A; Baveco, Hans; van den Brink, Paul J; van den Heuvel-Greve, Martine J; Brock, Theo C M

    A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.

  10. Optimization of Hyalella azteca IQ Toxicity Test{trademark} for prediction of 28-day sediment toxicity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, A.N.; Ezzard, C.L.; Douglas, W.S.

    1995-12-31

    The IQ Toxicity Test, which is a rapid screening toxicity test consisting of the observation of in-vivo inhibition of an enzymatic process using a fluorescent substrate, has proven successful for the determination of 24 and 48-hour EC50`s of D. magna, C. dubia, D. pulex and M. bahia. The application of this concept to utilize the freshwater amphipod Hyalella azteca may be an excellent way in which to reduce the standard 28-day chronic sediment toxicity test to possibly one hour`s time. This study incorporates an additive experimental design to explore the effects of and interactions between five specific variables: size ofmore » the amphipod, exposure time to the toxicant, concentration of substrate, exposure time to the substrate, and length of time starved prior to testing. The results of the IQ toxicity test were compared to those of a 28-day chronic sediment toxicity test. Preliminary data indicate that there is an optimal combination of these variables which results in a concise, reproducible toxicity test for use with Hyalella azteca, and would potentially be applicable to other freshwater amphipods in the future.« less

  11. Removal of organic contaminant toxicity from sediments - Early work toward development of a toxicity identification evaluation (TIE) method

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.

    1999-01-01

    Work was performed to determine the feasibility of selectively detoxifying organic contaminants in sediments. The results of this research will be used to aid in the development of a scheme for whole-sediment toxicity identification evaluations (TIEs). The context in which the method will be used inherently restricts the treatments to which the sediments can be subjected: Sediments cannot be significantly altered physically or chemically and the presence and bioavailabilities of other toxicants must not be changed. The methodological problem is daunting because of the requirement that the detoxification method be relatively fast and convenient together with the stipulation that only innocuous and minimally invasive treatments be used. Some of the experiments described here dealt with degrees of decontamination (i.e., detoxification as predicted from instrumental measurements) of spiked sediments rather than with degrees of detoxification as gauged by toxicity tests (e.g., 48-h toxicity tests with amphipods). Although the larger TIE scheme itself is mostly outside the scope of this paper, theoretical aspects of bioavailability and of the desorption of organic contaminants from sediments are discussed.

  12. Evaluation of the toxicity of sediments from the Anniston PCB Site to the mussel Lampsilis siliquoidea

    USGS Publications Warehouse

    Schein, Allison; Sinclair, Jesse A.; MacDonald, Donald D.; Ingersoll, Christopher G.; Kemble, Nile E.; Kunz, James L.

    2015-01-01

    The Anniston Polychlorinated Biphenyl (PCB) Site is located in the vicinity of the municipality of Anniston in Calhoun County, in the north-eastern portion of Alabama. Although there are a variety of land-use activities within the Choccolocco Creek watershed, environmental concerns in the area have focused mainly on releases of PCBs to aquatic and riparian habitats. PCBs were manufactured by Monsanto, Inc. at the Anniston facility from 1935 to 1971. The chemicals of potential concern (COPCs) in sediments at the Anniston PCB Site include: PCBs, mercury, metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorous pesticides, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). The purpose of this study was to evaluate the toxicity of PCB-contaminated sediments to the juvenile fatmucket mussel (Lampsilis siliquoidea) and to characterize relationships between sediment chemistry and the toxicity of sediment samples collected from the Anniston PCB Site using laboratory sediment testing. Samples were collected in August 2010 from OU-4 of the Anniston PCB Site, as well as from selected reference locations. A total of 32 samples were initially collected from six test sites and one reference site within the watershed. A total of 23 of these 32 samples were evaluated in 28-day whole-sediment toxicity tests conducted with juvenile mussels (L. siliquoidea). Physical and chemical characterization of whole sediment included grain size, total organic carbon (TOC), nutrients, PCBs, parent and alkylated PAHs, organochlorine pesticides, PCDD/PCDFs, total metals, simultaneously extracted metals (SEM), and acid volatile sulfide (AVS). Sediment collected from Snow Creek and Choccolocco Creek contained a variety of COPCs. Organic contaminants detected in sediment included PCBs, organochlorine pesticides, PCDDs/PCDFs, and PAHs. In general, the highest concentrations of PCBs were associated with the highest concentrations of PAHs, PCDDs/PCDFs, and organochlorine pesticides. Specifically, sediments 08, 18, and 19 exceeded probable effect concentration quotients (PEC-Qs) of 1.0 for all organic classes of contaminants. These three sediment samples also had high concentrations of mercury and lead, which were the only metals found at elevated concentrations (i.e., above the probable effect concentration [PEC]) in the samples collected. Many sediment samples were highly contaminated with mercury, based on comparisons to samples collected from reference locations. The whole-sediment laboratory toxicity tests conducted with L. siliquoidea met the test acceptability criteria (e.g., control survival was greater than or equal to 80%). Survival of mussels was high in most samples, with 4 of 23 samples (17%) classified as toxic based on the survival endpoint. Biomass and weight were more sensitive endpoints for the L. siliquoidea toxicity tests, with both endpoints classifying 52% of the samples as toxic. Samples 19 and 30 were most toxic to L. siliquoidea, as they were classified as toxic according to all four endpoints (survival, biomass, weight, and length). Mussels were less sensitive in toxicity tests conducted with sediments from the Anniston PCB Site than Hyalella azteca and Chironomus dilutus. Biomass of L. siliquoidea was less sensitive compared to biomass of H. azteca or biomass of larval C. dilutus. Based on the most sensitive endpoint for each species, 52% of the samples were toxic to L. siliquoidea, whereas 67% of sediments were toxic to H. azteca (based on reproduction) and 65% were toxic to C. dilutus (based on adult biomass). The low-risk toxicity threshold (TTLR) was higher for L. siliquoidea biomass (e.g., 20,400 µg/kg dry weight [DW]) compared to that for H. azteca reproduction (e.g., 499 µg/kg DW) or C. dilutus adult biomass (e.g., 1,140 µg/kg DW; MacDonald et al. 2014). While mussels such as L. sili

  13. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 4, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organisms quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13--22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicity testmore » bench sheets; Ammonia analysis request and results; and Meter calibration log sheets.« less

  14. Regional Models for Sediment Toxicity Assessment

    EPA Science Inventory

    This paper investigates the use of empirical models to predict the toxicity of sediment samples within a region to laboratory test organisms based on sediment chemistry. In earlier work, we used a large nationwide database of matching sediment chemistry and marine amphipod sedim...

  15. Identifying the causes of sediment-associated toxicity in urban waterways in South China: incorporating bioavailabillity-based measurements into whole-sediment toxicity identification evaluation.

    PubMed

    Yi, Xiaoyi; Li, Huizhen; Ma, Ping; You, Jing

    2015-08-01

    Sediments in urban waterways of Guangzhou, China, were contaminated by a variety of chemicals and showed prevalent toxicity to benthic organisms. A combination of whole-sediment toxicity identification evaluation (TIE) and bioavailability-based extraction was used to identify the causes of sediment toxicity. Of the 6 sediment samples collected, 4 caused 100% mortality to Chironomus dilutus in 10-d bioassays, and the potential toxicants were assessed using TIE in these sediments after dilution. The results of phase I characterization showed that organic contaminants were the principal contributors to the mortality of the midges in 2 sediments and that metals and organics jointly caused the mortality in the other 2 sediments. Ammonia played no role in the mortality for any samples. Conventional toxic unit analysis in phase II testing identified Cr, Cu, Ni, Pb, and Zn as the toxic metals, with cypermethrin, lambda-cyhalothrin, deltamethrin, and fipronils being the toxic organics. To improve the accuracy of identifying the toxicants, 4-step sequential extraction and Tenax extraction were conducted to analyze the bioavailability of the metals and organics, respectively. Bioavailable toxic unit analysis narrowed the list of toxic contributors, and the putative toxicants included 3 metals (Zn, Ni, and Pb) and 3 pesticides (cypermethrin, lambda-cyhalothrin, and fipronils). Metals contributed to the mortality in all sediments, but sediment dilution reduced the toxicity and confounded the characterization of toxicity contribution from metals in 2 sediments in phase I. Incorporating bioavailability-based measurements into whole-sediment TIE improved the accuracy of identifying the causative toxicants in urban waterways where multiple stressors occurred and contributed to sediment toxicity jointly. © 2015 SETAC.

  16. Evaluation of Reduced Sediment Volume Procedures for Acute Toxicity Tests Using the Estuarine Amphipod Leptocheirus plumulosus

    EPA Science Inventory

    The volume of sediment required to perform a sediment toxicity bioassay is a major driver of the overall cost associated with that bioassay. Sediment volume affects bioassay cost due to sediment collection, transportation, storage, and disposal costs as well as labor costs assoc...

  17. METHOD FOR TESTING THE AQUATIC TOXICITY OF SEDIMENT EXTRACTS FOR USE IN IDENTIFYING ORGANIC TOXICANTS IN SEDIMENTS

    EPA Science Inventory

    Biologically-directed fractionation techniques are a fundamental tool for identifying the cause of toxicity in environmental samples, but few are available for studying mixtures of organic chemicals in aquatic sediments. This paper describes a method for extracting organic chemic...

  18. Effects of temperature and oxygen concentration in sediment toxicity testing.

    PubMed

    Airas, Sari; Leppänen, Matti; Kukkonen, Jussi V K

    2008-07-01

    Joint effects of temperature and oxygen concentrations for the results of sediment toxicity tests were studied at 10 and 20 degrees C with 40% and 80% dissolved oxygen (DO) saturation. Growth, feeding rate, and reproduction of Lumbriculus variegatus (Oligochaete) and growth, emergence, and survival of Chironomus riparius (Diptera) were tested in a polluted and in a reference sediment. Both the feeding of L. variegatus and the emergence of C. riparius were significantly retarded at low temperature. Additionally, differences in the sex ratio of the emerged adults of C. riparius were observed. The oxygen concentration alone did not have any significant effect on the endpoints, but significant combined effects of polluted sediment and low DO were observed on the biomass of L. variegatus. The standard sediment toxicity tests might offer only limited data for risk assessment of contaminated sediments at sites where the actual conditions largely differ from the laboratory conditions.

  19. Towards more ecological relevance in sediment toxicity testing with fish: Evaluation of multiple bioassays with embryos of the benthic weatherfish (Misgurnus fossilis).

    PubMed

    Schreiber, Benjamin; Fischer, Jonas; Schiwy, Sabrina; Hollert, Henner; Schulz, Ralf

    2018-04-01

    The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish (Misgurnus fossilis) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish (Danio rerio) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96h-LC 50 ) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare concerns. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 2, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected August 14 from Poplar Creek Miles 6.0 and 4.3 was conducted from August 24--September 2, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original;more » Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  1. COMPARATIVE TOXICITY TESTING OF SELECTED BENTHIC AND EPIBENTHIC ORGANISMS FOR THE DEVELOPMENT OF SEDIMENT QUALITY TEST PROTOCOLS

    EPA Science Inventory

    Sediment contamination has resulted in the need to develop an appropriate suite of toxicity tests to assess ecotoxicological impacts on estuarine ecosystems. Existing Environmental Protection Agency (EPA) protocols recommend a number of test organisms, including amphipods, polych...

  2. SHORT-EXPOSURE, SUBLETHAL, SEDIMENT TOXICITY TEST USING THE MARINE BIVALVE MULINIA LATERALIS: STATISTICAL DESIGN AND COMPARATIVE SENSITIVITY

    EPA Science Inventory

    Over the last 10 years a great deal of research effort has concentrated on determining the effects of contaminated sediments on aquatic organisms. or marine systems, this effort has emphasized acute sediment toxicity tests using amphipods, although a variety of other end points a...

  3. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    PubMed

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  4. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella.

    PubMed

    Rosenkrantz, Rikke T; Pollino, Carmel A; Nugegoda, Dayanthi; Baun, Anders

    2008-12-01

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events.

  5. Toxicity and photoactivation of PAH mixtures in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.; Ferraro, S.; Lamberson, J.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10more » d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.« less

  6. Toxicity evaluation with the microtox® test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation

    USGS Publications Warehouse

    Lee, Kenneth; Wohlgeschaffen, Gary; Tremblay, Gilles H.; Johnson, B. Thomas; Sergy, Gary A.; Prince, Roger C.; Guenette, Chantal C.; Owens, Edward H.

    2003-01-01

    Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery––no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56′ N, 16°45′ E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.

  7. Bioavailability Assessment of a Contaminated Field Sediemtn from Patrick Bayou, Texas: TIE and Equilibrium Partitioning

    EPA Science Inventory

    Contaminated sediments are commonly found in urbanized harbors. Remediation is often necessary and diagnosing the cause of sediment toxicity becomes imperative. In the present study, sediments from Patrick Bayou, Texas were subjected to initial toxicity testing. All sediments ...

  8. Anodonta imbecillis QA Test 2, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Atiodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected August 14 from Poplar Creek Miles 6.0 and 4.3 was conducted from August 24-September 2, 1993. Results from this test showed no toxicity (survival effects) to fresh--water mussels during a 9-day exposure to the sediments.

  9. Anodonta imbecillis QA Test 3, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected May 5 from Poplar Creek Miles 6.0 and 2.9 was conducted from May 10-19, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments.

  10. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments

    USGS Publications Warehouse

    Vangheluwe, Marnix L. U.; Verdonck, Frederik A. M.; Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Schlekat, Christan E.; Rogevich Garman, Emily

    2013-01-01

    Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.), oligochaetes (Tubifex tubifex, Lumbriculus variegatus), mussels (Lampsilis siliquoidea), and midges (Chironomus dilutus, Chironomus riparius). In the second phase, tests were conducted with the most sensitive species in 6 additional spiked sediments, thus generating chronic toxicity data for a total of 8 nickel-spiked sediments. A species sensitivity distribution was elaborated based on 10% effective concentrations yielding a threshold value of 94 mg Ni/kg dry weight under reasonable worst-case conditions. Data from all sediments were used to model predictive bioavailability relationships between chronic toxicity thresholds (20% effective concentrations) and AVS and Fe, and these models were used to derive site-specific sediment-quality criteria. Normalization of toxicity values reduced the intersediment variability in toxicity values significantly for the amphipod species Hyalella azteca and G. pseudolimnaeus, but these relationships were less clearly defined for the mayfly Hexagenia sp. Application of the models to prevailing local conditions resulted in threshold values ranging from 126 mg to 281 mg Ni/kg dry weight, based on the AVS model, and 143 mg to 265 mg Ni/kg dry weight, based on the Fe model

  11. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.

    2004-01-01

    We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.

  12. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    USGS Publications Warehouse

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels.

  13. Evaluation of dredged material proposed for ocean disposal from Arthur Kill Project Area, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of Arthur Kill Federal Project was to reperform toxicity testing on proposed dredged material following current ammonia reduction protocols. Arthur Kill was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were recollected from the Arthur Kill Project areas in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYDmore » and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Arthur Kill project areas consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Arthur Kill project area. Three composite sediments, representing each reach of the area proposed for dredging, was used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all Arthur Kill composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. M. bahia did not show statistically significant acute toxicity or a greater than 10% increase in mortality over reference sediment in static tests. 5 refs., 2 figs., 2 tabs.« less

  14. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  15. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  16. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...

    EPA Pesticide Factsheets

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc

  17. Organic carbon content effects on bioavailability of pyrethroid insecticides and validation of solid phase extraction with Poly (2,6-diphenyl-p-phenylene oxide) Polymer by Daphnia magna toxicity tests.

    PubMed

    Feo, M L; Corcellas, C; Barata, C; Ginebreda, A; Eljarrat, E; Barceló, D

    2013-01-01

    Solid phase extraction with Poly (2,6-diphenyl-p-phenylene oxide) Polymer (Tenax) was used for determining the bioavailability of eleven pyrethroids in field collected sediments with different organic carbon content (OC). The bioavailable fraction of pyrethroids decreased with increasing OC in sediments; the percentages of desorption ranged from 10 to 20% for sediment with higher OC content (5.8%) and 15-40% for that with lower OC (2%). Generally pyrethroids showed low bioavailability and cyfluthrin resulted to be the most bioavailable among the studied pyrethroids. Acute toxicity tests with Daphnia magna were carried out on sediment spiked with three selected pyrethroids (λ-cyhalothrin, cypermethrin and deltamethrin) and served to validate the efficiency of Tenax as a method for assessing the bioavailability of pyrethroids. Toxicity test demonstrated that Tenax was able to remove the toxic bio-available fraction of pyrethroids in sediment. Extracts from Tenax beads after the desorption experiments and spiked sediment before desorption had an equivalent toxicity (LC50) to D. magna neonates at 48 and 72 h of exposure. These results indicate that Tenax beds can be used to predict bio-available and toxic fractions of pyrethroids sorbed to sediments to aquatic organisms like D. magna. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given the lack of association between Microtox results and discharge from Terra Nova, coupled with the confounding effects of other variables, the usefulness of Microtox toxicity tests within the context of environmental monitoring for the Terra Nova and, potentially, other offshore oil operations needs to be questioned. The amphipod toxicity tests showed that sediments in the vicinity of discharges of synthetic-based drilling mud cuttings are rarely toxic.

  19. TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS

    EPA Science Inventory

    We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...

  20. Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides.

    PubMed

    Weston, Donald P; Ding, Yuping; Zhang, Minghua; Lydy, Michael J

    2013-01-01

    Few currently used agricultural pesticides are routinely monitored for in the environment. Even if concentrations are known, sediment LC(50) values are often lacking for common sediment toxicity testing species. To help fill this data gap, sediments in California's Central Valley were tested for nine hydrophobic pesticides seldom analyzed: abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin. Most were detected, but rarely at concentrations acutely toxic to Hyalella azteca or Chironomus dilutus. Only abamectin, fenpropathrin, and methyl parathion were found at concentrations of potential concern, and only in one or two samples. One-quarter of over 100 samples from agriculture-affected waterways exhibited toxicity, and in three-fourths of the toxic samples, pyrethroids exceeded concentrations expected to cause toxicity. The pyrethroid Bi-fen-thrin in particular, as well as lambda-cyhalothrin, cypermethrin, esfenvalerate, permethrin, and the organophosphate chlorpyrifos, were primarily responsible for the observed toxicity, rather than the more novel analytes, despite the fact that much of the sampling targeted areas of greatest use of the novel pesticides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  2. Evaluation of the Reference Envelope Approach for Assessing Toxicity in Contaminated Surficial Urban Freshwater Sediments

    EPA Science Inventory

    The reference envelope (RE) has been proposed as an alternative approach to assess sediment toxicity to overcome limitations imposed by the use of control sediments including differences in non-contaminant characteristics and low statistical power when many test sediments are com...

  3. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, Russell L.; Carr, R. Scott

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciatazoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciatazoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  4. Baseline ecological risk assessment of the Calcasieu Estuary, Louisiana: 2. An evaluation of the predictive ability of effects-based sediment quality guidelines

    USGS Publications Warehouse

    MacDonald, Donald D.; Ingersoll, Christopher G.; Smorong, Dawn E.; Sinclair, Jesse A.; Lindskoog, Rebekka; Wang, Ning; Severn, Corrine; Gouguet, Ron; Meyer, John; Field, Jay

    2011-01-01

    Three sets of effects-based sediment-quality guidelines (SQGs) were evaluated to support the selection of sediment-quality benchmarks for assessing risks to benthic invertebrates in the Calcasieu Estuary, Louisiana. These SQGs included probable effect concentrations (PECs), effects range median values (ERMs), and logistic regression model (LRMs)-based T50 values. The results of this investigation indicate that all three sets of SQGs tend to underestimate sediment toxicity in the Calcasieu Estuary (i.e., relative to the national data sets), as evaluated using the results of 10-day toxicity tests with the amphipod, Hyalella azteca, or Ampelisca abdita, and 28-day whole-sediment toxicity tests with the H. azteca. These results emphasize the importance of deriving site-specific toxicity thresholds for assessing risks to benthic invertebrates.

  5. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  6. Estuarine sediment toxicity tests on diatoms: Sensitivity comparison for three species

    NASA Astrophysics Data System (ADS)

    Moreno-Garrido, Ignacio; Lubián, Luis M.; Jiménez, Begoña; Soares, Amadeu M. V. M.; Blasco, Julián

    2007-01-01

    Experimental populations of three marine and estuarine diatoms were exposed to sediments with different levels of pollutants, collected from the Aveiro Lagoon (NW of Portugal). The species selected were Cylindrotheca closterium, Phaeodactylum tricornutum and Navicula sp. Previous experiments were designed to determine the influence of the sediment particle size distribution on growth of the species assayed. Percentage of silt-sized sediment affect to growth of the selected species in the experimental conditions: the higher percentage of silt-sized sediment, the lower growth. In any case, percentages of silt-sized sediment less than 10% did not affect growth. In general, C. closterium seems to be slightly more sensitive to the selected sediments than the other two species. Two groups of sediment samples were determined as a function of the general response of the exposed microalgal populations: three of the six samples used were more toxic than the other three. Chemical analysis of the samples was carried out in order to determine the specific cause of differences in toxicity. After a statistical analysis, concentrations of Sn, Zn, Hg, Cu and Cr (among all physico-chemical analyzed parameters), in order of importance, were the most important factors that divided the two groups of samples (more and less toxic samples). Benthic diatoms seem to be sensitive organisms in sediment toxicity tests. Toxicity data from bioassays involving microphytobentos should be taken into account when environmental risks are calculated.

  7. Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy

    USGS Publications Warehouse

    Ross, P.E.; Burton, G.A.; Crecelius, E.A.; Filkins, J. C.; Giesy, J.P.; Ingersoll, C.G.; Landrum, P.F.; Mac, M.J.; Murphy, T.J.; Rathbun, J. E.; Smith, V. E.; Tatem, H. E.; Taylor, R.W.

    1992-01-01

    In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.

  8. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream water; (3) to develop site-specific thresholds for toxicity of Zn and Cu in stream water; and (4) to develop models of the contributions of Cu and Zn to toxicity of stream water, which may be used to characterize toxicity before and after planned remediation efforts. We evaluated the toxicity of metal-contaminated sediments by conducting sediment toxicity tests with two species of benthic invertebrates, the midge, Chironomus tentans. and the amphipod, Hyalella azteca. Laboratory toxicity tests with both taxa, exposed to fine stream-bed sediments collected in September 1997, showed some evidence of sediment toxicity, as survival of midge larvae in sediments from Cement Creek (C48) and lower Mineral Creek (M34), and growth of amphipods in sediments from these sites and three Animas River sites (A68, Animas at Silverton; A72, Animas below Silverton, and A73, Animas at Elk Park) were significantly reduced compared to a reference site, South Mineral Creek (SMC) . Amphipods were also exposed to site water and fine stream-bed sediment, separately and in combination, during the late summer low flow period (August-September) of 1998. In these studies, stream water, with no sediment present, from all five sites tested (same sites as above, except C48) caused 90% to 100% mortality of amphipods. In contrast, significant reductions in survival of amphipods occurred at two sites (A72 and SMC) in exposures with field-collected sediment plus stream water, and at only one site (A72) in exposures with sediments and clean overlying water. Concentrations of Zn, Pb, Cu, and Cd were high in both sediment and pore water (interstitial water) from most sites tested, but greatest sediment toxicity was apparently associated with greater concentrations of Fe and/or Al in sediments. These results suggest that fine stream-bed sediments of the more contaminated stream reaches of the upper Animas River watershed are toxic to benthic invertebrates, but that these impacts are less serious than tox

  9. Evaluation of dredged material proposed for ocean disposal from Hackensack River Project Area, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by themore » USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.« less

  10. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  11. Sediment pore-water toxicity test results and preliminary toxicity identification of post-landfall pore-water samples collected following the Deepwater Horizon oil release, Gulf of Mexico, 2010

    USGS Publications Warehouse

    Biedenbach, James M.; Carr, Robert S.

    2011-01-01

    Pore water from coastal beach and marsh sediments from the northern Gulf of Mexico, pre- and post-landfall of the Deepwater Horizon oil release, were collected and evaluated for toxicity with the sea urchin fertilization and embryological development assays. There were 17 pre-landfall samples and 49 post-landfall samples tested using both assays. Toxicity was determined in four pre-landfall sites and in seven post-landfall sites in one or both assays as compared to a known reference sediment pore-water sample collected in Aransas Bay, Texas. Further analysis and testing of five of the post-landfall toxic samples utilizing Toxicity Identification Evaluation techniques indicated that ammonia, and to a lesser extent metals, contributed to most, if not all, of the observed toxicity in four of the five samples. Results of one sample (MS-39) indicated evidence that ammonia, metals, and non-ionic organics were contributing to the observed toxicity.

  12. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  13. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; Ingersoll, Christopher G; Ivey, Chris D; Kunz, James L; Kemble, Nile E; Schlekat, Christian E; Garman, Emily Rogevich

    2013-11-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni. © 2013 SETAC.

  14. STORAGE DURATION AND TEMPERATURE AND THE ACUTE TOXICITIES OF ESTUARINE SEDIMENTS TO MYSIDOPSIS BAHIA AND LEPTOCHEIRUS PLUMULOSUS.

    EPA Science Inventory

    Many statutory needs for sediment quality assessment exist (U.S. EPA 1996). A variety of sediment toxicity tests have been used to support the development of sediment quality guidelines and to determine the benthic impacts of dredging activities and point and non-point source tox...

  15. STORAGE DURATION AND TEMPERATURE AND THE ACUTE TOXICITIES OF ESTUARINE SEDIMENTS TO MYSIDOPSIS BAHIA AND LEPTOCHEIRUS PLUMULOSUS

    EPA Science Inventory

    Many statutory needs for sediment quality assessment exist (U.S. EPA 1996). A variety of sediment toxicity tests have been used to support the development of sediment quality guidelines and to determine the benthic impacts of dredging activities and point and non-point source tox...

  16. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Ingersoll, C.G.

    2003-01-01

    We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of both Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 ??g Cd/g and 493 ??g Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.

  17. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; May, Thomas W; Ingersoll, Christopher G

    2003-04-01

    We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of hoth Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 microg Cd/g and 493 microg Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.

  18. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jop, K.; Putt, A.; Shepherd, S.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C.more » dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.« less

  19. Refining methods for conducting long-term sediment and water toxicity tests with Chironomus dilutus: Formation of a midge chronic testing work group

    EPA Science Inventory

    Standard methods have been established by USEPA, ASTM International, Environment Canada and Organization for Economic Cooperation and Development for conducting sediment toxicity tests with various species of midges including Chironomus dilutus. Short-term 10-day exposures are ty...

  20. Deriving Sediment Interstitial Water Remediation Goals ...

    EPA Pesticide Factsheets

    This document contains a methodology for developing interstitial water remediation goals (IWRGs) for nonionic organic pollutants (toxicants) in sediments for the protection of benthic organisms. The document provides the basis for using the final chronic values (FCVs) from EPA’s aquatic water quality criteria (AWQC) for the protection of aquatic life to set the IWRGs for toxicants in sediments. Concentrations of the toxicants in the sediment interstitial water are measured using passive sampling. This document also discusses how to evaluate the consistency between passive sampling measurements and sediment toxicity test results. When these data are consistent, one can be reasonably assured that the causes of toxicity to benthic organisms in the sediment have been correctly identified and that the developed IWRGs for the toxicants will be protective of the benthic organisms at the site. The consistency evaluation is an important step in developing defensible IWRGs. To assist in developing defensible IWRGs.

  1. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  2. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  3. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test.

    PubMed

    Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada

    2014-01-01

    Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.

  4. Studying toxicity

    USGS Publications Warehouse

    Elkus, A.; LeBlanc, L.; Kim, C.; Van Beneden, R.; Mayer, G.

    2006-01-01

    With funding from the George Mitchell Center for the Environment at the University of Maine, a team of scientists used a simple laboratory-based sediment resuspension design, and two well-established aquatic toxicology models, fathead minnows (Pimephales promelas) and zebrafish (Danio rerio), to evaluate if resuspension of Penobscot river sediment significantly elevates the toxicity of river water and to provide preliminary information on the types of chemicals likely to desorb during resuspension. The group collected sediments from two sites with known chemical contamination downstream of the Great Works and Veazie dams. The sediments were examined to determine the dynamics of PAH desorption and degradation under different resuspension frequencies. The scientists used clarified water from resuspension experiments for toxicity tests with the water-flea Ceriodaphnia dubia, and other aquatic test organisms to infer toxicity from sediments from northern California rivers. Data from the study will help ascertain whether metals and/or xenoestrogens are present in the desorption water and give insight into possible avenues of sediment remediation.

  5. Use of sublethal endpoints in sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Chris G.; Brunson, Eric L.; Dwyer, F. James; Hardesty, Douglas K.; Kemble, Nile E.

    1998-01-01

    Short-term sediment toxicity tests that only measure effects on survival can be used to identify high levels of contamination but may not be able to identify marginally contaminated sediments. The objective of the present study was to develop a method for determining the potential sublethal effects of contaminants associated with sediment on the amphipod Hyalella azteca (e.g., reproduction). Exposures to sediment were started with 7- to 8-d-old amphipods. On day 28, amphipods were isolated from the sediment and placed in water-only chambers where reproduction was measured on day 35 and 42. Typically, amphipods were first in amplexus at about day 21 to 28 with release of the first brood between day 28 to 42. Endpoints measured included survival (day 28, 35, and 42), growth (as length and weight on day 28 and 42), and reproduction (number of young/female produced from day 28 to 42). This method was used to evaluate a formulated sediment and field-collected sediments with low to moderate concentrations of contaminants. Survival of amphipods in these sediments was typically >85% after the 28-d sediment exposures and the 14-d holding period in water to measure reproduction. Reproduction was more variable than growth; hence, more replicates might be needed to establish statistical differences among treatments. Previous studies have demonstrated that growth of H. azteca in sediment tests often provides unique information that can be used to discriminate toxic effects of exposure to contaminants. Either length or weight can be measured in sediment tests with H. azteca. However, additional statistical options are available if length is measured on individual amphipods, such as nested analysis of variance that can account for variance in length within replicates. Ongoing water-only studies testing select contaminants will provide additional data on the relative sensitivity and variability of sublethal endpoints in toxicity tests with H. azteca.

  6. Toxicity of bed sediments from the Niagara River Area of Concern and tributaries, New York, to Chironomus dilutus and Hyalella azteca, 2014-15

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Duffy, Brian T.

    2016-09-20

    The Niagara River was designated as an Area of Concern in 1987 on both the United States and Canadian sides of the international boundary line because past industrial discharges and hazardous waste sites had caused extensive degradation of aquatic habitats. The degradation of the “benthos”, or the benthic macroinvertebrate community, was identified as one of seven beneficial use impairments caused by contaminated bed sediments. The U.S. Geological Survey and the New York State Department of Environmental Conservation, in cooperation with the U.S. Environmental Protection Agency, conducted a study in 2014 and 2015 to gather more extensive data on (a) the toxicity of bed sediments and (b) the status of macroinvertebrate communities on the main stem and tributaries of the Niagara River. This report addresses the first component of that study (toxicity of bed sediments), and summarizes results from laboratory toxicity tests that compare the survival and growth of two macroinvertebrate species between bed sediments from study sites and laboratory controls. Sediment toxicity was negligible at most sites, however poor performance of one or both test species in bed sediments from several tributary sites suggests that the quality of sediments may be adversely affecting benthic macroinvertebrate communities in some tributaries to the Niagara River.

  7. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    USGS Publications Warehouse

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Pyrethroids are hydrophobic compounds that have been observed to accumulate in sediments (Laskowski 2002). Toxicity of pyrethroids in field-collected sediment from small urban streams (Weston et al. 2005; Holmes et al. 2008; Ding et al. 2010; Domagalski et al. 2010) or with pyrethroids spiked into sediment (Amweg et al. 2006; Hintzen et al. 2009) have been evaluated primarily in 10 day lethality tests conducted with the amphipod Hyalella azteca. However, the sublethal effects in long-term exposures to pyrethroids in sediment have not been evaluated, and the distribution of pyrethroids sediments has not typically been evaluated in wadeable streams (Gilliom et al. 2006). This article is the second in a series that describe the results of a study of the distribution and toxicity of pyrethroids and other co-occurring trace elements and organic contaminants (PCBs, PAHs, OC pesticides) in stream sediments from 7 metropolitan areas across the United States (Moran et al. 2012). The study evaluated 98 sediment samples collected from streams ranging from undeveloped to highly urban and differs from previous studies by sampling larger wadeable streams and avoiding point sources (such as storm drains) and other inflows (Gilliom et al. 2006). Part 1 of the series characterizes sediment contaminants in relation to urbanization and other factors in the 7 metropolitan study areas (Nowell et al. 2012). Part 2 (this article) evaluates relationships between sediment chemistry and sediment toxicity in 28 day whole-sediment exposures conducted with the amphipod H. azteca and in 10 day whole-sediment exposure conducted with the midge Chironomus dilutus (USEPA United States Environmental Protection Agency 2000; ASTM American Society for Testing and Materials International 2012). Toxicity end points evaluated in the amphipod and midge exposures included the effects of these field-collected sediments on survival, weight, or biomass of the test organisms.

  8. What Food and Feeding Rates are Optimum for the Chironomus dilutus Sediment Toxicity Test Method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the toxicity of both contaminated sediments and individual chemicals. Among the standard procedures for benthic macroinvertebrates are 10-d, 20-d, and life cycle exposures using the midge, Chironomus ...

  9. Applicability of ambient toxicity testing to national or regional water-quality assessment

    USGS Publications Warehouse

    Elder, J.F.

    1989-01-01

    Comprehensive assessment of the quality of natural waters requires a multifaceted approach. Based on experimentation designed to monitor responses of organisms to environmental stresses, toxicity testing may have diverse purposes in water quality assessments. These purposes may include identification that warrant further study because of poor water quality or unusual ecological features, verification of other types of monitoring, or assessment of contaminant effects on aquatic communities. A wide variety of toxicity test methods have been developed to fulfill the needs of diverse applications. The methods differ primarily in the full selections made relative to four characteristics: (1) test species, (2) endpoints (acute or chronic), (3) test enclosure type, and (4) test substance (toxicant) that functions as the environmental stress. Toxicity test approachs vary in their capacity to meet the needs of large-scale assessments of existing water quality. Ambient testing is more likely to meet these needs than are the procedures that call for exposure of the test organisms to known concentrations of a single toxicant. However, meaningful interpretation of ambient test results depend on the existence of accompanying chemical analysis of the ambient media. The ambient test substance may be water or sediments. Sediment tests have had limited application, but they are useful because of the fact that most toxicants tend to accumulate in sediments, and many test species either inhabit the sediments or are in frequent contact with them. Biochemical testing methods, which have been developing rapidly in recent years, are likely to be among the most useful procedures for large-scale water quality assessments. They are relatively rapid and simple, and more importantly, they focus on biochemical changes that are the initial responses of virtually all organisms to environmental stimuli. Most species are sensitive to relatively few toxicants and their sensitivities vary as conditions change. One of the most informative approaches for toxicity testing is to combine biochemical tests with other test methods in a ' battery or tests ' that is diversified enough to characterize different types of toxicants and different trophic levels. (Lantz-PTT)

  10. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays.

    PubMed

    Wang, F; Leung, A O W; Wu, S C; Yang, M S; Wong, M H

    2009-07-01

    A multi-trophic, multi-exposure phase assessment approach was applied to characterize the toxicity of sediments collected from two rivers in Guiyu, China, an e-waste recycling centre. Elutriate toxicity tests (bacterium Vibrio fischeri and microalga Selenastrum capricornutum) and whole sediment toxicity test (crustacean Heterocypris incongruens) showed that most sediments exhibited acute toxicity, due to elevated heavy metals and PAHs levels, and low pH caused by uncontrolled acid discharge. The survival rates of crustaceans were negatively (p < 0.05) correlated with total PAHs in sediments (411-1755 mg kg(-1)); EC50s of V. fischeri on the elutriates were significantly correlated with elutriate pH (p < 0.01). Significant (p < 0.05) correlations between the induction of hepatic metallothionein in tilapia (Oreochromis mossambicus) and metal concentrations (Cu, Zn, Pb) in sediments were also observed, when fish were fed with diets containing sediment. The results showed that uncontrolled e-waste recycling activities may bring adverse effects to local aquatic ecosystem.

  11. USEFULNESS OF CURRENT SEDIMENT TOXICITY TESTS TO INDICATE CONTAMINATION IN GULF OF MEXICO ESTUARIES.

    EPA Science Inventory

    Sediment toxicity evaluations were conducted during a three-year period in several Gulf of Mexico near-coastal areas using a variety of laboratory and field methods. The sediments were collected adjacent to Superfund sites, urban runoff discharges, treated municipal and industria...

  12. Lethal and sublethal effects of ammonia to juvenile Lampsilis mussels (Unionidae) in sediment and water-only exposures

    USGS Publications Warehouse

    Newton, T.J.; Bartsch, M.R.

    2007-01-01

    We compared the sensitivity of two juvenile unionid mussels (Lampsilis cardium and Lampsilis higginsii) to ammonia in 96-h water-only and sediment tests by use of mortality and growth measurements. Twenty mussels were placed in chambers buried 2.5 cm into reference sediments to approximate pore-water exposure (sediment tests) or elevated above the bottom of the experimental units (water-only tests). In the sediment tests, a pH gradient existed between the overlying water (mean 8.0), sediment-water interface (mean 7.7), and 2.5 cm depth (mean 7.4). We assumed that mussels were exposed to ammonia in pore water and report effect concentrations in pore water, but if they were exposed to the higher pH water, more of the ammonia would be in the toxic un-ionized (NH 3) form. The only differences in toxicity and growth between mussel species occurred in some of the water-only tests. In sediment tests, median lethal concentrations (LC50s) ranged from 124 to 125 ??g NH3-N/L. In water-only tests, LC50s ranged from 157 to 372 ??g NH3-N/L. In sediment tests, median effective concentrations (EC50s based on growth) ranged from 30 to 32 ??g NH3-N/L. Juvenile mussels in the water-only tests grew poorly and did not exhibit a dose-response relation. These data demonstrate that growth is a sensitive and valuable endpoint for studies on ammonia toxicity with juvenile freshwater mussels and that growth should be measured via sediment tests. ?? 2007 SETAC.

  13. Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.

    PubMed

    Vidal, Dora Elva; Horne, Alex John

    2003-09-01

    Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.

  14. Development of a Complete Life Cycle Sediment Toxicity Test for the Sheepshead Minnow (Cyprinodon variegatus)

    EPA Science Inventory

    Existing sediment toxicity test methods are limited to acute and chronic exposure of invertebrates and acute exposure of vertebrates, with limited guidance on the chronic exposure of vertebrates, specifically fishes. A series of life stage-specific studies were conducted to dete...

  15. Effects of triclosan on marine benthic and epibenthic organisms.

    PubMed

    Perron, Monique M; Ho, Kay T; Cantwell, Mark G; Burgess, Robert M; Pelletier, Marguerite C

    2012-08-01

    Triclosan is an antimicrobial compound that has been widely used in consumer products such as toothpaste, deodorant, and shampoo. Because of its widespread use, triclosan has been detected in various environmental media, including wastewater, sewage sludge, surface waters, and sediments. Triclosan is acutely toxic to numerous aquatic organisms, but very few studies have been performed on estuarine and marine benthic organisms. For whole sediment toxicity tests, the sediment-dwelling estuarine amphipod, Ampelisca abdita, and the epibenthic mysid shrimp, Americamysis bahia, are commonly used organisms. In the present study, median lethal concentration values (LC50) were obtained for both of these organisms using water-only and whole sediment exposures. Acute 96-h water-only toxicity tests resulted in LC50 values of 73.4 and 74.3 µg/L for the amphipod and mysid, respectively. For the 7-d whole sediment toxicity test, LC50 values were 303 and 257 mg/kg (dry wt) for the amphipod and mysid, respectively. Using equilibrium partitioning theory, these whole sediment values are equivalent to interstitial water LC50 values of 230 and 190 µg/L for the amphipod and mysid, respectively, which are within a threefold difference of the observed 96-h LC50 water-only values. Triclosan was found to accumulate in polychaete tissue in a 28-d bioaccumulation study with a biota-sediment accumulation factor of 0.23 kg organic carbon/kg lipid. These data provide some of the first toxicity data for triclosan with marine benthic and epibenthic species while also indicating a need to better understand the effects of other forms of sediment carbon, triclosan ionization, and organism metabolism of triclosan on the chemical's behavior and toxicity in the aquatic environment. Copyright © 2012 SETAC.

  16. SEDIMENT TOXICITY IDENTIFICATION AND EVALUATIONS: NEW TEST METHODS. WHAT'S BEEN DONE? WHERE ARE WE GOING?

    EPA Science Inventory

    Toxic sediments pose a risk to aquatic life, human health and wildlife throughout the world. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are responsible for toxicological and ecological effects. The ability to identify the class or specifi...

  17. Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.

    1996-01-01

    Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.

  18. Sediment toxicity identification evaluation (TIE) studies at marine sites suspected of ordnance contamination

    USGS Publications Warehouse

    Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.

    2001-01-01

    A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.

  19. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less

  20. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.; Presley, B.J.; Biedenbach, J.M.; Robertson, L.; Boothe, P.; Kilada, R.; Wade, T.; Montagna, P.

    1996-01-01

    As part of a multidisciplinary program to assess the potential long-term impacts of offshore oil and gas exploration and production activities in the Gulf of Mexico, sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore platforms. Based on data from sea urchin fertilization and embryological development assays, toxicity was observed near four of the five platforms sampled; the majority of the toxic samples were collected within 150 m of a platform. There was excellent agreement among the results of porewater tests with three different species (sea urchin embryological development, polychaete reproduction, and copepod nauplii survival). The sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations, and good agreement was observed between predicted and observed toxicity. Porewater metal concentrations compared with EC50, LOEC, and NOEC values generated for water-only exposures indicated that the porewater concentrations for several metals were high enough to account for the observed toxicity. Results of these studies utilizing highly sensitive toxicity tests suggest that the contaminant-induced impacts from offshore platforms are limited to a localized area in the immediate vicinity of the platforms. 

  1. A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems.

    PubMed

    Haegerbaeumer, Arne; Höss, Sebastian; Ristau, Kai; Claus, Evelyn; Möhlenkamp, Christel; Heininger, Peter; Traunspurger, Walter

    2016-12-01

    Soft sediments are often hotspots of chemical contamination, and a thorough ecotoxicological assessment of this habitat can help to identify the causes of stress and to improve the health of the respective ecosystems. As an important component of the ecologically relevant meiobenthic fauna, nematodes can be used for sediment assessments, with various assay tools ranging from single-species toxicity tests to field studies. In the present study, microcosms containing sediment were used to investigate direct and indirect effects of zinc on natural nematode assemblages, and acute community toxicity tests considering only direct toxicity were conducted. The responses of the various freshwater nematode species in both approaches were compared with those of Caenorhabditis elegans, determined in standardized tests (ISO 10872). At a median lethal concentration (LC50) of 20 mg Zn/L, C. elegans represented the median susceptibility of 15 examined nematode species examined in the acute community toxicity tests. In the microcosms, Zn affected the nematodes dose-dependently, with changes in species composition first detected at 13 mg Zn/kg to 19 mg Zn/kg sediment dry weight. The observed species sensitivities in the microcosms corresponded better to field observations than to the results of the acute community toxicity tests. Environ Toxicol Chem 2016;35:2987-2997. © 2016 SETAC. © 2016 SETAC.

  2. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  3. Bioaccumulation of toxic substances associated with dredging and dredged material disposal: a literature review

    USGS Publications Warehouse

    Seelye, James G.; Mac, Michael J.

    1984-01-01

    A literature review of sediment bioassessment was conducted as the first step in the development of a more standardized and ecologically sound test procedure for evaluating sediment quality. Based on the review, the authors concluded that 1) a standardized laboratory bioassessment test should consist of flowthrough exposure of at least 10 days duration using more than one aquatic organism including at least an infaunal benthic invertebrate and a fish species. 2) Before adoption of a laboratory sediment bioassessment procedure, the laboratory results should be evaluated by comparison with field conditions. 3) Most current sediment bioassessment regulatory tests measure acute toxicity or bioaccumulation. Development of tests to evaluate chronic, sublethal effects is needed.

  4. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics of sediment, and uncertainty in TEB values. Additional evaluations of benchmarks in relation to sediment chemistry and toxicity are ongoing.

  5. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were alsomore » analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.« less

  6. Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) -- A method for testing liquid medium and whole-sediment samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traunspurger, W.; Haitzer, M.; Hoess, S.

    1997-02-01

    The authors present a method using the free-living nematode Caenorhabditis elegans to assess toxicity in liquid medium and whole-sediment setups. Test duration is 72 h; endpoints are body length, number of eggs inside worms, percentage of gravid worms, and number of offspring per worm. The effect of CdCl{sub 2} on C. elegans in liquid-phase exposures is described as an example. Results from a field study with cadmium polluted sediments from the River Elbe (Germany) suggest that nematodes may be useful organisms in assessing toxicity of sediments in the whole phase.

  7. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    PubMed

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (p<0.0001) between the observed toxicities and the total risk quotients of the heavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  8. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  9. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 3, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected May 5 from Poplar Creek Miles 6.0 and 2.9 was conducted from May 10--19, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicitymore » test bench sheets; Ammonia analysis request and results; Meter calibration log sheets; and Training documentation forms.« less

  10. Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas).

    PubMed

    Geffard, O; Budzinski, H; Augagneur, S; Seaman, M N; His, E

    2001-07-01

    Gametes (sperm) and fertilized eggs (embryos) of the Mediterranean sea urchin, Paracentrotus lividus, and the Japanese oyster, Crassostrea gigas, were used to investigate the toxicity of two marine sediments, one polluted by polycyclic aromatic hydrocarbons (PAH) and the other by heavy metals. The sediment samples were freeze-dried for storage, and three different treatments were used for analysis: whole sediment, unfiltered elutriate, and filtered elutriate. The two sediments were toxic to sea urchin spermatozoa but not to oyster spermatozoa, and embryotoxicity was almost always the more sensitive endpoint for toxicity assessment. As a rule, whole sediment was more toxic than the elutriates by nearly two orders of magnitude. With respect to embryotoxicity, the whole sediments and the elutriates of the PAH-contaminated sediment were more toxic to oyster embryos, whereas the elutriates of the sediment polluted by heavy metals had stronger effects on sea urchin embryos. The results confirm that bioassays with Japanese oyster embryos provide a more sensitive appraisal of toxicity in the marine environment than bioassays with other developmental stages. As a whole, Mediterranean sea urchins and Japanese oysters were similar in overall sensitivity and are therefore both equally suited as bioassay organisms, but tests with oysters are more reproducible because of the better performance of the controls.

  11. Comparison of an Ampelisca abdita growth rate test with other standard amphipod sediment toxicity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, K.; Weston, D.P.

    1995-12-31

    Amphipod crustaceans are often used to measure the toxicity of bulk sediments. Acute lethal bioassays are commonly employed, but this study investigated the potential for using a chronic growth bioassay with Ampelisca abdita. A potential advantage of this method is that the growth rate could be a more sensitive measure of contamination than mortality. Growth rates for A. abdita in sediments spiked with cadmium and crude oil were compared to mortality rates in A. abdita, Eohaustorius estuaries, and Rhepoxynius abronius in sediments with the same concentrations of contaminants. A. abdita was more sensitive to cadmium than the other two species.more » For crude oil, there was a significant shift in size distribution from the control even at concentrations as low as 150 mg/kg of oil. The standard acute lethal tests for all species, on the other hand, did not show significant mortality until at least 1,600 mg/kg. The results confirm that growth rates are a more sensitive indicator of toxicity, and to at least the three contaminants tested, A. abdita is as sensitive as E. estuarius and R. abronius. This study also confirmed the reported high mortality rates of E. estuaries in San Francisco Bay sediments. The causes of this high mortality are unknown but give further reason for using A. abdita for toxicity tests in this region.« less

  12. Sediment toxicity assessment in the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinodermata: Echinoidea) fertilization and embryo bioassays.

    PubMed

    Volpi Ghirardini, A; Arizzi Novelli, A; Tagliapietra, D

    2005-09-01

    The capacity of two toxicity bioassays (fertilization and embryo toxicity tests) to discriminate sediment toxicity using the sea urchin Paracentrotus lividus was tested in five stations with different levels of pollution in the Lagoon of Venice. Two stations were located in estuarine sites, two in the industrial zone, and one in a site at the top of our quality gradient (reference). Elutriate was chosen as sediment matrix to assess the potential effects of bioavailable pollutants in the water column as a consequence of sediment resuspension (dredging and dumping, fishing gear, etc.). An experimental design based on Quality Assurance/Quality Control procedures (QA/QC) was adopted in order to set the methodological basis for an effective use of these bioassays in monitoring programs. Results revealed both higher embriotoxicity than spermiotoxicity in all stations and the efficacy of combined use of both toxicity bioassays in discriminating differing pollution/bioavailability between stations and periods. The good representativeness of the integrated sampling scheme and the standardization of all experimental phases yielded high precision of results. Clear Toxicity Fingerprints were evidenced for the investigated sites through the combined use of both bioassays. A good fit between ecotoxicological data and chemical contamination levels was found, except for unnatural sediment texture.

  13. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less

  14. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    PubMed

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  15. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  16. Evaluation of phase II toxicity identification evaluation methods for freshwater whole sediment and interstitial water.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Clark, Sara L; Voorhees, Jennifer P; Tjeerdema, Ron S; Casteline, Jane; Stewart, Margaret

    2009-02-01

    Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.

  17. Toxicity and bioavailability of metals in the Missouri River adjacent to a lead refinery

    USGS Publications Warehouse

    Chapman, Duane C.; Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Schmitt, Christopher J.; Callahan, Edward V.

    2001-01-01

    This study is an evaluation of the potential environmental impacts of contaminated groundwater from the ASARCO metals refining facility adjacent to the Missouri River in Omaha, Nebraska. Surface waters, sediments, and sediment pore waters were collected from the Burt-Izard drain, which transects the facility, and from the Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic contaminants, and the toxicity of the waters was evaluated with the Ceriodaphnia dubia 7-day test. Concentrations of several elemental contaminants were highly elevated in the groundwater, but not in river sediment pore waters. Lead concentrations were moderately elevated in whole sediment at one site, but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to C. dubia, causing 100% mortality. Even at the lowest groundwater concentration tested (6.25%) C. dubia survival was reduced; however, at that concentration, reproduction was not significantly different from upstream porewater reference samples. Sediment pore waters were not toxic, except reproduction in pore water collected from one downstream site was somewhat reduced. The decrease in reproduction could not be attributed to measured elemental contaminants.

  18. Review of the use of Ceramium tenuicorne growth inhibition test for testing toxicity of substances, effluents, products sediment and soil

    NASA Astrophysics Data System (ADS)

    Eklund, Britta

    2017-08-01

    A growth inhibition test has been developed based on two clones of the red macroalga Ceramium tenuicorne, one originating from 7 PSU and the other from 20 PSU. The species can be adapted to different salinities and the test can be carried out between 4 and 32 PSU. This test became an ISO standard in 2010 (ISO 107 10) for testing of chemicals and water effluents. In this study new and published data has been compiled on toxicity of single substances, waste waters from pulp mills, leachates from antifouling paints, harbour sediments and soil used for maintenance of leisure boats. The results show that the alga is sensitive to both metals and organic compounds and to biocides used in antifouling paints. By testing leachates from antifouling paints these could be ranked according to their toxicity. Similarly, the toxicity of waste waters from pulp mills was determined and the efficiency of secondary treatment evaluated. Further, the test method proved useful to test the toxicity in sediment samples. Sediments from small town harbours and ship lanes were shown to be harmful and compounds originating from antifouling paints were responsible for a large part of the inhibiting effect. The alga proved to be sensitive to contaminants leaking from boat yard soil. The growth inhibition test is a robust test that has high repeatability and reproducibility and easily can be applied on water, soil and sediment samples without being too costly. The species is found worl-wide in temperate waters, which makes the results relevant for large areas. In the Baltic Sea C. tenuicorne is the most common red alga species and is thus particularly relevant for this area. The overall results show that contaminants from boat activities and the use of antifouling paints in particular pose a threat to the environment.

  19. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. ?? 2009 US Government.

  20. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development and the sediment concentrations of some metals (Cu, Hg, Pb, Zn), acid-volatile sulphides (AVS), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs) was found. No correlation was found with DDTs, hexachlorobenzene and organotin compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Applicability of ambient toxicity testing to national or regional water-quality assessment

    USGS Publications Warehouse

    Elder, John F.

    1990-01-01

    Comprehensive assessment of the quality of natural waters requires a multifaceted approach. Descriptions of existing conditions may be achieved by various kinds of chemical and hydrologic analyses, whereas information about the effects of such conditions on living organisms depends on biological monitoring. Toxicity testing is one type of biological monitoring that can be used to identify possible effects of toxic contaminants. Based on experimentation designed to monitor responses of organisms to environmental stresses, toxicity testing may have diverse purposes in water-quality assessments. These purposes may include identification of areas that warrant further study because of poor water quality or unusual ecological features, verification of other types of monitoring, or assessment of contaminant effects on aquatic communities. Toxicity-test results are most effective when used as a complement to chemical analyses, hydrologic measurements, and other biological monitoring. However, all toxicity-testing procedures have certain limitations that must be considered in developing the methodology and applications of toxicity testing in any large-scale water-quality-assessment program. A wide variety of toxicity-test methods have been developed to fulfill the needs of diverse applications. The methods differ primarily in the selections made relative to four characteristics: (1) test species, (2) endpoint (acute or chronic), (3) test-enclosure type, and (4) test substance (toxicant) that functions as the environmental stress. Toxicity-test approaches vary in their capacity to meet the needs of large-scale assessments of existing water quality. Ambient testing, whereby the test organism is exposed to naturally occurring substances that contain toxicant mixtures in an organic or inorganic matrix, is more likely to meet these needs than are procedures that call for exposure of the test organisms to known concentrations of a single toxicant. However, meaningful interpretation of ambient test results depends on the existence of accompanying chemical analysis of the ambient media. The ambient test substance may be water or sediments. Sediment tests have had limited application, but they are useful because most toxicants tend to accumulate in sediments and many test species either inhabit the sediments or are in frequent contact with them. Biochemical testing methods, which have been developing rapidly in recent years, are likely to be among the most useful procedures for large-scale water-quality assessments. They are relatively rapid and simple, and more. importantly, they focus on biochemical changes that are the initial responses of virtually all organisms to environmental stimuli. Most species are sensitive to relatively few toxicants, and their sensitivities vary as conditions change. Therefore, each test method has particular uses and limitations, and no single test has universal applicability. One of the most informative approaches to toxicity testing is to combine biochemical tests with other test methods in a 'battery of tests' that is diversified enough to characterize different types of toxicants and different trophic levels. However, such an approach can be costly, and if not carefully designed, it may not yield enough additional information to warrant the additional cost. The application of toxicity tests to large-scale water-quality assessments is hampered by a number of difficulties. Toxicity tests often are not sensitive enough to enable detection of most contaminant problems in the natural environment. Furthermore, because sensitivities among different species and test conditions can be highly variable, conclusions about the toxicant problems of an ecosystem are strongly dependent on the test procedure used. In addition, the experimental systems used in toxicity tests cannot replicate the complexity or variability of natural conditions, and positive test results cannot identify the source or nature of

  2. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.

    PubMed

    Fairchild, J F; Kemble, N E; Allert, A L; Brumbaugh, W G; Ingersoll, C G; Dowling, B; Gruenenfelder, C; Roland, J L

    2012-07-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States-Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM - AVS); and (3) ∑SEM - AVS normalized to the fractional organic carbon (f(oc)) (i.e., ∑SEM - AVS/f(oc)). The most highly metal-contaminated sample (∑PEQ(TRM) = 132; ∑PEQ(SEM) = 54; ∑SEM - AVS = 323; and ∑SEM - AVS/(foc) = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate colonization studies in an experimental pond (8-week duration) indicated that two of the most metal-contaminated UCR sediments (dominated by high levels of sand-sized slag particles) exhibited decreased invertebrate colonization compared with sand-based reference sediments. Field-exposed SIR-300 resin samples also exhibited decreased invertebrate colonization numbers compared with reference materials, which may indicate behavioral avoidance of this material under field conditions. Multiple lines of evidence (analytical chemistry, laboratory toxicity, and field colonization results), along with findings from previous studies, indicate that high metal concentrations associated with slag-enriched sediments in the UCR are likely to adversely impact the growth and survival of native benthic invertebrate communities. Additional laboratory toxicity testing, refinement of the applications of sediment benchmarks for metal toxicity, and in situ benthic invertebrate studies will assist in better defining the spatial extent, temporal variations, and ecological impacts of metal-contaminated sediments in the UCR system.

  3. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC),more » 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.« less

  4. Inter-laboratory trial of a standardized sediment contact test with the aquatic plant Myriophyllum aquaticum (ISO 16191).

    PubMed

    Feiler, Ute; Ratte, Monika; Arts, Gertie; Bazin, Christine; Brauer, Frank; Casado, Carmen; Dören, Laszlo; Eklund, Britta; Gilberg, Daniel; Grote, Matthias; Gonsior, Guido; Hafner, Christoph; Kopf, Willi; Lemnitzer, Bernd; Liedtke, Anja; Matthias, Uwe; Okos, Ewa; Pandard, Pascal; Scheerbaum, Dirk; Schmitt-Jansen, Mechthild; Stewart, Kathleen; Teodorovic, Ivana; Wenzel, Andrea; Pluta, Hans-Jürgen

    2014-03-01

    A whole-sediment toxicity test with Myriophyllum aquaticum has been developed by the German Federal Institute of Hydrology and standardized within the International Organization for Standardization (ISO; ISO 16191). An international ring-test was performed to evaluate the precision of the test method. Four sediments (artificial, natural) were tested. Test duration was 10 d, and test endpoint was inhibition of growth rate (r) based on fresh weight data. Eighteen of 21 laboratories met the validity criterion of r ≥ 0.09 d(-1) in the control. Results from 4 tests that did not conform to test-performance criteria were excluded from statistical evaluation. The inter-laboratory variability of growth rates (20.6%-25.0%) and inhibition (26.6%-39.9%) was comparable with the variability of other standardized bioassays. The mean test-internal variability of the controls was low (7% [control], 9.7% [solvent control]), yielding a high discriminatory power of the given test design (median minimum detectable differences [MDD] 13% to 15%). To ensure these MDDs, an additional validity criterion of CV ≤ 15% of the growth rate in the controls was recommended. As a positive control, 90 mg 3,5-dichlorophenol/kg sediment dry mass was tested. The range of the expected growth inhibition was proposed to be 35 ± 15%. The ring test results demonstrated the reliability of the ISO 16191 toxicity test and its suitability as a tool to assess the toxicity of sediment and dredged material. © 2013 SETAC.

  5. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, D.P.; Thompson, B.

    1995-12-31

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs.more » the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.« less

  6. Using Toxicity Tests in Ecological Risk Assessment

    EPA Pesticide Factsheets

    Toxicity tests are used to expose test organisms to a medium-water, sediment, or soil-and evaluate the effects of contamination on the survival, growth, reproduction, behavior and or other attributes of these organisms.

  7. Draft Test Guideline: Chironomid Sediment Toxicity Test

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  8. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality.

    PubMed

    Buttino, Isabella; Vitiello, Valentina; Macchia, Simona; Scuderi, Alice; Pellegrini, David

    2018-03-01

    The copepod Acartia tonsa was used as a model species to assess marine sediment quality. Acute and chronic bioassays, such as larval development ratio (LDR) and different end-points were evaluated. As a pelagic species, A. tonsa is mainly exposed to water-soluble toxicants and bioassays are commonly performed in seawater. However, an interaction among A. tonsa eggs and the first larval stages with marine sediments might occur in shallow water environments. Here we tested two different LDR protocols by incubating A. tonsa eggs in elutriates and sediments coming from two areas located in Tuscany Region (Central Italy): Livorno harbour and Viareggio coast. The end-points analyzed were larval mortality (LM) and development inhibition (DI) expressed as the percentage of copepods that completed the metamorphosis from nauplius to copepodite. Aims of this study were: i) to verify the suitability of A. tonsa copepod for the bioassay with sediment and ii) to compare the sensitivity of A. tonsa exposed to different matrices, such as water and sediment. A preliminary acute test was also performed. Acute tests showed the highest toxicity of Livorno's samples (two out of three) compared to Viareggio samples, for which no effect was observed. On the contrary, LDR tests with sediments and elutriates revealed some toxic effects also for Viareggio's samples. Results were discussed with regards to the chemical characterization of the samples. Our results indicated that different end-points were affected in A. tonsa, depending on the matrices to which the copepods were exposed and on the test used. Bioassays with elutriates and sediments are suggested and LDR test could help decision-makers to identify a more appropriate management of dredging materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of sediment-spiked lufenuron on benthic macroinvertebrates in outdoor microcosms and single-species toxicity tests.

    PubMed

    Brock, T C M; Bas, D A; Belgers, J D M; Bibbe, L; Boerwinkel, M-C; Crum, S J H; Diepens, N J; Kraak, M H S; Vonk, J A; Roessink, I

    2016-08-01

    Sediment ecotoxicity studies were conducted with lufenuron to (i) complement the results of a water-spiked mesocosm experiment with this lipophilic benzoylurea insecticide, (ii) to explore the predictive value of laboratory single-species tests for population and community-level responses of benthic macroinvertebrates, and (iii) to calibrate the tier-1 effect assessment procedure for sediment organisms. For this purpose the concentration-response relationships for macroinvertebrates between sediment-spiked microcosms and those of 28-d sediment-spiked single-species toxicity tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus were compared. Lufenuron persisted in the sediment of the microcosms. On average, 87.7% of the initial lufenuron concentration could still be detected in the sediment after 12 weeks. Overall, benthic insects and crustaceans showed treatment-related declines and oligochaetes treatment-related increases. The lowest population-level NOEC in the microcosms was 0.79μg lufenuron/g organic carbon in dry sediment (μg a.s./g OC) for Tanytarsini, Chironomini and Dero sp. Multivariate analysis of the responses of benthic macroinvertebrates revealed a community-level NOEC of 0.79μg a.s./g OC. The treatment-related responses observed in the microcosms are in accordance with the results of the 28-d laboratory toxicity tests. These tests showed that the insect C. riparius and the crustacean H. azteca were approximately two orders of magnitude more sensitive than the oligochaete L. variegatus. In our laboratory tests, using field-collected sediment, the lowest 28-d EC10 (0.49μg a.s./g OC) was observed for C. riparius (endpoint survival), while for the standard OECD test with this species, using artificial sediment, a NOEC of 2.35μg a.s./g OC (endpoint emergence) is reported. In this particular case, the sediment tier-1 effect assessment using the chronic EC10 (field-collected sediment) or chronic NOEC (artificial sediment) of C. riparius and an assessment factor of 10, seems to be protective for the treatment-related responses observed in the sediment-spiked microcosms. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products.

    PubMed

    Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen

    2005-11-01

    The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.

  11. Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana

    USGS Publications Warehouse

    Canfield, Timothy J.; Kemble, Nile E.; Brumbaugh, William G.; Dwyer, F. James; Ingersoll, Christopher G.; Fairchild, James F.

    1994-01-01

    The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as U.S. Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. We evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m2 did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach-the Sediment Quality Triad - provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

  12. Evaluation of older bay mud sediment from Richmond Harbor, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinza, M.R.; Mayhew, H.L.; Word, J.Q.

    The older, bay mud (OBM) unit predates modem man and could act as a barrier to the downward transport of contaminants from the younger bay mud (YBM) because of its hard-packed consistency. However, its chemical and biological nature have not been well characterized. Battelle/Marine Sciences Laboratory (MSL) conducted three independent studies of OBM sediment in January 1993, January 1994, and October 1994. These studies evaluated potential chemical contamination and biological effects of OBM that could occur as a result of dredging and disposal activities. These evaluations were performed by conducting chemical analysis, solid-phase toxicity tests, suspended- particulate-phase (SPP) toxicity tests,more » and bioaccumulation tests on the OBM sediment. If the sediment chemistry and toxicity results showed no or minimal contamination and toxicological responses, then either the OBM could be left exposed in Richmond Harbor after dredging the YBM without leaving a source of contamination, or if the project depths necessitate, the OBM would be acceptable for disposal at an appropriate disposal site.« less

  13. Draft Test Guideline: Tadpole/Sediment Subchronic Toxicity Test

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  14. Toxicity assessment of sediments collected upstream and downstream from the White Dam in Clarke County, Georgia

    USGS Publications Warehouse

    Lasier, Peter J.

    2018-06-06

    The White Dam in Clarke County, Georgia, has been proposed for breaching. Efforts to determine potential risks to downstream biota included assessments of sediment collected in the vicinity of the dam. Sediments collected from sites upstream and downstream from the dam were evaluated for toxicity in 42-day exposures using the freshwater amphipod Hyalella azteca. Endpoints of the study were survival, growth, and reproduction of H. azteca. Results indicated no significant differences between the collected sediments and the water-only treatment used for comparison of the test endpoints. Therefore, based on the laboratory experiments in this study, sediment migration downstream from a breach of the Dam may not pose a toxicity risk to downstream biota.

  15. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott

    2005-01-01

    Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate bioaccumulation by oligochaetes exposed in the field. ?? 2005 SETAC.

  16. Estimating aquatic toxicity as determined through laboratory tests of great lakes sediments containing complex mixtures of environmental contaminants

    USGS Publications Warehouse

    1996-01-01

    We developed and evaluated a total toxic units modeling approach for predicting mean toxicity as measured in laboratory tests for Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pesticides, chlorinated dioxins, and metals). The approach incorporates equilibrium partitioning and organic carbon control of bioavailability for organic contaminants and acid volatile sulfide (AVS) control for metals, and includes toxic equivalency for planar organic chemicals. A toxic unit is defined as the ratio of the estimated pore-water concentration of a contaminant to the chronic toxicity of that contaminant, as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC). The toxic unit models we developed assume complete additivity of contaminant effects, are completely mechanistic in form, and were evaluated without any a posteriori modification of either the models or the data from which the models were developed and against which they were tested. A linear relationship between total toxic units, which included toxicity attributable to both iron and un-ionized ammonia, accounted for about 88% of observed variability in mean toxicity; a quadratic relationship accounted for almost 94%. Exclusion of either bioavailability components (i.e., equilibrium partitioning control of organic contaminants and AVS control of metals) or iron from the model substantially decreased its ability to predict mean toxicity. A model based solely on un-ionized ammonia accounted for about 47% of the variability in mean toxicity. We found the toxic unit approach to be a viable method for assessing and ranking the relative potential toxicity of contaminated sediments.

  17. PHOTOINDUCED TOXICITY OF PAHS AND ALKYLATED PAHS TO A MARINE INFAUNAL AMPHIPOD (RHEPOXYNIUS ABRONIUS)

    EPA Science Inventory

    The marine infaunal amphipod Rhepoxynius abronius was exposed in standard 10-day toxicity tests to sediments contaminated with parent or alkylated PAHs. After exposures, mortalities (LC50 values) and the ability to rebury in control sediment (EC50 values) were determined. Survivo...

  18. EVALUATION OF BIOACCUMULATION AND PHOTOINDUCED TOXICITY OF FLUORANTHENE IN LARVAL AND ADULT LIFE-STAGES OF CHIRONOMUS TENTANS

    EPA Science Inventory

    Laboratory sediment tests were conducted to evaluate the bioaccumulation and photoinduced toxicity of fluoranthene in larval and adult life-stages of Chironomus tentans. In the first of two experiments, fourth-instar and adult C. tentans exposed to spiked sediments were collected...

  19. Evaluating porewater polycyclic aromatic hydrocarbon-related toxicity at a contaminated sediment site using a spiked field-sediment approach.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T

    2018-03-01

    Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.

  20. Draft Test Guideline: Whole Sediment Acute Toxicity Invertebrates, Freshwater

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  1. Draft Test Guideline: Whole Sediment Acute Toxicity Invertebrates, Marine

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  2. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: Finding adverse effects using multiple lines of evidence

    USGS Publications Warehouse

    Fairchild, J.F.; Kemble, N.E.; Allert, A.L.; Brumbaugh, W.G.; Ingersoll, C.G.; Dowling, B.; Gruenenfelder, C.; Roland, J.L.

    2012-01-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States–Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM − AVS); and (3) ∑SEM − AVS normalized to the fractional organic carbon (foc) (i.e., ∑SEM − AVS/foc). The most highly metal-contaminated sample (∑PEQTRM = 132; ∑PEQSEM = 54; ∑SEM − AVS = 323; and ∑SEM − AVS/foc = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS – SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM − AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate colonization studies in an experimental pond (8-week duration) indicated that two of the most metal-contaminated UCR sediments (dominated by high levels of sand-sized slag particles) exhibited decreased invertebrate colonization compared with sand-based reference sediments. Field-exposed SIR-300 resin samples also exhibited decreased invertebrate colonization numbers compared with reference materials, which may indicate behavioral avoidance of this material under field conditions. Multiple lines of evidence (analytical chemistry, laboratory toxicity, and field colonization results), along with findings from previous studies, indicate that high metal concentrations associated with slag-enriched sediments in the UCR are likely to adversely impact the growth and survival of native benthic invertebrate communities. Additional laboratory toxicity testing, refinement of the applications of sediment benchmarks for metal toxicity, and in situ benthic invertebrate studies will assist in better defining the spatial extent, temporal variations, and ecological impacts of metal-contaminated sediments in the UCR system.

  3. Sediment quality triad assessment survey of the Galveston Bay, Texas system

    USGS Publications Warehouse

    Carr, R. Scott; Chapman, Duane C.; Howard, Cynthia L.; Biedenbach, James M.

    1996-01-01

    To characterize the quality of sediments at key sites in the Galveston Bay Estuary, sediment samples were collected concurrently for chemical and physical analyses, toxicity testing and an assessment of benthic community structure. Significant toxicity, as determined by the sea urchin (Arbacia punetulata) pore water embryological development assay, was observed at 12 of the 24 sites investigated in this study. No toxicity was observed at any of the sites with the amphipod (Grandidierella japonica) solid-phase test. There were a number of sites with elevated levels of trace metals and petroleum hydrocarbons. The chemistry, toxicity and benthic data were ranked by station and a scaled rank sum was calculated to facilitate comparisons among the stations. Five sites exhibited strong evidence of contaminant-induced degradation, while 15 stations showed no evidence of contaminant-induced degradation. At eight additional sites the sediment quality triad (SQT) data indicated that unmeasured chemicals or conditions were stressing the system. Contaminant impacts could be reduced or eliminated by alternative regulatory and management practices, including the restriction of produced water discharges into coastal estuaries and the use of dredge material disposal practices that minimize the reintroduction of sediment-associated contaminants to the bays.

  4. Magnitude and extent of sediment toxicity in four bays of the Florida Panhandle: Pensacola, Choctawhatchee, St. Andrew and Apalachicola. National status and trends program for marine environmental quality: Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, E.R.; Sloane, G.M.; Carr, R.S.

    1997-10-01

    The toxicity of sediments in Pensacola, Choctawhatcheee, St. Andrew and Apalachicola Bays was determined as part of bioeffects assessments performed by NOAA`s National Status and Trends Program. The objectives of the survey were to determine: (1) the spatial patterns in toxicity throughout each bay, (2) the spatial extent of toxicity throughout and among the bays, (3) the severity of degree of toxicity, and (4) the relationships between chemical contamination and toxicity. The survey was conducted over two years: Pensacola Bay and St. Andrew Bay were sampled in 1993; and Choctawhatchee Bay, Apalachicola Bay and Bayou Chico (a sub-basin of Pensacolamore » Bay) were sampled during 1994. Surficial sediment samples were collected from 123 randomly-chosen locations throughout the five areas. Multiple toxicity tests were conducted on all samples, and chemical analyses were performed on 102 of the 123 samples. Toxicological tests were conducted to determine survival, reproductive success, morphological development, metabolic activity, and genotoxicity; all bays showed toxicity in at least some of the samples.« less

  5. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    USGS Publications Warehouse

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity. ?? 2010 Springer Science+Business Media, LLC.

  6. Sediment-contact fish embryo toxicity assay with Danio rerio to assess particle-bound pollutants in the Tietê River Basin (São Paulo, Brazil).

    PubMed

    Rocha, Paula Suares; Bernecker, Conny; Strecker, Ruben; Mariani, Carolina Fiorillo; Pompêo, Marcelo Luiz Martins; Storch, Volker; Hollert, Henner; Braunbeck, Thomas

    2011-10-01

    The Tietê River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tietê River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity São Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissão and Três Irmãos). Results confirm that most toxicity is due to the discharges of the metropolitan area of São Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. SEDIMENT ASSESSMENT WITH THE BIVALVE MULINIA LATERALIS: MAXIMIZING TEST ORGANISM PROTECTION

    EPA Science Inventory

    Estuarine and marine sediments are a major repository for many of the more persistent chemicals introduced into surface waters. Approaches used by USEPA to identify a national inventory of contaminated sediment sites include, among other tools, whole-sediment toxicity (presently ...

  8. Assessing the status of sediment toxicity and macroinvertebrate communities in the Eighteenmile Creek Area of Concern, New York

    USGS Publications Warehouse

    George, Scott D.; Duffy, Brian T.; Baldigo, Barry P.

    2017-01-01

    In 1972, the governments of Canada and the United States committed to restoring the physical, chemical, and biological integrity of the Laurentian Great Lakes under the Great Lakes Water Quality Agreement. Through this framework, the downstream-most section of Eighteenmile Creek, a tributary to the south shore of Lake Ontario in New York, was designated as an Area of Concern (AOC) because water quality and bed sediments were contaminated by past industrial and municipal discharges, waste disposal, and pesticide usage. Five beneficial use impairments (BUIs) have been identified in the AOC including the degradation of the “benthos”, or the benthic macroinvertebrate community. This investigation used sediment toxicity testing and macroinvertebrate community assessments to determine if the toxicity of bed sediments in the AOC differed from that of an unimpacted reference stream. Results from 10-day toxicity tests indicated that survival and growth of the dipteran Chironomus dilutus and the amphipod Hyalella azteca did not differ significantly between sediments from the AOC and reference area. Analyses of benthic macroinvertebrate community integrity and structure also indicated that macroinvertebrate communities, while impacted across most sites on both streams, were generally similar between the AOC and reference area. Despite these findings, the upstream-most AOC site consistently scored poorly in all analyses, which suggests that localized sediment toxicity may exist in the AOC, even if large scale differences between the AOC and a comparable reference stream are minimal.

  9. Selective removal of organic contaminants from sediments: A methodology for toxicity identification evaluations (TIEs)

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.; Stern, E.A.

    2000-01-01

    Aqueous slurries of a test sediment spiked with dibenz[a,h]anthracene, 2,4,5,2′,4′,5′-hexachlorobiphenyl, p,p′-DDE, or phenanthrene were subjected to decontamination experimentation. The spiked sediments were agitated at elevated temperatures for at least 96 h in the presence of either of the two contaminant-absorbing media: clusters of polyethylene membrane or lipid-containing semipermeable membrane devices (SPMDs). The effects of treatment temperature and surface area of media on the removal of contaminants were explored. This work is part of a larger methodology for whole-sediment toxicity identification evaluation (TIE). A method is being sought that is capable of detoxifying sediments with respect to organic contaminants while leaving toxicity attributable to inorganic contaminants unaffected.

  10. Sediment nickel bioavailability and toxicity to estuarine crustaceans of contrasting bioturbative behaviors--an evaluation of the SEM-AVS paradigm.

    PubMed

    Chandler, G Thomas; Schlekat, Christian E; Garman, Emily R; He, Lijian; Washburn, Katherine M; Stewart, Emily R; Ferry, John L

    2014-11-04

    Robust sediment quality criteria require chemistry and toxicity data predictive of concentrations where population/community response should occur under known geochemical conditions. Understanding kinetic and geochemical effects on toxicant bioavailability is key, and these are influenced by infaunal sediment bioturbation. This study used fine-scale sediment and porewater measurement of contrasting infaunal effects on carbon-normalized SEM-AVS to evaluate safe or potentially toxic nickel concentrations in a high-binding Spartina saltmarsh sediment (4%TOC; 35-45 μmol-S2-·g(-1)). Two crustaceans producing sharply contrasting bioturbation--the copepod Amphiascus tenuiremis and amphipod Leptocheirus plumulosus--were cultured in oxic to anoxic sediments with SEM[Ni]-AVS, TOC, porewater [Ni], and porewater DOC measured weekly. From 180 to 750 μg-Ni·g(-1) sediment, amphipod bioturbation reduced [AVS] and enhanced porewater [Ni]. Significant amphipod uptake, mortality, and growth-depression occurred at the higher sediment [Ni] even when [SEM-AVS]/foc suggested acceptable risk. Less bioturbative copepods produced higher AVS and porewater DOC but exhibited net population growth despite porewater [Ni] 1.3-1.7× their aqueous [Ni] LOEC. Copepod aqueous tests with/without dissolved organic matter showed significant aqueous DOC protection, which suggests porewater DOC attenuates sediment Ni toxicity. The SEM[Ni]-AVS relationship was predictive of acceptable risk for copepods at the important population-growth level.

  11. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    USGS Publications Warehouse

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T. J.

    1999-01-01

    A method is described for preparing formulated sediments for use intoxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and α-cellulose (as a source of organic carbon). α-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of α-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in 28-d exposures, consistent responses of amphipods were observed in both formulated and control sediments.

  12. REMOVAL OF AMMONIA TOXCITY IN MARINE SEDIMENT TIES: A COMPARISON OF ULVA LACTUCA, ZEOLITE AND AREATION METHODS

    EPA Science Inventory

    Ammonia is suspected of causing some of the toxicity observed in marine sediment toxicity tests because it is sometimes found at elevated concentrations in marine interstitial waters. In marine waters, ammonia exists as un-ionized ammonia (NH3) and ammonium (NH4+) which combine ...

  13. Bivalve embryo bioassay to assess the potential toxicity of dredged material before dumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiniou, F.

    1995-12-31

    Dredged harbor sediments frequently contain a wide spectrum of contaminants in addition to a significant percentage of organic matter. Also, dredging and dumping activities into sea water, of these highly contaminated soil may induce a harmful effect on the environment. In France, in accordance with Oslo convention guidelines, a working group on dredging activities and environment (GEODE) created since 1991 decided to set up a pilot research program to assess the intrinsic toxicity of four harbor sludges. Intrinsic toxicity of harbor muds were tested by solid phase (whole sediment) and aqueous extract bioassays (sea water elutriates) using the sublethal toxicitymore » test bivalve embryo bioassay (Crassostrea gigas). Elutriates enable them to detect the toxicity of contaminants which may be released in the soluble form into the water column during dredging operations. While, whole sediment integrate the synergistic effects of all the contaminants (hydrophilic and hydrophobic) including pore water. Bioassays results, correlated to chemical analysis, are compared to contaminant levels determined by French working group GEODE and Canadian sediment quality criteria.« less

  14. Role of exposure mode in the bioavailability of triphenyl phosphate to aquatic organisms

    USGS Publications Warehouse

    Huckins, James N.; Fairchild, James F.; Boyle, Terence P.

    1991-01-01

    A laboratory study was conducted to investigate the role of the route of triphenyl phosphate (TPP) entry on its aquatic bioavailability and acute biological effects. Three TPP treatments were used for exposures of fish and invertebrates. These consisted of TPP dosed directly into water with and without clean sediment and TPP spiked onto sediment prior to aqueous exposures. Results of static acute toxicity tests (no sediment) were 0.78 mg/L (96-h LC50) for bluegill, 0.36 mg/L (48-h EC50) for midge, and 0.25 mg/L (96-h EC50) for scud. At 24 h, the sediment (1.1% organic carbon)/water partition coefficient (Kp) for TPP was 112. Use of this partition coefficient model to predict the sediment-mediated reduction of TPP concentration in water during toxicity tests resulted in a value that was only 10% less than the nominal value. However, the required nominal concentration of TPP to cause acute toxicity responses in test organisms was significantly higher than the predicted value by the model for both clay and soil-derived sediment. Direct spiking of TPP to soil minimized TPP bioavailability. Data from parallel experiments designed to track TPP residues in water through time suggest that sorption kinetics control residue bioavailability in the initial 24 h of exposure and may account for observed differences in LC50 and EC50 values from the sediment treatments.

  15. Causes of highway road dust toxicity to an estuarine amphipod: Evaluating the effects of nicotine.

    PubMed

    Hiki, Kyoshiro; Nakajima, Fumiyuki; Tobino, Tomohiro

    2017-02-01

    Urban road dust can potentially have adverse effects on ecosystems if it is discharged into receiving waters. This study investigated the causes of highway road dust toxicity by performing sediment toxicity identification evaluation (TIE) tests with an estuarine amphipod, Grandidierella japonica. In addition to metals and polycyclic aromatic hydrocarbons, which are traditionally considered to be the major toxicants in road runoff, we focused on dissolved nicotine as a causative toxicant. The sediment TIE results suggested that organic contaminants contributed to the majority of toxicity, and that the contribution of unionized nicotine to the toxicity was the highest among the chemicals considered. However, additional mortality tests with 48-h pulsed nicotine exposure demonstrated that exposure to nicotine at the same concentration as the baseline level in TIE tests did not cause significant 10-day amphipod mortality. Thus, the road dust toxicity could not be explained only by unionized nicotine, thereby suggesting contributions from joint effects of the measured toxicants and the presence of other unmeasured factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sediment Chemistry and Toxicity in Barnegat Bay, New Jersey: Pre- and Post- Hurricane Sandy, 2012-2013.

    USGS Publications Warehouse

    Romanok, Kristin M.; Szabo, Zoltan; Reilly, Timothy J.; Defne, Zafer; Ganju, Neil K.

    2016-01-01

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  17. Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012-13.

    PubMed

    Romanok, Kristin M; Szabo, Zoltan; Reilly, Timothy J; Defne, Zafer; Ganju, Neil K

    2016-06-30

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality. Published by Elsevier Ltd.

  18. Development and Evaluation of Reproductive and Developmental Toxicity Tests for Assessing the Hazards of Environmental Contaminants

    DTIC Science & Technology

    1997-08-01

    AL/EQ-TR-1997-0050 DEVELOPMENT AND EVALUATION OF REPRODUCTIVE AND DEVELOPMENT TOXICITY TESTS FOR ASSESSING THE HAZARDS OF ENVIRONMENTAL...SUBTITLE Development and Evaluation of Reproductive and Developmental Toxicity Tests for Assessing the Hazards of Environmental Contaminants 6...pd in testing toxicity in surface waters, ground waters and H- ™t™j£J^^^M hazard assessment when used in conjunction in sediments. FETAX can be usea

  19. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS) in conjunction with each test. * Determine which samples caused a significant decrease in percent fertilization success relative to the negative control.

  20. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs calculated using sediment concentrations normalized to total organic carbon (TOC) concentrations did not improve the reliability compared to SECs calculated using dry-weight concentrations. The range of TOC concentrations in our database was relatively narrow compared to the ranges of contaminant concentrations. Therefore, normalizing dry-weight concentrations to a relatively narrow range of TOC concentrations had little influence on relative concentra of contaminants among samples. When SECs are used to conduct a preliminary screening to predict the potential for toxicity in the absence of actual toxicity testing, a low number of SEC exceedances should be used to minimize the potential for false negatives; however, the risk of accepting higher false positives is increased.

  1. Influences on copper bioaccumulation, growth, and survival of the midge, Chironomus tentans, in metal-contaminated sediments

    USGS Publications Warehouse

    Besser, John M.; Kubitz, Jody A.; Ingersoll, Chris G.; Braselton, W. Emmett; Giesy, John P.

    1995-01-01

    Sediment bioassays with larvae of the midge, Chironomus tentans, were used to evaluate influences on the bioavailability and toxicity of copper (Cu) in sediments with a wide range of concentrations of metals, acid-volatile sulfide (AVS), and other physicochemical characteristics. Sediments were collected from sixteen lakes in Michigan, USA, and from twelve sites in the Clark Fork River drainage of Montana, USA, which are contaminated with metals from mining activities and from other anthropogenic sources. Bioassays with C. tentans larvae were conducted for ten days in a static-renewal test system, with endpoints of survival, growth, and metal bioaccumulation. Bioaccumulation of copper (Cu) was strongly correlated with Cu concentrations in porewater, and was increased significantly at Cu concentrations less than those affecting growth or survival. Midge survival and growth were not significantly correlated with concentrations of Cu in sediment or porewater, and were poorly predicted by ratios of acid-extractable metals to AVS in sediments. Principal components analysis indicated that Cu concentrations in porewater and bioaccumulation of Cu by midge larvae were influenced by AVS, sediment organic carbon, and porewater pH, and that toxicity was associated with high concentrations of Cu, high concentrations of zinc (Zn) and ammonia. No toxicity was observed in several sediments which contained low concentrations of AVS and high concentrations of Cu and Zn. In sediments which contain little AVS, bioavailability of metals may be controlled by constituents other than sulfides, such as organic matter and metal hydrous oxides. These results indicate that assessments of toxicity in metal-contaminated sediments should evaluate the importance of metal-binding phases other than sulfides, and the possible contributions of ammonia or other toxicants to toxicity in sediment bioassays.

  2. The effects of motorway runoff on freshwater ecosystems. 2: Identifying major toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltby, L.; Boxall, A.B.A.; Forrow, D.M.

    1995-06-01

    Previous studies have provided prima facie evidence that runoff from the M1 motorway, UK, affects both the quality of the receiving water and the biota living there, in sites short distances from point sources-i.e., possible worst-case situations. Because discharges contain a wide variety of contaminants, both the identification of toxicants and the establishment of causal relationships between observed changes in water/sediment quality and biology are often difficult. In this particular case, the problem was addressed by conducting a series of toxicity tests using the benthic amphipod Gammarus pulex. The abundance of this species was greatly reduced downstream of the pointmore » where motorway runoff entered the stream. Stream water contaminated with motorway runoff was not toxic to G. pulex. However, exposure to contaminated sediments resulted in a slight reduction in survival over 14 d, and sediment manipulation experiments identified hydrocarbons, copper, and zinc as potential toxicants. Spiking experiments confirmed the importance of hydrocarbons, and fractionation studies indicated that most of the observed toxicity was due to the fraction containing polycyclic aromatic hydrocarbons. Animals exposed to contaminated sediments and water spiked with sediment extract accumulated aromatic hydrocarbons in direct proportion to exposure concentrations.« less

  3. Sensitivity limits and EC50 values of the Vibrio fischeri test for organic micropollutants in natural and spiked extracts from sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salizzato, M.; Bertato, V.; Pavoni, B.

    1998-04-01

    Chemical analyses and bioassays were used in conjunction to assess the quality of sediments of the Venice lagoon. Organic micropollutants (polycyclic aromatic hydrocarbons [PAHs] polychlorinated biphenyls [PCBs], and chlorinated pesticides) were extracted from sediment samples and analyzed by gas chromatography after fractionation into classes of compounds. The Vibrio fischeri test was used to assess the acute toxicity of sediment extracts. The test was applied to organic extracts before cleanup and to extracts purified from sulfur and fractionated into single classes of compounds. Extracts before purification were much more toxic than single fractions. In particular, sulfur was toxic to V. fischeri.more » For PAHs and PCBs the 50% effective concentration (EC50) and EC20 values were determined using natural and spiked extracts. Sensitivity limits of the method for these compounds were also estimated as was in EC50 value of elemental sulfur dissolved in ethanol. A mathematical model was used to fit the concentration-response data to a sigmoid curve.« less

  4. Assessing condition of macroinvertebrate communities and sediment toxicity in the St. Lawrence River at Massena Area-of-Concern

    USGS Publications Warehouse

    Duffy, Brian T.; Baldigo, Barry P.; Smith, Alexander J.; George, Scott D.; David, Anthony M.

    2016-01-01

    In 1972, the USA and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement. In subsequent amendments, part of the St. Lawrence River at Massena, New York and segments of three tributaries, were designated as an Area of Concern (AOC) due to the effects of polychlorinated biphenyls (PCBs), lead and copper contamination, and habitat degradation and resulting impairment to several beneficial uses. Because sediments have been largely remediated, the present study was initiated to evaluate the current status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate communities and sediment toxicity tests using Chironomus dilutus were used to test the hypotheses that community condition and sediment toxicity at AOC sites were not significantly different from those of adjacent reference sites. Grain size was found to be the main driver of community composition and macroinvertebrate assemblages, and bioassessment metrics did not differ significantly between AOC and reference sites of the same sediment class. Median growth of C. dilutus and its survival in three of the four river systems did not differ significantly in sediments from AOC and reference sites. Comparable macroinvertebrate assemblages and general lack of toxicity across most AOC and reference sites suggest that the quality of sediments should not significantly impair benthic macroinvertebrate communities in most sites in the St. Lawrence River AOC.

  5. A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Lasier, Peter J.; Urich, Matthew L.

    2014-01-01

    Sediment-toxicity exposures comparing survival and growth of the freshwater amphipod, Hyalella azteca, are often components of aquatic-habitat assessments. Standardized exposure methods have been established and require evaluations for quality assurance. Test acceptability using performance-based criteria can be determined from exposures to control sediments, which are collected from the environment or formulated from commercially available components. Amending sand with leached alfalfa solids provided a simple formulated sediment that elicited consistently acceptable survival and growth in 28-day exposures with and without a daily feeding regime. A procedure is described for preparing the sediment along with results from comparisons among sand, amended sand, and field-collected sediments that incorporated three feeding regimes.

  6. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    USGS Publications Warehouse

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  7. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls

    USGS Publications Warehouse

    MacDonald, Donald D.; Dipinto, Lisa M.; Field, Jay; Ingersoll, Christopher G.; Long, Edward R.; Swartz, Richard C.

    2000-01-01

    Sediment-quality guidelines (SQGs) have been published for polychlorinated biphenyls (PCBs) using both empirical and theoretical approaches. Empirically based guidelines have been developed using the screening-level concentration, effects range, effects level, and apparent effects threshold approaches. Theoretically based guidelines have been developed using the equilibrium-partitioning approach. Empirically-based guidelines were classified into three general categories, in accordance with their original narrative intents, and used to develop three consensus-based sediment effect concentrations (SECs) for total PCBs (tPCBs), including a threshold effect concentration, a midrange effect concentration, and an extreme effect concentration. Consensus-based SECs were derived because they estimate the central tendency of the published SQGs and, thus, reconcile the guidance values that have been derived using various approaches. Initially, consensus-based SECs for tPCBs were developed separately for freshwater sediments and for marine and estuarine sediments. Because the respective SECs were statistically similar, the underlying SQGs were subsequently merged and used to formulate more generally applicable SECs. The three consensus-based SECs were then evaluated for reliability using matching sediment chemistry and toxicity data from field studies, dose-response data from spiked-sediment toxicity tests, and SQGs derived from the equilibrium-partitioning approach. The results of this evaluation demonstrated that the consensus-based SECs can accurately predict both the presence and absence of toxicity in field-collected sediments. Importantly, the incidence of toxicity increases incrementally with increasing concentrations of tPCBs. Moreover, the consensus-based SECs are comparable to the chronic toxicity thresholds that have been estimated from dose-response data and equilibrium-partitioning models. Therefore, consensus-based SECs provide a unifying synthesis of existing SQGs, reflect causal rather than correlative effects, and accurately predict sediment toxicity in PCB-contaminated sediments.

  9. Inter-lab testing of Hyalella azteca water and sediment methods: 4 Results from 10- to 42-d tests conducted with sediment substrates

    EPA Science Inventory

    Over the past four years, USEPA Duluth, USGS Columbia, the Illinois Natural History Survey, and Environment Canada have been conducting studies to refine the USEPA and ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with the amphipod Hya...

  10. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and possibly bioavailability of contaminants in disturbed streambed sediments), the toxicity of water samples to the indicator species Pimephales promelas (fathead minnow) was evaluated by using standard 7-day water-toxicity testing.

  11. TESTING ACUTE TOXICITY OF CONTAMINATED SEDIMENT IN JINZHOU BAY WITH MARINE AMPHIPODS

    EPA Science Inventory

    Sediments in some areas of Jinzhou Bay are contaminated seriously by heavy metals and organic contaminants. To assess the biological effects of these compounds in the sediment, seven surface samples of sediment were collected at an interval of about 2km between sampling stations ...

  12. Quality Assurance Project Plan for Verification of Sediment Ecotoxicity Assessment Ring(SEA Ring)

    EPA Science Inventory

    The objective of the verification is to test the efficacy and ability of the Sediment Ecotoxicity Assessment Ring (SEA Ring) to evaluate the toxicity of contaminants in the sediment, at the sediment-water interface, and WC to organisms that live in those respective environments.

  13. Optimizing the performance of Hyalella azteca in chronic toxicity tests: Results of feeding studies with various foods and feeding regimes

    EPA Science Inventory

    The freshwater amphipod Hyalella azteca is a common organism used for sediment toxicity testing in the United States and elsewhere. Standard methods for 10-d and 42-d toxicity tests with H. azteca were last revised and published by USEPA/ASTM in 2000. Under the methods in the man...

  14. The fate, distribution, and toxicity of lindane in tests with Chironomus riparius: effects of bioturbation and sediment organic matter content.

    PubMed

    Goedkoop, Willem; Peterson, Märit

    2003-01-01

    In this laboratory study, we address the effect of Chironomus bioturbation (0, 2,000, 6,000, and 18,000 ind/m2) and sediment organic matter content (10, 20, and 40%) on the fate, distribution, and bioavailability of 14C-lindane under standardized conditions in toxicity tests with artificial sediment. The results show that both Chironomus burrowing activity and sediment organic matter strongly modify test conditions. Larval mortality and development were inversely related with Chironomus densities and lindane concentration. Sediment organic matter content affected larval development rates but not mortality. Partitioning of lindane between the sediment, overlying water, and interstitial water was affected negatively by Chironomus larval densities: however, sediment partitioning was positively affected by sediment organic matter content. Bioturbation by Chironomus resulted in a remobilization of particle-associated lindane to the interstitial and overlying water, implying an increase in the bioavailability of the test compound. Strong positive relationships were found between Chironomus densities and lindane concentrations in interstitial water. The presence of Chironomus also resulted in lower label recovery. Label recovery on sediment particles ranged from 49 to 61% of initially added label in microcosms without Chironomus, from 41 to 56% at low larval densities, and from 15 to 50% at high larval densities. These results show that large discrepancies may exist between nominal test concentrations (from test compound additions) and true exposure concentrations even under standardized test conditions, which can introduce a relatively large error term in risk assessments. Calculations show that volatilization may be a quantitatively important sink for test compounds.

  15. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?

    PubMed

    Soroldoni, Sanye; Abreu, Fiamma; Castro, Ítalo Braga; Duarte, Fabio Andrei; Pinho, Grasiela Lopes Leães

    2017-05-15

    Antifouling paint particles (APPs) are generated during periodical maintenance of boat hulls. Chemical composition and toxicity (either chronic or acute) of APPs found in the sediment was evaluated using the epibenthic copepod Nitokra sp. The APPs analyzed showed the presence of high levels of metals such as Cu (234,247±268μgg -1 ), Zn (112,404±845μgg -1 ) and the booster biocide DCOIT (0.13μgg -1 ). Even at low concentrations (as from 5mgg -1 of APPs by mass of sediment) a significantly decrease in the fecundity was observed in laboratory tests. When the sediment was disturbed in elutriate test, a LC 50 of 0.14% for APPs was found. This study was the first assessment of toxicity associated with the presence of APPs in sediment to benthic organisms, and it calls attention to the need of improving regulations in boatyards and marina areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. REGULATORY APPLICATIONS OF POREWATER TOXICITY TESTING

    EPA Science Inventory

    The purpose of this chapter is to evaluate the use of porewater toxicity tests in regulatory applications, including their potential use in the development of sediment quality guideline (SQG) values. Specifically, the following discussion focuses on the appropriateness and readin...

  17. NEXT GENERATION SEDIMENT TOXICITY TESTING VIA DNA MICROARRAYS - PHASE I

    EPA Science Inventory

    The current SBIR solicitation states that the EPA is seeking “better sampling, analysis, and monitoring technologies” to improve hazardous waste management.  Development of new methods for testing contaminated sediments is an area of particular concern because many industri...

  18. Development of rearing and testing protocols for a new freshwater sediment test species: the gastropod Valvata piscinalis.

    PubMed

    Ducrot, Virginie; Cognat, Claudine; Mons, Raphaël; Mouthon, Jacques; Garric, Jeanne

    2006-03-01

    This paper aimed at proposing rearing and testing protocols for Valvata piscinalis, a new potential species for sediment toxicity testing. Such tests were developed since this species reliably represents the bio/ecological characteristics of other gastropods. It may thus be representative of their sensitivity to chemicals. V. piscinalis was successfully cultured in our laboratory for six generations. Cultures provided a high productivity for a low working time and low costs. The tests conditions we proposed seemed to be relevant for the development of reliable tests with this species. Indeed, hatching probability of egg-capsules, as well as embryo, newborn and juvenile survival rates, were close to 100%. Moreover, growth rates and fecundity were significantly higher than in field and in other laboratory studies. Partial life-cycle tests on clean sediments were achieved for various feeding levels to determine survival, growth and reproduction patterns, ad libitum feeding level and life cycle parameters values. Ad libitum feeding levels for newborn, juveniles and adults were 0.1, 0.4 and 0.8 mg Tetramin/individual/working day. Growth tests with zinc-spiked sediments provided a no-effect concentration and a lowest effect concentration of respectively 200 and 624 mg zinc/kg dry sediment. Other growth tests on spiked sediments we ran at our laboratory with second, third and fourth instars larvae of Chironomus riparius pointed out that V. piscinalis was more sensible to zinc than the chironomid, which is a routine test species in ecotoxicology. According to these results, V. piscinalis is a promising candidate species for sediment toxicity testing.

  19. Effects of substrate salinity on early seedling survival and growth of Scirpus robustus Pursh and Spartina alterniflora Loisel.

    PubMed

    Lewis, Michael A; Weber, David E

    2002-02-01

    Rooted aquatic plants are being used increasingly to test the toxicity of sediments. However, effects of naturally occurring substrate constituents on most potential test species are not well understood even though their effects could affect the test results. The objective of this study was to determine the effect of substrate salinity (NaCl) on early seedling survival and growth of the emergent macrophytes, Scirpus robustus Pursh and Spartina alterniflora Loisel. Results of four 21- and 28-day toxicity tests, conducted in an artificial sediment, indicated interspecific differences in NaCl sensitivity when based on changes in shoot, root and whole plant dry-weight biomass. Concentrations of 7.8 g NaCl/l and 19.2 g NaCl/l first reduced early seedling biomass of S. robustus and S. alterniflora (P<0.05), respectively, when compared to plants grown in sediment containing no measurable salinity. Seedling survival was not affected at average concentrations of 17.5 g NaCl/l or less for S. robustus and 22.3 g NaCl/l or less for S. alterniflora. The results indicate that substrate salinity is an important consideration in the selection of test species for laboratory phytotoxicity tests conducted with estuarine sediments, particularly if determination of chronic toxicity attributable to anthropogenic contamination is the primary objective.

  20. POREWATER CHEMISTRY: EFFECTS OF SAMPLING, STORAGE, HANDLING, AND TOXICITY TESTING

    EPA Science Inventory

    As a general principle, it is nearly impossible to remove a porewater sample from sediment, use it in a toxicity testing vessel with test organisms, and prevent changes in the chemistry of the natural and anthropogenic organic and inorganic constituents. The degree of change in t...

  1. Effects of Feeding Rate and Loading Density on Bioaccumulation of PCBs in Oligochaete Lumbriculus variegatus

    EPA Science Inventory

    Sediment tests with aquatic organisms can provide valuable information about potential toxicity and the bioavailability of polychlorinated biphenyls (PCBs) to the organisms. The USEPA 28-day Lumbriculus variegatus bioaccumulation test for sediments when successfully perfor...

  2. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 dmore » in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.« less

  3. Toxicity of sediment pore water in Puget Sound (Washington, USA): a review of spatial status and temporal trends

    USGS Publications Warehouse

    Long, Edward R.; Carr, R. Scott; Biedenbach, James M.; Weakland, Sandra; Partridge, Valerie; Dutch, Margaret

    2013-01-01

    Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km2. Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km2, equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5–10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.

  4. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.

  5. USE OF MERCENARIA MERCENARIA IN MULTIPLE SPECIES TESTING

    EPA Science Inventory

    The Toxicity Identification Evaluation (TIE) approach was first developed for determining the causes of toxicity in effluents discharged into the aquatic environment. Soon, TIEs were being used for assessing the causes of toxicity in sediment interstitial waters. Now, both fres...

  6. TOXICITY TESTING, RISK ASSESSMENT, AND OPTIONS FOR DREDGED MATERIAL MANAGEMENT

    EPA Science Inventory

    Programs for evaluating proposed discharges of dredged material into waters of the United States specify a tiered testing and evaluation protocol that includes performance of acute and chronic bioassays to assess toxicity of the dredged sediments. Although these evaluations refl...

  7. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    PubMed Central

    Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R

    2009-01-01

    Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437

  8. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  9. Effects of Storage on Sediment Toxicity, Bioaccumulation Potential, and Chemistry

    DTIC Science & Technology

    1991-01-01

    and tested with organisms used by the US Army Engineer District, New York. Test sedi- ments were collected from Westchester Creek (WC), Gowanus Bay ...Ms. Carole Brown, ERSD, obtained the sediment samples. Dr. Eric Crecelius, Battelle Pacific Northwest Laboratories, Sequim , WA, coordinated chemical...other sites, suspected of containing contam- inated sediment, were Westchester Creek (WC), Gowanus Bay (GB), and Arthur Kill (AK), all located in

  10. EVALUATION OF THE EFFECTS OF COAL FLY ASH AMENDMENTS ON THE TOXICITY OF A CONTAMINATED MARINE SEDIMENT

    PubMed Central

    Burgess, Robert M.; Perron, Monique M.; Friedman, Carey L.; Suuberg, Eric M.; Pennell, Kelly G.; Cantwell, Mark G.; Pelletier, Marguerite C.; Ho, Kay T.; Serbst, Jonathan R.; Ryba, Stephan A.

    2013-01-01

    Approaches for cleaning-up contaminated sediments range from dredging to in situ treatment. In the present report, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7 d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of post-oxidation treatment to reduce nitrous oxides emissions. Relatively simple methods exist to remove ammonia from fly ash prior to use and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. There was no evidence of the release of the metals cadmium, copper, nickel or lead from the fly ashes. A preliminary 28 d polychaete bioaccumulation study with one of the high carbon fly ashes and a reference sediment was also performed. Although preliminary, there was no evidence of adverse effects to worm growth or lipid content, or the accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon contents may represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments. PMID:18717615

  11. Characterization of selected bed-sediment-bound organic and inorganic contaminants and toxicity, Barnegat Bay and major tributaries, New Jersey, 2012

    USGS Publications Warehouse

    Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel

    2014-01-01

    A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.

  12. Application of sediment quality guidelines in the assessment and management of contaminated surficial sediments in Port Jackson (Sydney Harbour), Australia.

    PubMed

    Birch, Gavin F; Taylor, Stuart E

    2002-06-01

    Sediments in the Port Jackson estuary are polluted by a wide range of toxicants and concentrations are among the highest reported for any major harbor in the world. Sediment quality guidelines (SQGs), developed by the National Oceanographic and Atmospheric Administration (NOAA) in the United States are used to estimate possible adverse biological effects of sedimentary contaminants in Port Jackson to benthic animals. The NOAA guidelines indicate that Pb, Zn, DDD, and DDE are the most likely contaminants to cause adverse biological effects in Port Jackson. On an individual chemical basis, the detrimental effects due to these toxicants may occur over extensive areas of the harbor, i.e., about 40%, 30%, 15% and 50%, respectively. The NOAA SQGs can also be used to estimate the probability of sediment toxicity for contaminant mixtures by determining the number of contaminants exceeding an upper guideline value (effects range medium, or ERM), which predicts probable adverse biological effects. The exceedence approach is used in the current study to estimate the probability of sediment toxicity and to prioritize the harbour in terms of possible adverse effects on sediment-dwelling animals. Approximately 1% of the harbor is mantled with sediment containing more than ten contaminants exceeding their respective ERM concentrations and, based on NOAA data, these sediments have an 80% probability of being toxic. Sediment with six to ten contaminants exceeding their respective ERM guidelines extend over approximately 4% of the harbor and have a 57% probability of toxicity. These areas are located in the landward reaches of embayments in the upper and central harbor in proximity to the most industrialised and urbanized part of the catchment. Sediment in a further 17% of the harbor has between one and five exceedences and has a 32% probability of being toxic. The application of SQGs developed by NOAA has not been tested outside North America, and the validity of using them in Port Jackson has yet to be demonstrated. The screening approach adopted here is to use SQGs to identify contaminants of concern and to determine areas of environmental risk. The practical application and management implications of the results of this investigation are discussed.

  13. Integrative assessment of coastal pollution: Development and evaluation of sediment quality criteria from chemical contamination and ecotoxicological data

    NASA Astrophysics Data System (ADS)

    Bellas, Juan; Nieto, Óscar; Beiras, Ricardo

    2011-04-01

    Elutriate embryo-larval bioassays with sea-urchins ( Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑ 7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation ( rM=0.80; p<0.01) between sediment pollutant concentrations and toxicity data profiles. In addition, sediment quality criteria were used to help in the ecological interpretation of sediment chemistry data and to identify pollutants of concern. The toxicity bioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.

  14. Toxicity of the mosquito control pesticide Scourge to adult and larval grass shrimp (Palaemonetes pugio).

    PubMed

    Key, Peter; DeLorenzo, Marie; Gross, Kristen; Chung, Katy; Clum, Allan

    2005-01-01

    This study investigated the toxicity of various concentrations of technical resmethrin and Scourge on adult and larval Palaemonetes pugio, a common grass shrimp species. Two types of tests were conducted for each of the resmethrin formulations using adult and larval grass shrimp life stages, a 96-h static renewal aqueous test without sediment, and a 24-h static nonrenewal aqueous test with sediment. For resmethrin, the 96-h aqueous LC50 value for adult shrimp was 0.53 microg/L (95% confidence interval (CI): 0.46-0.60 microg/L), and for larval shrimp was 0.35 microg/L (95% CI: 0.28-0.42 microg/L). In the presence of sediment, technical resmethrin produced a 24-h LC50 value for adult shrimp of 5.44 microg/L (95% CI: 4.52-6.55 microg/L), and for larval shrimp of 2.15 microg/L (95% CI: 1.35-3.43 microg/L). For Scourge, the 96-h aqueous LC50 for adult shrimp was 2.08 microg/L (95% CI: 1.70-2.54 microg/L), and for larval shrimp was 0.36 microg/L (95% CI: 0.24-0.55 microg/L). The 24-h sediment test yielded an LC50 value of 16.12 microg/L (95% CI: 14.79-17.57 microg/L) for adult shrimp, and 14.16 microg/L (95% CI: 12.21-16.43 microg/L) for larvae. Adjusted LC50 values to reflect the 18% resmethrin concentration in Scourge are 0.37 microg/L (adult), 0.07 microg/L (larvae) for the 96-h aqueous test, and 2.90 microg/L (adult), 2.6 microg/L (larvae) for the 24-h sediment test. Larval grass shrimp were more sensitive to technical resmethrin and Scourge than the adult life stage. The results also demonstrate that synergized resmethrin is more toxic to P. pugio than the nonsynergized form, and that the presence of sediment decreases the toxicity of both resmethrin and Scourge.

  15. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity ofmore » outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed wetland treatment system are repositories for As, Hg, and Se and the bioavailability of these elements decreased after deposition, the pilot-scale constructed wetland treatment system contributed significantly to mitigation of risks to aquatic life from these elements.« less

  16. Patterns and trends in sediment toxicity in the San Francisco Estuary

    USGS Publications Warehouse

    Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.

    2007-01-01

    Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.

  17. RECOMMENDATIONS FOR RESEARCH RELATED TO BIOLOGICAL, CHEMICAL, AND ECOLOGICAL ASPECTS OF SEDIMENT PORE WATER: THE WAY FORWARD

    EPA Science Inventory

    Toxicity tests are useful and reliable tools for evaluating the adverse effects of chemicals discharged into aquatic ecosystems. The science of sediment toxicology evolved rapidly following the realization that sediments are a sink and a source for contaminants and that they can ...

  18. Mapping sediment contamination and toxicity in Winter Quarters Bay, McMurdo Station, Antarctica.

    PubMed

    Crockett, Alan B; White, Gregory J

    2003-07-01

    Winter Quarters Bay (WQB) is a small embayment located adjacent to McMurdo Station, the largest research base in Antarctica. The bay is approximately 250 m wide and long, with a maximum depth of 33 m. Historically, trash from the McMurdo Station was piled on the steep shoreline of WQB, doused with fuel and ignited. That practice has ceased, and the adjacent land area has been regraded to cover the residual waste. The bottom of WQB remains littered with drums, equipment, tanks, tires, cables, and other objects, especially the southeastern side of the bay where dumping took place. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. The objectives of this study were to map the distribution of organic contaminants in WQB, assess the toxicity of WQB sediments using a simple microbial test, and determine correlations between toxicity and contaminant levels. The study suggests that adverse ecological effects have occurred from one or more of the contaminants found in WQB but the source of the toxic impacts to bay sediments remains unknown. Whole sediment toxicity was only correlated with oil-equivalent while solvent extracts of sediments were correlated with PAHs and oil-equivalent. The authors recommend that an integrated research plan be developed that focuses on determining what additional information is needed to make informed decisions on possible remediation of WQB.

  19. A model to understand the confounding effects of natural sediments in toxicity tests with Chironomus riparius.

    PubMed

    Péry, Alexandre R; Sulmon, Vanessa; Mons, Raphaël; Flammarion, Patrick; Lagadic, Laurent; Garric, Jeanne

    2003-10-01

    Recently, we built a model to link feeding input with growth, emergence, and reproduction of the midge Chironomus riparius exposed to an artificial sandy sediment. This model is based on assumptions about both feeding behavior and use of energy. Here, we show how it can be used for toxicity tests with natural sediments to understand and model the influence of sediment characteristics. We measured growth, emergence, and reproduction of chironomids exposed in beakers to four unpolluted natural sediments and three feeding conditions (no feeding, 0.2 mg Tetramin/larva/d, and 1.4 mg Tetramin/larva/d) and compared the results with data obtained on our artificial sandy sediment. Sediment characteristics had lower influence on growth than feeding level, but their influence could not be neglected. First, we could distinguish between sandy sediments and other sediments. This difference resulted in a significant delay of about 18 h in the growth curves. Second, in case of food limitation, chironomids could use the organic materials in the sediment, provided that the C:N ratio of the sediment was less than 14. Our model proved to be able to incorporate those two phenomena. As for reproduction, we observed a better reproduction (measured in number of eggs per mass) for natural sediments than for artificial sediments. We showed that this difference could be due to the lipid content of the natural sediments.

  20. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca

    USGS Publications Warehouse

    Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Hammer, Edward J.; Mount, David R.; Hockett, J. Russell; Norberg-King, Teresa J.; Soucek, Dave; Taylor, Lisa

    2016-01-01

    Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast–cerophyll–trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca.

  1. Modifying Foods and Feeding Regimes to Optimize the Performance of Hyalella azteca during Chronic Toxicity Tests

    EPA Science Inventory

    The amphipod Hyalella azteca is commonly used to assess the toxicity of sediments and waters. However, laboratories have reported varying success in maintaining healthy cultures and in obtaining consistent growth and reproduction (where applicable), especially during tests...

  2. Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, E.S.; Antrim, L.D.; Pinza, M.R.

    1996-08-01

    The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE andmore » the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.« less

  3. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    PubMed

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  4. Application of a unique test design to determine the chronic toxicity of boron to the aquatic worm Lumbriculus variegatus and fatmucket mussel Lampsilis siliquoidea.

    PubMed

    Hall, Scott; Lockwood, Rick; Harrass, Michael C

    2014-01-01

    The chronic (21- and 28-day) toxicity of boron was determined for two freshwater benthic macroinvertebrates: the fatmucket mussel Lampsilis siliquoidea and the aquatic worm Lumbriculus variegatus. The rapid depletion of boric acid from spiked sediments in tests using flow-through overlying waters was addressed by constant addition of boric acid to overlying water at concentrations matching those of the targeted porewater exposures. This proved highly successful in maintaining constant whole-sediment and sediment porewater boron concentrations. Boron sublethal 25 % inhibition concentration values based on porewater concentrations were 25.9 mg B/L (L. variegatus) and 38.5 mg B/L (L. siliquoidea), indicating similar test organism sensitivity. Expressed as dry whole-sediment values, the respective L. variegatus and L. siliquoidea sublethal (growth) IC25 values for whole-sediment exposures were 235.5 mg B/kg sediment dry weight (dw) and 310.6 mg B/kg dw. The worm lethality-based end points indicated greater sensitivity than the sublethal end points, bringing into question the validity of a "lethality" end point for L. variegatus given its fragmentation mode of reproduction. For comparison, water-only mussel exposures were tested resulting in an IC25 value of 34.6 mg B/L, which was within 20 % of the porewater value. This suggests that the primary route of boron exposure was through the aqueous phase. The results of this study indicated that for test materials that are readily water soluble, standard sediment test designs may be unsuitable, but water-only exposures can provide toxicological data representative of sediment tests.

  5. Using a modified dredging elutriate testing approach to evaluate potential aquatic impacts associated with dredging a large freshwater industrial harbor.

    PubMed

    Watson-Leung, Trudy; Graham, Matt; Hartman, Erin; Welsh, Paul G

    2017-01-01

    Potential adverse impacts to the aquatic environment should be minimized whenever possible during an environmental dredging project by selecting realistic and technically feasible environmental targets. These targets need to balance short term impacts with the longer term benefit of removing contaminated sediments from the environment. Environmental dredging is part of the planned remediation of Randle Reef (a 60 hectare zone of mostly PAH-contaminated sediments) in Hamilton, Ontario, Canada. In this study, we describe the results of dredging elutriate toxicity testing (DETE) to assess the potential risks from dredging this PAH contaminated site. A modified elutriate preparation method intended as an alternative measure of conditions within the dredging plume was assessed with both standard water column species (Daphnia magna and fathead minnow [Pimephales promelas]) and alternative benthic and epibenthic test organisms (Chironomus dilutus and Hyalella azteca). The standard DETE test was also conducted with H. azteca to compare with the modified DETE results. The greatest toxic response was seen in the alternative test species; however, the modified DETE method resulted in less toxicity than the standard protocol. The relationship between toxicity results and chemical and/or physical characteristics of the samples was examined, but differences in toxicity could only be explained by differences in the total suspended solids concentrations in the elutriate samples. Challenges associated with DETE assessment of PAH-contaminated sediments and the implications for establishing dredging benchmarks are discussed. Integr Environ Assess Manag 2017;13:155-166. © 2016 SETAC. © 2016 SETAC.

  6. Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John

    2015-09-01

    Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.

  7. Bioavailability, ecotoxicity, and geological characteristics of trace lead in sediments from two sites on Negro River, Uruguay, South America.

    PubMed

    Míguez, Diana M; Huertas, Raquel; Carrara, María V; Carnikián, Agustín; Bouvier, María E; Martínez, María J; Keel, Karen; Pioda, Carolina; Darré, Elena; Pérez, Ramiro; Viera, Santiago; Massa, Enrique

    2012-04-01

    Bioassays of two sites along the Rio Negro in Uruguay indicate ecotoxicity, which could be attributable to trace concentrations of lead in river sediments. Monthly samples at two sites at Baygorria and Bonete locations were analyzed for both particle size and lead. Lead was determined by atomic spectrometry in river water and sediment and particle size by sieving and sedimentation. Data showed that Baygorria's sediments have greater percentage of clay than Bonete's (20.4 and 5.8%, respectively). Lead was measurable in Baygorria's sediments, meanwhile in Bonete's, it was always below the detection limit. In water samples, lead was below detection limit at both sites. Bioassays using sub-lethal growth and survival test with Hyalella curvispina amphipod, screening with bioluminescent bacteria Photobacterium leiognathi, and acute toxicity bioassay with Pimephales promelas fish indicated toxicity at Baygorria, with much less effect at Bonete. Even though no lethal effects could be demonstrated, higher sub-lethal toxicity was found in samples from Baygorria site, showing a possible concentration of the contaminant in the clay fraction.

  8. SITE-SPECIFIC VALIDATION OF A CHRONIC TOXICITY TEST WITH THE AMPHIPOD HYALELLA AZTECA : AN INTEGRATED STUDY OF HEAVY METAL CONTAMINATED SEDIMENTS IN PEAK CREEK, VIRGINIA

    EPA Science Inventory

    We will measure the correspondence of endpoints from chronic toxicity tests with the amphipod, Hyalella azteca, to a series of in situ macrobenthic community endpoints, starting with those endpoints most similar to those monitored in the laboratory test, then expanding to include...

  9. Amphipod bioassay of selected sediments from Sequim Bay, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsdell, K.A.; Strand, J.A.; Cullinan, V. I.

    1989-06-01

    Amphipod bioassays performed during reconnaissance surveys of Sequim Bay in 1983--1984 for the US Environmental Protection Agency suggested possible sediment toxicity at three sites. These findings were not supported by other biological analyses and tests (dominant infauna, oyster larvae test) nor by the finding of relatively low levels of priority pollutants. In 1988, a re-examination of the 1983--1984 sites demonstrated that the Sequim Bay sediments were clearly nontoxic. Mean survivorship ranged from 89 to 100%. It was hypothesized that earlier indications of toxicity may have been due to a relatively high percentage of fines ({ge}80%) and/or a relatively low interstitialmore » salinity (24%) encountered at one or more of the 1983--1984 sites. The continued use of Sequim Bay as both a reference bay and a source of control sediment in future marine research is recommended. 13 refs., 5 figs., 3 tabs.« less

  10. Polynuclear Aromatic Hydrocarbons and Toxicity of Sediments from the Elizabeth River, Hampton Roads, Virginia

    DTIC Science & Technology

    1984-10-01

    solid phase experiment, the shrimp were exposed to high (35 ppt) or law (10 ppt) salinities for 24 hours to test osmoregulation capacities. The...of sediments from these stations are rather low. Significant osmoregulation and, to a lesser degree, respiration effects were observed during the tests

  11. Cumulative influences of a small city and former mining activities on the sediment quality of a subtropical estuarine protected area.

    PubMed

    Cruz, Ana Carolina Feitosa; Davanso, Marcela Bergo; Araujo, Giuliana Seraphim; Buruaem, Lucas M; Santaella, Sandra Tédde; de Morais, Rodofley Davino; Abessa, Denis M S

    2014-11-01

    This study aimed to evaluate the sediment quality in the estuarine protected area known as Cananéia-Iguape-Peruíbe (CIP-PA), located on the southeastern coast of Brazil. The study was designed considering possible negative effects induced by the city of Cananéia on the sediment quality of surrounding areas. This evaluation was performed using chemical and ecotoxicological analyses. Sediments were predominantly sandy, with low CaCO3 contents. Amounts of organic matter varied, but higher contents occurred closer to the city, as well as did Fe and Total Recoverable Oils and Greases (TROGs) concentrations. Contamination by Cd and Cu was revealed in some samples, while concentrations of Zn were considered low. Chronic toxicity was detected in all tested sediments and acute toxicity occurred only in sediments collected near the city. The principal component analysis (PCA) revealed an association among Cd, Cu, Fe, TROG, fines, organic matter, CaCO3, and chronic toxicity, whereas acute toxicity was found to be associated with Zn and mud. However, because Zn levels were low, acute toxicity was likely due to a contaminant that was not measured. Results show that there is a broad area within the CIP-PA that is under the influence of mining activities (chronic toxicity, moderate contamination by metals), whereas poorer conditions occur closer to Cananéia (acute toxicity); thus, the urban area seems to constitute a relevant source of contaminants for the estuarine complex. These results show that contamination is already capable of producing risks for the local aquatic biota, which suggests that the CIP-PA effectiveness in protecting estuarine biota may be threatened.

  12. EVALUATION OF MICROSOMAL AND CYTOSOLIC BIOMARKERS IN A SEVEN-DAY LARVAL TROUT SEIMENT TOXICITY TEST

    EPA Science Inventory

    Rainbow trout (Oncorhynclus mykiss) sac fry (larvae) were exposed to River Po sediments for 7 days. The sediments were collected in the River Po at two sites located upstream and downstream of the confluence of a polluted tributary, the River Lambro. An additional sediment treatm...

  13. Evaluation of influence of sediment on the sensitivity of a unionid mussel (Lampsilis siliquoidea) to ammonia in 28-day water exposures

    USGS Publications Warehouse

    Wang, N.; Consbrock, R.A.; Ingersoll, C.G.; Barnhart, M.C.

    2011-01-01

    A draft update of the U.S. Environmental Protection Agency ambient water quality criteria (AWQC) for ammonia substantially lowers the ammonia AWQC, primarily due to the inclusion of toxicity data for freshwater mussels. However, most of the mussel data used in the updated AWQC were generated from water-only exposures and limited information is available on the potential influence of the presence of a substrate on the response of mussels in laboratory toxicity tests. Our recent study demonstrated that the acute sensitivity of mussels to ammonia was not influenced by the presence of substrate in 4-d laboratory toxicity tests. The objective of the current study was to determine the sensitivity of mussels to ammonia in chronic 28-d water exposures with the sediment present (sediment treatment) or absent (water-only treatment). The chronic toxicity test was conducted starting with two-month-old juvenile mussels (fatmucket, Lampsilis siliquoidea) in a flow-through diluter system, which maintained consistent pH (???8.3) and six concentrations of total ammonia nitrogen (N) in overlying water and in sediment pore water. The chronic value (ChV, geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) was 0.36mgN/L for survival or biomass in the water-only treatment, and was 0.66mgN/L for survival and 0.20mgN/L for biomass in the sediment treatment. The 20% effect concentration (EC20) for survival was 0.63mgN/L in the water-only treatment and was 0.86mgN/L in the sediment treatment (with overlapping 95% confidence intervals; no EC20 for biomass was estimated because the data did not meet the conditions for any logistic regression analysis). The similar ChVs or EC20s between the water-only treatment and the sediment treatment indicate that the presence of sediment did not substantially influence the sensitivity of juvenile mussels to ammonia in the 28-d chronic laboratory water exposures. ?? 2011 SETAC.

  14. Evaluation of influence of sediment on the sensitivity of a unionid mussel (Lamsilis silquoidea) to ammonia in 28-day water exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Barnhart, M. Christopher

    2011-01-01

    A draft update of the U.S. Environmental Protection Agency ambient water quality criteria (AWQC) for ammonia substantially lowers the ammonia AWQC, primarily due to the inclusion of toxicity data for freshwater mussels. However, most of the mussel data used in the updated AWQC were generated from water-only exposures and limited information is available on the potential influence of the presence of a substrate on the response of mussels in laboratory toxicity tests. Our recent study demonstrated that the acute sensitivity of mussels to ammonia was not influenced by the presence of substrate in 4-d laboratory toxicity tests. The objective of the current study was to determine the sensitivity of mussels to ammonia in chronic 28-d water exposures with the sediment present (sediment treatment) or absent (water-only treatment). The chronic toxicity test was conducted starting with two-month-old juvenile mussels (fatmucket, Lampsilis siliquoidea) in a flow-through diluter system, which maintained consistent pH (≈8.3) and six concentrations of total ammonia nitrogen (N) in overlying water and in sediment pore water. The chronic value (ChV, geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) was 0.36 mg N/L for survival or biomass in the water-only treatment, and was 0.66 mg N/L for survival and 0.20 mg N/L for biomass in the sediment treatment. The 20% effect concentration (EC20) for survival was 0.63 mg N/L in the water-only treatment and was 0.86 mg N/L in the sediment treatment (with overlapping 95% confidence intervals; no EC20 for biomass was estimated because the data did not meet the conditions for any logistic regression analysis). The similar ChVs or EC20s between the water-only treatment and the sediment treatment indicate that the presence of sediment did not substantially influence the sensitivity of juvenile mussels to ammonia in the 28-d chronic laboratory water exposures.

  15. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms

    USGS Publications Warehouse

    Wang, N.; Besser, J.M.; Buckler, D.R.; Honegger, J.L.; Ingersoll, C.G.; Johnson, B. Thomas; Kurtzweil, M.L.; MacGregor, J.; McKee, M.J.

    2005-01-01

    The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water–sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l−1 nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43–83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23–97%) was only observed in overlying water sampled from water–sediment microcosms during the first 24 h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4–6 mg l−1) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.

  16. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part I: polycyclic aromatic hydrocarbons and metals.

    PubMed

    Bartlett, A J; Rochfort, Q; Brown, L R; Marsalek, J

    2012-01-01

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) receives inputs of multiple contaminants, including metals, polycyclic aromatic hydrocarbons (PAHs), road salt, and nutrients, via highway and residential runoff. Contaminant concentrations in runoff are seasonally dependent, and are typically high in early spring, coinciding with the snowmelt. In order to investigate the seasonal fluctuations of contaminant loading and related changes in toxicity to benthic invertebrates, overlying water and sediment samples were collected in the fall and spring, reflecting low and high contaminant loading, respectively, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed here; the effects of salts, nutrients, and water quality are discussed in a companion paper. Survival and growth of Hyalella after exposure to fall samples were variable: survival was significantly reduced (64-74% of controls) at three out of four sites, but there were no significant growth effects. More dramatic effects were observed after Hyalella were exposed to spring samples: survival was significantly reduced at the two sites furthest downstream (0-75% of controls), and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site sediment with overlying site water versus site sediment with overlying control water. These seasonal changes in toxicity were not related to metals or PAHs: 1. levels of bioavailable metals were below those expected to cause toxicity, and 2. levels of PAHs in sediment were lowest at sites with the greatest toxicity and highest in water and sediment at sites with no toxicity. Although not associated with toxicity, some metals and PAHs exceeded probable and severe effect levels, and could be a cause for concern if contaminant bioavailability changes. Toxicity in the TWSMF appeared to be primarily associated with water-borne contaminants. The cause(s) of these effects are discussed in our companion manuscript. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  17. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    PubMed

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways.

  18. An evaluation of benthic community measures using laboratory-derived sediment effect concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, F.J.; Canfield, T.J.; Ingersoll, C.G.

    1995-12-31

    Sediment effect concentrations (SECs) are contaminant sediment concentrations which are frequently associated with sediment toxicity. Recently, a number of different SECs have been calculated from laboratory toxicity tests with field collected sediments using Chironomus tentans, Chironomus riparius, and Hyalella azteca. Toxicity endpoints included (depending upon species) lethality, growth and sexual maturation. The authors selected the Effect Range Median (ERM) calculated for 28-d Hyalella azteca as an SEC for evaluating six different benthic community measures as indicators of contaminated sediment. The benthic measures included: taxa richness, chironomid genera richness, percent chironomid deformity, chironomid biotic index, ratio of chironomids/oligochaetes, and oligochaete bioticmore » index. Benthic measures were obtained for 31 stations from the Great Lakes and 13 stations from Milltown Reservoir and Clark Fork River, MT. Each benthic measure was ranked from 1 to 100 and individual ranks and various combinations of ranks were plotted against the ratio of chemical concentration at the site/ERM calculated for that chemical (similar to a toxic unit approach) and the sum of the ERM ratios (sum of toxic units). Preliminary analysis indicates that, in general, benthic measures varied widely in relatively uncontaminated stations, confounding any underlying relationship that may have existed. The absence of chironomids, in areas with suitable habitat, seems to be indicative of grossly contaminated stations, but not an endpoint useful for discriminating stations with contaminant concentrations closer to the SEC. The usefulness of benthic measures as diagnostic tools for contaminated sediments and potential ways to improve these measures will be discussed.« less

  19. A decision-making framework for sediment contamination.

    PubMed

    Chapman, Peter M; Anderson, Janette

    2005-07-01

    A decision-making framework for determining whether or not contaminated sediments are polluted is described. This framework is intended to be sufficiently prescriptive to standardize the decision-making process but without using "cook book" assessments. It emphasizes 4 guidance "rules": (1) sediment chemistry data are only to be used alone for remediation decisions when the costs of further investigation outweigh the costs of remediation and there is agreement among all stakeholders to act; (2) remediation decisions are based primarily on biology; (3) lines of evidence (LOE), such as laboratory toxicity tests and models that contradict the results of properly conducted field surveys, are assumed incorrect; and (4) if the impacts of a remedial alternative will cause more environmental harm than good, then it should not be implemented. Sediments with contaminant concentrations below sediment quality guidelines (SQGs) that predict toxicity toless than 5% of sediment-dwelling infauna and that contain no quantifiable concentrations of substances capable of biomagnifying are excluded from further consideration, as are sediments that do not meet these criteria but have contaminant concentrations equal to or below reference concentrations. Biomagnification potential is initially addressed by conservative (worst case) modeling based on benthos and sediments and, subsequently, by additional food chain data and more realistic assumptions. Toxicity (acute and chronic) and alterations to resident communities are addressed by, respectively, laboratory studies and field observations. The integrative decision point for sediments is a weight of evidence (WOE) matrix combining up to 4 main LOE: chemistry, toxicity, community alteration, and biomagnification potential. Of 16 possible WOE scenarios, 6 result in definite decisions, and 10 require additional assessment. Typically, this framework will be applied to surficial sediments. The possibility that deeper sediments may be uncovered as a result of natural or other processes must also be investigated and may require similar assessment.

  20. Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankley, G.T.; Lodge, K.; Call, D.J.

    Samples of sediment and biota were collected from sites in the lower Fox River and southern Green Bay to determine existing or potential impacts of sediment-associated contaminants on different ecosystem components of this Great Lakes area of concern. Evaluation of benthos revealed a relatively depauperate community, particularly at the lower Fox River sites. Sediment pore water and bulk sediments from several lower Fox River sites were toxic to a number of test species including Pimephales promelas, Ceriodaphnia dubia, Hexagenia limbata, Selenastrum capricornutum, and Photobacterium phosphorum. An important component of the observed toxicity appeared to be due to ammonia. Evaluation ofmore » three bullhead (Ictalurus) species from the lower Fox River revealed an absence of preneoplastic or neoplastic liver lesions, and the Salmonella typhimurium bioassay indicated relatively little mutagenicity in sediment extracts. Apparent adverse reproductive effects were noted in two species of birds nesting along the lower Fox River and on a confined disposal facility for sediments near the mouth of the river, and there were measurable concentrations of potentially toxic 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and planar polychlorinated biphenyls (PCBs) both in the birds and in sediments from several of the study sites. Based on toxic equivalency factors and the results of an in vitro bioassay with H4IIE rat hepatoma cells, it appeared that the majority of potential toxicity of the PCB/PCDF/PCDD mixture in biota from the lower Fox River/Green Bay system was due to the planar PCBs. The results of these studies are discussed in terms of an integrated assessment focused on providing data for remedial action planning.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspectedmore » that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.« less

  2. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  3. Recovery of ostracod with known ages in differently textured sediments and comparison of toxicity of heavily contaminated sediments with ostracod Heterocypris incongruens and amphipod Hyalella azteca

    NASA Astrophysics Data System (ADS)

    Stepanova, N. Yu; Nikitin, O. V.; Latypova, V. Z.; Vybornova, I. B.; Galieva, G. S.; Okunev, R. V.

    2018-01-01

    The recovery of 1-, 4-, 6,-, and 8-d-old ostracods (Heterocypris incongruens) from sediments with different texture has been evaluated. The recovery of ostracods at all ages has been in agreement with the acceptability criterion of 80% of survival for sediment tests. The recovery of ostracods has turned out to be equal to or more than 80% for sand and silt sediments, respectively. The comparison of survival rates between ostracods and amphipods has shown good convergence in the tests of heavily contaminated sediments (R2=0.75, p<0.05). The sediment quality criteria (TEC) have been exceeded mostly for total petroleum hydrocarbons (100% samples), Cr (100%), Ni (87%), Cu (87%), Pb (47%), and Cd (53%). The content of acid volatile sulfides (AVS) has been significantly higher than that of simultaneously extracted metals (SEM). The obtained results have indicated that, metals (Cu, Zn, Cd, Ni, and Pb) are non-bioavailable. Only one sample has exceeded TEC for PAHs (dibenz[a,h]anthracene). It was observed that, no significant correlation between the effect of toxicity and the chemical content.

  4. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  5. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inter-lab testing of Hyalella azteca water and sediment methods: 1 background and overview of the 42-d survival, growth and reproduction test

    EPA Science Inventory

    Over the past four years, USEPA-Duluth, USGS-Columbia, the Illinois Natural History Survey, and Environment Canada have been conducting studies to refine the USEPA and ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with the amphipod Hya...

  7. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments.

    PubMed

    Martínez-Jerónimo, Fernando; Cruz-Cisneros, Jade Lizette; García-Hernández, Leonardo

    2008-09-01

    The southeast region of Mexico is characterized by intensive oil industry activities carried out by the national public enterprise Petróleos Mexicanos (PEMEX). The freshwater lagoon "El Limón", located in the municipality of Macuspana, state of Tabasco, Mexico, has received over 40 years discharges of untreated waste waters from the Petrochemical Complex "Ciudad PEMEX", located on the border of the lagoon. To assess the toxicity of the sediments and, hence, to obtain information on the biological effects of these contaminating discharges, the cladoceran Simocephalus mixtus was used as a test organism in acute (48h) and chronic (12d) toxicity assays. For comparison purposes, bioassays were also conducted with the reference cladoceran Daphnia magna. The sediments of this lagoon contain important amounts of metals and hydrocarbons that have been accumulated over time; however, the acute tests only registered reduced lethal effects on the test organisms (maxima of 10% and 17% mortality for D. magna and S. mixtus, respectively). This may be due to low bioavailability of the pollutants present in the sediments. On the other hand, partial or total inhibition and delay in the start of reproduction, reduction in clutch sizes, reduced survival, as well as reduction in the size of adults and offspring were recorded in the chronic assays. The most evident chronic effects were found in S. mixtus; in this species, reproduction was inhibited up to 72%, whereas D. magna was only affected by 24%. We determined that S. mixtus is a more sensitive test organism than D. magna to assess whole-sediment toxicity in tropical environments, and that chronic exposure bioassays are required for an integrated sediment evaluation. The sediments from "El Limón" lagoon induced chronic intoxication responses and, therefore, remediation measures are urgently needed to recover environmental conditions suitable for the development of its aquatic biota.

  8. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part II: salts, nutrients, and water quality.

    PubMed

    Bartlett, A J; Rochfort, Q; Brown, L R; Marsalek, J

    2012-01-01

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) features a tandem of stormwater management ponds, which receive inputs of multiple contaminants from highway and residential runoff. Previous research determined that benthic communities in the ponds were impacted by poor habitat quality, due to elevated sediment concentrations of metals and polycyclic aromatic hydrocarbons (PAHS), and salinity in the overlying water, but did not address seasonal changes, including those caused by the influx of contaminants with the snowmelt. In order to address this issue, water and sediment samples were collected from the TWSMF during the fall and spring, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed in a companion paper; the effects of road salt, nutrients, and water quality are discussed here. After exposure to fall samples, survival of Hyalella was reduced (64-74% of controls) at three out of four sites, but growth was not negatively affected. After exposure to spring samples, survival was 0-75% of controls at the two sites furthest downstream, and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site water overlying site sediment versus control water overlying site sediment. Toxicity appeared to be related to chloride concentrations: little or no toxicity occurred in fall samples (200 mg Cl(-)/L), and significant effects on survival and growth occurred in spring samples above 1550 mg Cl(-)/L and 380 mg Cl(-)/L, respectively. Sodium chloride toxicity tests showed similar results: four-week LC50s and EC25s (growth) were 1200 and 420 mg Cl(-)/L, respectively. Although water quality and nutrients were associated with effects observed in the TWSMF, chloride from road salt was the primary cause of toxicity in this study. Chloride persists during much of the year at concentrations representing a significant threat to benthic communities in the TWSMF. Copyright © 2011. Published by Elsevier B.V.

  10. Anodonta imbecillis copper sulfate reference toxicant test, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Toxicity testing of copper sulfate reference toxicant was conducted from May 12-21, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed an LC{sub 50} value of 1.12 mg Cu/L which is lower than the value of 2.02 mg Cu/L obtained inmore » a previous test. Too few tests have been conducted with copper as the toxicant to determine a normal range of values.« less

  11. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  12. Relative sensitivity of an amphipod Hyalella azteca, a midge Chironomus dilutus, and a unionid mussel Lampsilis siliquoidea to a toxic sediment

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Kunz, James L.; Hughes, Jamie P.; Wang, Ning; Ireland, D. Scott; Mount, David R.; Hockett, J. Russell; Valenti, Ted W

    2015-01-01

    The objective of the present study was to evaluate the relative sensitivity of test organisms in exposures to dilutions of a highly toxic sediment contaminated with metals and organic compounds. One dilution series was prepared using control sand (low total organic carbon [TOC; <0.1%, low binding capacity for contaminants]) and a second dilution series was prepared using control sediment from West Bearskin Lake, Minnesota, USA (high TOC [∼10% TOC, higher binding capacity for contaminants]). Test organisms included an amphipod (Hyalella azteca; 10-d and 28-d exposures), a midge (Chironomus dilutus; 20-d and 48-d exposures started with <1-h-old larvae, and 13-d and 48-d exposures started with 7-d-old larvae), and a unionid mussel (Lampsilis siliquoidea; 28-d exposures). Relative species sensitivity depended on the toxicity endpoint and the diluent. All 3 species were more sensitive in sand dilutions than in West Bearskin Lake sediment dilutions. The <1-h-old C. dilutus were more sensitive than 7-d-old C. dilutus, but replicate variability was high in exposures started with the younger midge larvae. Larval biomass and adult emergence endpoints of C. dilutus exhibited a similar sensitivity. Survival, weight, and biomass of H. azteca were more sensitive endpoints in 28-d exposures than in 10-d exposures. Weight and biomass of L. siliquoidea were sensitive endpoints in both sand and West Bearskin Lake sediment dilutions. Metals, ammonia, oil, and other organic contaminants may have contributed to the observed toxicity.

  13. Development of Reduced Sediment Volume Test Procedures for the Estuarine Amphipod Leptocheirus plumulosus

    EPA Science Inventory

    The sediment volume requirements of toxicity and bioaccumulation bioassays affect the cost of the assessment related to field collection, transportation, storage, disposal, and labor associated with organism recovery at bioassay termination. Our objective was to assess four redu...

  14. Environmental assessment of creosote-treated pilings in the marine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butala, J.H.; Webb, D.A.; Jop, K.M.

    1995-12-31

    A comprehensive ecological risk assessment was conducted to evaluate the environmental impact of creosote-treated pilings in the marine environment at Moss Landing Harbor, Moss Landing, California. Four areas of investigation comprising the risk assessment were (1) evaluation of environmental conditions around existing creosote-treated pilings (2) investigating effects related to restoration of pilings (3) assessing creosote migration into surrounding environment, one year after pile-driving and (4) confirmation of creosote toxicity in laboratory studies. Biological and chemical evaluation of the impact of creosote-treated pilings was conducted on surface sheen, water column and sediment samples collected at Moss Landing Harbor. Water samples (surfacemore » sheen, water column and sediment pore water) were evaluated using short-term chronic exposures with Mysidopsis bahia, while bulk sediment samples were evaluated with 10-day sediment toxicity tests with Ampelisca abdita. Samples of surface, column water and sediment were analyzed for the constituents of creosote by GC mass spectrometry. In addition, a sample of neat material used to preserve treated pilings represented a reference for the polyaromatic hydrocarbons. Verification of organism response and analyses of field collected samples was performed by conducting 10-day A. abdita sediment and 7-day M. bahia elutriate exposures with creosote applied to clean sediment collected at Moss Landing, Evaluations were also performed to determine the effects of photoinduced toxicity on test organisms exposed to PAHs. The biological and analytical results of the field and laboratory exposures are being used to evaluate and determine risk of creosote-treated pilings on the marine environment.« less

  15. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.

  16. WHAT’S CAUSING TOXICITY IN SEDIMENTS? RESULTS OF 20 YEARS OF TOXICITY IDENTIFICATION AND EVALUATIONS

    EPA Science Inventory

    Sediment toxicity identification and evaluation (TIE) methods have been used for 20 yr to identify the causes of toxicity in sediments around the world. In the present study, the authors summarize and categorize results of 36 peer-reviewed TIE studies (67 sediments) into nonioni...

  17. Toxicity testing of sediment collected in the vicinity of effluent discharges from seafood processing plants in the maritimes.

    PubMed

    Lalonde, Benoit A; Jackman, Paula; Doe, Ken; Garron, Christine; Aubé, Jamie

    2009-04-01

    There are over 1100 fish-processing plants in Canada and the majority of them discharge untreated effluents directly to marine or estuarine receiving environments. The purpose of this study was to evaluate chemical and toxicological characteristics of sediments near fish-processing plant effluent discharges to assess potential impacts of seafood-processing effluents on receiving environments. Eighteen sediment samples were collected near effluent discharges of six seafood-processing plant outfalls in New Brunswick, Canada in the winter of 2006. Ammonia levels ranged from <0.2 to 3480 microg/g, sulfide levels ranged from <0.4 to 6970 microg/g, and redox ranged from -255 to 443 mV. Only one sample had a Microtox Solid-Phase Test IC(50) value below 1000 mg/kg, whereas three samples caused greater than 30% reduction to amphipod survival. Redox, sulfide, and ammonia concentrations were all found to be significantly related to both Eohaustorius estuarius survival and Microto (Vibrio fischeri) IC(50). An increase in sulfide (R (2) = 0.584; 0.750) and ammonia (R (2) = 0.478; 0.552) and a decrease in redox (R (2) = 0.485; 0.651) were associated with an increase in toxicity to E. estuarius and Microtox, respectively. The highest toxicity to both test organisms, and the most contaminated sediments based on physical/chemical characteristics measured, was observed in samples from Blacks Harbour.

  18. Inter-lab testing of Hyalella azteca water and sediment methods: 3 Results from 10- to 42-d tests conducted with the new water-only method

    EPA Science Inventory

    Over the past four years, USEPA-Duluth, USGS-Columbia, the Illinois Natural History Survey, and Environment Canada have been conducting studies to refine the USEPA and ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with the amphipod Hya...

  19. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Lutz, Michelle A.; Ingersoll, Christopher G.; Dorman, Rebecca A.; Magruder, Christopher; Magruder, Matthew

    2017-01-01

    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison to the Probable Effect Concentrations and (or) the Equilibrium Partitioning Sediment Benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) measured significant reductions in one or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus.

  20. Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: A triad approach under low concentration conditions.

    PubMed

    Marziali, L; Rosignoli, F; Drago, A; Pascariello, S; Valsecchi, L; Rossaro, B; Guzzella, L

    2017-09-01

    The determination of sediment toxicity is challenging due to site-specific factors affecting pollutants distribution and bioavailability, especially when contamination levels are close to expected non-effect concentrations. Different lines of evidence and sensitive tools are necessary for a proper toxicity risk assessment. We examined the case study of the Toce River (Northern Italy), where past industrial activities determined Hg, DDT and As enrichment in sediments. A triad approach comprising chemical, ecotoxicological and ecological analyses (benthic invertebrates) was carried out for risk assessment of residual contamination in river sediments. A "blank" site upstream from the industrial site was selected to compare the other sites downstream. Sediment, water and benthic invertebrate samplings were carried out following standard protocols. Results emphasized that despite the emissions of the industrial site ceased about 20years ago, sediments in the downstream section of the river remain contaminated by Hg, DDT and As with concentrations exceeding Threshold Effect Concentrations. A chronic whole-sediment test with Chironomus riparius showed decreased development rate and a lower number of eggs per mass in the contaminated sediments. Benthic community was analyzed with the calculation of integrated (STAR_ICMi) and stressor-specific metrics (SPEAR pesticide and mean sensitivity to Hg), but no significant differences were found between upstream and downstream sites. On the other hand, multivariate analysis (partial Redundancy Analysis and variation partitioning) emphasized a slight impact on invertebrate community, accounting for 5% variation in taxa composition. Results show that legacy contaminants in sediments, even at low concentrations, may be bioavailable and possibly toxic for benthic invertebrates. At low concentration levels, sensitive and site-specific tools need to be developed for a proper risk analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Data on sediment quality and concentrations of polychlorinated biphenyls from the Lower Neponset River, Massachusetts, 2002-03

    USGS Publications Warehouse

    Breault, Robert F.; Cooke, Matthew G.; Merrill, Michael

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Executive Office of Environmental Affairs Department of Fish and Game Riverways Program, and the U.S. Environmental Protection Agency, studied sediment and water quality in the lower Neponset River, which is a tributary to Boston Harbor. Grab and core samples of sediment were tested for elements and organic compounds including polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. Physical properties of sediment samples, including grain size, were also measured. Selected sediment-core samples were tested for reactive sulfides and metals by means of the toxicity characteristic leaching procedure, which are sediment-disposal-related tests. Water quality, with respect to polychlorinated biphenyl contamination, was determined by testing samples collected by PISCES passive-water-column samplers for polychlorinated biphenyl congeners. Total concentrations of polychlorinated biphenyls were calculated by congener and by Aroclor.

  2. A preliminary survey of marine contamination from mining-related activities on Marinduque Island, Philippines: porewater toxicity and chemistry results from a field trip, October 14-19, 2000

    USGS Publications Warehouse

    Carr, R. Scott; Nipper, Marion; Plumlee, Geoffrey S.

    2001-01-01

    As a follow-up of an initial overview of environmental problems caused by mining activities on Marinduque Island, Philippines, USGS and TAMU-CC scientists went to Marinduque in October 2000 to do a preliminary assessment of potential impacts of mining-related activities on the marine environment. Like the previous visit in May 2000, the marine assessment was conducted at the invitation of Philippine Congressman Edmund O. Reyes. In this report we present the results of sediment porewater toxicity tests and chemical analyses. Toxicity tests consist of laboratory analyses for the assessment of adverse effects caused by environmental contaminants to animals or plants. Sediments (sand or mud) are known to accumulate contaminants (e.g., copper and other heavy metals). Therefore, it is common to perform toxicity tests using different phases of the sedimentary environment in order to analyze adverse effects of contaminants accumulated in the sediment. Sediment pore water (or interstitial water, i.e., the water distributed among the sediment grains) is a sedimentary phase which controls the bioavailability of contaminants to bottom dwelling aquatic organisms (both plants and animals). There are several different kinds of organisms with which toxicity tests can be performed. Among those, tests with sea urchin early life stages (gametes and embryos) are very common due to their high sensitivity to contaminants, ease of maintenance under laboratory conditions, and ecological importance, particularly in coral reefs. The basis of these tests is the exposure of gametes or embryos to the pore water to be analyzed for toxicity. If the pore water contains contaminants in levels that can adversely affect a number of marine species, fertilization and/or embryological development of sea urchins is inhibited. Chemical analyses provide additional information and aid in the interpretation of the toxicity test results. For the current study, chemical analyses were performed for the measurement of porewater concentrations of several heavy metals associated with copper mining activities. Pore waters for toxicological and chemical analyses were collected at several stations on the coast of Marinduque, near the mouths of the Boac and Mogpog rivers, and near the causeways formed by mine tailings disposal. Porewater samples were also collected at the Tres Reyes Marine Reserve, so that these non-contaminated samples could serve as a reference for test performance. Sea urchin embryological development and fertilization were only significantly impaired by two porewater samples, suggesting the presence of contaminants in toxic amounts at those stations. The toxic samples were collected near the up current side of the Calancan (Marcopper) mine tailings causeway (stations 2 and 3 – see figure 10). The pore water from station 2 also had the highest levels of heavy metals, particularly cadmium, cobalt, copper, nickel, lead and zinc (Table 5). The concentrations of cobalt, nickel and zinc were also elevated 2 at station 3. Copper concentrations were also elevated at the two river mouth stations (8 and 9) and near the CMI tailings causeway (station 7). Visual observations also indicated biological degradation due to heavy siltation and smothered coral at a gradient off the Calancan causeway, suggesting that siltation might also be causing a physical impact. This preliminary survey suggests that effects related to past mining activities are still evident and warrant a more comprehensive study to assess their severity and areal extent.

  3. Static renewal tests using Anodonta imbecillus (freshwater mussels). Anodonta imbecillis copper sulfate reference toxicant test, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Toxicity testing of copper sulfate reference toxicant was conducted from May 12--21, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed an LC{sub 50} value of 1.12 mg Cu/L which is lower than the value of 2.02 mg Cu/L obtained inmore » a previous test. Too few tests have been conducted with copper as the toxicant to determine a normal range of values. Attachments to this report include: Toxicity test bench sheets and statistical analyses; Copper analysis request and results; and Personnel training documentation.« less

  4. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary.

    PubMed

    Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach. Published by Elsevier Ltd.

  5. FIELD VALIDATION OF SEDIMENT TOXCITY IDENTIFCATION AND EVALUATION METHODS

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  6. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    PubMed

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    PubMed

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account for the sensitivity range within a community.

  8. Pore-water and epibenthic exposures in contaminated sediments using embryos of two estuarine fish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinski, J.A.; Anderson, S.L.

    1995-12-31

    The authors` objectives were to determine the feasibility of using embryos of two fish species, Menidia beryllina and Atherinops affinis, in estuarine sediment toxicity tests at ambient temperatures and salinities, and to compare pore-water and sediment water interface corer (SWIC) exposure techniques using these same species. The ultimate goal is to determine whether these pore-water and SWIC methods can be used in in situ exposure studies. Sediment samples were collected at both a reference and contaminated site at the Mare Island Naval Shipyard in San Francisco Bay. Pore-water testes were conducted using methods developed in the laboratory, and SWIC testsmore » were conducted using a modification of B. Anderson et al. Salinity and temperature tolerance experiments revealed that M. beryllina embryos can tolerate temperatures between 160 C and 240 C and salinities of 10 ppt to 25 ppt, whereas A. affinis has a temperature range between 160 C and 200 C. Comparisons between pore-water and SWIC exposures at a reference site within MINSY showed no significant difference in hatching success. However, hatching success in SWIC exposures was significantly lower than pore-water exposures at a previously characterized contaminated site. In conclusion, both M. beryllina and A. affinis embryos may be useful for sediment and in situ toxicity testing in estuarine environments. Their wide temperature and salinity tolerances allow for minimal test manipulations, and M. beryllina showed excellent hatching success in reference sediments for both types of exposures.« less

  9. APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...

  10. BIOASSESSMENT OF WADEABLE STREAMS IN USEPA REGION 8, USING THE EMAP CHEMISTRY INDICATOR, BENTHIC MACROINVERTEBRATE INDICATOR, WATER COLUMN TOXICITY TESTS, AND SEDIMENT TOXICITY TESTS

    EPA Science Inventory

    Almost 95% of the mineralized portion of the Rocky Mountains are contained in the Southern Rockies Ecoregion. For the past century, extensive mining of metals has occurred in this area. Runoff and drainage from both active and inactive mining sites have contaminated waters and s...

  11. Rapid Sediment Characterization Tools

    DTIC Science & Technology

    2008-09-01

    sensitive to organic and inorganic toxicants as mysid shrimp, silverside fish, chain diatoms, and sea urchins . The data from the bioassay can be...correlated with more conventional toxicity tests, such as amphipod and sea urchin development [17], [23]. The QwikLite Testing System™ can be used for...7 Barajas and Associates with Tetra Tech, op. cit. 8 Battelle, SEA Engineering and Neptune and Company. 2005

  12. A model compound study: the ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays.

    PubMed

    Macken, Ailbhe; Giltrap, Michelle; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2008-06-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone.

  13. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; effect of food ration on sediment toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.W.; Dillon, T.M.

    1993-09-01

    This report is designed to address concerns regarding the effect of food ration on toxicity during chronic sublethal sediment bioassays. To this end, a contaminated San Francisco Bay sediment and a clean control sediment were evaluated in a chronic sublethal test under a series of different food rations, with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Animals were exposed from early juvenile stage through the onset of gametogenesis. Treatments were 2.OX, 1.OX, 0.5X, and 0.25X where X is the recommended food ration for laboratory cultures. Test end points were survival, growth, and reproduction. The contaminated sediment was a composite ofmore » several cores taken to project depth (38 ft (11.6 m) below mean low water mark) from an area in Oakland Inner Harbor known to be contaminated with polycyclic aromatic hydrocarbons and metals. Comparisons were made with a clean control sediment. The control sediment is used in the laboratory cultures of N. arenaceodentata and was collected from Sequim, WA. Mean percent survival of Neanthes was high (>90 percent) in both the contaminated and control sediment across all food ration treatments. Individual wet weights were significantly reduced with decreasing food ration in both contaminated and control sediments. Significant differences in wet weight between sediment types were observed at the 1.OX, 0.5X, and 0.25X rations. Reproduction (fecundity and emergent juvenile (EJ) production) was also Chronic sublethal, Neanthes, Dredged material, San Francisco Bay, Food ration, Sediment.« less

  14. Comparative analysis of sediments from the coast of southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.W.; Tjeerdema, R.; Newman, J.

    1995-12-31

    Sediment samples were collected in the summer of 1994 along the coast of the Southern California Bight, from Point Conception to the boarder with Mexico. Agencies involved in the program included EPA (EMAP), NOAA (ORCA), the state of California (State Water Board, California Dept. of Fish and Game, the University of Calif., Santa Cruz), major municipal waste dischargers (cities of Los Angeles and San Diego, Los Angeles and Orange Counties), and their research organization, SCCWRP. The level of effort in certain regions (bays) was more intensive than on the open coast, since there was an attempt to find ``hot spots``.more » For some of these sites the sediments were analyzed for inorganic and organic contaminants, toxicity to amphipods and echinoderm larvae, and a biomarker (P450 reporter gene system; RGS). The findings from chemical and biological testing on sediments from Orange County to San Diego Bay will be presented to demonstrate the range of contamination and the responses of the test species. Further comparisons between the concentrations of key contaminants and biological measures of toxicity will describe the correlations found, and the likelihood of identifying hot spots with toxicological endpoints. A strong correlation was found for the relationship between PAHs in sediments and the induction of P450 in a screening test system (RGS).« less

  15. RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...

  16. Bioaccumulation and Toxicity of Uranium, Arsenic and Nickel to Juveniles and Adults Hyalella azteca in Spiked Sediment Bioassays.

    PubMed

    Goulet, Richard R; Thompson, Patsy-A

    2018-05-26

    Uranium mining and milling release arsenic (As), nickel (Ni) and uranium (U) to receiving waters, which accumulate in sediments. The objective of this study was to investigate if As, Ni and U concentrations in tissue residue of Hyalella azteca, overlying water, sediment pore water and solids could predict juvenile and adult survival and growth in similar conditions to lake sediments downstream of Uranium mines and mills. We conducted 14 day, static sediment toxicity tests spiked with uranium, arsenic and nickel salts. For uranium, we spiked uranyl nitrate with sodium bicarbonate to limit U precipitation once in contact with circumneutral sediment. LC 50 for As, Ni and U of juveniles and adults based on measured concentrations in sediments were 1.8 and 2.2 µmol As/g dw, 6.3 and 13.4 µmol Ni/g dw and 0.2 and 0.9 µmol U/g dw, respectively. Adult survival and growth linearly decreased with increasing bioaccumulation. For juveniles, metal accumulation linearly predicted survival. We calculated lethal body concentrations (LBC 50 ) for juveniles and adults of 70 and 485 nmol As/g dw, 246 and 832 nmol Ni/g dw and 1.7 and 4.4 nmol U/g dw, respectively. The concentrations of As, Ni and U in tissue residue leading to a 20% decrease in growth were 427 nmol As/g, 755 nmol Ni/g and 5 nmol U/g. Overall, this study showed that Uranium was the most toxic element followed by As and Ni, that juveniles were more sensitive to the three metals tested than adults and that threshold body concentrations can support assessment of benthic invertebrate community impairment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Toxicity of stormwater treatment pond sediments to Hyallela azteca (Amphipoda)

    USGS Publications Warehouse

    Karouna-Renier, N.K.; Sparling, D.W.

    1997-01-01

    Stormwater wetlands are created to contain runoff from human developments and are designed to retain contaminants such as heavy metals, petroleum hydrocarbons, silt, pesticides, and nutrients before the runoff enter natural waterways. Because of this design, stormwater wetlands have a potential of becoming toxic sinks to organisms utilizing the wetlands for habitat. We conducted a 10-day sediment bioassay on Hyallela azteca as part of a larger study on the possible hazards of stormwater wetlands to aquatic invertebrates. Water and sediments from 10 wetlands separated into reference, residential, commercial, and highway land uses were used. No differences in survival were observed among land use categories, possibly because the ratio of acid volatile sulfides/simultaneously extractable metals (AVS/SEM) was > 1.0 for all of the ponds tested; values > 1 in this ratio are indications that toxic metals may not be bioavailable. Survival and growth rates correlated positively with AVS.

  18. Do Toxicity Identification and Evaluation Laboratory-Based Methods Reflect Causes of Field Impairment?

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...

  19. CHARACTERIZATION AND ISOLATION OF ORGANIC TOXICANTS IN WHOLE SEDIMENT TOXICITY INDENTIFICATION EVALUATIONS (TIES)

    EPA Science Inventory

    Development of whole sediment toxicity identification and evaluation (TIEs) methods has been under way for approximately four years. These methods are necessary to define cause and effect relationships in toxic sediments during ecological risk assessments, remediation and disposa...

  20. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.

    PubMed

    Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S

    2003-10-01

    The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system.

  1. SEDIMENT TOXICITY AS AN INDICATOR OF CONTAMINANT STRESS IN EMAP-ESTUARIES

    EPA Science Inventory

    Toxicity of sediments is widely used in EPA, ACOE, and NOAA monitoring and regulatory programs as a complement to measuring of chemical concentrations as it provides an indication of the bioavailability of sediment contaminants. Sediment toxicity was included as an abiotic condit...

  2. Indices of benthic community tolerance in contaminated Great Lakes sediments: Relations with sediment contaminant concentrations, sediment toxicity, and the sediment quality triad

    USGS Publications Warehouse

    Wildhaber, M.L.; Schmitt, C.J.

    1998-01-01

    We evaluated the toxic-units model developed by Wildhaber and Schmitt (1996) as a predictor of indices of mean tolerance to pollution (i.e., Lenat, 1993; Hilsenhoff, 1987) and other benthic community indices from Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls – PCBs, polycyclic aromatic hydrocarbons – PAHs, pesticides, chlorinated dioxins, and metals). Sediment toxic units were defined as the ratio of the estimated pore-water concentration of a contaminant to its chronic toxicity as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC) or other applicable standard. The total hazard of a sediment to aquatic life was assessed by summing toxic units for all contaminants quantified. Among the benthic community metrics evaluated, total toxic units were most closely correlated with Lenat's (1993) and Hilsenhoff's (1987) indices of community tolerance (TL and TH, respectively); toxic units accounted for 42% TL and 53% TH of variability in community tolerance as measured by Ponar grabs. In contrast, taxonomic richness and Shannon-Wiener diversity were not correlated (P > 0.05) with toxic units. Substitution of order- or family-level identifications for lowest possible (mostly genus- or species-) level identifications in the calculation of TL and TH indices weakened the relationships with toxic units. Tolerance values based on order- and family-level identifications of benthos for artificial substrate samples were more strongly correlated with toxic units than tolerance values for benthos from Ponar grabs. The ability of the toxic-units model to predict the other two components (i.e., laboratory-measured sediment toxicity and benthic community composition) of the Sediment Quality Triad (SQT) may obviate the need for the SQT in some situations.

  3. DETERMINING THE CAUSES OF ADVERSE EFFECTS IN NEAR COASTAL ECOSYSTEMS: FROM TOXICITY IDENTIFICATION EVALUATIONS TO WATERSHED DIAGNOTICS

    EPA Science Inventory

    Several approaches are available for evaluating adverse effects in near coastal ecosystems. These range from performing toxicity tests with individual organisms on water column and sediment samples to conducting macrofaunal compositional analyses on pelagic and benthic communiti...

  4. Sediment Ecotoxicity Assessment Ring Verification Report and Statement

    EPA Science Inventory

    The SEA Ring (U.S. Patent No. 8,011,239) is an integrated, field tested, toxicity and bioavailability assessment device. This device was developed at SPAWAR in San Diego, California and is commercially available from Zebra-Tech, Ltd. The SEA Ring was designed to evaluate toxicity...

  5. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    NASA Astrophysics Data System (ADS)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  6. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).

    PubMed

    Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J

    2014-06-01

    Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment.

    PubMed

    Cristale, Joyce; García Vázquez, Alejandro; Barata, Carlos; Lacorte, Silvia

    2013-09-01

    The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2μgL(-1)) and sediments (ΣOPFRs ranging 3.8 to 824μgkg(-1)). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812μgkg(-1) and decabromodiphenyl ethane (DBDPE) reached 435μgkg(-1) in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31-381mgL(-1)). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs <1) was observed for any of the monitored rivers. © 2013.

  8. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method

    PubMed Central

    Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian

    2016-01-01

    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate. PMID:28009808

  9. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method.

    PubMed

    Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian

    2016-12-21

    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri , zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH₄⁺-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri . The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH₄⁺-N, and acute bio-toxicity of landfill leachate.

  10. Evaluation of cytotoxicity, genotoxicity and teratogenicity of marine sediments from Qingdao coastal areas using in vitro fish cell assay, comet assay and zebrafish embryo test.

    PubMed

    Yang, Fan; Zhang, Qianqian; Guo, Huarong; Zhang, Shicui

    2010-10-01

    Marine sediments are often a final sink for numerous anthropogenic contaminants and may impose serious effects on benthic organisms and ecosystem. An in vitro cell assay using a cell line derived from flounder gill (FG) cells, an in vitro comet assay in FG cells, and an in vitro zebrafish embryo assay were used to evaluate the in vitro cytotoxicity (measured by MTT reduction), genotoxicity and teratogenicity of crude sediment extracts of Li Cang (LC), Zhan Qiao (ZQ) and Olympic Sailing Center (OSC) from Qingdao coastal area. Sediments from the three sites displayed different cytotoxicity, genotoxicity and teratogenicity potencies; however, all three assays yielded similar LOECs (lowest observed effect concentration) for each site, suggesting that the assays were equally sensitive to and suitable for initial screening of the LOECs of marine sediments. The cytotoxicity, genotoxicity and teratogenicity for these three sampling sites were in the same order of LC>ZQ>OSC, indicating different degrees of contamination. Interestingly, trials with the three sediment extracts at the doses inducing a similar cytotoxicity as evaluated with MTT reduction did not produce similar genotoxicity and teratogenicity, with the genotoxic and teratogenic activities of LC and ZQ extracts being markedly higher than those of OSC sediments. These findings indicate that cytotoxicity does not form a fully equivalent toxicity index with that of genotoxicity and teratogenicity. Therefore, in order to assess the true toxic potential of marine sediments, all three assays should be performed. Analysis of 16 EPA (US Environmental Protection Agency) priority PAHs in these three sediment samples showed a clear correlation between PAH concentrations and sediment toxicities, with a higher PAH content corresponding to higher toxicity although PAHs are surely not the only cause. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries.

    PubMed

    Wallin, Jaana; Karjalainen, Anna K; Schultz, Eija; Järvistö, Johanna; Leppänen, Matti; Vuori, Kari-Matti

    2015-03-01

    Acidity and leaching of metals from acid sulphate soils (ASSs) impair the water quality of receiving surface waters. The largest ASS areas in Europe are found in the coasts of the northern Baltic Sea. We used weight-of-evidence (WoE) approach to assess potential risks in 14 estuary sites affected by ASS in the Gulf of Finland, northern Baltic Sea. The assessment was based on exposure and effect profiles utilizing sediment and water metal concentrations and concurrent pH variation, sediment toxicity tests using the luminescent bacterium Vibrio fischeri and the midge Chironomus riparius, and the ecological status of benthic macroinvertebrate communities. Sediment metal concentrations were compared to national sediment quality criteria/guidelines, and water metal concentrations to environmental quality standards (EQSs). Hazard quotients (HQs) were established for maximum aluminium, cadmium and zinc concentrations at low pH based on applicable US EPA toxicity database. Sediment metal concentrations were clearly elevated in most of the studied estuaries. The EQS of cadmium (0.1 μg/l) was exceeded in 3 estuaries out of 14. The pH-minima were below the national threshold value (5.5) between good and satisfactory water quality in 10 estuaries. V. fischeri bioluminescence indicated toxicity of the sediments but toxic response was not observed in the C. riparius emergence test. Benthic invertebrate communities were deteriorated in 6 out of 14 sites based on the benthic invertebrate quality index. The overall ecotoxicological risk was assessed as low in five, moderate in three and high in five of the estuary sites. The risk assessment utilizing the WoE approach indicated that harmful effects of ASSs are likely to occur in the Baltic Sea river estuaries located at the ASS hotspot area. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  13. Bioavailability Assessment of a Contaminated Field Sediment from Patrick Bayou, Texas, USA: Toxicity Identification Evaluation and Equilibrium Partitioning

    EPA Science Inventory

    Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity become...

  14. Ecotoxicological Response of Marine Organisms to Inorganic and Organic Sediment Amendments in Laboratory Exposures

    DTIC Science & Technology

    2011-08-15

    toxicity tests involving lethal and sublethal endpoints were conducted on sediments amended with apatite, organoclay, chitin , or acetate, with the polychaete...the test organisms. Chitin and acetate, however, repetitively resulted in adverse effects on survival and/or adverse or positive effects on organism...dissolved oxygen concentration, for chitin and acetate, respectively) as a result of the microbial breakdown of the amendments. For N. arenaceodentata

  15. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays.

    PubMed

    Charry, Maria P; Keesing, Vaughan; Costello, Mark; Tremblay, Louis A

    2018-01-01

    Urban estuarine sediments are sinks to a range of contaminants of anthropogenic origin, and a key challenge is to characterize the risk of these compounds to receiving environments. In this study, the toxicity of urban estuarine sediments was tested using acute and chronic bioassays in the benthic harpacticoid Quinquelaophonte sp., and in the planktonic calanoid Gladioferens pectinatus , two New Zealand copepod species. The sediment samples from the estuary tributary sites significantly impacted reproduction in Quinquelaophonte sp. However, results from one of the estuary sites were not significantly different to those from the tributaries sites, suggesting that chemicals other than trace metals, polycyclic aromatic hydrocarbons and ammonia may be the causative stressors. Sediment elutriate samples had significant effects on reproductive endpoints in G. pectinatus , and on the induction of DNA damage in cells, as shown by the comet assay. The results indicate that sediment contamination at the Ahuriri Estuary has the potential to impact biological processes of benthic and pelagic organisms. The approach used provides a standardized methodology to assess the toxicity of estuarine sediments.

  16. PHOTOINDUCED TOXICITY OF FLUORANTHENE TO SEVEN MARINE BENTHIC CRUSTACEANS

    EPA Science Inventory

    Seven marine benthic crustaceans were exposed in 4 d water-only toxicity tests to five concentrations of fluoranthene.After exposures, mortality (LC50) and the ability to bury in clean sediment (EC50) were determined. Survivors were then exposed to UV radiation for 1 h. The diffe...

  17. What’s Causing Toxicity in Sediments? Results of Twenty Years of Toxicity Identification and Evaluations (TIEs)

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIEs) methods have been used for twenty years to identify the causes of toxicity in sediments around the world. We summarized and categorized results of more than 80 peer-reviewed TIE studies into non-ionic organic, cationic, ammo...

  18. Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes

    NASA Astrophysics Data System (ADS)

    Landolt, Marsha L.; Kocan, Richard M.

    1984-03-01

    The cost of conducting conventional chronic bioassays with every potentially toxic compound found in marine ecosystems is prohibitive; therefore short-term toxicity tests which can be used for rapid screening were developed. The tests employ cultured fish cells to measure lethal, sublethal or genotoxic effects of pure compounds and complex mixtures. The sensitivity of these tests has been proven under laboratory conditions; the following study used two of these tests, the anaphase aberration test and a cytotoxicity assay, under field conditions. Sediment was collected from 97 stations within Puget Sound, Washington. Serial washings of the sediment in methanol and dichloromethane yielded an organic extract which was dried, dissolved in DMSO and incubated as a series of dilutions with rainbow trout gonad (RTG-2) cells. The toxic effects of the extract were measured by examining the rate of cell proliferation and the percentage of damaged anaphase figures. Anaphase figures were considered to be abnormal if they exhibited non-disjunctions, chromosome fragments, or chromosome bridges. A second cell line (bluegill fry, BF-2) was also tested for cell proliferation and was included because, unlike the RTG-2 cell line, it contains little or no mixed function oxygenase activity. Of 97 stations tested, 35 showed no genotoxic activity, 42 showed high genotoxic activity (P≤.01) and the remainder were intermediate. Among the toxic sites were several deep water stations adjacent to municipal sewage outfalls and four urban waterways contaminated by industrial and municipal effluents. Extracts from areas that showed genotoxic effects also inhibited cell proliferation and were cytotoxic to RTG-2 cells. Few effects were noted in the MFO deficient BF-2 cells. Short term in vitro tests provide aquatic toxicologists with a versatile and cost effective tool for screening complex environments. Through these tests one can identify compounds or geographic regions that exhibit high cytotoxic or genotoxic potential.

  19. Oxidative stress induced on Cyprinus carpio by contaminants present in the water and sediment of Madin Reservoir.

    PubMed

    Galar-Martinez, Marcela; Gomez-Olivan, Leobardo Manuel; Amaya-Chavez, Araceli; Razo-Estrada, Celene; Garcia-Medina, Sandra

    2010-01-01

    Madin Reservoir (MR), located in the State of Mexico, is fed mainly by the Rio Tlalnepantla. MR supplies potable water to the municipalities of Naucalpan and Atizapan, and various recreational activities take place in its vicinity, such as sailing and the fishing of diverse species including the common carp Cyprinus carpio. The purpose of this study was to determine the toxic effects of contaminants present in MR water and sediment on C. carpio. Five sampling stations were selected (those considered to have the most problems due to discharges). Water and sediment samples were taken and toxicity studies were performed, including acute toxicity (lethality) and subacute toxicity assays. The biomarkers used in the subacute assays were lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in the liver and brain of test organisms. These biomarkers were also evaluated in local carp, i.e. carp with chronic exposure in situ to reservoir contaminants. Results show that contaminants in the water and sediment of the different sampling stations induce oxidative stress, this toxicity being more evident in samples from stations near the entry point of the Rio Tlalnepantla tributary and in local carp. This may be due to high contaminant levels as well as the fact that the physicochemical characteristics of the matrices might favor their bioavailability. Thus, both the water and sediment of this reservoir are contaminated with xenobiotics hazardous to C. carpio, a species consumed by the local human population.

  20. Interlaboratory testing of 42-d Hyalella azteca survival, growth and reproduction method with sediment and water-only exposures

    EPA Science Inventory

    Over the past four years, USEPA-Duluth, USGS-Columbia, the Illinois Natural History Survey, and Environment Canada have conducted studies to refine the USEPA/ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with Hyalella azteca. In advanc...

  1. Effects of Environmental Toxicants on Metabolic Activity of Natural Microbial Communities

    PubMed Central

    Barnhart, Carole L. H.; Vestal, J. Robie

    1983-01-01

    Two methods of measuring microbial activity were used to study the effects of toxicants on natural microbial communities. The methods were compared for suitability for toxicity testing, sensitivity, and adaptability to field applications. This study included measurements of the incorporation of 14C-labeled acetate into microbial lipids and microbial glucosidase activity. Activities were measured per unit biomass, determined as lipid phosphate. The effects of various organic and inorganic toxicants on various natural microbial communities were studied. Both methods were useful in detecting toxicity, and their comparative sensitivities varied with the system studied. In one system, the methods showed approximately the same sensitivities in testing the effects of metals, but the acetate incorporation method was more sensitive in detecting the toxicity of organic compounds. The incorporation method was used to study the effects of a point source of pollution on the microbiota of a receiving stream. Toxic doses were found to be two orders of magnitude higher in sediments than in water taken from the same site, indicating chelation or adsorption of the toxicant by the sediment. The microbiota taken from below a point source outfall was 2 to 100 times more resistant to the toxicants tested than was that taken from above the outfall. Downstream filtrates in most cases had an inhibitory effect on the natural microbiota taken from above the pollution source. The microbial methods were compared with commonly used bioassay methods, using higher organisms, and were found to be similar in ability to detect comparative toxicities of compounds, but were less sensitive than methods which use standard media because of the influences of environmental factors. PMID:16346432

  2. Evaluation of toxicity of polluted marine sediments from Bahia Salina Cruz, Mexico.

    PubMed

    Gonzalez-Lozano, Maria Cristina; Mendez-Rodriguez, Lia C; Maeda-Martinez, Alejandro M; Murugan, Gopal; Vazquez-Botello, Alfonso

    2010-01-01

    Bahia Salina Cruz, Oaxaca, Mexico is a major center of oil and refined product distribution on the Mexican Pacific coast. From the start of oil industry operations in 1979, negative effects from discharges of treated effluents in the bay have been a constant concern for local communities. We analyzed 28 surface sediment samples obtained in June, 2002 to evaluate the level of toxicity in the littoral zone, port-harbor, and La Ventosa estuary in Bahia Salina Cruz. The extractable organic matter concentration was high (1,213 to 7,505 micro g g(-1)) in 5 of 7 stations from the port and harbor, whereas it was low in 12 of 16 stations in the littoral zone (36 to 98 micro g g(-1)). The total aromatic hydrocarbon concentration was highest (57 to 142 micro g g(-1)) in the port and harbor compared to the La Ventosa estuary and the littoral zone. Among the heavy metals analyzed, cadmium exceeded the effects range-low values associated with adverse biological effects. The geo-accumulation index of sediments was moderate to strong contamination at 5 stations in the nonlittoral and 6 stations in the littoral zone. The enrichment of lead, zinc, and cadmium at 5 stations from the littoral, port, and harbor suggest that these metals are of anthropogenic origin. Bioassay tests of elutriates of sediments on nauplii of Artemia franciscana and Artemia sp. showed that the port and harbor were more toxic than the La Ventosa estuary and the coastal zone. The Microtox test (Vibrio fischeri) did not show a similar response with the solid phase of the sediments. The results of this study indicate that the high levels of organic content and metals in the sediments of port-harbor and the La Ventosa estuary are mainly caused by anthropogenic activities.

  3. Final summary of the laboratory culture and toxicity testing of juvenile western pearlshell (Margaritifera falcata) native to the western United States: Expansion of freshwater mussel water and sediment toxicity testing methods

    EPA Science Inventory

    A Regional Applied Research Effort project with EPA Region 10, ORD and USGS was initiated as a result of a baseline ecological risk assessment (BERA) problem formulation for the Upper Columbia River (UCR) site in northwest Washington. The UCR site is a 165-mile stretch of the Col...

  4. DO TIE LABORATORY BASED METHODS REALLY REFLECT FIELD CONDITIONS

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...

  5. Sediment-quality assessment of the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Shelton, J.L.; Bogenrieder, K.J.

    2004-01-01

    Sediment quality was assessed at multiple sites in the lower Oconee River, GA to identify contaminants potentially affecting the survival of an endemic ?At-Risk? species of fish, the robust redhorse (Moxostoma robustum). Five major tributaries that drain urban and agricultural watersheds enter this stretch of river and several carry permitted municipal and industrial effluents containing Cd, Cu, and Zn. Sediments for chemical analyses and toxicity tests with Hyalella azteca (Amphipoda) were collected at 12 locations that included sites above and below the major tributaries. Compared to national data bases and to the nearby Apalachicola-Chattahoochee-Flint watershed, sediments from the Oconee River had elevated concentrations of Cr, Cu, Hg and Zn. Zinc concentrations showed a marked increase in sediment downstream of the confluence of Buffalo Creek demonstrating contributions from permitted municipal and industrial effluents discharged to that tributary. When exposed to these sediments, growth of H. azteca was significantly reduced. Amphipod growth was also reduced when exposed to sediments collected from another site due to toxicity from Cr. Sediments in the lower Oconee River appear to be impaired due to metal contamination and could pose a threat to organisms, such as the robust redhorse, that are closely associated with this matrix during their life cycle.

  6. Assessing the environmental fate of S-metolachlor, its commercial product Mercantor Gold® and their photoproducts using a water-sediment test and in silico methods.

    PubMed

    Gutowski, Lukasz; Baginska, Ewelina; Olsson, Oliver; Leder, Christoph; Kümmerer, Klaus

    2015-11-01

    Pesticides enter surface and groundwater by several routes in which partition to sediment contributes to their fate by abiotic (e.g. photolysis, hydrolysis) and biotic processes. Yet, little is known about S-metolachlor (SM) transformation in water-sediment systems. Therefore, a newly developed screening water-sediment test (WST) was applied to compare biodegradation and sorption processes between pure SM and Mercantor Gold® (MG), a commercial formulation of SM. Photolysis in water was performed by Xe lamp irradiation. Subsequently, the biodegradability of SM and MG photolysis mixtures was examined in WST. The primary elimination of SM from water phase was monitored and structures of its TPs resulting from biotransformation (bio-TPs) were elucidated by LC-MS/MS. SM was extracted from sediment in order to estimate the role of sorption in WST for its elimination. A set of in silico prediction software tools was applied for toxicity assessment of SM and its bio-TPs. Obtained results suggest that the MG adjuvants do not significantly affect biodegradation, but do influence diffusion of SM into sediment. 50% of SM could not be re-extracted from sediment with 0.01 M CaCl2 aqueous solution recommended in OECD test guideline for adsorption. Neither the parent compound nor the photo-TPs were biodegraded. However, new bio-TPs have been generated from SM and MG photo-TPs due to bacterial activity in the water-sediment interphase. Moreover, according to in silico assessment of the bio-TPs the biotransformation might lead to an increased toxicity to the water organisms compared with the SM. This might raise concerns of bio-TPs presence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pollutant Concentrations and Toxic Effects on the Red Alga Ceramium tenuicorne of Sediments from Natural Harbors and Small Boat Harbors on the West Coast of Sweden.

    PubMed

    Eklund, Britta; Hansson, Tomas; Bengtsson, Henrik; Eriksson Wiklund, Ann-Kristin

    2016-04-01

    This investigation set out to analyze the toxicity of surface sediments in a number of natural harbors and small boat harbors on the west coast of Sweden. This was done with the growth inhibition method with Ceramium tenuicorne. Also, concentrations of copper (Cu), lead (Pb), zinc (Zn), irgarol, organotin compounds, and polycyclic aromatic hydrocarbons (PAHs) in the sediments were analyzed. The small boat harbors were heavily polluted by Cu, Zn, butyltins, and PAHs, and to a lesser extent by Pb. The Cu, Pb, Zn, and butyltins probably originated from their past and/or present use in antifouling paints, whereas the PAHs probably had multiple sources, including boat motor exhausts. The measured toxicity of the sediment was generally related to their Cu, Zn, and butyltin content, although other toxic substances than those analyzed here probably contributed to the toxicity in some of the harbors. The natural harbor sediments contained less pollutants and were less toxic than the small boat harbor sediments. Nevertheless, our data indicate that the boating pressure today may be high enough to produce toxic effects even in natural harbors in pristine areas. The strongest relationship between toxicity and the major pollutants was obtained when the sediment toxicity was expressed as gram wet weight per liter compared with gram dry weight per liter and gram total organic carbon per liter. Hence, for pollutants that can be elutriated with natural sea water, sediment toxicity expressed as gram wet weight per liter appears preferable.

  9. DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  10. AN OVERVIEW OF TOXICANT IDENTIFICATION IN SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation?s waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. K...

  11. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D

    Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less

  13. SYNTHETIC-BASED DRILLING FLUIDS: AN ASSESSMENT OF THE SPATIAL DISTRIBUTION OF TOXICANTS IN SEDIMENTS FROM GULF OF MEXICO DRILLING PLATFORMS

    EPA Science Inventory

    Use of the amphipods, Leptocheirus plumulosus and Ampelisca abdita, in these bioassays presented no major difficulties in the execution of these test protocols. Sensitivity to the toxicants was exhibited by L. plumulosus and survival of control animals was good suggesting the sui...

  14. A summary of chemical and biological testing of proposed disposal of sediment from Richmond Harbor relative to the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.

    The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposalmore » at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.« less

  15. FIELD VALIDATION OF SEDIMENT TIE METHODS

    EPA Science Inventory

    Sediment toxicity is a widely recognized problem in many regions of the world. Frequently, however, the cause of toxicity is not known. The ability to identify the cause(s) of toxicity in sediments allows managers to determine sources of continuing contamination to support sele...

  16. Inter-lab testing of Hyalella azteca water and sediment methods: 1 Summary of 10- to 42-d data from 25 laboratories

    EPA Science Inventory

    Over the past four years, USEPA Duluth, USGS Columbia, the Illinois Natural History Survey, and Environment Canada have been conducting studies to refine the USEPA and ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with the amphipod Hya...

  17. Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns.

    PubMed

    Li, Huizhen; Sun, Baoquan; Lydy, Michael J; You, Jing

    2013-04-01

    Pesticide use patterns in China have changed in recent years; however, the study of the environmental fate of current-use pesticides (CUPs) and their ecotoxicological significance in aquatic ecosystems is limited. In the present study, sediments were collected from an urban stream in the Chinese city of Guangzhou. Sediment-associated legacy organochlorine pesticides and CUPs-including organophosphates, pyrethroids, fipronil, and abamectin-were analyzed. Additionally, the relative toxicity of the sediments was evaluated with 10-d bioassays using Chironomus dilutus. Fifteen of 16 sediments collected from the stream were acutely toxic to C. dilutus, with 81% of the samples causing 100% mortality. Abamectin, fipronil, and pyrethroids (mainly cypermethrin) were identified as the principal contributors to the noted toxicity in the midges, with median predicted toxic units of 1.63, 1.63, and 1.03, respectively. Sediments taken from downstream sites, where residential and industrial regions were located, had elevated CUP concentrations and sediment toxicity compared with upstream sites. The present study is the first of its kind to link sediment CUPs, fipronil, and abamectin concentrations with toxicity in urban streams in China with a focus on shifting pesticide usage patterns. Copyright © 2013 SETAC.

  18. Diffusive gradients in thin films technique provide robust prediction of metal bioavailability and toxicity in estuarine sediments.

    PubMed

    Amato, Elvio D; Simpson, Stuart L; Jarolimek, Chad V; Jolley, Dianne F

    2014-04-15

    Many sediment quality assessment frameworks incorporate contaminant bioavailability as a critical factor regulating toxicity in aquatic ecosystems. However, current approaches do not always adequately predict metal bioavailability to organisms living in the oxidized sediment surface layers. The deployment of the diffusive gradients in thin films (DGT) probes in sediments allows labile metals present in pore waters and weakly bound to the particulate phase to be assessed in a time-integrated manner in situ. In this study, relationships between DGT-labile metal fluxes within 5 mm of the sediment-water interface and lethal and sublethal effects to the amphipod Melita plumulosa were assessed in a range of contaminated estuarine sediments during 10-day laboratory-based bioassays. To account for differing toxicities of metals, DGT fluxes were normalized to water (WQG) or sediment quality guidelines or toxicity thresholds specific for the amphipod. The better dose-response relationship appeared to be the one based on WQG-normalized DGT fluxes, which successfully predicted toxicity despite the wide range of metals and large variations in sediment properties. The study indicated that the labile fraction of metals measured by DGT is useful for predicting metal toxicity to benthic invertebrates, supporting the applicability of this technique as a rapid monitoring tool for sediments quality assessments.

  19. Chemical and ecotoxicological characterization of Columbia River sediments below the Hanford site (USA).

    PubMed

    Delistraty, Damon; Yokel, Jerry

    2007-01-01

    Columbia River sediments were characterized (metals, organics, porewater toxicity) with samples (n=12) from four dams below the Hanford site. Analyses were supplemented with colocated radionuclide data, along with comparable data from the Priest Rapids dam, immediately upriver from Hanford. Although not statistically significant (Bonferroni P>0.05), metals were generally highest at Priest Rapids, relative to downriver dams. Semivolatiles, Aroclors, and organochlorine pesticides were below method reporting limits. Radionuclide differences across locations were minor (Bonferroni P>0.05). Whereas Microtox showed little toxicity, Daphnia IQ tests exhibited measurable toxicity at all locations (EC50 = 22 - 78% porewater). Ecotoxicological benchmarks for metals were exceeded at several locations, most notably at Priest Rapids. Except for K-40, radionuclides were below benchmarks. Overall, chemistry and ecotoxicity results suggested that sediments may pose a risk to benthic biota, likely due to metals (derived largely from upriver mining) or factors associated with a reducing environment (e.g., low oxygen, high ammonia).

  20. TOXICITY IDENTIFICATION EVALUATION (TIE) RESULTS FOR METAL CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Identification of contaminants in sediment is necessary for sound management decisions on sediment disposal, remediation, determination of ecological risk, and source identification. We have been developing sediment toxicity identification evaluation (TIE) techniques that allow ...

  1. Occurrence and concentrations of selected trace elements, halogenated organic compounds, and polycyclic aromatic hydrocarbons in streambed sediments and results of water-toxicity testing in Westside Creeks and the San Antonio River, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    Sediment samples and samples for water-toxicity testing were collected during 2014 from several streams in San Antonio, Texas, known locally as the Westside Creeks (Alazán, Apache, Martínez, and San Pedro Creeks) and from the San Antonio River. Samples were collected during base flow and after periods of stormwater runoff (poststorm conditions) to determine baseline sediment- and water-quality conditions. Streambed-sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, polychlorinated biphenyls (PCBs), brominated flame retardants, and polycyclic aromatic hydrocarbons (PAHs). Potential risks of contaminants in sediment were evaluated by comparing concentrations of contaminants in sediment to two effects-based sediment-quality guidelines: (1) a lower level, called the threshold effect concentration, below which, harmful effects to benthic biota are not expected, and (2) a higher level, the probable effect concentration (PEC), above which harmful effects are expected to occur frequently. Samples for water-toxicity testing were collected from each stream to provide information about fish toxicity in the study area. The trace metal lead was detected at potentially toxic concentrations greater than the PEC in both the base-flow and poststorm samples collected at two sites sampled on San Pedro Creek. The PECs for the pesticides dichlorodiphenyldichloroethane, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, and chlordane were exceeded in some of the samples at the same two sites on San Pedro Creek. Brominated flame retardants and polybrominated diphenyl ether (PBDE) 85, 153, and 154 were found in all streambed-sediment samples. Federal Environmental Quality Guidelines established by Environment Canada for PBDE 99 and PBDE 100 were exceeded in all samples in which PBDE 99 was detected and in a majority of the samples in which PBDE 100 was detected; the greatest concentrations occurred in samples collected at the same two sites on San Pedro Creek where the samples containing elevated lead and pesticide concentrations were collected. All concentrations of total PCBs (computed as the sum of the 18 reported PCB congeners) in the individual streambed-sediment samples were less than the threshold effect concentration, but the concentrations were elevated in the two sites on San Pedro Creek compared to concentrations at other sites. At one site on Apache Creek, 6 of the individual PAHs measured in the sample collected during base-flow conditions exceeded the PECs and 8 of the 9 PECs were exceeded in the sample collected during poststorm conditions. The total PAH concentration in the sample collected at the site during poststorm conditions was 3.3 times greater than the PEC developed for total PAHs. Average PAH profiles computed for base-flow samples and poststorm samples most closely resemble the parking lot coal-tar sealcoat dust PAH source profile, defined as the average PAH concentrations in dust swept from parking lots in six cities in the United States that were sealed with a black, viscous liquid containing coal-tar pitch. Six of ten water samples collected during base-flow conditions caused reductions in Pimephales promelas (fathead minnow) survival and were considered to be toxic.

  2. Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont

    USGS Publications Warehouse

    Seal, Robert R.; Kiah, Richard G.; Piatak, Nadine M.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Argue, Denise M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2010-01-01

    The information was used to develop an overall assessment of the impact on the aquatic system that appears to be a result of the acid rock drainage at the Ely Mine. More than 700 meters of Ely Brook, including two of the six ponds, were found to be severely impacted, on the basis of water-quality data and biological assessments. The reference location was of good quality based on the water quality and biological assessment. More than 3,125 meters of Schoolhouse Brook are also severely impacted, on the basis of water-quality data and biological assessments. The biological community begins to recover near the confluence with the Ompompanoosuc River. The evidence is less conclusive regarding the Ompompanoosuc River. The sediment data suggest that the sediments could be a source of toxicity in Ely Brook and Schoolhouse Brook. The surface-water assessment is consistent with the outcome of a surface-water toxicity testing program performed by the U.S. Environmental Protection Agency for Ely Brook and Schoolhouse Brook and a surface-water toxicity testing program and in situ amphibian testing program for the ponds.

  3. Levels of PAHs in the Waters, Sediments, and Shrimps of Estero de Urias, an Estuary in Mexico, and Their Toxicological Effects

    PubMed Central

    Jaward, Foday M.; Alegria, Henry A.; Galindo Reyes, Jose G.; Hoare, Armando

    2012-01-01

    PAHs were measured in water, sediment, and shrimps of Estero de Urias, an estuary in Sinaloa, Mexico, during the rainy and dry seasons, and analyzed for eleven PAHs routinely detected in samples. Phenanthrene was the most dominant congener in the water, sediment, and shrimp samples comprising about 38, 24, and 25%, respectively, of the eleven PAHs detected, followed by pyrene and naphthalene in water and sediment samples, and pyrene and fluorine in the shrimp samples. Total PAH concentrations ranged from 9 to 347 ng/L in water, 27 to 418 ng/g in sediments, and 36 to 498 ng/g in shrimps. The sources of contamination are closely related to human activities such as domestic and industrial discharge, automobile exhausts, and street runoff. High concentrations were also measured during the rainy season and during the first quarter of the year. Toxicity tests were also carried out, exposing fish embryos and juvenile shrimps to some of these PAHs. Fish embryos exposed to PAHs showed exogastrulation, while juvenile shrimps showed significantly lower growth rates than controls. DNA and protein alterations were also observed. These toxicity tests indicate that PAH concentrations measured could be dangerous to some aquatic organisms, particularly during early stages of development. PMID:22997501

  4. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis copper sulfate reference toxicant/food test, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6--15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Although significant reduction in growth, compared tomore » the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups. Attachments to this report include: Toxicity test bench sheets and statistical analyses; and Copper analysis request and results.« less

  5. EFFECT OF NITRATE-BASED BIOREMEDIATION ON CONTAMINANT DISTRIBUTION AND SEDIMENT TOXICITY-COLUMN STUDY

    EPA Science Inventory

    A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...

  6. Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy.

    PubMed

    Garcia-Käufer, M; Gartiser, S; Hafner, C; Schiwy, S; Keiter, S; Gründemann, C; Hollert, H

    2015-11-01

    The embryotoxic potential of three model sediment samples with a distinct and well-characterized pollutant burden from the main German river basins Rhine and Elbe was investigated. The Fish Embryo Contact Test (FECT) in zebrafish (Danio rerio) was applied and submitted to further development to allow for a comprehensive risk assessment of such complex environmental samples. As particulate pollutants are constructive constituents of sediments, they underlay episodic source-sink dynamics, becoming available to benthic organisms. As bioavailability of xenobiotics is a crucial factor for ecotoxicological hazard, we focused on the direct particle-exposure pathway, evaluating throughput-capable endpoints and considering toxicokinetics. Fish embryo and larvae were exposed toward reconstituted (freeze-dried) sediment samples on a microcosm-scale experimental approach. A range of different developmental embryonic stages were considered to gain knowledge of potential correlations with metabolic competence during the early embryogenesis. Morphological, physiological, and molecular endpoints were investigated to elucidate induced adverse effects, placing particular emphasis on genomic instability, assessed by the in vivo comet assay. Flow cytometry was used to investigate the extent of induced cell death, since cytotoxicity can lead to confounding effects. The implementation of relative toxicity indices further provides inter-comparability between samples and related studies. All of the investigated sediments represent a significant ecotoxicological hazard by disrupting embryogenesis in zebrafish. Beside the induction of acute toxicity, morphological and physiological embryotoxic effects could be identified in a concentration-response manner. Increased DNA strand break frequency was detected after sediment contact in characteristic non-monotonic dose-response behavior due to overlapping cytotoxic effects. The embryonic zebrafish toxicity model along with the in vivo comet assay and molecular biomarker analysis should prospectively be considered to assess the ecotoxicological potential of sediments allowing for a comprehensive hazard ranking. In order to elucidate mode of action, novel techniques such as flow cytometry have been adopted and proved to be valuable tools for advanced risk assessment and management.

  7. Assessing Different Mechanisms of Toxicity in Mountaintop Removal/Valley Fill Coal Mining-Affected Watershed Samples Using Caenorhabditis elegans

    PubMed Central

    Turner, Elena A.; Kroeger, Gretchen L.; Arnold, Mariah C.; Thornton, B. Lila; Di Giulio, Richard T.; Meyer, Joel N.

    2013-01-01

    Mountaintop removal-valley fill coal mining has been associated with a variety of impacts on ecosystem and human health, in particular reductions in the biodiversity of receiving streams. However, effluents emerging from valley fills contain a complex mixture of chemicals including metals, metalloids, and salts, and it is not clear which of these are the most important drivers of toxicity. We found that streamwater and sediment samples collected from mine-impacted streams of the Upper Mud River in West Virginia inhibited the growth of the nematode Caenorhabditis elegans. Next, we took advantage of genetic and transgenic tools available in this model organism to test the hypotheses that the toxicity could be attributed to metals, selenium, oxidative stress, or osmotic stress. Our results indicate that in general, the toxicity of streamwater to C. elegans was attributable to osmotic stress, while the toxicity of sediments resulted mostly from metals or metalloids. PMID:24066176

  8. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    PubMed

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)

  9. Evaluation of the Polyethylene Reverse Sampler as a Dosing System in Marine Phase II Whole Sediment Toxicity Identification Evaluations (TIEs)

    EPA Science Inventory

    Contaminated marine sediments can cause acute and chronic impairments to benthic organisms. Nonionic organic contaminants (NOCs) are often a primary cause of impairment. Toxicity Identification Evaluations (TIEs) are used to identify chemicals causing toxicity in sediments. Ph...

  10. Capturing Bioavailable Organic Contaminants for Phase II Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In the whole sediment Phase I TIEs performed so far, organic chemicals have been shown to be t...

  11. Relation between different metal pollution criteria in sediments and its contribution on assessing toxicity.

    PubMed

    Alves, Cristina M; Ferreira, Carlos M H; Soares, Helena M V M

    2018-05-14

    Several tools have been developed and applied to evaluate the metal pollution status of sediments and predict their potential ecological risk assessment. To date, a comprehensive relationship between the information given by these sediment tools for predicting metal bioavailability and the effective toxicity observed is lacking. In this work, the possible inter-correlations between the data outcoming from using several qualitative evaluation tools of the sediment contamination (contamination factor, CF, the enrichment factor, EF, or the geoaccumulation index, Igeo), metal speciation on sediments (evaluated by the modified BCR sequential extraction procedure) and free metal concentrations in pore waters were studied. It was also our aim to evaluate if these assessment tools could be used for predicting the pore waters toxicity data as toxicity proxy. Principal component analysis and cluster analysis revealed that two quality indices used (CF and EF) were highly correlatable with the more labile fractions from BCR sediment speciation. However, neither of these parameters did correlate with the toxicity of pore waters measured by the chronic toxicity (72 h) in Pseudokirchneriella subcapitata. In contrast, the toxic effects of the given total metal load in sediments were better evaluated by using an additive metal approach using pore water free metal concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. USING QSAR AND SAR TO PREDICT THE TOXICITY AND DEGRADABILITY OF CHEMICALS IN SEDIMENTS AND WATER: AN EVALUATION USING QUADRICYCLANE AND IT'S ANALOGS

    EPA Science Inventory

    The NRC has examined the availability of toxicity endpoints for industrial chemicals and concluded that many of these chemicals lack even minimum testing. One way of carrying out risk assessments of chemicals having insufficient experimental data is by using Quantitative Structur...

  13. Influence of potentially confounding factors on sea urchin porewater toxicity tests

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Nipper, M.

    2006-01-01

    The influence of potentially confounding factors has been identified as a concern for interpreting sea urchin porewater toxicity test data. The results from >40 sediment-quality assessment surveys using early-life stages of the sea urchin Arbacia punctulata were compiled and examined to determine acceptable ranges of natural variables such as pH, ammonia, and dissolved organic carbon on the fertilization and embryological development endpoints. In addition, laboratory experiments were also conducted with A. punctulata and compared with information from the literature. Pore water with pH as low as 6.9 is an unlikely contributor to toxicity for the fertilization and embryological development tests with A. punctulata. Other species of sea urchin have narrower pH tolerance ranges. Ammonia is rarely a contributing factor in pore water toxicity tests using the fertilization endpoint, but the embryological development endpoint may be influenced by ammonia concentrations commonly found in porewater samples. Therefore, ammonia needs to be considered when interpreting results for the embryological development test. Humic acid does not affect sea urchin fertilization at saturation concentrations, but it could have an effect on the embryological development endpoint at near-saturation concentrations. There was no correlation between sediment total organic carbon concentrations and porewater dissolved organic carbon concentrations. Because of the potential for many varying substances to activate parthenogenesis in sea urchin eggs, it is recommended that a no-sperm control be included with every fertilization test treatment. ?? 2006 Springer Science+Business Media, Inc.

  14. A Pilot Study of the Effects of Post-Hurricane Katrina Floodwater Pumping on the Chemistry and Toxicity of Violet Marsh Sediments

    DTIC Science & Technology

    2006-10-01

    to be suitable for testing without manipulations. Survival of amphipods in the control sediment from Sequim Bay , WA was above the 90-percent level...Treatment Mean Percent Survival Coefficient of Variation (%) Negative Control ( Sequim Bay , WA) 90 ± 4 3.9 Reference (Lake Pontchartrain, LA) 95...assessed along with a perform- ance control sediment ( Sequim , WA, USA Lat. 48.0587 Long. -123.0235 and a reference sedi- ment (Lake Pontchartrain

  15. Use of bioassays for testing soils and/or sediments contaminated by mining activities

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; García-Lorenzo, M. L.; Molina, J.

    2009-04-01

    Ecotoxicity tests measure the bioavailability of the contaminants and the effects of the chemically not measured toxic compounds on the members of the soil community. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. They are solid phase tests based on terrestrial methods and tests performed on water extracts using aquatic test protocols. The extent and degree of heavy metal contamination around mines may vary depending on geochemical characteristics, the mineralization of tailings, physico-chemical conditions and the processes used to extract metals. Portman Bay was subject to mining from the time of the Roman Empire to 1991 when the activity ceased. Since 1957, the wastes from mining operations were discharged directly into the sea. These wastes mainly consisted of clay, quartz, siderite, magnetite, remains of sphalerite, pyrite and galena and residues of the chemical reagents used in floatation. In our study two methods of environmental toxicological tests were compared and applied to sediments of the Portman Bay (SE, Spain): the standardized toxicological test based on inhibition of luminescence employing Microtox

  16. Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...

  17. Toxicity Tests of the Sediments from the Port of Hampton Roads: Sublethal Effects.

    DTIC Science & Technology

    1984-10-01

    0.217g dry wt/Kcal x 4.0 Kcal/g 02 (1) Since similar data could not be found for the sheepshead minnow and the ultimate effect of metabolic loss on the...data from the osmoregulation experiments were statisically evaluated for each salinity regime with an ANOVA of the osmolality readings among shrimp...little or no effects on the metabolism of the test populations. Sediments from Stations Q and R produced significant, but more moderate, respiration

  18. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  19. Dynamic energy budget as a basis to model population-level effects of zinc-spiked sediments in the gastropod Valvata piscinalis.

    PubMed

    Ducrot, Virginie; Péry, Alexandre R R; Mons, Raphaël; Quéau, Hervé; Charles, Sandrine; Garric, Jeanne

    2007-08-01

    This paper presents original toxicity test designs and mathematical models that may be used to assess the deleterious effects of toxicants on Valvata piscinalis (Mollusca, Gastropoda). Results obtained for zinc, used as a reference toxicant, are presented. The feeding behavior, juvenile survival, growth, age at puberty, onset of reproduction, number of breedings during the life cycle, and fecundity were significantly altered when the snails were exposed to zinc-spiked sediments. Dynamic energy budget models (DEBtox) adequately predicted the effects of zinc on the V. piscinalis life cycle. They also provided estimates for lifecycle parameters that were used to parameterize a demographic model, based on a Z-transformed life-cycle graph. The effect threshold for the population growth rate (lambda) was estimated at 259 mg/kg dry sediment of zinc, showing that significant changes in abundance may occur at environmental concentrations. Significant effects occurring just above this threshold value were mainly caused by the severe impairment of reproductive endpoints. Sensitivity analysis showed that the value of lambda depended mainly on the juvenile survival rate. The impairment of this latter parameter may result in extinction of V. piscinalis. Finally, the present study highlights advantages of the proposed modeling approach in V. piscinalis and possible transfer to other test species and contaminants.

  20. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  1. Literature review on duckweed toxicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.

    1990-06-01

    Duckweed commonly refers to a group of floating, flowering plants of the family Lemnaceae. Duckweed plants are fast growing and widely distributed. They are easy to culture and to test. Some reports suggest that duckweed plants are tolerant to environmental toxicity. Other studies, however, indicate that duckweed plants are as sensitive to toxicity as other aquatic species. Duckweed plants are especially suitable for use in complex effluent bioassays, and for testing herbicide pollution in the aquatic environment, lake and river pollution, sediment toxicity, and the like. Duckweed and algae represent different levels of complexity in the plant kingdom. They complementmore » each other as phytotoxicity test organisms, instead of mutually excluding each other. Many duckweed species have been studied, primarily of the Lemna and Spirodela genera. Lemna minor and L. gibba have been recommended as standard test species. Differences in duckweed test methodology occur with regard to test types, test vessels, control tests, nutrient media, end points, and applications. 76 references.« less

  2. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    USGS Publications Warehouse

    Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  3. TIE METHODS FOR TOXICITY EVALUATION OF FRESHWATER SEDIMENTS

    EPA Science Inventory

    Three toxicity identification evaluation (TIE) methods, AVS spiking, zero-valent metal and cation exchange resin, have been used with metal contaminated and enriched sediments to remove the toxicity...

  4. Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments.

    PubMed

    Lee, Seungbae; An, Jinsung; Kim, Young-Jin; Nam, Kyoungphile

    2011-02-28

    In situ stabilization of sediment-bound heavy metals has been proposed as an alternative to ex situ treatment due to the concerns on ecosystem disturbance and remediation cost. The present study was conducted to test the performance of birnessite, hydroxyapatite, and zeolite as stabilizing agents for Pb and Cd in sediment. The heavy metal binding capacity and strength of the stabilizing agents were determined by analyzing Langmuir model parameters. The three agents showed the similar binding capacity (i.e., maximum monolayer sorption constant, K(a)) ranging from 1.13 to 3.62×10(5) mg/kg for Pb and 1.07 to 1.33×10(5) mg/kg for Cd. In contrast, binding strength (i.e., binding energy constant, b) of birnessite and hydroxyapatite was about one order higher than that of zeolite. This is further supported by five-step sequential extraction data: more than 99 and 70% of freshly spiked Pb and Cd were present as not-readily extractable fractions in birnessite and hydroxyapatite, respectively while the fractions were 17.9 and 14.1% in zeolite. Toxicity Characteristic Leaching Procedure (TCLP) test was also conducted to verify the effectiveness of the heavy metal-stabilizing ability of birnessite and hydroxyapatite. Birnessite successfully retained both Pb and Cd against the leaching solution, satisfying the TCLP extract concentration limits (i.e., 5 and 1 mg/L, respectively). However, hydroxyapatite released about 223.7 mg/L of Cd into the solution, which greatly exceeded the limit. The toxicity test with Hyalella azteca showed that their survival rate increased by 92.5-100% when birnessite or hydroxyapatite was added to Pb- or Cd-spiked sediment as a stabilizing agent. Our data demonstrate the potential use of birnessite and hydroxyapatite as an effective in situ remediation means for heavy metal-contaminated sediment with minimal risk to the aquatic ecosystem. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Assessment of Supercritical Fluid Extraction Use in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In this investigation, supercritical fluid extraction (SFE) with pure CO2 was assessed as a confirmatory tool in Phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments usi...

  6. Contaminant Interactions and Biological Effects of Single-walled Carbon Nanotubes in a Benthic Estuarine System

    NASA Astrophysics Data System (ADS)

    Parks, Ashley Nicole

    The fate, bioavailability, bioaccumulation and toxicity of single-walled carbon nanotubes (SWNT) have not been extensively studied to date. Pristine SWNT are highly hydrophobic and have been shown to strongly associate with natural particulate matter in aquatic environments. In light of this, I have focused my research to examine the influence of sediment and food exposure routes on bioavailability, bioaccumulation, and toxicity of structurally diverse SWNT in several ecologically-important marine invertebrate species. No significant mortality was observed in any organism at concentrations up to 1000 mg/kg. Evidence of biouptake after ingestion was observed for pristine semiconducting SWNT using NIRF spectroscopy and for oxidized 14C-SWNT using liquid scintillation counting. After a 24 hour depuration period, the pristine semiconducting SWNT were eliminated from organisms to below the method detection limit (5 microg/mL), and the 14C-SWNT body burden was decreased by an order of magnitude to a bioaccumulation factor (BAF) of <0.01. Neither pristine SWNT nor oxidized 14C-SWNT caused environmentally relevant toxicity or bioaccumulation in benthic invertebrates. Overall, the SWNT were not bioavailable and appear to associate with the sediment. In addition to investigating the toxicity and bioaccumulation of SWNT as an independent toxicant, it is important to consider how they will interact with other contaminants in the environment (i.e., increase or decrease toxicity and bioaccumulation of co-contaminants, alter the environmental transport of co-contaminants, induce degradation of co-contaminants, etc.). I wanted to investigate the effects of SWNT on a complex mixture of contaminants already present in a natural system. New Bedford Harbor (NBH) sediment, which is contaminated with polychlorinated biphenyls (PCBs), was amended with pristine SWNT to determine if the presence of SWNT would mitigate the toxicity and bioaccumulation of the PCBs in deposit-feeding invertebrates. A dilution series of the NBH sediment was created using uncontaminated Long Island Sound (LIS) sediment to test 25% NBH sediment, 50% NBH sediment, 75% NBH sediment, and 100% NBH sediment. The results of this work showed increased organism survival and decreased bioaccumulation of PCBs in treatments amended with SWNT, with the greatest reduction observed in the 25% NBH sediment treatment group amended with 10 mg SWNT/g dry sediment. Polyethylene (PE) passive samplers indicated a reduction of interstitial water (ITW) PCB concentration of greater than 90% in the 25% NBH sediment + 10 mg SWNT/g dry sediment amendment. The ITW concentration was reduced because PCBs were not desorbing from the SWNT. Lower bioavailability leads to reduced potential for toxic effects, supporting the observation of increased survival and decreased bioaccumulation. Once in the sediment, not only are SWNT not bioavailable, they act as a highly sorptive phase, such as black carbon (BC), into which hydrophobic organic contaminants (HOCs), such as PCBS and polycyclic aromatic hydrocarbons (PAHs), can partition, thereby reducing the toxicity and bioavailability of co-occurring HOCs. To more fully understand the impact of SWNT in this environment, their biodegradability also needs to be investigated. Biodegradation of SWNT could lead to release and/or transformation of sorbed HOCs as well as a change in the inherent transport, toxicity, and bioaccumulation of SWNT in the estuarine environment. Because the persistence of SWNT will be a primary determinant of the fate of these materials in the environment, I conducted experiments to determine if the fungus Trametes versicolor, the natural bacterial communities present in NBH sediment, and municipal wastewater treatment plant sludge could degrade or mineralize oxidized 14C-SWNT. Over a six month time period, no significant degradation or mineralization was observed. In all treatments, approximately 99% of the 14C-SWNT remained associated with the solid phase, with only approximately 0.8% of added 14C present as dissolved species and only 0.1% present as 14CO2. These small pools of non-SWNT 14C were likely due to trace impurities, as no differences in production were observed between treatments and abiotic (killed) controls. (Abstract shortened by UMI.)

  7. Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, P.C.; Birge, W.J.; Black, J.A.

    1984-08-01

    Aquatic toxicity tests were conducted to evaluate the effects of cadmium-enriched sediment on embryo-larval stages of the goldfish (Carassius auratus), leopard frog (Rana pipiens), and largemouth bass (Micropterus salmoides). Natural stream sediment was collected and enriched with cadmium to nominal concentrations of 1.0, 10.0, 100, and 1000 mg/kg. Enriched sediments were placed in Pyrex dishes and covered with 350 ml of reconstituted water. Fertilized eggs were placed in the dishes and maintained through 4 days posthatching, giving a total exposure time of 6 to 7 days. For all tests the cadmium concentrations ranged from 1.1 to 76.5 micrograms/liter in watermore » above sediments containing 1 to 1000 mg Cd/kg, respectively. Although low frequencies of mortality were observed in all tests, goldfish, leopard frog, and bass exposed to sediments enriched to 1000 mg Cd/kg accumulated 4.61, 12.55, and 60.0 micrograms Cd/g, respectively. No significant correlations were found between mortality of the goldfish and leopard frog and the cadmium concentrations in either water or sediment. However, all three species showed strong correlations between cadmium concentrations in water and tissue, sediment and tissue, and water and sediment. Tissue cadmium concentrations were related to the length of time test organisms were in direct contact with cadmium-enriched sediment.« less

  8. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-08-01

    Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants. Copyright © 2016. Published by Elsevier B.V.

  9. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.

    PubMed

    De Orte, M R; Lombardi, A T; Sarmiento, A M; Basallote, M D; Rodriguez-Romero, A; Riba, I; Del Valls, A

    2014-05-01

    The injection and storage of CO2 into marine geological formations has been suggested as a mitigation measure to prevent global warming. However, storage leaks are possible resulting in several effects in the ecosystem. Laboratory-scale experiments were performed to evaluate the effects of CO2 leakage on the fate of metals and on the growth of the microalgae Phaeodactylum tricornutum. Metal contaminated sediments were collected and submitted to acidification by means of CO2 injection or by adding HCl. Sediments elutriate were prepared to perform toxicity tests. The results showed that sediment acidification enhanced the release of metals to elutriates. Iron and zinc were the metals most influenced by this process and their concentration increased greatly with pH decreases. Diatom growth was inhibited by both processes: acidification and the presence of metals. Data obtained is this study is useful to calculate the potential risk of CCS activities to the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    EPA Science Inventory

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  11. Toxic Hazards Research Unit. Annual Technical Report. 1978

    DTIC Science & Technology

    1978-08-01

    determinations made for the following battery of clinical tests: HCT Bilirubin RBC Glucose WBC Triglycerides HGB Iron Alkaline Sedimentation Phosphatase Rate ...Count WBC Hematocrit HCT Hemoglobin HGB Sedimentation Rate SEDI Reticulocytes RETIC MCORP Mean Corpuscular Volume MCV Mean Corpuscular Hemoglobin MCH...Contract F33615-76-C-5005 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PPOGPAM ELEMENT, PROJECT , TASK University of California, Irvine APEA A WORK UNIT

  12. Sediment quality in the north coastal basin of Massachusetts, 2003

    USGS Publications Warehouse

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.

  13. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    USGS Publications Warehouse

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi-species and/or various life stages with different sensitivities to contaminants may offer a more conservative assessment of toxicity than single species testing. Using a ?weight of evidence? approach, the Sediment Quality Trial produces a robust evaluation of habitat quality and includes a measure of contaminant concentrations in the sediment, an assessment of sediment/pore-water toxicity to laboratory animals, and an evaluation of in situ biological assemblages. Field and laboratory procedures are available that can be used to ascertain habitat quality, identify contaminants causing environmental degradation and delineate aquatic systems requiring mitigation of protective efforts. These studies provide the scientific data that are integral to developing an environmental risk assessment of contaminants from watercraft use in shallow water systems.

  14. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE)PHASE I,II,III GUIDANCE DOCUMENT

    EPA Science Inventory

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites hav...

  15. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID-VOLATILE SULFIDE AND INTERSTITIAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (AVS) is formed only in anoxic sediments, therefor...

  16. Identification of acute toxicants in New Bedford Harbor sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, K.T.; McKinney, R.A.; Kuhn, A.

    1997-03-01

    New Bedford Harbor (NBH) is a marine Superfund site contaminated with high concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals. Experiments were conducted to determine the causal toxic agent(s) in pore waters from New Bedford Harbor sediments to amphipods and mysid shrimp. Chemical manipulations to characterize toxicity revealed that pore-water toxicity was organic in nature. Fractionation and subsequent mass spectral identification of peaks in the toxic fraction indicated that PCBs. PAHs, and unknown compounds were present. Comparisons of PAH LC50s and PAH concentrations in this fraction indicated that the toxicity was not due to PAHs because themore » PAH concentrations were much lower than the reported PAH LC50s. One unknown peak was positively identified as bis(2-ethylhexyl) phthalate, and the other tentatively identified as pyrazole. Toxicity tests and comparison of toxicity in the blank and toxic fractions eliminated the two unknowns as toxic causal agents. The authors determined the range of PCB LC50s to fall between 10 and 110 ppb for Mysidopsis bahia and Ampelisca abdita. Concentrations of PCBs for the toxic fractions ranged from 12 to 27 ppb. This range falls within the observed PCB LC50s for M. bahia and A. abdita. Based upon these PCB concentrations, they concluded that PCBs were the acute toxic agents in NBH pore waters. Other compounds in the toxic fractions, or compounds that coeluted and were undistinguished from PCBs had minor contributions to the measured toxicity.« less

  17. Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas

    USGS Publications Warehouse

    Kuivila, Kathryn; Hladik, Michelle; Ingersoll, Christopher G.; Kemble, Nile E.; Moran, Patrick W.; Calhoun, Daniel L.; Nowell, Lisa H.; Gilliom, Robert J.

    2012-01-01

    A nationally consistent approach was used to assess the occurrence and potential sources of pyrethroid insecticides in stream bed sediments from seven metropolitan areas across the United States. One or more pyrethroids were detected in almost half of the samples, with bifenthrin detected the most frequently (41%) and in each metropolitan area. Cyhalothrin, cypermethrin, permethrin, and resmethrin were detected much less frequently. Pyrethroid concentrations and Hyalella azteca mortality in 28-d tests were lower than in most urban stream studies. Log-transformed total pyrethroid toxic units (TUs) were significantly correlated with survival and bifenthrin was likely responsible for the majority of the observed toxicity. Sampling sites spanned a wide range of urbanization and log-transformed total pyrethroid concentrations were significantly correlated with urban land use. Dallas/Fort Worth had the highest pyrethroid detection frequency (89%), the greatest number of pyrethroids (4), and some of the highest concentrations. Salt Lake City had a similar percentage of detections but only bifenthrin was detected and at lower concentrations. The variation in pyrethroid concentrations among metropolitan areas suggests regional differences in pyrethroid use and transport processes. This study shows that pyrethroids commonly occur in urban stream sediments and may be contributing to sediment toxicity across the country.

  18. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments

    NASA Astrophysics Data System (ADS)

    Bölscher, Jens; Schulte, Achim; Terytze, Konstantin

    2017-04-01

    The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), selected nitro-compounds, selected organotin compounds and polychlorinated biphenyls (PCB, AOX and EOX) in the sediment and suspended matter. The physico-chemical conditions of the samples were examined as well. The research into soluble and mobilizable sediment-bounded pollutants is based upon a 24 hour batch test. Certain toxic effects of the sediments were determined by different ecotoxicological test methods. In addition, the thresholds of the sediment quality guidelines published by de Deckere et al. (2011) were used to assess the solid contents. Because of the high concentrations of the pollutants, the consensus 2 values are used as thresholds in this study. The results provide important details on the spatial and temporal distribution of sedimentation and contamination. All sediments of the analysed cores and traps remain highly contaminated with heavy metals and organic compounds. The results indicate the resuspension, transport and accumulation of these sediments and show at least that toxic effects for the benthic taxa are expected. This kind of approach is necessary to create a basis for a remediation programme for, and a risk assessment of, polluted water bodies.

  20. Inexpensive, easy-to-construct suction coring devices usable from small boats

    USGS Publications Warehouse

    Onuf, Christopher P.; Chapman, Duane C.; Rizzo, William M.

    1996-01-01

    Collection of sediment cores in depths of 1-5 m is difficult with traditional sampling gear. Here we describe three suction coring devices constructed with readily available plumbing supplies and parts easily made from acrylic plastic and silicone sealant. The samplers have been used successfully in sediments ranging from coarse sands and shell hash to muds, highly organic deposits, and dense clays. Successful applications have ranged from contaminants analysis, toxicity testing, seagrass mapping, and assessment of sediment-microfloral interactions to sampling the infauna of surf-swept beaches.

  1. Development and Evaluation of Polychaete Reverse Samplers for Marine Phase II Whole Sediment Toxicitiy Identification Evaluations (TIE)

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to m...

  2. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID VOLATILE SULFIDE AND INTERSTITAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (A VS) is formed only in anoxic sediments, therefo...

  3. Anatomy of a decision III: Evaluation of national disposal at sea program action level efficacy considering 2 chemical action levels.

    PubMed

    Apitz, Sabine E; Vivian, Chris; Agius, Suzanne

    2017-11-01

    The potential performance (i.e., ability to separate nontoxic from toxic sediments) of a range of international Disposal at Sea (DaS) chemical Action Levels (ALs) was compared using a sediment chemical and toxicological database. The use of chemistry alone (without the use of further lines of evidence) did not perform well at reducing costs and protecting the environment. Although some approaches for interpreting AL1 results are very effective at filtering out the majority of acutely toxic sediments, without subsequent toxicological assessment, a large proportion of nontoxic sediments would be unnecessarily subjected to treatment and containment, and a number of sublethally toxic sediments would be missed. Even the best tiered systems that collect and evaluate information sequentially resulted in the failure to catch at least some sublethally or acutely toxic sediments. None of the AL2s examined were particularly effective in distinguishing between non-, sublethally, or acutely toxic sediments. Thus, this review did not support the use of chemical AL2s to predict the degree to which sediments will be toxic. Integr Environ Assess Manag 2017;13:1086-1099.© 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  4. MEASURING THE ACUTE TOXICITY OF ESTUARINE SEDIMENTS

    EPA Science Inventory

    Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the p...

  5. FACTORS AFFECTING REPRODUCTION AND THE IMPORTANCE OF ADULT SIZE ON REPRODUCTIVE OUTPUT OF THE MIDGE, CHIRONOMUS TENTANS

    EPA Science Inventory

    Incorporating reproductive endpoints into sediment toxicity tests has become an important consideration in ecological risk assessments. The capacity to assess reproduction was one of the primary objectives underlying the recent development of a life-cycle test with the midge, Ch...

  6. ISSUES AND RECCOMMENDATIONS FOR POREWATER TOXCITY TESTING: METHODOLOGICAL UNCERTAINTIES, CONFOUNDING FACTORS AND TOXCITY IDENTIFICATION EVALUATION PROCEDURES

    EPA Science Inventory

    During the last decade porewater toxicity tests have gained popularity among researchers and managers as tools for the assessment of the presence and biological effects of bioavailable contaminants in aquatic sediments. However, there are a number of information gaps in our know...

  7. Effects of Substrate Salinity on Early Seedling survival and Growth of Scirpus robustus Pursh and Spartina alterniflora Loisel

    EPA Science Inventory

    Rooted aquatic plants are being used increasingly as test species in estuarine sediment toxicity evaluations. Effects of naturally occurring substrate constituents on most potential test species however, are not well understood even though their effects could impact the data int...

  8. Assessing condition of macroinvertebrate communities and bed sediment toxicity in the Rochester Embayment Area of Concern, New York, USA

    USGS Publications Warehouse

    Duffy, Brian; George, Scott D.; Baldigo, Barry P.; Smith, Alexander J.

    2017-01-01

    The United States and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement in 1972. The lowest reach of the Genesee River and the Rochester Embayment on Lake Ontario between Bogus Point and Nine Mile Point, including Braddock Bay, were designated as an Area of Concern (AOC) due to effects of contaminated sediments and physical disturbance on several beneficial uses. Following sediment remedial efforts and with conditions improving in the AOC, the present study was conducted to reevaluate the status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate community assessments and 10-day Chironomus dilutus bioassays were used to test the hypotheses that sediments within the AOC were no more toxic than sediments from surrounding reference areas. The study was separated into three discrete systems (Genesee River, Lake Ontario, and Braddock Bay) and non-parametric analyses determined that a multimetric index of benthic macroinvertebrate community integrity was significantly higher at AOC sites compared to reference sites on the Genesee River and in Braddock Bay while AOC and reference sites on Lake Ontario did not differ significantly. Survival and growth of C. dilutus were also similar between AOC and reference sites for each system with the exception of significantly higher growth at reference sites on Lake Ontario. Results generally indicated that the condition of benthos and toxicity of sediment of the Rochester Embayment AOC are similar to or better than that in the surrounding area.

  9. Life stage sensitivity of the marine mussel Mytilus edulis to ammonia.

    PubMed

    Kennedy, Alan J; Lindsay, James H; Biedenbach, James M; Harmon, Ashley R

    2017-01-01

    Ammonia is an important contaminant to consider in all toxicity tests. It is especially important to consider the impacts of ammonia in test methods that use sensitive water column organisms exposed to sediments or sediment extracts, such as porewater and elutriate toxicity tests. Embryo-larval development toxicity tests, such as the 48-h method using Mytilus mussel species, are particularly sensitive to ammonia. To better understand the effect thresholds across different life stages of these mussels, 6 short-term (48-h) development toxicity tests and 3 21-d toxicity tests with different-sized juvenile mussels were conducted. Two of the juvenile mussel tests involved 21-d continuous chronic exposure to ammonia, whereas the third involved an acute 2-d ammonia exposure, followed by a 19-d recovery period. The embryo-larval development test method (50% effect concentration [EC50] = 0.14-0.18 mg/L un-ionized ammonia) was 2.5 times more sensitive than the juvenile mussel 21-d survival endpoint (50% lethal concentration = 0.39 mg/L un-ionized ammonia) and 2 times more sensitive than the most sensitive sublethal juvenile mussel endpoint (EC50 = 0.26 mg/L un-ionized ammonia). Further, it was found that the juveniles recovered from a 48-h exposure to un-ionized ammonia of up to 1.1 mg/L. The data generated suggest that the embryo development endpoint was sufficiently sensitive to un-ionized ammonia to protect the chronically exposed (21 d) juvenile mussels. Environ Toxicol Chem 2017;36:89-95. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  10. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as part of an ongoing ecological risk assessment to determine remedial actions for contaminated sediments in Lake Roosevelt. ?? 2007 Springer Science+Business Media, LLC.

  11. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  12. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    PubMed

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  13. Integration of biological responses from a suite of bioassays for the Venice Lagoon (Italy) through sediment toxicity index - part A: development and comparison of two methodological approaches.

    PubMed

    Losso, Chiara; Novelli, Alessandra Arizzi; De Salvador, Davide; Ghetti, Pier Francesco; Ghirardini, Annamaria Volpi

    2010-12-01

    Marine and coastal quality assessment, based on test batteries involving a wide array of endpoints, organisms and test matrices, needs for setting up toxicity indices that integrate multiple toxicological measures for decision-making processes and that classify the continuous toxicity response into discrete categories according to the European Water Framework Directive. Two toxicity indices were developed for the lagoon environment such as the Venice Lagoon. Stepwise procedure included: the construction of a database that identified test-matrix pairs (indicators); the selection of a minimum number of ecotoxicological indicators, called toxicological core metrics (CMs-tox) on the basis of specific criteria; the development of toxicity scores for each CM-tox; the integration of the CMs-tox into two indices, the Toxicity Effect Index (TEI), based on the transformation of Toxic Unit (TU) data that were integrated as logarithmic sum, and the Weighted Average Toxicity Index (WATI), starting from toxicity classes integrated as weighted mean. Results from the indices are compared; advantages and drawbacks of both approaches are discussed. Copyright © 2010. Published by Elsevier Ltd.

  14. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment.

    PubMed

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-12-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater.

  15. RELEVANCE OF ROOTED VASCULAR PLANTS AS INDICATORS OF ESTUARINE SEDIMENT QUALITY

    EPA Science Inventory

    Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment evaluations is largely unknown. For this reason, the toxicities of whole se...

  16. ISOLATING AND FRACTIONATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment TIE techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceousresin, Ambersorb coconut charcoal, or XAD resin to reduce toxicity caused by organic contaminants. Cha...

  17. ISOLATING AND EVALUATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment toxicity identification and evaluation (TIE) techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceous resin, Ambersorb, coconut charcoal, or XAD resin to reduce t...

  18. Biodegradation screening of chemicals in an artificial matrix simulating the water-sediment interface.

    PubMed

    Baginska, Ewelina; Haiß, Annette; Kümmerer, Klaus

    2015-01-01

    Biodegradation is the most important attenuation process for most of organic chemicals in the environment. This process decides whether the organic substance itself or its degradation products rests in the environment and should be considered for a further risk assessment. This work presents the development of a water sediment screening test, based on OECD guideline 308, with a high significance to environmental conditions and with a good reproducibility and consistency of results. The increased reproducibility was achieved by creating an artificial and standardized medium, based on the existing OECD guidelines OECD 302C, 301D and 218. Each test consisted of five different series: blank, quality control, test, toxicity control and abiotic control. Biodegradation was assessed by measurement of pressure difference in closed vessels using the OxiTop(®) system. Aniline, diethylene glycol and sodium acetate were used to optimize and validate test conditions. Additionally, two pharmaceuticals: Acetaminophen and ciprofloxacin (CIP) were tested as an example of possible test application. Acetaminophen was mainly removed from the system by biodegradation whereas CIP was removed from water phase by sorption onto sediment. Water sediment test proved to be a promising tool for the biodegradation investigation of chemicals in the water-sediment interface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos.

    PubMed

    Schiwy, Sabrina; Bräunig, Jennifer; Alert, Henriette; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    The European Water Framework Directive aims to achieve a good ecological and chemical status in surface waters until 2015. Sediment toxicology plays a major role in this intention as sediments can act as a secondary source of pollution. In order to fulfill this legal obligation, there is an urgent need to develop whole-sediment exposure protocols, since sediment contact assays represent the most realistic scenario to simulate in situ exposure conditions. Therefore, in the present study, a vertebrate sediment contact assay to determine aryl hydrocarbon receptor (AhR)-mediated activity of particle-bound pollutants was developed. Furthermore, the activity and the expression of the CYP1 family in early life stages of zebrafish after exposure to freeze-dried sediment samples were investigated. In order to validate the developed protocol, effects of β-naphthoflavone and three selected sediment on zebrafish embryos were investigated. Results documented clearly AhR-mediated toxicity after exposure to β-naphthoflavone (β-NF) and to the sediment from the Vering canal. Upregulation of mRNA levels was observed for all investigated sediment samples. The highest levels of all investigated cyp genes (cyp1a, cyp1b1, cyp1c1, and cyp1c2) were recorded after exposure to the sediment sample of the Vering canal. In conclusion, the newly developed sediment contact assay can be recommended for the investigation of dioxin-like activities of single substances and the bioavailable fraction of complex environmental samples. Moreover, the exposure of whole zebrafish embryos to native (freeze-dried) sediment samples represents a highly realistic and ecologically relevant exposure scenario.

  20. Anodonta imbecillis copper sulfate reference toxicant/food test, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6-15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed LC{sub 50}more » values of 0.97 and 0.84 mg Cu/L for phytoplankton and YCT-S, respectively. Previously obtained values for phytoplankton tests are 2.02 and 1.12 mg Cu/L. Too few tests have been conducted with copper as the toxicant to determine a normal range of values. Although significant reduction in growth, compared to the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups.« less

  1. PREDICTING THE TOXICITY OF CHROMIUM IN SEDIMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III), which is relatively insoluble and nontoxic, and Cr(VI), which is much more soluble and toxic. Chromium(VI) is thermodynamically unstable in anoxic sediments, and acid-volatile sulfide (AVS) is formed only in anoxic se...

  2. Pesticide concentrations in water and sediment and associated invertebrate toxicity in Del Puerto and Orestimba Creeks, California, 2007-2008.

    PubMed

    Ensminger, Michael; Bergin, Rick; Spurlock, Frank; Goh, Kean S

    2011-04-01

    The California's San Joaquin River and its tributaries including Orestimba (ORC) and Del Puerto (DPC) Creeks are listed on the 2006 US EPA Clean Water Act §303(d) list for pesticide impairment. From December 2007 through June 2008, water and sediment samples were collected from both creeks in Stanislaus County to determine concentrations of organophosphorus (OP) and pyrethroid insecticides and to identify toxicity to Ceriodaphnia dubia and Hyalella azteca. OPs were detected in almost half (10 of 21) of the water samples, at concentrations from 0.005 to 0.912 μg L(-1). Diazinon was the most frequently detected OP, followed by chlorpyrifos and dimethoate. Two water samples were toxic to C. dubia; based on median lethal concentrations (LC50), chlorpyrifos was likely the cause of this toxicity. Pyrethroids were detected more frequently in sediment samples (18 detections) than in water samples (three detections). Pyrethroid concentrations in water samples ranged from 0.005 to 0.021 μg L(-1). These concentrations were well below reported C. dubia LC50s, and toxicity was not observed in laboratory bioassays. Cyfluthrin, bifenthrin, esfenvalerate, and λ-cyhalothrin were detected in sediment samples at concentrations ranging from 1.0 to 74.4 ng g(-1), dry weight. At DPC, all but one sediment sample caused 100% toxicity to H. azteca. Based on estimated toxicity units (TUs), bifenthrin was likely responsible for this toxicity and λ-cyhalothrin also contributed. At ORC, survival of H. azteca was significantly reduced in four of the 11 sediment samples. However, pyrethroids were detected in only two of these samples. Based on TUs, bifenthrin and λ-cyhalothrin likely contributed to the toxicity.

  3. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei. II: Autotomy as a novel form of protection.

    PubMed

    Vidal, D E; Horne, A J

    2003-11-01

    Aquatic oligochaetes are commonly used for toxicity testing and for assessment of sediment impairment; some species can be relatively tolerant of sediment contaminants. However, there have been few studies of tolerance mechanisms; most work has focused on behavioral changes. The aquatic oligochaete worm, Sparganophilus pearsei, can be extremely tolerant to mercury in sediments depending on its prior history of exposure. Three S. pearsei populations, differing in their history of mercury exposure and in their tolerance to mercury, were assessed to determine tolerance mechanisms. In mercury-contaminated sediments, tolerant worms accumulated this contaminant in their caudal segments (i.e., their tails), which were then jettisoned via the process of autotomy, thus providing a mechanism of detoxification. This detoxification process appears to require a certain level of tolerance and may represent a novel exposure route for other organisms via feeding on discarded tails or release of accumulated contaminants as the tails decompose. Measurements of tissue mercury concentrations as contaminant body residues for this species (CBRs) are compared to other aquatic invertebrates.

  4. Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA

    USGS Publications Warehouse

    Nimmo, D.R.; Willox, M.J.; Lafrancois, T.D.; Chapman, P.L.; Brinkman, S.F.; Greene, J.C.

    1998-01-01

    Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.

  5. Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Buruaem, Lucas Moreira; de Castro, Ítalo Braga; Hortellani, Marcos Antonio; Taniguchi, Satie; Fillmann, Gilberto; Sasaki, Silvio Tarou; Varella Petti, Mônica Angélica; Sarkis, Jorge Eduardo de Souza; Bícego, Márcia Caruso; Maranho, Luciane Alves; Davanso, Marcela Bergo; Nonato, Edmundo Ferraz; Cesar, Augusto; Costa-Lotufo, Leticia Veras; Abessa, Denis Moledo de Souza

    2013-09-01

    Santos-São Vicente Estuarine System is a highly populated coastal zone in Brazil and where it is located the major port of Latin America. Historically, port activities, industrial and domestic effluents discharges have constituted the main sources of contaminants to estuarine system. This study aimed to assess the recent status of sediment quality from 5 zones of Port of Santos by applying a lines-of-evidence approach through integrating results of: (1) acute toxicity of whole sediment and chronic toxicity of liquid phases; (2) grain size, organic matter, organic carbon, nitrogen, phosphorus, trace metals, polycyclic aromatic hydrocarbons, linear alkylbenzenes and butyltins; (3) benthic community descriptors. Results revealed a gradient of increasing contamination for metals and organic compounds, alongside with their geochemical carriers. Sediment liquid phases were more toxic compared to whole sediment. Low number of species and individuals indicated the impoverishment of benthic community. The use of site-specific sediment quality guidelines was more appropriate to predict sediment toxicity. The integration of results through Sediment Quality Triad approach and principal component analysis allowed observing the effects of natural stressors and dredging on sediment quality and benthic distribution. Even with recent governmental efforts to control, pollution is still relevant in Port of Santos and a threat to local ecosystems.

  6. THE INFLUENCE OF ORGANIC MATTER QUALITY ON THE TOXICITY AND PARTIONING OF SEDIMENT-ASSOCIATED FLUORANTHENE

    EPA Science Inventory

    Organic matter in sediment is derived from many sources, including dead plants and animals, fecal matter, and flocculated colloidal organic matter. hemical partitioning and toxicity of nonpolar organic contaminants is strongly affected by the quantity of sediment organic matter. ...

  7. Photoenhanced toxicity of weathered crude oil in sediment and water to larval zebrafish

    EPA Science Inventory

    Solar radiation exposure can increase the toxicity of bioaccumulated oil compounds in a diversity of aquatic species. We investigated the photoenhanced toxicity of weathered South Louisiana crude oil in sediment and water accommodated fractions (WAF) to larval zebrafish. Larvae w...

  8. Abiotic Degradation and Toxicological Impacts of Pharmaceuticals and Personal Care Products (PPCPs) in Surface Waters: Roles of Mineral Sediments and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Rubasinghege, G. R. S.; Rijal, H.; Maldonado-Torres, S.; Gurung, R.; Rogelj, S.; Piyasena, M.

    2017-12-01

    The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into surface waters. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of sedimentation (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of sedimentation particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto sedimentation particle surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.

  9. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores.

    PubMed

    Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen

    2017-07-01

    Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

  10. PREDICTING THE TOXICITY OF SEDIMENTS SPIKED WITH SILVER

    EPA Science Inventory

    Previous experiments conducted with freshwater sediments spiked with silver have shown that, when expressed on a dry weight basis, the toxicity of silver is sediment-specific and dependent on the form of silver added (e.g., AgNO3, Ag2S). This study was conducted to assess the use...

  11. Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints

    EPA Science Inventory

    Whole sediment Toxicity Identification Evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine org...

  12. [Toxicity and influencing factors of liquid chlorine on chironomid larvae].

    PubMed

    Sun, Xing-Bin; Cui, Fu-Yi; Zhang, Jin-Song; Guo, Zhao-Hai; Xu, Feng; Liu, Li-Jun

    2005-09-01

    The excessive propagation of Chironomid larvae (red worm) in the sedimentation tanks is a difficult problem for the normal function of waterworks. The toxic effect of liquid chlorine on the different instar larvae of Chironomid was studied using distilled water as test sample. Furthermore, the effect of pH value, organic matter content, ammonia nitrogen, and algae content on toxicity of liquid chlorine was observed. The results show that the tolerance of Chironomid larvae to liquid chlorine is strengthened with the increase in instar. The 24h semi-lethal concentration (LC50) of liquid chlorine to the 4th instar larvae of Chironomid is 3.39 mg/L. Low pH value and high algae content are helpful to improve the toxic effect of liquid chlorine to Chironomid larvae. In neutral water body, the increase in organic matter content results in the decrease in the death rate of Chironomid larvae. The toxicity of liquid chlorine differs greatly in different concentrations of ammonia nitrogen. The death rate of the 4th instar larvae of Chironomid in raw water is higher by contrast with that in sedimentation tanks water for 24h disposal with various amount of liquid chlorine.

  13. Turbidity mitigates lead toxicity to cladocerans (Cladocera).

    PubMed

    García-García, Gerardo; Nandini, S; Sarma, S S S

    2006-07-01

    To test the hypothesis that sediment would have a synergistic effect on the toxicity of lead to cladocerans, we performed life table demography experiments with two pelagic (Diaphanosoma birgei and Moina micrura) and one littoral (Alona rectangula) cladoceran species. Life table demography experiments were conducted at three levels of turbidity (0, 17 and 170 NTU) and six concentrations of lead (as PbCl2) from 0 to 0.71 mg l(-1). Median lethal concentrations (LC50) forA. rectangula, D. birgei and M. micrura were 7.06 +/- 0.39, 3.16 +/- 0.25 and 3.24 +/- 0.69 mg l(-1) of Pb. Life table study showed that in general, the presence of sediments in test jars allowed an overall increase of 20-75% in both survivorship and reproduction of the cladoceran species exposed to different concentrations of Pb. At 0.04 mg l(-1) of Pb, the population growth rates were 0.127 forA. rectangula, 0.037 for D. birgei and 0.471 d(-1) for M. micrura in the absence of sediments but were elevated in their presence (0.309, 0.141 and 0.722 d(-1), respectively). The data have been discussed in relation to their importance in shallow, turbid Mexican waterbodies.

  14. Relationships among exceedences of metals criteria, the results of ambient bioassays, and community metrics in mining-impacted streams.

    PubMed

    Griffith, Michael B; Lazorchak, James M; Herlihy, Alan T

    2004-07-01

    If bioassessments are to help diagnose the specific environmental stressors affecting streams, a better understanding is needed of the relationships between community metrics and ambient criteria or ambient bioassays. However, this relationship is not simple, because metrics assess responses at the community level of biological organization, while ambient criteria and ambient bioassays assess or are based on responses at the individual level. For metals, the relationship is further complicated by the influence of other chemical variables, such as hardness, on their bioavailability and toxicity. In 1993 and 1994, U.S. Environmental Protection Agency (U.S. EPA) conducted a Regional Environmental Monitoring and Assessment Program (REMAP) survey on wadeable streams in Colorado's (USA) Southern Rockies Ecoregion. In this ecoregion, mining over the past century has resulted in metals contamination of streams. The surveys collected data on fish and macroinvertebrate assemblages, physical habitat, and sediment and water chemistry and toxicity. These data provide a framework for assessing diagnostic community metrics for specific environmental stressors. We characterized streams as metals-affected based on exceedence of hardness-adjusted criteria for cadmium, copper, lead, and zinc in water; on water toxicity tests (48-h Pimephales promelas and Ceriodaphnia dubia survival); on exceedence of sediment threshold effect levels (TELs); or on sediment toxicity tests (7-d Hyalella azteca survival and growth). Macroinvertebrate and fish metrics were compared among affected and unaffected sites to identify metrics sensitive to metals. Several macroinvertebrate metrics, particularly richness metrics, were less in affected streams, while other metrics were not. This is a function of the sensitivity of the individual metrics to metals effects. Fish metrics were less sensitive to metals because of the low diversity of fish in these streams.

  15. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects.

    PubMed

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Birane, Niane; de Alencastro, Luiz Felippe; Grandjean, Dominique; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-09-01

    This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples. The highest metal concentrations were observed in sediments subjected to anthropogenic influences, urban runoff and domestic and industrial wastewaters, discharge into the Congo River basin. Ostracods exposed to the sediments resulted in 100% mortality rates after 6d of incubation, indicating the ultimate toxicity of these sediments as well as potential environmental risks. The POPs and PAHs levels in all sediment samples were low, with maximum concentration found in the sediments (area of pool Malebo): OCP value ranged from 0.02 to 2.50 with ∑OCPs: 3.3μgkg(-1); PCB ranged from 0.07 to 0.99 with Total PCBs (∑7×4.3): 15.31μgkg(-1); PAH value ranged from 0.12 to 9.39 with ∑PAHs: 63.89μgkg(-1). Our results indicate that the deterioration of urban river-reservoir water quality result mainly from urban stormwater runoff, untreated industrial effluents which discharge into the river-reservoirs, human activities and uncontrolled urbanization. This study represents useful tools incorporated to evaluate sediment quality in river-reservoir systems which can be applied to similar aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.

  17. Effects of untreated hospital effluents on the accumulation of toxic metals in sediments of receiving system under tropical conditions: case of South India and Democratic Republic of Congo.

    PubMed

    Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John

    2013-10-01

    Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Weighing the evidence of ecological risk from PAHs contamination in the estuarine environment of Salina Cruz Bay, México.

    PubMed

    Salazar-Coria, L; Schifter, I; González-Macías, C

    2010-03-01

    Results of bulk-phase chemical measurements, toxicological tests combined with bioaccumulation measures in fishes, were used to evaluate the toxicity of the 16 USEPA priority polycyclic aromatic hydrocarbons from the sediment collected from eight stations of the Ventosa Estuarine System, located close to the main center of processing oil in the Mexican Pacific coast. Levels of the sum of polycyclic aromatic hydrocarbons varied from 22 to 6,850 microg kg(-1) dry weight. Based on sediment quality guidelines, the compounds with high environmental priority were acenaphtylene, acenaphtene, and phenanthrene. Acute toxicity tests with Vibrio fischeri and Daphnia magna as well as chronic toxicity with Panagrellus redivivus were performed. The quantification of hepatic ethoxyresorufin O-deethylase activity was used to assess the induction of the mixed function oxygenase system of brown trout. However, because it is often difficult to blend the results from such very different assays into a unified decision about the potential for impacts, a weight-of-evidence (WOE) approach to sediment quality investigations was followed. These assays provided measurement endpoints that could be used to develop an overall evaluation of the potential for environmental impacts from the oil processing operations. WOE provides a valuable tool for assessing the results of environmental investigations because it provides a framework for considering the strengths and weaknesses of environmental measurements, an approach for addressing uncertainty in the measurements, and documentation of the evaluation and its assumptions.

  19. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    USGS Publications Warehouse

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-01-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the U.S. Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds - chlordane, dieldrin, PCBs, and toxaphene - may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addressed in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the U.S. Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds - chlordane, dieldrin, PCBs, and toxaphene - may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addressed in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.

  20. Toxicity of sulfide to early life stages of wild rice (Zizania palustris).

    PubMed

    Fort, Douglas J; Todhunter, Kevin; Fort, Troy D; Mathis, Michael B; Walker, Rachel; Hansel, Mike; Hall, Scott; Richards, Robin; Anderson, Kurt

    2017-08-01

    The sensitivity of wild rice (Zizania palustris) to sulfide is not well understood. Because sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments and historical information indicated that 10 mg/L sulfate in Minnesota (USA) surface water reduced Z. palustris abundance, the Minnesota Pollution Control Agency established 10 mg/L sulfate as a water quality criterion in 1973. A 21-d daily-renewal hydroponic study was conducted to evaluate sulfide toxicity to wild rice and the potential mitigation of sulfide toxicity by iron (Fe). The hydroponic design used hypoxic test media for seed and root exposure and aerobic headspace for the vegetative portion of the plant. Test concentrations were 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide in test media with 0.8, 2.8, and 10.8 mg/L total Fe used to evaluate the impact of iron on sulfide toxicity. Visual assessments (i.e., no plants harvested) of seed activation, mesocotyl emergence, seedling survival, and phytoxicity were conducted 10 d after dark-phase exposure. Each treatment was also evaluated for time to 30% emergence (ET30), total plant biomass, root and shoot lengths, and signs of phytotoxicity at study conclusion (21 d). The results indicate that exposure of developing wild rice to sulfide at ≥3.1 mg sulfide/L in the presence of 0.8 mg/L Fe reduced mesocotyl emergence. Sulfide toxicity was mitigated by the addition of Fe at 2.8 mg/L and 10.8 mg/L relative to the control value of 0.8 mg Fe/L, demonstrating the importance of iron in mitigating sulfide toxicity to wild rice. Ultimately, determination of site-specific sulfate criteria taking into account factors that alter toxicity, including sediment Fe and organic carbon, are necessary. Environ Toxicol Chem 2017;36:2217-2226. © 2017 SETAC. © 2017 SETAC.

  1. Release of elements to natural water from sediments of Lake Roosevelt, Washington, USA

    USGS Publications Warehouse

    Paulson, Anthony J.; Cox, Stephen E.

    2007-01-01

    Reservoir sediments from Lake Roosevelt (WA, USA) that were contaminated with smelter waste discharged into the Columbia River (BC, Canada) were examined using three measures of elemental release reflecting varying degrees of physical mixing and time scales. Aqueous concentrations of Cd, Cu, Pb, and Zn in the interstitial water of reservoir sediments, in the gently stirred overlying waters of incubated sediment cores, and in supernatants of aggressively tumbled slurries of reservoir sediments generally were higher than the concentrations from a reference site. When compared to chronic water-quality criteria, all three measures of release suggest that slag-contaminated sediments near the U.S.-Canadian border are potentially toxic as a result of Cu release and Pb release in two of the three measures. All three measures of Cd release suggest potential toxicity for one site farther down the reservoir, probably contaminated as a result of transport and adsorption of Cd from smelter liquid waste. Releases of Zn and As did not appear to be potentially toxic. Carbonate geochemistry indirectly affects the potential toxicity by increasing water hardness.

  2. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment.

    PubMed

    Li, Huizhen; Wei, Yanli; Lydy, Michael J; You, Jing

    2014-07-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air-water flux, including air-water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air-water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Assessment of heavy metal impact on sediment quality of the Xiaoqinghe estuary in the coastal Laizhou Bay, Bohai Sea: inconsistency between two commonly used criteria.

    PubMed

    Zhuang, Wen; Gao, Xuelu

    2014-06-15

    Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL-ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL-ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS-SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems

    USGS Publications Warehouse

    MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A.

    2000-01-01

    Numerical sediment quality guidelines (SQGs) for freshwater ecosystems have previously been developed using a variety of approaches. Each approach has certain advantages and limitations which influence their application in the sediment quality assessment process. In an effort to focus on the agreement among these various published SQGs, consensus-based SQGs were developed for 28 chemicals of concern in freshwater sediments (i.e., metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and pesticides). For each contaminant of concern, two SQGs were developed from the published SQGs, including a threshold effect concentration (TEC) and a probable effect concentration (PEC). The resultant SQGs for each chemical were evaluated for reliability using matching sediment chemistry and toxicity data from field studies conducted throughout the United States. The results of this evaluation indicated that most of the TECs (i.e., 21 of 28) provide an accurate basis for predicting the absence of sediment toxicity. Similarly, most of the PECs (i.e., 16 of 28) provide an accurate basis for predicting sediment toxicity. Mean PEC quotients were calculated to evaluate the combined effects of multiple contaminants in sediment. Results of the evaluation indicate that the incidence of toxicity is highly correlated to the mean PEC quotient (R2= 0.98 for 347 samples). It was concluded that the consensus-based SQGs provide a reliable basis for assessing sediment quality conditions in freshwater ecosystems.

  5. From streets to streams: assessing the toxicity potential of urban sediment by particle size

    USGS Publications Warehouse

    Corsi, Steven R.; Selbig, William R.; Roger T. Bannerman,; ,

    2013-01-01

    Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines. This study measured concentrations of select trace metals and PAHs in both the silt and sand fractions of urban sediment from four sources: stormwater bed, stormwater suspended, street dirt, and streambed. Concentrations were used to assess the toxic potential of sediment based on published sediment quality guidelines. All sources of sediment showed some level of toxic potential with stormwater bed sediment the highest followed by stormwater suspended, street dirt, and streambed. Both metal and PAH concentration distributions were highly correlated between the four sampling locations suggesting the presence of one or perhaps only a few sources of these pollutants which remain persistent as sediment is transported from street to stream. Comparison to other forms of combustion- and vehicle-related sources of PAHs revealed coal tar sealants to have the strongest correlation, in both the silt and sand fractions, at all four sampling sites. This information is important for environmental managers when selecting the most appropriate Best Management Practice (BMP) as a way to mitigate pollution conveyed in urban stormwater from source to sink.

  6. RELATIONSHIP BETWEEN METABOLISM AND BIOACCUMULATION OF BENZO[A]PYRENE IN BENTHIC INVERTEBRATES

    EPA Science Inventory

    The potential influence of polycyclic aromatic hydrocarbon (PAH) metabolism on bioaccumulation is well accepted, but rarely has been examined in many species of benthic invertebrates that commonly are found in contaminated sediments, or used in bioaccumulation or toxicity tests. ...

  7. Development of a sample preparation method for the analysis of current-use pesticides in sediment using gas chromatography.

    PubMed

    Wang, Dongli; Weston, Donald P; Ding, Yuping; Lydy, Michael J

    2010-02-01

    Pyrethroid insecticides have been implicated as the cause of sediment toxicity to Hyalella azteca in both agricultural and urban areas of California; however, for a subset of these toxic sediments (approximately 30%), the cause of toxicity remains unidentified. This article describes the analytical method development for seven additional pesticides that are being examined to determine if they might play a role in the unexplained toxicity. A pressurized liquid extraction method was optimized to simultaneously extract diazinon, methyl parathion, oxyfluorfen, dicofol, fenpropathrin, pyraclostrobin, and indoxacarb from sediment, and the extracts were cleaned using a two-step solid-phase extraction procedure. The final extract was analyzed for the target pesticides by gas chromatography/nitrogen-phosphorus detector (GC/NPD), and gas chromatography/electron capture detector (GC/ECD), after sulfur was removed by shaking with copper and cold crystallization. Three sediments were used as reference matrices to assess method accuracy and precision. Method detection limits were 0.23-1.8 ng/g dry sediment using seven replicates of sediment spiked at 1.0 ng/g dry sediment. Recoveries ranged from 61.6 to 118% with relative standard deviations of 2.1-17% when spiked at 5.0 and 50 ng/g dry sediment. The three reference sediments, spiked with 50 ng/g dry weight of the pesticide mixture, were aged for 0.25, 1, 4, 7, and 14 days. Recoveries of the pesticides in the sediments generally decreased with increased aging time, but the magnitude of the decline was pesticide and sediment dependent. The developed method was applied to field-collected sediments from the Central Valley of California.

  8. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    EPA Science Inventory

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  9. Sediment quality assessment in tidal salt marshes in northern California, USA: An evaluation of multiple lines of evidence approach

    USGS Publications Warehouse

    Hwang, Hyun-Min; Carr, Robert S.; Cherr, Gary N.; Green, Peter G.; Grosholz, Edwin G.; Judah, Linda; Morgan, Steven G.; Ogle, Scott; Rashbrook, Vanessa K.; Rose, Wendy L.; Teh, Swee J.; Vines, Carol A.; Anderson, Susan L.

    2013-01-01

    The objective of this study was to evaluate the efficacy of integrating a traditional sediment quality triad approach with selected sublethal chronic indicators in resident species in assessing sediment quality in four salt marshes in northern California, USA. These included the highly contaminated (Stege Marsh) and relatively clean (China Camp) marshes in San Francisco Bay and two reference marshes in Tomales Bay. Toxicity potential of contaminants and benthic macroinvertebrate survey showed significant differences between contaminated and reference marshes. Sublethal responses (e.g., apoptotic DNA fragmentation, lipid accumulation, and glycogen depletion) in livers of longjaw mudsucker (Gillichthys mirabilis) and embryo abnormality in lined shore crab (Pachygrapsus crassipes) also clearly distinguished contaminated and reference marshes, while other responses (e.g., cytochrome P450, metallothionein) did not. This study demonstrates that additional chronic sublethal responses in resident species under field exposure conditions can be readily combined with sediment quality triads for an expanded multiple lines of evidence approach. This confirmatory step may be warranted in environments like salt marshes in which natural variables may affect interpretation of toxicity test data. Qualitative and quantitative integration of the portfolio of responses in resident species and traditional approach can support a more comprehensive and informative sediment quality assessment in salt marshes and possibly other habitat types as well.

  10. Toxicity of sediments from Bahía de Chetumal, México, as assessed by hepatic EROD induction and histology in nile tilapia Oreochromis niloticus.

    PubMed

    Zapata-Pérez, O; Simá-Alvarez, R; Noreña-Barroso, E; Güemes, J; Gold-Bouchot, G; Ortega, A; Albores-Medina, A

    2000-01-01

    The effect of environmental pollutants present in sediments obtained from Bahía de Chetumal, a bay on the border between Mexico and Belize, was studied in nile tilapia (Oreochromis niloticus) intraperitoneally injected with sediment extracts from six different sites of the Bay. Sediment samples used for the study contained a variety of organic chemicals such as organochlorine pesticides, polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). Total cytochrome P-450 and EROD activity were measured in fish liver. Haematological and histological analyses were also carried out. Hepatic P-450 content in treated fish increased from 43 to 240%, and EROD activity from 85 to 160% compared to controls. Extracts from two sampling sites inhibited EROD activity. There were positive significant correlations between P-450 content and the levels of PCBs 44 and 128. EROD activity correlated to HCB, op'-DDE, pp'-DDE, pp'-DDD, mirex and PCB 18 concentrations. Blood examination showed cell degeneration and binucleated leukocytes with abnormal chromatin. Extract treatment also resulted in foci of hyperplasia on the basement of gill lamellae, hypertrophy and oedema in gills and liver necrosis. Control fish showed no abnormalities. The results demonstrate that sediments from Bahía of Chetumal have the potential to cause histopathological, haematological and biochemical alterations in fish. The administration of sediment extracts to fish may serve as a useful test to screen the toxicity of sediments from different areas.

  11. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    USGS Publications Warehouse

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  12. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated 43 to 420 micrograms per liter. Sediment elutriate samples were toxic to Ceriodaphnia dubta, Pimephales promelas, Photobacterium phosphoreum, and Salenastrum capricornulum.

  13. Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment.

    PubMed

    Roman, Yblin E; De Schamphelaere, Karel A C; Nguyen, Lien T H; Janssen, Colin R

    2007-11-15

    Five benthic organisms commonly used for sediment toxicity testing were chronically (28 to 35 days) exposed to copper in standard laboratory-formulated sediment (following Organization for Economic Cooperation and Development guidelines) and lethal and sub-lethal toxicities were evaluated. Sub-lethal endpoints considered were reproduction and biomass production for Lumbriculus variegatus, growth and reproduction for Tubifex tubifex, growth and emergence for Chironomus riparius, and growth for Gammarus pulex and Hyalella azteca. Expressed on whole-sediment basis the observed lethal sensitivity ranking (from most to least sensitive) was: G. pulex>L. variegatus>H. azteca=C. riparius=T. tubifex, with median chronic lethal concentrations (LC50) between 151 and 327 mg/kg dry wt. The sub-lethal sensitivity ranking (from most to least sensitive, with the most sensitive endpoint between parentheses): C. riparius (emergence)>T. tubifex (reproduction)=L. variegatus (reproduction)>G. pulex (growth)>H. azteca (growth), with median effective concentrations (EC50) between 59.2 and 194 mg/kg dry wt. No observed effect concentrations (NOEC) or 10% effective concentrations (EC10) for the five benthic invertebrates were used to perform a preliminary risk assessment for copper in freshwater sediment by means of (a) the "assessment factor approach" or (b) the statistical extrapolation approach (species sensitivity distribution). Depending on the data (NOEC or EC10) and the methodology used, we calculated a Predicted No Effect Concentration (PNEC) for sediment between 3.3 and 47.1 mg Cu/dry wt. This range is similar to the range of natural (geochemical) background concentrations of copper in sediments in Europe, i.e. 90% of sediments have a concentration between 5 and 49 mg Cu/kg dry wt. A detailed analysis of the outcome of this preliminary exercise highlighted that multiple issues need to be explored for achieving a scientifically more sound risk assessment and for the development of robust sediment quality criteria for copper, including (i) the use of the assessment factor approach vs. the statistical extrapolation approach, (ii) the importance of bioavailability modifying factors (e.g., organic carbon, acid volatile sulfide), and (iii) the influence of prevailing geochemical (bioavailable) background concentrations on the copper sensitivity of local benthic biota.

  14. A critical comparison of different approaches to sediment-quality assessments in the Santos Estuarine System in Brazil.

    PubMed

    Torres, Ronaldo J; Cesar, Augusto; Pastor, Victor A; Pereira, Camilo D S; Choueri, Rodrigo B; Cortez, Fernando S; Morais, Rodofley D; Abessa, Denis M S; do Nascimento, Marcos R L; Morais, Cassia R; Fadini, Pedro S; Casillas, Tomas A Del Valls; Mozeto, Antônio A

    2015-01-01

    This study focuses on the discussion of different lines of evidence (LoEs) applied to a sediment-quality assessment that considered the following: chemical concentrations of metals; polycyclic aromatic hydrocarbons (PAHs) in estuarine waters, sediments, and oysters (native and caged Crassostrea brasiliana); PAHs in semipermeable membrane devices (SPMDs); simultaneously extracted metals-acid volatile sulfides (SEM-AVS); benthic community assessment (the exploratory benthic index and the relative benthic index); chronic toxicity tests with the sea urchin Lytechinus variegatus; and bioaccumulation models. Significantly contaminated sediments from the Santos Estuarine System and the consequent toxicity of tested organisms were measured. Caged oysters presented bioaccumulation rates ≤2,500% of total PAH content and 200% of metal content when compared with control organisms from an uncontaminated area. SPMD results presented the same bioaccumulation pattern as caged oysters but at lower concentrations. Benthic communities presented some alterations, and there was a predominance of tolerant species in the inner part of the estuary. According to the SEM-AVS approach, metals should be assumed to be nonbioavailable, but experiments with transplanted C. brasiliana showed metal bioaccumulation, particularly in the cases of chromium, copper, mercury, and zinc. The weight-of-evidence approach was applied to compare and harmonize LoEs commonly used in sediment-quality assessments and to then classify estuary environments according to both their potential for having adverse effects on the biota and their possible ecological risks. All of the results of these approaches (except for SEM-AVS) were found to complement each other.

  15. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  16. Effects of a simulated agricultural runoff event on sediment toxicity in a managed backwater wetland

    USDA-ARS?s Scientific Manuscript database

    permethrin (both cis and trans isomers), on 10-day sediment toxicity to Hyalella azteca in a managed natural backwater wetland after a simulated agricultural runoff event. Sediment samples were collected at 10, 40, 100, 300, and 500 m from inflow 13 days prior to amendment and 1, 5, 12, 22, and 36 ...

  17. Oxygen decline in biotesting of environmental samples--is there a need for consideration in the acute zebrafish embryo assay?

    PubMed

    Küster, Eberhard; Altenburger, Rolf

    2008-12-01

    Environmental samples such as groundwater, sediment pore water, native or freeze dried sediments may be difficult to analyze for toxic effects with organismic aquatic bioassays. These samples might evoke low oxygen concentration or oxygen depletion during the test. The toxicity assessment could thus be confounded by low oxygen concentrations. The acute zebrafish embryo assay was used to analyze the influence of oxygen deficit on the embryonic development in the first 48 h post fertilization. Embryos were exposed to varying oxygen concentrations ranging from <30 to >80% oxygen saturation of water. A clear concentration dependent retardation of fish embryo development was observed. Because of a retarded development toxic thresholds of environmental samples which might include substances slowing down the development will be altered. For the purpose of identification of critical contaminants in complex environmental samples, it is proposed to actively aerate environmental samples which are likely to be oxygen depleted during the duration of the zebrafish embryo bioassay. 2008 Wiley Periodicals, Inc.

  18. Ecotoxicological assessment of bluegill sunfish inhabiting a selenium-enriched fly ash stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reash, R.J.; Lohner, T.W.; Wood, K.V.

    1999-07-01

    Little Scary Creek (LSC), a 2nd-order tributary of the Kanawha River in West Virginia, receives treated fly ash produced during coal combustion. Selenium and other trace metals were determined in water column and sediment samples, caddisflies, and bluegill sunfish liver and gonads during 1995--96 to estimate pathways of selenium exposure and assess the likelihood of toxic effects. Selenium levels in LSC water and sediment samples, and in caddisflies were elevated compared to reference sites. Mean dry weight selenium concentrations in bluegill liver, ovary, and tested tissue equaled or exceeded published toxic thresholds. Other trace metals were significantly higher in LSCmore » bluegill. Leukopenia, elevated serum salts, and lowered liver weight were found in LSC bluegill. Fewer older bluegill were found in LSC. Sunfish in LSC are experiencing various kinds of sublethal stress, presumably due to metals exposure. However, major toxic effects that would be predicted to occur based on tissue selenium levels (complete reproductive failure or mortality) have not been observed in this population.« less

  19. TECHNIQUES USED IN THE ENVIRONMENTAL ASSESSMENT OF COASTAL WATERS

    EPA Science Inventory

    A variety of laboratory and field assessment techniques are used to evaluate the environmental condition of estuaries. Acute and chronic toxicity tests have been conducted with as many as 25 species to evaluate the effects of surface water and sediment on algae, invertebrates and...

  20. Effects of the insecticide permethrin on three life stages of the grass shrimp, Palaemonetes pugio.

    PubMed

    DeLorenzo, M E; Serrano, L; Chung, K W; Hoguet, J; Key, P B

    2006-06-01

    Toxicity of the pyrethroid insecticide permethrin was assessed using three life stages of the estuarine grass shrimp, Palaemonetes pugio. Adult and larval shrimp were tested with and without sediment. An aqueous embryo test was also conducted. Cellular stress biomarkers, glutathione, and lipid peroxidation, were assessed. Larval shrimp were the most sensitive life stage with a 96-h lethal concentration (LC(50)) value of 0.05 microg/L, compared to 0.25 microg/L for adults, and 6.4 microg/L for embryos. The presence of sediment significantly decreased toxicity of permethrin to both adult and larval shrimp. Permethrin exposure increased time to hatch in embryos and decreased swimming behavior of larvae. Lipid peroxidation levels were significantly decreased in the adult shrimp, but increased in larval shrimp exposed to permethrin. Low levels of permethrin may negatively affect grass shrimp health and survival. Permethrin use in the coastal zone should be carefully managed to avoid adverse impacts on nontarget estuarine organisms.

  1. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Weston, Donald P.; Zhang, Minghua; Hladik, Michelle L.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm‐water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment‐laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. 

  2. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    PubMed

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.

  3. Resolving the false-negative issues of the nonpolar organic amendment in whole-sediment toxicity identification evaluations.

    PubMed

    Mehler, W Tyler; Keough, Michael J; Pettigrove, Vincent

    2018-04-01

    Three common false-negative scenarios have been encountered with amendment addition in whole-sediment toxicity identification evaluations (TIEs): dilution of toxicity by amendment addition (i.e., not toxic enough), not enough amendment present to reduce toxicity (i.e., too toxic), and the amendment itself elicits a toxic response (i.e., secondary amendment effect). One such amendment in which all 3 types of false-negatives have been observed is with the nonpolar organic amendment (activated carbon or powdered coconut charcoal). The objective of the present study was to reduce the likelihood of encountering false-negatives with this amendment and to increase the value of the whole-sediment TIE bioassay. To do this, the present study evaluated the effects of various activated carbon additions to survival, growth, emergence, and mean development rate of Chironomus tepperi. Using this information, an alternative method for this amendment was developed which utilized a combination of multiple amendment addition ratios based on wet weight (1%, lower likelihood of the secondary amendment effect; 5%, higher reduction of contaminant) and nonconventional endpoints (emergence, mean development rate). This alternative method was then validated in the laboratory (using spiked sediments) and with contaminated field sediments. Using these multiple activated carbon ratios in combination with additional endpoints (namely, emergence) reduced the likelihood of all 3 types of false-negatives and provided a more sensitive evaluation of risk. Environ Toxicol Chem 2018;37:1219-1230. © 2017 SETAC. © 2017 SETAC.

  4. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments.

    PubMed

    Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A

    2014-06-01

    In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.

  5. Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments

    USGS Publications Warehouse

    Nelson, M.K.; Brunson, Eric L.

    1995-01-01

    The environmental, biological, and ecological requirements of but a few species used in testing sediments are known and well understood. The present investigation was designed to provide fundamental information on the postembryonic growth and development of Hyalella azteca">Hyalella azteca (Amphipoda) that can be used as sublethal indicators of contaminated sediments, and the influence growth characteristics may have on interpretation of sediment toxicity test results. The biological endpoints for measuring H. azteca">H. azteca growth and development included sexual maturation, molt frequency, intermolt duration, body length, antennal segment addition, and the relation between total body length and antennal segment addition. To use growth and development of H. azteca">H. azteca as sublethal indicators of contaminated sediments, tests of up to 28 days duration should begin with immature amphipods (less than two weeks old) that will begin the adult stage at the end of the test. Sexual maturation begins at the sixth instar (about 24 days at 20°C) and can be used as a sublethal indicator of development effects. The presence of an enlarged propodus is a reliable indicator of sexual maturation in H. azteca">H. azteca which easily distinguishes the immature (first five instars) from the juvenile (instars 6 and 7) stage.

  6. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview.

    PubMed

    Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing

    2017-02-15

    Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. TECHNIQUES USED IN THE ENVIRONMENTAL ASSESSMENT OF NEAR-COASTAL AREAS

    EPA Science Inventory

    A variety of laboratory and field assessment techniques are used to evaluate the environmental condition of estuaries. Acute and chronic toxicity tests have been conducted with as many as 25 species to evaluate the effects of water and sediment on algae, invertebrates and fish. E...

  8. Ecological risk assessment of toxic organic pollutant and heavy metals in water and sediment from a landscape lake in Tianjin City, China.

    PubMed

    Zhang, Ying; Liu, Yuanyuan; Niu, Zhiguang; Jin, Shaopei

    2017-05-01

    To estimate the ecological risk of toxic organic pollutant (formaldehyde) and heavy metals (mercury (Hg), arsenic (As), cadmium (Cd), and chromium (Cr)) in water and sediment from a landscape Lake in Tianjin City, an ecological risk assessment was performed. The risk quotient (RQ) method and the AQUATOX model were used to assess the ecological risk of formaldehyde in landscape water. Meanwhile, the RQ method and the potential ecological risk index method were used to assess the ecological risk of four heavy metals in water and sediment from the studied landscape lake, respectively. The results revealed that the maximum concentration of formaldehyde in landscape water was lower than the environmental quality standards of surface water in China. The maximum simulated concentrations of formaldehyde in phytoplankton and invertebrates were 3.15 and 22.91 μg/L, respectively, which were far less than its toxicity data values (1000 and 510 μg/L, respectively), suggesting that formaldehyde in landscape water was at a safe level for aquatic organisms. The RQ model indicated that the risks of phytoplankton and invertebrates were higher than that of fish posed by Hg and Cd in landscape water, and the risks from As and Cr were acceptable for all test organisms. Cd is the most important pollution factor among all heavy metals in sediment from studied landscape lake, and the pollution factor sequence of heavy metals was Hg > As > Cr > Cd. The values of risk index (RI) for four heavy metals in samples a and b were 43.48 and 72.66, which were much lower than the threshold value (150), suggesting that the ecological risk posed by heavy metals in sediment was negligible.

  9. Environmental fate of pyrethroids in urban and suburban stream sediments and the appropriateness of Hyalella azteca model in determining ecological risk.

    PubMed

    Palmquist, Katherine; Fairbrother, Anne; Salatas, Johanna; Guiney, Patrick D

    2011-07-01

    According to several recent studies using standard acute Hyalella azteca sediment bioassays, increased pyrethroid use in urban and suburban regions in California has resulted in the accumulation of toxic concentrations of pyrethroids in sediments of area streams and estuaries. However, a critical review of the literature indicates that this is likely an overestimation of environmental risk. Hyalella azteca is consistently the most susceptible organism to both aqueous and sediment-associated pyrethroid exposures when compared to a suite of other aquatic taxa. In some cases, H. azteca LC50 values are less than the community HC10 values, suggesting that the amphipod is an overly conservative model for community- or ecosystem-level impacts of sediment-associated pyrethroids. Further, as a model for responses of field populations of H. azteca, the laboratory bioassays considerably overestimate exposure, because the amphipod is more appropriately characterized as an epibenthic organism, not a true sediment dweller; H. azteca preferentially inhabit aquatic macrophytes, periphyton mats, and leaf litter, which drastically reduces their exposure to contaminated sediments. Sediment-bound pyrethroids are transported via downstream washing of fine particulates resulting in longer range transport but also more efficient sequestration of the chemical. In addition, site-specific variables such as sediment organic carbon content, grain size, temperature, and microbial activity alter pyrethroid bioavailability, degradation, and toxicity on a microhabitat scale. The type and source of the carbon in particular, influences the pyrethroid sequestering ability of sediments. The resulting irregular distribution of pyrethroids in stream sediments suggests that sufficient nonimpacted habitat may exist as refugia for resident sediment-dwelling organisms for rapid recolonization to occur. Given these factors, we argue that the amphipod model provides, at best, a screening level assessment of pyrethroid impacts and can correctly identify those sediments not toxic to benthic organisms but cannot accurately predict where sediments will be toxic. Copyright © 2011 SETAC.

  10. Integrative assessment of coastal marine pollution in the Bay of Santander and the Upper Galician Rias

    NASA Astrophysics Data System (ADS)

    Rial, Diego; León, Víctor M.; Bellas, Juan

    2017-12-01

    Sediments from the Rias of A Coruña, Ferrol, Betanzos and Ares (n = 26) and the Bay of Santander (n = 11) were sampled in July 2012. The concentration of organic contaminants in sediment elutriates (CBs, PAHs, pesticides and personal care products) and sea urchin (Paracentrotus lividus) embryotoxicity were assessed. Relevant concentrations of organic pollutants were detected in the elutriates (ΣContaminants < 400 ng/L) but their interpretation in terms of the observed toxicity was not straightforward. A clear gradient of toxicity from the inner to the outer areas of the Bay of Santander was observed. Sediment elutriates from three stations situated close to the city of A Coruña showed moderate toxicity values, whereas sediment elutriates from the Rias of Ares and Betanzos showed no marked toxicity. Stations located close to the city of Ferrol showed moderate to high toxicity, which is indicative of a nearby source of contamination. On the contrary, the outer area of the Ria of Ferrol was classified as "Good" according to the calculated toxic units. These results allowed for an integrative assessment of the environmental quality of the studied areas.

  11. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such asmore » ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.« less

  12. Metal-contaminated soil remediation by using sludges of the marble industry: toxicological evaluation.

    PubMed

    Pérez-Sirvent, C; García-Lorenzo, M L; Martínez-Sánchez, M J; Navarro, M C; Marimón, J; Bech, J

    2007-05-01

    The major risks due to metal pollution of sediments consist of leaching to groundwater and potential toxicity to animals and/or plants. The objective of this study was to evaluate by means of an ecotoxicological approach the effects of the addition of cutting marble sludges on the mobile metal fraction of sediments polluted with heavy metals. The study was carried out on two sediments derived from mining activities in Portman Bay (SE, Spain) polluted by heavy metals. These sediments were mixed with sludges left after the cutting of marble. The results obtained by leaching experiments showed that the addition of marble cutting sludge, consisting mainly of carbonates, to a heavy-metal polluted sediment produces a decrease of available metal forms. The carbonate content seems to play a role in chemical stabilisation of metals and in a decrease of toxicity of sediments. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover effects to long term.

  13. Development and validation of phytotoxicity tests with emergent and submerged aquatic plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, J.S.; Powell, R.L.; Nelson, M.K.

    1995-12-31

    Toxicity testing procedures have recently been developed for assessment of contaminant effects on emergent and submerged aquatic macrophytes commonly found in freshwater wetlands. These tests have potential application in risk assessments for contaminated wetlands as well as for new chemical substances. The objective of this study was to evaluate and modify, if necessary, these methods and to validate them, using two benchmark chemicals, in a contract laboratory setting. Oryza sativa (domestic rice) was used as a surrogate emergent vascular plant, while Ceratophylium demersum (coontail) and Myriophyllum heterophyllum (variable-leaf milfoil) were the representative submerged vascular plants. Subsequent to evaluating culturing techniquesmore » and testing conditions, toxicity tests were conducted using boron and metribuzin. The test procedure for the emergent plants involves a two-week pro-exposure period followed by a two-week aqueous exposure. Five types of sediment, including both natural and artificial sediments, were evaluated for use with rice. Fresh weight and chlorophyll a content were the selected test endpoints. The submerged plants were exposed for two weeks, and the response variables evaluated included length, weight (fresh and dry), and root number. The sensitivity of these tests were comparable to the results obtained for the same two chemicals using the green alga, Selenastrum capricornutum, and the duckweed, Lemna gibba, with the exception that rice was less sensitive to metribuzin than the other species.« less

  14. Assaying environmental nickel toxicity using model nematodes

    USGS Publications Warehouse

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  15. Assaying Environmental Nickel Toxicity Using Model Nematodes

    PubMed Central

    Rudel, David; Douglas, Chandler D.; Huffnagle, Ian M.; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species. PMID:24116204

  16. The incorporation of toxicity testing into the assessment and management of effluents and contaminated sediments

    EPA Science Inventory

    Following the initial push during the 1970’s to develop numerical water quality criteria for many environmental contaminants, it became clear that the protection of surface waters from chemicals in municipal and industrial effluents would require more than just criteria for...

  17. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses.

    PubMed

    De Lange, H J; Van Griethuysen, C; Koelmans, A A

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics.

  18. Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments.

    PubMed

    Harwood, Amanda D; Landrum, Peter F; Weston, Donald P; Lydy, Michael J

    2013-02-01

    The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fate, bioavailability and toxicity of silver in estuarine environments

    USGS Publications Warehouse

    Luoma, S.N.; Ho, Y.B.; Bryan, G.W.

    1995-01-01

    The chemistry and bioavailability of Ag contribute to its high toxicity in marine and estuarine waters. Silver is unusual, in that both the dominant speciation reaction in seawater and the processes important in sorbing Ag in sediments favour enhanced bioavailability. Formation of a stable chloro complex favours dispersal of dissolved Ag, and the abundant chloro complex is available to biota. Sequestration by sediments also occurs, but with relatively slow kinetics. Amorphous aggregated coatings enhance Ag accumulation in sediments, as well as Ag uptake from sediments by deposit feeders. In estuaries, the bioaccumulation of Ag increases 56-fold with each unit of increased Ag concentration in sediments. Toxicity for sensitive marine species occurs at absolute concentrations as low as those observed for any nonalkylated metal, partly because bioaccumulation increases so steeply with contamination. The environmental window of tolerance to Ag in estuaries could be narrower than for many elements.

  20. Variations of sediment toxicity in a tidal estuary: a case study of the South Passage, Changjiang (Yangtze) Estuary.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei

    2015-06-01

    Sediments in estuaries, especially those containing a large reservoir of contaminants released from urban and industrial activities, have had great impacts on benthic fauna and associated species. A better understanding of the toxicity of contaminants in estuarine sediments is of great significance to ecological assessments. Here, based on the collected sediments from neap to spring tides in the South Passage, Changjiang Estuary, the toxicity of the sediments was first studied using the frog embryo teratogenesis assay-Xenopus (FETAX). The results showed that the extracts of estuarine sediments induced multiple malformations in the embryos and that the phenotypes of malformation had two distinct patterns of variations corresponding to the tidal cycles. The phenotypes in the first pattern were dominated by hypopigmentation and edema of the heart, and the pattern was mainly controlled by fine-grained fractions. The phenotypes in the second pattern were dominated by edema of the heart and enlarged proctodeum, and it was mostly controlled by coarse-grain fractions. The sediment toxicity was higher during the spring and flood tides, which may be influenced by the grain size and sediment resuspension. Furthermore, obvious periodicities existed in the changes of the percentages of hatching (14-16 h and 6 h), enlarged proctodeum (15-18 h), and bent tail (5-7 h) due to the influence of tidal cycles. Moreover, our results also suggested that FETAX is an appropriate cost-effective biological monitoring tool to assess estuarine ecological health in contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biokinetics of different-shaped copper oxide nanoparticles in the freshwater gastropod, Potamopyrgus antipodarum

    USGS Publications Warehouse

    Ramskov, Tina; Croteau, Marie-Noele; Forbes, Valery E.; Selck, Henriette

    2015-01-01

    Sediment is recognized as a major environmental sink for contaminants, including engineered nanoparticles (NPs). Consequently, sediment-living organisms are likely to be exposed to NPs. There is evidence that both accumulation and toxicity of metal NPs to sediment-dwellers increase with decreasing particle size, although NP size does not always predict effects. In contrast, not much is known about the influence of particle shape on bioaccumulation and toxicity. Here, we examined the influence of copper oxide (CuO) NP shape (rods, spheres, and platelets) on their bioaccumulation kinetics and toxicity to the sediment-dwelling gastropod, Potamopyrgus antipodarum. The influence of Cu added as CuCl2 (i.e., aqueous Cu treatment) was also examined. Exposure to sediment mixed with aqueous Cu or with different-shaped CuO NPs at an average measured exposure concentration of 207 μg Cu per g dry weight sediment for 14 days did not significantly affect snail mortality. However, growth decreased for snails exposed to sediment amended with CuO NP spheres and platelets. P. antipodarum accumulated Cu from all Cu forms/shapes in significant amounts compared to control snails. In addition, once accumulated, Cu was efficiently retained (i.e., elimination rate constants were generally not significantly different from zero). Consequently, snails are likely to concentrate Cu over time, from both aqueous and NP sources, resulting in a high potential for toxicity.

  2. Harmonised framework for ecological risk assessment of sediments from ports and estuarine zones of North and South Atlantic.

    PubMed

    Choueri, R B; Cesar, A; Abessa, D M S; Torres, R J; Riba, I; Pereira, C D S; Nascimento, M R L; Morais, R D; Mozeto, A A; DelValls, T A

    2010-04-01

    This paper presents a harmonised framework of sediment quality assessment and dredging material characterisation for estuaries and port zones of North and South Atlantic. This framework, based on the weight-of-evidence approach, provides a structure and a process for conducting sediment/dredging material assessment that leads to a decision. The main structure consists of "step 1" (examination of available data); "step 2" (chemical characterisation and toxicity assessment); "decision 1" (any chemical level higher than reference values? are sediments toxic?); "step 3" (assessment of benthic community structure); "step 4" (integration of the results); "decision 2" (are sediments toxic or benthic community impaired?); "step 5" (construction of the decision matrix) and "decision 3" (is there environmental risk?). The sequence of assessments may be interrupted when the information obtained is judged to be sufficient for a correct characterisation of the risk posed by the sediments/dredging material. This framework brought novel features compared to other sediment/dredging material risk assessment frameworks: data integration through multivariate analysis allows the identification of which samples are toxic and/or related to impaired benthic communities; it also discriminates the chemicals responsible for negative biological effects; and the framework dispenses the use of a reference area. We demonstrated the successful application of this framework in different port and estuarine zones of the North (Gulf of Cádiz) and South Atlantic (Santos and Paranaguá Estuarine Systems).

  3. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France.

    PubMed

    Taneez, Mehwish; Marmier, Nicolas; Hurel, Charlotte

    2016-05-01

    Management of marine dredged sediments polluted with trace elements is prime issue in the French Mediterranean coast. The polluted sediments possess ecological threats to surrounding environment on land disposal. Therefore, stabilization of contaminants in multi-contaminated marine dredged sediment is a promising technique. Present study aimed to assess the effect of gypsum neutralized bauxaline(®) (bauxite residue) to decrease the availability of pollutants and inherent toxicity of marine dredged sediment. Bauxaline(®), (alumia industry waste) contains high content of iron oxide but its high alkalinity makes it not suitable for the stabilization of all trace elements from multi-contaminated dredged sediments. In this study, neutralized bauxaline(®) was prepared by mixing bauxaline(®) with 5% of plaster. Experiments were carried out for 3 months to study the effect of 5% and 20% amendment rate on the availability of Cu, Cd, Zn, As, Mo, and Cr. Trace elements concentration, pH, EC and dissolved organic carbon were measured in all leachates. Toxicity of leachates was assessed against marine rotifers Brachionus plicatilis. The Results showed that both treatments have immobilization capacity against different pollutants. Significant stabilization of contaminants (Cu, Cd, Zn) was achieved with 20% application rate whereas As, Mo, and Cr were slightly stabilized. Toxicity results revealed that leachates collected from treated sediment were less toxic than the control sediment. These results suggest that application of neutralized bauxaline(®) to dredged sediment is an effective approach to manage large quantities of dredged sediments as well as bauxite residue itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development and evaluation of sediment quality guidelines for Florida coastal waters

    USGS Publications Warehouse

    MacDonald, Donald D.; Carr, R. Scott; Calder, Fred D.; Long, Edward R.; Ingersoll, Christopher G.

    1996-01-01

    The weight-of-evidence approach to the development of sediment quality guidelines (SQGs) was modified to support the derivation of biological effects-based SQGs for Florida coastal waters. Numerical SQGs were derived for 34 substances, including nine trace metals, 13 individual polycyclic aromatic hydrocarbons (PAHs), three groups of PAHs, total polychlorinated biphenyls (PCBs), seven pesticides and one phthalate ester. For each substance, a threshold effects level (TEL) and a probable effects level (PEL) was calculated. These two values defined three ranges of chemical concentrations, including those that were (1) rarely, (2) occasionally or (3) frequently associated with adverse effects. The SQGs were then evaluated to determine their degree of agreement with other guidelines (an indicator of comparability) and the percent incidence of adverse effects within each concentration range (an indicator of reliability). The guidelines also were used to classify (using a dichotomous system: toxic, with one or more exceedances of the PELs or non-toxic, with no exceedances of the TELs) sediment samples collected from various locations in Florida and the Gulf of Mexico. The accuracy of these predictions was then evaluated using the results of the biological tests that were performed on the same sediment samples. The resultant SQGs were demonstrated to provide practical, reliable and predictive tools for assessing sediment quality in Florida and elsewhere in the southeastern portion of the United States.

  5. Chemical and physiological metal bioaccessibility assessment in surface bottom sediments from the Deba River urban catchment: Harmonization of PBET, TCLP and BCR sequential extraction methods.

    PubMed

    Unda-Calvo, Jessica; Martínez-Santos, Miren; Ruiz-Romera, Estilita

    2017-04-01

    In the present study, the physiologically based extraction test PBET (gastric and intestinal phases) and two chemical based extraction methods, the toxicity characteristic leaching procedure (TCLP) and the sequential extraction procedure BCR 701 (Community Bureau of Reference of the European Commission) have been used to estimate and evaluate the bioaccessibility of metals (Fe, Mn, Zn, Cu, Ni, Cr and Pb) in sediments from the Deba River urban catchment. The statistical analysis of data and comparison among physiological and chemical methods have highlighted the relevance of simulate the gastrointestinal tract environment since metal bioaccessibility seems to depend on water and sediment properties such as pH, redox potential and organic matter content, and, primordially, on the form in which metals are present in the sediment. Indeed, metals distributed among all fractions (Mn, Ni, Zn) were the most bioaccessible, followed by those predominantly bound to oxidizable fraction (Cu, Cr and Pb), especially near major urban areas. Finally, a toxicological risk assessment was also performed by determining the hazard quotient (HQ), which demonstrated that, although sediments from mid- and downstream sampling points presented the highest metal bioaccessibilities, were not enough to have adverse effects on human health, Cr being the most potentially toxic element. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biotransformation of dichlorodiphenyltrichloroethane in the benthic polychaete, Nereis succinea: quantitative estimation by analyzing the partitioning of chemicals between gut fluid and lipid.

    PubMed

    Wang, Fei; Pei, Yuan-yuan; You, Jing

    2015-02-01

    Biotransformation plays an important role in the bioaccumulation and toxicity of a chemical in biota. Dichlorodiphenyltrichloroethane (DDT) commonly co-occurs with its metabolites (dichlorodiphenyldichloroethane [DDD] and dichlorodiphenyldichloroethylene [DDE]), in the environment; thus it is a challenge to accurately quantify the biotransformation rates of DDT and distinguish the sources of the accumulated metabolites in an organism. The present study describes a method developed to quantitatively analyze the biotransformation of p,p'-DDT in the benthic polychaete, Nereis succinea. The lugworms were exposed to sediments spiked with DDT at various concentrations for 28 d. Degradation of DDT to DDD and DDE occurred in sediments during the aging period, and approximately two-thirds of the DDT remained in the sediment. To calculate the biotransformation rates, residues of individual compounds measured in the bioaccumulation testing (after biotransformation) were compared with residues predicted by analyzing the partitioning of the parent and metabolite compounds between gut fluid and tissue lipid (before biotransformation). The results suggest that sediment ingestion rates decreased when DDT concentrations in sediment increased. Extensive biotransformation of DDT occurred in N. succinea, with 86% of DDT being metabolized to DDD and <2% being transformed to DDE. Of the DDD that accumulated in the lugworms, approximately 70% was the result of DDT biotransformation, and the remaining 30% was from direct uptake of sediment-associated DDD. In addition, the biotransformation was not dependent on bulk sediment concentrations, but rather on bioaccessible concentrations of the chemicals in sediment, which were quantified by gut fluid extraction. The newly established method improved the accuracy of prediction of the bioaccumulation and toxicity of DDTs. © 2014 SETAC.

  7. The use of innovative screening-level techniques for the bioassessment of estuarine sediments at U.S. Army Aberdeen Proving Ground, MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, R.J.; Thebeau, L.; Paul, J.

    1994-12-31

    The US Army Aberdeen Proving Ground (APG) is a primarily undeveloped installation on the upper Chesapeake bay in Maryland. The bush and Gunpowder Rivers are two sub-estuaries that run through the installation before emptying into the Chesapeake Bay. Past activities at EA APG include pilot-scale chemical agent manufacturing, munitions testing, smoke/incendiary manufacturing, domestic and rubble landfilling, and disposal of chemical warfare agents as well as other materials. It was determined that if contamination of the Gunpowder River exists from these previous activities on EA APG it was most likely to be found in the sediments. The initial phase was tomore » conduct a sediment survey of the river to determine the spatial distribution of sediment types and the suitability of the benthos for the proposed methodologies. The second phase was to combine innovative screening-level investigative methodologies as well as sediment chemical and physical analyses into one survey of the benthos and sediments of the Gunpowder River. This phase used the Microtox luminescent bioassay and Daphnia magna IQ Toxicity Test, Surface and Profile Image (SPI) photography, analysis of sediment physical characteristics, and limited chemical analysis to identify locations that warrant a more focused investigation.« less

  8. Limitations of Reverse Polyethylene Samplers (RePES) for Evaluating Toxicity of Field Contaminated Sediments

    EPA Science Inventory

    Passive samplers are used to measure dissolved nonionic organic contaminants (NOCs) in environmental media. More recently, reverse polyethylene samplers (RePES) have been used with spiked sediments to recreate interstitial water exposure concentrations and observed toxicity. In...

  9. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  10. Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Bogenrieder, K.J.

    2000-01-01

    Manganese is a toxic element frequently overlooked when assessing toxicity of effluents, sediments and pore waters. Manganese can be present at toxic levels in anoxic solutions due to its increased solubility under chemically-reducing conditions, and it can remain at those levels for days in aerated test waters due to slow precipitation kinetics. Ceriodaphnia dubia and Hyalella azteca are freshwater organisms often used for toxicity testing and recommended for assessments of effluents and pore waters. Lethal and reproductive-inhibition concentrations of Mn were determined for C. dubia in acute 48h tests and chronic 3-brood tests using animals <24 h old and between 24 and 48 h old. Sensitivity of H. azteca was determined with 7d old animals in acute 96h tests. Tests were run at three levels of water hardness to assess the amelioratory effect, which was often significant. Manganese concentrations were measured analytically at test initiation and after 96 h for calculations of toxicity endpoints and determinations of Mn precipitation during the tests. Minimal amounts of Mn (below 3%) precipitated within 96 h. LC50s determined for H. azteca progressively increased from 3.0 to 8.6 to 13.7 mg Mn/L in soft, moderately-hard and hard waters, respectively. The tolerance of C. dubia to Mn was not significantly different between moderately-hard and hard waters, but was significantly lower in soft water. There was no significant difference in Mn sensitivity between the ages of C. dubia tested. Acute LC50 values for C. dubia averaged 6.2, 14.5 and 15.2 mg Mn/L and chronic IC50 values averaged 3.9, 8.5 and 11.5 mg Mn/L for soft, moderately-hard and hard waters, respectively. Manganese toxicity should be considered when assessing solutions with concentrations near these levels.

  11. Associations between dioxins/furans and dioxin-like PCBs in estuarine sediment and blue crab

    USGS Publications Warehouse

    Liebens, J.; Mohrherr, C.J.; Karouna-Renier, N. K.; Snyder, R.A.; Rao, K.R.

    2011-01-01

    The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs. ?? 2011 Springer Science+Business Media B.V.

  12. Risk assessment of nonylphenol and its ethoxylates in U.S. river water and sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, J.A.; Adams, W.J.; Guiney, P.D.

    1994-12-31

    A comprehensive program addressing the risks of nonylphenol (NP) and its ethoxylates (NPE) in aquatic environments of the United States has been undertaken by the Alkyl Phenol Ethoxylates Panel of the Chemical Manufacturers Association cooperating with EPA. Several hundred million pounds of NPE surfactants are used in the US each year. Nonylphenol can be an intermediate product of degradation of nonylphenol ethoxylates. A survey of those river reaches most likely to contain NPE and NP residues was conducted based on a random sample of a subset of the EPA River Reach File defined by certain selection criteria. Applying enhanced analyticalmore » techniques, little or no NP and NPE were found in river water at most locations, while low levels were usually detected in sediment. Acute and chronic toxicity tests using a variety of organisms have also been completed. New results are presented for shrimp, fish, tadpoles, midges, and algae. The risk of NP to the aquatic environment is examined by comparison of observed levels with toxicity benchmarks, and by application of equilibrium partitioning theory to calculate sediment interstitial chemical concentrations.« less

  13. Monitoring genetic damage to ecosystems from hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.L.

    1992-03-01

    Applications of ecological toxicity testing to hazardous waste management have increased dramatically over the last few years, resulting in a greater awareness of the need for improved biomonitoring techniques. Our laboratory is developing advanced techniques to assess the genotoxic effects of environmental contamination on ecosystems. We have developed a novel mutagenesis assay using the nematode Caenorhabditis elegans, which is potentially applicable for multimedia studies in soil, sediment, and water. In addition, we are conducting validation studies of a previously developed anaphase aberration test that utilizes sea urchin embryos. Other related efforts include field validation studies of the new tests, evaluationmore » of their potential ecological relevance, and analysis of their sensitivity relative to that of existing toxicity tests that assess only lethal effects, rather than genetic damage.« less

  14. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  15. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  16. IDENTIFICATION AND EVALUATION OF STRESSORS IN TOXIC SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways for a number of reasons. Identification of specific classes of toxicants (or stressors) can be useful in designing effective sediment remediation methods and re...

  17. Developmental toxicity of lead contaminated sediment to mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 I?g/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  18. Developmental toxicity of lead-contaminated sediment to mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  19. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.

  20. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.

    PubMed

    Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying

    2015-03-01

    To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Multi-walled Carbon Nanotubes Reduce Toxicity of Diphenhydramine to Ceriodaphnia dubia in Water and Sediment Exposures.

    PubMed

    Myer, Mark H; Black, Marsha C

    2017-09-01

    Multi-walled carbon nanotubes are adsorptive materials that have potential for remediation of organic contaminants in water. Sediment elutriate exposures were undertaken with Ceriodaphnia dubia to compare the toxic effects of diphenhydramine in the presence and absence of sediment and multi-walled carbon nanotubes. In both sediment and solution-only treatments, addition of 0.318 mg/g of carbon nanotubes significantly decreased 48-h mortality relative to control, with a 78.7%-90.1% reduction in treatments with nanotube-amended sediment and 40.7%-53.3% reduction in nanotube-amended water exposures. The greatest degree of relative mortality reduction occurred in sediments containing higher levels of natural organic matter, indicating a potential additive effect.

  2. Toxicity and Bioavailability of Metals in the Missouri River Adjacent to a Lead Refinery

    DTIC Science & Technology

    2001-12-01

    Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic...highly elevated in the groundwater , but not in river sediment pore waters . Lead concentrations were moderately elevated in whole sediment at one site...but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to

  3. AN ASSESSMENT OF PHTHALATE ESTER TOXICITY TO FRESHWATER BENTHOS: 2. SEDIMENT EXPOSURES

    EPA Science Inventory

    Seven phthalate esters were evaluated for their stability and 10-d acute toxicity to the freshwater invertebrates Hyalella azteca and Chironomus tentans following incorporation into sediment. The chemicals were diethyl (DEP), di-n-butyl (DBP), di-n-hyxyl (DHP), di-[2-ethylhexyl] ...

  4. PROFILE OF TOXIC RESPONSE TO SEDIMENTS USING WHOLE-ANIMAL AND IN VITRO SUBMITOCHONDRIAL PARTICLE (SMP) ASSAYS

    EPA Science Inventory

    A rapid bioassy for monitoring acute toxicity of wastewater, ground water, and soil and sediment extracts using submitochondrial particles (SMP) has been developed. The assay utilizes the mitochondrial electron transfer enzyme complex present in all eukaryotic cells. Prior develo...

  5. Toxicity of Anacostia River, Washington, D.C., USA, sediment fed to mute swans (Cygnus olor)

    USGS Publications Warehouse

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. We did not study all potential toxic effects, but, on the basis of those that we did consider, we concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  6. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    PubMed

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    PubMed

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  8. Evaluation of the Influence of Bromide or Iodide on the Performance the Amphipod Hyalella azteca in Reconstituted Waters

    EPA Science Inventory

    Survival, growth, or reproduction of the amphipod Hyalella azteca (HA) is reported to be poor when some reconstituted waters have been used to conduct chronic (>14-d) water-only or sediment toxicity tests, including ASTM reconstituted hard water (with no addition of Bromi...

  9. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei: I. Variation in resistance among populations.

    PubMed

    Vidal, D E; Horne, A J

    2003-08-01

    Mercury contamination has become a problem in many San Francisco Bay Area watersheds due to its elevated presence in sediments and aquatic organisms. The present study used laboratory lethal toxicity (LC50) tests to examine the mercury tolerance of aquatic oligochaete worms, Sparganophilus pearsei, from contaminated and uncontaminated areas. The oligochaetes were collected in the following fresh water reservoirs: Sandy Wool (reference area), San Pablo, Lake Anza, Lake Herman, and Guadalupe. These last four reservoirs were contaminated with levels of mercury that ranged from 1.5 to 2 mg/kg (wet weight). Mercury concentrations in sediment and tissue from Sandy Wool were below detection limits and worms from this site were the least tolerant of mercury in laboratory exposures (LC50 = 0.22 mg/L). Worms from the other, more contaminated, reservoirs contained elevated tissue mercury concentrations and were more tolerant in laboratory tests (LC50 = 1.48-2.19 mg/L). The present study demonstrates that different populations of the aquatic oligochaete S. pearsei have developed different tolerances to mercury depending on their previous history of exposure to mercury contamination.

  10. Estimated sediment thickness, quality, and toxicity to benthic organisms in selected impoundments in Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2013-01-01

    The U.S. Geological Survey and the Massachusetts Department of Fish and Game, Division of Ecological Restoration, collaborated to collect baseline information on the quantity and quality of sediment impounded behind selected dams in Massachusetts, including sediment thickness and the occurrence of contaminants potentially toxic to benthic organisms. The thicknesses of impounded sediments were measured, and cores of sediment were collected from 32 impoundments in 2004 and 2005. Cores were chemically analyzed, and concentrations of 32 inorganic elements and 108 organic compounds were quantified. Sediment thicknesses varied considerably among the 32 impoundments, with an average thickness of 3.7 feet. Estimated volumes also varied greatly, ranging from 100,000 cubic feet to 81 million cubic feet. Concentrations of toxic contaminants as well as the number of contaminants detected above analytical quantification levels (also known as laboratory reporting levels) varied greatly among sampling locations. Based on measured contaminant concentrations and comparison to published screening thresholds, bottom sediments were predicted to be toxic to bottom-dwelling (benthic) organisms in slightly under 30 percent of the impoundments sampled. Statistically significant relations were found between several of the contaminants and individual indicators of urban land use and industrial activity in the upstream drainage areas of the impoundments. However, models developed to estimate contaminant concentrations at unsampled sites from upstream landscape characteristics had low predictive power, consistent with the long and complex land-use history that is typical of many drainage areas in Massachusetts.

  11. Environmental fate and effects of nicotine released during cigarette production.

    PubMed

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low.

  12. The use of multiple endpoints to assess cellular responses to environmental contaminants in the interstitial marine ciliate Euplotes crassus.

    PubMed

    Gomiero, A; Sforzini, S; Dagnino, A; Nasci, C; Viarengo, A

    2012-06-15

    This paper presents the results of investigations on the suitability of Euplotes crassus, an interstitial marine ciliate, to be used as model organism in ecotoxicology and thereafter to evaluate the toxicity of estuarine and coastal sediments upon laboratory exposure. Nowadays, anthropogenic activities have resulted in accumulation of metals and organic pollutants in the environment as well as in the food chain hence leading to serious ecological and human health problems. This may pose a risk to benthic and epibenthic organisms and it is crucial to discover toxicity tests that will identify adverse effects of sediment-associated chemicals on benthic organisms. Due to their nature as a eukaryotic cell/organism and their position in the food web, ciliated protozoa are suitable models for evaluating the effects of pollution on aquatic communities. Lethal and sublethal effects of exposure to inorganic and organic pollutants were tested on the cell mortality, replication rate, lysosomal membrane stability and endocytosis rate of E. crassus. Increasing nominal concentrations of individual and mixtures of mercury, copper, and benzo(a)pyrene were investigated in this study as they might be bioavailable in naturally occurring polluted sites. A significant decrease in the mean replication rate (p<0.05) was found after 24h exposures to m/μM concentrations of all tested pollutants. At the same time, significant decreases of lysosomal membrane stability (p<0.05) were observed for Cu (5 μM), Hg (10 nM), and B(a)P (200 nM). Among the entire suite of tests, endocytosis rate test demonstrated the highest sensitivity. Exposures to binary mixtures of all studied pollutants were performed showing both inorganic-organic and inorganic-inorganic additive and/or antagonist effects. Moreover, medium salinity was also varied to mimic estuarine-like environmental conditions linking biological response to ionic strengths. Under these conditions significant increases of both endocytosis rate and lysosomal membrane stability were observed and related to the increment of some Hg- and Cu-related toxic complexes. The studied biomarkers were always able to discriminate between the effects of organic and inorganic pollutants. Together with the short time and simplicity of the test procedures, results obtained in this study indicate that E. crassus is a promising and convenient bioindicator for evaluating the toxicity of different environmental matrixes like pore water, sediments and wastewaters--polluted by metals and organic pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  14. Use of blue crab (Callinectes sapidus) embryos for toxicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.; O`Malley, K.

    1995-12-31

    After fertilization, blue crab embryos develop in egg sacs attached to the female pleopods, often referred to as the sponge. Lipovitellin and lipid droplets in the egg sacs provide energy and nutrition for the developing embryos. Embryos were removed from the sponge and transferred to 24 well culture plates containing sea water with or without toxicants, Each well contained 10 embryos. After 7 to 10 days, embryos hatched to swimming zoea. The effects of toxicants at various concentrations on hatching were determined and the EC{sub 50} calculated. For example, the EC{sub 50} for tributyltin, fenvalerate and mercuric chloride were 50,more » 30 and 90 ng/liter, respectively. The hatching success of control embryos ranged from 95 to 98%. Formation of the heart, eyespot formation, appendage formation and utilization rate of lipovitellin were also effected by exposure to toxicants. At a low concentration of mercuric ion (30ng/liter) the heart formed, but there was no heart beat. Eyespot formation was abnormal in the presence of high concentrations of cadmium (2 {micro}g/liter) and zinc (5 {micro}g/liter), Crab embryos offer many advantages for toxicity testing of pure compounds or mixtures in water, including toxicity testing of sediment pore water. The crab embryos may also serve as models to understand the effect of specific toxicants on the heart and eye spots of crustaceans.« less

  15. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    NASA Astrophysics Data System (ADS)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In addition, identification of the main binding sites and phase associations of heavy metals in sediments is carried out by employment of sequential extraction procedure and determination of ratio of acid volatile sulfide and simultaneously extracted metals (AVS/SEM). Results of all of these additional chemical tests showed that risk is overestimated if sediment quality standards alone are used as pass/fail criteria. The obtained results are invaluable for future activities regarding dredging of Begej canal and future monitoring of sediment status. This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects III43005 and TR37004). The authors would like to thank the Provincial Secretariat for Science and Technological Development of the Province of Vojvodina for their financial support in realization of COST Action ES1205.

  16. Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000

    USGS Publications Warehouse

    Frenzel, Steven A.

    2002-01-01

    Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.

  17. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  18. Impact of storm-water outfalls on sediment quallity in corpus Christi Bay, Texas, USA

    USGS Publications Warehouse

    Carr, R. Scott; Montagna, Paul A.; Biedenbach, James M.; Kalke, Rick; Kennicutt, Mahlon C.; Hooten, Russell L.; Cripe, Geraldine

    2000-01-01

    To determine the quality of sediments and extent of contaminant impacts, a Sediment Quality Triad (SQT) study was conducted at 36 sites in the Corpus Christi Bay, Texas, USA, system. Fifteen of the 36 sites were located near storm-water outfalls, but 13 other sites (i.e., industrial and domestic outfalls, oil field–produced water discharges, and dredging activity) and eight reference sites were also evaluated. Sediment samples were collected and analyzed for physical–chemical characteristics, contaminant concentrations (metals, polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and pesticides), toxicity (amphipod and mysid solid phase and sea urchin pore-water fertilization and embryological development tests), and a benthic index of biotic integrity (BIBI) composed of 10 independent metrics calculated for each site. This large data matrix was reduced using multivariate analysis to create new variables for each component representing overall means and containing most of the variance in the larger data set. The new variables were used to conduct the correlation analysis. Toxicity was significantly correlated with both chemistry and ecological responses, whereas no correlations between the benthic metrics and sediment chemistry were observed. Using the combined information from the SQT, four of the five most degraded sites were storm-water outfall sites. Although estuaries are naturally stressful environments because of salinity and temperature fluctuations, this ecosystem appears to have been compromised by anthropogenic influences similar to what has been observed for other heavily urbanized bay systems along the Texas and Gulf coast.

  19. Recent advances in the use of estuarine meiobenthos to assess contaminated sediment effects in multi-species whole sediment microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, G.T.; Coull, B.C.; Schizas, N.V.

    1995-12-31

    Many marine meiobenthic taxa (i.e. invertebrates passing a 1-mm sieve but retaining on a 0.063 mm sieve) are ideal for ``whole-sediment`` and porewater bioassay of sedimented pollutants. Annual production of meiobenthos is 5--10 times that of the more commonly studied macrobenthos, and > 95% of all meiobenthos live in the oxic zone of muddy sediments at densities of 4--12 million per M{sup 2}. Most spend their entire lifecycles, burrowing freely and feeding on/within the sediment:porewater matrix, many taxa undergo 10--14 generations per year, most larval/juvenile stages are benthic, and many have easily quantifiable reproductive output. Furthermore, many meiobenthic taxa canmore » be cultured indefinitely over multiple life-cycles within simple sediment microcosms consisting of sealed whole-sediment cores collected intact from intertidal mudflats. The authors describe several recent technical developments exploiting meiofaunal sediment culture for rapid contaminated sediment bioassays of toxicant effects on survival, reproduction and population growth of meiobenthic taxa in whole-sediment microcosms. Currently meiobenthic copepods, nematodes, foraminifers and polychaetes are being continuously cultured to study these parameters under exposure to model sediment-associated toxicants (e.g. cadmium). Bioassays are run for 21-d under flowing seawater. With this approach, fertile benthic copepods (e.g. Amphiascus tenuiremis) can be added to core microcosms to assess survival and growth of a fixed population cohort. All other meiobenthic taxa are enumerated relative to controls and evaluated for toxicant effects on higher order community-level endpoints. This approach exploits meiobenthos` high abundance and rapid reproductive rates to yield on a micro scale better endpoints than much larger sediment mesocosms targeted at macrofaunal endpoints.« less

  20. Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron

    NASA Astrophysics Data System (ADS)

    Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.

    2014-08-01

    The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".

Top