Sample records for sediment trap deployments

  1. The use (and misuse) of sediment traps in coral reef environments: theory, observations, and suggested protocols

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Field, M. E.; Bothner, M. H.

    2011-03-01

    Sediment traps are commonly used as standard tools for monitoring "sedimentation" in coral reef environments. In much of the literature where sediment traps were used to measure the effects of "sedimentation" on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about "sedimentation" on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height ( H), trap mouth diameter ( D), the height of the trap mouth above the substrate ( z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.

  2. The use (and misuse) of sediment traps in coral reef environments: Theory, observations, and suggested protocols

    USGS Publications Warehouse

    Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.

    2011-01-01

    Sediment traps are commonly used as standard tools for monitoring “sedimentation” in coral reef environments. In much of the literature where sediment traps were used to measure the effects of “sedimentation” on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about “sedimentation” on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height (H), trap mouth diameter (D), the height of the trap mouth above the substrate (z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.

  3. The Partition Intervalometer: A Programmable Underwater Timer for Marking Accumulated Sediment Profiles Collected in Anderson Sediment Traps: Development, Operation, Testing Procedures, and Field Results

    USGS Publications Warehouse

    Rendigs, Richard R.; Anderson, Roger Y.; Xu, Jingping; Davis, Raymond E.; Bergeron, Emile M.

    2009-01-01

    This manual illustrates the development of a programmable instrument designed to deploy a series of wafer-shaped discs (partitions) into the collection tube of a sediment trap in various aquatic environments. These hydrodynamically shaped discs are deployed at discrete time intervals from the Intervalometer and provide markers that delineate time intervals within the sediments that accumulate in the collection tube. The timer and mechanical system are lodged in an air-filled, water-tight pressure housing that is vertically hung within the confines of a cone-shaped sediment trap. The instrumentation has been operationally pressure tested to an equivalent water depth of approximately 1 km. Flaws discovered during extensive laboratory and pressure testing resulted in the implementation of several mechanical modifications (such as a redesign of the rotor and the discs) that improved the operation of the rotor assembly as well as the release of discs through the end cap. These results also identified a preferred azimuth placement of the rotor disc relative to the drop hole of the end cap. In the initial field trial, five sediment traps and coupled Intervalometers were attached to moored arrays and deployed at two sites off the coast of Southern California for approximately 8 months. Each of the instruments released 18 discs at the programmed 10 day intervals, except one unit, which experienced a malfunction after approximately 4 months. Most of the discs oriented in a near-horizontal position upon the surface of the sediment in the collection tubes. Sampling of the sediments for geochemical analyses was improved by these clearly defined markers, which indicated the changes in the flux and nature of sediments accumulated during the deployment period of each sediment trap.

  4. Corrigendum to ``Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord - Different from subarctic fjords?'' [J. Mar. Syst. 154 (2016) 192-205

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2018-02-01

    In our original publication the particle volume flux was by mistake standardized to area A = sediment trap diameter2 ∗ pi instead of A = sediment trap radius2 ∗ pi (A being the opening of the sediment trap). In addition, the particle flux data from Spring II (30 m and 60 m) and Spring III (20 m) were standardized twice to deployment time, instead of to the deployment time and the sediment trap opening. These mistakes do not affect our conclusions, but we would like to present here the correct numbers for the result section 3.4, discussion section 4.3 and a revised Fig. 5.

  5. Bacterial growth and the decomposition of particulate organic carbon collected in sediment traps

    NASA Astrophysics Data System (ADS)

    Ducklow, Hugh W.; Hill, Suzanne M.; Gardner, Wilford D.

    We have studied bacterial abundance and production in samples from sediment traps deployed for 1 and 100 days in several areas of the shelf and slope regions of the Middle Atlantic Bight, U.S.A. By making a series of assumptions about bacterial growth at the expense of POC in traps, we have estimated that the turnover time of organic particles collected in traps during long deployments is slow (mean 1500 ± 300 days), if only bacterial activity is considered. However the abundance and biomass of bacteria in traps is very high, ranging from 3 to 30 × 10 11 cells gC -1, i.e., 0.3 to 3% of the POC is bacterial carbon. Fifteen to 88% of the particles in traps were colonized by bacteria, but usually about half the particles had only 0 to 1 cell attached. Growth of bacteria was observed at all scales relevant to these trap deployments; over periods ranging from hours to weeks, at rates of 0.01 to 0.3 d -1. In spite of slow growth, bacteria appeared to be physiologically active in that [ 3H]adenine and [ 3H]thymidine were incorporated more rapidly into RNA and protein than into DNA. Total incorporation rates were high. We conclude that even relatively old (ca. 1 y) POC in sediment traps supports high levels of active bacterial biomass, but that POC decomposition is slow, so that bacteria may not be the principal agents of POC turnover following collection.

  6. Export fluxes in a naturally iron-fertilized area of the Southern Ocean - Part 1: Seasonal dynamics of particulate organic carbon export from a moored sediment trap

    NASA Astrophysics Data System (ADS)

    Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.

    2015-06-01

    A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.

  7. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  8. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements

    USGS Publications Warehouse

    Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.

    2009-01-01

    Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.

  9. δ13C and δ15N Values of Sediment-trap Particles in the Japan and Yamato Basins and Comparison with the Core-top Values in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Khim, Boo-Keun; Otosaka, Shigeyoshi; Park, Kyung-Ae; Noriki, Shinichiro

    2018-03-01

    Investigation of sediment-trap deployments in the East/Japan Sea (EJS) showed that distinct seasonal variations in particulate organic carbon (POC) fluxes of intermediate-water sediment-traps clearly corresponded to changes in chlorophyll a concentrations estimated from SeaWiFS data. The prominent high POC flux periods (e.g., March) were strongly correlated with the enhanced surface-water phytoplankton blooms. Deep-water sedimenttraps exhibited similar variation patterns to intermediate-water sediment-traps. However, their total flux and POC flux were higher than those of intermediate-water sediment-traps during some months (e.g., April and May), indicating the lateral delivery of some particles to the deep-water sediment-traps. Distinct seasonal δ13C and δ15N variations in settling particles of the intermediate-water sediment-traps were observed, strongly supporting the notion of seasonal primary production. Seasonal variations in δ13C and δ15N values from the deep-water sediment-traps were similar to those of the intermediate-water sediment-traps. However, the difference in δ13C and δ15N values between the intermediate-water and the deepwater sediment-traps may be attributed to degradation of organic matter as it sank through the water column. Comparison of fluxweighted δ13C and δ15N mean values between the deep-water sediment-traps and the core-top sediments showed that strong selective loss of organic matter components (lipids) depleted in 13C and 15N occurred during sediment burial. Nonetheless, the results of our study indicate that particles in the deep-water sediment-trap deposited as surface sediments on the seafloor preserve the record of surface-water conditions, highlighting the usefulness of sedimentary δ13C and δ15N values as a paleoceanographic application in the EJS.

  10. Continuous in situ monitoring of sediment deposition in shallow benthic environments

    NASA Astrophysics Data System (ADS)

    Whinney, James; Jones, Ross; Duckworth, Alan; Ridd, Peter

    2017-06-01

    Sedimentation is considered the most widespread contemporary, human-induced perturbation on reefs, and yet if the problems associated with its estimation using sediment traps are recognized, there have been few reliable measurements made over time frames relevant to the local organisms. This study describes the design, calibration and testing of an in situ optical backscatter sediment deposition sensor capable of measuring sedimentation over intervals of a few hours. The instrument has been reconfigured from an earlier version to include 15 measurement points instead of one, and to have a more rugose measuring surface with a microtopography similar to a coral. Laboratory tests of the instrument with different sediment types, colours, particle sizes and under different flow regimes gave similar accumulation estimates to SedPods, but lower estimates than sediment traps. At higher flow rates (9-17 cm s-1), the deposition sensor and SedPods gave estimates >10× lower than trap accumulation rates. The instrument was deployed for 39 d in a highly turbid inshore area in the Great Barrier Reef. Sediment deposition varied by several orders of magnitude, occurring in either a relatively uniform (constant) pattern or a pulsed pattern characterized by short-term (4-6 h) periods of `enhanced' deposition, occurring daily or twice daily and modulated by the tidal phase. For the whole deployment, which included several very high wind events and suspended sediment concentrations (SSCs) >100 mg L-1, deposition rates averaged 19 ± 16 mg cm-2 d-1. For the first half of the deployment, where SSCs varied from <1 to 28 mg L-1 which is more typical for the study area, the deposition rate averaged only 8 ± 5 mg cm-2 d-1. The capacity to measure sedimentation rates over a few hours is discussed in terms of examining the risk from sediment deposition associated with catchment run-off, natural wind/wave events and dredging activities.

  11. Assessing Organic Contaminant Fluxes from Contaminated Sediments Following Dam Removal in an Urbanized River

    EPA Science Inventory

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...

  12. A comparison of solids collected in sediment traps and automated water samplers

    USGS Publications Warehouse

    Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.

    1996-01-01

    Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.

  13. Particle Fluxes in the Marginal Seas of Antarctica: A 20-year Synthesis in Honor of Jack Dymond

    NASA Astrophysics Data System (ADS)

    Dunbar, R. B.; Langone, L.

    2004-12-01

    One of Jack Dymond's long-standing scientific passions was the study of particles moving through the ocean water column. Jack's pioneering work in this area in the 1970's and generous mentoring of others throughout his career lead directly to the first authors involvement in sediment trap studies. Here we present a synthesis of 20 years of particle flux studies in coastal Antarctic (including the work of Collier and Dymond et al.) and highlight some of the important features and unresolved issues related to integrating particle trap interceptor data with other measures of production, transport, and deposition. The first sediment trap arrays were deployed on the Antarctic shelf in 1981 and 1982 in the Antarctic Peninsula. Simple instruments were also deployed in 1984 and 1986 in the Ross Sea. Since then, several nations (US, Italy, New Zealand) have recovered time series sediment trap data on moorings in both of these areas. This current synthesis makes use of data from approximately 22 sites, the majority of which are in the Ross Sea, and includes about 900 discrete samples of particles in vertical transit through the water column. We now have many complete time series that extend through the winter, allowing several important generalizations to be made. For example, annual particle-mediated organic C fluxes to below 200 meters in the Ross Sea average 4.4±3.3 g C m-2 yr-1. These values are significantly less than export fluxes calculated using short-term surface water mass balance approaches or Th isotope techniques yet are higher than seabed sediment accumulation rates. Intriguingly, seasonal seabed arrival rates of organic C estimated from in-situ summertime benthic respirometry studies yield C flux values similar in magnitude to those from sediment traps deployed at the same time, lending strong support to trap data. The cause of current disagreements between various methods of flux estimation may in fact not be solved until process studies are accomplished that extend through the austral autumn into winter and/or the biogeochemistry of Th is better understood in coastal area of the Southern Ocean. Nearly all Ross Sea particle flux time series show relative low sedimentation during the periods of highest primary production in surface waters followed by either events or periods of enhanced sedimentation during the latest austral summer and/or autumn. This high degree of decoupling between production and sedimentation is unusual and may well represent low grazing rates. It is likely that purely physical phenomena associated with the return of winter sea ice are responsible for enhanced autumn sedimentation in the Ross Sea. Compared to the Ross Sea region, biogenic fluxes in the Palmer Basin area of the Antarctic Peninsula are higher, but are more tightly coupled to productivity in surface waters. We conclude our synthesis by presenting a general model for particle production and deposition in several end-member environments of the Antarctic Margin.

  14. Particle-bound metal transport after removal of a small dam in ...

    EPA Pesticide Factsheets

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa

  15. Particulate export and lateral advection in the Antarctic Polar Front (Southern Pacific Ocean): One-year mooring deployment

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Ravaioli., M.; Giglio, F.; Capotondi, L.

    2012-12-01

    An instrumented mooring line with sediment traps, current meters and recorders of temperature and conductivity was deployed just south of the Antarctic Polar Front (63° 26‧ S, 178° 03‧E; water depth 4400 m) from January 9th 1999 to January 10th 2000. Sediment traps at 900 and 3700 m had a single large cup to collect particulate material throughout the 1-year study whereas time-series sediment traps were used to characterize the temporal variability at 1300 and 2400 m. Samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera identification. High vertical fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During autumn and winter, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~ 60 and ~ 90% of the material caught at 2400 and 3700 m, respectively. Although resuspended material showed an elemental composition relatively similar to vertical summer fluxes, samples collected during high energy events contained benthic foraminifera and exhibited significantly higher 210Pb activity indicating a longer residence time in the water column. In addition, during quiescent periods characterized by low mass fluxes, the content of lithogenic particles increased at the expense of phytodetritus indicating the influence of material advected through the benthic nepheloid layer. Organic matter content was particularly high during these periods and showed statistically significant linear correlations with metals suggesting adsorption of organic coatings onto the mineral surface of lithogenic particles.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, D.M.; Gibeaut, J.C.; Short, J.W.

    Following the Exxon Valdez oil spill, sediment traps were deployed in nearshore subtidal areas of Prince William Sound, Alaska (PWS) to monitor particulate chemistry and mineralogy. Complemented by benthic sediment chemistry and core sample stratigraphy at the study sites, results were compared to historical trends and data from other Exxon Valdez studies. These results clearly indicate the transport of oil-laden sediments from oiled shorelines to adjacent subtidal sediments. The composition of hydrocarbons adsorbed to settling particulates at sites adjacent to oiled shorelines matched the PAH pattern of weathered Exxon Valdez crude oil.

  17. Most Detailed Direct Measurements Yet of Turbidity Currents in the Deep Ocean: Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.

    2016-12-01

    Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.

  18. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  19. Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential

    NASA Astrophysics Data System (ADS)

    King, Linda L.; Repeta, Daniel J.

    1994-10-01

    The distributions of pyropheophorbide- a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all our trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide- a varied throughout the year, and we suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacent site. From these results, we suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide- a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundant PSEs found in the Black Sea are also described.

  20. Spatio-temporal variability of modern sedimentation rates in Lake Nam Co, central Tibetan Plateau, China -- the first results from sediment traps

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ju, J.; Daut, G.; Wang, Y.; Maeusbacher, R.; Zhu, L.

    2013-12-01

    As a big and deep lake in high altitude environment, Nam Co has played an important role in the past decade concerning paleoenvironmental change study. However, the modern process monitoring research is still insufficient in this lake to understand the variations in the modern sedimentation patterns. Sediment traps are widely used in lakes monitoring and research, providing the modern sedimentation rates (SR) and flux information as well as the materials for multidisciplinary studies. Here we present the first and preliminary result of spatio-temporal variability of SR in Nam Co based on one-year sediment traps data. Three integrated self-made traps mooring were deployed in different areas in Nam Co, which were eastern area (T1, ~57m depth), middle area (T2, ~93m depth) and western area (T3, ~62m depth). There were three layers traps in T1 and T3 station while four layers in T2 station. Additionally, a time-series automatic samples changing trap (Technicap PPS 3/3, France) was set up in the bottom (~90m depth) of T2 station with a sampling interval of two weeks. All traps were established in late May, 2012 and collected in Mid-September, 2012 for the first time. Then after winter time, samples were again collected in late May, 2013. Therefore, we got results for two periods, namely summer half year (May-September) and winter half year (September-next May). The results showed remarkable variation of SR vertically in all three stations, the bottom layers received much more materials than the up and middle layers. This fact could be attributed to the distinct influence of high density flows occurring at the lake bottom. This is also supported by multiprobe measurements showing high turbidity in the water body close to the bottom. In shallow areas (T1 and T3) the SR were higher than that of deep area (T2), which could probably reflect the different distance from the terrestrial source to the sites where the traps were deployed. In T1 and T2 stations, SR of winter half year (calculated as mg/cm2/day) was much higher than summer half year and this trend was also partly detected in the time-series sediment trap (T2), which showed higher SR in October, November and early June (no data from December to May). From early June to mid-November, the average SR of T2 station (~90m depth) ranged 0.09-0.95 mg/cm2/day, showed a remarkable temporal variation. More data and detailed analysis are still needed to elucidate the variability of modern SR in Nam Co and the influencing factors, including some internal mechanisms and outside driving related to climate change.

  1. Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, L.L.; Repeta, D.J.

    1994-10-01

    The distributions of pyropheophorbide-a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide-a varied throughout the year, and the authors suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacentmore » site. From these results, they suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide-a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundance PSEs found in the Black Sea are also described.« less

  2. Plankton dynamics and carbon flux in an area of upwelling off the coast of Morocco

    NASA Astrophysics Data System (ADS)

    Head, E. J. H.; Harrison, W. G.; Irwin, B. I.; Horne, E. P. W.; Li, W. K. W.

    1996-11-01

    A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m -2 (0-100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m -2 with phytoplankton carbon accounting for 16-85% of total POC. Bacterial carbon was ˜ 5% of total POC and mesozooplankton carbon concentrations were equivalent to ˜9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m -2 day -1. Bacterial consumption accounted for ˜50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m -2 day -1. while filtration rates suggested that ingestion of phytoplankton carbon was only ˜0.2 g C m -2day -1, even when phytoplankton constituted ˜85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for ˜ 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.

  3. Canyon effect and seasonal variability of deep-sea organisms in the NW Mediterranean: Synchronous, year-long captures of ;swimmers; from near-bottom sediment traps in a submarine canyon and its adjacent open slope

    NASA Astrophysics Data System (ADS)

    Romano, C.; Flexas, M. M.; Segura, M.; Román, S.; Bahamon, N.; Gili, J. M.; Sanchez-Vidal, A.; Martin, D.

    2017-11-01

    Numerous organisms, including both passive sinkers and active migrators, are captured in sediment traps together with sediments. By capturing these "swimmers", the traps become an extraordinarily tool to obtain relevant information on the biodiversity and dynamics of deep-sea organisms. Here we analyze near-bottom swimmers larger than 500 μm and their fluxes collected from eight near-bottom sediment traps installed on instrumented moorings deployed nearby Blanes Canyon (BC). Our data, obtained from November 2008 to October 2009 with a sampling rate of 15 days, constitutes the first year-long, continuous time series of the whole swimmers' community collected at different traps and bottom depths (from 300 m to 1800 m) inside a submarine canyon and on its adjacent open slope (OS). The traps captured 2155 specimens belonging to 70 taxa, with Crustacea (mainly Copepoda) and Annelida Polychaeta accounting for more than 90% of the total abundance. Almost half of the identified taxa (33) were only present in BC traps, where mean annual swimmer fluxes per trap were almost one order of magnitude higher than in the OS ones. Temporal variability in swimmer fluxes was more evident in BC than in OS. Fluxes dropped in winter (in coincidence with the stormy period in the region) and remained low until the following spring. In spring, there was a switch in taxa composition, including an increase of planktonic organisms. Additionally, we report drastic effects of extreme events, such as major storms, on deep-sea fauna. The impact of such extreme events along submarine canyon systems calls to rethink the influence of climate-driven phenomena on deep-sea ecosystems and, consequently, on their living resources.

  4. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  5. Pelagic origin and fate of sedimenting particles in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bathmann, Ulrich V.; Peinert, Rolf; Noji, Thomas T.; Bodungen, Bodo V.

    A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g.m -2y -1, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10 3m -2d -1). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.

  6. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    USGS Publications Warehouse

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  7. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments

    NASA Astrophysics Data System (ADS)

    Phillips, J. M.; Russell, M. A.; Walling, D. E.

    2000-10-01

    Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.

  8. Chernobyl radioactivity found in mid-water sediment interceptors in the N. Pacific and Bering Sea

    NASA Astrophysics Data System (ADS)

    Kusakabe, M.; Ku, T.-L.; Harada, K.; Taguchi, K.; Tsunogai, S.

    1988-01-01

    Fission-product nuclides 134Cs, 137Cs and 103Ru originated from the Chernobyl accident have been detected in sediment traps deployed at mid-water depths ranging from 110 to 780 m in the N. Pacific and the Bering Sea. The detected radioactivities, originally associated with fine airborne particles, have apparently been incorporated into much larger aggregates of predominantly biogenic material formed in the surface ocean, and transferred downward through the water column with velocities of the order of 100 m/day.

  9. Fatty acid profiles of benthic environment associated with artificial reefs in subtropical Hong Kong.

    PubMed

    Cheung, Siu Gin; Wai, Ho Yin; Shin, Paul K S

    2010-02-01

    Artificial reefs can enhance habitat heterogeneity, especially in seabed degraded by bottom-dredging and trawling. However, the trophodynamics of such reef systems are not well understood. This study provided baseline data on trophic relationships in the benthic environment associated with artificial reefs in late spring and mid summer of subtropical Hong Kong, using fatty acid profiles as an indicator. Data from sediments collected at the reef base, materials from sediment traps deployed on top and bottom of the reefs, total particulate matter from the water column and oyster tissues from reef surface were subjected to principal component analysis. Results showed variations of fatty acid profiles in the total particulate matter, upper sediment trap and oyster tissue samples collected in the two samplings, indicating seasonal, trophodynamic changes within the reef system. The wastes produced by fish aggregating at the reefs can also contribute a source of biodeposits to the nearby benthic environment. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.; Seim, H.; Bane, J.; van Weering, T. C. E.

    2012-01-01

    Near-bed hydrodynamic conditions were recorded for almost one year in the Viosca Knoll area (lease block 826), one of the most well-developed cold-water coral habitats in the Gulf of Mexico. Here, a reef-like cold-water coral ecosystem, dominated by the coral Lophelia pertusa, resembles coral habitats found off the southeastern US coast and the North East Atlantic. Two landers were deployed in the vicinity and outside of the coral habitat and measured multiple near-bed parameters, including temperature, salinity, current speed and direction and optical and acoustic backscatter. Additionally, the lander deployed closest to the coral area was equipped with a sediment trap that collected settling particles over the period of deployment at 27 day intervals. Long-term monitoring showed, that in general, environmental parameters, such as temperature (6.5-11.6 °C), salinity (34.95-35.4) and current speed (average 8 cm s -1, peak current speed up to 38 cm s -1) largely resembled conditions previously recorded within North East Atlantic coral habitats. Major differences between site VK 826 and coral areas in the NE Atlantic were the much higher particle load, and the origin of the particulate matter. Several significant events occurred during the deployment period beginning with an increase in current speed followed by a gradual increase in temperature and salinity, followed by a rapid decrease in temperature and salinity. Simultaneously with the decrease in temperature and salinity, the direction of the current changed from west to east and cold and less turbid water was transported upslope. The most prominent event occurred in July, when a westward flow lasted over 21 days. These events are consistent with bottom boundary layer dynamics influenced by friction (bottom Ekman layer). The Mississippi River discharges large quantities of sediment and dominates sedimentation regimes in the area. Furthermore, the Mississippi River disperses large amounts of terrestrial organic matter and nutrients, resulting in increased primary productivity, whereby marine organic matter is produced that will sink to the seafloor and can serve as food for the cold-water corals and associated species. As a result mass fluxes from the sediment trap were higher (1120-4479 mg m -2 day -1) than those observed in the North East Atlantic and were highest during periods of westward-flow, which corresponded to warm turbid water. During eastward-flow, colder and less turbid water was pushed upslope, resulting in lower mass fluxes. Trap samples had a low CaCO 3, high organic carbon content and high C/N ratios, suggesting a fluvial origin. The high sediment load in the water column can be a limiting factor for coral growth, especially since the corals can be smothered with sediment. However, eastward-flows provided periods of relatively clearer water that can remove sediment from the coral area and allow corals to expel sediment from their polyps. Around Viosca Knoll food supply comes from two possible sources. During April and June several fluorescence peaks were observed near the seabed, showing the arrival of phytodetritus in the area. Furthermore, a consistent diel vertical migration of zooplankton was observed that might provide an additional food source.

  11. Dynamics of Organic Carbon Flux on the Northwest Atlantic Margin: Results from a Three-year Time-Series Sediment Trap Study

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Manganini, S. J.; Montlucon, D. B.; Eglinton, T. I.

    2012-12-01

    Sinking particles have been collected on the Northwest Atlantic margin since summer 2004 to understand the dynamics of particle export and the role of the Deep Western Boundary Current in resuspension of particles from sediment and their horizontal transport. Three traps were deployed at roughly 1000m, 2000m, and 3000m (50 m above the bottom) on a mooring at 3000m isobath. The results from the 2004-2005 deployment have been published previously (Hwang et al., 2009). We report the results from summer 2004 to summer 2007 in this presentation. Lithogenic component accounted for an increasing fraction with increasing depth from 27% at 1000m to 42% at 3000m. Radiocarbon contents as Δ14C values of sinking particulate organic matter were significantly depleted from the value of particulate organic matter in the surface water. The 3-year average value decreased with increasing depth from +13 per mil at 1000m to -20 per mil at 3000m. As previously observed for the first year samples, radiocarbon content showed a strong negative correlation with aluminum concentration. Because there is no considerable riverine input the high concentrations of lithogenic component and depleted Δ14C values imply the influence of laterally transported particles resuspended from sediment. Fluxes of biogenic and lithogenic components and their temporal variation will be discussed in relation with production in the surface water, lateral supply of resuspended sediment, and the variability of the Deep Western Boundary Current. Hwang, J., et al. (2009), Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. I, 56, 1792-1803.

  12. Biogeochemical flux and phytoplankton succession: A year-long sediment trap record in the Australian sector of the Subantarctic Zone

    NASA Astrophysics Data System (ADS)

    Wilks, Jessica V.; Rigual-Hernández, Andrés S.; Trull, Thomas W.; Bray, Stephen G.; Flores, José-Abel; Armand, Leanne K.

    2017-03-01

    The Subantarctic Zone (SAZ) plays a crucial role in global carbon cycling as a significant sink for atmospheric CO2. In the Australian sector, the SAZ exports large quantities of organic carbon from the surface ocean, despite lower algal biomass accumulation in surface waters than other Southern Ocean sectors. We present the first analysis of diatom and coccolithophore assemblages and seasonality, as well as the first annual quantification of bulk organic components of captured material at the base of the mixed layer (500 m depth) in the SAZ. Sediment traps were moored in the SAZ southwest of Tasmania as part of the long-term SAZ Project for one year (September 2003 to September 2004). Annual mass flux at 500 m and 2000 m was composed mainly of calcium carbonate, while biogenic silica made up on average <10% of material captured in the traps. Organic carbon flux was estimated at 1.1 g m-2 y-1 at 500 m, close to the estimated global mean carbon flux. Low diatom fluxes and high fluxes of coccoliths were consistent with low biogenic silica and high calcium carbonate fluxes, respectively. Diatoms and coccoliths were identified to species level. Diatom and coccolithophore sinking assemblages reflected some seasonal ecological succession. A theoretical scheme of diatom succession in live assemblages is compared to successional patterns presented in sediment traps. This study provides a unique, direct measurement of the biogeochemical fluxes and their main biological carbon vectors just below the winter mixed layer depth at which effective sequestration of carbon occurs. Comparison of these results with previous sediment trap deployments at the same site at deeper depths (i.e. 1000, 2000 and 3800 m) documents the changes particle fluxes experience in the lower "twilight zone" where biological processes and remineralisation of carbon reduce the efficiency of carbon sequestration.

  13. Puget Sound sediment-trap data: 1980-1985. Data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, A.J.; Baker, E.T.; Feely, R.A.

    1991-12-01

    In 1979, scientists at the Pacific Marine Environmental Laboratory began investigating the sources, transformation, transport and fate of pollutants in Puget Sound and its watershed under Sec. 202 of the Marine Protection, Research and Sanctuaries Act of 1971 (P.L. 92-532) which called in part for '...a comprehensive and continuing program of research with respect to the possible long range effects of pollution, overfishing, and man-induced changes of ocean ecosystems...' The effort was called the Long-Range Effects Research Program (L-RERP) after language in the Act and was later called the PMEL Marine Environmental Quality Program. The Long-Range Effect Research Program consistedmore » of (1) sampling dissolved and particulate constituents in the water column by bottle sampling, (2) sampling settling particles by sediment trap and (3) sampling sediments by grab, box, gravity and Kasten corers. In the Data Report, a variety of data from particles collected in 104 traps deployed on 34 moorings in open waters between 1980 and 1985 are presented. The text of the data report begins with the sampling and analytical methods with the accompanying quality control/quality assurance data. The text of the data sections are a summary of the available data and published literature in which the data is interpreted along with a catalogue of the data available in the Appendix (on microfiche located in the back pocket of the data report).« less

  14. Evaluation of Trap Designs and Deployment Strategies for Capturing Halyomorpha halys (Hemiptera: Pentatomidae)

    PubMed Central

    Morrison, William R.; Cullum, John P.; Leskey, Tracy C.

    2015-01-01

    Halyomorpha halys (Stål) is an invasive pest that attacks numerous crops. For growers to make informed management decisions against H. halys, an effective monitoring tool must be in place. We evaluated various trap designs baited with the two-component aggregation pheromone of H. halys and synergist and deployed in commercial apple orchards. We compared our current experimental standard trap, a black plywood pyramid trap 1.22 m in height deployed between border row apple trees with other trap designs for two growing seasons. These included a black lightweight coroplast pyramid trap of similar dimension, a smaller (29 cm) pyramid trap also ground deployed, a smaller limb-attached pyramid trap, a smaller pyramid trap hanging from a horizontal branch, and a semipyramid design known as the Rescue trap. We found that the coroplast pyramid was the most sensitive, capturing more adults than all other trap designs including our experimental standard. Smaller pyramid traps performed equally in adult captures to our experimental standard, though nymphal captures were statistically lower for the hanging traps. Experimental standard plywood and coroplast pyramid trap correlations were strong, suggesting that standard plywood pyramid traps could be replaced with lighter, cheaper coroplast pyramid traps. Strong correlations with small ground- and limb-deployed pyramid traps also suggest that these designs offer promise as well. Growers may be able to adopt alternative trap designs that are cheaper, lighter, and easier to deploy to monitor H. halys in orchards without a significant loss in sensitivity. PMID:26470309

  15. Characterization and physical properties of hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Terzariol, M.; Santamarina, C.

    2016-12-01

    The amount of carbon trapped in hydrates is estimated to be larger than in conventional oil and gas reservoirs, thus methane hydrate is a promising energy resource. The high water pressure and the relatively low temperature needed for hydrate stability restrict the distribution of methane hydrates to continental shelves and permafrost regions. Stability conditions add inherent complexity to coring, sampling, handling, testing and data interpretation, have profound implications on potential production strategies. Thus a novel technology is developed for handling, transferring, and testing of natural hydrate bearing sediments without depressurization in order to preserve the sediment structure. Results from the first deployment of these tools on natural samples from Nankai Trough, Japan will also be summarized. Finally, to avoid consequences of poor sampling, a new multi-sensor in-situ characterization tool will be introduced.

  16. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii

    USGS Publications Warehouse

    Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  17. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii.

    PubMed

    Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E

    2006-09-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  18. Enhanced export of carbon by salps during the northeast monsoon period in the northern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Sarin, M. M.; Rengarajan, R.

    2005-07-01

    A drifting sediment trap was deployed and 234Th activity in the water column was measured to calculate export flux of carbon at a time-series station in the northern Arabian Sea (lat. 21°30' N; long. 64°00' E) during the winter monsoon, 10-23 February 1997. The sampling period was characterised by an extensive salp swarm, and salp faecal pellets were the dominant contributors to the particulate matter in the sediment traps. Average 234Th flux out of the photic zone was 2300 dpm m -2 d -1 and average POC/ 234Th ratio in trap-derived particles was 0.14 mg/dpm. Average 234Th-derived export flux of carbon was about 332 mg m -2 d -1, representing 36% of the daily primary production (PP) (925 mg C m -2 d -1). Export of about one-third of the daily PP during the end of the winter monsoon could be due to the episodic nature of salp swarms. Salp swarms are frequently observed in the Arabian Sea and may be a significant pathway for rapid export of carbon from the euphotic zone.

  19. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    USGS Publications Warehouse

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  20. Composition and provenance of terrigenous organic matter transported along submarine canyons in the Gulf of Lion (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pasqual, Catalina; Goñi, Miguel A.; Tesi, Tommaso; Sanchez-Vidal, Anna; Calafat, Antoni; Canals, Miquel

    2013-11-01

    Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean’s interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as lignin-derived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 μg VP g-1 lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.

  1. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    NASA Astrophysics Data System (ADS)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did so within the first eight days. The lab experiment assessed a trap designed as an in situ microcosm, containing 13C-labeled benzene and a sulfate source, in order to quantify the amount of benzene leached from the trap and the rate of sulfate dissolution into the surrounding area. An “aquifer” was built in a tank and designed to mimic the well installations at a benzene-contaminated, sulfate-reducing site in Fillmore, CA. Multi-level upgradient and downgradient monitoring points were sampled throughout the six-week deployment and analyzed for sulfate and benzene. The trap and “aquifer” chemistry will be discussed and compared to the field experiment results.

  2. Sediment traps for measuring onslope surface sediment movement

    Treesearch

    Wade G. Wells; Peter M. Wohlgemuth

    1987-01-01

    Two types of small (30-cm aperture) sheet metal sediment traps were developed to monitor onslope surface sediment transport. Traditionally, sediment traps and erosion pins have been used to measure the onslope movement of surficial soil material. While pins may be appropriate for documenting landscape denudation, traps are more suitable for monitoring downslope...

  3. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia.

    PubMed

    Olley, Jon; Brooks, Andrew; Spencer, John; Pietsch, Timothy; Borombovits, Daniel

    2013-10-01

    The Laura-Normanby River (catchment area: 24,350 km(2)), which drains into Princess Charlotte Bay, has been identified in previous studies as the third largest contributor of sediment to the Great Barrier Reef World Heritage Area. These catchment scale modelling studies also identified surface soil erosion as supplying >80% of the sediment. Here we use activity concentrations of the fallout radionuclides (137)Cs and (210)Pbex to test the hypothesis that surface soil erosion dominates the supply of fine (<10 μm) sediment in the river systems draining into Princess Charlotte Bay. Our results contradict these previous studies, and are consistent with channel and gully erosion being the dominant source of fine sediment in this catchment. The hypothesis that surface soil erosion dominates the supply of fine sediment to Princess Charlotte Bay is rejected. River sediment samples were collected using both time-integrated samplers and sediment drape deposits. We show that there is no detectable difference in (137)Cs and (210)Pbex activity concentrations between samples collected using these two methods. Two methods were also used to collect samples to characterise (137)Cs and (210)Pbex concentrations in sediment derived from surface soil erosion; sampling of surface-wash deposits and deployment of surface runoff traps that collected samples during rain events. While there was no difference in the (137)Cs activity concentrations for samples collected using these two methods, (210)Pbex activity concentrations were significantly higher in the samples collected using the runoff traps. The higher (210)Pbex concentrations are shown to be correlated with loss-on-ignition (r(2) = 0.79) and therefore are likely to be related to higher organic concentrations in the runoff trap samples. As a result of these differences we use a three end member mixing model (channel/gully, hillslope surface-wash and hillslope runoff traps) to determine the relative contribution from surface soil erosion. Probability distributions for (137)Cs and (210)Pbex concentrations were determined for each of the end members, with these distributions then used to estimate the surface soil contribution to each of the collected river sediment samples. The mean estimate of contribution of surface derived sediment for all river samples (n = 70) is 16 ± 2%. This study reinforces the importance of testing model predictions before they are used to target investment in remedial action and adds to the body of evidence that the primary source of sediment delivered to tropical river systems is derived from subsoil erosion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Terrigenous fluxes of pollen, insect scale and land plant palynodebris observed by sediment traps deployed in the subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Tsutsui, H.; Takahashi, K.; Fowell, S. J.; Matsuoka, K.; Jordan, R. W.; Yamamoto, S.

    2014-12-01

    From 1990 to 2009, sediment traps in the subarctic Pacific (SA; 49°N, 174°W) were deployed and recovered during each summer, allowing the long-term observation of particle fluxes. As the Pacific Decadal Oscillation index changed in 1999 as air-temp cooled, this study focused on pollen, land plant debris and insect scale fluxes at SA during 1998 to 2006. The max pollen and fern spores flux was a mean of 74 grains m2 d-1, and the following details: 65% of the total pollen counts represented by wind-pollinated trees (e.g., alder, birch and pine), 24% by the herbaceous plants (as herbs), and 11% by fern spores. Spore, herbaceous and wind-pollinated tree pollen (as wind-pollen) fluxes peaked in May and Sep-Oct, but flux peaks of the latter also occurred in April and Jun. The annual flux peaks of insect scales (of unknown origin) and land-plant debris were in May and Sep, but over the entire study period the max insect scale flux of 161 was in Aug 2002, with a mean of 16 scales m2d-1, while the max (in Aug 2004) and mean land-plant debris fluxes were 107 and 10 plant fragments m2d-1, respectively. The sediment traps are situated both side of the Aleutian Is., where snow and ice occurs from Oct to May. The ice-snow season accounts for 25% of the total annual particle flux in SA trap, with 75% throughout the rest of the year. The correlation coefficient among pollen, insect scales and land plant debris are: 1) 0.58 (p<1%) between wind-pollen and insect scales, 2) 0.75 (p<5%) between herb-pollen and land plant debris, 3) but only 0.14 between insect scales and herbaceous pollen. Thus, the production location, residence time, route and mode of transport of the particles are important factors. Normally, the wind-pollinated tree flowering season in the northern part of Alaska and Japan where are an upper stream to the stations is from Apr to Jun, with the pollen usually transported across the ocean by winds. Assuming that the pollen takes several months to arrive SA, the wind speed and direction during the summer months also need to be considered. The debris needs about 1 month to sink to the trap water depth. Accordingly, the pollen transported to the trap area in Apr, Aug and Sep, when local wind speeds are 8 to 13 m s-1, are represented by the fluxes in May, Sep and Oct. In summary, the wind-pollen and insect scales in SA appear to be conveyed by wind over long distances.

  5. Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention

    NASA Astrophysics Data System (ADS)

    Schwindt, Sebastian; Franca, Mário J.; Reffo, Alessandro; Schleiss, Anton J.

    2018-03-01

    Sediment traps with partially open check dams are crucial elements for flood protection in alpine regions. The trapping of sediment is necessary when intense sediment transport occurs during floods that may endanger urban areas at downstream river reaches. In turn, the unwanted permanent trapping of sediment during small, non-hazardous floods can result in the ecological and morphological degradation of downstream reaches. This study experimentally analyses a novel concept for permeable sediment traps. For ensuring the sediment transfer up to small floods, a guiding channel implemented in the deposition area of a sediment trap was systematically studied. The bankfull discharge of the guiding channel corresponds to a dominant morphological discharge. At the downstream end of the guiding channel, a permeable barrier (check dam) triggers sediment retention and deposition. The permeable barrier consists of a bar screen for mechanical deposition control, superposed to a flow constriction for the hydraulic control. The barrier obstructs hazardous sediment transport for discharges that are higher than the bankfull discharge of the guiding channel without the risk of unwanted sediment flushing (massive self-cleaning).

  6. Improve California trap programs for detection of fruit flies

    USDA-ARS?s Scientific Manuscript database

    There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. States and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers...

  7. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    USGS Publications Warehouse

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  8. Results of a Monitoring Program at a Sediment Trap in the Elbe Estuary near Wedel

    NASA Astrophysics Data System (ADS)

    Ohle, N.; Entelmann, I.; Winterscheid, A.

    2012-04-01

    In June 2008 a sediment trap was built in the Tidal Elbe River near Wedel. The trap is about 2 km long, 2 m deep in average and spans the whole roughly 300 meter width of the navigation channel. The geometry of the trap is aligned to the zones with maximum sedimentation in the past. Therefore it has a triangular geometry on the western side. The dimensions of the sediment traps were restricted due to more or less legal circumstances. A longer and deeper sediment trap requires a planning approval as the used dimensions were evaluated as supporting maintenance works. Hamburg Port Authority (HPA) and the Waterway and Shipping Administration of the Federal Government (WSV) want jointly further improve the management of sediments and dredging activities by means of this measure. Until end of 2010 a total amount of about 4 Mio. m3 of fine sediments has been removed from the basin in 4 maintenance campaigns and was relocated about 50 km downstream to the relocation area at Elbe-km 690. The main function of the sediment trap is to reduce the residual transport of marine sediments from the North Sea in direction of Hamburg by trapping minor polluted sediments before they reach the port area. In this area these sediments mix-up with higher polluted sediments. The three specific objectives of the sediment trap are: to reduce the dredging amounts in the area of the Hamburg port; to be able to relocate minor polluted sediments further downstream to areas where the ebb-tidal current dominates the flow regime; to economically optimize maintenance dredging activities within the sediment trap. Beside these qualitative advantages the sediment trap has additional advantages in regard to maintenance works of the fairway due to a higher flexibility. Since sediments are collected in one defined place they can be dredged more efficiently through the use of optimized equipment, e.g. larger hopper dredgers can be used resulting in a cost-benefit. Another optimisation possibility can be found in the higher densities that can be dredged through a longer period of consolidation, resulting in higher hopper densities. In contrast to these advantages, a cost increase through preparation of the sediment trap in the first place needs to be considered. In order to report stakeholders, HPA runs a monitoring programme on how this sediment trap affects hydrology, morphology and ecological issues. Besides that, HPA carries out further monitoring activities tailored to system analysis and to study morphological processes in detail. The Federal Institute of Hydrology (BfG) analyses the data and carries out further investigations on the measuring data (refer to BfG, 2009 and BfG, 2010). Hydrological and morphological parameters are being constantly recorded at four monitoring stations which are located up- and downstream to the sediment trap. The current velocities were analysed by ADCP campaigns on several profiles. In order to study the near-bed morphological processes a steel-frame-platform - equipped with measurement devices and traps for suspended material - was installed directly on the bottom of the sediment trap. A pump sampler collects water samples from a survey vessel to obtain suspended matter (SPM) content. Furthermore, HPA uses a multibeam echo sounder to observe the resulting sedimentation patterns in the trap. Surface grab samples are used to collect data about grain size distributions. Echo soundings with two frequencies and sediment echo sounders were used to get a picture of the density and consolidation of the settled sediments within the trap. In this paper short results of the mentioned monitoring program should be presented.

  9. Evaluation of the efficiency of some sediment trapping methods after a Mediterranean forest fire.

    PubMed

    Fox, D M

    2011-02-01

    Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m³ per unit (median=1.28 m³); mean LDD height was 105.4 cm (std. dev.=21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev.=22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (< 0.050 mm) particles as coarser sediments were trapped upstream by the LDDs. Cost efficiency of LDDs was estimated at about 143 € m⁻³ for the LDDs and 217 € m⁻³ for the sedimentation basin at the time of sampling. The LDDs are therefore a cost effective method of trapping sediments, but they can only be used when pine trees or straight-trunked trees are locally available. In this case, they should be combined with LEBs, which had a cost efficiency estimated at about 250 € m⁻³. Installation of the LEBs had not been optimised and they have the advantage of trapping sediments on the slopes where they can continue to play an ecological role, so this method can give better results with more care. Sedimentation basins can be emptied if necessary and are useful in areas where pine trees are not available and where the site can be secured. Copyright © 2009 Elsevier Ltd. All rights reserved.

  10. Bloom termination of the toxic dinoflagellate Alexandrium catenella: Vertical migration behavior, sediment infiltration, and benthic cyst yield.

    PubMed

    Brosnahan, Michael L; Ralston, David K; Fischer, Alexis D; Solow, Andrew R; Anderson, Donald M

    2017-11-01

    New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella , a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya , is also discussed.

  11. Comparison of settling particles and sediments at IMAGES coring site in the northwestern North Pacific — Effect of resuspended particles on paleorecords

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Minoshima, Kayo; Ishizaki, Yui; Yamaoka, Kyoko; Gupta, Lallan P.; Nagao, Masayuki; Kuroyanagi, Azumi

    2009-12-01

    In order to understand settling process of particles in high sedimentation area, one mooring of sediment trap was deployed right above the IMAGES coring site in the northwestern North Pacific. In spite of two large maxima of settling particle fluxes in June-July 2002 and October-early January 2003, organic matter (OM) and carbonate showed higher peaks in June-July while lithogenics showed a large peak in October-early January with degraded OM (low aspartic acid/beta-alanine (Asp/Bala) and glutamic acid/gamma-aminobutyric (Glu/Gaba) ratios). Fresh OM production peaked in June-July 2002 and April-May 2003. Thus a large export production occurred in spring-early summer (April-June). Alkenone production was enhanced mainly in June-July. The mean alkenone SST of the settling particles was rather consistent with the observed annual mean SST and alkenone SST determined from the surface sediments. On the other hand, the maximum lithogenic flux along with the degradation of OM indicated that a significant amount of resuspended matter contaminated the bottom sediments. Based upon idealized model, the current and settling speeds make fractionation by size and density of resuspended particles during the settling process. Accumulation rates of lithogenics were ~ 5 times those in the sediment traps, which indicate large contribution of resuspended particles to settling particles especially during October-early January, when the Tsugaru current showed high current speed. These observations call our attention to carefully reconstruct paleo-environments based upon lithogenics and several other proxies such as biogenic silica, which would be biased for example in the record of IMAGES core at Site Shimokita located on the gentle continental slope.

  12. Characterization of sediment trapped by macroalgae on a Hawaiian reef flat

    USGS Publications Warehouse

    Stamski, R.E.; Field, M.E.

    2006-01-01

    Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (???1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (??0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km2 of reef flat (54 g m-2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Characterization of sediment trapped by macroalgae on a Hawaiian reef flat

    NASA Astrophysics Data System (ADS)

    Stamski, Rebecca E.; Field, Michael E.

    2006-01-01

    Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (˜1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (±0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km 2 of reef flat (54 g m -2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments.

  14. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-03-31

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.

  15. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident

    PubMed Central

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-01-01

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium (137Cs) in four irrigation ponds, ~4–5 months after the Fukushima Dai–ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of 137Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total 137Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more 137Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of 137Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of 137Cs in pond sediment, as well as the amount lost through hydraulic flushing. PMID:24682011

  16. Gypsy moth (Lepidoptera: Lymantriidae) flight behavior and phenology based on field-deployed automated pheromone-baited traps

    Treesearch

    Patrick C. Tobin; Kenneth T. Klein; Donna S. Leonard

    2009-01-01

    Populations of the gypsy moth, Lymantria dispar (L.), are extensively monitored in the United States through the use of pheromone-baited traps.We report on use of automated pheromone-baited traps that use a recording sensor and data logger to record the unique date-time stamp of males as they enter the trap.We deployed a total of 352 automated traps...

  17. Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2007-01-01

    Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.

  18. Terrigenous fluxes of pollen, insect scale and land plant palynodebris observed by sediment traps deployed in the subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Tsutsui, H.; Takahashi, K.; Matsuoka, K.; Jordan, R. W.; Yamamoto, S.

    2016-02-01

    From 1990 to 2009, sediment traps were deployed and recovered in the subarctic Pacific (Station SA; 49°N, 174°W) during each summer, allowing the long-term observation of particle fluxes. As the Pacific Decadal Oscillation index changed in 1999 while air temperatures cooled, this study focused on pollen, land plant debris and insect scale fluxes during 1994 to 2009 at Station SA. The maximum pollen and fern spores flux was 644 grains m2 d-1, with a mean of 74 grains m2 d-1and the following details: 65% of the total pollen counts represented by wind-pollinated trees (e.g., alder, birch and pine), 24% by the herbaceous plants, and 11% by fern spores. Spore, herbaceous and wind-pollinated tree pollen fluxes peaked primarily in May (and sporadically also in April and June) and September-October. The annual flux peaks of insect scales (of unknown origin) and land-plant debris were in May and September, but over the entire study period the maximum insect scale flux of 161 scales m2 d-1 was in August 2002, with a mean of 16 scales m2 d-1. Furthermore, the maximum (in August 2004) and mean land-plant debris fluxes were 107 and 10 plant fragments m2 d-1, respectively. The sediment traps were situated at southern side of the Aleutian Islands, where snow and ice occurred for six months from October to May. The ice-snow season accounts for 25% of the total annual particle flux, with 75% throughout the rest of the year. The correlation coefficient among pollen, insect scales and land plant debris are: 1) 0.58 (probability <1%) between wind-pollinated plant pollen and insect scales, and 2) 0.75 (probability <5%) between herbaceous plant pollen and land plant debris. The production locations, residence time, routes and mode of transport of the particles are important factors. The pollen fluxes observed during April to June appeared to have originated from the Western Alaska, but during the rest of years they appeared to have been from the eastern Russia. That pollen and other organic debris were conveyed by wind over long distance across the ocean.

  19. Variability in sinking fluxes and composition of particle-bound phosphorus in the Xisha area of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, Yuan; Li, Qian P.; Wu, Zhengchao; Zhang, Jia-Zhong

    2016-12-01

    Export fluxes of phosphorus (P) by sinking particles are important in studying ocean biogeochemical dynamics, whereas their composition and temporal variability are still inadequately understood in the global oceans, including the northern South China Sea (NSCS). A time-series study of particle fluxes was conducted at a mooring station adjacent to the Xisha Trough in the NSCS from September 2012 to September 2014, with sinking particles collected every two weeks by two sediment traps deployed at 500 m and 1500 m depths. Five operationally defined particulate P classes of sinking particles including loosely-bound P, Fe-bound P, CaCO3-bound P, detrital apatite P, and refractory organic P were quantified by a sequential extraction method (SEDEX). Our results revealed substantial variability in sinking particulate P composition at the Xisha over two years of samplings. Particulate inorganic P was largely contributed from Fe-bound P in the upper trap, but detrital P in the lower trap. Particulate organic P, including exchangeable organic P, CaCO3-bound organic P, and refractory organic P, contributed up to 50-55% of total sinking particulate P. Increase of CaCO3-bound P in the upper trap during 2014 could be related to a strong El Niño event with enhanced CaCO3 deposition. We also found sediment resuspension responsible for the unusual high particles fluxes at the lower trap based on analyses of a two-component mixing model. There was on average a total mass flux of 78±50 mg m-2 d-1 at the upper trap during the study period. A significant correlation between integrated primary productivity in the region and particle fluxes at 500 m of the station suggested the important role of biological production in controlling the concentration, composition, and export fluxes of sinking particulate P in the NSCS.

  20. Generating quantitative palaeoflood data from homogeneous lake sediments: a case-study from Brotherswater, northwest England

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2016-04-01

    The scarcity of long-term hydrological data is a barrier to reliably determining the likelihood of floods becoming more frequent and/or intense in a warmer world. Lakes and their sediments are increasingly being used to reconstruct long-term, highly-resolved datasets of past floods but the ultimate goal, generating quantitative palaeohydrological data to augment flood frequency analyses, is a persistent challenge. To this end, ascertaining the autogenic and allogenic processes influencing the character and preservation potential of palaeoflood laminations and determining the minimum discharge at which a sedimentary imprint will be deposited in a particular system are two key precursors. Some success has been achieved at lakes containing annually-laminated sequences or where event layers exhibit well-defined lithological contacts. Many non-alpine and non-polar lakes, especially those in temperate regions, are instead characterised by visually-homogeneous, organic-rich sediments from which discrete flood laminations are difficult to discriminate. Working at Brotherswater, a small upland lake in northwest England, we have successfully demonstrated an approach to obtain flood frequency and magnitude data from this type of lake system by integrating a 16 month sediment trap deployment (CE 2013-2014) with the recent (CE 1962 - 2014) depositional record. The geochemical composition and end-member modelling of the trap data shed light on the seasonal variation in background sedimentation dynamics, specifically enhanced sediment supply during winter, spring diatom blooms and heightened summer productivity, which alter the signature of coarse-grained deposition in response to higher flows. Having pinpointed the characteristic flood end-member, comparison of the short-core palaeoflood reconstruction to local river discharge data was able to reveal the hydrological thresholds of this system: flood magnitudes calculated to have a four year recurrence interval are preserved in delta-proximal sediments but the central basin was less sensitive, declining to nine years. These results have been further contextualised through comparison with the sedimentological signature of a recent extreme flood captured by sediment traps and in short cores extracted immediately post-event. On the 5-6 December Storm Desmond delivered unprecedented rainfall and multiple gauging stations in the region surpassed record river flow, offering a unique opportunity to test a sediment-based palaeoflood record. These data re-emphasise the need for systematic process monitoring and calibration of the depositional record to obtain a site-specific understanding of internal and external factors controlling event signature preservation. Wider implementation of this approach at equivalent lakes offers a vast, untapped archive of palaeohydrological data for hydrologists, climate modellers, engineers and policy makers addressing future flood risks.

  1. The Rhine Delta - a record of sediment trapping over time scales from millennia to decades

    NASA Astrophysics Data System (ADS)

    Middelkoop, Hans; Erkens, Gilles; van der Perk, Marcel

    2010-05-01

    At the land-ocean interface, large river deltas are major sinks of sediments and associated matter. Over the past decennia, many studies have been conducted on the palaeogeographic, historic and sub-recent overbank deposition on the Rhine floodplains. In this study these research results are synthesises with special focus on the amounts and changes of overbank fines trapped in the Rhine delta at different time scales in the past, present, and future. This contribution forms an update of the results presented at the EGU 2009 in session HS11.3 (Sediment response to catchment disturbances). Sediment trapping in the Rhine delta throughout the Holocene was quantified using a detailed database of the Holocene delta architecture. Additional historic data allowed the reconstruction of the development of the river floodplains during the period of direct human interference on the river. Using heavy metals as tracers, overbank deposition rates over the past century were determined. Measurements of overbank deposition and channel bed sediment transport in recent years, together with modelling studies of sediment transport and deposition have provided detailed insight in the present-day sediment deposition on the floodplains, as well as their controls. Estimated annual suspended sediment delivery rates were about 1.4 Mton (million tons) yr-1 between 6000-3000 yr BP and increased to about 2.1 Mton yr-1 between 3000-1000 yr BP. After embankment between 1100 and 1350 AD the amount of sediment trapped in the floodplains reduced to about 0.92 Mton yr-1. However, when accounting for sediment reworking, the actual sediment trapping of the embanked floodplains was about 1.6 Mton yr-1. Downstream of the lower Waal branch an inland delta developed that trapped another 0.4 Mton yr-1 of overbank fines. Since channel normalisation around 1850, the average deposition amounts on the embanked floodplains have been 1.15 Mton yr-1. Scenario studies show that the future sediment trapping in the lower Rhine floodplains might double. The variations in sediment deposited in the Rhine delta during the Holocene are largely attributed to changes in land use in the upstream basin. At present, the sediment trapping is low and heavily influenced by river regulation and engineering works. Upstream changes in climate and land use, and particularly direct measures for flood reduction in the lower floodplains may again change the amounts of sediments trapped by the lower floodplains in the forthcoming decennia.

  2. Chemical degradation of TMR multi-lure dispensers for fruit fly detection weathered under California climatic conditions

    USDA-ARS?s Scientific Manuscript database

    There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers of tra...

  3. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/C org data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m -2 d -1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.

  4. Geochemical particle fluxes in the Southern Indian Ocean seasonal ice zone: Prydz Bay region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Pilskaln, C. H.; Manganini, S. J.; Trull, T. W.; Armand, L.; Howard, W.; Asper, V. L.; Massom, R.

    2004-02-01

    Time-series sediment traps were deployed between December 1998 and January 2000 and from March 2000 to February 2001 at two offshore Prydz Bay sites within the seasonal ice zone (SIZ) of the Southern Indian Ocean located between 62-63°S and 73-76°E to quantify seasonal biogeochemical particle fluxes. Samples were obtained from traps placed at 1400, 2400, and 3400 m during the first deployment year (PZB-1) and from 3300 m in the second deployment year (PZB-2). All geochemical export fluxes were highly seasonal with primary peaks occurring during the austral summer and relatively low fluxes prevailing through the winter months. Secondary flux peaks in mid-winter and in early spring were suggestive of small-scale, sea-ice break-up events and the spring retreat of seasonal ice, respectively. Biogenic silica represented over 70% (by weight) of the collected trap material and provided an annual opal export of 18 g m -2 to 1 km and 3-10 g m -2 to 3 km. POC fluxes supplied an annual export of approximately 1 g m -2, equal to the estimated ocean-wide average. Elevated particulate C org/C inorg and Si bio/C inorg molar ratios indicate a productive, diatom-dominated system, although consistently small fluxes of planktonic foraminifera and pteropod shells document a heterotrophic source of carbonate to deeper waters in the SIZ. The observation of high Si bio/C org ratios and the δ15N time-series data suggest enhanced rates of diatom-POC remineralization in the upper 1000 m relative to bioSiO 2. The occurrence in this region of a pronounced temperature minimum, associated with a strong pycnocline and subsurface particle maximum at 50-100 m, may represent a zone where sinking, diatom-rich particulates temporarily accumulate and POC is remineralized.

  5. Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems

    NASA Astrophysics Data System (ADS)

    Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.

    2016-10-01

    Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.

  6. Developments in a methodology for the design of engineered invert traps in combined sewer systems.

    PubMed

    Buxton, A; Tait, S; Stovin, V; Saul, A

    2002-01-01

    Sediments within sewers can have a significant effect on the operation of the sewer system and on the surrounding natural and urban environment. One possible method for the management of sewer sediments is the use of slotted invert traps. Although invert traps can be used to selectively trap only inorganic bedload material, little is known with regard to the design of these structures. This paper presents results from a laboratory investigation comparing the trapping performance of three slot size configurations of a laboratory-scale invert trap. The paper also presents comparative results from a two-dimensional computational model utilising stochastic particle tracking. This investigation shows that particle tracking consistently over-predicts sediment retention efficiencies observed within the laboratory model.

  7. Suspended-sediment trapping in the tidal reach of an estuarine tributary channel

    USGS Publications Warehouse

    Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    Evidence of decreasing sediment supply to estuaries and coastal oceans worldwide illustrates the need for accurate and updated estimates. In the San Francisco Estuary (Estuary), recent research suggests a decrease in supply from its largest tributaries, implying the increasing role of smaller, local tributaries in sediment supply to this estuary. Common techniques for estimating supply from tributaries are based on gages located above head of tide, which do not account for trapping processes within the tidal reach. We investigated the effect of a tidal reach on suspended-sediment discharge for Corte Madera Creek, a small tributary of the Estuary. Discharge of water (Q) and suspended-sediment (SSD) were observed for 3 years at two locations along the creek: upstream of tidal influence and at the mouth. Comparison of upstream and mouth gages showed nearly 50 % trapping of upstream SSD input within the tidal reach over this period. At the storm time scale, suspended-sediment trapping efficiency varied greatly (range −31 to 93 %); storms were classified as low- or high-yield based on upstream SSD. As upstream peak Q increased, high-yield storms exhibited significantly decreased trapping. Tidal conditions at the mouth—ebb duration and peak ebb velocity—during storms had a minor effect on sediment trapping, suggesting fluvial processes dominate. Comparison of characteristic fluvial and tidal discharges at the storm time scale demonstrated longitudinal differences in the regulating process for SSD. These results suggest that SSD from gages situated above head of tide overestimate sediment supply to the open waters beyond tributary mouths and thus trapping processes within the tidal reach should be considered.

  8. Sediment characteristics and sedimentation rates in Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J.C.

    1994-01-01

    A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap efficiency of 89 percent. An overall trap efficiency for the period of 1983-91 was computed using the capacity-inflow ratio. The use of this ratio indicates that the trap efficiency for Lake Michie is 85 percent. However, the suspended-sediment trap efficiency indicates that the actual overall trap efficiency for Lake Michie was probably greater than 89 percent during this period.

  9. Measuring Fast-Temporal Sediment Fluxes with an Analogue Acoustic Sensor: A Wind Tunnel Study

    PubMed Central

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field. PMID:24058512

  10. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.

    PubMed

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field.

  11. Sediment trapping efficiency of adjustable check dam in laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui

    2014-05-01

    Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.

  12. Types of stratigraphic traps in Lower Cretaceous Muddy Formation, northern Powder River Basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.

    1986-08-01

    Stratigraphic traps account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of traps exist. The first trap type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; trapping facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of traps results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic traps. The various types of traps are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form traps at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form traps at Oedekoven, Store, and Kitty fields; (5) unconformity-related traps exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered zone, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less

  13. Line-Trapping of Codling Moth (Lepidoptera: Tortricidae): A Novel Approach to Improving the Precision of Capture Numbers in Traps Monitoring Pest Density.

    PubMed

    Adams, C G; McGhee, P S; Schenker, J H; Gut, L J; Miller, J R

    2017-08-01

    This field study of codling moth, Cydia pomonella (L.), response to single versus multiple monitoring traps baited with codlemone demonstrates that precision of a given capture number is alarmingly poor when the population is held constant by releasing moths. Captures as low as zero and as high as 12 males per single trap are to be expected where the catch mode is three. Here, we demonstrate that the frequency of false negatives and overestimated positives for codling moth trapping can be substantially reduced by employing the tactic of line-trapping, where five traps were deployed 4 m apart along a row of apple trees. Codling moth traps spaced closely competed only slightly. Therefore, deploying five traps closely in a line is a sampling technique nearly as good as deploying five traps spaced widely. But line trapping offers a substantial savings in time and therefore cost when servicing aggregated versus distributed traps. As the science of pest management matures by mastering the ability to translate capture numbers into estimates of absolute pest density, it will be important to employ a tactic like line-trapping so as to shrink the troublesome variability associated with capture numbers in single traps that thwarts accurate decisions about if and when to spray. Line-trapping might similarly increase the reliability and utility of density estimates derived from capture numbers in monitoring traps for various pest and beneficial insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Soil conservation through sediment trapping: A review

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Maroulis, Jerry; Stroosnijder, Leo

    2014-05-01

    Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment trapping (ST) can be an alternative (or additional) measure to prevent the negative off-site effects of soil erosion. Therefore, not all efforts should focus solely on on-site soil conservation, but also on the safe routing of sediment-laden flows and on creating sites and conditions where sediment can be trapped, preferably in a cost effective or even profitable way. ST can be applied on-site (in-field) and off-site and involves both vegetative and structural measures. The main vegetative measures include grass strips, tree or bush buffers, grassed waterways and restoration of the waterways and their riparian zone; while structural measures include terraces, ponds and check dams. This paper provides a review of studies that have assessed the sediment trapping efficacy (STE) of such vegetative and structural measures. Vegetation type and integration of two or more measures (vegetative as well as structural) are important factors influencing STE. In this review, the STE of most measures was evaluated either individually or in such combinations. In real landscape situations, it is not only important to select the most efficient erosion control measures, but also to determine their optimum location in the catchment. Hence, there is a need for research that shows a more integrated determination of STE at the catchment scale. If integrated measures are implemented at the most appropriate spatial locations within a catchment where they can disconnect landscape units from each other, they will decrease runoff velocity and sediment transport and, subsequently, reduce downstream flooding and sedimentation problems. KEY WORDS: Integrated sediment trapping, sediment trapping efficacy, vegetative, structural, on-site and off-site measures.

  15. The FOODBANCS project: Introduction and sinking fluxes of organic carbon, chlorophyll- a and phytodetritus on the western Antarctic Peninsula continental shelf

    NASA Astrophysics Data System (ADS)

    Smith, Craig R.; Mincks, Sarah; DeMaster, David J.

    2008-11-01

    The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter-annual time scales, yielding dramatic temporal variability in the flux of food for detritivores to the Antarctic shelf floor.

  16. Assessing organic contaminant fluxes from contaminated sediments following dam removal in an urbanized river.

    PubMed

    Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John

    2014-08-01

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.

  17. Coccolithophore export production and seasonal variation from a trans-Atlantic array of sediment trap moorings (NW Africa to Caribbean)

    NASA Astrophysics Data System (ADS)

    Guerreiro, C. V.; Baumann, K. H.; Brummer, G. J. A.; Fischer, G.; Korte, L.; Stuut, J. B. W.

    2016-02-01

    In this study, we contribute to disclose the ecology and seasonal variability of coccolithophores, to improve their use as proxies for environmental variability in the Equatorial Atlantic Ocean. To this aim, the coccolithophore export fluxes and species composition were investigated from a trans-Atlantic array of sediment trap moorings from NW Africa (Cape Blanc) into the Caribbean (Barbados) (i.e., CB at 20°N/52ºW: M1 at 12ºN/23ºW; M2 at 14ºN/37ºW; M4 at 12ºN/49ºW). Each of the sediment trap devices was deployed at 1200 m depth, sampling settling particles at two-week intervals, and covering a full year (Oct. 2012 to Oct. 2013). First results show important contrasts between both ends of the trans-Atlantic array: total coccolith fluxes were much higher in the oligotrophic station M4 (western part of the basin) than in the highly productive waters off Cape Blanc (eastern edge of the basin), mostly due to the overwhelming dominance of the deep photic layer species Florisphaera profunda and Gladiolithus flabellatus. Off Cape Blanc, higher abundances of the placolith-bearing species Emiliania huxleyi and Gephyrocapsa spp. were found, more typical of the upper photic layer, while F. profunda decreases in relative abundance and G. flabellatus is almost absent, in comparison to M4. The presence of trans-Atlantic ecological gradients in terms of species diversity and prevalence of K- and r-selected species will be discussed with respect to the prevailing environmental conditions during the monitored period, including Saharan-dust deposition and the influence of the Amazon River plume.This study is part of ongoing multidisciplinary research in the study area, in the context of the projects "DUSTRAFFIC" and "TRAFFIC - Transatlantic Fluxes of Saharan Dust".

  18. TrapEase inferior vena cava filter placement: use of the subclavian vein.

    PubMed

    Stone, Patrick A; Aburahma, Ali F; Hass, Stephen M; Hofeldt, Matthew J; Zimmerman, William B; Deel, John T; Deluca, John A

    2004-01-01

    The purpose of this paper was to evaluate the safety and technical success of TrapEase inferior vena cava filter placement via the subclavian vein. As of yet, no reports in the literature have specifically investigated the use of the subclavian vein as a route for deploying TrapEase vena cava filters. Retrospective chart review was conducted of 135 patients with attempted TrapEase inferior vena cava filter placement over a 2-year period. In a majority of cases, the choice of subclavian vein approach was based primarily on surgeon preference. Other circumstances for subclavian vein deployment included cervical immobilization secondary to trauma, desire for concomitant placement of a subclavian long-term central venous access catheter, and patient body habitus limiting exposure to the internal jugular vein. One hundred and thirty-five filters were placed over this 2-year period. The internal jugular vein approach was used in 56 patients, the femoral vein approach in 39 patients, and the subclavian vein approach in 40 patients. Thirty-nine of the 40 TrapEase filter placements using the subclavian vein were successful. Twenty-six were deployed through the right subclavian vein and 14 through the left subclavian vein. The single failed subclavian deployment was due to the inability to pass the guidewire adequately into the inferior vena cava after successful cannulation of the right subclavian vein. The average deployment time for subclavian vein placement was 26 minutes when TrapEase filter placement was the only procedure performed. No insertional complications were encountered, specifically no pneumothoraces confirmed by chest radiography or fluoroscopy. The subclavian vein provides an alternative site of access for the TrapEase inferior vena cava filter. This route is comparable to other alternative methods evaluated both in average deployment time and complication occurrence. Furthermore, the subclavian vein route is valuable in patients with limited central access and where combined long-term central venous catheter placement using the subclavian vein is desirable.

  19. Sediment depositions upstream of open check dams: new elements from small scale models

    NASA Astrophysics Data System (ADS)

    Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain

    2015-04-01

    Torrent hazard mitigation remains a big issue in mountainous regions. In steep slope streams and especially in their fan part, torrential floods mainly result from abrupt and massive sediment deposits. To curtail such phenomenon, soil conservation measures as well as torrent control works have been undertaken for decades. Since the 1950s, open check dams complete other structural and non-structural measures in watershed scale mitigation plans1. They are often built to trap sediments near the fan apexes. The development of earthmoving machinery after the WWII facilitated the dredging operations of open check dams. Hundreds of these structures have thus been built for 60 years. Their design evolved with the improving comprehension of torrential hydraulics and sediment transport; however this kind of structure has a general tendency to trap most of the sediments supplied by the headwaters. Secondary effects as channel incision downstream of the traps often followed an open check dam creation. This sediment starvation trend tends to propagate to the main valley rivers and to disrupt past geomorphic equilibriums. Taking it into account and to diminish useless dredging operation, a better selectivity of sediment trapping must be sought in open check dams, i.e. optimal open check dams would trap sediments during dangerous floods and flush them during normal small floods. An accurate description of the hydraulic and deposition processes that occur in sediment traps is needed to optimize existing structures and to design best-adjusted new structures. A literature review2 showed that if design criteria exist for the structure itself, little information is available on the dynamic of the sediment depositions upstream of open check dams, i.e. what are the geomorphic patterns that occur during the deposition?, what are the relevant friction laws and sediment transport formula that better describe massive depositions in sediment traps?, what are the range of Froude and Shields numbers that the flows tend to adopt? New small scale model experiments have been undertaken focusing on depositions processes and their related hydraulics. Accurate photogrammetric measurements allowed us to better describe the deposition processes3. Large Scale Particle Image Velocimetry (LS-PIV) was performed to determine surface velocity fields in highly active channels with low grain submersion4. We will present preliminary results of our experiments showing the new elements we observed in massive deposit dynamics. REFERENCES 1.Armanini, A., Dellagiacoma, F. & Ferrari, L. From the check dam to the development of functional check dams. Fluvial Hydraulics of Mountain Regions 37, 331-344 (1991). 2.Piton, G. & Recking, A. Design of sediment traps with open check dams: a review, part I: hydraulic and deposition processes. (Accepted by the) Journal of Hydraulic Engineering 1-23 (2015). 3.Le Guern, J. Ms Thesis: Modélisation physique des plages de depot : analyse de la dynamique de remplissage.(2014) . 4.Carbonari, C. Ms Thesis: Small scale experiments of deposition processes occuring in sediment traps, LS-PIV measurments and geomorphological descriptions. (in preparation).

  20. Coupled Landscape and Channel Dynamics in the Ganges-Brahmaputra Tidal Deltaplain, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Bomer, J.; Wilson, C.; Hale, R. P.

    2017-12-01

    In the Ganges-Brahmaputra Delta (GBD) and other tide-dominated systems, periodic flooding of the land surface during the tidal cycle promotes sediment accretion and surface elevation gain over time. However, over the past several decades, anthropogenic modification of the GBD tidal deltaplain through embankment construction has precluded sediment delivery to catchment areas, leading to widespread channel siltation and subsidence in poldered landscapes. Amongst the current discussion on GBD sustainability, the relationship between tidal inundation period and resultant sedimentation in natural and embanked settings remains unclear. Moreover, an evaluation of how riparian sedimentology and stratigraphic architecture changes across the GBD tidal-fluvial spectrum is notably absent, despite its critical importance in assessing geomorphic change in human-impacted transitional environments. To provide local-scale, longitudinal trends of coupled landscape-channel dynamics, an array of surface elevation tables, groundwater piezometers, and sediment traps deployed in natural and embanked settings have been monitored seasonally over a time span of 4 years. This knowledge base will be extended across the GBD tidal-fluvial transition by collecting sediment cores from carefully selected point bars along the Gorai River. Sediments will be analyzed for lithologic, biostratigraphic, and geochemical properties to provide an integrated framework for discerning depositional zones and associated facies assemblages across this complex transitional environment. Preliminary comparisons of accretion and hydroperiod data suggest that inundation duration strongly governs mass accumulation on the intertidal platform, though other factors such as mass extraction from sediment source and vegetation density may play secondary roles.

  1. Vertical export flux of metals in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Heimbürger, Lars-Eric; Migon, Christophe; Losno, Rémi; Miquel, Juan-Carlos; Thibodeau, Benoît; Stabholz, Marion; Dufour, Aurélie; Leblond, Nathalie

    2014-05-01

    We examined metal (Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb) and particulate organic carbon (OC) concentrations of the marine vertical export flux at the DYFAMED time-series station in the Northwestern Mediterranean Sea. We present here the first data set of natural and anthropogenic metals from sediment trap moorings deployed at 1000 m-depth between 2003 and 2007 at the DYFAMED site. A highly significant correlation was observed between most metal concentrations, whatever the nature and emission source of the metal. Cu, Zn and Cd exhibit different behaviors, presumably due to their high solubility and complexation with organic ligands. The observed difference of atmospheric and marine fluxes in terms of temporal variability and elemental concentration suggests that dense water convection and primary production and not atmospheric deposition control the marine vertical export flux. This argument is strengthened by the fact that significant Saharan dust events did not result in concomitant marine vertical export fluxes nor did they generate significant changes in metal concentrations of trapped particles.

  2. A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing

    2017-09-01

    A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.

  3. Effectiveness of sediment-control techniques used during highway construction in central Pennsylvania

    USGS Publications Warehouse

    Reed, Lloyd A.

    1978-01-01

    A different method for controlling erosion and sediment transport during highway construction was used in each of four adjacent drainage basins in central Pennsylvania. The basins ranged in size from 240 to 490 acres (97 to 198 hectares), and the area disturbed by highway construction in each basin ranged from 20 to 48 acres (8 to 19 hectares). Sediment discharge was measured from each basin for 3 years before construction began and for 2 years during construction. In one of the basins affected by the construction, three offstream ponds were constructed to intercept runoff from the construction area before it reached the stream. In another basin, a large onstream pond was constructed to trap runoff from the construction area after it reached the stream. In a third area, seeding, mulching, and rock dams were used to limit erosion. In the fourth area, no sediment controls were used. The effectiveness of the various sediment-control measures were determined by comparing the sediment loads transported from the basins with sediment controls to those without controls. For most storms the offstream ponds trapped about 60 percent of the sediment that reached them. The large onstream pond had a trap efficiency of about 80 percent, however, it remained turbid and kept the stream flow turbid for long periods following storm periods. Samples of runoff water from the construction area were collected above and below rock dams to determine the reduction in sediment as the flow passed through the device. Rock dams in streams had a trap efficiency of about 5 percent. Seeding and mulching may reduce sediment discharge by 20 percent during construction, and straw bales placed to trap runoff water may reduce sediment loads downstream by 5 percent.

  4. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.

  5. May through July 2015 storm event effects on suspended-sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.

    2016-06-20

    The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.

  6. The occurrence and distribution of uronic acids and sugar methyl ethers in sediment trap materials and sediments of two coastal marine environments

    NASA Astrophysics Data System (ADS)

    Bergamaschi, Brian A.; Walters, Jeffrey S.; Hedges, John I.

    1999-02-01

    Although recent research has indicated that bacteria may contribute an important fraction of biochemical residues in terrestrial and marine environments, it is difficult for geochemists to identify contributions from these ubiquitous and biochemically diverse organisms. Previous studies have suggested uronic acids and O-methyl sugars may be useful indicators of microbial abundance and activity, but have been limited primarily to analyses of a small number of isolated samples. We report here comparative distributions of O-methyl sugars, uronic acids, and aldoses in sediment trap material and sediments from Dabob Bay, WA and nearby Saanich Inlet, BC, where temporal and spatial trends may be used together with well-established patterns in other biochemicals to identify bacterial contributions against the background of other carbohydrate sources. O-methyl sugars and uronic acids were important contributors to the overall flux and burial of polysaccharide material in Dabob Bay and Saanich Inlet, composing ≤12 wt% of the total carbohydrate yields from sediment trap and sediment samples. O-methyl sugars accounted for an average of 5% of the carbohydrate yields from sediment trap materials and sediments, but were found rarely and only in low abundance in vascular plant tissues, phytoplankton, and kelp. In contrast, uronic acids were abundant products of sediment trap material and sediments, as well as vascular plant tissues, where in some cases they predominated among all carbohydrates. Uronic acid abundance in sediment trap material averaged 3% and ranged to >6% of total carbohydrate yields. The persistence of total minor sugar yields in water column collections from Dabob Bay throughout the seasonal cycle indicated they had a primary source that was not directly related to plankton bloom cycles nor pulsed inputs of vascular plant remains. Subsurface maxima in total minor sugar yields (and several individual components) within sediment cores from both sites indicate in situ sedimentary sources. Taken together, the observed environmental distributions strongly suggest that the minor sugar abundances in Dabob Bay and Saanich Inlet were controlled by in situ microbial production.

  7. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    NASA Astrophysics Data System (ADS)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  8. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  9. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    PubMed

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  10. Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic Zone

    NASA Astrophysics Data System (ADS)

    Howard, W. R.; Roberts, D.; Moy, A. D.; Lindsay, M. C. M.; Hopcroft, R. R.; Trull, T. W.; Bray, S. G.

    2011-11-01

    Pteropods were identified from epipelagic net and trawl samples in the Sub-Antarctic Zone during the 2007 mid-summer (January 17-February 20) Sub-Antarctic Zone Sensitivity to Environmental Change (SAZ-Sense) voyage, as well as in a moored sediment trap in the same region. Overall pteropod densities during SAZ-Sense were lower than those reported for higher-latitude Southern Ocean waters. The four major contributors to the Sub-Antarctic Zone pteropod community during the SAZ-Sense voyage, Clio pyramidata forma antarctica, Clio recurva, Limacina helicina antarctica and Limacina retroversa australis, accounted for 93% of all pteropods observed. The distribution of the two dominant pteropods collected in the Sub-Antarctic Zone, L. retroversa australis and C. pyramidata forma antarctica, is strongly related to latitude and depth. L. retroversa australis is typical of cold southern (50-54°S) polar waters and C. pyramidata forma antarctica is typical of shallow (top 20 m) Sub-Antarctic Zone waters. A moored sediment trap deployed to 2100 m at 47°S, 141°E in 2003/04 showed the pteropod flux in the Sub-Antarctic Zone had late-Spring and mid-summer peaks. The diversity, abundance and distribution of pteropods collected during SAZ-Sense provide a timely benchmark against which to monitor future changes in SAZ ocean pteropod communities, particularly in light of predictions of declining aragonite saturation in the Southern Ocean by the end of the century.

  11. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean

    PubMed Central

    Marsay, Chris M.; Sanders, Richard J.; Henson, Stephanie A.; Pabortsava, Katsiaryna; Achterberg, Eric P.; Lampitt, Richard S.

    2015-01-01

    The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean. PMID:25561526

  12. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Area 1 trap limits. The Area 1 trap limit is 800 traps. Federally permitted lobster fishing vessels shall not fish with, deploy in, possess in, or haul back more...

  13. Sustained deposition of contaminants from the Deepwater Horizon spill.

    PubMed

    Yan, Beizhan; Passow, Uta; Chanton, Jeffrey P; Nöthig, Eva-Maria; Asper, Vernon; Sweet, Julia; Pitiranggon, Masha; Diercks, Arne; Pak, Dorothy

    2016-06-14

    The 2010 Deepwater Horizon oil spill resulted in 1.6-2.6 × 10(10) grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.

  14. Sustained deposition of contaminants from the Deepwater Horizon spill

    PubMed Central

    Yan, Beizhan; Passow, Uta; Chanton, Jeffrey P.; Nöthig, Eva-Maria; Asper, Vernon; Sweet, Julia; Pitiranggon, Masha; Diercks, Arne; Pak, Dorothy

    2016-01-01

    The 2010 Deepwater Horizon oil spill resulted in 1.6–2.6 × 1010 grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems. PMID:27247393

  15. The Tsitsikamma coastal shelf, Agulhas Bank, South Africa: example of an isolated Holocene sediment trap

    NASA Astrophysics Data System (ADS)

    Flemming, Burg W.; Keith Martin, A.

    2018-02-01

    Under certain geomorphological conditions, sandy sediments supplied to a coast may become trapped in nearshore sedimentary compartments because these are laterally confined by bedload boundaries or convergences. Where sediment supply is small or the shoreface very steep, and accommodation space as a consequence large, the trapping mechanism may be very efficient. The Tsitsikamma coast along the South African south coast is a case in point, the sediment supplied by local rivers over the past 12 ka having been trapped in a nearshore sediment wedge extending at least 5 km offshore. On the basis of high-resolution seismic surveys, the volume of the sediment wedge has been estimated at 1,354×106 m3. As 5% of this volume is considered to have been contributed by bioclastic material of marine origin, the terrestrial input would be 1,286×106 m3. This amounts to an average annual terrestrial sediment input of 0.1072×106 m3. Using a detailed sediment yield map, the modern mean annual sediment supply to the Tsitsikamma coast by local rivers has been estimated at 0.1028×106 m3. Unless coincidental, the remarkable similarity of the two values suggests that the current climatic conditions along the Tsitsikamma coast correspond to the Holocene mean. This conclusion is supported by the currently available climate data for the South African south coast.

  16. Sediment Transport Over Run-of-River Dams

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  17. New element for optimizing the functioning of sediment traps

    NASA Astrophysics Data System (ADS)

    Schwindt, Sebastian; Franca, Mário; Schleiss, Anton

    2017-04-01

    Sediment traps protect urban areas against excessive sediment transport during hazardous floods and consist typically of a retention basin with an open sediment check dam at the downstream end. The design, as well as the morphological processes within the retention basin, were analyzed by several authors. With regard to open sediment check dams two types of triggering mechanisms for the initiation of sediment retention can be distinguished: (1) mechanical and (2) hydraulic clogging of the structure. Recent studies have shown that outlet structures combining both clogging principles may be considered to avoid undesired self-flushing. Further elements of check dams are conceivable, e.g. for retaining or conveying driftwood. This study analyses experimentally working principles and design criteria of standard elements of sediment traps. Furthermore, it introduces a new structural element to the sediment trap design with a guiding channel in the retention reservoir. Taking into account the natural shape of mountain rivers, the guiding channel has a trapezoidal cross-section shape and a rough but fixed bed. The effect of the guiding channel on sediment deposition pattern and re-mobilization are studied by means of physical model experiments with a standardized hydrograph and variable sediment supply. The results are evaluated by means of zenithal pictures and bedload transport rate, measured at the downstream end of the model. Major advantages of the combined use of both clogging principles include an improved control of the initiation of sediment deposition in order to allow for sediment transfer for small floods and a reduction of hazards related to self-flushing.

  18. Seasonal flux and assemblage composition of planktic foraminifers from a sediment-trap study in the northern Gulf of Mexico

    USGS Publications Warehouse

    Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.

    2013-01-01

    Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico

  19. Phototaxis of larval and juvenile northern pike

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.

    1995-01-01

    Age- Phi northern pike Esox lucius prefer vegetated habitats that are difficult to sample with standard towed gears. Light traps can be effective for sampling larval fishes in dense vegetation, given positive phototaxis of fish. We evaluated the phototactic response of young northern pike by comparing the catches of larvae and juveniles obtained with plexiglass traps deployed with a chemical light stick versus traps deployed without a light source (controls) in a laboratory raceway and in a vegetated pond. In the laboratory tests, catches of protolarvae and mesolarvae in lighted traps were 11-35 times greater than catches in control traps. The catches of juvenile northern pike in field and laboratory experiments were 3-15 times greater in lighted traps than in control traps, even though the maximum body width of the larger juveniles was similar to the width of the entrance slots of the traps (5 mm). Larval and juvenile northern pike were photopositive; thus, light traps should effectively sample age-0 northern pike for at least 6 weeks after hatching.

  20. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

    PubMed

    Sylvan, J B; Pyenson, B C; Rouxel, O; German, C R; Edwards, K J

    2012-03-01

    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known. © 2012 Blackwell Publishing Ltd.

  1. Modeling sediment trapping in a vegetative filter accounting for converging overland flow

    Treesearch

    M. J. Helmers; D. E. Eisenhauer; T. G. Franti; M. G. Dosskey

    2005-01-01

    Vegetative filters (VF) are used to remove sediment and other pollutants from overland flow. When modeling the hydrology of VF, it is often assumed that overland flow is planar, but our research indicated that it can be two-dimensional with converging and diverging pathways. Our hypothesis is that flow convergence will negatively influence the sediment trapping...

  2. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

    USGS Publications Warehouse

    Ralston, David K.; Geyer, W. Rockwell; Warner, John C.

    2012-01-01

    Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.

  3. Study of the effect of water-soluble fractions of heavy-oil on coastal marine organisms using enclosed ecosystems, mesocosms.

    PubMed

    Ohwada, Kouichi; Nishimura, Masahiko; Wada, Minoru; Nomura, Hideaki; Shibata, Akira; Okamoto, Ken; Toyoda, Keita; Yoshida, Akihiro; Takada, Hideshige; Yamada, Mihoko

    2003-01-01

    Mesocosm facilities composed of 4 experimental and 2 reservoir tanks (1.5 m in diameter, 3.0 m in depth and 5 tons in capacity) made of FRP plastics, were constructed in the concrete fish rearing pond in the Fisheries Laboratory, The University of Tokyo. The water-soluble fraction of Rank A heavy residual oil was formed by mixing 500 g of the oil with 10 l of seawater, which was introduced to the 5000 l-capacity tanks. Experimental Run 4 was conducted from May 31 to June 7, 2000. Oil concentrations in the tanks were 4.5 microg/l called LOW, and 13.5 microg/l, called HIGH tank. Bacterial growth rates very quickly accelerated in the HIGH tank just after the loading of oil which corresponded with a high increase of bacterial cells in the same tank after 2 days. Later, bacterial numbers in HIGH tank rapidly decreased, corresponding with the rapid increase of heterotrophic nano-flagellates and virus numbers on the same day. Sediment traps were deployed at the bottom of the experimental tanks, and were periodically retrieved. These samples were observed both under light microscope and epi-fluorescent microscope with UV-excitation. It was observed that the main components of the vertical flux were amorphous suspended matter, mostly originating from dead phytoplankton and living diatoms. It was further observed from the pictures that vertical transport of oil emulsions were probably conducted after adsorption to amorphous suspended matter and living diatoms, and were settling in the sediment traps at the bottom of the tanks. This means that the main force which drives the soluble fraction of oil into bottom sediment would be vertical flux of such amorphous suspended particles and phytoplankton. Further incubation of the samples revealed that the oil emulsions were degraded by the activity of autochtonous bacteria in the sediment in aerobic condition.

  4. Sediment storage dam: A structural gully erosion control and sediment trapping measure, northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Ritsema, Coen

    2014-05-01

    Gully erosion is a prime problem in Ethiopia. This study assessed the severity of gully erosion and the role of sediment storage dams (SSD) in restoring gullies and preventing further gully development, its sediment trapping efficacy (STE) and its capacity in converting degraded gully lands to productive land. On average 2.5 m deep, 6.6 m wide and 28.3 m long gullies were formed in Minizr watershed, northwest Ethiopia, in 2013. Concentrated surface runoff, traditional ditches, graded terraces without suitable water ways and road construction are the main causes of such serious gully erosion. Over grazing, tunnel flow and lack of proper immediate gully treatment actions after gully initiation are found to be additional causes of the problem. Gully erosion was also found as the major source of sediment for downstream rivers and water reservoirs. The annual volume of soil eroded from only four gullies was 1941.3 m3. To control gully erosion, SSDs were found to be important physical structures, which can trap significant amount of sediment within gullies and they can convert unproductive gully land to productive agricultural land for fruit and crop production. Eight SSDs trapped about 44*103 m3 of sediment within 2 to 8 years. Two representative SSDs constructed using gabion and stone were tested for their STE. Results showed that their efficacy was 74.1% and 66.4% for the gabion and stone SSDs, respectively. Six of the older SSDs were already full of sediment and created 0.75 ha of productive land within 2 to 8 years. SSDs best fits to treat large size and deep gullies where other gully control measures, check dams, could not function well. To prevent gully formation, controlling its causes that is avoiding traditional ditches, practicing grassed water ways to safely remove runoff water from graded terraces, integrated watershed and road side management practices are important solutions. KEY WORDS: Sediment storage dam, gully erosion, sediment trapping efficacy, productive land, Ethiopia

  5. 76 FR 39369 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fishery; Amendment 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... crab vessels may not deploy parlor traps/pots in water depths greater than 400 meters (219 fathoms... water deeper than 400 m; prohibit a limited access red crab vessel from harvesting red crab in water shallower than 400 m; and prohibit parlor traps from being deployed at water shallower than 400 m. This...

  6. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.

    2009-09-23

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to thosemore » of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.« less

  7. Global fluvial sediment retention by registered dam systems

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.

    2003-04-01

    A framework for estimating global-scale impacts from reservoir construction on riverine sediment transport to the ocean is presented. Framework results depict a large, global-scale, and growing impact from anthropogenic impoundment. This study analyzes data on 633 of the world’s largest reservoirs (LRs) (>= 0.5 km^3 maximum storage) and uses statistical inference to assess the impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude x longitude) resolution. A residence time change BoxBox_R) for otherwise free-flowing river water is determined locally at each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. More than 40% of global river discharge is intercepted locally by the LRs analyzed and a significant proportion (≈ 70%) of this discharge maintains a sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local trapping efficiency of 80% or more. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs (n ≈ 45,000) is conservatively placed at 4 to 5 Gt yr-1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments (n ≈ 800,000). From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.

  8. Anthropogenic sediment retention: major global impact from registered river impoundments

    NASA Astrophysics Data System (ADS)

    Vörösmarty, Charles J.; Meybeck, Michel; Fekete, Balázs; Sharma, Keshav; Green, Pamela; Syvitski, James P. M.

    2003-10-01

    In this paper, we develop and apply a framework for estimating the potential global-scale impact of reservoir construction on riverine sediment transport to the ocean. Using this framework, we discern a large, global-scale, and growing impact from anthropogenic impoundment. Our study links information on 633 of the world's largest reservoirs (LRs) (≥0.5 km 3 maximum storage capacity) to the geography of continental discharge and uses statistical inferences to assess the potential impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude×longitude) spatial resolution. A residence time change (Δ τR) for otherwise free-flowing river water is determined locally for each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. The discharge-weighted mean Δ τR for individual impoundments distributed across the globe is 0.21 years for LRs and 0.011 years for SRs. More than 40% of global river discharge is intercepted locally by the LRs analyzed here, and a significant proportion (≈70%) of this discharge maintains a theoretical sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local sediment trapping efficiency of 80% or more. Analysis of the recent history of river impoundment reveals that between 1950 and 1968, there was tripling from 5% to 15% in global LR sediment trapping, another doubling to 30% by 1985, and stabilization thereafter. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, and Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs ( n≈45,000) is conservatively placed at 4-5 Gt year -1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments ( n≈800,000). Our results demonstrate that river impoundment should now be considered explicitly in global elemental flux studies, such as for water, sediment, carbon, and nutrients. From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.

  9. Deployable micro-traps to sequester motile bacteria

    NASA Astrophysics Data System (ADS)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  10. Deployable micro-traps to sequester motile bacteria

    PubMed Central

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-01-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria. PMID:28378786

  11. Deployable micro-traps to sequester motile bacteria.

    PubMed

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-05

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  12. Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs

    NASA Astrophysics Data System (ADS)

    Samson-Do, Myriam; St-Hilaire, André

    2015-04-01

    Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.

  13. Mapping subtrappean sediments and delineating structure with the aid of heliborne time domain electromagnetics: Case study from Kaladgi Basin, Karnataka

    NASA Astrophysics Data System (ADS)

    Sridhar, M.; Markandeyulu, A.; Chaturvedi, A. K.

    2017-01-01

    Mapping of subtrappean sediments is a complex geological problem attempted by many interpreters applying different geophysical techniques. Variations in thickness and resistivity of traps and underlying sediments, respectively, results in considerable uncertainty in the interpretation of geophysical data. It is proposed that the transient electromagnetic technique is an effective geophysical tool for delineation of the sub-trappean sediments, due to marked resistivity contrast between the Deccan trap, and underlying sediments and/or basement. The northern margin of the Kaladgi basin is covered under trap. A heliborne time domain electromagnetic survey was conducted to demarcate the basin extent and map the sub-trappean sediments. Conductivity depth transformations were used to map the interface between conductive trap and resistive 'basement'. Two resistivity contrast boundaries are picked: the first corresponds to the bottom of the shallow conductive unit interpreted as the base of the Deccan Volcanics and the second - picked at the base of a deeper subsurface conductive zone - is interpreted as the weathered paleo-surface of the crystalline basement. This second boundary can only be seen in areas where the volcanics are thin or absent, suggesting that the volcanics are masking the EM signal preventing deeper penetration. An interesting feature, which shows prominently in the EM data but less clearly imaged in the magnetic data, is observed in the vicinity of Mudhol. The surface geology interpreted from satellite imagery show Deccan trap cover around Mudhol. Modelling of TDEM data suggest the presence of synclinal basin structure. The depth of penetration of the heliborne TDEM data is estimated to be approximately 350 m for the study area. This suggests that heliborne TDEM could penetrate significant thicknesses of conductive Deccan trap cover to delineate structure below in the Bagalkot Group.

  14. Bacterial diversity differences along an epigenic cave stream reveal evidence of community dynamics, succession, and stability.

    PubMed

    Brannen-Donnelly, Kathleen; Engel, Annette S

    2015-01-01

    Unchanging physicochemical conditions and nutrient sources over long periods of time in cave and karst subsurface habitats, particularly aquifers, can support stable ecosystems, termed autochthonous microbial endokarst communities (AMEC). AMEC existence is unknown for other karst settings, such as epigenic cave streams. Conceptually, AMEC should not form in streams due to faster turnover rates and seasonal disturbances that have the capacity to transport large quantities of water and sediment and to change allochthonous nutrient and organic matter sources. Our goal was to investigate whether AMEC could form and persist in hydrologically active, epigenic cave streams. We analyzed bacterial diversity from cave water, sediments, and artificial substrates (Bio-Traps®) placed in the cave at upstream and downstream locations. Distinct communities existed for the water, sediments, and Bio-Trap® samplers. Throughout the study period, a subset of community members persisted in the water, regardless of hydrological disturbances. Stable habitat conditions based on flow regimes resulted in more than one contemporaneous, stable community throughout the epigenic cave stream. However, evidence for AMEC was insufficient for the cave water or sediments. Community succession, specifically as predictable exogenous heterotrophic microbial community succession, was evident from decreases in community richness from the Bio-Traps®, a peak in Bio-Trap® community biomass, and from changes in the composition of Bio-Trap® communities. The planktonic community was compositionally similar to Bio-Trap® initial colonizers, but the downstream Bio-Trap® community became more similar to the sediment community at the same location. These results can help in understanding the diversity of planktonic and attached microbial communities from karst, as well as microbial community dynamics, stability, and succession during disturbance or contamination responses over time.

  15. Strontium isotope record of seasonal scale variations in sediment sources and accumulation in low-energy, subtidal areas of the lower Hudson River estuary

    USGS Publications Warehouse

    Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.

    2009-01-01

    Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson River estuary in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the estuary are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower estuary. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.

  16. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord-Different from subarctic fjords?

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2016-02-01

    The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.

  17. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea)

    NASA Astrophysics Data System (ADS)

    Kim, Minkyoung; Hwang, Jeomshik; Rho, TaeKeun; Lee, Tongsup; Kang, Dong-Jin; Chang, Kyung-Il; Noh, Suyun; Joo, HuiTae; Kwak, Jung Hyun; Kang, Chang-Keun; Kim, Kyung-Ryul

    2017-03-01

    This study investigates the biological pump system in the East Sea (Japan Sea) by conducting an analysis of the total particle flux, biogenic material composition, and carbon isotope ratios of sinking particles. The samples were collected for one year starting from March 2011 using time-series sediment traps deployed at depths of 1040 m and 2280 m on bottom-tethered mooring at Station EC1 (37.33°N, 131.45°E; 2300 m water depth) in the Ulleung Basin (UB), southwestern part of the East Sea. The temporal variation in the particulate organic carbon (POC) flux at 1000 m shows a good relationship with the primary production in the corresponding surface water. The ratio of POC flux at 1000 m to satellite-based primary production in the corresponding region in the UB was 3%, which is comparable to the values of 2 to 5% estimated from previous studies of other part of the East Sea. The lithogenic material accounted for > 17% of the sinking particles at 1000 m and for a larger fraction of 40 to 60% at 2280 m. The radiocarbon contents of the sinking POC at both trap depths imply the additional supply of aged POC, with a much greater contribution at 2280 m. Overall, the particle flux in the deep interior of the East Sea appears to be controlled by the supply of complex sources, including aeolian input, the lateral supply of resuspended sediments, and biological production in the surface water.

  18. Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment

    NASA Astrophysics Data System (ADS)

    Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.

    2016-02-01

    Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.

  19. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  20. Phase I Source Investigation, Heckathorn Superfund Site, Richmond, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, Nancy P; Evans, Nathan R

    This report represents Phase I of a multi-phase approach to a source investigation of DDT at the Heckathorn Superfund Site, Richmond, California, the former site of a pesticide packaging plant, and the adjacent waterway, the Lauritzen Channel. Potential identified sources of contamination were from sloughed material from undredged areas (such as side banks) and from outfall pipes. Objectives of Phase I included the (1) evaluation of pesticide concentrations associated with discharge from outfalls, (2) identification of additional outfalls in the area, (3) identification of type, quantity, and distribution of sediment under the Levin pier, (4) quantification of pesticide concentrations inmore » sediment under the pier, and (5) evaluation of sediment structure and slope stability under the pier. Field operations included the collection of sediment directly from inside the mouths of outfall pipes, when possible, or the deployment of specially designed particle traps where direct sampling was problematic. Passive water samplers were placed at the end of known outfall pipes and analyzed for DDT and other pesticides of concern. Underwater dive surveys were conducted beneath the Levin pier to document type, slope, and thickness of sediment. Samples were collected at locations of interest and analyzed for contaminants. Also sampled was soil from bank areas, which were suspected of potentially contributing to continued DDT contamination of the Lauritzen Channel through erosion and groundwater leaching. The Phase I Source Investigation was successful in identifying significant sources of DDT contamination to Lauritzen Channel sediment. Undredged sediment beneath the Levin pier that has been redistributed to the channel is a likely source. Two outfalls tested bear further investigation. Not as well-defined are the contributions of bank erosional material and groundwater leaching. Subsequent investigations will be based on the results of this first phase.« less

  1. An operation manual for a time-series, storm-activated suspended sediment sampler deployed in the coastal ocean: function, maintenance, and testing procedures

    USGS Publications Warehouse

    Rendigs, Richard R.; Bothner, Michael H.

    2004-01-01

    This manual describes the operation and testing procedures for two models of a multi-port suspended sediment sampler that are moored in the coastal ocean and that collect samples on a programmable time schedule that can be interrupted to collect during a storm. The ability to sense and collect samples before, during, and after the height of a storm is a unique feature of these instruments because it provides samples during conditions when it is difficult or impossible to sample from a surface ship. The sensors used to trigger storm sampling are a transmissometer or a pressure sensor. The purpose of such samples is to assess composition and concentration of sediment resuspended from the seafloor during storms and subsequently transported within the coastal system. Both light transmission and the standard deviation of pressure from surface waves correlate with the passage of major storms. The instruments successfully identified the onset of storms and collected samples before, during, and after the storm maximum as programmed. The accuracy of determining suspended matter concentrations collected by the sediment sampler has not been fully evaluated. Preliminary laboratory tests using a suspension of muddy sediment collected in a near-bottom sediment trap yielded excellent results. However in laboratory tests with different sediment types, the suspended matter concentrations determined with these samplers became less accurate with increasing average grain size. Future calibration work is necessary and should be conducted in a facility that ideally has a water depth of at least 30 feet to prevent cavitation of the pump that draws sea water through the filters. The test facility should also have the capability for adding suspended matter of known composition and concentration to a fixed volume of seawater that is well mixed.

  2. Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan

    NASA Astrophysics Data System (ADS)

    Kiyokawa, Shoichi; Ueshiba, Takuya

    2015-04-01

    Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively. The estimated production of iron oxyhydroxide for the whole fishing port from trap cores is 142.7-253.3 t/year/5000 m2. From sediment cores, however, the accumulation of iron oxyhydroxide sediments on the sea floor is 39-95 t/year/5000 m2. This finding indicates that the remaining 63%-73% of iron was transported out to sea from Nagahama Bay. Even with a high rate of iron oxyhydroxide production, the sedimentation rate of iron oxyhydroxides in the bay is considerably higher than that observed in modern deep-ocean sediments. This example of rapid and abundant oxyhydroxide sedimentation might provide a modern analog for the formation of iron deposits in the geological record, such as ironstones and banded iron formations.

  3. The effects of disproportional load contributions on quantifying vegetated filter strip sediment trapping efficiencies

    USDA-ARS?s Scientific Manuscript database

    Vegetated filter strips (VFSs) are a best management practice (BMP) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents present in agricultural runoff. Although they have been widely adopted, insufficient data exist to understand their sh...

  4. Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011

    USGS Publications Warehouse

    Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times those at Atchison County or Banner Creek Lakes. These data indicate larger yields of sediment from watersheds with row crops and those with fewer small ponds, and smaller yields in watersheds which are primarily grassland, or agricultural with substantial tile drainage and riparian buffers along streams. These results also indicated that a cultivated watershed can produce yields similar to those observed under the assumed reference (or natural) condition. Selected small ponds were studied in the Atchison County Lake watershed to characterize the role of small ponds in sediment trapping. Studied ponds trapped about 8 percent of the sediment upstream from the sediment-sampling site. When these results were extrapolated to the other ponds in the watershed, differences in the extent of these ponds was not the primary factor affecting differences in yields among the three watersheds. However, the selected small ponds were both 45 years old at the time of this study, and have reduced capacity because of being filled in with sediments. Additionally, trapping efficiency of these small ponds decreased over five observed storms, indicating that processes that suspended or resuspended sediments in these shallow ponds, such as wind and waves, affected their trapping efficiencies. While small ponds trapped sediments in small storms, they could be a source of sediment in larger or more closely spaced storm events. Channel slope was similar at all three watersheds, 0.40, 0.46, and 0.31 percent at Atchison County, Banner Creek, and Centralia Lake watersheds, respectively. Other factors, such as increased bank and stream erosion, differences in tile drainage, extent of grassland, or riparian buffers, could be the predominant factors affecting sediment yields from these basins. These results show that reference-like sediment yields may be observed in heavily agricultural watersheds through a combination of field-scale management activities and stream channel protection. When computing loads using published erosion rates obtained by single-point survey methodology, streambank contributions from the main stem of Banner Creek are three times more than the sediment load observed by this study at the sediment sampling site at Banner Creek, 2.6 times more than the sediment load observed by this study at the sediment sampling site at Clear Creek (upstream from Atchison County Lake), and are 22 percent of the load observed by this study at the sediment sampling site at Black Vermillion River above Centralia Lake. Comparisons of study sites to similarly sized urban and urbanizing watersheds in Johnson County, Kansas indicated that sediment yields from the Centralia Lake watershed were similar to those in construction-affected watersheds, while much smaller sediment yields in the Atchison County and Banner Creek watersheds were comparable to stable, heavily urbanized watersheds. Comparisons of study sites to larger watersheds upstream from Tuttle Creek Lake indicate the Black Vermillion River watershed continues to have high sediment yields despite 98 percent of sediment from the Centralia watershed (a headwater of the Black Vermillion River) being trapped in Centralia Lake. Estimated trapping efficiencies for the larger watershed lakes indicated that Banner Creek and Centralia Lakes trapped 98 percent of incoming sediment, whereas Atchison County Lake trapped 72 percent of incoming sediment during the 3-year study period.

  5. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  6. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    USGS Publications Warehouse

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  7. Up-flow anaerobic sediment trapped (UAST) reactor as a new configuration for the enrichment of anammox bacteria from marine sediments.

    PubMed

    Rios-Del Toro, E Emilia; López-Lozano, Nguyen E; Cervantes, Francisco J

    2017-08-01

    A novel reactor configuration for the enrichment of anammox bacteria from marine sediments was developed. Marine sediments were successfully kept inside the bioreactors during the enrichment process by strategically installing traps at different depths to prevent the wash-out of sediments. Three up-flow anaerobic sediment trapped (UAST) reactors were set up (α, β and ω supplied with 50, 150 and 300mgCa 2+ /L, respectively). Nitrogen removal rates (NRR) of up to 3.5gN/L-d and removal efficiencies of >95% were reached. Calcium enhanced biomass production as evidenced by increased volatile suspended solids and extracellular polymeric substances. After the long-term operation, dominant families detected were Rhodobacteracea, Flavobacteracea, and Alteromonadacea, while the main anammox genera detected in the three reactors were Candidatus Kuenenia and Candidatus Anammoximicrobium. The UAST reactor is proposed as suitable technology for the enrichment of anammox bacteria applicable for the treatment of saline industrial wastewaters with high nitrogen content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007

    USGS Publications Warehouse

    Meade, R.H.; Moody, J.A.

    2010-01-01

    Before 1900, the Missouri-Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987-2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100-150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri-Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri-Mississippi system. ?? 2009 John Wiley & Sons, Ltd.

  9. Potential Use of BEST® Sediment Trap in Splash - Saltation Transport Process by Simultaneous Wind and Rain Tests.

    PubMed

    Basaran, Mustafa; Uzun, Oguzhan; Cornelis, Wim; Gabriels, Donald; Erpul, Gunay

    2016-01-01

    The research on wind-driven rain (WDR) transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present study was conducted to investigate the efficiency of the BEST® sediment traps in catching the sand particles transported through the splash-saltation process under WDR conditions. Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR conditions. Not only for vertical sediment distribution, but a series of experimental tests for horizontal distribution of sediments was also performed using BEST® collectors to obtain the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel test section. Total mass transport (kg m-2) were estimated by analytically integrating the exponential functional relationship using the measured sediment amounts at the set trap heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9, 12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were, respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of BEST® did not change much as compared with those under rainless wind condition.

  10. Growth and mortality of coral transplants (Pocillopora damicornis) along a range of sediment influence in Maui, Hawai'i

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2008-01-01

    Fragments of the lace coral Pocillopora damicornis (Linnaeus, 1758) were transplanted to four sites on the south-central coast of Maui, Hawai'i, to examine coral growth over a range of expected sediment influence. Corals remained in situ for 11 months and were recovered seasonally for growth measurements using the buoyant weight technique. Average sediment trap accumulation rates ranged from 11 to 490 mg cm-2 day-1 and were greater at the wave-exposed reef site than at the protected harbor sites. Coral growth was highest at the donor site and was higher in the summer than in the winter. A stepwise linear regression found significant effects of sediment trap accumulation and light on growth rates, but the partial correlation coefficients suggest that these factors may be only secondary controls on growth. This study did not show a clear link between coral growth and sediment load. This result may be due, in part, to covariation of sediment load with wave exposure and the inability of trap accumulation rates to integrate all sediment effects (e.g., turbidity) that can affect coral growth. ?? 2008 by University of Hawai'i Press. All rights reserved.

  11. Morphological processes in permeable sediment traps with check dams

    NASA Astrophysics Data System (ADS)

    Schwindt, S.; Franca, M. J.; Schleiss, A. J.

    2017-12-01

    Sediment traps serve for the retention of sediment in the case of major floods, but the retention of sediment is not wanted up to smaller frequent floods which are important to the morphodynamics of rivers. A new concept for the sediment traps that enables sediment transfer for frequent floods and safely retains sediment in the case of important floods was recently developed and experimentally tested. The tests were performed using a standardized hydrograph and different barrier types for the mechanically or hydraulically controlled retention of sediments. The deposition pattern was measured at the end of every experimental run using a motion sensing camera. These measurements show that the shape of the deposits varies as a function of the retention control type (mechanical or hydraulic) and particularly as a function of the barrier height. Deposits were large when a high barrier was applied that was not overflown, and when both control types were combined. The deposition slope was shallow in the case of the high barrier, steeper for combined controls and steepest when mechanical control only was tested. The study enables a better understanding for the optimization of the shape of artificial deposition areas upstream of partially permeable check dams to enhance the tradeoff between eco-morphological and economical aspects of flood protection.

  12. Integrated environmental monitoring and multivariate data analysis-A case study.

    PubMed

    Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle

    2017-03-01

    The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.

  13. Bed turbulent kinetic energy boundary conditions for trapping efficiency and spatial distribution of sediments in basins.

    PubMed

    Isenmann, Gilles; Dufresne, Matthieu; Vazquez, José; Mose, Robert

    2017-10-01

    The purpose of this study is to develop and validate a numerical tool for evaluating the performance of a settling basin regarding the trapping of suspended matter. The Euler-Lagrange approach was chosen to model the flow and sediment transport. The numerical model developed relies on the open source library OpenFOAM ® , enhanced with new particle/wall interaction conditions to limit sediment deposition in zones with favourable hydrodynamic conditions (shear stress, turbulent kinetic energy). In particular, a new relation is proposed for calculating the turbulent kinetic energy threshold as a function of the properties of each particle (diameter and density). The numerical model is compared to three experimental datasets taken from the literature and collected for scale models of basins. The comparison of the numerical and experimental results permits concluding on the model's capacity to predict the trapping of particles in a settling basin with an absolute error in the region of 5% when the sediment depositions occur over the entire bed. In the case of sediment depositions localised in preferential zones, their distribution is reproduced well by the model and trapping efficiency is evaluated with an absolute error in the region of 10% (excluding cases of particles with very low density).

  14. Diurnal variation in invertebrate catch rates by sticky traps: Potential for biased indices of piping plover forage

    USGS Publications Warehouse

    Anteau, M.J.; Sherfy, M.H.

    2010-01-01

    Measuring abundance of invertebrate forage for piping plovers (Charadrius melodus; hereafter plovers), a federally listed species in the USA, is an important component of research and monitoring targeted toward species recovery. Sticky traps are commonly used to passively sample invertebrates, but catch rates may vary diurnally or in response to weather. We examined diurnal variation in catch rates of invertebrates using an experiment on reservoir shoreline and riverine sandbar habitats of the Upper Missouri River in 2006 and 2008. Highest catch rates of large invertebrates (>3 mm) on dry sand habitats occurred during 08:00-11:00 Central Daylight Time (CDT) on the reservoir and 08:00-14:00 CDT on the river. On wet sand habitats, catch rates were lowest during 17:00-20:00 on both the reservoir and the river. Catch rates decreased 24% for every 10 kph increase in wind. Sticky traps deployed continuously for 12 h or more had lower catch rates than four consecutive-composited 3-hour deployments, suggesting that trap effectiveness declined for >3-hour deployments. Thus, if sticky traps are used to index plover forage abundance without controlling for time of day and wind speed, data may be highly variable or estimates could be biased. 

  15. Velocity profiles, Reynolds stresses and bed roughness from an autonomous field deployed Acoustic Doppler Velocity Profiler in a mixed sediment tidal estuary

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team

    2014-05-01

    Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each deployment site are compared with ripple measurements obtained on site using a three dimensional acoustic ripple profiler, 3D-ARP. These results will later be used to validate laboratory studies in mixed sediments, carried out as part of the COHBED Project, and enable development of new bed from predictors for biotic mixed sediment environments.

  16. Geomorphic field experiment to quantify grain size and biotic influence on riverbed sedimentation dynamics in a dry-season reservoir, Russian River, CA

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Ulrich, C.; Hubbard, S. S.; Borglin, S. E.; Rosenberry, D. O.

    2013-12-01

    An important problem in geomorphology is to differentiate between abiotic and biotic fine sediment deposition on coarse gravel river beds because of the potential for fine sediment to infiltrate and clog the pore space between gravel clasts. Infiltration of fines into gravel substrate is significant because it may reduce permeability; therefore, differentiation of abiotic vs. biotic sediment helps in understanding the causes of such changes. We conducted a geomorphic field experiment during May to November 2012 in the Russian River near Wohler, CA, to quantify biotic influence on riverbed sedimentation in a small temporary reservoir. The reservoir is formed upstream of a small dam inflated during the dry season to enhance water supply pumping from the aquifer below the channel; however, some flow is maintained in the reservoir to facilitate fish outmigration. In the Russian River field area, sediment transport dynamics during storm flows prior to dam inflation created an alternate bar-riffle complex with a coarser gravel surface layer over the relatively finer gravel subsurface. The objective of our work was to link grain size distribution and topographic variation to biotic and abiotic sediment deposition dynamics in this field setting where the summertime dam annually increases flow depth and inundates the bar surfaces. The field experiment investigated fine sediment deposition over the coarser surface sediment on two impounded bars upstream of the reservoir during an approximately five month period when the temporary dam was inflated. The approach included high resolution field surveys of topography, grain size sampling and sediment traps on channel bars, and laboratory analyses of grain size distributions and loss on ignition (LOI) to determine biotic content. Sediment traps were installed at six sites on bars to measure sediment deposited during the period of impoundment. Preliminary results show that fine sediment deposition occurred at all of the sample sites, and is spatially variable--likely influenced by topographic differences that moderate flow over the bars. Traps initially filled with coarse gravel from the bar's surface trapped more fine sediment than traps initially filled with material from the bar's subsurface sediment, suggesting that a gravel bar's armor layer may enhance the source of material available to infiltrate into the channel substrate. LOI analysis indicates that both surface and subsurface samples have organic content ranging between 2 and 4%, following winter storm flows prior to impoundment. In contrast, samples collected after the 5-month impoundment have higher organic content ranging between 5 and 11%. This work aids in differentiating between abiotic and biotic fine sediment deposition in order to understand their relative potential for clogging gravel substrate.

  17. Fine sediment trapping in river lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.

    2016-12-01

    River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.

  18. Rockfall Milepoint 49 Monitoring Plan for Check Dams on Mt. Hood Highway (US 26) (M.P. 49.10 to M.P. 49.23)

    DOT National Transportation Integrated Search

    2003-07-31

    This Stormwater BMP Monitoring Plan details the approach to be used for monitoring : roadside ditch sediment traps located on Highway 26 in the Mt. Hood National Forest. : These sediment traps were designed and installed by ODOT for the capture of se...

  19. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji

    2017-05-01

    Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.

  20. Sediment size fractionation and focusing in the equatorial Pacific: Effect on 230Th normalization and paleoflux measurements

    NASA Astrophysics Data System (ADS)

    Lyle, Mitchell; Marcantonio, Franco; Moore, Willard S.; Murray, Richard W.; Huh, Chih-An; Finney, Bruce P.; Murray, David W.; Mix, Alan C.

    2014-07-01

    We use flux, dissolution, and excess 230Th data from the Joint Global Ocean Flux Study and Manganese Nodule Project equatorial Pacific study Site C to assess the extent of sediment focusing in the equatorial Pacific. Measured mass accumulation rates (MAR) from sediment cores were compared to reconstructed MAR by multiplying the particulate rain caught in sediment traps by the 230Th focusing factor and subtracting measured dissolution. CaCO3 MAR is severely overestimated when the 230Th focusing factor correction is large but is estimated correctly when the focusing factor is small. In contrast, Al fluxes in the sediment fine fraction are well matched when the focusing correction is used. Since CaCO3 is primarily a coarse sediment component, we propose that there is significant sorting of fine and coarse sediments during lateral sediment transport by weak currents. Because CaCO3 does not move with 230Th, normalization typically overcorrects the CaCO3 MAR; and because CaCO3 is 80% of the total sediment, 230Th normalization overestimates lateral sediment flux. Fluxes of 230Th in particulate rain caught in sediment traps agree with the water column production-sorption model, except within 500 m of the bottom. Near the bottom, 230Th flux measurements are as much as 3 times higher than model predictions. There is also evidence for lateral near-bottom 230Th transport in the bottom nepheloid layer since 230Th fluxes caught by near-bottom sediment traps are higher than predicted by resuspension of surface sediments alone. Resuspension and nepheloid layer transport under weak currents need to be better understood in order to use 230Th within a quantitative model of lateral sediment transport.

  1. Potential Use of BEST® Sediment Trap in Splash - Saltation Transport Process by Simultaneous Wind and Rain Tests

    PubMed Central

    Basaran, Mustafa; Uzun, Oguzhan; Cornelis, Wim; Gabriels, Donald; Erpul, Gunay

    2016-01-01

    The research on wind-driven rain (WDR) transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present study was conducted to investigate the efficiency of the BEST® sediment traps in catching the sand particles transported through the splash-saltation process under WDR conditions. Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR conditions. Not only for vertical sediment distribution, but a series of experimental tests for horizontal distribution of sediments was also performed using BEST® collectors to obtain the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel test section. Total mass transport (kg m-2) were estimated by analytically integrating the exponential functional relationship using the measured sediment amounts at the set trap heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9, 12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were, respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of BEST® did not change much as compared with those under rainless wind condition. PMID:27898716

  2. Spatiotemporal variation of vertical particle fluxes and modelled chlorophyll a standing stocks in the Benguela Upwelling System

    NASA Astrophysics Data System (ADS)

    Vorrath, Maria-Elena; Lahajnar, Niko; Fischer, Gerhard; Libuku, Viktor Miti; Schmidt, Martin; Emeis, Kay-Christian

    2018-04-01

    Marine particle fluxes from high productive coastal upwelling systems return upwelled CO2 and nutrients to the deep ocean and sediments and have a substantial impact on the global carbon cycle. This study examines relations between production regimes on the shelf and over the continental margin of the Benguela Upwelling System (BUS) in the SE Atlantic Ocean. Data of composition and timing of vertical particle flux come from sediment trap time series (deployed intermittently between 1988 and 2014) in the regions Walvis Ridge, Walvis Bay, Luederitz and Orange River. We compare their seasonal variability to modelled patterns of chlorophyll concentrations in a 3-D ecosystem model. Both modelled seasonal chlorophyll a standing stocks and sampled particle flux patterns are highly correspondent with a bimodal seasonal cycle offshore the BUS. The material in the particle flux in offshore traps is dominantly carbonate (40-70%), and flux peaks in offshore particle flux originate from two independent events: in austral autumn thermocline shoaling and vertical mixing are decoupled from coastal upwelling, while fluxes in spring coincide with the upwelling season, indicated by slightly elevated biogenic opal values at some locations. Coastal particle fluxes are characterized by a trimodal pattern and are dominated by biogenic opal (22-35%) and organic matter (30-60%). The distinct seasonality in observed fluxes on the shelf is caused by high variability in production, sinking behaviour, wind stress, and hydrodynamic processes. We speculate that global warming will increase ocean stratification and alter coastal upwelling, so that consequences for primary production and particle flux in the BUS are inevitable.

  3. Lithogenic and biogenic particle deposition in an Antarctic coastal environment (Marian Cove, King George Island): Seasonal patterns from a sediment trap study

    NASA Astrophysics Data System (ADS)

    Khim, B. K.; Shim, J.; Yoon, H. I.; Kang, Y. C.; Jang, Y. H.

    2007-06-01

    Particulate suspended material was recovered over a 23-month period using two sediment traps deployed in shallow water (˜30 m deep) off the King Sejong Station located in Marian Cove of King George Island, West Antarctica. Variability in seasonal flux and geochemical characteristics of the sediment particles highlights seasonal patterns of sedimentation of both lithogenic (terrigenous) and biogenic particles in the coastal glaciomarine environment. All components including total mass flux, lithogenic particle flux and biogenic particle flux show distinct seasonal variation, with high recovery rates during the summer and low rates under winter fast ice. The major contributor to total mass flux is the lithogenic component, comprising from 88% during the summer months (about 21 g m -2 d -1) up to 97% during the winter season (about 2 g m -2 d -1). The lithogenic particle flux depends mainly on the amount of snow-melt (snow accumulation) delivered into the coastal region as well as on the resuspension of sedimentary materials. These fine-grained lithogenic particles are silt-to-clay sized, composed mostly of clay minerals weathered on King George Island. Biogenic particle flux is also seasonal. Winter flux is ˜0.2 g m -2 d -1, whereas the summer contribution increases more than tenfold, up to 2.6 g m -2 d -1. Different biogenic flux between the two summers indicates inter-annual variability to the spring-summer phytoplankton bloom. The maximum of lithogenic particle flux occurs over a short period of time, and follows the peak of biogenic particle flux, which lasts longer. The seasonal warming and sea-ice retreat result in change in seawater nutrient status and subsequent ice-edge phytoplankton production. Meanwhile, the meltwater input to Marian Cove from the coastal drainage in January to February plays a major role in transporting lithogenic particles into the shallow water environment, although the tidal currents may be the main agents of resuspension in this kind of sheltered bay.

  4. Evaluating sediment capture rates for different sediment basin designs.

    DOT National Transportation Integrated Search

    2007-08-01

    The effectiveness of sediment control devices was studied on a large NC DOT project to determine the : effects of different designs and conditions. Flow and sediment content of water exiting six different traps : and basins were measured and the amou...

  5. Reconstruction of settlement phases at Intermediate Bronze Age structures in the Negev Highlands (Israel) using luminescence dating

    NASA Astrophysics Data System (ADS)

    Junge, Andrea; Lomax, Johanna; Shahack-Gross, Ruth; Dunseth, Zachary C.; Finkelstein, Israel; Fuchs, Markus

    2016-04-01

    OSL dating is usually applied to sediments in paleoenvironmental sciences. However, there is only limited experience with determining the age of archaeological stone structures by OSL using dust deposits associated with these structures. The age of trapped dust deposits may be used to date the onset of settlement (sediment below structures), settlement activity (occupation layer), or the time after settlement (sediment between collapsed walls and roofs). In this study, OSL dating is applied for establishing a chronology of settlement structures situated in the Negev Highlands, Israel. Two archaeological sites are investigated to identify the occupation history, by dating the aeolian dust trapped within the remains of ancient buildings. OSL dating techniques are applied using coarse grain quartz and a standard SAR protocol. First results indicate that the luminescence properties of the trapped sediments are suitable for OSL dating. Therefore, it was possible to date the onset of sedimentation in a later phase of the human occupation or shortly after the settlement was abandoned, which is supported by archaeological evidence gained from pottery finds and the architecture of the buildings.

  6. The effect of vegetation height and biomass on the sediment budget of a European saltmarsh

    NASA Astrophysics Data System (ADS)

    Reef, Ruth; Schuerch, Mark; Christie, Elizabeth K.; Möller, Iris; Spencer, Tom

    2018-03-01

    Sediment retention in saltmarshes is often attributed to the presence of vegetation, which enhances accretion by slowing water flow, reduces erosion by attenuating wave energy and increases surface stability through the presence of organic matter. Saltmarsh vegetation morphology varies considerably on a range of spatial and temporal scales, but the effect of different above ground morphologies on sediment retention is not well characterised. Understanding the biophysical interaction between the canopy and sediment trapping in situ is important for improving numerical shoreline models. In a novel field flume study, we measured the effect of vegetation height and biomass on sediment trapping using a mass balance approach. Suspended sediment profilers were placed at both openings of a field flume built across-shore on the seaward boundary of an intertidal saltmarsh in the Dengie Peninsula, UK. Sequential removal of plant material from within the flume resulted in incremental loss of vegetation height and biomass. The difference between the concentration of suspended sediment measured at each profiler was used to determine the sediment budget within the flume. Deposition of material on the plant/soil surfaces within the flume occurred during flood tides, while ebb flow resulted in erosion (to a lesser degree) from the flume area, with a positive sediment budget of on average 6.5 g m-2 tide-1 with no significant relationship between sediment trapping efficiency and canopy morphology. Deposition (and erosion) rates were positively correlated to maximum inundation depth. Our results suggest that during periods of calm conditions, changes to canopy morphology do not result in significant changes in sediment budgets in marshes.

  7. The Effectiveness of Hybrid Structure in Overcoming Coastal Abration in Trimulyo, Genuk Subdistrict Semarang City

    NASA Astrophysics Data System (ADS)

    Kurnia, Domas; Nugroho, Denny

    2018-02-01

    Trimulyo is one of coastal village in Genuk Subdistrict, Semarang City which now facing serious coastal abrasion. Such a thing has been causing loss of ponds and settlements. One of solution which currently carried is hybrid structure which combining permeable structure to break up the waves and trap sediment. The hybrid structure is designed as agitation dredging, which increase suspended sediment in sea water. The goals of this research were to studying the effectiveness of hybrid structure in handling coastal abration and to counting the volume of sedimentation during 20 months as well as rate of sedimentation. To reach the goals, high resolution satellite imagery year 2015 and 2016, scaled stick and sediment trap were applied to the study. Image processing was conducted by using Arc GIS 10.3 software. The effectiveness of hybrid structured was determined by series of field survey of existing condition. Rate of sedimentation measured during before and after hybrid structure built (20 months). The results showed that hybrid structure was effective to reduce coastal abrasion, it proven by a large amount of sediment was trapped behind the structure and coastline was upward along 170 meter since it was built. The volume of sediment during 20 months is 81.500 m3. If it assumed that the rate of sedimentation constantly, monthly rate of sedimentation is 4.075 m3/month or daily rate is 135,8 m3/day. The sediment that has formed highly recommended to use as mangrove conservation area in Semarang City.

  8. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    NASA Astrophysics Data System (ADS)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.

    2015-12-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  9. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  10. Effect of Sediment Availability in Bedload-Dominated Rivers on Fluvial Geomorphic Equilibrium

    NASA Astrophysics Data System (ADS)

    Marti, M.

    2016-12-01

    Channels are known to compensate for changes in sediment supply via covariate changes in channel properties, yet the timescale for adjustment remains poorly constrained. We propose that reductions in sediment flux inhibit equilibrium re-establishment and thus impact the timescale of system adjustment. Using run-of-river dams as natural experiments, this study quantifies the geomorphic response of channels to sediment supply reduction. Channel traits that facilitate increased sediment trapping behind the dam, such as large reservoir storage capacity relative to annual inflow and low slope, were expected to inhibit a channel's ability to re-establish equilibrium following impoundment, lengthening the equilibrium establishment timescale to tens or hundreds of years. Reaches associated with increased trapping were therefore anticipated to exhibit non-equilibrium forms. Channel equilibrium was evaluated downstream of 8 ROR dams in New England with varying degrees of sediment trapping. Sites cover a range of watershed sizes (3-155 km2), channel slopes (.05-5%), 2-year discharges (1.5-60 m3/s) and storage capacity volumes. Because equilibrium channel form is just sufficient to mobilize grains under bankfull conditions in bedload-dominated rivers, the Shields parameter was used to assess equilibrium form. Unregulated, upstream Shields values and regulated, downstream values were calculated at 14 total cross-sections extending 300-450 m upstream and downstream of each dam. Sediment trapping was estimated using Brune's curve (1953). On the Charles Brown Brook (VT), a marginally significant (p=0.08) increase in Shields values from a mean of 0.14 upstream to 0.41 downstream of a 100+ year old dam was observed. In contrast, reaches downstream of the 100+ year old Pelham dam (MA) exhibit significantly lower Shields values. This suggests that trapping behind the dam inhibits the downstream channel from reaching an equilibrium state, but not always in the same way. Better understanding of geomorphic response to reduced sediment flux as a control on equilibrium establishment will broaden the knowledge of geomorphic equilibrium and aid in management of regulated, bedload-dominated rivers.

  11. Using SPMDs To Assess Natural Recovery Of PCB-Contaminated Sediments In Lake Hartwell, SC: I. A Field Test Of New In-Situ Deployment Methods

    EPA Science Inventory

    Results from the field testing of some innovative sampling methods developed to evaluate risk management strategies for polychlorinated biphenyl (PCB) contaminated sediments are presented. Semipermeable membrane devices (SPMDs) were combined with novel deployment methods to quan...

  12. An instrument system for long-term sediment transport studies on the continental shelf

    USGS Publications Warehouse

    Butman, Bradford; Folger, David W.

    1979-01-01

    A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.

  13. Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong's tidal river to estuarine reach

    NASA Astrophysics Data System (ADS)

    McLachlan, R. L.; Ogston, A. S.; Allison, M. A.

    2017-09-01

    River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition, and predicts how fine-sediment dynamics and morphology of large tropical deltas such as the Mekong will respond to changing fluvial and marine influences in the future.

  14. Mountain erosion over decades and millennia: New insights from sediment yields and cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Callahan, R. P.; Riebe, C. S.; Ferrier, K.

    2017-12-01

    For more than two decades, cosmogenic nuclides have been used to quantify catchment-wide erosion rates averaged over tens of thousands of years. These rates have been used as baselines for comparison with sediment yields averaged over decades, leading to insights on how human activities such as deforestation and agriculture have influenced the production and delivery of sediment to streams and oceans. Here we present new data from the southern Sierra Nevada, California, where sediment yields have been measured over the last ten years using sediment trapping and gauging methods. Cosmogenic nuclides measured in stream sediment reveal erosion rates that are between 13 and 400 (average = 94) times faster than erosion rates inferred from annual accumulations in sediment traps. We show that the discrepancy can be explained by extremely low sediment trapping efficiency, which leads to bias in the short-term rates due to incomplete capture of suspended sediment. Thus the short-term rates roughly agree with the long-term rates, despite intensive timber harvesting in the study catchments over the last century. This differs from results obtained in similar forested granitic catchments of Idaho, where long-term rates are more than ten times greater than short-term rates because large, rare events do not contribute to the short-term averages. Our analysis of a global database indicates that both the magnitude and sign of differences between short- and long-term average erosion rates are difficult to predict, even when the history of land use in known.

  15. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    NASA Astrophysics Data System (ADS)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.

    2013-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.

  16. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    USGS Publications Warehouse

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.

    2012-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.

  17. Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai

    USGS Publications Warehouse

    Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.

    2009-01-01

    Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.

  18. Annually laminated lake sediments as recorders of flood events: evidence from combining monitoring and calibration

    NASA Astrophysics Data System (ADS)

    Kämpf, Lucas; Brauer, Achim; Mueller, Philip; Güntner, Andreas; Merz, Bruno

    2015-04-01

    The relation of changing climate and the occurrence of strong flood events has been controversially debated over the last years. One major limitation in this respect is the temporal extension of instrumental flood time series, rarely exceeding 50-100 years, which is too short to reflect the full range of natural climate variability in a region. Therefore, geoarchives are increasingly explored as natural flood recorders far beyond the range of instrumental flood time series. Annually laminated (varved) lake sediments provide particularly valuable archives since (i) lakes form ideal traps in the landscape continuously recording sediment flux from the catchment and (ii) individual flood events are recorded as detrital layers and can be dated with seasonal precision by varve counting. Despite the great potential of varved lake sediments for reconstructing long flood time series, there are still some confinements with respect to their interpretation due to a lack in understanding processes controlling the formation of detrital layers. For this purpose, we investigated the formation of detrital flood layers in Lake Mondsee (Upper Austria) in great detail by monitoring flood-related sediment flux and comparing detrital layers in sub-recent sediments with river runoff data. Sediment flux at the lake bottom was trapped over a three-year period (2011-2013) at two locations in Lake Mondsee, one located 0.9 km off the main inflow (proximal) and one in a more distal position at a distance of 2.8 km. The monitoring data include 26 floods of different amplitude (max. hourly discharge=10-110 cbm/s) which triggered variable fluxes of catchment sediment to the lake floor (4-760 g/(sqm*d)). The comparison of runoff and sediment data revealed empiric runoff thresholds for triggering significant detrital sediment influx to the proximal (20 cbm/s) and distal lake basin (30 cbm/s) and an exponential relation between runoff amplitude and the amount of deposited sediment. A succession of 20 sub-millimetre to maximum 8 mm thick flood-triggered detrital layers, deposited between 1976 and 2005, was detected in two varved surface sediment cores from the same locations as the sediment traps. Calibration of the detrital layer record with river runoff data revealed empirical thresholds for flood layer deposition. These thresholds are higher than those for trapped sediment flux but, similarly to the trap results, increasing from the proximal (50-60 cbm/s; daily mean=40 cbm/s) to the distal lake basin (80 cbm/s, 2 days>40 cbm/s). Three flood events above the threshold for detrital layer formation in the proximal and one in the distal lake basin were also recorded in the monitoring period. These events resulted in exceptional sediment transfer to the lake of more than 400 g/sqm at both sites, which is therefore interpreted as the minimum sediment amount for producing a visible detrital layer.

  19. Carbon transport in Monterey Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  20. Temporal and spatial variability of aeolian sand transport: Implications for field measurements

    NASA Astrophysics Data System (ADS)

    Ellis, Jean T.; Sherman, Douglas J.; Farrell, Eugene J.; Li, Bailiang

    2012-01-01

    Horizontal variability is often cited as one source of disparity between observed and predicted rates of aeolian mass flux, but few studies have quantified the magnitude of this variability. Two field projects were conducted to evaluate meter-scale spatial and temporal in the saltation field. In Shoalhaven Heads, NSW, Australia a horizontal array of passive-style sand traps were deployed on a beach for 600 or 1200 s across a horizontal span of 0.80 m. In Jericoacoara, Brazil, traps spanning 4 m were deployed for 180 and 240 s. Five saltation sensors (miniphones) spaced 1 m apart were also deployed at Jericoacoara. Spatial variation in aeolian transport rates over small spatial and short temporal scales was substantial. The measured transport rates ( Q) obtained from the passive traps ranged from 0.70 to 32.63 g/m/s. When considering all traps, the coefficient of variation ( CoV) values ranged from 16.6% to 67.8%, and minimum and maximum range of variation coefficient ( RVC) values were 106.1% to 152.5% and 75.1% to 90.8%, respectively. The miniphone Q and CoV averaged 47.1% and 4.1% for the 1260 s data series, which was subsequently sub-sampled at 60-630 s intervals to simulate shorter deployment times. A statistically significant ( p < 0.002), inverselinear relationship was found between sample duration and CoV and between Q and CoV, the latter relationship also considering data from previous studies.

  1. Disturbance of Essential Fish Habitat by Commercial Passive Fishing Gear in the Delaware, Maryland, and Virginia region of the Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Schweitzer, C.

    2016-02-01

    Trap fishing is one of the oldest methods utilized to capture fish, and fish traps are currently one of the most dominant fishing gears utilized by commercial fishermen in the DelMarVa (Delaware, Maryland, Virginia) region. Impacts of traps on benthic habitat and emergent epifauna have become an increasing concern since the 1990's, but despite this, there is little published data regarding trap-habitat interactions. Any substrate necessary for fish spawning, breeding, feeding, or growth to maturity is deemed Essential Fish Habitat (EFH) and in order to increase capture success, traps are often deployed near or on EFH. We assessed the degree of trap impacts via video observations from commercial traps at four common fishing sites in the DelMarVa region, 27-36 km off the coast, at depths of 20-30 m. Two traps within a 20 trap rig were customized by attaching GoPro® cameras to give views in front of the trap, toward the trap front, and to the rear of the trap. Analysis of 123 trap deployments shows that traps often drag across the ocean floor and habitats during the retrieval process. Duration of the dragging phase is strongly correlated with trap position on the line (r2=0.6; p<0.001); traps farther down the line drag significantly longer than traps closer to the boat and first retrieved (1st vs last trap: p<0.01). Dragging significantly increases trap-habitat interactions. Traps with minimal drag have <1% chance of contacting EFH but dragging increases the proportion of traps interacting with EFH to 46%. Observed trap-habitat interactions include: damaging and breaking coral, and running over sea stars, anemones, and bryozoans. Essential fish habitats located off the DelMarVa coast are highly fragmented and sparse, and adverse impacts of passive fishing gear probably affect a large portion of the available habitat.

  2. Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands

    USGS Publications Warehouse

    Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.

    2018-01-01

    Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.

  3. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

    PubMed

    Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris

    2014-03-15

    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Deposition, Alteration, and Resuspension of Colorado River Delta Sediments, Lake Powell, Utah

    NASA Astrophysics Data System (ADS)

    Kramer, N. M.; Parnell, R.

    2002-12-01

    Current drought conditions in the southwest United States have resulted in lowering water levels in Lake Powell, Utah. Delta sediments forming at the Colorado River inflow for the past 39 years are becoming exposed and reworked as lake levels continue to fall to over 22 meters below full pool level. Fine sediments act as a sink for pollutants by adsorbing contaminants to their surfaces. Reworking these sediments may pose a risk to water quality in the lake. We examine whether burial and time have sufficiently altered fine sediments in the delta and affected materials adsorbed on their surfaces. Fifteen lake cores and six sediment traps were collected from the sediment delta forming at the Colorado River inflow in Lake Powell. This research characterizes fine sediment mineralogy, the composition of exchangeable materials, and organic matter content within delta sediments to determine the type and amount of alteration of these sediments with cycles of burial and resuspension. We hypothesize that as sediments are reworked, organic carbon is degraded and organic nitrogen is released forming ammonium in these reducing conditions. Sediment trap samples will be used to test this hypothesis. Trap samples will be compared to subsamples from sediment cores to determine the amount of alteration of fine sediments. All samples are analyzed for organic carbon, organic nitrogen, ammonium, cation exchange capacity, exchangeable cation composition, and clay mineralogy. Organic carbon and nitrogen are analyzed using a Leco CN analyzer. Ammonium is analyzed using a Lachet ion chromatograph. Clay mineralogy is characterized using a Siemens D500 powder X-ray diffractometer. Cation exchange capacity and exchangeable cations are measured using standard soil chemical techniques. Clay mineral analyses indicate significant spatial and temporal differences in fine sediment entering the Lake Powell delta which complicates the use of a simple deposition/alteration/resuspension model using a single starting material.

  5. Influence of Vegetation on Sediment Accumulation in Restored Tidal Saltmarshes: Field Evidence from the Blackwater Estuary, Essex, UK

    NASA Astrophysics Data System (ADS)

    Price, D.; French, J.; Burningham, H.

    2013-12-01

    Tidal saltmarshes in the UK, and especially in the estuaries of southeast England, have been subject to degradation and erosion over the last few decades, primarily caused by sea-level rise and coastal squeeze due to fixed coastal defences. This is of great concern to a range of coastal stakeholders due to the corresponding loss of functions and services associated with these systems. The coastal defence role that saltmarshes play is well established, and the importance of saltmarsh ecosystems as habitats for birds, fish, and other species is evidenced in the fact that a large proportion of saltmarsh in the southeast England is designated for its scientific and conservation significance. Sediment accumulation is critical for the maintenance of marsh elevation within the tidal frame and for delivery of the aforementioned functions and services. Although many studies have examined accumulation processes, key questions have yet to be fully tested through intensive field observations. One such question relates to the role of vegetation in mediating the retention of newly introduced sediment, as recent research has called into doubt the traditional view of halophytes significantly enhancing rates of sedimentation through wave dissipation. This study presents early results from a project designed to advance our understanding of the processes controlling sediment accumulation. The research focuses on the UK's first large-scale experimental managed flood defence realignment at Tollesbury, Blackwater estuary, Essex. The seawall protecting 21ha of reclaimed agricultural land was artificially breached in 1995 and saltmarsh has progressively developed as tidal exchange has introduced fine sediment into the site. Results from a 12 month monitoring campaign involving hierarchical two-week sediment trap deployments indicates that the role of vegetation in marsh development is less clear cut that previously thought. Gross sedimentation rates were generally higher in non-vegetated areas, even when other influences, such as elevation were removed. However, sediment retention at the vegetated sites was higher, at times double that in the bare areas. This implies that vegetation acts primarily to inhibit sediment resuspension by waves rather than by favouring deposition from tidal flows.

  6. Sediment and organic carbon transport in Cap de Creus canyon, Gulf of Lions (France)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Puig, P.; Palanques, A.; Goni, M. A.; Miserocchi, S.; Langone, L.

    2009-04-01

    The off-shelf transport of particles in continental margins is responsible for much of the flux of organic matter (OM)and nutrients towards deep-sea ecosystems, playing a key role in the global oceanic biogeochemical cycles. Off-shelf sediment transport mechanism have been well described for many continental margins being triggered by a series of physical forcings such as tides, storms, internal waves, floods, earthquakes, as well as the combination of some of these processes, while topographic structures such as submarine canyons act as preferential sedimentary conduits toward deep ocean. However, the composition of the material supplied to the deep ocean during these events is still poorly understood since most studies have only investigated the magnitude of the down-slope fluxes or limited their analysis to the major bulk components. A special opportunity to characterize the biogeochemical composition of the off-shelf export in the Gulf of Lions (GoL) margin was provided during the winter 2004-2005, when an exceptional dense water cascading event occurred. Dense water overflowing off the shelf in the GoL has been recently recognized as one of the main process affecting particulate shelf-to-slope exchange in northwestern Mediterranean Sea. During the 2004-2005 cascading event, moored instruments were deployed at the Cap de Creus (CdC) canyon head to monitor the physical parameters and to characterize the temporal variability of the exported material. Post-cascading sediment cores were collected along the sediment dispersal system to trace the sediment transport pathway. In this study we developed a source tracing method using elemental compositions, alkaline CuO reaction products (lignin, cutin, lipids, hydroxy benzenes, proteins, lipids, and polysaccharides products), biogenic silica, carbon stable isotope composition, radiocarbon measurements, and grain size as a fingerprint for each sample. The aforementioned analyses were carried out on both sediment trap and sediment samples to obtain a homogeneous data matrix. The dynamic mixture of OM sources and shelf sediments was then analyzed using multivariate statistics. A quantitative mixing model was used to assess the relative contribution of allochthonous and autochthonous OM and to identify the relationship between sediment export from the shelf and down-slope particulate fluxes (sediment provenance).

  7. Reconstruction of the sediment flow regime in a semi-arid Mediterranean catchment using check dam sediment information.

    NASA Astrophysics Data System (ADS)

    Bussi, G.; Rodríguez, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.

    2012-04-01

    When using hydrological and sedimentological models, lack of historical records is often one of the main problems to face, since observed data are essential for model validation. If gauged data are poor or absent, a source of additional proxy data may be the slack-water deposits accumulated in check dams. The aim of this work is to present the result of the reconstruction of the recent hydrological and sediment yield regime of a semi-arid Mediterranean catchment (Rambla del Poyo, Spain, 184 square km) by coupling palaeoflood techniques with a distributed hydrological and sediment cycle model, using as proxy data the sandy slack-water deposits accumulated upstream a small check dam (reservoir volume 2,500 square m) located in the headwater basin (drainage area 13 square km). The solid volume trapped into the reservoir has been estimated using differential GPS data and an interpolation technique. Afterwards, the total solid volume has been disaggregated into various layers (flood units), by means of a stratigraphical description of a depositional sequence in a 3.5 m trench made across the reservoir sediment deposit, taking care of identifying all flood units; the separation between flood units is indicated by a break in deposition. The sedimentary sequence shows evidence of 15 flood events that occurred after the dam construction (early '90). Not all events until the present are included; for the last ones, the stream velocity and energy conditions for generating slack-water deposits were not fulfilled due to the reservoir filling. The volume of each flood unit has been estimated making the hypothesis that layers have a simple pyramidal shape (or wedge); every volume represents an estimation of the sediments trapped into the reservoir corresponding to each flood event. The obtained results have been compared with the results of modeling a 20 year time series (1990 - 2009) with the distributed conceptual hydrological and sediment yield model TETIS-SED, in order to assign a date to every flood unit. The TETIS-SED model provides the sediment yield series divided into textural fractions (sand, silt and clay). In order to determine the amount of sediments trapped into the ponds, trap efficiency of each check dam is computed by using the STEP model (Sediment Trap Efficiency model for small Ponds, Verstraeten and Poesen, 2001). Sediment dry bulk density is calculated according to Lane and Koelzer (1943) formulae. In order to improve the reliability of the flood reconstruction, distributed historical fire data has also been used for dating carbon layers found in the depositional sequence. Finally, a date has been assigned to every flood unit, corresponding to an extreme rainfall event; the result is a sediment volume series from 1990 to 2009, which may be very helpful for validating both hydrological and sediment yield models and can improve our understanding on erosion and sediment yield in this catchment.

  8. Sedimentation of prairie wetlands

    USGS Publications Warehouse

    Gleason, Robert A.; Euliss, Ned H.

    1998-01-01

    Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.

  9. An ex situ evaluation of TBA- and MTBE-baited bio-traps.

    PubMed

    North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M

    2012-08-01

    Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The contribution of various types of settling particles to the flux of organic carbon in the Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Romero-Ibarra, Nancy; Silverberg, Norman

    2011-10-01

    The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m -2 d -1 for the more reliable large trap and 149 mg C m -2 d -1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg C m -2 d -1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m -2 d -1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m -2 d -1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.

  11. Sources of land-derived runoff to a coral reef-fringed embayment identified using geochemical tracers in nearshore sediment traps

    USGS Publications Warehouse

    Takesue, Renee K.; Bothner, Michael H.; Reynolds, Richard L.

    2009-01-01

    Geochemical tracers, including Ba, Co, Th, 7Be, 137Cs and 210Pb, and magnetic properties were used to characterize terrestrial runoff collected in nearshore time-series sediment traps in Hanalei Bay, Kauai, during flood and dry conditions in summer 2006, and to fingerprint possible runoff sources in the lower watershed. In combination, the tracers indicate that runoff during a flood in August could have come from cultivated taro fields bordering the lower reach of the river. Land-based runoff associated with summer floods may have a greater impact on coral reef communities in Hanalei Bay than in winter because sediment persists for several months. During dry periods, sediment carried by the Hanalei River appears to have been mobilized primarily by undercutting of low 7Be, low 137Cs riverbanks composed of soil weathered from tholeiitic basalt with low Ba and Co concentrations. Following a moderate rainfall event in September, high 7Be sediment carried by the Hanalei River was probably mobilized by overland flow in the upper watershed. Ba-desorption in low-salinity coastal water limited its use to a qualitative runoff tracer in nearshore sediment. 210Pb had limited usefulness as a terrestrial tracer in the nearshore due to a large dissolved oceanic source and scavenging onto resuspended bottom sediment. 210Pb-scavenging does, however, illustrate the role resuspension could play in the accumulation of particle-reactive contaminants in nearshore sediment. Co and 137Cs were not affected by desorption or geochemical scavenging and showed the greatest potential as quantitative sediment provenance indicators in material collected in nearshore sediment traps.

  12. Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea

    USGS Publications Warehouse

    Deuser, W.G.; Jickells, T.D.; Commeau, Judith A.

    1995-01-01

    Analyses of samples from a 14-year series of sediment-trap deployments in the deep Sargasso Sea reveal a significant trend in the ratio of the sinking fluxes of biogenic calcium carbonate and silica. Although there are pronounced seasonal cycles for both flux components, the overall opal/CaCO3 ratio changed by 50% from 1978 to 1991 (largely due to a decrease of opal flux), while total flux had no significant trend. These results suggest that plankton communities respond rapidly to subtle climate change, such as is evident in regional variations of wind speed, precipitation, wintertime ventilation and midwater temperatures. If the trends we observe in the makeup of sinking particulate matter occur on a large scale, they may in turn modify climate by modulating ocean-atmosphere CO2 exchange and albedo over the ocean.

  13. Vertical and lateral flux on the continental slope off Pakistan: correlation of sediment core and trap results

    NASA Astrophysics Data System (ADS)

    Schulz, H.; von Rad, U.

    2014-06-01

    Due to the lack of bioturbation, the varve-laminated muds from the oxygen minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the nearshore part of the northeastern Arabian Sea. West of Karachi (Hab area), the results of two sediment trap stations (EPT and WPT) were correlated with 16 short sediment cores on a depth transect crossing the OMZ. The top of a distinct, either reddish- or light-gray silt layer, 210Pb-dated as AD 1905 ± 10, was used as an isochronous stratigraphic marker bed to calculate sediment accumulation rates. In one core, the red and gray layer were separated by a few (5-10) thin laminae. According to our varve model, this contributes < 10 years to the dating uncertainty, assuming that the different layers are almost synchronous. We directly compared the accumulation rates with the flux rates from the sediment traps that collected the settling material within the water column above. All traps on the steep Makran continental slope show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1. Based on core results, the flux at the seafloor amounts to 4000 mg m-2 d-1 and agrees remarkably well with the bulk winter flux of material, as well as with the flux of the individual bulk components of organic carbon, calcium carbonate and opal. However, due to the extreme mass of remobilized matter, the high winter flux events exceeded the capacity of the shallow traps. Based on our comparisons, we argue that high-flux events must occur regularly during winter within the upper OMZ off Pakistan to explain the high accumulations rates. These show distribution patterns that are a negative function of water depth and distance from the shelf. Some of the sediment fractions show marked shifts in accumulation rates near the lower boundary of the OMZ. For instance, the flux of benthic foraminifera is lowered but stable below ~1200-1300 m. However, flux and sedimentation in the upper eastern Makran area are dominated by the large amount of laterally advected fine-grained material and by the pulsed nature of the resuspension events at the upper margin during winter.

  14. The ecosystem of the Mid-Atlantic Ridge at the sub-polar front and Charlie-Gibbs Fracture Zone; ECO-MAR project strategy and description of the sampling programme 2007-2010

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.; Billett, David S. M.; Brierley, Andrew S.; Hoelzel, A. Rus; Inall, Mark; Miller, Peter I.; Cousins, Nicola J.; Shields, Mark A.; Fujii, Toyonobu

    2013-12-01

    The ECOMAR project investigated photosynthetically-supported life on the North Mid-Atlantic Ridge (MAR) between the Azores and Iceland focussing on the Charlie-Gibbs Fracture Zone area in the vicinity of the sub-polar front where the North Atlantic Current crosses the MAR. Repeat visits were made to four stations at 2500 m depth on the flanks of the MAR in the years 2007-2010; a pair of northern stations at 54°N in cold water north of the sub-polar front and southern stations at 49°N in warmer water influenced by eddies from the North Atlantic Current. At each station an instrumented mooring was deployed with current meters and sediment traps (100 and 1000 m above the sea floor) to sample downward flux of particulate matter. The patterns of water flow, fronts, primary production and export flux in the region were studied by a combination of remote sensing and in situ measurements. Sonar, tow nets and profilers sampled pelagic fauna over the MAR. Swath bathymetry surveys across the ridge revealed sediment-covered flat terraces parallel to the axis of the MAR with intervening steep rocky slopes. Otter trawls, megacores, baited traps and a suite of tools carried by the R.O.V. Isis including push cores, grabs and a suction device collected benthic fauna. Video and photo surveys were also conducted using the SHRIMP towed vehicle and the R.O.V. Isis. Additional surveying and sampling by landers and R.O.V. focussed on the summit of a seamount (48°44‧N, 28°10‧W) on the western crest of the MAR between the two southern stations.

  15. ISTA 14-in-situ accumulation of PAHs in low-density polyethylene membranes in sediment.

    PubMed

    Devault, Damien A; Combe, Matthieu; Gourlay-Francé, Catherine

    2010-10-01

    The use of passive samplers for the assessment of organic contaminants has been extended to solid matrixes for the past decade. Passive sampling is usually applied to sediment in laboratory experiments involving significant upheaval, whereas in-situ experiments remain rare. In this study, low-density polyethylene (LDPE) strips were deployed within the sediments of a small river contaminated with polycyclic aromatic hydrocarbons (PAHs). LDPE strips were deployed in the 3-cm depth sediment layer. Over a period of 36 days, LDPE strips were regularly retrieved and accumulated PAHs in LDPE were extracted and analyzed. Accumulations of hydrophobic contaminants in LDPE directly exposed in the sediment were observed. Accumulations in LDPE were observed for moderately hydrophobic PAHs with the highest concentrations in the sediment. Low accumulations were observed for more hydrophobic compounds, despite their presence in high concentrations in the sediment. This was explained by very low exchange rates and competitive interactions with particles in the sediment. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.

  16. Use of egg traps to investigate lake trout spawning in the Great Lakes

    USGS Publications Warehouse

    Schreiner, Donald R.; Bronte, Charles R.; Payne, N. Robert; Fitzsimons, John D.; Casselman, John M.

    1995-01-01

    Disk-shaped traps were used to examine egg deposition by lake trout (Salvelinus namaycush) at 29 sites in the Great Lakes. The main objectives were to; first, evaluate the disk trap as a device for sampling lake trout eggs in the Great Lakes, and second, summarize what has been learned about lake trout spawning through the use of disk traps. Of the 5,085 traps set, 60% were classified as functional when retrieved. Evidence of lake trout egg deposition was documented in each of the lakes studied at 14 of 29 sites. A total of 1,147 eggs were trapped. The percentage of traps functioning and catch per effort were compared among sites based on depth, timing of egg deposition, distance from shore, size of reef, and type of reef (artificial or natural). Most eggs were caught on small, shallow, protected reefs that were close to shore. Use of disk traps on large, shallow, unprotected offshore reefs or along unprotected shorelines was generally unsuccessful due to the effects of heavy wind and wave action. Making multiple lifts at short intervals, and retrieval before and re-deployment after storms are recommended for use in exposed areas. On large reefs, preliminary surveys to identify preferred lake trout spawning habitat may be required to deploy disk traps most effectively. Egg deposition by hatchery-reared fish was widespread throughout the Great Lakes, and the use of artificial structures by these fish was extensive.

  17. Advances in Hadal Research in China

    NASA Astrophysics Data System (ADS)

    Tian, J.; Zhang, X. H.; Xin, Y.; Xu, H.; Chen, D.; Zhang, C.

    2017-12-01

    Trenches (depths > 6000 m) are the least explored oceanic provinces, which may offer unique insight into microbial biogeography, diversity, and adaptations in the hadal environment that is characterized by extremely high pressure and low temperature. We have carried out three cruises since 2015 in order to systematically study the dynamics of the hadal ecosystems in the Mariana Trench, utilizing expertise from physical oceanography, sedimentology, organic geochemistry, and microbial genomics. A cross-trench mooring array composed of 5 independent mooring systems was deployed along 143 ºE in the `Challenger Deep', which was kept fully operational for nearly one year at depths from 4000 m to 10000 m. The one-year continuous ADCP and current data revealed unusual temporal changes in hydrodynamics in the trench system. With the assistance of a custom-designed deep water collection system, we successfully obtained seawater up to 1200 liters at depths of 2000 m, 4000 m, 6000 m, 8000 m and 10000 m below sea surface. Filtration of >1000 liters of hadal water provided valuable information on the genomics of pico/nano-plankton, archaea and bacteria, and viruses, and their potential roles in nutrient and element cycling in the hadal ecosystem. Four sediment traps were deployed at the Challenge Deep at depth of 2000 m, 4000 m, 6000 m and 8000 m, which provided downward POC fluxes at the monthly resolution. Lastly, sediment cores (0- 450 cm) were collected from the hadal seafloor at water depths down to 10853 m. Preliminary results show rates of organic matter degradation and accumulation are enhanced in the trench axis, suggesting an influence of lateral transport from trench slope and rim. Overall, our studies demonstrated a dynamic trench system with strong interactions among physical, chemical, sedimentary and biological processes in the trench.

  18. Longitudinal variation in lateral trapping of fine sediment in tidal estuaries: observations and a 3D exploratory model

    NASA Astrophysics Data System (ADS)

    Chen, Wei; de Swart, Huib E.

    2018-03-01

    This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.

  19. A comparison of coarse bedload transport measured with bedload traps and Helley Smith samplers

    Treesearch

    Kristin Bunte; Steven R. Abt; John P. Potyondy; Kurt W. Swingle

    2008-01-01

    Gravel bedload transport rates were measured at eight study sites in coarse-bedded Rocky Mountain streams using 4-6 bedload traps deployed across the stream width and a 76 by 76 mm opening Helley Smith sampler. Transport rates obtained from bedload traps increased steeply with flow which resulted in steep and well-defined transport rating curves with exponents of 8 to...

  20. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. PMID:22621895

  1. Accelerated solvent extraction followed by on-line solid-phase extraction coupled to ion trap LC/MS/MS for analysis of benzalkonium chlorides in sediment samples

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.

    2002-01-01

    Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed by ASE, were 85% for C12BAC and 79% for C14-BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 ??g/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.

  2. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.

  3. Modifications of traps to reduce bycatch of freshwater turtles

    USGS Publications Warehouse

    Bury, R. Bruce

    2011-01-01

    Mortality of freshwater turtles varies among types and deployments of traps. There are few or no losses in hoop or fyke traps set where turtles may reach air, including placement in shallows, addition of floats on traps, and tying traps securely to a stake or to shore. Turtle mortality occurs when traps are set deep, traps are checked at intervals >1 day, and when turtles are captured as bycatch. Devices are available that exclude turtles from traps set for crab or game fish harvest. Slotted gates in front of the trap mouth reduce turtle entry, but small individuals still may be trapped. Incidental take of turtles is preventable by integrating several designs into aquatic traps, such as adding floats to the top of traps so turtles may reach air or an extension tube (chimney, ramp) that creates an escape route.

  4. Effects of May through July 2015 storm events on suspended sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir, east-central Kansas

    USGS Publications Warehouse

    Foster, Guy M.

    2016-06-20

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.

  5. A collapsible trap for capturing ruffe

    USGS Publications Warehouse

    Edwards, Andrew J.; Czypinski, Gary D.; Selgeby, James H.

    1998-01-01

    A modified version of the Windermere trap was designed, constructed, and tested for its effectiveness in capturing ruffe Gymnocephalus cernuus. The inexpensive, lightweight, collapsible trap was easily deployed and retrieved from a small boat. Field tests conducted at the St. Louis River estuary in western Lake Superior in spring 1995 and 1996 indicated that the trap was effective in capturing ruffe. Proportions of the ruffe in trap and bottom trawl catches were similar in 1995 and 1996. This trap could be a useful tool in surveillance, monitoring, or control programs for ruffe or similar species, either to augment existing sampling programs or especially in situations where gillnetting or bottom trawling are not feasible.

  6. Design and evaluation of a simple signaling device for live traps

    USGS Publications Warehouse

    Benevides, F.L.; Hansen, H.; Hess, S.C.

    2008-01-01

    Frequent checks of live traps require enormous amounts of labor and add human scents associated with repeated monitoring, which may reduce capture efficiency. To reduce efforts and increase efficiency, we developed a trap-signaling device with long-distance reception, durability in adverse weather, and ease of transport, deployment, and use. Modifications from previous designs include a normally open magnetic switch and a mounting configuration to maximize reception. The system weighed <225 g, was effective ???17.1 km, and failed in <1% of trap-nights. Employing this system, researchers and wildlife managers may reduce the amount of effort checking traps while improving the welfare of trapped animals.

  7. Capture efficiency and injury rates of band-tailed pigeons using whoosh nets

    USGS Publications Warehouse

    Coxen, Christopher L.; Collins, Daniel P.; Carleton, Scott A.

    2018-01-01

    Catching ground feeding birds has typically been accomplished through small, walk-in funnel-style traps. This approach is limited because it requires a bird to find its way into the trap, is biased toward less wary birds, and does not allow targeted trapping of individual birds. As part of a large study on Band-tailed Pigeons (Patagioenas fasciata) in New Mexico, we needed a trapping method that would allow more control over the number of birds we could trap at one time, when a trap was deployed, and target trapping of specific individuals. We adopted a relatively novel trapping technique used primarily for shorebirds, whoosh nets, to trap Band-tailed Pigeons at 3 different sites where birds were being fed by local landowners. During 2013–2015, whoosh nets were used to trap 702 Band-tailed Pigeons at 3 different locations in New Mexico. We captured 12.54 ± 8.19 pigeons per shot over 56 capture events across 3 locations (range: 2–39). Some superficial injuries occurred using this technique and typically involved damage to the primary and secondary wing coverts. In 2013, 24% of captured birds had an injury of this nature, but after modifying the net speed, injury rates in 2014 and 2015 dropped to 8% and 7%, respectively. Recaptured previously injured birds showed new feather growth within 2 weeks and showed no signs of injury after 4 weeks. Whoosh nets proved to be a highly effective solution for trapping large numbers of pigeons at baited sites. These systems are easily transported, quickly deployed, and easily adapted to a variety of site conditions. 

  8. Measuring suspended sediment: Chapter 10

    USGS Publications Warehouse

    Gray, J.R.; Landers, M.N.

    2013-01-01

    Suspended sediment in streams and rivers can be measured using traditional instruments and techniques and (or) surrogate technologies. The former, as described herein, consists primarily of both manually deployed isokinetic samplers and their deployment protocols developed by the Federal Interagency Sedimentation Project. They are used on all continents other than Antarctica. The reliability of the typically spatially rich but temporally sparse data produced by traditional means is supported by a broad base of scientific literature since 1940. However, the suspended sediment surrogate technologies described herein – based on hydroacoustic, nephelometric, laser, and pressure difference principles – tend to produce temporally rich but in some cases spatially sparse datasets. The value of temporally rich data in the accuracy of continuous sediment-discharge records is hard to overstate, in part because such data can often overcome the shortcomings of poor spatial coverage. Coupled with calibration data produced by traditional means, surrogate technologies show considerable promise toward providing the fluvial sediment data needed to increase and bring more consistency to sediment-discharge measurements worldwide.

  9. Sedimentation

    Treesearch

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  10. The Scientific Legacy of the CARIACO Ocean Time-Series Program.

    PubMed

    Muller-Karger, Frank E; Astor, Yrene M; Benitez-Nelson, Claudia R; Buck, Kristen N; Fanning, Kent A; Lorenzoni, Laura; Montes, Enrique; Rueda-Roa, Digna T; Scranton, Mary I; Tappa, Eric; Taylor, Gordon T; Thunell, Robert C; Troccoli, Luis; Varela, Ramon

    2018-06-11

    TheCARIACO(Carbon Retention in a Colored Ocean) Ocean Time-Series Program station, located at 10.50°N, 64.66°W, observed biogeochemical and ecological processes in the Cariaco Basin of the southwestern Caribbean Sea from November 1995 to January 2017. The program completed 232 monthly core cruises, 40 sediment trap deployment cruises, and 40 microbiogeochemical process cruises. Upwelling along the southern Caribbean Sea occurs from approximately November to August. High biological productivity (320-628 g C m -2 y -1 ) leads to large vertical fluxes of particulate organic matter, but only approximately 9-10 g C m -2 y -1 fall to the bottom sediments (∼1-3% of primary production). A diverse community of heterotrophic and chemoautotrophic microorganisms, viruses, and protozoa thrives within the oxic-anoxic interface. A decrease in upwelling intensity from approximately 2003 to 2013 and the simultaneous overfishing of sardines in the region led to diminished phytoplankton bloom intensities, increased phytoplankton diversity, and increased zooplankton densities. The deepest waters of the Cariaco Basin exhibited long-term positive trends in temperature, salinity, hydrogen sulfide, ammonia, phosphate, methane, and silica. Earthquakes and coastal flooding also resulted in the delivery of sediment to the seafloor. The program's legacy includes climate-quality data from suboxic and anoxic habitats and lasting relationships between international researchers. Expected final online publication date for the Annual Review of Marine Science Volume 11 is January 3, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  11. Seasonal variability in particulate matter source and composition to the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    USGS Publications Warehouse

    Prouty, Nancy G.; Mienis, Furu; Campbell, P.; Roark, E. Brendan; Davies, Andrew; Robertson, Craig M.; Duineveld, Gerard; Ross, Steve W.; Rhodes, M.; Demopoulos, Amanda W.J.

    2017-01-01

    Submarine canyons are often hotspots of biomass and productivity in the deep sea. However, the majority of deep-sea canyons remain poorly sampled. Using a multi-tracer approach, results from a detailed geochemical investigation from a year-long sediment trap deployment reveals details concerning the source, transport, and fate of particulate matter to the depositional zone (1318 m) of Baltimore Canyon on the US Mid-Atlantic Bight (MAB). Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that on an annual basis particulate matter from marine and terrestrially-derived organic matter are equally important. However, elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight the seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive elements cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of biomass during seasonal blooms in response to enhanced surface production within the nutricline. While internal waves within the canyon resuspend sediment between 200 and 600 m, creating a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone is minimal. Instead, vertical transport and lateral transport across the continental margin are the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter may be linked to benthic faunal composition and ecosystem scale carbon cycling.

  12. Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands.

    PubMed

    Olinger, Lauren K; Heidmann, Sarah L; Durdall, Allie N; Howe, Colin; Ramseyer, Tanya; Thomas, Sara G; Lasseigne, Danielle N; Brown, Elizabeth J; Cassell, John S; Donihe, Michele M; Duffing Romero, Mareike D; Duke, Mara A; Green, Damon; Hillbrand, Paul; Wilson Grimes, Kristin R; Nemeth, Richard S; Smith, Tyler B; Brandt, Marilyn

    2017-01-01

    Caribbean seagrass habitats provide food and protection for reef-associated juvenile fish. The invasive seagrass Halophila stipulacea is rapidly altering these seascapes. Since its arrival in the Caribbean in 2002, H. stipulacea has colonized and displaced native seagrasses, but the function of this invasive seagrass as a juvenile fish habitat remains unknown. To compare diversity, community structure, and abundance of juvenile fish between H. stipulacea and native seagrass beds, fish traps were deployed in four nearshore bays around St. Thomas, U.S. Virgin Islands. Traps were deployed in Frenchman, Lindbergh, and Sprat Bays for 24 h intervals in patches of bare sand, patches of H. stipulacea and patches of the native Caribbean seagrasses Thalassia testudinum and Syringodium filiforme. Traps were then deployed in Brewers Bay for 12 h intervals in stands of H. stipulacea and S. filiforme. Relative and total abundances of juvenile fish, identified at least to family, were compared across treatment habitats for each trap deployment period. The catch from H. stipulacea, compared to native seagrasses, comprised a greater abundance of nocturnal carnivores Lutjanus synagris (family Lutjanidae) and Haemulon flavolineatum (family Haemulidae). Additionally, the herbivore species Sparisoma aurofrenatum (family Labridae) and Acanthurus bahianus (family Acanthuridae) and the diurnal carnivore species Pseudopeneus maculatus (family Mullidae) were relatively scarce in H. stipulacea. The catch from sand was much smaller, compared to vegetated habitats, and comprised only L. synagris, H. flavolineatum, and H. aurolineatum. These results provide evidence of reduced family diversity and altered juvenile fish assemblages in H. stipulacea, driven by an abundance of some nocturnal carnivores and scarcity of herbivores and diurnal carnivores. The findings from the present work underpin the need for further investigation and mitigation of this invasion, particularly where H. stipulacea is driving seascape-alterations of key juvenile fish habitats.

  13. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the improved performance of transducer at higher than over 3 atm pressure. Keywords: ultrasonic , flow , particle , Sediment , Cumulative mass

  14. A new sampler design for measuring sedimentation in streams

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Hedrick, J.D.

    2005-01-01

    Sedimentation alters aquatic habitats and negatively affects fish and invertebrate communities but is difficult to quantify. To monitor bed load sedimentation, we designed a sampler with a 10.16-cm polyvinyl chloride coupling and removable sediment trap. We conducted a trial study of our samplers in riffle and pool habitats upstream and downstream of highway construction on a first-order Appalachian stream. Sediment samples were collected over three 6-week intervals, dried, and separated into five size-classes by means of nested sieves (U.S. standard sieve numbers 4, 8, 14, and 20). Downstream sediment accumulated in size-classes 1 and 2, and the total amount accumulated was significantly greater during all three sampling periods. Size-classes 3 and 4 had significantly greater amounts of sediment for the first two sampling periods at the downstream site. Differences between upstream and downstream sites narrowed during the 5-month sampling period. This probably reflects changes in site conditions, including the addition of more effective sediment control measures after the first 6-week period of the study. The sediment sampler design allowed for long-term placement of traps without continual disturbance of the streambed and was successful at providing repeat measures of sediment at paired sites. ?? Copyright by the American Fisheries Society 2005.

  15. Interannual variation in seasonal diatom dynamics - what information is preserved in an annual sediment record?

    NASA Astrophysics Data System (ADS)

    Maier, D. B.; Bigler, C.; Diehl, S.

    2017-12-01

    Diatom sediment assemblages are among the most important proxies for past climate and ecological condition reconstruction in aquatic environments, but the role of seasonality in the formation of diatom records is poorly understood. In this study we combine the diatom record of a varved sediment with year-round physico-chemical water column monitoring and the corresponding sequential sediment trap diatom record to disentangle the process information contained in a diatom sediment signal. The comparison of three consecutive annual diatom records indicates that the entire annual diatom sediment signal can be driven by winter air temperature induced timing of ice and snow melt and persistent under-ice stratification promoting an early diatom bloom under ice before spring lake over-turn. By contrast, in a year of late ice thinning when the chlorophyll a maximum occurred after spring lake over-turn, a more annually integrated diatom sediment signal was built buy a continuous diatom flux. The contrasting diatom records produced during years of different winter conditions have important implications for diatom based paleoecological reconstructions. Decadal records of sediment trap samples as well as long-term varved sediment records provide further support for the role of late winter and early spring weather conditions in determining sediment diatom assemblages.

  16. Long-term Sediment Accumulation in Mid-channel Bars of the Upper Reach of the Lower Mississippi River.

    NASA Astrophysics Data System (ADS)

    Wang, B.; Xu, Y. J.

    2016-02-01

    A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.

  17. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers

    PubMed Central

    Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian

    2015-01-01

    Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (<4 mg L-1) within mats. Water trapped within the mucilaginous Phormidium mat matrix had on average 320-fold higher DRP concentrations than bulk river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (<63 μm) was significantly higher at the site with the most extensive proliferations and concentrations of biological available phosphorus were two- to four- fold higher. Collectively these results provide evidence that fine sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491

  18. Review of Oceanographic and Geochemical Data Collected in Massachusetts Bay during a Large Discharge of Total Suspended Solids from Boston's Sewage-Treatment System and Ocean Outfall in August 2002

    USGS Publications Warehouse

    Bothner, Michael H.; Butman, Bradford; Casso, Michael A.

    2010-01-01

    During the period August 14-23, 2002, the discharge of total suspended solids (TSS) from the Massachusetts Water Resources Authority sewage-treatment plant ranged from 32 to 132 milligrams per liter, causing the monthly average discharge to exceed the limit specified in the National Pollution Discharge Elimination System permit. Time-series monitoring data collected by the U.S. Geological Survey in western Massachusetts Bay were examined to evaluate changes in environmental conditions during and after this exceedance event. The rate of sediment trapping and the concentrations of near-bottom suspended sediment measured near the outfall in western Massachusetts Bay increased during this period. Because similar increases in sediment-trapping rate were observed in the summers of 2003 and 2004, however, the increase in 2002 cannot be definitively attributed to the increased TSS discharge. Concentrations of copper and silver in trapped sediment collected 10 and 20 days following the 2002 TSS event were elevated compared to those in pre-event samples. Maximum concentrations were less than 50 percent of toxicity guidelines. Photographs of surficial bottom sediments obtained before and after the TSS event do not show sediment accumulation on the sea floor. Concentrations of silver, Clostridium perfringens, and clay in surficial bottom sediments sampled 10 weeks after the discharge event at a depositional site 3 kilometers west of the outfall were unchanged from those in samples obtained before the event. Simulation of the TSS event by using a coupled hydrodynamic-wave-sediment-transport model could enhance understanding of these observations and of the effects of the exceedance on the local marine environment.

  19. Composition of Age-0 Fish Assemblages in the Apalachicola River, River Styx, and Battle Bend, Florida

    USGS Publications Warehouse

    Walsh, Stephen J.; Buttermore, Elissa N.; Burgess, O. Towns; Pine, William E.

    2009-01-01

    Light traps were used to sample the age-0 year class of fish communities in the Apalachicola River and associated floodplain water bodies of River Styx and Battle Bend, Florida, in 2006-2007. A total of 629 light traps were deployed during the spring and early summer months (341 between March 15 and June 6, 2006; 288 between March 9 and July 3, 2007). For combined years, 13.8 percent of traps were empty and a total of 20,813 age-0 fish were captured representing at least 40 taxa of 29 genera and 16 families. Trap catches were dominated by relatively few species, with the most abundant groups represented by cyprinids, centrarchids, percids, and catostomids. Six taxa accounted for about 80 percent of all fish collected: Micropterus spp. (28.9 percent), Notropis texanus (28.9 percent), Lepomis macrochirus (7.9 percent), Carpiodes cyprinus (6.2 percent), Cyprinidae sp. (4.6 percent), and Minytrema melanops (4.2 percent). Based on chronological appearance in light traps and catch-per-unit effort, including data from previous years of sampling, peak spawning periods for most species occurred between early March and mid-June. A complementary telemetry study of pre-reproductive adults of select target species (Micropterus spp., Lepomis spp., and M. melanops) revealed distinct patterns of habitat use, with some individual fish exclusively utilizing mainstem river habitat or floodplain habitat during spawning and post-spawning periods, and other individuals migrating between habitats. A comparison of light-trap catches between a pre-enhancement, high-water year (2003) and post-enhancement, low-water year (2007) for the oxbow at Battle Bend revealed some difference in community composition, with slightly greater values of diversity and evenness indices in 2007. Two dominant species, Lepomis macrochirus and Micropterus salmoides, were substantially greater in relative abundance among all age-0 fish collected in 2007 in comparison to 2003. Excavation of sediments at the mouth of Battle Bend improved river-floodplain connectivity during low flows such as occurred in 2007 and likely provided greater access and availability of fish spawning and nursery habitats.

  20. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

  1. Landscape change and sediment yield of rivers in the northeastern US during 19th century

    NASA Astrophysics Data System (ADS)

    Urbanova, T.; Wreschnig, A. J.; Ruffing, C. M.; McCormack, S. M.; Bain, D. J.; Hermans, C. M.

    2009-12-01

    During the 19th century, population growth, dam construction, and large scale forest clearing, particularly for agriculture, was followed by a massive migration to urban and industrialized centers. This led to the high degree of rural land abandonment in many parts of northeastern US. Such significant changes in land use and demography impacted sediment loading and delivery to receiving waters. The objective of this study is to assess the historical changes in sediment loading to waters as a result of land use change and related change in soil erosion, dam dynamics and sediment trapping. Various methods for assessing soil erosion, sediment yield and dam influence will be used and compared (RUSLE, BQART model, dam trapping efficiency). We expect to see 1) an accelerated erosion rates and sediment yield following forest clearing and intensification of agriculture and 2) decreased sediment delivery to estuaries with an increasing number of dams. While sediment management often focuses on fluvial corridors, our understanding of historic upland dynamics remains rudimentary. This study aims to highlight and explain the interconnectedness of the landscape-hydro system; with a particular emphasis on anthropogenic forcing and influences.

  2. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement.

    PubMed

    Steininger, M S; Hulcr, J; Šigut, M; Lucky, A

    2015-06-01

    Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae) are among the most damaging forest pests worldwide, and monitoring is essential to damage prevention. Unfortunately, traps and attractants that are currently used are costly, and agencies rely on limited field personnel for deployment. The situation can be greatly aided by 1) the development of cost-effective trapping techniques, and 2) distribution of the effort through the Citizen Science approach. The goal of this study was to test a simple, effective trap that can be made and deployed by anyone interested in collecting bark and ambrosia beetles. Three trap types made from 2-liter soda bottles and, separately, four attractants were compared. Simple, one-window traps performed comparably at capturing species in traps painted or with multiple windows. A comparison of attractants in two-window traps found that 95% ethanol attracted the highest number of species but that Purell hand sanitizer (70% ethanol) and then Germ-X hand sanitizer (63% ethanol) were also effective. A perforated zip-top plastic bag containing Purell hanging over a trap filled with automobile antifreeze attracted the fewest species and individual specimens. Overall, >4,500 bark and ambrosia beetles, including 30 species were captured, representing a third of the regional species diversity. More than three quarters of the specimens were nonnative, representing nearly half of the known regional exotic species. These results suggest that simple one-window soda bottle traps baited with ethanol-based hand sanitizer will be effective and inexpensive tools for large-scale monitoring of bark and ambrosia beetles. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Aragonite pteropod flux to the Somali Basin, NW Arabian Sea

    NASA Astrophysics Data System (ADS)

    Singh, A. D.; Conan, S. M.-H.

    2008-05-01

    Aragonite export fluxes of pteropods (>250, 150-250 and 125-150 μm) in the Somali Basin were estimated using a 9-month time-series sediment trap (MST9-E) from June 1992 to February 1993. The trap with 23 time-series sediment collectors placed at 1032 m water depth collected settling particles over a total of 249 days. Pteropods showed large seasonal variations in both the numerical and mass fluxes (>125 μm) with their maxima at the end of the SW Monsoon during September and early October. It was also observed that records of pteropod fluxes varied in different size fractions. The average numerical flux and mass flux of pteropods (>125 μm) from the 9-month record of the sediment trap was estimated to be about 1830 shells m -2 d -1 and 18 mg m -2 d -1, respectively. We estimate that about 22.5% of the total CaCO 3 in the Somali Basin was contributed by aragonitic pteropods (>125 μm).

  4. Long-term oceanographic observations in Massachusetts Bay, 1989-2006

    USGS Publications Warehouse

    Butman, Bradford; Alexander, P. Soupy; Bothner, Michael H.; Borden, Jonathan; Casso, Michael A.; Gutierrez, Benjamin T.; Hastings, Mary E.; Lightsom, Frances L.; Martini, Marinna A.; Montgomery, Ellyn T.; Rendigs, Richard R.; Strahle, William S.

    2009-01-01

    This data report presents long-term oceanographic observations made in western Massachusetts Bay at long-term site A (LT-A) (42 deg 22.6' N., 70 deg 47.0' W.; nominal water depth 32 meters) from December 1989 through February 2006 and long-term site B (LT-B) (42 deg 9.8' N., 70 deg 38.4' W.; nominal water depth 22 meters) from October 1997 through February 2004 (fig. 1). The observations were collected as part of a U.S. Geological Survey (USGS) study designed to understand the transport and long-term fate of sediments and associated contaminants in Massachusetts Bay. The observations include time-series measurements of current, temperature, salinity, light transmission, pressure, oxygen, fluorescence, and sediment-trapping rate. About 160 separate mooring or tripod deployments were made on about 90 research cruises to collect these long-term observations. This report presents a description of the 16-year field program and the instrumentation used to make the measurements, an overview of the data set, more than 2,500 pages of statistics and plots that summarize the data, and the digital data in Network Common Data Form (NetCDF) format. This research was conducted by the USGS in cooperation with the Massachusetts Water Resources Authority and the U.S. Coast Guard.

  5. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  6. Retardation and Sedimentation of Chernobyl-derived Radiocesium in the Photic Zone Sedimenttrap Deployment Studies in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Baumann, Marion

    One long-term and three short-term sedimenttrap-deployments have been installed in the Norwegian Sea shortly after the reactor-accident at Chernobyl in April 1986. Radiocesium investigations of the sedimenttrap material were combined with detailed biological investigations on sedimentation processes in the photic Zone. Lacking efficient export processes in the photic Zone, radiocesium first was retained in the photic Zone for several weeks. Then the break down and successive sedimentation of the heterotrophic community exported about 10 % of surface deposition of radiocesium to larger water depths and to the seafloor at 1450 m.

  7. Dynamics of particle export on the Northwest Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hwang, Jeomshik; Manganini, Steven J.; Montluçon, Daniel B.; Eglinton, Timothy I.

    2009-10-01

    The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.

  8. Multi-timescale sediment responses across a human impacted river-estuary system

    NASA Astrophysics Data System (ADS)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  9. Avoiding The Inevitable? Capacity Loss From Reservoir Sedimentation

    USGS Publications Warehouse

    Gray, John R.; Randle, Timothy J.; Collins, Kent L.

    2013-01-01

    The inexorable loss of capacity of the nation's reservoirs—sooner or later threatening water supplies for municipal, agricultural, and industrial uses—is but one of a number of deleterious effects wrought by sediment deposition. Trapped sediments can also damage or bury dam outlets, water intakes, and related infrastructure. Downstream effects of sediment capture and retention by reservoirs can include channel and habitat degradation and biotic alterations.

  10. Occurrence and transport of selected constituents in streams near the Stibnite mining area, Central Idaho, 2012–14

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2015-12-07

    Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.

  11. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages

    Treesearch

    Barbara J. Bentz

    2006-01-01

    Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...

  12. Dinoflagellate Cyst Contribution to Settling Organic Matter in the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Bringue, M.; Thunell, R.; Pospelova, V.; Tappa, E.; Johannessen, S.; Macdonald, R. W.

    2016-12-01

    The coastal ocean hosts much of the global primary production, with an estimated 40% of carbon sequestration occurring along continental margins alone. This study characterizes the variability in organic-walled dinoflagellate cyst fluxes and assemblage composition during sedimentation through the water column, in the context of bulk organic and inorganic particulate matter export, in three different coastal settings: the Cariaco Basin (off Venezuela), the Santa Barbara Basin (Southern California) and the Strait of Georgia (western Canada). At each site, moorings of 2-5 sediment traps positioned at different depths collected settling particles over intervals of 7-14 days. The contribution of dinoflagellate cysts to particulate matter fluxes, and their fate as they are being exported to the seafloor, is investigated by comparing cyst fluxes and assemblages in samples collected simultaneously from discrete depths at each location. Preliminary results from the 1,400 m deep Cariaco Basin sediment trap time series indicate that dinoflagellate cyst fluxes during the upwelling season are high (average of 117,000 cyst m-2 day-1 in January-February 2006) and highly consistent between depths. The only notable exception is the record from the shallowest trap (Trap Z, 150 m bsl) which shows marked variations in cyst fluxes (from 7,700 to 240,000 cyst m-2 day-1) that are not reflected in the other four trap records. Dinoflagellate cyst assemblages from each interval along the five traps are statistically identical, indicating that cysts produced in the upper water column are rapidly transported to the seafloor, and that no selective degradation/preservation has altered the cyst assemblages within the water column. Excluding the Trap Z record, the ratio of dinoflagellate cyst to organic carbon fluxes shows an 35% increase from the top to bottom traps, suggesting a dinoflagellate cyst "enrichment" relative to other organic particles in settling material.

  13. Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT).

    PubMed

    Amirbahman, Aria; Massey, Delia I; Lotufo, Guilherme; Steenhaut, Nicholas; Brown, Lauren E; Biedenbach, James M; Magar, Victor S

    2013-10-01

    Mercury-specific diffusive gradient in thin films (DGTs) were used in laboratory microcosms as a biomonitoring tool to assess the lability of mercury (Hg) total and monomethylmercury Hg (MeHg), and to develop a relationship between chemical lability and bioavailability in estuarine sediments. Time-series deployment of DGTs in sediments showed that sediment-bound MeHg is more labile than sediment-bound inorganic Hg. In subsequent experiments, DGTs were deployed simultaneously with three benthic macroinvertebrates (the estuarine amphipod, Leptocheirus plumulosus; the estuarine polychaete, Nereis virens; and the marine clam, Macoma nasuta) in sediments for up to 55 days. All organisms and their co-deployed DGTs exhibited an initial period of rapid Hg uptake followed by slower uptake reaching apparent steady state. Strong correlative relationships were generally observed between paddle-type DGTs and macroinvertebrate tissue data (r(2) between 0.57 and 0.97). Further, %MeHg:Total Hg ratios for M. nasuta and N. virens (38.5 ± 12.2 and 19.2 ± 5.2) were similar to their corresponding ratios for the DGTs (33.1 ± 13.3 and 24.4 ± 11.0), and they were significantly higher than the same ratios for sediment (2.9 ± 0.3) and pore water (8.5 ± 4.9). The %MeHg:Total Hg ratios for L. plumulosus (68.5 ± 6.2) were significantly higher than those for the DGTs. This may be because the tissue and DGT data for this organism were not truly co-located as L. plumulosus burrows close to the sediment surface, and the DGTs sampled the sediment surface. Overall, our results suggest that for benthic macroinvertebrates in estuarine sediments studied here, (a) sediment MeHg is more bioavailable than inorganic Hg, (b) sediment and pore-water concentration measurements are not good predictors for the extent of bioaccumulation of Hg species, and (c) DGTs are an effective biomonitoring tool for the assessment of bioavailability of Hg species.

  14. Combining malaria control with house electrification: adherence to recommended behaviours for proper deployment of solar-powered mosquito trapping systems, Rusinga Island, western Kenya.

    PubMed

    Oria, Prisca A; Alaii, Jane; Ayugi, Margaret; Takken, Willem; Leeuwis, Cees

    2015-08-01

    To investigate community adherence to recommended behaviours for proper deployment of solar-powered mosquito trapping systems (SMoTS) after 3- to 10-week use. Solar-powered mosquito trapping system, which also provided power for room lighting and charging mobile phones, were installed in houses in Rusinga Island, western Kenya. We used a structured checklist for observations and a semi-structured questionnaire for interviews in 24 homesteads. We also analysed the subject of 224 community calls to the project team for technical maintenance of SMoTS. Most respondents cared for SMoTS by fencing, emptying and cleaning the trap. Our observations revealed that most traps were fenced, clean and in good working condition. A significantly higher proportion of community calls was lighting-related. Lighting was the main reason respondents liked SMoTS because it reduced or eliminated expenditure on kerosene. However, some respondents observed they no longer heard sounds of mosquitoes inside their houses. All respondents reportedly slept under insecticide-treated nets (ITNs) before receiving SMoTS. After receiving SMoTS, most respondents reportedly continued to use ITNs citing that the project advised them to do so. Some beach residents stopped using ITNs because they no longer heard mosquitoes or due to heat discomfort caused by lights. Electricity-related incentives played a greater role in encouraging adherence to recommended behaviours for proper deployment of SMoTS than the potential health benefits in the early stages of the intervention. Although energy-related financial incentives may play a role, they are insufficient to ensure adherence to health advice, even in the short term. Ongoing community engagement and research monitors and addresses adherence to recommended behaviours including continuation of current malaria control strategies. © 2015 John Wiley & Sons Ltd.

  15. Capturing sediment and nutrients in irrigated terraced landscapes

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna; Schmitter, Petra; Hilger, Thomas; Piepho, Hans-Peter; Dercon, Gerd; Cadisch, Georg

    2016-04-01

    Terraces are often promoted as green filters in landscapes, buffering discharge and constituent peaks. For irrigated rice terraces, however, this mitigating potential has not been assessed at the landscape level. Additionally, sediment and nutrient inputs potentially affect soil fertility in agricultural terraces and therefore yield - the extent of the impact depending on the quality and quantity of the captured material. Quantifying such upland-lowland linkages is particularly important in intensely cultivated landscapes, as declining upland soil fertility could alter beneficial hydrological connectivity between terraces and surrounding landscapes. In this study, we therefore quantified the sediment, sediment-associated organic carbon and nitrogen inputs and losses for a 13 ha paddy rice area, surrounded by upland maize cultivation in Northwest Vietnam in 2010 and 2011. Turbidity sensors were used in combination with a linear mixed model in order to obtain continuous predictions of the constituent concentrations. Sediment texture was determined using mid-infrared spectroscopy. Uncertainty on annual load estimates was quantified by calculating 95% confidence intervals with a bootstrap approach. Sediment inputs from irrigation water to the rice area amounted to 48 Mg ha-1 a-1 and runoff during rainfall events contributed an additional 16 Mg ha-1 a-1. Export from the rice terraces equalled 63 Mg ha-1 a-1 of sediments, resulting in a net balance of 28 Mg ha-1 a-1 or a trapping of almost half of the annual sediment inputs. Runoff contributed one third of the sand inputs, while irrigated sediments were predominantly silty. As paddy outflow contained almost exclusively silt- and clay-sized material, 24 Mg ha-1 a-1 of captured sediments consisted of sand. The sediment-associated organic carbon resulted in a deposit of 1.09 Mg ha-1 a-1. For sediment-associated nitrogen, 0.68 Mg ha-1 a-1 was trapped in the terraces. Combining both sediment-associated and dissolved nitrogen, irrigation water provided a total input of 1.11 Mg ha-1 a-1, of which 54% was in the plant-available forms of ammonium and nitrate - an input larger than the recommended application of chemical fertilizer. Rice terraces were net traps for sediment and protected downstream areas by filtering coarse sediments. Combined with the importance of irrigation water as a source of organic carbon and nitrogen for the rice, this connectivity underscores the vulnerability of agricultural terraces to changes in surrounding land use.

  16. Field optimization of the sex pheromone of Stenoma catenifer (Lepidoptera: Elachistidae): evaluation of lure types, trap height, male flight distances, and number of traps needed per avocado orchard for detection.

    PubMed

    Hoddle, M S; Millar, J G; Hoddle, C D; Zou, Y; McElfresh, J S; Lesch, S M

    2011-04-01

    The sex pheromone of Stenoma catenifer was evaluated in commercial avocado orchards in Guatemala to determine operational parameters, such as optimal lure type, trap height, trap density and estimates of the distances that male moths fly. Of four pheromone dispensers tested, gray and white rubber septa were of equal efficacy, whereas 1-ml low-density polyethylene vials and 2×3-cm polyethylene ziplock bags were least efficacious. The height at which wing traps were hung did not significantly affect the number of adult male S. catenifer captured. For monitoring S. catenifer, these data suggest that the pheromone should be dispensed from gray rubber septa in wing traps hung inside the tree canopy at 1.75 m, a height convenient for trap placement and monitoring. Mark-recapture studies of male S. catenifer indicated that, on average, males flew 67 m in one night. However, it is likely that this is an underestimate of the distance that male moths are capable of flying in a single night. Probabilistic modeling of S. catenifer capture data from different numbers of pheromone traps deployed in seven commercial avocado orchards of varying sizes and infestation levels suggested that 10-13 randomly deployed traps per orchard for a 7-day period are needed to detect at least one male S. catenifer with 90% confidence. These data provide sufficient information to develop effective protocols for using the S. catenifer pheromone to detect and monitor this pest in countries with endemic populations that are exporting fresh avocados, and for quarantine detection and incursion monitoring in countries receiving avocado imports from high risk areas.

  17. Rock magnetic and anisotropy of magnetic susceptibility(AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India.

    NASA Astrophysics Data System (ADS)

    Lakshmi, B. V., ,, Dr.; Gawali, Mr. Praveen B.; Deenadayalan, K., ,, Dr.; Ramesh, D. S., ,, Prof.

    2017-04-01

    Rock magnetic and anisotropy of magnetic susceptibility (AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India. B.V.Lakshmi, Praveen B.Gawali, K.Deenadayalan and D.S.Ramesh Indian Institute of Geomagnetism, plot 5, sector 18, Near Kalamboli Highway, New Panvel(W), Navi Mumbai 410218 Combined rock magnetism and anisotropy of magnetic susceptibility (AMS) studies on earthquake induced soft and non-soft sediments from Shillong and Latur, India have thrown up interesting results. The morphology of hysteresis loops, the pattern of isothermal remanent magnetization (IRM) acquisition, and temperature dependence of susceptibility indicate that titano-magnetite/magnetite is the main magnetic carrier in these sediments. We also analyzed the anisotropy of magnetic susceptibility (AMS) of liquefaction features within the seismically active Dauki fault, Shillong Plateau. We discovered that host sediments (non-liquefied), are characterized by an oblate AMS ellipsoid and liquefied sediment are characterized by a triaxial AMS ellipsoid, well grouped maximum susceptibility axis K1 (NNW-SSE trend). Field evidence and AMS analysis indicate that most of these features were emplaced by injection inferred to be due to seismically triggered fluidization. Anisotropy of magnetic susceptibility (AMS) of deformed and undeformed unconsolidated clay samples of Deccan Trap terrain from the 2000-year-old paleoearthquake site of Ther village, Maharashtra, India, was also studied. Such deposits are rare in the compact basaltic terrain because of which the results acquired are very important. The undeformed clay samples exhibit typical sedimentary fabric with an oblate AMS ellipsoid, whereas the deformed samples are tightly grouped in the inferred compression direction, probably effected by an earthquake, exhibiting prolate as well as oblate AMS ellipsoids. Rock magnetic and AMS methodology can help understand the behavior of different sediments to the regional deformational processes active in the Himalayan region, and possibly local deformational activities in the compact Deccan trap region. The accumulating stress and strain direction can be delineated to infer strike of the forces accumulating stresses. These studies can be used to build the chronology of past earthquakes.

  18. Processes of seasonal layer formation in varved Lake Czechowskie (N Poland): Linking monitoring and sediment core data

    NASA Astrophysics Data System (ADS)

    Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Schwab, Markus; Brademann, Brian; Dräger, Nadine; Kienel, Ulrike; Pinkerneil, Sylvia; Plessen, Birgit; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2017-04-01

    The interpretation of environmental and climate records, such as lake sediments, rely on the profound understanding of the proxy sensitivity towards past changes. Monitoring of lake sedimentation, limnological, hydrological and climate parameters are natural experiments combining measurements and observations. In this study, we present monitoring data from Lake Czechowskie (N Poland) for the period 2013-2016. Lake Czechowskie has a surface area of 73 ha and a maximum water depth of 32 m. Sediment has been trapped in a 4-cylinder and an automatic sequential trap installed at 12 and 30 m water depths close to the deepest part of the lake, respectively. Sampling intervals range from 15 (sequential) to 30 days (4 cylinder) days. The sediment has been analyzed for total sediment flux, calcium carbonate and organic matter contents. Continuous water temperature measurements (30 min. intervals) are based on 17 data loggers covering the entire water column (1 m steps from 0-12 m; 5 m steps from 12-32 m). Limnological measurements (e.g. electrical conductivity, dissolved oxygen and pH) have been carried out manually on a monthly routine. Air temperature, precipitation, wind speed and direction are available for the same period from a meteorological station installed at the shore of Lake Czechowskie. Our dataset exhibit seasonal deposition starting with diatom blooms and calcite precipitation in spring after lake stratification. A second deposition peak occurs at the onset of lake mixing in late autumn and winter. This is caused by an initial deposition of planktonic diatoms (mainly Fragilaria spp.) indicating lake productivity, followed by an increase in larger calcite patches (>30 µm) and periphyitic diatoms (mainly Navicula spp.) representing resuspension of littoral sediments. We paired sediment trap data with micro-facies analyses from a sediment core obtained in autumn 2016 covering the same time interval. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA - of the Helmholtz Association, grant number VH-VI-415.

  19. Accumulation of artificial radionuclides in deep sediments of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Garcia-Orellana, J.; Sanchez-Cabeza, J. A.; Masque, P.; Costa, E.; Bruach, J. M.; Morist, A.; Luna, J. A.

    2003-04-01

    Concentrations and inventories of artificial radionuclides (90Sr, 137Cs and 239,40Pu) were determined in deep sediment cores (3.000 m) collected in the western and eastern basins of the Mediterranean Sea in the frame of the ADIOS project. Artificial radionuclides enter the Mediterranean Sea mainly though atmospheric deposition after nuclear weapons tests and the Chernobyl accident, but also through the river discharge of effluents of nuclear facilities (e.g. Rhone and Ebro rivers). The aim of this work is to investigate the degree by which pollutants are transferred to the deep environment of the Mediterranean Sea as a basis to elucidate their effects on benthic organisms. The mean inventories of 239+240Pu, 137Cs and 90Sr in the Western basin are 2.77 ± 0.26, 68 ± 12 and < 7 Bq\\cdotm-2 respectively and 3.29 ± 0.60, 115 ± 33 and 249±154 Bq\\cdotm-2 in the Eastern basin. The activity - depth profiles of 210Pb, together with 14C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2 cm of the sedimentary column. Artificial radionuclides inventories in the deep-sea sediments were used to calculate the fraction of the total inventory of artificial radionuclides that is accumulated in the deep sea sediments after scavenging from the water column. Indeed, a balance of the radionuclide distributions in the water column allows evaluating the importance of lateral transport of particulate matter from the continental margins on the accumulation of artificial radionuclides in the deep, open Mediterranean Sea. This is achieved in i) comparison with reported data from coastal areas at different locations in the Mediterranean Sea, and ii) balance of the distribution of the natural radionuclide 210Pb in studied areas (vertical profiles of dissolved and particulate activities, fluxes determined by using sediment trap deployed at different depths and inventories in the bottom sediments). The results, taking into account radioactive decay and exchange fluxes through the Gibraltar Strait, permit to estimate the residence times of pollutants in the water column and predict future evolution of their distributions.

  20. Weekly resolution particulate flux from a sediment trap in the northern Gulf of Mexico, 2008-2012

    USGS Publications Warehouse

    Richey, Julie N.; Reynolds, Caitlin E.; Tappa, Eric; Thunell, Robert

    2014-01-01

    The U.S. Geological Survey anchored a sediment trap in the northern Gulf of Mexico to collect time-series data on sediment flux from 2008 to 2012. There are continuous measurements of total mass flux and organic carbon flux (ogC) at 7–14 day resolution from 2008 to 2012. The flux of calcium carbonate (CaCO3), particulate nitrogen (nitro), and biogenic silica (Opal) were also measured from January-December, 2008. The mass flux ranged from 0.01 g m-2day-1 (grams per square meter per day) to 2.50 g m-2day-1, with a mean mass flux of 0.20 g m -2day-1 over the 5-year study period.

  1. Faulting of gas-hydrate-bearing marine sediments - contribution to permeability

    USGS Publications Warehouse

    Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael

    1997-01-01

    Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.

  2. Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Zúñiga, Diana; Santos, Celia; Froján, María; Salgueiro, Emilia; Rufino, Marta M.; De la Granda, Francisco; Figueiras, Francisco G.; Castro, Carmen G.; Abrantes, Fátima

    2017-03-01

    The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (±5.6) 106 valves m-2 d-1) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom-derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Furthermore, Chaetoceros spp. dominate during spring-early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.

  3. Influence of trap placement and design on capture of the emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Francese, Joseph A; Oliver, Jason B; Fraser, Ivich; Lance, David R; Youssef, Nadeer; Sawyer, Alan J; Mastro, Victor C

    2008-12-01

    The key to an effective pest management program for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera Buprestidae), is a survey program equipped with tools for detecting and delimiting populations. We studied the effects of trap design, color, and placement on the efficacy of sticky traps for capturing the emerald ash borer. There were significant differences in trap catch along a transect gradient from wooded to open field conditions, with most beetles being caught along the edge, or in open fields, 15-25 m outside an ash (Fraxinus spp. L.) (Oleaceae) woodlot. Greater emerald ash borer catch occurred on purple traps than on red or white traps. Traps placed in the mid-canopy of ash trees (13 m) caught significantly more beetles than those placed at ground level. We also describe a new trap design, a three-sided prism trap, which is relatively easy to assemble and deploy.

  4. Mosquito repellent attracts Culicoides imicola (Diptera: Ceratopogonidae).

    PubMed

    Braverman, Y; Chizov-Ginzburg, A; Mullens, B A

    1999-01-01

    A plant-derived mosquito repellent, based on the oil of Eucalyptus maculata var. citriodora Hook, was evaluated against the biting midge Culicoides imicola Kieffer. Suction black light-traps covered with repellent-impregnated polyester mesh and deployed near horses attracted large numbers of C. imicola, which were seen near the treated net within a few minutes of the start of the experiment. Initial collections in the traps were approximately 3 times as large as those in control traps with untreated mesh. Numbers collected in treated traps were similar to untreated control traps after 4 h. Traps with mesh treated with DEET or another plant-derived (Meliaceae) proprietary product, AG1000, acted as repellents relative to the control. The differential activity of repellents against blood-feeding Diptera is discussed.

  5. Toward improved design of check dam systems: A case study in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Pal, Debasish; Galelli, Stefano; Tang, Honglei; Ran, Qihua

    2018-04-01

    Check dams are one of the most common strategies for controlling sediment transport in erosion prone areas, along with soil and water conservation measures. However, existing mathematical models that simulate sediment production and delivery are often unable to simulate how the storage capacity of check dams varies with time. To explicitly account for this process-and to support the design of check dam systems-we developed a modelling framework consisting of two components, namely (1) the spatially distributed Soil Erosion and Sediment Delivery Model (WaTEM/SEDEM), and (2) a network-based model of check dam storage dynamics. The two models are run sequentially, with the second model receiving the initial sediment input to check dams from WaTEM/SEDEM. The framework is first applied to Shejiagou catchment, a 4.26 km2 area located in the Loess Plateau, China, where we study the effect of the existing check dam system on sediment dynamics. Results show that the deployment of check dams altered significantly the sediment delivery ratio of the catchment. Furthermore, the network-based model reveals a large variability in the life expectancy of check dams and abrupt changes in their filling rates. The application of the framework to six alternative check dam deployment scenarios is then used to illustrate its usefulness for planning purposes, and to derive some insights on the effect of key decision variables, such as the number, size, and site location of check dams. Simulation results suggest that better performance-in terms of life expectancy and sediment delivery ratio-could have been achieved with an alternative deployment strategy.

  6. Sediment Trapping Pathways and Mechanisms through the Mekong Tidal River and Subaqueous Delta

    DTIC Science & Technology

    2013-09-30

    strive to understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and...subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis is that sediment... Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and coastal banks may be shorelines lined with vegetation ( mangroves at the

  7. An automated leaching method for the determination of opal in sediments and particulate matter

    NASA Astrophysics Data System (ADS)

    Müller, Peter J.; Schneider, Ralph

    1993-03-01

    An automated leaching method for the analysis of biogenic silica (opal) in sediments and particulate matter is described. The opaline material is extracted with 1 M NaOH at 85°C in a stainless steel vessel under constant stirring, and the increase in dissolved silica is continuously monitored. For this purpose, a minor portion of the leaching solution is cycled to an autoanalyzer and analyzed for dissolved silicon by molybdate-blue spectrophotometry. The resulting absorbance versus time plot is then evaluated according to the extrapolation procedure of DEMASTER (1981). The method has been tested on sponge spicules, radiolarian tests. Recent and Pliocene diatomaceous ooze samples, clay minerals and quartz, artificial sediment mixtures, and on various plankton, sediment trap and sediment samples. The results show that the relevant forms of biogenic opal in Quaternary sediments are quantitatively recovered. The time required for an analysis is dependent on the sample type, ranging from 10 to 20 min for plankton and sediment trap material and up to 40-60 min for Quaternary sediments. The silica co-extracted from silicate minerals is largely compensated for by the applied extrapolation technique. The remaining degree of uncertainty is on the order of 0.4 wt% SiO 2 or less, depending on the clay mineral composition and content.

  8. Best management practices for erosion control from bladed skid trails

    Treesearch

    Charles R. Wade; W. Michael Aust; M. Chad Bolding; William A. Lakel III

    2012-01-01

    Sediment from forest operations is primarily associated with roads and skid trails. We evaluated five skid trail closure treatments applied to bladed skid trails in the Virginia Piedmont. Closure treatments were Waterbars, Seed, Mulch, Pine slash, and Hardwood slash. Sediment traps were used to collect monthly sediment samples for one year. The Mulch, Pine slash, and...

  9. Sediment trapping by streamside management zones of various widths after forest harvest and site preparation

    Treesearch

    William Lakel; Wallace Aust; M. Aust; Chad Bolding; C. Dolloff; Patrick Keyser; Robert Feldt

    2010-01-01

    Recommended widths for streamside management zones (SMZs) for sediment protection vary. The objectives of this study were to compare the effects of SMZ widths and thinning levels on sediment moving through SMZs. Four SMZ treatments were installed within 16 harvested watersheds where intermittent streams graded into small perennial streams. Sites were clearcut,...

  10. THREE-DIMENSIONAL MODELING OF COHESIVE SEDIMENT TRANSPORT IN A PARTIALLY STRATIFIED MICRO-TIDAL ESTUARY TO ASSESS EFFECTIVENESS OF SEDIMENT TRAPS

    EPA Science Inventory

    The three-dimensional (3D) finite difference model Environmental Fluid Dynamics Code (EFDC) was used to simulate the hydrodynamics and sediment transport in a partially stratified micro-tidal estuary. The estuary modeled consisted of a 16-km reach of the St. Johns River, Florida,...

  11. Percutaneous retrieval of a right atrioventricular embolus.

    PubMed

    Davies, R P; Harding, J; Hassam, R

    1998-01-01

    Percutaneous retrieval of a 12-cm-long serpiginous clot lodged in the right atrium and ventricle is reported. Following bilateral common femoral vein puncture, a Bird's Nest cava filter was first positioned ready to deploy immediately below the renal veins via the right femoral vein. From the left femoral vein, a Cook intravascular retrieval basket was advanced to the right atrium. Under transthoracic echocardiographic visualization, the basket was used to engage, trap, and gently withdraw the clot in a single long strand below the prepositioned inferior vena cava filter. The filter was immediately deployed, leaving the clot trapped inferior to the renal veins, in the cava and left iliac vein. The patient remained well and asymptomatic at discharge.

  12. Examining wildlife responses to phenology and wildfire using a landscape-scale camera trap network

    Treesearch

    Miguel L. Villarreal; Leila Gass; Laura Norman; Joel B. Sankey; Cynthia S. A. Wallace; Dennis McMacken; Jack L. Childs; Roy Petrakis

    2013-01-01

    Between 2001 and 2009, the Borderlands Jaguar Detection Project deployed 174 camera traps in the mountains of southern Arizona to record jaguar activity. In addition to jaguars, the motion-activated cameras, placed along known wildlife travel routes, recorded occurrences of ~ 20 other animal species. We examined temporal relationships of white-tailed deer (Odocoileus...

  13. Suspending sediment transport, sedimentation, and resuspension in Lake Houston, Texas: Implications for water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matty, J.M.; Anderson, J.B.; Dunbar, R.B.

    1987-01-01

    Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality withinmore » the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (< 1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.« less

  14. Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh

    2015-09-01

    Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.

  15. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Martínez Arbizu, Pedro

    2015-01-01

    We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ in occupancy of the top layer. Furthermore, sediment depth and abundance were strongly correlated, but the sediment texture itself and the grain sizes showed only slight correlations with abundance. In the trench slope no correlation between sediment texture and abundance was found. We suggest that sediment is not the only factor that affects meiofauna abundance in the study area. The results of our study were compared with other trench and nontrench studies, and in most cases, the abundance decreases with depth initially but increases again below a certain depth, especially in deep-sea trenches below productive waters. No generalization can be made, however, about the depth at which the reversal occurs; it depends on the area of investigation and on a mixture of many other factors (e.g., sediment heterogeneity, oxygen, redox potential, proximity to land masses, and season).

  16. Trap-efficiency investigation, Bernalillo Floodwater Retarding Reservoir No. 1 (Piedra Lisa Arroyo) near Bernalillo, New Mexico, water years 1956-1974

    USGS Publications Warehouse

    Funderburg, D.E.

    1977-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Soil Conservation Service, began an investigation of sedimentation of Bernalillo Floodwater Retarding Reservoir No. 1 (Piedra Lisa Arroyo) near Bernalillo, New Mexico in 1956. This investigation was part of a nationwide investigation of the trap efficiency of detention reservoirs. Reservoirs No. 1 is normally a dry reservoir and runoff from the 10.6 sq km drainage area generally occurs from high-intensity summer thundershowers. The mesa area of the drainage basin was treated to prevent erosion and gullying and to retard rapid runoff of rainfall. The land treatment consisted of pits, terraces, seeding, and restricted grazing. The total outflow recorded for the period of record (July 19, 1956 to June 30, 1974) was 133 acre-feet, yielding 1 ,439 tons of sediment. Over 99 percent of the coarse sediments and a high percentage of the silts and clays were deposited in the reservoir before reaching the outflow pipe. The determined trap efficiency of Reservoir No. 1 was 96 percent for the period of record. (Woordard-USGS)

  17. Summary of oceanographic and water-quality measurements near the Blackwater National Wildlife Refuge, Maryland, 2011

    USGS Publications Warehouse

    Ganju, Neil K.; Dickhudt, Patrick J.; Montgomery, Ellyn T.; Brennand, Patrick; Derby, R. Kyle; Brooks, Thomas W.; Guntenspergen, Glenn R.; Martini, Marinna A.; Borden, Jonathan; Baldwin, Sandra M.

    2012-01-01

    Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes. Marshes rely on both organic material and inorganic sediment deposition to maintain their elevation relative to sea level. In wetlands near the Blackwater National Wildlife Refuge, Maryland, portions of the salt marsh have been subsiding relative to sea level since the early 20th century. Other portions of the marsh have been successful at maintaining elevation. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration in the tidal channels in order to understand the magnitude of suspended-sediment concentrations, the sediment-transport mechanisms, and differences between two marsh areas, one that subsided and one that maintained elevation. We deployed optical turbidity sensors and acoustic velocity meters at multiple sites over two periods in 2011. This report presents the time-series of oceanographic data collected during those field studies, including velocity, depth, turbidity, salinity, water temperature, and pH.

  18. Summary of oceanographic and water-quality measurements in Rachel Carson National Wildlife Refuge, Wells, Maine, in 2013

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Ganju, Neil K.; Dickhudt, Patrick J.; Borden, Jonathan; Martini, Marinna A.; Brosnahan, Sandra M.

    2015-01-01

    Suspended-sediment transport is a critical element controlling the geomorphology of tidal wetland complexes. Wetlands rely on organic material and inorganic sediment deposition to maintain their elevation relative to sea level. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration and water flow rates in the tidal channels of the wetlands in the Rachel Carson National Wildlife Refuge in Wells, Maine. The objective was to characterize the sediment-transport mechanisms that contribute to the net sediment budget of the wetland complex. We deployed a meteorological tower, optical turbidity sensors, and acoustic velocity meters at sites on Stephens Brook and the Ogunquit River between March 27 and December 9, 2013. This report presents the time-series oceanographic and atmospheric data collected during those field studies. The oceanographic parameters include water velocity, depth, turbidity, salinity, temperature, and pH. The atmospheric parameters include wind direction, speed, and gust; air temperature; air pressure; relative humidity; short wave radiation; and photosynthetically active radiation.

  19. Three-Dimensional Sediment Dynamics in Well-Mixed Estuaries: Importance of the Internally Generated Overtide, Spatial Settling Lag, and Gravitational Circulation

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoyan; Kumar, Mohit; Schuttelaars, Henk M.

    2018-02-01

    To investigate the dominant sediment transport and trapping mechanisms, a semi-analytical three-dimensional model is developed resolving the dynamic effects of salt intrusion on sediment in well-mixed estuaries in morphodynamic equilibrium. As a study case, a schematized estuary with a converging width and a channel-shoal structure representative for the Delaware estuary is considered. When neglecting Coriolis effects, sediment downstream of the estuarine turbidity maximum (ETM) is imported into the estuary through the deeper channel and exported over the shoals. Within the ETM region, sediment is transported seaward through the deeper channel and transported landward over the shoals. The largest contribution to the cross-sectionally integrated seaward residual sediment transport is attributed to the advection of tidally averaged sediment concentrations by river-induced flow and tidal return flow. This contribution is mainly balanced by the residual landward sediment transport due to temporal correlations between the suspended sediment concentrations and velocities at the M2 tidal frequency. The M2 sediment concentration mainly results from spatial settling lag effects and asymmetric bed shear stresses due to interactions of M2 bottom velocities and the internally generated M4 tidal velocities, as well as the salinity-induced residual currents. Residual advection of tidally averaged sediment concentrations also plays an important role in the landward sediment transport. Including Coriolis effects hardly changes the cross-sectionally integrated sediment balance, but results in a landward (seaward) sediment transport on the right (left) side of the estuary looking seaward, consistent with observations from literature. The sediment transport/trapping mechanisms change significantly when varying the settling velocity and river discharge.

  20. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: System description and proof of concept.

    PubMed

    Burton, G Allen; Rosen, Gunther; Chadwick, D Bart; Greenberg, Marc S; Taulbee, W Keith; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    In situ-based testing using aquatic organisms has been widely reported, but is often limited in scope and practical usefulness in making decisions on ecological risk and remediation. To provide this capability, an integrated deployment system, the Sediment Ecotoxicity Assessment (SEA) Ring was developed, which incorporates rapid in situ hydrological, chemical, bioaccumulation, and toxicological Lines-of-Evidence (LoE) for assessing sediment and overlying water contamination. The SEA Ring system allows for diver-assisted, or diverless, deployment of multiple species of ecologically relevant and indigenous organisms in three different exposures (overlying water, sediment-water interface, and bulk sediment) for periods ranging from two days to three weeks, in a range of water systems. Measured endpoints were both sublethal and lethal effects as well as bioaccumulation. In addition, integrated passive sampling devices for detecting nonpolar organics (solid phase micro-extraction fibers) and metals (diffusive gradients in thin films) provided gradient measures in overlying waters and surficial sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands

    PubMed Central

    Brown, Elizabeth J.; Cassell, John S.; Donihe, Michele M.; Duffing Romero, Mareike D.; Duke, Mara A.; Green, Damon; Hillbrand, Paul; Wilson Grimes, Kristin R.; Nemeth, Richard S.; Smith, Tyler B.; Brandt, Marilyn

    2017-01-01

    Caribbean seagrass habitats provide food and protection for reef-associated juvenile fish. The invasive seagrass Halophila stipulacea is rapidly altering these seascapes. Since its arrival in the Caribbean in 2002, H. stipulacea has colonized and displaced native seagrasses, but the function of this invasive seagrass as a juvenile fish habitat remains unknown. To compare diversity, community structure, and abundance of juvenile fish between H. stipulacea and native seagrass beds, fish traps were deployed in four nearshore bays around St. Thomas, U.S. Virgin Islands. Traps were deployed in Frenchman, Lindbergh, and Sprat Bays for 24 h intervals in patches of bare sand, patches of H. stipulacea and patches of the native Caribbean seagrasses Thalassia testudinum and Syringodium filiforme. Traps were then deployed in Brewers Bay for 12 h intervals in stands of H. stipulacea and S. filiforme. Relative and total abundances of juvenile fish, identified at least to family, were compared across treatment habitats for each trap deployment period. The catch from H. stipulacea, compared to native seagrasses, comprised a greater abundance of nocturnal carnivores Lutjanus synagris (family Lutjanidae) and Haemulon flavolineatum (family Haemulidae). Additionally, the herbivore species Sparisoma aurofrenatum (family Labridae) and Acanthurus bahianus (family Acanthuridae) and the diurnal carnivore species Pseudopeneus maculatus (family Mullidae) were relatively scarce in H. stipulacea. The catch from sand was much smaller, compared to vegetated habitats, and comprised only L. synagris, H. flavolineatum, and H. aurolineatum. These results provide evidence of reduced family diversity and altered juvenile fish assemblages in H. stipulacea, driven by an abundance of some nocturnal carnivores and scarcity of herbivores and diurnal carnivores. The findings from the present work underpin the need for further investigation and mitigation of this invasion, particularly where H. stipulacea is driving seascape-alterations of key juvenile fish habitats. PMID:29161322

  2. Modeling water and sediment trapping by vegetated filters using vfsmod: comparing methods for estimating infiltration parameters

    Treesearch

    Amanda L. Fox; Dean E. Eisenhauer; Michael G. Dosskey

    2005-01-01

    Vegetated filters (buffers) are used to intercept overland runoff and reduce sediment and other contaminant loads to streams (Dosskey, 2001). Filters function by reducing runoff velocity and volume, thus enhancing sedimentation and infiltration. lnfiltration is the main mechanism for soluble contaminant removal, but it also plays a role in suspended particle removal....

  3. Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma

    USGS Publications Warehouse

    Bednar, Gene A.; Waldrep, Thomas E.

    1973-01-01

    A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.

  4. Pollutant load removal efficiency of pervious pavements: is clogging an issue?

    PubMed

    Kadurupokune, N; Jayasuriya, N

    2009-01-01

    Pervious pavements in car parks and driveways reduce the peak runoff rate and the quantity of runoff discharged into urban drains as well as improve the stormwater quality by trapping the sediments in the infiltrated water. The paper focuses on presenting results from the laboratory tests carried out to evaluate water quality improvements and effects of long-term decrease in infiltration rates with time due to sediments trapping (clogging) within the pavement pores. Clogging was not found to be a major factor affecting pervious pavement performance after simulating 17 years of stormwater quality samples.

  5. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  6. Use of waste cellophane in the control of sediment : Final report.

    DOT National Transportation Integrated Search

    1978-01-01

    Based on laboratory flume tests, it was concluded that waste cellophane could be used effectively for trapping and filtering waterborne sediment. It was also priced competitively and, like straw and burlap, it was found to be biodegradable in a soil ...

  7. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    USGS Publications Warehouse

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  8. Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (Meeresboden-Bohrgerät)

    NASA Astrophysics Data System (ADS)

    Pape, Thomas; Hohnberg, Hans-Jürgen; Wunsch, David; Anders, Erik; Freudenthal, Tim; Huhn, Katrin; Bohrmann, Gerhard

    2017-11-01

    Pressure barrels for sampling and preservation of submarine sediments under in situ pressure with the robotic sea-floor drill rig MeBo (Meeresboden-Bohrgerät) housed at the MARUM (Bremen, Germany) were developed. Deployments of the so-called MDP (MeBo pressure vessel) during two offshore expeditions off New Zealand and off Spitsbergen, Norway, resulted in the recovery of sediment cores with pressure stages equaling in situ hydrostatic pressure. While initially designed for the quantification of gas and gas-hydrate contents in submarine sediments, the MDP also allows for analysis of the sediments under in situ pressure with methods typically applied by researchers from other scientific fields (geotechnics, sedimentology, microbiology, etc.). Here we report on the design and operational procedure of the MDP and demonstrate full functionality by presenting the first results from pressure-core degassing and molecular gas analysis.

  9. Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy

    Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.

  10. Aeolian Sediment Trapping Efficiencies of Sparse Vegetation and its Ecohydrological Consequences in Drylands

    NASA Astrophysics Data System (ADS)

    Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.

    2016-12-01

    Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.

  11. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Cabrera, Laura L.; Alonso, Ignacio

    2010-03-01

    Two different methods, fluorescent tracers and vertical sand traps, were simultaneously used to carry out an aeolian sediment transport study designed to test the goodness of fluorescent tracers in aeolian environments. Field experiments were performed in a nebkha field close to Famara beach at Lanzarote Island (Canary Islands, Spain) in a sector where the dunes were between 0.5 and 0.8 m height and 1-2 m wide and the vegetal cover was approximately 22%. In this dune field the sediment supply comes from Famara beach and is blown by trade winds toward the south, where the vegetation acts as natural sediment traps. Wind data were obtained by means of four Aanderaa wind speed sensors and one Aanderaa vane, all them distributed in a vertical array from 0.1 to 4 m height for 27 h. The average velocity at 1 m height during the experiment was 5.26 m s - 1 with the wind direction from the north. The tracer was under wind influence for 90 min at midday. During this period two series of sand traps (T1 and T2) N, S, E and W oriented were used. Resultant transport rates were 0.0131 and 0.0184 kg m - 1 min - 1 respectively. Tracer collection was performed with a sticky tape to sample only surface sediments. Tagged grains were visually counted under UV light. The transport rate was computed from the centroid displacement, that moved 0.875 m southwards, and the depth of the active layer considered was the size of one single grain. Taking into account these data the transport rate was 0.0072 kg m - 1 min - 1 . The discrepancy in results between both methods is related to several factors, such as the thickness of the active layer and the grain size difference between the tagged and the native material.

  12. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  13. 50 CFR 697.21 - Gear identification and marking, escape vent, maximum trap size, and ghost panel requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and marking. All lobster gear deployed or possessed in the EEZ, or, deployed or possessed by a person on or from a vessel issued a Federal limited access American lobster permit, and not permanently.... Effective through April 30, 2000, all lobster gear must be marked with the following code of identification...

  14. 50 CFR 697.21 - Gear identification and marking, escape vent, maximum trap size, and ghost panel requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and marking. All lobster gear deployed or possessed in the EEZ, or, deployed or possessed by a person on or from a vessel issued a Federal limited access American lobster permit, and not permanently.... Effective through April 30, 2000, all lobster gear must be marked with the following code of identification...

  15. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes.

    PubMed

    Thompson, Belinda A W; Davies, Noel W; Goldsworthy, Paul M; Riddle, Martin J; Snape, Ian; Stark, Jonathan S

    2006-02-01

    A large-scale, in situ experiment was set up near the Bailey Peninsula area (Casey Station, East Antarctica) to monitor the natural attenuation of synthetic lubricants in marine sediments over five years. Here, we report the short-term changes after 5 and 56 weeks. The lubricants tested were an unused and used Mobil lubricant (0W/40; Exxon Mobil, Irving, TX, USA) and a biodegradable alternative (0W/20; Fuchs Lubricants, Harvey, IL, USA). Clean sediment was collected, contaminated with the lubricants, and deployed by divers onto the seabed in a randomized block design. The sampled sediments were analyzed by gas chromatography-flame-ionization detector and gas chromatography-mass spectrometry with selective ion monitoring. The base fluid of all lubricant treatments did not decrease significantly after 56 weeks in situ. Alkanoate esters of 1,1,1-tris(hydroxymethyl)propane in the biodegradable and unused lubricants were degraded extensively in situ; however, these esters constituted only a minor proportion of the lubricant volume. The additives, alkylated naphthalenes and substituted diphenylamines, were fairly resistant to degradation, which is of environmental concern because of their toxicity. The biodegradable lubricant did not break down to recognized biodegradable thresholds and, as such, should not be classified as biodegradable under Antarctic marine conditions. A separate experiment was conducted to determine the influence of sediment preparation and deployment on compound ratios within the lubricants, and we found that preparation and deployment of the contaminated sediments had only a minor effect on compound recovery. Further monitoring of this in situ experiment will provide much needed information about the long-term natural attenuation of lubricants.

  16. Organic Matter Polymerization by Disulfide Bonding Near the Chemocline in Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Adkins, J. F.; Sessions, A. L.

    2013-12-01

    The preservation of organic carbon in sediments as kerogen is an essential pathway in the global carbon cycle, but the chemical reactions involved in kerogen formation remain poorly understood. Previous researchers have found that many sediments deposited under euxinic conditions contain sulfur-bearing non-polar lipids as well as disulfide bonds among lipid and carbohydrate monomers. It remains unclear, however, when during organic matter decomposition and diagenesis these different sulfur-bearing structures form, and how different environmental conditions affect the extent of organic matter sulfurization. We investigate organic sulfurization processes armed with a technique for measuring the sulfur-isotopic compositions of individual organosulfur compounds by coupled gas chromatography - inductively coupled plasma mass spectrometry. Organic compounds were extracted from sediments and water column sediment traps from Cariaco Basin, a euxinic basin in the Caribbean Sea. We measured the sulfur-isotopic compositions of both non-polar lipids and of derivatized disulfide-bound compounds from eight sediment trap profiles and a six-meter-long sediment core. In Cariaco Basin, lipid sulfurization processes appear to begin near the chemocline and continue in sediments on timescales of thousands of years. Slow diagenetic sulfurization in sediments produces lipid monomers with sulfur atoms in ring structures that are 34S-depleted relative to coexisting dissolved sulfide. Lipid monomers become progressively enriched in 34S over time, indicating ongoing formation coinciding with an increase in the amount of total sulfur in bulk kerogen. One of the most abundant monomers observed in Cariaco sediments, a phytol-related thiophene, is also produced intermittently near the chemocline. Phytol thiophene δ34S values in sediment traps are similar to those observed in shallow Cariaco sediments except during occasional ';enrichment events,' when phytol thiophene δ34S values increase to as high as -2‰. In contrast, disulfide bonding appears to affect both lipids and carbohydrates and occur exclusively at the chemocline on very short timescales of days to weeks. In both the water column and the sediments, the sulfur isotope ratios of disulfide-bound monosaccharides are dramatically 34S-enriched relative to dissolved sulfide at the chemocline (~-30‰), ranging from -11‰ to +9‰. Disulfide-bound phytenes, which likely derive from the same precursor compounds as phytol thiophenes, were observed in only a few of the sediment trap extracts and have sulfur-isotopic compositions near +4.5‰. These 34S-enriched compositions indicate that the source of sulfur for rapid disulfide bonding may be an intermediate sulfur species that is not in isotopic equilibrium with dissolved sulfide. Significantly, δ34S values for disulfide-bound compounds in Cariaco Basin appear to be set at the chemocline and stable during subsequent diagenesis, opening the possibility that organic sulfur isotopes may archive information about environmental conditions at the chemocline in low-maturity sediments. Disulfide bonding does not, however, appear to be the major process driving slower diagenetic sulfur incorporation into kerogen. Compound-specific organic sulfur isotope analysis makes it possible to distinguish the products of different lipid and carbohydrate sulfurization processes for the first time.

  17. Long-term Measurement of Sediment Resuspension and Gas Hydrate Stability at a Gulf of Mexico Seep Site

    NASA Astrophysics Data System (ADS)

    Vardaro, M. F.; Bender, L. C.; MacDonald, I. R.

    2003-12-01

    To study the temporal topographic and hydrologic changes in Gulf of Mexico cold seeps, we deployed a deep-sea time-lapse camera, several temperature probes and an ADCP mooring at the continental shelf seep community surrounding a gas hydrate outcropping. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. A pair of 300 kHz Workhorse acoustic Doppler current profilers (ADCPs) attached to a 540 meter-long mooring were anchored approximately 2 km from the site in 2002. Temperature probes were deployed at the site over the entire experimental period. The data recovered provide a comprehensive record of gas hydrate mound processes. We calculated biological activity by identifying fauna observed in the time-lapse record and recording the number of individuals and species seen in each image. 1,381 individual organisms representing over 20 species were observed. An average of 4.6 (+/-3.0) organisms were seen in each frame during the three-month deployment, while 3.6 (+/-4.2) were seen per frame in the one-month deployment. An extensive amount of sediment suspension and redistribution occurred during the deployment period. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time the turbidity at the site could be quantified. A 24.1-hour diurnal pattern can be seen in the record, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop being studied. This indicates a higher degree of stability than laboratory studies or prior in situ observations have shown. The stable topography of the gas hydrate mound combines with high organic output and sediment turnover to serve as a focus of benthic predatory activity. The frequency and recurrence of sediment resuspension indicate that change in the depth and local distribution of surface sediments is a robust feature of the benthos at this site. Because the sediment interface is a critical environment for hydrocarbon oxidation and chemosynthesis, short term variations and heterogeneity may be important attributes of these settings.

  18. Dependence of ripple dimensions on cohesive and non-cohesive bed properties in the intertidal Dee Estuary

    NASA Astrophysics Data System (ADS)

    Lichtman, Ian; Thorne, Peter; Baas, Jacobus; O'Boyle, Louise; Cooke, Richard; Amoudry, Laurent; Bell, Paul; Aspden, Rebecca; Bass, Sarah; Davies, Alan; Hope, Julie; Malarkey, Jonathan; Manning, Andrew; Parsons, Daniel; Paterson, David; Peakall, Jeffrey; Schindler, Robert; Ye, Leiping

    2014-05-01

    There is a need to better understand the effects of cohesive and mixed sediments on coastal processes, to improve sediment transport models for the management of coastal erosion, siltation of navigation channels and habitat change. Although reasonable sediment transport predictors are available for pure sands, it still is not the case for mixed cohesive and non-cohesive sediments. Existing predictors mostly relate ripple dimensions to hydrodynamic conditions and median sediment grain diameter, assuming a narrow unimodal particle size distribution. Properties typical of mixed conditions, such as composition and cohesion for example, are not usually taken into account. This presents severe shortcomings to predictors' abilities. Indeed, laboratory experiments using mixed cohesive sediments have shown that bedform dimensions decrease with increasing bed mud content. In the field, one may expect current predictors to match data for well-sorted sands closely, but poorly for mixed sediments. Our work is part of the COHBED project and aims to: (1) examine, in field conditions, if ripple dimensions are significantly different for mixed cohesive sediment beds compared to beds with pure sand; (2) compare the field data with laboratory results that showed reduced ripple length due to cohesive mud content; and (3) assess the performance of a selection of ripple predictors for mixed sediment data. The COHBED project was set up to undertake laboratory experiments and fieldwork to study how physical and biological processes influence bedform development in a mixed cohesive-cohesionless sediment environment. As part of COHBED, a suite of instruments was deployed on tidal flats in the Dee Estuary (on the NW coast of England), collecting co-located measurements of the hydrodynamics, suspended sediment properties and bed morphology. The instruments occupied three sites collecting data over different bed compositions during a two week period (21 May to 4 June 2013). One site was located above a sandy bed, and the two others were above mixed beds of different mud content. The tide covered a full cycle from neaps to neaps and the weather provided onshore and offshore winds of varying strength. Bedform measurements were taken every half an hour using an Acoustic Ripple Profiler (ARP) that covered an area of about two square metres. Dynamic measurements of tides and waves were made using an Acoustic Doppler Velocimeter (ADV) at 8 Hz. Bed samples were taken when the tidal flats dried out at low tide and a sediment trap collected suspended load near the bed. In the presentation, comparisons of the sites will be made from measurements of the proportion of mud and biological sediment binders at each site and the ripple dimensions for different hydrodynamic conditions. Key words: bed morphology, current ripple, mixed sediment, cohesion, hydrodynamics, observations, tidal flat, estuary, Dee

  19. Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake.

    PubMed

    Wilhelm, Steven W; LeCleir, Gary R; Bullerjahn, George S; McKay, Robert M; Saxton, Matthew A; Twiss, Michael R; Bourbonniere, Richard A

    2014-02-01

    Carbon and nutrient cycles in large temperate lakes such as Lake Erie are primarily driven by phototrophic and heterotrophic microorganisms, although our understanding of these is often constrained to late spring through summer due to logistical constraints. During periods of > 90% ice cover in February of 2008, 2009, and 2010, we collected samples from an icebreaker for an examination of bacterial production as well as microbial community structure. In comparison with summer months (August 2002 and 2010), we tested hypotheses concerning seasonal changes in microbial community diversity and production. Bacterial production estimates were c. 2 orders of magnitude higher (volume normalized) in summer relative to winter. Our observations further demonstrate that the microbial community, including single-celled phototrophs, varied in composition between August and February. Sediment traps deployed and collected over a 3 year period (2008-2011) confirmed that carbon export was ongoing and not limiting winter production. The results support the notion that active primary producers in winter months export carbon to the sediments that is not consumed until the warmer seasons. The establishment of this linkage is a critical observation in efforts to understand the extent and severity of annual summertime formations of a zone of regional hypoxia in Lake Erie. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Environmental and ecological changes associated with a marina.

    PubMed

    Rivero, Natalie K; Dafforn, Katherine A; Coleman, Melinda A; Johnston, Emma L

    2013-01-01

    Anthropogenic modifications to waterways are common and their ecological consequences must be understood to effectively conserve local biodiversity. The facilitation of recreational boating activities often requires substantial alteration of natural areas, however the environmental and ecological consequences of such alterations are rarely described in the scientific literature. In this study, ecological and physico-chemical conditions were investigated in a recreational boating marina, located inside a marine park on the south-east coast of Australia. Recruitment panels were deployed for 8 weeks both inside and outside the marina, and differences in the composition of the developing fouling communities were observed. The recruitment of taxa, which often have short-lived larvae, was increased inside the marina (bryozoans, spirorbids and sponges) while the recruitment of taxa, which often have longer-lived larvae, was reduced or absent (barnacles, solitary ascidians and non-spirorbid polychaetes). Differences were also observed in environmental conditions inside the marina cf. directly outside. The marina environment had higher turbidity, temperature and pH along with higher concentrations of lead and copper in suspended sediments, while flow rates and trapped sediment loads were reduced inside the marina. The differences observed in the study suggest that there may be marked environmental changes associated with marina developments. The potential ecological consequences of these changes should be a primary consideration during the planning process, particularly for developments in locations of notable ecological value.

  1. Effect of hydrograph in the morphology of a channel with lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, Carmelo; Thalmann, Matthias; Schleiss, Anton J.; Franca, Mário J.

    2017-04-01

    Local widening or river bank revitalization in a channelized river is a common practice in restoration projects. The lateral embayments built for this purpose in the river banks can be partially filled up by fine sediments that are conveyed in suspension within the main reach. The embayments areas may present a suitable combination for riparian habitats if they have a limited amount of fine sediments trapped providing morphology diversity and areas with low and high velocities. However, the design of these lateral cavities may be compromised by fluctuations in the water discharge: an increase in the flow discharge may re-mobilize the sediments destroying the shelters for the aquatic biota and causing effects that may hamper the ecology of the main channel and downstream reaches (sudden increase of the sediment concentration and turbidity for instance). Aiming at a better design of lateral embayments with the purpose of restoration projects, systematic experimental investigations were carried out with five hydrographs with different unsteadiness, for five different normalized geometries of the cavities installed in the banks of a laboratory open channel. Water depth, sediment samples, sediment concentration and area covered by the settled sediments are analyzed in each experiment. Sediments patterns evolution within the cavities prior, during and after the increase in discharge were correlated with the unsteadiness character of each hydrograph. It is shown that cavities with larger aspect ratios (defined as the width of the cavity over the length of the cavity) provides a sustainable shelter for aquatic biota. Quantified analysis reveal that the recovery of the sediments patterns before the flushing is different depending on the geometry and unsteadiness. Finally, total mass trapped inside the cavities at the end of the experiments is analyzed. It is shown that the trapping efficiency of the macro-roughness elements with variable discharge is a clear function of the geometry of the lateral cavities and of the shallowness of the flow. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement 607394-SEDITRANS. The experiments were funded by FOEN (Federal Office for the Environment, Switzerland).

  2. Improving soil bioengineering techniques to control erosion and sedimentation within the context of torrential Mediterranean climate: a French-Canadian experience

    NASA Astrophysics Data System (ADS)

    Rey, Freddy; Louis, Séverine; Burylo, Mélanie; Raymond, Pierre

    2013-04-01

    On marly eroded terrains of the French Southern Alps, many researches are undertaken in order to better understand the role of vegetation and bioengineering works on erosion and sedimentation control. To this view, the eroded marly gullies of the French Southern Alps are an experimental design where an original French strategy of rehabilitation, developed by scientists from Irstea (ex-Cemagref), has been tested since 2002. It is comprised of the construction of bioengineering works, namely of "brush layers and brush mats of cuttings on deadwood microdams", and implements the use of willow cuttings (Salix purpurea and S. incana). The main objective of these works is to sustainably trap and retain marly sediment, by checking their performance (growth and survival of the cuttings, sediment trapping) in a mountainous and Mediterranean climate. In Canada, several private companies have developed their own knowledge and expertise in the conception and building of bioengineering works for erosion control, especially in the context of hilly and mountainous landscapes and climates. Therefore, it was decided to use the competence and expertise of Terra Erosion Control Ltd., a Canadian company, in the French torrential Mediterranean climate. Ten modalities were tested, the aims being to develop and/or to modify existing designs of current techniques, to experiment with other live cuttings (Populus nigra) and rooted species (Alnus spp. and Hippophae spp.), to evaluate and compare the potential use of different organic soil amendments in order to increase beneficial soil microorganisms and finally, to evaluate the potential use of specialized tools and equipment in order to increase the efficiency of the installation for vegetation establishment and sediment trapping, while decreasing the implementation costs. The experimental design was installed in March 2011 and the early observations in Spring 2012 showed that: 1/ most of the cuttings and the plants resisted to burial and to drought conditions; in particular, the structures using wooden boards instead of locally harvested logs appeared to be holding up well; 2/ designs of current techniques with vertical cuttings were better for resprouting and sediment trapping; 3/ 0.8m live cuttings of Populus nigra may represent an alternative to Salix spp., but resprout appeared lower; 4/ it was not possible to evaluate the performance of rooted species (Alnus spp. and Hippophae spp.); therefore more experiment is needed, especially with longer plants; 5/ organic soil amendments may increase vegetation development (BRF > fertilizer > compost > mixes). By comparing the results with similar sites used as benchmarks, installed since 2002, further observations in the spring of 2013 will allow us to evaluate the efficiency of the different modalities to improve vegetation establishment and sediment trapping.

  3. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data

    PubMed Central

    Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984

  4. Sedimentation and fouling of optical surfaces at the ANTARES site

    NASA Astrophysics Data System (ADS)

    ANTARES Collaboration; CAU CEFREM Collaboration; Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Beltramelli, J.; Benhammou, Y.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R. W.; Blondeau, F.; de Botton, N.; Boulesteix, J.; Brooks, C. B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Ciacio, F.; Circella, M.; Compère, C.; Cooper, S.; Coyle, P.; Cuneo, S.; Danilov, M.; van Dantzig, R.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dispau, G.; Druillole, F.; Engelen, J.; Feinstein, F.; Ferdi, C.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Heijboer, A.; Hernández-Rey, J. J.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Karolak, M.; Keller, P.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Leilde, B.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Moscoso, L.; Musumeci, M.; Nezri, E.; Nooren, G. J.; Oberski, J. E. J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rostovstev, A.; Russo, G. V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Thompson, L. F.; Tilav, S.; Triay, R.; Usik, A.; Valdy, P.; Valente, V.; Varlamov, I.; Vaudaine, G.; Vernin, P.; Vladimirsky, E.; Vorobiev, M.; de Witt Huberts, P.; de Wolf, E.; Zakharov, V.; Zavatarelli, S.; Zornoza, Juan de Dios; Zún~Iga, J.; Aloïsi, J.-C.; Kerhervé, Ph.; Monaco, A.

    2003-05-01

    ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES Collaboration has performed a series of in situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to saturate with time. The transmission loss, therefore, is expected to remain small for the several year lifetime of the ANTARES detector whose optical modules are oriented downwards. The measurements were complemented by the analysis of the 210Pb activity profile in sediment cores and the study of biofouling on glass plates. Despite a significant sedimentation rate at the site, in the 0.02-0.05 cmyr-1 range, the sediments adhere loosely to the glass surfaces and can be washed off by water currents. Further, fouling by deposits of light-absorbing particulates is only significant for surfaces facing upwards.

  5. Methane-related metabolisms of deep-sea sediments captured with a colonization experiment.

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Wheat, C. G.; Orcutt, B.; Kopf, A.; Saffer, D. M.; Toczko, S.

    2016-12-01

    NanTroSEIZE is a multi-expedition project of the International Ocean Discovery Program (IODP) designed to investigate the Nankai Trough subduction zone. In 2016, a long-term borehole instrument package known as the "GeniusPlug" was collected from Hole C0010A after a six-year deployment within the sediment of a major fault zone, at a depth of 400 mbsf. This GeniusPlug included a set of osmotically-driven pumps, which continuously pumped in situ deep seated, formation water through a microbiological colonization experiment (flow-through osmo colonization system (FLOCS)). This FLOCS experiment contained cassettes of olivine, barite, and sediment collected from nearby Hole C0004D, to serve as colonization substrates. While similar FLOCS have been deployed within boreholes in the igneous oceanic crust, this FLOCS experiment represents the first to be deployed within a sedimentary environment, and thus represents the first opportunity to observe how pore water communities colonize sediment and rock substrates. Initial geochemistry results suggest that conditions within the FLOCS experiment were similar to a methane-sulfate transition zone, and initial enrichment cultures inoculated with the FLOCS substrates demonstrate methane production. Here, we will present integrated results of culturing experiments and culture-independent genomic investigations as a means to elucidate the methane-related metabolisms of these colonizing communities.

  6. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants

    Treesearch

    Paul S. Robbins; Steven R. Alm; Charles D. Armstrong; Anne L. Averill; Thomas C. Baker; Robert J. Bauernfiend; Frederick P. Baxendale; S. Kris Braman; Rick L. Brandenburg; Daniel B. Cash; Gary J. Couch; Richard S. Cowles; Robert L. Crocker; Zandra D. DeLamar; Timothy G. Dittl; Sheila M. Fitzpatrick; Kathy L. Flanders; Tom Forgatsch; Timothy J. Gibb; Bruce D. Gill; Daniel O. Gilrein; Clyde S. Gorsuch; Abner M. Hammond; Patricia D. Hastings; David W. Held; Paul R. Heller; Rose T. Hiskes; James L. Holliman; William G. Hudson; Michael G. Klein; Vera L. Krischik; David J. Lee; Charles E. Linn; Nancy J. Luce; Kenna E. MacKenzie; Catherine M. Mannion; Sridhar Polavarapu; Daniel A. Potter; Wendell L. Roelofs; Brian M. Rovals; Glenn A. Salsbury; Nathan M. Schiff; David J. Shetlar; Margaret Skinner; Beverly L. Sparks; Jessica A. Sutschek; Timothy P. Sutschek; Stanley R. Swier; Martha M. Sylvia; Niel J. Vickers; Patricia J. Vittum; Richard Weidman; Donald C. Weber; R. Chris Williamson; Michael G. Villani

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera...

  7. The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies

    USDA-ARS?s Scientific Manuscript database

    Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70...

  8. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.

    PubMed

    Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum

    2014-03-07

    Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.

  9. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  10. Use of Sodium Dithionite as Part of a More Efficient Groundwater Restoration Method Following In-situ Recovery of Uranium at the Smith-Ranch Highland Site in Wyoming

    NASA Astrophysics Data System (ADS)

    Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.

    2017-12-01

    Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.

  11. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  12. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    NASA Astrophysics Data System (ADS)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates were used to calculate sediment O2 demand. Episodic events yielding turbidity spikes produced episodic spikes in chimney methane concentrations and sediment-water fluxes. The robust data set reveals new capabilities for long-term monitoring of near-bottom processes in biogeochemically active, continental margin environments.

  13. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less

  14. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE PAGES

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less

  15. The utilisation of engineered invert traps in the management of near bed solids in sewer networks.

    PubMed

    Ashley, R M; Tait, S J; Stovin, V R; Burrows, R; Framer, A; Buxton, A P; Blackwood, D J; Saul, A J; Blanksby, J R

    2003-01-01

    Large existing sewers are considerable assets which wastewater utilities will require to operate for the foreseeable future to maintain health and the quality of life in cities. Despite their existence for more than a century there is surprisingly little guidance available to manage these systems to minimise problems associated with in-sewer solids. A joint study has been undertaken in the UK, to refine and utilise new knowledge gained from field data, laboratory results and Computational Fluid Dynamics (CFD) simulations to devise cost beneficial engineering tools for the application of small invert traps to localise the deposition of sediments in sewers at accessible points for collection. New guidance has been produced for trap siting and this has been linked to a risk-cost-effectiveness assessment procedure to enable system operators to approach in-sewer sediment management pro-actively rather than reactively as currently happens.

  16. Ice-Ocean Environmental Buoys (IOEB); Technology and Deployment in 1991- 1992

    DTIC Science & Technology

    1993-10-01

    110 Appendix D Sedim ent trap and W TS schedules ...ICE(15 ICZ 15 ICEPTTb STES TRSSI (42) (42) (42) ICE ICE ICESLAXAT & THEIRMS SEACAT k THMISd SEACAT & THEMJ (6,o) (10 (6 (1o0) (56) (,11o) Schedule ...user to schedule the time between filtering events, as well as the characteristics and limitations of the pumping operation. During the deployment of

  17. Development of a portable passive-acoustic bedload monitoring system

    USDA-ARS?s Scientific Manuscript database

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  18. Full implementation of a distributed hydrological model based on check dam trapped sediment volumes

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Francés, Félix

    2014-05-01

    Lack of hydrometeorological data is one of the most compelling limitations to the implementation of distributed environmental models. Mediterranean catchments, in particular, are characterised by high spatial variability of meteorological phenomena and soil characteristics, which may prevents from transferring model calibrations from a fully gauged catchment to a totally o partially ungauged one. For this reason, new sources of data are required in order to extend the use of distributed models to non-monitored or low-monitored areas. An important source of information regarding the hydrological and sediment cycle is represented by sediment deposits accumulated at the bottom of reservoirs. Since the 60s, reservoir sedimentation volumes were used as proxy data for the estimation of inter-annual total sediment yield rates, or, in more recent years, as a reference measure of the sediment transport for sediment model calibration and validation. Nevertheless, the possibility of using such data for constraining the calibration of a hydrological model has not been exhaustively investigated so far. In this study, the use of nine check dam reservoir sedimentation volumes for hydrological and sedimentological model calibration and spatio-temporal validation was examined. Check dams are common structures in Mediterranean areas, and are a potential source of spatially distributed information regarding both hydrological and sediment cycle. In this case-study, the TETIS hydrological and sediment model was implemented in a medium-size Mediterranean catchment (Rambla del Poyo, Spain) by taking advantage of sediment deposits accumulated behind the check dams located in the catchment headwaters. Reservoir trap efficiency was taken into account by coupling the TETIS model with a pond trap efficiency model. The model was calibrated by adjusting some of its parameters in order to reproduce the total sediment volume accumulated behind a check dam. Then, the model was spatially validated by obtaining the simulated sedimentation volume at the other eight check dams and comparing it to the observed sedimentation volumes. Lastly, the simulated water discharge at the catchment outlet was compared with observed water discharge records in order to check the hydrological sub-model behaviour. Model results provided highly valuable information concerning the spatial distribution of soil erosion and sediment transport. Spatial validation of the sediment sub-model provided very good results at seven check dams out of nine. This study shows that check dams can be a useful tool also for constraining hydrological model calibration, as model results agree with water discharge observations. In fact, the hydrological model validation at a downstream water flow gauge obtained a Nash-Sutcliffe efficiency of 0.8. This technique is applicable to all catchments with presence of check dams, and only requires rainfall and temperature data and soil characteristics maps.

  19. Advances in the use of trapping systems for Rhynchophorus ferrugineus (Coleoptera: Curculionidae): traps and attractants.

    PubMed

    Vacas, S; Primo, J; Navarro-Llopis, V

    2013-08-01

    Given the social importance related to the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), efforts are being made to develop new control methods, such as the deployment of trapping systems. In this work, the efficacy of a new black pyramidal trap design (Picusan) has been verified in comparison with white and black buckets. In addition, the attractant and synergistic effect of ethyl acetate (EtAc) at different release levels has been evaluated under field conditions. The results show that Picusan traps captured 45% more weevils than bucket-type traps, offering significantly better trapping efficacy. The addition of water to traps baited with palm tissues was found to be essential, with catches increasing more than threefold compared with dry traps. EtAc alone does not offer attractant power under field conditions, and the release levels from 57 mg/d to 1 g/d have no synergistic effect with ferrugineol. Furthermore, significantly fewer females were captured when EtAc was released at 2 g/d. The implications of using EtAc dispensers in trapping systems are discussed.

  20. Transport of bedload sediment and channel morphology of a southeast Alaska stream.

    Treesearch

    Margaret A. Estep; Robert L. Beschta

    1985-01-01

    During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...

  1. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings.

    PubMed

    Francese, Joseph A; Fraser, Ivich; Lance, David R; Mastro, Victor C

    2011-06-01

    Tens of thousands of adhesive-coated purple prism traps are deployed annually in the United States to survey for the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A reusable, more user-friendly trap is desired by program managers, surveyors, and researchers. Field assays were conducted in southeastern Michigan to ascertain the feasibility of using nonsticky traps as survey and detection tools for emerald ash borer. Three nonsticky trap designs, including multifunnel (Lindgren), modified intercept panel, and drainpipe (all painted purple) were compared with the standard purple prism trap; no statistical differences in capture of emerald ash borer adults were detected between the multifunnel design and the prism. In subsequent color comparison assays, both green- and purple-painted multifunnel traps (and later, plastic versions of these colors) performed as well or better than the prism traps. Multifunnel traps coated with spray-on adhesive caught more beetles than untreated traps. The increased catch, however, occurred in the traps' collection cups and not on the trap surface. In a separate assay, there was no significant difference detected between glue-coated traps and Rain-X (normally a glass treatment)-coated traps, but both caught significantly more A. planipennis adults than untreated traps.

  2. Sediment flux measurements at the oceanic boundary of a large estuary

    NASA Astrophysics Data System (ADS)

    Downing-Kunz, M.; Work, P. A.; Schoellhamer, D. H.

    2016-12-01

    Sediment is an important resource for San Francisco Bay (SFB), in the context of wetland restoration projects, dredging operations, ecosystem health, and contaminant transport and fate. One way to help manage sediment (and sediment-associated contaminants) in SFB is by developing a quantitative sediment budget to account for sources, sinks, and storage of sediment. Previously developed sediment budgets have shown that sediment exchange at the oceanic boundary of SFB (Golden Gate) is the most poorly understood element of the SFB sediment budget, owing to logistical challenges that inhibit routine field observations. In this study, field observations of suspended-sediment flux at the Golden Gate were conducted on ebb and flood tides during two distinct periods of the 2016 hydrograph: peak (4,000 m3/s) and low (200 m3/s) rates of freshwater inflow to SFB. Suspended-sediment flux was estimated from a boat-mounted acoustic Doppler current profiler that provided measurements of discharge and acoustic backscatter (ABS) at a cross-section near the oceanic boundary. Discrete water samples were analyzed for suspended-sediment concentration (SSC) and related to ABS. During the period of peak freshwater inflow, maximum discharge observed at Golden Gate reached 130,000 m3/s during ebb tide; observed SSC (20-40 mg/L) were lower than expected compared to upstream conditions. A network of five SSC monitoring stations extending 5-80 km upstream demonstrated a watershed-sourced sediment pulse (SSC reaching 200 mg/L) moved downstream to within 20 km of the oceanic boundary, an observation corroborated by concurrent satellite imagery. This finding, combined with lower SSC near the Golden Gate, suggests the sediment pulse was trapped within SFB, indicating a freshwater inflow threshold exceeding 4,000 m3/s for sediment export at the oceanic boundary. Such trapping could provide additional sediment to benefit wetland restoration efforts.

  3. Managing sewer solids for the reduction of foul flush effects--Forfar WTP.

    PubMed

    Fraser, A G; Sakrabani, R; Ashley, R M; Johnstone, F M

    2002-01-01

    In times of high sewer flow, conditions can exist which enable previously deposited material to be re-entrained back into the body of the flow column. Pulses of this highly polluted flow have been recorded in many instances at the recently constructed wastewater treatment plant (WTP) in Forfar, Scotland. Investigations have been undertaken to characterise the incoming flows and to suggest remedial measures to manage the quality fluctuations. Initial visits to the works and incoming pipes indicated a high degree of sediment deposition in the two inlet pipes. Analyses were carried out and consequently, changes to the hydraulic regime were made. Measurements of sediment level, sediment quality, wall slime and bulk water quality were monitored in the period following the remedial works to observe any improvements. Dramatic alterations in each of the determinands measured were recorded. Analyses were then undertaken to determine long term sediment behaviour and to assess the future usefulness of existing upstream sediment traps. It was concluded that with proper maintenance of the traps, the new hydraulic regime is sufficient to prevent further significant build up of sediment deposits and reduce impacts on the WTP. Further investigations made by North of Scotland Water Authority highlighted trade inputs to the system which may also have contributed to the now managed foul flush problem.

  4. Combination of LC/TOF-MS and LC/Ion Trap MS/MS for the Identification of Diphenhydramine in Sediment Samples

    USGS Publications Warehouse

    Ferrer, I.; Heine, C.E.; Thurman, E.M.

    2004-01-01

    Diphenhydramine (Benadryl) is a popular over-the-counter antihistaminic medication used for the treatment of allergies. After consumption, excretion, and subsequent discharge from wastewater treatment plants, it is possible that diphenhydramine will be found in environmental sediments due to its hydrophobicity (log P = 3.27). This work describes a methodology for the first unequivocal determination of diphenhydramine bound to environmental sediments. The drug is removed from the sediments by accelerated solvent extraction and then analyzed by liquid chromatography with a time-of-flight mass spectrometer and an ion trap mass spectrometer. This combination of techniques provided unequivocal identification and confirmation of diphenhydramine in two sediment samples. The accurate mass measurements of the protonated molecules were m/z 256.1703 and 256.1696 compared to the calculated mass of m/z 256.1701, resulting in errors of 0.8 and 2.3 ppm. This mass accuracy was sufficient to verify the elemental composition of diphenhydramine in each sample. Furthermore, accurate mass measurements of the primary fragment ion were obtained. This work is the first application of time-of-flight mass spectrometry for the identification of diphenhydramine and shows the accumulation of an over-the-counter medication in aquatic sediments at five different locations.

  5. Quantifying the seasonal variations in fluvial and eolian sources of terrigenous material to Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene

    2009-02-01

    The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.

  6. Distribution of pollutants from a new paper plant in southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Mason, D.L.; Folger, D.W.; Haupt, R.S.; McGirr, R.R.; Hoyt, W.H.

    1977-01-01

    From November of 1973 to May of 1974, 15 arrays of sediment traps were placed along 33 km of southern Lake Champlain to sample the distribution of effluent from a large paper plant located on the western shore which had commenced operation in 1971. In the arrays located near the effluent diffuser pipeline as much as 2.3 cm of sediment accumulated, whereas elsewhere in the lake less than 1 cm accumulated. In the area of accelerated accumulation, sediments contained high concentrations of several components used in or derived from paper manufacturing. Values for kaolinite, expressed as the ratio of kaolinite to chlorite, for example, were as high as 1.4, anatase (TiO2) concentrations were as high as 0.8%, organic carbon 8.7%, and phosphorus 254 ??g/g; all were more abundant than in sediments collected in traps to the south or north. In surficial bottom sediments collected near each array organic carbon and phosphorus were also higher (4.2% and 127 ??g/g respectively) near the diffuser than elsewhere. Thus, the new plant after three years of production measurably affected the composition of suspended sediment and surficial bottom sediment despite the construction and use of extensive facilities to reduce the flow of pollutants to the lake. ?? 1977 Springer-Verlag New York Inc.

  7. Selecting Performance Reference Compounds (PRCS)for Polyethylene Passive Samplers Deployed at Contaminated Sediment Sites

    EPA Science Inventory

    Use of equilibrium passive samplers for performing aquatic environmental monitoring at contaminated sediment sites, including Superfund sites, is becoming more common. However, a current challenge in passive sampling is determining when equilibrium is achieved between the sampl...

  8. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  9. Observation of sediment resuspension in Old Tampa Bay, Florida

    USGS Publications Warehouse

    Schoellhamer, David H.; ,

    1990-01-01

    Equipment and methodology have been developed to monitor sediment resuspension at two sites in Old Tampa Bay. Velocities are measured with electromagnetic current meters and suspended solids and turbidity are monitored with optical backscatterance sensors. In late November 1989, a vertical array of instrument pairs was deployed from a permanent platform at a deep-water site, and a submersible instrument package with a single pair of instruments was deployed at a shallow-water site. Wind waves caused resuspension at the shallow-water site, but not at the deeper platform site, and spring tidal currents did not cause resuspension at either site.

  10. Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments

    NASA Astrophysics Data System (ADS)

    Bölscher, Jens; Schulte, Achim; Terytze, Konstantin

    2017-04-01

    The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), selected nitro-compounds, selected organotin compounds and polychlorinated biphenyls (PCB, AOX and EOX) in the sediment and suspended matter. The physico-chemical conditions of the samples were examined as well. The research into soluble and mobilizable sediment-bounded pollutants is based upon a 24 hour batch test. Certain toxic effects of the sediments were determined by different ecotoxicological test methods. In addition, the thresholds of the sediment quality guidelines published by de Deckere et al. (2011) were used to assess the solid contents. Because of the high concentrations of the pollutants, the consensus 2 values are used as thresholds in this study. The results provide important details on the spatial and temporal distribution of sedimentation and contamination. All sediments of the analysed cores and traps remain highly contaminated with heavy metals and organic compounds. The results indicate the resuspension, transport and accumulation of these sediments and show at least that toxic effects for the benthic taxa are expected. This kind of approach is necessary to create a basis for a remediation programme for, and a risk assessment of, polluted water bodies.

  11. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  12. Robotic observations of high wintertime carbon export in California coastal waters

    NASA Astrophysics Data System (ADS)

    Bishop, James K. B.; Fong, Michael B.; Wood, Todd J.

    2016-05-01

    Biologically mediated particulate organic and inorganic carbon (POC and PIC) export from surface waters is the principal determinant of the vertical oceanic distribution of pH and dissolved inorganic carbon and thus sets the conditions for air-sea exchange of CO2; exported organic matter also provides the energy fueling communities in the mesopelagic zone. However, observations are temporally and spatially sparse. Here we report the first hourly-resolved optically quantified POC and PIC sedimentation rate time series from an autonomous Lagrangian Carbon Flux Explorer (CFE), which monitored particle flux using an imaging optical sedimentation recorder (OSR) at depths below 140 m in the Santa Cruz Basin, CA, in May 2012, and in January and March 2013. Highest POC vertical flux ( ˜ 100-240 mmol C m-2 d-1) occurred in January, when most settling material was millimeter- to centimeter-sized aggregates but when surface biomass was low; fluxes were ˜ 18 and ˜ 6 mmol C m-2 d-1, respectively, in March and May, under high surface biomass conditions. An unexpected discovery was that January 2013 fluxes measured by CFE were 20 times higher than that measured by simultaneously deployed surface-tethered OSR; multiple lines of evidence indicate strong undersampling of aggregates larger than 1 mm in the latter case. Furthermore, the January 2013 CFE fluxes were about 10 times higher than observed during multiyear sediment trap observations in the nearby Santa Barbara and San Pedro basins. The strength of carbon export in biologically dynamic California coastal waters is likely underestimated by at least a factor of 3 and at times by a factor of 20.

  13. Evaluating shading bias in malaise and intercept traps

    USGS Publications Warehouse

    Irvine, Kathryn M.; Woods, Stephen A.

    2007-01-01

    Foresters are increasingly focusing on landscape level management regimes. At the landscape level, managed acreage may differ substantially in structure and micro-climatic conditions. Trapping is a commonly used method to evaluate changes in insect communities across landscapes. Among those trapping techniques, Malaise and window-pane traps are conveniently deployed to collect large numbers of insects for relative estimates of density. However, the catch within traps may be affected by a wide range of environmental variables including trap location, height, and factors such as exposure to sunlight and temperature. Seven experiments were conducted from 1996 through 2000 to evaluate the effects of shading on trap catch of a variety of Malaise trap designs and one window-pane trap design. Overall, differences in shading effects on trap catch were detected across different traps and taxa and suggested that, in general, more insects are collected in traps that were in direct sunlight. The effect of shading varied from a reduction in trap catch of 10 % to an increase of 7%, the results depended on trap color. Diptera, Coleoptera, and Homoptera were most likely to exhibit this bias. In contrast, trap catch of the Hymenoptera was the most variable and appeared to be sensitive to factors that might interact with sun/shade conditions

  14. Injectivity Evaluation for Offshore CO 2 Sequestration in Marine Sediments

    DOE PAGES

    Dai, Zhenxue; Zhang, Ye; Stauffer, Philip; ...

    2017-08-18

    Global and regional climate change caused by greenhouse gases emissions has stimulated interest in developing various technologies (such as carbon dioxide (CO 2) geologic sequestration in brine reservoirs) to reduce the concentrations of CO 2 in the atmosphere. Our study develops a statistical framework to identify gravitational CO 2 trapping processes and to quantitatively evaluate both CO 2 injectivity (or storage capacity) and leakage potential from marine sediments which exhibit heterogeneous permeability and variable thicknesses. Here, we focus on sets of geostatistically-based heterogeneous models populated with fluid flow parameters from several reservoir sites in the U.S. Gulf of Mexico (GOM).more » A computationally efficient uncertainty quantification study was conducted with results suggesting that permeability heterogeneity and anisotropy, seawater depth, and sediment thickness can all significantly impact CO 2 flow and trapping. Large permeability/porosity heterogeneity can enhance gravitational, capillary, and dissolution trapping, which acts to deter CO 2 upward migration and subsequent leakage onto the seafloor. When log permeability variance is 5, self-sealing with heterogeneity-enhanced gravitation trapping can be achieved even when water depth is 1.2 km. This extends the previously identified self-sealing condition that water depth be greater than 2.7 km. Our results have yielded valuable insight into the conditions under which safe storage of CO 2 can be achieved in offshore environments. The developed statistical framework is general and can be adapted to study other offshore sites worldwide.« less

  15. Injectivity Evaluation for Offshore CO 2 Sequestration in Marine Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhenxue; Zhang, Ye; Stauffer, Philip

    Global and regional climate change caused by greenhouse gases emissions has stimulated interest in developing various technologies (such as carbon dioxide (CO 2) geologic sequestration in brine reservoirs) to reduce the concentrations of CO 2 in the atmosphere. Our study develops a statistical framework to identify gravitational CO 2 trapping processes and to quantitatively evaluate both CO 2 injectivity (or storage capacity) and leakage potential from marine sediments which exhibit heterogeneous permeability and variable thicknesses. Here, we focus on sets of geostatistically-based heterogeneous models populated with fluid flow parameters from several reservoir sites in the U.S. Gulf of Mexico (GOM).more » A computationally efficient uncertainty quantification study was conducted with results suggesting that permeability heterogeneity and anisotropy, seawater depth, and sediment thickness can all significantly impact CO 2 flow and trapping. Large permeability/porosity heterogeneity can enhance gravitational, capillary, and dissolution trapping, which acts to deter CO 2 upward migration and subsequent leakage onto the seafloor. When log permeability variance is 5, self-sealing with heterogeneity-enhanced gravitation trapping can be achieved even when water depth is 1.2 km. This extends the previously identified self-sealing condition that water depth be greater than 2.7 km. Our results have yielded valuable insight into the conditions under which safe storage of CO 2 can be achieved in offshore environments. The developed statistical framework is general and can be adapted to study other offshore sites worldwide.« less

  16. Water-quality assessment of the Trinity River Basin, Texas - Analysis of available information on nutrients and suspended sediment, 1974-91

    USGS Publications Warehouse

    Van Metre, Peter C.; Reutter, David C.

    1995-01-01

    Only limited suspended-sediment data were available. Four sites had daily sediment-discharge records for three or more water years (October 1 to September 30) between 1974 and 1985. An additional three sites had periodic measurements of suspended-sediment concentrations. There are differences in concentrations and yields among sites; however, the limited amount of data precludes developing statistical or cause-and-effect relations with environmental factors such as land use, soil, and geology. Data are sufficient, and the relation is pronounced enough, to indicate trapping of suspended sediment by Livingston Reservoir.

  17. Medium and large mammals in the Sierra La Madera, Sonora, Mexico

    Treesearch

    Erick Oswaldo Bermudez-Enriquez; Rosa Elena Jimenez-Maldonado; Gertrudis Yanes-Arvayo; Maria de la Paz Montanez-Armenta; Hugo Silva-Kurumiya

    2013-01-01

    Sierra La Madera is a Sky Island mountain range in the Madrean Archipelago. It is in Fracción V of the Ajos-Bavispe CONANP Reserve in the Municipios (= Counties) of Cumpas, Granados, Huásabas, Moctezuma, and Villa Hidalgo. Medium and large mammals were inventoried using camera traps. Eighteen Wild View 2® camera traps were deployed during four sampling periods: August...

  18. Suspended sediment delivery to Puget Sound from the lower Nisqually River, western Washington, July 2010–November 2011

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.

    2016-05-26

    On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.

  19. Sediment and nutrient trapping as a result of a temporary Mississippi River floodplain restoration: The Morganza Spillway during the 2011 Mississippi River Flood

    USGS Publications Warehouse

    Kroes, Daniel; Schenk, Edward R.; Noe, Gregory; Benthem, Adam J.

    2015-01-01

    The 2011 Mississippi River Flood resulted in the opening of the Morganza Spillway for the second time since its construction in 1954 releasing 7.6 km3 of water through agricultural and forested lands in the Morganza Floodway and into the Atchafalaya River Basin. This volume, released over 54 days, represented 5.5% of the Mississippi River (M.R.) discharge and 14% of the total discharge through the Atchafalaya River Basin (A.R.B.) during the Spillway operation and 1.1% of the M.R. and 3.3% of the A.R.B. 2011 water year discharge. During the release, 1.03 teragrams (Tg) of sediment was deposited on the Morganza Forebay and Floodway and 0.26 Tg was eroded from behind the Spillway structure. The majority of deposition (86 %) occurred in the Forebay (upstream of the structure) and within 4 km downstream of the Spillway structure with minor deposition on the rest of the Floodway. There was a net deposition of 26 × 10−4 Tg of N and 5.36 × 10−4 Tg of P, during the diversion, that was equivalent to 0.17% N and 0.33% P of the 2011 annual M.R. load. Median deposited sediment particle size at the start of the Forebay was 13 μm and decreased to 2 μm 15 km downstream of the Spillway structure. Minimal accretion was found greater than 4 km downstream of the structure suggesting the potential for greater sediment and nutrient trapping in the Floodway. However, because of the large areas involved, substantial sediment mass was deposited even at distances greater than 30 km. Sediment and nutrient deposition on the Morganza Floodway was limited because suspended sediment was quickly deposited along the flowpath and not refreshed by incremental water exchanges between the Atchafalaya River (A.R.) and the Floodway. Sediment and nutrient trapping could have been greater and more evenly distributed if additional locations of hydraulic input from and outputs to the A.R. (connectivity) were added.

  20. Dependable water supplies from valley alluvium in arid regions.

    PubMed

    Van Haveren, Bruce P

    2004-12-01

    Reliable sources of high-quality water for domestic use are much needed in arid regions. Valley alluvium, coarse sand and gravel deposited by streams and rivers, provides an ideal storage medium for water in many regions of the world. However, river sediments will not accumulate in a valley without a natural or artificial barrier to slow the water. Sediments will deposit upstream of a barrier dam and form an alluvial deposit of relatively well-sorted material. The alluvium then acts as both an underground water-supply reservoir and a water filter, yielding a constant flow of high-quality water. Trap dams that store water in alluvial sediments and slowly release the filtered water represent an appropriate and inexpensive technology for combating desertification and mitigating the effects of drought at the community level. Small trap dams may be built as a community project using local materials and local labor.

  1. Nontarget insects captured in fruit fly (Diptera: Tephritidae) surveillance traps.

    PubMed

    Thomas, Donald B

    2003-12-01

    Traps baited with synthetic lures (ammonium acetate and putrescine) captured as many Mexican fruit flies as the traditional torula yeast/borax slurry, but with far fewer (ratio 5:1) nontarget insects. Ninety percent of the nontarget insects were dipterans. Consequently, neither trap is efficacious against other citrus pests, which are mainly Hemiptera or Lepidoptera. Although the nontarget catch is sometimes referred to as "trash," many nontarget insects are beneficials, including predators and parasites (especially tachinids). The traps with synthetic lures killed fewer of these beneficials by a ratio of 4:1 compared with the yeast-baited traps. Certain taxa, notably the chrysopids and halictid bees, exhibited a somewhat greater preference (10 and 50%, respectively) for the synthetic lures. Overall, with regard to the deployment of the newer baits, the threat to predators, parasites, and pollinators was found to be negligible, and certainly much less than that posed by the traditional traps.

  2. Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)

    NASA Technical Reports Server (NTRS)

    Devor, Robert; Captain, James; Weis, Kyle; Maloney, Phillip; Booth, Greg; Quinn, Jacqueline

    2014-01-01

    Purpose of Study: (a) Develop/optimize technology capable of removing PCBs from contaminated sediments; (b) Develop design for functional GPRSS unit; (c) Produce and prove functionality of prototype units in a laboratory settings; (d) Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA; and (e) Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments.

  3. Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments.

    PubMed

    Wang, Changlu; Tsai, Wan-Tien; Cooper, Richard; White, Jeffrey

    2011-02-01

    Bed bugs, Cimex lectularius L., are now considered a serious urban pest in the United States. Because they are small and difficult to find, there has been strong interest in developing and using monitoring tools to detect bed bugs and evaluate the results of bed bug control efforts. Several bed bug monitoring devices were developed recently, but their effectiveness is unknown. We comparatively evaluated three active monitors that contain attractants: CDC3000, NightWatch, and a home-made dry ice trap. The Climbup Insect Interceptor, a passive monitor (without attractants), was used for estimating the bed bug numbers before and after placing active monitors. The results of the Interceptors also were compared with the results of the active monitors. In occupied apartments, the relative effectiveness of the active monitors was: dry ice trap > CDC3000 > NightWatch. In lightly infested apartments, the Interceptor (operated for 7 d) trapped similar number of bed bugs as the dry ice trap (operated for 1 d) and trapped more bed bugs than CDC3000 and NightWatch (operated for 1 d). The Interceptor was also more effective than visual inspections in detecting the presence of small numbers of bed bugs. CDC3000 and the dry ice trap operated for 1 d were equally as effective as the visual inspections for detecting very low level of infestations, whereas 1-d deployment of NightWatch detected significantly lower number of infestations compared with visual inspections. NightWatch was designed to be able to operate for several consecutive nights. When operated for four nights, NightWatch trapped similar number of bed bugs as the Interceptors operated for 10 d after deployment of NightWatch. We conclude these monitors are effective tools in detecting early bed bug infestations and evaluating the results of bed bug control programs.

  4. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  5. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  6. Synthetic Sex Pheromone Attracts the Leishmaniasis Vector Lutzomyia longipalpis (Diptera: Psychodidae) to Traps in the Field

    PubMed Central

    Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.

    2011-01-01

    Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409

  7. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae) to traps in the field.

    PubMed

    Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C

    2009-05-01

    Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.

  8. Biological interference of optical backscatterance sensors in Tampa Bay, Florida

    USGS Publications Warehouse

    Schoellhamer, D.H.

    1993-01-01

    Optical backscatterance (OBS, D&A Instruments, Inc.1 1 Use of brand, firm, or trade names in this paper is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.) sensors for measuring suspended-solids concentrations have been deployed in Tampa Bay to monitor resuspension of bottom sediments. This paper describes biological factors that affected the OBS sensors deployed in Tampa Bay and discusses deployment strategies that minimize biological interference. Phytoplankton may interfere with the OBS sensors when the suspended-solids concentration is near or below the sensor response threshold. Fish swimming in front of the OBS sensors caused spikes in the OBS sensor output, so the median average was more appropriate than the mean average. An algal slime on the OBS sensors caused excessive backscatterance that dominated the backscatterance from suspended material. Because of the fouling problem, deployments were limited to less than a week, and OBS sensors were cleaned daily, if possible. Calibration of OBS sensors with water samples collected from Tampa Bay was satisfactory when biological interference was not significant. When properly deployed, the OBS sensors can successfully monitor sediment resuspension in Tampa Bay and similar subtropical estuaries. ?? 1993.

  9. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  10. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  11. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea.

    PubMed

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jianfang; Burdige, David J

    2016-09-27

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas.

  12. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea

    PubMed Central

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J.

    2016-01-01

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82–94% using the OC mixing model, and 30–80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas. PMID:27670426

  13. A giant sediment trap in the Florida keys

    USGS Publications Warehouse

    Shinn, E.A.; Reich, C.D.; Locker, S.D.; Hine, A.C.

    1996-01-01

    Aerial photography, high-resolution seismic profiling, coring and jet probing have revealed a large sediment-filled sinkhole in the Key Largo National Marine Sanctuary off Key Largo, Florida. The 600-m-diameter feature straddles coral reef and carbonate-sand facies and contains >55 m of marine lime sand and aragonite mud. Bulk 14C age determinations of mud from a 30- m sediment core indicate infilling rates exceeding 20 m/ka between 3 and 5.6 ka. The total thickness and nature of the sediment near the base of the sinkhole are not known.

  14. Flux and accumulation of sedimentary particles off the continental slope of Pakistan: a comparison of water column and seafloor estimates from the oxygen minimum zone, NE Arabian Sea

    NASA Astrophysics Data System (ADS)

    Schulz, H.; von Rad, U.

    2013-07-01

    Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps), 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth) were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m-2 d-1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction). However, the high winter flux events (HFE) by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden shifts at the lower boundary of the OMZ. However, the potential effect of the OMZ on carbon preservation in the area would by masked by high mass of fine-grained matter laterally advected, and by the pulsed nature of the resuspension events.

  15. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  16. Sedimentation in mountain streams: A review of methods of measurement

    USGS Publications Warehouse

    Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin

    2013-01-01

    The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.

  17. Diversity and activity pattern of wildlife inhabiting catchment of Hulu Terengganu Hydroelectric Dam, Terengganu, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Adyla, M. N. Nurul; Ikhwan, Z.; Zuhairi, M.; Ngah, Shukor, M. N.

    2016-11-01

    A series of camera trapping surveys were conducted to study the diversity and distribution of wildlife within the catchment of Hulu Terengganu Hydroelectric Dam. A total of 124 camera traps were deployed at nine study sites, continuously from June 2014 until December 2015. The total effort of camera trap surveys from all the study sites during the 18-month sampling period was 29,128 night traps, from which a total of 32 species of wildlife representing nine Orders were recorded. The most common species were Eurasian Wild Pig (Sus scrofa), Barking Deer (Munticus muntjak), and Malayan Tapir (Tapirus indicus). Camera trap data on activity patterns show that Gallus gallus, Muntiacus muntjak and Sus scrofa are diurnal animals, whereas Tapirus indicus, Elephas maximus and Helarctos malayanus are nocturnal animals.

  18. Magnetic monopole search with the MoEDAL test trapping detector

    NASA Astrophysics Data System (ADS)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  19. Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Hedges, John I.; Calvert, Stephen E.

    1992-05-01

    A sediment-trap sample, representing an annual average particle flux at 50 m in Saanich Inlet, British Columbia, was analyzed for its elemental, amino acid, neutral sugar, and lignin composition. Amino acid analyses also were performed on underlying sediments which were analyzed previously for organic carbon, nitrogen, neutral sugars, and lignin. The results uniformly indicate primarily marine organic matter sources for all samples, although relatively higher terrigenous contributions are evident in the sediments. The δ13C values of trap materials also point to primarily autochthonous particle fluxes. Comparison of annual average water-column fluxes to sediment accumulation rates indicates under-sampling of sinking particles due to lateral sediment inputs at depth. The anoxic benthic interface appears to be an important site of diagenesis, and selective removal is observed both at compound-class and molecular levels. Cinnamyl and syringyl phenols are selectively removed relative to vanillyl phenols and loss patterns of the monosaccharides, and to a lesser degree the amino acids, strongly indicate preferential preservation of diatom cell-wall materials. Low flux ratios displayed by the nonprotein amino acids are consistent with their diagenetic origin. Preferential loss of marine organic material is indicated by the calculated δ13C value and biochemical composition of the substrate. Concentrations of all measured organic constituents decreased with depth in the uniformly varved 0-14 cm sediment interval, and suggest in situ degradation. Relative reactivities of the biochemical classes indicate a change in diagenetic substrate from that utilized above and at the benthic interface. With the exception of the amino acids, however, diagenesis is generally less selective in the sediments. The amino acid utilization pattern differs from that observed across the benthic interface, and down-core changes in protein and nonprotein amino acid compositions clearly indicate in situ degradation. The sedimentary degraded fraction also appears to be predominantly marine, but lignin yields and sugar compositions suggest a relative increase in the utilization of vascular plant remains. Protein, polysaccharide, and lignin contributions to total organic carbon decrease from 37% in the sediment-trap sample to 22% at the bottom of the 0-14 cm sediment interval. These biochemicals represent over 40 and 50-60% of the degraded carbon and nitrogen, respectively, and thus are important nutrients for the benthic and water-column communities.

  20. An innovative piston corer for large‐volume sediment samples

    PubMed Central

    Haselmair, Alexandra; Stachowitsch, Michael; Zuschin, Martin

    2016-01-01

    Abstract Coring is one of several standard procedures to extract sediments and their faunas from open marine, estuarine, and limnic environments. Achieving sufficiently deep penetration, obtaining large sediment volumes in single deployments, and avoiding sediment loss upon retrieval remain problematic. We developed a piston corer with a diameter of 16 cm that enables penetration down to 1.5 m in a broad range of soft bottom types, yields sufficient material for multiple analyses, and prevents sediment loss due to a specially designed hydraulic core catcher. A novel extrusion system enables very precise slicing and preserves the original sediment stratification by keeping the liners upright. The corer has moderate purchase costs and a robust and simple design that allows for a deployment from relatively small vessels as available at most marine science institutions. It can easily be operated by two to three researchers rather than by specially trained technicians. In the northern Adriatic Sea, the corer successfully extracted more than 50 cores from a range of fine mud to coarse sand, at water depths from three to 45 m. The initial evaluation of the cores demonstrated their usefulness for fauna sequences along with heavy metal, nutrient and pollutant analyses. Their length is particularly suited for historical ecological work requiring sedimentary and faunal sequences to reconstruct benthic communities over the last millennia. PMID:28111529

  1. Hydrodynamics Offshore of the North Beach of Indian River Inlet, DE

    NASA Astrophysics Data System (ADS)

    DiCosmo, N. R.; Puleo, J. A.

    2014-12-01

    The Indian River Inlet (IRI) on the east coast of Delaware, USA connects the Atlantic Ocean to the Indian River and Rehoboth Bays. Long-term and large-scale net alongshore sediment transport along this portion of coastline is from south to north. The north beach of IRI suffers from severe erosion due to interruption of the alongshore transport and current variability near the inlet. The magnitude of such erosion has increased over the past decade and questions have arisen as to the cause. The goal of this study is to quantify currents and wave patterns and estimate sediment transport rates at the north beach and near the inlet in an effort to determine the causes of persistent erosion. Data were obtained from October 2013 to March 2014 in the form of 3 separate 28-day deployments. Each deployment consisted of 4 proposed deployment sites. Data at each site were collected using a bottom mounted Nortek Aquadopp Acoustic Doppler Current Profiler (ADCP) and 2 Campbell Scientific Optical Backscatter Sensors (OBS). Currents and OBS data were sampled every 120 s. Waves were sampled for approximately 17 minutes at the beginning of every hour. Data analysis from the deployments indicates the presence of several interesting trends in currents that can be linked to the persistent erosion. Current data are filtered to quantify typical current speed and direction for a tidal cycle (peak flood to peak flood) at each deployment site. The typical currents off of the north beach and up to 800 m north of the north jetty are mostly directed southward over the entire tidal cycle. This consistent southward flow implies: 1) there is no flow reversal based on tide, contrary to what might be expected at an inlet adjacent beach, 2) the typical current direction is opposite of the expectations for the known long-term large-scale net alongshore transport and 3) the consistency of this atypical current may be responsible for transporting sediment southward and away from the north beach. Currents and waves will be further analyzed for storm and non-storm conditions in order to more completely quantify the hydrodynamics of the area. Sediment data will also be analyzed in conjunction with the hydrodynamic data in order to better understand the sediment transport process.

  2. Cross Validation of Two Partitioning-Based Sampling Approaches in Mesocosms Containing PCB Contaminated Field Sediment, Biota, and Activated Carbon Amendment

    EPA Science Inventory

    The Gold Standard for determining freely dissolved concentrations (Cfree) of hydrophobic organic compounds in sediment interstitial water would be in situ deployment combined with equilibrium sampling, which is generally difficult to achieve. In the present study, ex situ equilib...

  3. Management strategy evaluation of pheromone-baited trapping techniques to improve management of invasive sea lamprey

    USGS Publications Warehouse

    Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa

    2016-01-01

    We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.

  4. Improvement of a free software tool for the assessment of sediment connectivity

    NASA Astrophysics Data System (ADS)

    Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco

    2015-04-01

    Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of morphometric indexes, such as the Melton ruggedness number, commonly used for discriminating debris-flow catchments from bedload catchments. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188,31-41. doi:10.1016/j.geomorph.2012.05.007

  5. Gravel Transport Measured With Bedload Traps in Mountain Streams: Field Data Sets to be Published

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Swingle, K. W.; Abt, S. R.; Ettema, R.; Cenderelli, D. A.

    2017-12-01

    Direct, accurate measurements of coarse bedload transport exist for only a few streams worldwide, because the task is laborious and requires a suitable device. However, sets of accurate field data would be useful for reference with unsampled sites and as a basis for model developments. The authors have carefully measured gravel transport and are compiling their data sets for publication. To ensure accurate measurements of gravel bedload in wadeable flow, the designed instrument consisted of an unflared aluminum frame (0.3 x 0.2 m) large enough for entry of cobbles. The attached 1 m or longer net with a 4 mm mesh held large bedload volumes. The frame was strapped onto a ground plate anchored onto the channel bed. This setup avoided involuntary sampler particle pick-up and enabled long sampling times, integrating over fluctuating transport. Beveled plates and frames facilitated easy particle entry. Accelerating flow over smooth plates compensated for deceleration within the net. Spacing multiple frames by 1 m enabled sampling much of the stream width. Long deployment, and storage of sampled bedload away from the frame's entrance, were attributes of traps rather than samplers; hence the name "bedload traps". The authors measured gravel transport with 4-6 bedload traps per cross-section at 10 mountain streams in CO, WY, and OR, accumulating 14 data sets (>1,350 samples). In 10 data sets, measurements covered much of the snowmelt high-flow season yielding 50-200 samples. Measurement time was typically 1 hour but ranged from 3 minutes to 3 hours, depending on transport intensity. Measuring back-to-back provided 6 to 10 samples over a 6 to 10-hour field day. Bedload transport was also measured with a 3-inch Helley-Smith sampler. The data set provides fractional (0.5 phi) transport rates in terms of particle mass and number for each bedload trap in the cross-section, the largest particle size, as well as total cross-sectional gravel transport rates. Ancillary field data include stage, discharge, long-term flow records if available, surface and subsurface sediment sizes, as well as longitudinal and cross-sectional site surveys. Besides transport relations, incipient motion conditions, hysteresis, and lateral variation, the data provide a reliable modeling basis to test insights and hypotheses regarding bedload transport.

  6. Bathymetry and Sediment-Storage Capacity Change in Three Reservoirs on the Lower Susquehanna River, 1996-2008

    USGS Publications Warehouse

    Langland, Michael J.

    2009-01-01

    The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.

  7. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    PubMed Central

    Langhans, Simone D.; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  8. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  9. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that underflows (turbidity currents) generated at the river mouths are frequent and deliver coarse-grained sediments to the deeper waters. According to the 2003-2014 mooring data, no single hydroclimatic process can explain this underflow activity. Spring snowmelt is often responsible for delivering a substantial amount of sediment to the lakes in the form of underflows, while the contribution of summer rainfalls has also been important in some years. However, one of the largest rainfall recorded (100 mm over four days in August 2013) did not trigger a corresponding underflow event in West Lake, confirming that antecedent soil conditions can significantly reduce runoff and suspended sediment concentrations in the rivers. Moreover, high peaks of turbidity were recorded below ice cover, during the winter, a season thought to be inactive in terms of sedimentary processes. Hence, reconciling the range of processes responsible for sediment deposition and that generate both bedforms and subaqueous mass movements are important to developing consistent records and interpretations of sediment deposition in High Arctic lakes.

  10. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the Malina experiment

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-01-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted for 28-50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap dataset from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depth where they represented up to 25% of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a heterotrophic driven ecosystem as compared to the system driven by autotrophy earlier in the year.

  11. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-08-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted between 28 and 50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap data set from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depths below 100 m, where they represented up to 25 % of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a heterotrophic-driven ecosystem.

  12. Offshore Extension of Deccan Traps in Kachchh, Central Western India: Implications for Geological Sequestration Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, D. K., E-mail: pandey@ncaor.org; Pandey, A.; Rajan, S.

    2011-03-15

    The Deccan basalts in central western India are believed to occupy large onshore-offshore area. Using geophysical and geological observations, onshore sub-surface structural information has been widely reported. On the contrary, information about offshore structural variations has been inadequate due to scarcity of marine geophysical data and lack of onshore-offshore lithological correlations. Till date, merely a few geophysical studies are reported that gauge about the offshore extent of Deccan Traps and the Mesozoic sediments (pre-Deccan). To fill this gap in knowledge, in this article, we present new geophysical evidences to demonstrate offshore continuation of the Deccan volcanics and the Mesozoic sediments.more » The offshore multi-channel seismic and onshore-offshore lithological correlations presented here confirm that the Mesozoic sedimentary column in this region is overlain by 0.2-1.2-km-thick basaltic cover. Two separate phases of Mesozoic sedimentation, having very distinctive physical and lithological characteristics, are observed between overlying basaltic rocks and underlying Precambrian basement. Using onshore-offshore seismic and borehole data this study provides new insight into the extent of the Deccan basalts and the sub-basalt structures. This study brings out a much clearer picture than that was hitherto available about the offshore continuation of the Deccan Traps and the Mesozoic sediments of Kachchh. Further, its implications in identifying long-term storage of anthropogenic CO{sub 2} within sub-basalt targets are discussed. The carbon sequestration potential has been explored through the geological assessment in terms of the thickness of the strata as well as lithology.« less

  13. Carbon flux from bio-optical profiling floats: Calibrating transmissometers for use as optical sediment traps

    NASA Astrophysics Data System (ADS)

    Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie

    2017-02-01

    Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.

  14. Contaminant loading to Puget Sound from two marinas. Puget Sound estuary program. Final report, June 1988-October 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crecelius, E.A.; Fortman, T.J.; Kiesser, S.L.

    1989-07-01

    Concentrations of Cu, Pb, Zn, PAH's, TBT and FC bacteria were measured in surface sediment, sediment-trap, and water-column samples at two marinas in Puget Sound during summer of 1988. Levels of contaminants inside the marinas were compared with levels outside. TBT had greatest elevation in marina sediments compared to reference sediments. Few of sediments exceeded Puget Sound AET sediment quality values but most did exceed PSDDA screening levels for in-water disposal of dredged sediment. All marinas estimated to contribute less than one percent of total mass loading of Cu, Pb and Zn to main basin of Puget Sound. Contribution ofmore » TBT may be much more significant if antifouling paints are the major source for Puget Sound.« less

  15. MeBo70 Seabed Drilling on a Polar Continental Shelf: Operational Report and Lessons From Drilling in the Amundsen Sea Embayment of West Antarctica

    NASA Astrophysics Data System (ADS)

    Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.

    2017-11-01

    A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.

  16. Modeling Sediment Detention Ponds Using Reactor Theory and Advection-Diffusion Concepts

    NASA Astrophysics Data System (ADS)

    Wilson, Bruce N.; Barfield, Billy J.

    1985-04-01

    An algorithm is presented to model the sedimentation process in detention ponds. This algorithm is based on a mass balance for an infinitesimal layer that couples reactor theory concepts with advection-diffusion processes. Reactor theory concepts are used to (1) determine residence time of sediment particles and to (2) mix influent sediment with previously stored flow. Advection-diffusion processes are used to model the (1) settling characteristics of sediment and the (2) vertical diffusion of sediment due to turbulence. Predicted results of the model are compared to those observed on two pilot scale ponds for a total of 12 runs. The average percent error between predicted and observed trap efficiency was 5.2%. Overall, the observed sedimentology values were predicted with reasonable accuracy.

  17. Monitoring stink bugs (Hemiptera: Pentatomidae) in mid-Atlantic apple and peach orchards.

    PubMed

    Leskey, T C; Hogmire, H W

    2005-02-01

    Pyramid traps coated with "industrial safety yellow" exterior latex gloss enamel paint and baited with Euschistus spp. aggregation pheromone, methyl (2E,4Z)-decadienoate captured more stink bugs than all other baited and unbaited trap types in both apple and peach orchards in 2002 and 2003. Commercial sources of dispensers of methyl (2E,4Z)-decadienoate deployed in association with pyramid traps had a significant impact on trap captures. Captures in pyramid traps were four-fold greater when baited with lures from IPM Technologies, Inc. (Portland, OR) than with lures from Suterra (Bend, OR). Variation in yellow pyramid trap color ("industrial safety yellow" and "standard coroplast yellow") and material (plywood, plastic, and masonite) did not affect trap captures. Brown stink bug was the predominant species captured (58%), followed by dusky stink bug, Euschistus tristigmus (Say) (20%); green stink bug, Acrosternum hilare (Say) (14%); and other stink bugs (Brochymena spp. and unidentified nymphs) (8%). Captures in baited pyramid traps were significantly correlated with tree beating samples in both managed and unmanaged apple orchards and with sweep netting samples in the unmanaged apple orchard. However, problems associated with trapping mechanisms of pyramid trap jar tops and jar traps likely resulted in reduced captures in baited traps. Improved trapping mechanisms must be established to develop an effective monitoring tool for stink bugs in mid-Atlantic orchards.

  18. New technological developments provide deep-sea sediment density flow insights: the Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.

    2017-12-01

    The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.

  19. Climatology of sediment flux and composition in the subarctic Northeast Pacific Ocean with biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Timothy, D. A.; Wong, C. S.; Barwell-Clarke, J. E.; Page, J. S.; White, L. A.; Macdonald, R. W.

    2013-09-01

    Sequentially sampling conical sediment traps were maintained at Ocean Station Papa (OSP; 50°N, 145°W) in the Alaska Gyre from September 1982 to June 2006. The time series began with a single trap at 3800 m and traps were added at 1000 m and 200 m in March 1983 and May 1989, respectively. A trap at 3500-3700 m also was moored 5° north of OSP from May 1990 to August 1992. Total mass, biogenic silica (BSi), calcium carbonate (CaCO3), particulate organic carbon (POC) and particulate nitrogen (PN) were routinely measured. In this paper, we develop climatologies of sediment flux and composition at OSP, describing the characteristic features for comparison to sedimentary conditions globally. We then expand our use of the climatologies to arrive at four main conclusions regarding ecology and geochemistry at OSP. Fluxes of BSi and CaCO3 at 200 m and 1000 m lag by one month the annual cycle of irradiance and arrive at 3800 m ∼16 d later, with maximum export occurring several months later for POC. Next, the annual cycle of BSi flux shows that diatom production in late winter and spring is higher than indicated by spring decline of surface nutrients. We then show that the annual cycle of POC flux implies a net community production of organic carbon (NCPOC) of 3.6-5.3 mol m-2 y-1, double estimates based on mixed layer tracers but similar to estimates unaffected by mixing. NCPOC, combined with a CaCO3:POC production ratio of 0.18 determined from trap fluxes, gives a net community production of CaCO3 (NCPIC) of 0.65-0.95 mol m-2 y-1, in agreement with CaCO3 dissolution in the water column plus abyssal CaCO3 flux. Lastly, the flux climatologies at 1000 m and 3800 m are used to infer particle transformations in the bathypelagic zone including disaggregation and remineralization. Fluxes at 3800 m are best described as the sum of a primary flux sinking rapidly and a slowly-sinking secondary flux. Disaggregation of the primary flux is the likely source of secondary fluxes, with a lithogenic component transported horizontally also reaching the 3800-m traps. A detailed description of the sampling also is provided so future experiments can benefit from the successes and failures encountered at OSP. Fluxes normalized to 2000 m are 2.7, 1.3 and 1.1 times higher than the global averages for BSi, CaCO3 and POC, respectively. The Alaska Gyre is thus a siliceous basin with unusually high calcareous fluxes. Lithogenic fluxes are minor at OSP, making this site ideal to detect dust-fall events. Fluxes of BSi and CaCO3 lag surface solar irradiance by about one month at 200 m and 1000 m, and by another ∼two weeks at 3800 m. POM is preferentially retained and recycled in the mixed layer, with maximum export occurring several months after maximum fluxes of BSi and CaCO3. Export fluxes are episodic at OSP despite perennially low chlorophyll concentrations showing little seasonality. As a result of episodically high fluxes, 40-50% of MARK7 traps with narrow sampling bottles became clogged during deployment at 3800 m. Given the common occurrence of this problem globally, traps with larger bottom orifices should become standard protocol. Sediment traps provide an excellent opportunity to test sedimentary tracers of past ocean conditions. In this regard, POC content at OSP is a poor indicator of mass or POC flux because POC is diluted by BSi and CaCO3 when mass flux is high. The annual cycle of BSi flux and a reanalysis of surface nutrient data show the spring delay in [Si(OH)4] decline, based on mixed-layer nutrient climatology, results from intense mixing in spring rather than delayed diatom growth as previously proposed. The annual cycle of POC flux, normalized to measures of net community production of organic carbon (NCPOC) in summer-fall (Emerson and Stump, 2010), implies an annual NCPOC of 3.6-5.3 mol m-2 y-1. This rate is similar to estimates of new production and of water-column OC remineralization plus deep POC flux, two equivalencies to NCPOC. It is also similar to estimates of export production at OSP made from global modeling, but it is double estimates of NCPOC based on mass balance of mixed-layer tracers. The estimate of NCPOC and a CaCO3:OC export ratio of 0.18 determined from trap data gives a net community production of CaCO3 (NCPIC) of 0.65-0.95 mol m-2 y-1 in agreement with water-column CaCO3 dissolution plus deep CaCO3 flux. The similarity between the CaCO3:POC flux ratio at 50 m and the CaCO3:POC production ratio from bottle incubations (Lipsen et al., 2007) requires that ∼70% of CaCO3 production must dissolve in the euphotic zone to match the rate of POC recycling at OSP. Flux climatologies at 1000 m and 3800 m imply sediments caught at 3800 m include a component sinking rapidly (the primary flux; ∼120-350 m d-1) and another component sinking slowly (the secondary flux; ∼10-20 m d-1). A mass-balance model finds that secondary fluxes contribute ∼40% to the annual mass flux at 3800 m. Based on compositional evidence and on the arrival times at 3800 m, the secondary flux likely derives from disaggregated primary fluxes with an additional lithogenic component transported horizontally to the bathypelagic zone at OSP. Remineralization of BSi, CaCO3, OC and N estimated from decreasing flux with depth in the bathypelagic zone agrees with estimates for the Pacific Ocean based on water-column tracers provided trapping efficiency at 1000 m is 0.6-0.8 and at 3800 m is 1. Alternatively, the estimates based on tracers may include a component of seafloor remineralization. In this case, remineralization in the water column at OSP is at least 30-45% of the remineralization determined by tracers, with the remainder occurring at the seafloor.

  20. Periplatform carbonate flux in the northern Bahamas

    NASA Astrophysics Data System (ADS)

    Pilskaln, Cynthia H.; Neumann, A. Conrad; Bane, John M.

    1989-09-01

    In a preliminary effort to quantify the off-bank transport and vertical flux of shallow-water carbonates, a sediment trap was moored at 500 m in Northwest Providence Channel, northern, Bahamas. Two months of particulate flux data collected during a fair-weather, storm-free period revealed that the flux components differed significantly from that of the underlying sediments. Planktonic foraminifera tests, pteropod shells, fragments and coccoliths contributed 61% to the total flux of carbonate material, whereas bank-derived carbonates constituted 39%. Coccolith calcite represented half of the carbonate mass flux in the fine size fraction (< 63 μm) of the trap material. In contrast, the underlying periplatform ooze sediments consist of 80% bank-derived and 20% planktonic carbonate components. The results suggest that the flux and deposition of bank-derived carbonates in the periplatform environment are variable on a temporal scale, where a relatively minor proportion of bank-derived components is deposited during calm, storm-free periods, with the balance delivered during the passage of frequent, low-amplitude seasonal storms and occasional hurricanes.

  1. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Gardner, Wilford D.; Richardson, Mary Jo; Smith, Walker O.

    The standing stock of particulate organic carbon (POC) was determined during five cruises in the Ross Sea in 1996 and 1997 and compared with primary production of carbon measured in short-term 14C-incubations and the flux of organic carbon collected in moored sediment traps. POC concentrations were estimated from transmissometer profiles that were calibrated with discrete POC bottle samples from each cruise. The mean standing stock of POC integrated to a depth of 100 m and averaged along a 330 km transect at 76.5°S in mid-October (early spring) was only 240 mmol C m -2, but more than doubled to 560 mmol C m -2 10 days later. By mid-January (summer) the standing stock had increased by an order of magnitude to ˜5300 mmol C m -2, but dropped to 3500 mmol C m -2 one week later. By late April (autumn), the standing stock was only 200 mmol C m -2. The following spring the standing stock increased from 700 mmol C m -2 in late November to 2200 mmol C m -2 in early December. Despite the high standing stock in the photic zone in summer, 1997, little POC was collected in the moored sediment traps until late summer (February-March) when the traps showed an increase in POC and silica flux. A three-fold increase in POC flux occurred in autumn (March-April) dominated by pteropods, but the standing stock of POC in the photic zone at that time was very low. Light-scattering sensor data suggest that, although present in all seasons, aggregates were most abundant in autumn and were distributed throughout the water column. These aggregates may have temporarily stored POC and provided food support for a pteropod population that died and settled into the traps in March-April. Still, the trap POC flux was only 5% of the peak standing stock. Resuspension and lateral advection of recently settled organic matter from a nearby topographic high may explain the larger flux measured in the deep sediment traps, a flux that continued into winter.

  2. Deltas as Ecomorphodynamic Systems: Effects of Vegetation Gradients on Sediment Trapping and Channel Dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Goggin, H.

    2014-12-01

    Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important factor in determining how channel behavior may change.

  3. 50 CFR 300.108 - Vessel and gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... enforcement or inspection vessel, and on an appropriate weather deck so that it is visible from the air. (2... harvesting vessel must ensure that deployed longlines, strings of traps or pots, and gillnets are marked at...

  4. 50 CFR 300.108 - Vessel and gear identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... enforcement or inspection vessel, and on an appropriate weather deck so that it is visible from the air. (2... harvesting vessel must ensure that deployed longlines, strings of traps or pots, and gillnets are marked at...

  5. Monsoon control on trace metal fluxes in the deep Arabian Sea

    NASA Astrophysics Data System (ADS)

    Nair, T. M. Balakrishnan

    2006-08-01

    Particulate fluxes of aluminium, iron, magnesium and titanium were measured using six time-series sediment traps deployed in the eastern, central and western Arabian Sea. Annual Al fluxes at shallow and deep trap depths were 0.47 and 0.46 g m-2 in the western Arabian Sea, and 0.33 and 0.47 g m-2 in the eastern Arabian Sea. There is a difference of about 0.9-1.8 g m-2y-1 in the lithogenic fluxes determined analytically (residue remaining after leaching out all biogenic particles) and estimated from the Al fluxes in the western Arabian Sea. This arises due to higher fluxes of Mg (as dolomite) in the western Arabian Sea (6-11 times higher than the eastern Arabian Sea). The estimated dolomite fluxes at the western Arabian Sea site range from 0.9 to 1.35gm-2y-1. Fe fluxes in the Arabian Sea were less than that of the reported atmospheric fluxes without any evidence for the presence of labile fraction/excess of Fe in the settling particles. More than 75% of Al, Fe, Ti and Mg fluxes occurred during the southwest (SW) monsoon in the western Arabian Sea. In the eastern Arabian Sea, peak Al, Fe, Mg and Ti fluxes were recorded during both the northeast (NE) and SW monsoons. During the SW monsoon, there exists a time lag of around one month between the increases in lithogenic and dolomite fluxes. Total lithogenic fluxes increase when the southern branch of dust bearing northwesterlies is dragged by the SW monsoon winds to the trap locations. However, the dolomite fluxes increase only when the northern branch of the northwesterlies (which carries a huge amount of dolomite accounting 60% of the total dust load) is dragged, from further north, by SW monsoon winds. The potential for the use of Mg/Fe ratio as a paleo-monsoonal proxy is examined.

  6. Monitoring sediment production from forest road approaches to stream crossing in the Virginia Piedmont

    Treesearch

    Kristopher R. Brown; W. Michael Aust; Kevin J. McGuire

    2015-01-01

    Reopening of abandoned legacy roads is common in forest operations and represents a reduced cost in comparison to new road construction. However, legacy roads may have lower road standards and require additional best management practice (BMP) implementation upon reopening to protect water quality. Silt fences and elevation measurements of trapped sediment were used to...

  7. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Treesearch

    Matthew J. Helmers; Xiaobo Zhou; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer; Richard M. Cruse

    2012-01-01

    Twelve small watersheds in central Iowa were used to evaluate the eff ectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips)...

  8. Flow pathways and sediment trapping in a field-scale vegetative filter

    Treesearch

    M. J. Helmers; D. E. Eisenhauer; Mike G. Dosskey; T. G. Franti; J. M. Brothers; M. C. McCullough

    2005-01-01

    Vegetative filters (VF) are a best management practive installed in many areas to control sediment movement to water bodies. It is commonly assumed that runoff proceeds perpendicularly across a VF as sheet flow. However, there is little research information on natural pathways of water movement and performance of field-scale VF. The objectives of this study were: (1)...

  9. The geomorphic influences of beaver dams and failures of beaver dams

    NASA Astrophysics Data System (ADS)

    Butler, David R.; Malanson, George P.

    2005-10-01

    Uncounted millions of beaver ponds and dams existed in North America prior to European contact and colonization. These ponds acted as sediment traps that contained tens to hundreds of billions of cubic meters of sediment that would otherwise have passed through the fluvial system. Removal of beavers by overtrapping in the 16th-19th centuries severely reduced their number and the number of ponds and dams. Dam removal altered the fluvial landscape of North America, inducing sediment evacuation and entrenchment in concert with widespread reduction in the wetlands environments. Partial recovery of beaver populations in the 20th century has allowed reoccupation of the entirety of the pre-contact range, but at densities of only one-tenth the numbers. Nevertheless, modern beaver ponds also trap large volumes of sediment in the high hundred millions to low billions of cubic meters range. Failure of beaver dams is a more common phenomenon than often assumed in the literature. During the past 20 years, numerous cases of dam failure have been documented that resulted in outburst floods. These floods have been responsible for 13 deaths and numerous injuries, including significant impacts on railway lines.

  10. A method to quantify and value floodplain sediment and nutrient retention ecosystem services

    USGS Publications Warehouse

    Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna

    2018-01-01

    Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.

  11. Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone

    NASA Astrophysics Data System (ADS)

    Rigual Hernández, Andrés S.; Flores, José A.; Sierro, Francisco J.; Fuertes, Miguel A.; Cros, Lluïsa; Trull, Thomas W.

    2018-03-01

    The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001-2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001-2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December-February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2-5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.

  12. An Eulerian-Lagrangian description for fluvial coarse sediment transport: theory and verification with low-cost inertial sensors.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios

    2017-04-01

    Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. One reference frame descriptions (Eulerian or Lagrangian) yield useful results but restrict the theoretical understanding of the process as differences between the two phases (liquid and solid) are not explicitly accounted. Recently, affordable Inertial Measurement Units (IMUs) that can be embedded in coarse (100 mm diameter scale) natural or artificial particles became available. These sensors are subjected to technical limitations when deployed for natural sediment transport. However, they give us the ability to measure for the first time the inertial dynamics (acceleration and angular velocity) of moving sediment grains under fluvial transport. Theoretically, the assumption of an ideal (IMU), rigidly attached at the centre of the mass of a sediment particle can simplify greatly the derivation of a general Eulerian-Lagrangian (E-L) model. This approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. Simplified versions of the E-L model have been evaluated in laboratory experiments using real-IMUs [Maniatis et. al 2015]. Here, experimental results are presented relevant to the evaluation of the complete E-L model. Artificial particles were deployed in a series of laboratory and field experiments. The particles are equipped with an IMU capable of recording acceleration at ± 400 g and angular velocities at ± 1200 rads/sec ranges. The sampling frequency ranges from 50 to 200 Hz for the total IMU measurement. Two sets of laboratory experiments were conducted in a 0.9m wide laboratory flume. The first is a set of entrainment threshold experiments using two artificial particles: a spherical of D=90mm (A) and an ellipsoid with axes of 100, 70 and 30 mm (B). For the second set of experiments, a spherical artificial enclosure of D=75 mm (C) was released to roll freely in a (> threshold for entrainment) flow and over surfaces of different roughness. Finally, the coarser spherical and elliptical sensor- assemblies (A and B) were deployed in a steep mountain stream during active sediment transport flow conditions. The results include the calculation of the inertial acceleration, the instantaneous particle velocity and the total kinetic energy of the mobile particle (including the rotational component using gyroscope measurements). The comparison of the field deployments with the laboratory experiments suggests that E-L model can be generalised from laboratory to natural conditions. Overall, the inertia of individual coarse particles is a statistically significant effect for all the modes of sediment transport (entrainment, translation, deposition) in both natural and laboratory regimes. Maniatis et. al 2015: "Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements", J. Hydraulic Engineering, 04016097

  13. Off shore wind farms change the benthic pelagic coupling in the Belgian Part of the North Sea

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, Jan; Coates, Delphine; Braeckman, Ulrike; Soetaert, Karline; Moens, Tom

    2016-04-01

    Since Europe enforced renewable energy target figures upon its member states through the implementation of two main European Directives 11 2001/77/EC and 2009/28/EC, the development of offshore wind farms (OWF) has accelerated. Belgium installed OWFs on sandbanks, characterized by permeable sediments, low in organic matter content and a species-poor macrofaunal community with species occurring in low densities. A detailed monitoring campaign in the immediate vicinity of a wind turbine (1-200m), revealed a significant decrease in median grain size and permeability, coinciding with a 6-fold increase in organic matter content. The observed fining of the sediment is explained by an altered benthic-pelagic coupling in the area. The wind turbines are colonized by an abundant fouling community producing high amounts of detritus and faeces, a continuous additional source of organic matter. The changes in sediment composition, and the availability of additional organic matter resulted in drastic increase in macrofaunal densities (from 1390 ind m-2 to 18600 ind m-2), and a change from a species-poor community to a species-rich community dominated by the ecosystem engineer Lanice conchilega. Large densities of L. conchilega, as observed in our samples, are known to trap fine material from the water column, which can result in a further decrease of sediment permeability in the vicinity of the wind turbines. A preliminary experiment, where permeable sediments were subjected to artificial fining, showed a decreased penetration depth of advective water currents and a reduced trapping of diatoms by the sediment in finer sediments. Additionally, sediment community oxygen consumption rates, and efflux of NH4+ from the sediment, measured after a simulated phytoplankton bloom, decreased significantly when sediment permeability was reduced. We hypothesize that the combination of the altered macrofaunal community composition, together with the changes in the physical properties of the sediment matrix, will lead to a change in the biogeochemical properties of the sediment: highly reactive permeable sediments, poor in organic matter will shift towards sediment where organic matter will accumulate. Degradation of organic matter will then no longer be governed by physical processes, but mediated by biological processes (bioturbation, bio-irrigation).

  14. The Successful Deployment of a New Sub-Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lado Insua, T.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Iturrino, G. J.; Masterson, W. A.; Furman, C. R.; Klaus, A.; Storms, M.; Attryde, J.; Hetmaniak, C.; Huey, D.

    2013-12-01

    The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new ocean observatory instrument designed to study dynamic processes in the sub-seafloor. The first SCIMPI prototype comprises nine modules that collect time series measurements of temperature, pressure and electrical resistivity of sediments at pre-selected depths below seafloor. These modules are joined in an array by flexible cables. Floats are attached to the cables of the system to keep the cabling taught against the weight of a sinker bar at the bottom of the string. The system was designed for deployment through drillpipe using D/V JOIDES Resolution. SCIMPI is designed for sediments that will collapse around the observatory after deployment. After five years in development, SCIMPI was successfully deployed within the NEPTUNE Canada observatory in May 2013. The IODP Expedition 341S took place on the Cascadia Margin. The deployment Site U1416 is within an active gas hydrate vent field. Spacing of SCIMPI modules was tailored to measure parameters in the accreted sediment and above and below the Bottom Simulating Reflector (BSR). The location of the modules was dimensioned based on a multivariate analysis of physical properties derived from IODP boreholes located nearby. Members of the SCIMPI team, science party, technical support, crew and participants of the School of Rock assembled the instrument on deck during the days leading up to the deployment. During deployment, SCIMPI was connected to the Multi-Function-Telemetry-Module (from LDEO) and was lowered through drillpipe on the wireline logging cable. SCIMPI communicated data to a shipboard computer until its release, providing assurance that measurements were active on all sensors. The observatory was released with the Electronic Release System (ERS) and the drillpipe was pulled out of the borehole. A camera system was used to check on the installation immediately after deployment. An Ocean Networks Canada expedition revisited the site a month later to assess the borehole collapse around SCIMPI. Its four year battery life will allow SCIMPI to record data on its command module while waiting to be connected to the NEPTUNE Canada observatory in 2014. The modular design of SCIMPI allows adapting its configuration for different situations and environments. SCIMPI is now available for exploring other dynamic sub-seafloor settings in future expeditions.

  15. In-stream wetlands and their significance for channel filling and the catchment sediment budget, Jugiong Creek, New South Wales

    NASA Astrophysics Data System (ADS)

    Zierholz, C.; Prosser, I. P.; Fogarty, P. J.; Rustomji, P.

    2001-06-01

    Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km 2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands. Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km 2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.

  16. Note: A 3D-printed alkali metal dispenser

    NASA Astrophysics Data System (ADS)

    Norrgard, E. B.; Barker, D. S.; Fedchak, J. A.; Klimov, N.; Scherschligt, J.; Eckel, S.

    2018-05-01

    We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The source's outgassing rate is measured to be 5(2) × 10-7 Pa L s-1 at a temperature T = 330 °C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads ≈107 7Li atoms in the trap in ≈1 s. The loaded source weighs 700 mg and is suitable for a number of deployable sensors based on cold atoms.

  17. Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods

    PubMed Central

    Springer, Yuri P.; Taylor, Jeffrey R.; Travers, Patrick D.

    2015-01-01

    Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. PMID:26160803

  18. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the potential population variability of this relatively new invasive species and the possible management strategies.

  19. Study of phosphate release from Bogor botanical gardens’ sediment into pore water using diffusive gradient in thin film (DGT)

    NASA Astrophysics Data System (ADS)

    Tirta, A. P.; Saefumillah, A.; Foliatini

    2017-04-01

    Eutrophication is one of the environmental problems caused by the excessive nutrients in aquatic ecosystems. In most lakes, phosphate is a limiting nutrient for algae photosynthesis. Even though the concentration of phosphate from external loading into the water body has been reduced, eutrophication could still be occured due to internal mobilization of phosphate from the sediment pore water into the overlying water. Therefore, the released phosphate from sediments and their interaction in the pore water must be included in the monitoring of phosphate concentration in aquatic system. The released phosphate from sediment into pore water has been studied by DGT device with ferrihydrite as binding gel and N-N‧-methylenebisacrylamide as crosslinker. The results showed that DGT with 15% acrylamide; 0.1 % N-N‧-methylenebisacrylamide and ferrihydrite as binding gel was suitable for the measurement of the released phosphate from sediment into pore water. The result of the deployed DGT in oxic and anoxic conditions in seven days incubation showed the released phosphate process from the sediment into pore water was affected by incubation time and the existence of oxygen in the environment. The released phosphate from the sediment into pore water in anoxic condition has a higher value than oxic condition. The experimental results of the deployed DGT in natural sediment core at a depth of 1 to 15 cm from the surface of the water for 7 days showed that the sediment has a different phosphate mass profile based on depth. The concentration of phosphate tends to be increased with depth. The maximum CDGT of phosphate released in oxic and anoxic conditions at 7th day period of incubation are 29.23 μg/L at 14 cm depth and 30.19 μg/L at 8 cm depth, respectively.

  20. 50 CFR 600.503 - Vessel and gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the air. (2) The operator of each FFV not assigned an IRCS, such as a small trawler associated with a... deployed longlines, strings of traps or pots, and gillnets are marked at the surface at each terminal end...

  1. 50 CFR 600.503 - Vessel and gear identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the air. (2) The operator of each FFV not assigned an IRCS, such as a small trawler associated with a... deployed longlines, strings of traps or pots, and gillnets are marked at the surface at each terminal end...

  2. Impact of the tidal power dam in the Rance estuary: geomorphological changes, hydrosedimentary processes and reconstructions plans

    NASA Astrophysics Data System (ADS)

    Susperregui, A.

    2010-12-01

    The Rance basin (France) offers potential to make a full-scale assessment of the environmental impact of a tidal power station after 50 years of operation. Consequences on biology, hydrodynamics and sedimentology were observed and nowadays, some of these changes are still acting on the natural system. The tidal dynamic was completely artificialised by the dam construction. The two main consequences are the reduction of exundation area and the extension of slack duration. Sedimentary dynamic depending on hydrodynamics conditions, changes in sediment distribution were also observed. Before the tidal power station construction, sands lined the gravel bed channel, recovered the bottom and formed beaches and banks. Coves and the upstream part of the estuary were dominated by a fine sedimentation, forming mudflats in a classical configuration slikke/schorre. Nowadays, mudflats extended to the center of the basin and all coves are occupied. The important inertia induced by the slack extension caused a slowing down on currents velocities, making easier the fine suspension deposit. The siltation is most important upstream, were the turbidity maximum was shifted, generating problems for navigation and banks access. A solution of sediment management was envisaged from 2001, by the digging of a sediments trap of 91 000 m3, near the Châtelier Lock. Sedimentation monitoring in this trap shows an intense filling over the first two years of functioning, then a slowing down leading to a complete filling from 2005. This trap also showed a beneficial interest on the sedimentation rates of the mudflats closed to it, which decreased. To understand how fine sediment is eroded and transported into this maritime area, an optical backscatter sensor was installed 1.5 km upstream of the tidal power station. During spring tides, the tidal power station functions in a “double-acting” cycle. This particular working leads to an important increase of turbidity during the artificial tidal cycle. Currents seem very strong close to the turbines and are responsible for intense bottom erosion in their area, as it is observed in the most downstream mudflat. The importance of flood currents versus ebb ones, combined to slack extension, explain the upstream sediments fluxes. But we cannot assume for the moment that is the only fine sediment source. A second turbidimeter is installed on the oceanic front of the dam to determine if there is a coastal contribution and results will be dealt soon. Figure 2: Example of turbidity raise during a “double-acting” cycle.

  3. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.

    2013-05-01

    A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.

  4. Distribution of Ra isotopes and the 210Pb and 210Po balance in surface seawaters of the mid Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Dobashi, Fumi; Kato, Yoshihisa; Yamamoto, Yoshiyuki

    1998-08-01

    210Po, 210Pb, 228Ra, and 226Ra were measured in surface sea waters along the 1989-1990 global traverse of the oceans using the new R.V. Hakuho-Maru. Where the traverse intersects other expedition routes, the data are generally confirmatory. In the high-productivity regimes like the Red Sea, and the Arabian Sea 210Po is removed from the mixed layer at much faster rates than 210Pb. This fractionation occurs during scavenging presumably because 210Po is strongly sorbed by organic particles, whereas 210Pb is more likely associated with inorganic detritus. The 210Po/ 210Pb activity ratios leaving the mixed layer by particulate transport can be estimated from the steady state balance of 210Pb and 210Po in the surface waters for different oceanic regions, and are compared with those in the literature obtained by sediment-trap experiments. Although this comparison appears to merge, there exist some inconsistencies, which may be attributable to one of the following possibilities: (1) the model-derived atmospheric 210Pb flux is overestimated for the North Pacific and the North Atlantic, or (2) the sediment-trap data do not represent the real 210Po/ 210Pb ratio in the vertical particulate flux due to some experimental artifacts, such as incomplete trapping and size fractionation. Further careful studies of sediment trapping including seasonal variation are needed to resolve this issue. Our Ra data confirmed that strong sources for 228Ra exist in the Bay of Bengal and the Southeast Asian continental shelf zone, whereas the Mediterranean and the Red Sea, though they are surrounded by land, are not effective sources of 228Ra in the surface water.

  5. Advances in Field Deployable Instrumented Particles for the Study of Alluvial Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Dillon, B.; Strom, K.

    2017-12-01

    Advances in microelectromechanical systems (MEMs) in the past decade have lead to the development of various instrumented or "smart" particles for use in the study of alluvial transport. The goal of many of these devices is to collect data on the interaction between hydrodynamic turbulence and individual sediment particles. Studying this interaction provides a basis to better understand entrainment and deposition processes which leads to better predictive morphologic and transport models. In collecting data on these processes, researchers seek to capture the time history of the forces incident on the particle and the particle's reaction. Many methods have been employed to capture this data - miniaturized pressure traps, accelerometers, gyroscopes, MEMs pressure transducers, and cantilevered load cells. However no system to date has been able to capture the pressure forces incident on the particle and its reaction while remaining mobile and of a size and density comparable to most gravels. Advances in the development, deployment, and use of waterproofed laboratory instrumentation have led our research group to develop such a particle. This particle has been used in both laboratory settings and large-scale fluvial environments (coupled with a field-deployable PIV system) to capture data on turbulent erosion processes. This system advances the practice in several ways: 1) It is, at present, the smallest (⌀ 19mm) instrumented erodible particle reported in the literature. 2) It contains novel developments in pressure sensing technology which allow the inclusion of six pressure ports, a 3-axis accelerometer, and a 1-axis gyroscope - all of which can be recorded simultaneously. 3) It expands the researcher's abilities to gather data on phenomena that, previously, have mandated the use of a laboratory scale model. The use of this system has generated observations of the so-called very large scale motions (VLSMs) in a reach of the Virginia section of the New River. Their effects on erosional processes are presented.

  6. Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.

    2014-12-01

    In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary results from this study demonstrate the biogeomorphic relationships between hydrologic regime, vegetation establishment, and sediment storage within the MRB. An understanding of these relationships will aid in development and implication of management actions necessary to address sediment related impairments in the MRB.

  7. Magnitude and variability of Holocene sediment accumulation in Santa Monica Bay, California

    USGS Publications Warehouse

    Sommerfield, C.K.; Lee, H.J.

    2003-01-01

    The spatial variability of Holocene (past 10,000 years) sediment accumulation in Santa Monica Bay (California) was examined to identify controls sediment trapping in a bathymetrically complex coastal embayment and to provide geologic context for the post-industrial sedimentary record and associated pollution gradients. Sediment chronologies based on downcore AMS 14C dates were used to quantify long-term (millennia) accumulation rates in an effort to elucidate particle-transport pathways and sinks. Sediment accumulation rates for the full range of bayfloor environments (50-630 m water depths) range from 22 to 102 mg/cm2/year (15-88 mm/100 year), have an overall mean of 51??21 mg/cm2/year (1??, n=11), and are comparable to rates reported for adjacent borderland basins. Maximal accumulation rates on the Malibu shelf and within a reentrant to Redondo canyon are interpreted to reflect (1) proximity to sediment sources and (2) localized oceanographic and topographic conditions conducive to sediment trapping and deposition. The 14C-derived accumulation rates are 2-10 times lower than rates determined through 210Pb geochronology for the same sites in a related study, revealing that Holocene sediment accumulation has been non-steady-state. Santa Monica Bay is an important sink for suspended matter; averaged over the past several millennia a mass of sediment equivalent to 10-80% of the modern annual river supply is sequestered yearly. Net influx of suspended matter derived from the adjacent Palos Verdes shelf is evinced by a concentration gradient of p,p???-DDE in bayfloor sediments, whereas the distribution of anthropogenic silver suggests transport from Santa Monica shelf to the southeastern boundary of the bay. The results of this study provide new insight to the long-term fates of particulate matter in Los Angeles coastal waters. ?? 2003 Elsevier Science Ltd. All rights reserved.

  8. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  9. Production Biology of Phytoplankton

    DTIC Science & Technology

    1999-09-30

    the publishing house, Universities Press (India) in Hyderabad ( Deccan ). New title: Breeding, Growth Rates, and Production of Marine Copepods. The...into sediment traps at 3 km depth indicate an onset of high primary production very soon after the arrival of the SWM and suggest a long open-sea...into the traps is disconcerting. For future modeling of plankton production in the open Arabian Sea, the use of two size classes of phytoplankton is

  10. Oscillatory erosion and transport flume with superimposed unidirectional flow

    DOEpatents

    Jepsen, Richard A.; Roberts, Jesse D.

    2004-01-20

    A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.

  11. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    USGS Publications Warehouse

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  12. Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.

    2009-01-01

    Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.

  13. In-situ geotechnical investigation of sediment dynamics over `The Bar', Raglan, New Zealand

    NASA Astrophysics Data System (ADS)

    Stark, N.; Greer, D.; Phillips, D. J.; Borrero, J. C.; Harrison, S.; Kopf, A.

    2010-12-01

    The geotechnical characteristics of surficial sediments on a highly mobile, N-S-oriented ebb tidal shoal (‘The Bar’) near the entrance to Whaingaroa Harbour, in Raglan, NZ, were investigated using the dynamic penetrometer Nimrod, which is suitable for deployments in areas characterized by strong currents and active wave climate common to this site. Vertical sediment strength, based upon penetrometer deceleration and a quasi-static bearing capacity equivalent, was profiled at 23 positions along as well as in the vicinity of ‘The Bar’ during slack water. Recently deposited or loose sediment was detected as a top layer of lower sediment strength (quasi-static bearing capacity equivalent [qs. bc.] < 10 kPa) over a stiff substratum (mean maximum qs. bs. ~ 105 kPa), and quantified (thickness: 0 - 7 cm) indicating areas of sediment accumulation and areas of sediment erosion. These results were correlated to mean current velocities and directions predicted by ASR Ltd.’s Whaingaroa Harbour Model. In relation to sediment dynamics, ‘The Bar’ area can be divided into different zones: (i) the channel connecting ‘The Bar’ to the harbor, (ii) the southern arm, (iii) the mid-section, (iv) the northern arm, and (v, vi) the northern and southern wings covering the area between ‘The Bar’ and the shore. The channel is characterized by high current velocities (up to 1.7 m/s) along the W-E-axis, suggesting strong sediment erosion and no (re-)deposition. However, despite the high mean current velocities, the penetrometer results hint at sediment deposition. This is most likely explained by the deep trench in the channel that could trap sediment. Comparing the northern and the southern wing, the currents follow the bathymetry and coastline alignment and are mirrored at the W-E-axis, but the mean current velocities are higher at the southern wing (northern wing: up to 0.4 m/s; southern wing: up to 0.6 m/s). The penetrometer results suggest strong sediment erosion on the southern wing (qs. bc. up to 155 kPa, top layer thickness ~ 2 cm), and show no evidence of sediment remobilization on the northern wing (no layering). On the northern and southern arms, low currents (~ 0.3 m/s) with very mixed directions were predicted. In front (west) of the most southern corner an area of strong sediment accumulation was localized following the penetrometer results (top layer thickness: 7 cm). This leads to the hypothesis that in the ebb-shoal system at Whaingaroa Harbour, mobile sediment is mainly transported via the southern wing of the ‘The Bar’ potentially leading to an increase of sediment erosion in this area due to effects like sanding. Sediment deposition might occur in the trench of the channel as well as in the vicinity of the southernmost portion of the sandbar. This matches observations according to which the southern arm shifted about 220 m whereas the northern arm only moved 20 m within one year. The in-situ penetrometer as well as the numerical results compare favorably with observations of ‘The Bar’s morphology. Both methods provide valuable insights which enhance our understanding of the sediment dynamics in this area.

  14. Extreme Event impacts on Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic

    2013-04-01

    The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.

  15. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments. Phase 3

    DTIC Science & Technology

    2015-08-01

    boundary layer and xPE is the PE thickness (cm). For passive samplers deployed in the sediment bed , the HOC uptake kinetics is also a function of...in sediment beds using performance reference compounds (PRCs) (Adams, Lohmann et al. 2007, Tomaszewski and Luthy 2008, Fernandez, MacFarlane et al...version program was tested for user-friendliness as well as performance. Any reported bugs were fixed, and suggestions on the user-friendliness were

  16. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  17. Mg/Ca of planktonic foraminifer Pulleniatina obliquiloculata as a thermocline temperature proxy: results from sediment trap experiments in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Sagawa, T.; Saito, T.; Irino, T.

    2017-12-01

    Multi-species approach of planktonic foraminiferal Mg/Ca thermometry has been applied to marine sediments to reconstruct past change of the upper ocean thermal structure. Depth of thermocline and thickness of mixed layer depth in the western equatorial Pacific are of particular interest in terms of the relationship between global climate and ocean heat content in that region. One of questions arising from this approach is which species and calibration are suitable for reconstructing thermocline temperature variations in the past. Knowledge about depth habitat and response of shell Mg/Ca to temperature change is essential to answer this question. Sediment trap experiment has great advantages that allow evaluating seasonal and inter-annual variation of depth habitat of planktonic foraminifera in natural environment. In this study, we analyzed stable isotopes and Mg/Ca of Pulleniatina obliquiloculata collected by two sediment traps moored on the equator in the western and central Pacific during 1999-2002. We estimated habitat depth by comparing the calcification temperature, which is calculated from oxygen isotope, and instrumental data collected by moored buoys in the studied region. The estimated habitat depth of P. obliquiloculata is 100-150 m, which corresponds to the upper thermocline in this region. The habitat depth in western site (175E) is slightly deeper than central Pacific site (160W), probably reflecting thicker mixed layer and deeper thermocline in the western site. Although relationship between Mg/Ca and δ18O-derived calcification temperature is not statistically significant, Mg/Ca values give reasonable temperatures for the upper thermocline when calculated using calibration of Anand et al. (2003). The results of this study confirms the potential of P. obliquiloculata Mg/Ca as a thermocline temperature proxy.

  18. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific

    NASA Astrophysics Data System (ADS)

    Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.

    2008-07-01

    Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276-312, doi:10.1016/j.pocean.2006.10.007]. Very few data have been obtained from the mesopelagic zone where the majority of carbon remineralization occurs and the attenuation of the sinking flux is determined. Here, we report sinking rates from ˜300 m depth for the subtropical (station ALOHA, June 2004) and subarctic (station K2, July 2005) North Pacific Ocean, obtained from short (6.5 day) deployments of an indented rotating sphere (IRS) sediment trap operating as an in situ settling column [Peterson, M.L., Wakeham, S.G., Lee, C., Askea, M.A., Miquel, J.C., 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography Methods 3, 520-532] to separate the flux into 11 sinking-rate fractions ranging from >820 to >2 m d -1 that are collected by a carousel for further analysis. Functioning of the IRS trap was tested using a novel programming sequence to check that all particles have cleared the settling column prior to the next delivery of particles by the 6-hourly rotation cycle of the IRS. There was some evidence (from the flux distribution among the cups and photomicroscopy of the collected particles) that very slow-sinking particles may have been under-collected because they were unable to penetrate the brine-filled collection cups, but good evidence for appropriate collection of fast-settling fractions. Approximately 50% of the particulate organic carbon (POC) flux was sinking at greater than 100 m d -1 at both stations. At ALOHA, more than 15% of the POC flux sank at >820 m d -1, but low fluxes make this uncertain, and precluded resolution of particles sinking slower than 137 m d -1. At K2, less than 1% of the POC flux sank at >820 m d -1, but a large fraction (˜15-45%) of the flux was contributed by other fast-sinking classes (410 and 205 m d -1). PIC and BSi minerals were not present in higher proportions in the faster sinking fractions, but the observations were too limited to rule out a ballasting contribution to the control of sinking rates. Photographic evidence for a wide range of particle types within individual sinking-rate fractions suggests that biological processes that set the porosity and shape of particles are also important and may mask the role of minerals. Comparing the spectrum of sinking rates observed at K2 with the power-law profile of flux attenuation with depth obtained from other VERTIGO sediment traps deployed at multiple depths [Buesseler, K.O., Lamborg, C.H., Boyd, P.W., Lam, P.J., Trull, T.W., Bidigare, R.R., Bishop, J.K.B., Casciotti, K.L., Dehairs, F., Elskens, M., Honda, M., Karl, D.M., Siegel, D., Silver, M., Steinberg, D., Valdes, J., Van Mooy, B., Wilson, S.E., 2007b. Revisiting carbon flux through the Ocean's twilight zone. Science 316(5824), 567-570, doi: 10.1126/science.1137959] emphasizes the importance of particle transformations within the mesopelagic zone in the control of carbon transport to the ocean interior.

  19. Evaluating a portable cylindrical bait trap to capture diamondback terrapins in salt marsh

    USGS Publications Warehouse

    Henry, Paula F.; Haramis, G. Michael; Day, Daniel D.

    2016-01-01

    Diamondback terrapins (Malaclemys terrapin) are currently in decline across much of their historical range, and demographic data on a regional scale are needed to identify where their populations are at greatest risk. Because terrapins residing in salt marshes are difficult to capture, we designed a cylindrical bait trap (CBT) that could be deployed in shallow tidal waters. From 2003 to 2006, trials were conducted with CBTs in the Chesapeake Bay, Maryland (USA) to determine terrapin sex, size, and age distribution within 3 salt marsh interior habitats—open bays, tidal guts, and broken marshes—using 15 traps/habitat. Analyses based on 791 total captures with CBTs indicate that smaller terrapins, (i.e., adult male and subadult) were more prevalent within the transecting tidal guts and broken marshes, whereas the adult females were more evenly distributed among habitats, including open bays. Subadult females made up the largest percent of catch in the CBTs deployed within the 3 marsh interior habitats. During a 12-day trial in which we compared capture performance of CBTs and modified fyke nets along open shorelines during the nesting season, fyke nets outperformed CBTs by accounting for 95.2% of the 604 terrapin captures. Although the long drift leads of the fyke nets proved more effective for intercepting along-shore travel of adult female terrapins during the nesting season, CBTs provided a more effective means of live-trapping terrapins within the shallow interior marshes.

  20. Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Bauerfeind, E.; Nöthig, E.-M.; Pauls, B.; Kraft, A.; Beszczynska-Möller, A.

    2014-04-01

    Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200-300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from < 20 to ~ 870 specimen m- 2 d- 1 in the years 2000-2009, being lower during the period 2000-2006. At the beginning of the time series, pteropods were dominated by the cold-water-adapted L. helicina, whereas the subarctic boreal L. retroversa was only occasionally found in large quantities (> 50 m- 2 d- 1). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11-77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes.

  1. Comparisons of boll weevil (Coleoptera: Curculionidae) pheromone traps with and without kill strips.

    PubMed

    Suh, C P C; Armstrong, J S; Spurgeon, D W; Duke, S

    2009-02-01

    Boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), eradication programs typically equip pheromone traps with an insecticide-impregnated kill strip. These strips are intended to kill captured insects, thereby simplifying trap servicing and reducing the loss of weevils from predation and escape. However, the effectiveness of kill strips has not been extensively evaluated. We examined the influences of kill strips on weevil captures, trap servicing, and the incidences of weevil predation and trap obstruction (e.g., by spider webs). Evaluations were conducted weekly during three different production periods (pre- to early-, late-, and postseason) of cotton, Gossypium hirsutum L., to represent different environmental conditions and weevil population levels. Within each period, mean weekly captures of weevils in traps with and without kill strips were statistically similar. On average, traps with kill strips took 9 s longer to service than traps without kill strips, but statistical differences were only detected during the late-season period. Overall, the mean weekly proportion of traps with evidence of weevil predation or trap obstruction was significantly lower for traps with kill strips (0.25) than for traps without kill strips (0.37). However, this reduction in the frequency of weevil predation or trap obstruction was too small to produce a corresponding increase in the numbers of weevils captured. In light of these findings, the use of kill strips is likely unnecessary in eradication programs, but may be a consideration in situations when the numbers of deployed traps are reduced and chronic problems with weevil predation or trap obstruction exist.

  2. Studying seafloor bedforms using autonomous stationary imaging and profiling sonars

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Sherwood, Christopher R.

    2014-01-01

    The Sediment Transport Group at the U.S. Geological Survey, Woods Hole Coastal and Marine Science Center uses downward looking sonars deployed on seafloor tripods to assess and measure the formation and migration of bedforms. The sonars have been used in three resolution-testing experiments, and deployed autonomously to observe changes in the seafloor for up to two months in seven field experiments since 2002. The sonar data are recorded concurrently with measurements of waves and currents to: a) relate bedform geometry to sediment and flow characteristics; b) assess hydrodynamic drag caused by bedforms; and c) estimate bedform sediment transport rates, all with the goal of evaluating and improving numerical models of these processes. Our hardware, data processing methods, and test and validation procedures have evolved since 2001. We now employ a standard sonar configuration that provides reliable data for correlating flow conditions with bedform morphology. Plans for the future are to sample more rapidly and improve the precision of our tripod orientation measurements.

  3. Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2007-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the laboratory for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  4. Underwater Microscope for Measuring Spatial and Temporal Changes in Bed-Sediment Grain Size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2006-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the lab for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in-situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  5. Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)

    NASA Technical Reports Server (NTRS)

    DeVor, Robert William

    2014-01-01

    The goal of this task order was to complete optimization and development of the Green PCB Remediation from Sediment Systems(GPRSSs) technology, culminating in the production of functioning demonstration test units which would be deployed at a suitable demonstration location. This location would be selected in conjunction with Toxicological & Ecological Associates who have entered into a SAA with NASA to partner with and further develop this technology. The GPRSSs technology was initially developed under ESC Task Order 83 with the purpose of providing a green remediation technology capable of in-situ removal and remediation of polychlorinated biphenyls (PCBs) from contaminated sediments. The core concept of the technology, a polymeric blanket capable of absorbing PCBs when in contact with contaminated sediments was then transitioned to Task Order 165 where the primary objective was to fully design and optimize a functioning test unit capable of testing the theoretical and laboratory scale concepts in a real world situation. Results from both task orders are included in this report for completeness, although Task Order 165 focused on the blanket design and the small scale field demonstration in which is currently still ongoing in Altavista, VA.

  6. Sediment and Particular Organic Carbon (POC) fluxes changes over the past decades in the Yellow River system

    NASA Astrophysics Data System (ADS)

    Lu, Xixi; Ran, Lishan

    2015-04-01

    The Yellow River system used to have very high sediment export to ocean (around 1.5 Gt/yr in the 1950s) because of severe soil erosion on the Loess Plateau. However, its sediment export has declined to <0.25 Gt/yr in recent years (in the 2000s), mainly due to human activities like construction of reservoirs and check dams and other soil and water conservations such as construction of terraces and vegetation restoration. Such drastic reduction in soil erosion and sediment flux and subsequently in associated Particular Organic Carbon (POC) transport can potentially play a significant role in carbon cycling. Through the sediment flux budget we examined POC budget and carbon sequestration through vegetation restoration and various soil and water conservations including reservoirs construction over the past decades in the Yellow River system. Landsat imageries were used to delineate the reservoirs and check dams for estimating the sediment trapping. The reservoirs and check dams trapped a total amount of sediment 0.94 Gt/yr, equivalent to 6.5 Mt C. Soil erosion controls through vegetation restoration and terrace construction reduced soil erosion 1.82 Gt/yr, equivalent to 12 Mt C. The annual NPP increased from 0.150 Gt C in 2000 to 0.1889 Gt C in 2010 with an average increment rate of 3.4 Mt C per year over the recent decade (from 2000 to 2010) through vegetation restoration. The total carbon stabilized on slope systems through soil erosion controls (12 Mt C per year) was much higher than the direct carbon sequestration via vegetation restoration (3.4 Mt C per year), indicating the importance of horizontal carbon mobilization in carbon cycling, albeit a high estimate uncertainty.

  7. Linear alkylbenzenes as tracers of sewage-sludge-derived inputs of organic matter, PCBs, and PAHs to sediments at the 106-mile deep water disposal site

    USGS Publications Warehouse

    Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.

    1996-01-01

    Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.

  8. A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    1999-01-01

    The accurate prediction of ionizing radiation exposure in low-Earth orbit is necessary in order to minimize risks to astronauts, spacecraft and instrumentation. To this end, models of the radiation environment, the AP-8 trapped proton model and the AE-8 trapped electron model, have been developed for use by spacecraft designers and mission planners. It has been widely acknowledged for some time now by the space radiation community that these models possess some major shortcomings. Both models cover only a limited trapped particle energy region and predictions at low altitudes are extrapolated from higher altitude data. With the launch of the first components of the International Space Station with numerous constellations of low-Earth orbit communications satellites now being planned and deployed, the inadequacies of these trapped particle models need to be addressed. Efforts are now underway both in the U.S. and in Europe to refine the AP-8 and AE-8 trapped particle models. This report is an attempt to collect a significant fraction of data for use in validation of trapped radiation models at low altitudes.

  9. The Seno Otway pockmark field and its relationship to thermogenic gas occurrence at the western margin of the Magallanes Basin (Chile)

    NASA Astrophysics Data System (ADS)

    Kilian, R.; Breuer, S.; Behrmann, J. H.; Baeza, O.; Diaz-Michelena, M.; Mutschke, E.; Arz, H.; Lamy, F.

    2017-12-01

    Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since 15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.

  10. Where on Earth can we find Mars? Characterization of an Aeolian Analogue in Northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Favaro, E. A.; Hugenholtz, C.; Barchyn, T.

    2017-12-01

    The Puna Plateau of northwestern Argentina is as a promising analogue for Martian aeolian processes owing to its altitude, low atmospheric pressure, aridity, and widespread granular and bedrock aeolian features. The study was conducted in and surrounding the area known as the Campo de Piedra Pómez - a prominent expanse of wind-carved ignimbrite in Argentina's Catamarca Province. To interpret the evolution of this unique laboratory, which is limited by its isolated location and dearth of in situ measurements, we investigated contemporary aeolian sediment transport through a combination of modeled meteorological data, satellite imagery, field measurements, and sediment traps. Our objective is to utilize modeled meteorological data, satellite imagery, and field measurements and samples to characterize the aeolian environment here to base analogue studies. Satellite imagery from Terra MODIS, GeoEye, and Ikonos indicate recent large-scale aeolian sediment transport events and migration of gravel in the region. A prominent, region-wide sediment transport event on 14 August 2015 coincided with synoptic-scale pressure patterns indicating a strong Zonda (Foehn) winds. Sediment traps and marbles provide additional evidence of wind-driven transport of sand and gravel. Yet, despite the body of evidence for sediment transport on the Puna Plateau, modeled wind data from the European Center for Midrange Weather Forecasting suggest wind rarely attains the speeds necessary to initiate sediment transport. This disconnect is reminiscent of the Martian Saltation Paradox which suggested winds on Mars were incapable of mobilizing sediment, despite widespread evidence from rover, lander, and satellite observations. This raises questions about: (i) the suitability of modeled wind data for characterizing aeolian processes on both planets, and (ii) the possibility that most geomorphic work is conducted in extreme, but infrequent events in this region (possibly analogous to Mars). We suggest future research should attempt to reconcile disparities between sediment transport observations and modeled wind data.

  11. The Seno Otway pockmark field and its relationship to thermogenic gas occurrence at the western margin of the Magallanes Basin (Chile)

    NASA Astrophysics Data System (ADS)

    Kilian, R.; Breuer, S.; Behrmann, J. H.; Baeza, O.; Diaz-Michelena, M.; Mutschke, E.; Arz, H.; Lamy, F.

    2018-06-01

    Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since 15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.

  12. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: annual, decadal, centennial scales

    USGS Publications Warehouse

    Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.

    2015-01-01

    The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.

  13. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    PubMed

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs <4). Most particles originate from the Rhone River. This has been confirmed by two different tracing procedures using rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  14. Seasonal Changes in the Isotopic Compositions and Sinking Fluxes of Euthecosomatous Pteropod Shells in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Fabry, V. J.; Deuser, W. G.

    1992-04-01

    Seasonal variations in the oxygen and carbon isotopic compositions and fluxes of five euthecosomatous pteropods were determined from a 14-month series of sediment trap deployments in the Sargasso Sea. Medium and large shell sizes of Styliola subula, Clio pyramidata, Limacina inflata, Creseis acicula, and Cuvierina columnella were collected throughout the sampling period. Comparisons of the δ18O of shell samples with the vertical and temporal variations in the calculated δ18O of aragonite in equilibrium with seawater suggest that these pteropods deposited the bulk of their shell mass at the following depths: S. subula and L. inflata at 50 m, C. pyramidata at 75 m, C. acicula in the upper 25 m, and C. columnella at 50-75 m. Although several of these species undergo diel vertical migration of several hundred meters in this region, the estimated depths of calcification match the upper parts of the species' vertical ranges, where the mean populations occur only at night. In all species, seasonal changes in the δ18O of shells were closely coupled to those of equilibrium δ18O for aragonite, suggesting that most of the shell mass of these individuals was formed within several months. Flux-weighted, mean δ18O values for the species reveal that seasonal variations in the sinking fluxes of shells would not affect the isotopic compositions of shell accumulations in Bermuda Rise sediments. Carbon and oxygen isotopes were positively correlated in all species except C. columnella, which suggests that temperature may influence the δ13C of the shells of these species.

  15. Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow

    PubMed Central

    Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf

    2014-01-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  16. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  17. Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin.

    PubMed

    Yan, Hexiang; Lipeme Kouyi, Gislain; Gonzalez-Merchan, Carolina; Becouze-Lareure, Céline; Sebastian, Christel; Barraud, Sylvie; Bertrand-Krajewski, Jean-Luc

    2014-04-01

    Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.

  18. Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods.

    PubMed

    Springer, Yuri P; Taylor, Jeffrey R; Travers, Patrick D

    2015-01-01

    Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  20. Bottom Backscatter from Trapped Bubbles

    DTIC Science & Technology

    1993-07-30

    work included studies of a Blot model for acoustic transmission and reflection, originally developed by Stern, Bedford, and Millwater . 2 Also included...This model was originally developed by Stem, Bedford, and Millwater 7 and later modified to treat gassy sediments. This was done by varying the... Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent Properties,’ J. Acoust. Soc. Am. 77(5), 1781-1788 (1985). 3. L. M

  1. Stratified Fronts in Well-Mixed Estuaries

    DTIC Science & Technology

    2013-09-01

    Thornton Thomas Murphree Professor of Oceanography (Emer.) Professor of Meteorology Approved by...J. C. Warner (2012), Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping, J. Geophys

  2. Hydraulic Structures for Wetlands

    DTIC Science & Technology

    1993-08-01

    storage, water treatment to remove undesirable materials, sediment trapping, and ground water recharge. Also required is a knowledge of the operation ... management and maintenance resources that will be available during the life of the project.

  3. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.H.; Watkins, J.S.

    1996-12-31

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less

  4. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.H.; Watkins, J.S.

    1996-01-01

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less

  5. Plant basket hydraulic structures (PBHS) as a new river restoration measure.

    PubMed

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Szoszkiewicz, Krzysztof; Plesiński, Karol; Radecki-Pawlik, Bartosz; Laks, Ireneusz

    2018-06-15

    River restoration has become increasingly attractive worldwide as it provides considerable benefits to the environment as well as to the economy. This study focuses on changes of hydromorphological conditions in a small lowland river recorded during an experiment carried out in the Flinta River, central Poland. The proposed solution was a pilot project of the construction of vegetative sediment traps (plant basket hydraulic structures - PBHS). A set of three PBSH was installed in the riverbed in one row and a range of hydraulic parameters were recorded over a period of three years (six measurement sessions). Changes of sediment grain size were analysed, and the amount and size of plant debris in the plant barriers were recorded. Plant debris accumulation influencing flow hydrodynamics was detected as a result of the installation of vegetative sediment traps. Moreover, various hydromorphological processes in the river were initiated. Additional simulations based on the detected processes showed that the proposed plant basket hydraulic structures can improve the hydromorphological status of the river. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Suspended sediment transport under estuarine tidal channel conditions

    USGS Publications Warehouse

    Sternberg, R.W.; Kranck, K.; Cacchione, D.A.; Drake, D.E.

    1988-01-01

    A modified version of the GEOPROBE tripod has been used to monitor flow conditions and suspended sediment distribution in the bottom boundary layer of a tidal channel within San Francisco Bay, California. Measurements were made every 15 minutes over three successive tidal cycles. They included mean velocity profiles from four electromagnetic current meters within 1 m of the seabed; mean suspended sediment concentration profiles from seven miniature nephelometers operated within 1 m of the seabed; near-bottom pressure fluctuations; vertical temperature gradient; and bottom photographs. Additionally, suspended sediment was sampled from four levels within 1 m of the seabed three times during each successive flood and ebb cycle. While the instrument was deployed, STD-nephelometer measurements were made throughout the water column, water samples were collected each 1-2 hours, and bottom sediment was sampled at the deployment site. From these measurements, estimates were made of particle settling velocity (ws) from size distributions of the suspended sediment, friction velocity (U*) from the velocity profiles, and reference concentration (Ca) was measured at z = 20 cm. These parameters were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle size in the 4-11 ?? (62.5-0.5 ??m) range with the reference concentration Ca at z = 20 cm (C??), (2) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf), and (3) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. In addition, computations of particle flux were made in order to show vertical variations in horizontal mass flux for varying flow conditions. ?? 1988.

  7. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    NASA Astrophysics Data System (ADS)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  8. Comparison of sampling methodologies and estimation of population parameters for a temporary fish ectoparasite.

    PubMed

    Artim, J M; Sikkel, P C

    2016-08-01

    Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.

  9. Pteropods are Undervalued Contributors to Aragonite Flux in Tropical Gyres

    NASA Astrophysics Data System (ADS)

    Pebody, C. A.; Lampitt, R. S.

    2016-02-01

    Pteropods are a large component of the animals routinely caught in sediment traps at 3000m at the NOG observatory in the North Atlantic Oligotrophic Gyre and at the SOG observatory in the South Atlantic Oligotrophic Gyre. Sediment traps have been used to collect downward settling material at NOG and SOG since 2008. Pteropods have been identified and removed from the samples during processing in line with best practice. Some of these animals maybe opportunistic swimmers, but some are most definitely broken and should be considered as a component of the downward particle flux. Samples from both locations demonstrate a sustained and sometimes seasonal flux of pteropods to the deep ocean interior. In gyre regions with low levels of particle flux compared to temperate regions, the additional mostly inorganic material supplied in the form of pteropod shells represents a large proportional increase. Our data set from both northern and southern Atlantic gyres demonstrates due consideration should be given to the importance of pteropod flux and the contribution this makes to the biological carbon pump. These observatories at 23°N 41°W and 18°S 25°W, are part of the FixO3 open observatory network and are supported by NOC and NERC. Analysis of the first three years of each observatory are now yielding new insight on these large and poorly sampled areas of the open ocean. Key words: pteropods; aragonite; sediment traps; NOG SOG; FixO3; biological carbon pump; biogeochemical cycles; Tropical Atlantic Gyres.

  10. Tracer constraints on organic particle transfer efficiency to the deep ocean

    NASA Astrophysics Data System (ADS)

    Weber, T. S.; Cram, J. A.; Deutsch, C. A.

    2016-02-01

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.

  11. Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry

    PubMed Central

    Sampson, Clare; Kirk, William D. J.

    2013-01-01

    The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a cosmopolitan, polyphagous insect pest that causes bronzing to fruit of strawberry (Fragaria x ananassa). The main aim of this study was to test whether mass trapping could reduce damage and to predict whether this approach would be economically viable. In semi-protected strawberry crops, mass trapping of F. occidentalis using blue sticky roller traps reduced adult thrips numbers per flower by 61% and fruit bronzing by 55%. The addition of the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, reduced adult thrips numbers per flower by 73% and fruit bronzing by 68%. The factors affecting trapping efficiency through the season are discussed. Damage that would result in downgrading of fruit to a cheaper price occurred when bronzing affected about 10% of the red fruit surface. Cost-benefit analysis using this threshold showed that mass trapping of thrips using blue sticky roller traps can be cost-effective in high-value crops. The addition of blue sticky roller traps to an integrated pest management programme maintained thrips numbers below the damage threshold and increased grower returns by a conservative estimate of £2.2k per hectare. Further work is required to develop the F. occidentalis aggregation pheromone for mass trapping and to determine the best timing for trap deployment. Mass trapping of thrips is likely to be cost-effective in other countries and other high-value crops affected by F. occidentalis damage, such as cucumber and cut flowers. PMID:24282554

  12. The flux of bio- and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Lamborg, C. H.; Buesseler, K. O.; Valdes, J.; Bertrand, C. H.; Bidigare, R.; Manganini, S.; Pike, S.; Steinberg, D.; Trull, T.; Wilson, S.

    2008-07-01

    As part of the VERTIGO program, we collected and analyzed sinking particles using tethered and neutrally buoyant sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). This effort represented the first large-scale use of neutrally buoyant traps and represents a significant step forward in the study of the marine biological pump. In this paper, we present the results of mass, macronutrient, biominerals and phytoplankton pigment determinations made on these samples. The impact of a variety of potential collection biases were examined, including those from in-trap particle degradation, zooplankton swimmers and poisons. Though these factors have been observed to affect results in other programs, we found them to have relatively little impact on measured fluxes in this study. There was evidence, however, that the neutrally buoyant traps performed better than the tethered traps in terms of flux accuracy during one deployment, possibly because of improved large particle collection efficiency. Fluxes of material exhibited three different patterns through the mesopelagic: increasing, decreasing and constant with depth. Decreasing fluxes with depth were observed for all biogenic material formed in the euphotic zone. The attenuation of flux with depth was not the same for all components, however, with phytoplankton pigments exhibiting the greatest degradation with depth and particulate inorganic carbon the least. Organic carbon and nitrogen showed a very high correlation in these samples, with little evidence of different attenuation length scales. Increasing fluxes with depth were observed for particulate Ba at both sites and Al at K2. The increases in Ba are attributed to the formation of barite in degrading particles, while increasing Al at K2 was the result of lateral inputs from a continental shelf/slope. Constant fluxes with depth were observed for Al at ALOHA, where fluxes appeared to be in steady state with atmospheric dust deposition. The mesopelagic zone at K2 was observed to attenuate particle flux less than at ALOHA, and with a higher POC/PIC ("rain") ratio. These two factors combine to imply that the Subarctic province had a much more efficient biological pump than had the subtropical gyre during our occupations. This could be the result of either faster sinking particles, generated from grazing by large zooplankton, or inherently slower particle degradation rates.

  13. Spatial distribution of allergenic pollen through a large metropolitan area.

    PubMed

    Werchan, Barbora; Werchan, Matthias; Mücke, Hans-Guido; Gauger, Ulrich; Simoleit, Anke; Zuberbier, Torsten; Bergmann, Karl-Christian

    2017-04-01

    For nearly a decade, the majority of the world's population has been living in cities, including a considerable percentage of people suffering from pollen allergy. The increasing concentration of people in cities results in larger populations being exposed to allergenic pollen at the same time. There is almost no information about spatial distribution of pollen within cities as well as a lack of information about the possible impact to human health. To obtain this increasing need for pollen exposure studies on an intra-urban scale, a novelty screening network of 14 weekly changed pollen traps was established within a large metropolitan area-Berlin, Germany. Gravimetric pollen traps were placed at a uniform street-level height from March until October 2014. Three important allergenic pollen types for Central Europe-birch (Betula), grasses (Poaceae), and mugwort (Artemisia)-were monitored. Remarkable spatial and temporal variations of pollen sedimentation within the city and the influences by urban local sources are shown. The observed differences between the trap with the overall highest and the trap with the overall lowest amount of pollen sedimentation were in the case of birch pollen 245%, grass pollen 306%, and mugwort pollen 1962%. Differences of this magnitude can probably lead to different health impacts on allergy sufferers in one city. Therefore, pollen should be monitored preferably in two or more appropriate locations within large cities and as a part of natural air quality regulations.

  14. Evaluation of methyl eugenol and cue-lure traps with solid lure and insecticide dispensers for fruit fly monitoring and male annihilation in the Hawaii Areawide Pest Management Program.

    PubMed

    Vargas, Roger I; Mau, Ronald F L; Stark, John D; Piñero, Jaime C; Leblanc, Luc; Souder, Steven K

    2010-04-01

    Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), respectively. In low-density areas, standard Jackson traps or Hawaii Fruit Fly Areawide Pest Management (AWPM) traps with FT Mallet ME wafers impregnated with dimethyl dichloro-vinyl phosphate (DDVP) or AWPM traps with Scentry ME cones and vapor tape performed equally as well as standard Jackson traps with liquid ME/C-L and naled. Standard Jackson traps or AWPM traps with FT Mallet C-L wafers impregnated with DDVP or AWPM traps with Scentry C-L plugs with vapor tape performed equally as well as standard Jackson traps with a lure-naled solution. In high density areas, captures with traps containing FT Mallet wafers (ME and C-L) outperformed AWPM traps with Scentry cones and plugs (ME and C-L) with DDVP insecticidal strips over a 6-mo period. Captures of B. dorsalis and B. cucurbitae with wafers containing both ME and raspberry ketone (FT Mallet MC) were equivalent to those containing separate lures. From a worker safety and convenience standpoint, FT Mallet ME and C-L wafers with DDVP or Scentry plugs, with or without DDVP vapor tape, are more convenient and safer to handle than standard liquid insecticide formulations used for monitoring and male annihilation programs in Hawaii, and for detections traps used on the U.S. mainland. Furthermore, the FT Mallet MC wafer might be used in a single trap in place of two separate traps for detection of both ME and C-L responding fruit flies.

  15. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    PubMed Central

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  16. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  17. Capillary Trapping of CO2 in Oil Reservoirs: Observations in a Mixed-Wet Carbonate Rock.

    PubMed

    Al-Menhali, Ali S; Krevor, Samuel

    2016-03-01

    Early deployment of carbon dioxide storage is likely to focus on injection into mature oil reservoirs, most of which occur in carbonate rock units. Observations and modeling have shown how capillary trapping leads to the immobilization of CO2 in saline aquifers, enhancing the security and capacity of storage. There are, however, no observations of trapping in rocks with a mixed-wet-state characteristic of hydrocarbon-bearing carbonate reservoirs. Here, we found that residual trapping of supercritical CO2 in a limestone altered to a mixed-wet state with oil was significantly less than trapping in the unaltered rock. In unaltered samples, the trapping of CO2 and N2 were indistinguishable, with a maximum residual saturation of 24%. After the alteration of the wetting state, the trapping of N2 was reduced, with a maximum residual saturation of 19%. The trapping of CO2 was reduced even further, with a maximum residual saturation of 15%. Best-fit Land-model constants shifted from C = 1.73 in the water-wet rock to C = 2.82 for N2 and C = 4.11 for the CO2 in the mixed-wet rock. The results indicate that plume migration will be less constrained by capillary trapping for CO2 storage projects using oil fields compared with those for saline aquifers.

  18. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    NASA Astrophysics Data System (ADS)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.

  19. Anode Material Testing for Marine Sediment Microbial Fuel Cells

    DTIC Science & Technology

    2013-09-26

    of fuel cell that uses the environment of submerged sediments to provide a natural voltage difference. The fuel cell is comprised of an anode...that it is fully submerged . Air bubbles trapped in the foam matrix will be removed by placing a vacuum on the pipette. Once the air bubbles are...lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J Appl Microbiol, 2005 99(4):978–987. 16. Jung

  20. Spatial characterization of riparian buffer effects on sediment loads from watershed systems.

    PubMed

    Momm, Henrique G; Bingner, Ronald L; Yuan, Yongping; Locke, Martin A; Wells, Robert R

    2014-09-01

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Forecasting the Cumulative Impacts of Dams on the Mekong Delta: Certainties and Uncertainties

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Rubin, Z.; Schmitt, R. J. P.

    2016-12-01

    The Mekong River basin is undergoing rapid hydroelectric development, with 7 large mainstem dams on the upper Mekong (Lancang) River in China and 133 dams planned for the Lower Mekong River basin (Laos, Cambodia, Thailand, Vietnam), 11 of which are on the mainstem. Prior analyses have shown that all these dams built as initially proposed would trap 96% of the natural sediment load to the Mekong Delta. Such a reduction in sediment supply would compromise the sustainability of the delta itself, but there are many uncertainties in the timing and pattern of land loss. The river will first erode in-channel sediment deposits, partly compensating for upstream sediment trapping until these deposits are exhausted. Other complicating factors include basin-wide accelerated land-use change, road construction, instream sand mining, dyking-off floodplains, and changing climate, accelerated subsidence from groundwater extraction, and sea level rise. It is certain that the Mekong Delta will undergo large changes in the coming decades, changes that will threaten its very existence. However, the multiplicity of compounding drivers and lack of good data lead to large uncertainties in forecasting changes in the sediment balance on the scale of a very large network. We quantify uncertainties in available data and consider changes due to additional, poorly quantified drivers (e.g., road construction), putting these drivers in perspective with the overall sediment budget. We developed a set of most-likely scenarios and their implications for the delta's future. Uncertainties are large, but there are certainties about the delta's future. If its sediment supply is nearly completely cut off (as would be the case with `business-as-usual' ongoing dam construction and sediment extraction), the Delta is certainly doomed to disappear in the face of rising seas, subsidence, and coastal erosion. The uncertainty is only when and how precisely the loss will progress.

  2. Distribution, sedimentation, and bioavailability of particulate phosphorus in the mainstream of the Three Gorges Reservoir.

    PubMed

    Tang, Xianqiang; Wu, Min; Li, Rui

    2018-09-01

    The transportation and sedimentation of particulate phosphorus (PP) in a huge reservoir such as the Three Gorges Reservoir (TGR) are closely related to the phosphorus distribution characteristics and nutritional status of the water body. In this study, the PP distribution, sedimentation, and bioavailability in the mainstream section of the TGR were investigated through a field survey, indoor simulated settlement experiment, and historical data analysis. The results indicated that PP was the major component of the total phosphorus (TP) and that the Three Gorges Dam (TGD) trapped nearly 76.25% of suspended sediment (SS) and 75.35% of PP in the TGR, even during the flood season. A decline in flow velocity promoted the deposition of PP; additionally, PP concentrations gradually dropped from 0.35 mg/L in Chongqing to 0.02 mg/L in Zigui. The static PP sedimentation process adequately fitted a pseudo-second-order kinetic equation with a maximum correlation coefficient of 0.97. Moreover, more than half of the PP sedimentation process was achieved in less than 60 min for samples collected from the upper river reaches within simulated sedimentation process. The median particle size of SS and absolute value of the water column's zeta potential were negatively and positively related to the t 12 values of PP sedimentation, respectively. Compared with the concentration and particle size of SS obtained in the pre-TGR period, the values in the mainstream section of the TGR were lower. However, the TP and Fe/Al-P contents in SS increased several times. Due to the combined effects of flow velocity reduction and SS trapping, the water transparency and bioavailability of water column phosphorus were enhanced. Thus, the risk of water bloom outburst significantly increased when the impounded water level of 175 m in the TGR became the normal state. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Testing of SIR (a transformable robotic submarine) in Lake Tahoe for future deployment at West Antarctic Ice Sheet grounding lines of Siple Coast

    NASA Astrophysics Data System (ADS)

    Powell, R. D.; Scherer, R. P.; Griffiths, I.; Taylor, L.; Winans, J.; Mankoff, K. D.

    2011-12-01

    A remotely operated vehicle (ROV) has been custom-designed and built by DOER Marine to meet scientific requirements for exploring subglacial water cavities. This sub-ice rover (SIR) will explore and quantitatively document the grounding zone areas of the Ross Ice Shelf cavity using a 3km-long umbilical tether by deployment through an 800m-long ice borehole in a torpedo shape, which is also its default mode if operational failure occurs. Once in the ocean cavity it transforms via a diamond-shaped geometry into a rectangular form when all of its instruments come alive in its flight mode. Instrumentation includes 4 cameras (one forward-looking HD), a vertical scanning sonar (long-range imaging for spatial orientation and navigation), Doppler current meter (determine water current velocities), multi-beam sonar (image and swath map bottom topography), sub-bottom profiler (profile sub-sea-floor sediment for geological history), CTD (determine salinity, temperature and depth), DO meter (determine dissolved oxygen content in water), transmissometer (determine suspended particulate concentrations in water), laser particle-size analyzer (determine sizes of particles in water), triple laser-beams (determine size and volume of objects), thermistor probe (measure in situ temperatures of ice and sediment), shear vane probe (determine in situ strength of sediment), manipulator arm (deploy instrumentation packages, collect samples), shallow ice corer (collect ice samples and glacial debris), water sampler (determine sea water/freshwater composition, calibrate real-time sensors, sample microbes), shallow sediment corer (sample sea floor, in-ice and subglacial sediment for stratigraphy, facies, particle size, composition, structure, fabric, microbes). A sophisticated array of data handling, storing and displaying will allow real-time observations and environmental assessments to be made. This robotic submarine and other instruments will be tested in Lake Tahoe in September, 2011 and results will be presented on its trials and geological and biological findings down to the deepest depths of the lake. Other instruments include a 5m-ling percussion corer for sampling deeper sediments, an ice-tethered profiler with CTD and ACDP, and in situ oceanographic mooring designed to fit down a narrow (30cm-diameter) ice borehole that include interchangeable packages of ACDPs, CTDs, transmissometers, laser particle-size analyzer, DO meter, automated multi-port water sampler, water column nutrient analyzer, sediment porewater chemistry analyzer, down-looking color camera (see figure), and altimeter.

  4. Carcinogenicity of Black Rock Harbor sediment to the eastern oyster and trophic transfer of Black Rock Harbor carcinogens from the blue mussel to the winter flounder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, G.R.; Yevich, P.P.; Malcolm, A.R.

    1991-01-01

    The eastern oyster (Crassostrea virginica) developed neoplastic disorders when experimentally exposed both in the laboratory and field to chemically contaminated sediment from Black Rock Harbor (BRH), Bridgeport, Connecticut. Neoplasia was observed in oysters after 30 or 60 days of continuous exposure in a laboratory flow-through system to a 20 mg/L suspension of BRH sediment plus postexposure periods of 3, 30, or 60 days. Composite tumor incidence was 13.6% for both exposures. Tumor occurrence was highest in the renal excretory epithelium, followed in order by gill, gonad, gastrointestinal, heart, and embryonic neural tissue. Regression of experimental neoplasia was not observed whenmore » the stimulus was discontinued. In field experiments, gill neoplasms developed in oysters, deployed in cages for 30 days at BRH and 36 days at a BRH dredge material disposal area in Central Long Island Sound, and kidney and gastrointestinal neoplasms developed in caged oysters deployed 40 days in Quincy Bay, Boston Harbor. Oysters exposed to BRH sediment in the laboratory and in the field accumulated high concentrations of polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), and chlorinated pesticides. Chemical analyses demonstrated high concentrations of PCBs, PAHs, chlorinated pesticides, and heavy metals in BRH sediment. Known genotoxic carcinogens, cocarcinogens, and tumor promoters were present as contaminants. The uptake of parent PAH and PCBs from BRH sediment observed in oysters also occurs in blue mussels (Mytilus edulis). Winter flounder fed BRH-contaminated blue mussels contained xenobiotic chemicals analyzed in mussels. The flounder developed renal and pancreatic neoplasms and hepatotoxic neoplastic precursor lesions, demonstrating trophic transfer of sediment-bound carcinogens up the food chain.« less

  5. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    USGS Publications Warehouse

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring tide. Future deployments will characterize the seasonal variability of these fluxes.

  6. Detection, monitoring, and evaluation of spatio-temporal change in mosquito populations

    USDA-ARS?s Scientific Manuscript database

    USDA-ARS scientists seek to implement a sampling and global information technology based system that can be used for mosquito detection and trap deployment, to estimate mosquito species composition and distribution in space and time, and for targeting and evaluation of mosquito controls. Knowledge ...

  7. Captures of Ostrinia furnacalis (Lepidoptera: Crambidae) With Sex Pheromone Traps in NE China Corn and Soybeans.

    PubMed

    Chen, Ri-Zhao; Li, Lian-Bing; Klein, Michael G; Li, Qi-Yun; Li, Peng-Pei; Sheng, Cheng-Fa

    2016-02-01

    Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), commonly referred to as the Asian corn borer, is the most important corn pest in Asia. Although capturing males with pheromone traps has recently been the main monitoring tool and suppression technique, the best trap designs remain unclear. Commercially available Delta and funnel traps, along with laboratory-made basin and water traps, and modified Delta traps, were evaluated in corn and soybean fields during 2013-2014 in NE China. The water trap was superior for capturing first-generation O. furnacalis (1.37 times the Delta trap). However, the basin (8.3 ± 3.2 moths/trap/3 d), Delta (7.9 ± 2.5), and funnel traps (7.0 ± 2.3) were more effective than water traps (1.4 ± 0.4) during the second generation. Delta traps gave optimal captures when deployed at ca. 1.57 × the highest corn plants, 1.36× that of average soybean plants, and at the field borders. In Delta traps modified by covering 1/3 of their ends, captures increased by ca. 15.7 and 8.1% in the first and second generations, respectively. After 35 d in the field, pheromone lures were still ca. 50% as attractive as fresh lures, and retained this level of attraction for ca. 25 more days. Increased captures (first and second generation: 90.9 ± 9.5%; 78.3 ± 9.3%) were obtained by adding a lure exposed for 5 d to funnel traps baited with a 35-d lure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    USGS Publications Warehouse

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap efficiency of 34 percent for 1987, much less than the measured efficiency of 71 percent.

  9. Effects of pollution on the geochemical properties of marine sediments across the fringing reef of Aqaba, Red Sea.

    PubMed

    Al-Rousan, Saber; Al-Taani, Ahmed A; Rashdan, Maen

    2016-09-15

    The Gulf of Aqaba is of significant strategic and economic value to all gulf-bordering states, particularly to Jordan, where it provides Jordan with its only marine outlet. The Gulf is subject to a variety of impacts posing imminent ecological risk to its unique marine ecosystem. We attempted to investigate the status of metal pollution in the coastal sediments of the Jordanian Gulf of Aqaba. The distribution of Cd, Cr, Zn, Cu, Pb, Al, Fe, and Mn concentrations were determined in trapped and bottom-surface sediments at three selected sites at different depths. In addition, monthly sedimentation rates at varying water depths were also estimated at each sampling site using sediment traps. The high concentrations of Cd, Cr, Zn were recorded at the Phosphate Loading Birth (PLB) site followed by the Industrial Complex (IC) site indicating their dominant anthropogenic source (i.e., the contribution of industrial activities). However, Fe, Al, and Mn contents were related to inputs from the terrigenous (crustal) origin. Except for Al, Fe and Mn at the PLB site, the concentrations of metals exhibited a decreasing trend with increasing water depth (distance from the shoreline). The PLB site also showed the highest sedimentation rate which decreased with increasing water depth. The Enrichment factors (EFs) showed that Cd was the most enriched element in the sediment (indicating that Cd pollution is widespread), whereas the least enriched metal in sediments was Cu. EF values suggested that the coastal area is impacted by a combination of human and natural sources of metals, where the anthropogenic sources are intense in the PLB site (north of Gulf of Aqaba). The MSS area is potentially the least polluted, consistent with being a marine reserve. The IC sediments have been found to be impacted by human activities but less intensely compared to the PLB area. These results suggested that there are two sources of metals in sediments; the primary source is likely closer to PLB, while the secondary is nearby the IC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Response and recovery of streams to an intense regional flooding event

    NASA Astrophysics Data System (ADS)

    Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Kantack, K. M.

    2015-12-01

    Determining the relative roles of frequent and infrequent events on landscape form and material transport has implications for understanding landscape development, and informs planning and infrastructure decisions. Flooding due to Tropical Storm Irene in 2011 provides a unique opportunity to examine the effects of a rare, major disturbance across a broad area (14,000 km2). Intense flooding caused variable but widespread channel and riparian reconfiguration, including 995 channel-adjacent mass-wasting events, collectively referred to here as landslides, that mostly occurred in glacial deposits. Of these, about half involved reactivation of existing scars. Landslides were generally small, ranging from 60 - 26,000 m2 in planform, and covered less than 0.01 % of land in the region, yet sediment input from landslides alone (131 mm/kyr when integrated over the study area) exceeded inferred local background erosion rates by 60 times. If Irene inputs are included in a thirty-year erosion record, the estimated erosion rate, 7.2 mm/kyr, aligns closely with long-term regional rates of 5-10 mm/kyr. Landslides also input trees to streams, increasing large wood influence on those reaches. Combined wood and sediment inputs contributed to channel changes downstream of landslides. In four years since Irene, terrestrial lidar and suspended sediment sampling has documented continued large wood and sediment input. Erosion occurred on each of seventeen monitored landslides during snowmelt, but is otherwise limited except during intense precipitation and/or flood events. Repeat lidar models have recorded erosion of up to 5,000 m3 on a single slide in one year, including as much as 4000 m3 during a single event. Tree fall on scarps during erosion events creates sediment traps at the base of landslides, contributing to an observed return to equilibrium slopes. Despite trapping, substantial sediment continues to enter streams. Ninety-five suspended sediment samples from forty sites show that landslides remain important sediment sources. Across a range of flows, 2014 - 2015 sediment flux for a given discharge is an order of magnitude higher than pre-Irene flux. Though landslide slope relaxation suggests incipient recovery from Irene, persistent rapid erosion of large wood and sediment indicates that recovery is still on-going.

  11. Sub-basaltic Imaging of Ethiopian Mesozoic Sediments Using Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Mammo, T.; Maguire, P.; Denton, P.; Cornwell, D.

    2003-12-01

    The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) involved the deployment of a 400km NW-SE cross-rift profile across the Main Ethiopian Rift. The profile extended to about 150km on either side of the rift over the uplifted Ethiopian plateau characterized by voluminous Tertiary flood basalts covering a thick sequence of Mesozoic sediments. These consist of three major stratigraphic units, the Cretaceous Upper Sandstone (medium grained, friable and moderately to well-sorted) overlying the Jurassic Antalo limestone (with intercalations of marl, shale, mudstone and gypsum) above the Triassic Adigrat sandstone. These sediments are suggested to be approximately 1.5km thick at the north-western end of the profile, thickening to the south-east. They are considered a possible hydrocarbon reservoir and therefore crucial to the economy of Ethiopia. The EAGLE cross-rift profile included the deployment of 97 Guralp 6TD seismometers (30sec - 80Hz bandwidth) at a nominal 5km spacing. A 5.75 tonne explosion from the Muger quarry detonated specifically for the EAGLE project generated the surface waves used in this study. Preliminary processing involving the multiple filter technique has enabled the production of group velocity dispersion curves. These curves have been inverted to provide 1-D shear wave models, with the intention of providing an in-line cross-rift profile of Mesozoic sediment thickness. Preliminary results suggest that the sediments can be distinguished from both overlying plateau basalt and underlying basement, with their internal S-wave velocity structure possibly indicating that the three sediment units described above can be separately identified.

  12. Development of supercritical carbon dioxide extraction with a solid phase trap for dioxins in soils and sediments.

    PubMed

    Miyawaki, Takashi; Kawashima, Ayato; Honda, Katsuhisa

    2008-01-01

    A method involving supercritical fluid extraction (SFE) with a solid phase trap containing activated alumina was investigated for the rapid analysis of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin like polychlorinated biphenyls (DL-PCBs) in soils and sediments. The samples were extracted by using supercritical carbon dioxide with water (2% versus CO(2) flow velocity) being used as an entrainer at a pressure of 30 MPa and a temperature of 130 degrees C for 50 min. The extracts were adsorbed on an activated alumina trap that was maintained at a temperature of 150 degrees C, and then, PCDD/DFs and DL-PCBs were eluted with 20 ml of hexane at 60 degrees C. After concentration, they were measured with a high-resolution gas chromatograph interfaced to a high-resolution mass spectrometric detector. The average concentrations of PCDD/DFs and DL-PCBs corresponded to the results obtained by the conventional method, and the reproducibility of this SFE method was below 21% of the relative standard deviations for all samples. The total time required for the analysis of the pretreatment of this method was only 2 h.

  13. Significant bed elevation changes related to Gulf Stream dynamics on the South Carolina continental shelf

    USGS Publications Warehouse

    Gelfenbaum, G.; Noble, M.

    1993-01-01

    Photographs of the seabed taken from an instrumented bottom tripod located approximately 100 km east of Charleston, South Carolina, reveal bed elevation changes of over 20 cm between July and November 1978. The tripod was in 85 m of water and was equipped with two current meters at 38.7 and 100 cm from the bed, a pressure sensor, a transmissometer, which fouled early during the deployment, a temperature sensor and a camera. The sediment under the tripod was composed of poorly sorted sand, some shell debris and numerous small biological tubes. Bed roughness varied throughout the deployment from biologically-produced mounds (2-5 cm high and 5-20 cm diameter) to streaks to a smooth bed, depending upon the frequency and magnitude of the sediment transporting events. Even though these events were common, especially during the later part of the deployment, the bed was rarely rippled, and there was no evidence of large bedforms such as dunes or sand waves migrating through the field of view of the camera. Photographs did clearly show, however, a gradual net deposition of the bed of nearly 20 cm, followed by erosion of approximately 5 cm. The flow field near the bed was dominated by sub-tidal period currents. Hourly-averaged currents at 100 cm from the bed typically varied between 10 and 30 cm s-1 and occasionally were as high as 60 cm s-1. The large flow events were predominantly toward the southwest along the shelf in the opposite direction of the northeast flowing Gulf Stream. The cross-shore component of the flow near the bed was predominantly directed offshore due to a local topographic steering effect. Current, temperature and satellite data suggest that the largest flow events were associated with the advection of Gulf Stream filaments past the tripod. Erosion events, as seen from the photographs, were highly correlated with the passage of these Gulf Stream filaments past the tripod. Gradual deposition of sediment, which occurred during the first half of the deployment, appears to have been associated with the convergence of the near-bed sediment flux near the shelf break. ?? 1993.

  14. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention

    USGS Publications Warehouse

    McMillan, Sara K.; Noe, Gregory

    2017-01-01

    Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.

  15. Gyrotactic trapping: A numerical study

    NASA Astrophysics Data System (ADS)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  16. Studying Suspended Sediment Mechanism with Two-Phase PIV

    NASA Astrophysics Data System (ADS)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  17. A 2000-year palaeoflood record from northwest England from lake sediments

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2014-05-01

    Greater insight into the relationship between climatic fluctuations and the frequency and magnitude of precipitation events over recent centuries is crucial in the context of future warming and projected intensification of hydrological extremes. However, the detection of trends in flood frequency and intensity is not a straightforward task as conventional flood series derived from instrumental sources rarely span sufficiently long timescales to capture the most extreme events. Usefully, the geomorphic effects of extreme hydrological events can be effectively recorded in upland lake basins as efficient sediment trapping preserves discharge-related proxy indicators (e.g., particle size). Provided distinct sedimentary signatures of historic floods are discernable and the sediment sequence can be well-constrained in time, these lacustrine archives offer a valuable data resource. We demonstrate that a series of sediment cores (3 - 5 m length) from Brotherswater, northwest England, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry, which are interpreted as reflecting a palaeoflood record extending to ~2000 yr BP. The presence of thick facies which exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Data from an on-going sediment trapping protocol at Brotherswater that shows a relationship between river discharge (recorded via short-term lake level change representing flood events) and the calibre of particles captured in the traps lends further support to our interpretation. Well-constrained chronologies were constructed for the cores through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating within a Bayesian age-depth modelling protocol. Geochemical markers of known-age that reflect phases of local point-source lead (Pb) mining were used to resolve time periods where radiocarbon dates returned multiple possible age solutions. We subsequently build a regression model using the time-window where recorded river discharge and the sedimentary record overlap (1961-2013) in order to reconstruct discharge estimates for the palaeoflood laminations. These quantitative palaeoflood data can thus be inserted into statistical flood frequency analyses and compared with outputs using instrumental data and regional flood information.

  18. Constraints on aeolian sediment transport to foredunes within an undeveloped backshore enclave on a developed coast

    NASA Astrophysics Data System (ADS)

    Kaplan, Kayla L.; Nordstrom, Karl F.; Jackson, Nancy L.

    2016-10-01

    Landforms present in undeveloped beach enclaves located between properties developed with houses and infrastructure are often left to evolve naturally but are influenced by the human structures near them. This field study evaluates how buildings and sand-trapping fences change the direction of wind approach, reduce wind speed, and restrict fetch distances for sediment entrainment, thereby reducing the potential for aeolian transport and development of dunes in enclaves. Field data were gathered in an 80 m long, 44 m deep beach enclave on the ocean shoreline of New Jersey, USA. Comparison of wind characteristics in the enclave with a site unaffected by buildings revealed that offshore winds in the enclave are reduced in strength and altered in direction by landward houses, increasing the relative importance of longshore winds. Vertical arrays of anemometers on the foredune crest, foredune toe and berm crest in the enclave revealed increasing wind speed with distance offshore, with strongest winds on the berm crest. Vertical cylindrical traps on the foredune crest, foredune toe, mid-backshore, berm crest and upper foreshore revealed the greatest rate of sediment transport on the berm crest. Sediment samples from the beach and from traps revealed limited potential for aeolian transport because of coarse grain sizes. Strong oblique onshore winds are common in this region and are normally important for transporting sand to dunes. The length of an enclave and the setback distance on its landward side determine the degree to which sediment delivered by oblique winds contributes to dune growth. The landward edge of the enclave (defined by a sand fence near the dune toe) is sheltered along its entire length from winds blowing at an angle to the shoreline of 25° or less. A foredune set back this distance in an enclave the length of an individual lot (about 20 m) would be sheltered at an angle of 57° or less, reducing the opportunity for dune building by onshore winds. Reduced potential for aeolian transport in enclaves implies that human actions may be required to build dunes artificially to protect buildings and roads from storm overwash.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, James K.B.; Wood, Todd

    Three Carbon Explorer (CE) floats profiling to kilometer depths in the Southern Ocean tracked dawn-dusk variations of mixing/stratification, particulate organic carbon (POC), and light scattering and sedimentation at 100, 250, and 800 m continuously from January 2002 to April 2003. Data were analyzed in conjunction with contemporaneous satellite winds and chlorophyll and derived subsurface light fields. The CE deployed at 66{sup o}S 172{sup o}W operated in the ice edge zone in absence of light. Two CEs deployed at 55{sup o}S 172{sup o}W recorded wintertime mixing to {approx}400 m, yet observed very different bloom dynamics and sedimentation the following spring. Fourmore » hypotheses are explored. The strongest is that shallow transient stratification of the deep winter mixed layer to shallower than photosynthetic critical depth occurred more frequently in the non-bloom/higher sedimentation case. The lower particle export to 800 m under the bloom was hypothesized to be due to higher interception of sinking carbon by a relatively starved over wintering zooplankton population. In the Southern Ocean surface phytoplankton biomass may counter indicate particle flux at kilometer depths.« less

  20. Sedimentation survey of Lago Caonillas, Puerto Rico, February 2000

    USGS Publications Warehouse

    Soler-López, Luis R.

    2001-01-01

    Based on the ratio of storage capacity to inflow rate, the estimated trapping efficiency of Lago Caonillas is about 93 percent for 2000. The sediment yield of the Lago Caonillas net sediment-contributing drainage area (total drainage area minus the reservoir surface area) of 218.74 square kilometers, is about 1 ,266 megagrams per square kilometer per year. This represents an increase of about 69 percent in the material transport and deposition process of the Lago Caonillas basin between 1990 and 2000. The life expectancy of Lago Caonillas was more than 300 years in 1995; however, at the storm-accelerated sedimentation rate, the life expectancy has decreased to about 164 years. This implies that the reservoir could be filled with sediments by the year 2164 if major hurricanes continue to pass through Puerto Rico regularly (every 2 to 4 years).

  1. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand

    NASA Astrophysics Data System (ADS)

    Wattayakorn, Gullaya; Wolanski, Eric; Kjerfve, Björn

    1990-11-01

    The Klong Ngao estuary in Thailand is a 7·5-km long tidal creek facing the Andaman Sea and drains 11·5 km 2 of mangrove swamps. Physical processes in the estuary differ greatly from the wet season to the dry season. In the dry season, vertical homogeneity prevails and the swamp behaves like an evaporation pond. Salt and water are trapped upstream, longitudinal gradients result and, through tidal dispersion, nutrient outwelling may result for SiO 2, possibly NO 2 and NO 3, but not PO 4. The outflow is trapped in a coastal boundary layer. In the wet season, short-lived local floods generate a strong stratification in salinity and episodical flushing of the estuary and may make measurements of nutrient budgets inconclusive. The Klong Ngao mangrove swamp traps land-derived sediments in the wet season.

  2. General Design Memorandum, Gulfport Harbor, Mississippi. Design Memorandum Number 1. Appendix D. Environmental Documentation

    DTIC Science & Technology

    1989-06-01

    thousands of acres of wetlands have been lost as a result of rapid coastal development. In view of their important ecological functions, it becomes... ecological roles: 1. trap sediment and stabilize bottom sediments; 2. carry on basic productivity that, in the eastern gulf, may considerably exceed the...be different, depending on the ecological attributes of the replacement habitat. This would result in no net loss of total habitat value, but might

  3. Assessing acute effects of trapping, handling, and tagging on the behavior of wildlife using GPS telemetry: a case study of the common brushtail possum.

    PubMed

    Dennis, Todd E; Shah, Shabana F

    2012-01-01

    Trapping, handling, and deployment of tracking devices (tagging) are essential aspects of many research and conservation studies of wildlife. However, often these activities place nonhuman animals under considerable physical or psychological distress, which disrupts normal patterns of behavior and may ultimately result in deleterious effects on animal welfare and the validity of research results. Thus, knowledge of how trapping, handling, and tagging alter the behavior of research animals is essential if measures to ameliorate stress-related effects are to be developed and implemented. This article describes how time-stamped location data obtained by global-positioning-system telemetry can be used to retrospectively characterize acute behavioral responses to trapping, handling, and tagging in free-ranging animals used for research. Methods are demonstrated in a case study of the common brushtail possum, a semiarboreal phalangerid marsupial native to Australia. The study discusses possible physiological causes of observed effects and offers general suggestions regarding simple means to reduce trapping-handling-and-tagging-related stress in field studies of vertebrates.

  4. Assessing the impacts of sediments from dredging on corals.

    PubMed

    Jones, Ross; Bessell-Browne, Pia; Fisher, Rebecca; Klonowski, Wojciech; Slivkoff, Matthew

    2016-01-15

    There is a need to develop water quality thresholds for dredging near coral reefs that can relate physical pressures to biological responses and define exposure conditions above which effects could occur. Water quality characteristics during dredging have, however, not been well described. Using information from several major dredging projects, we describe sediment particle sizes in the water column/seabed, suspended sediment concentrations at different temporal scales during natural and dredging-related turbidity events, and changes in light quantity/quality underneath plumes. These conditions differ considerably from those used in past laboratory studies of the effects of sediments on corals. The review also discusses other problems associated with using information from past studies for developing thresholds such as the existence of multiple different and inter-connected cause-effect pathways (which can confuse/confound interpretations), the use of sediment proxies, and the reliance on information from sediment traps to justify exposure regimes in sedimentation experiments. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Harvesting energy from the marine sediment--water interface.

    PubMed

    Reimers, C E; Tender, L M; Fertig, S; Wang, W

    2001-01-01

    Pairs of platinum mesh or graphite fiber-based electrodes, one embedded in marine sediment (anode), the other in proximal seawater (cathode), have been used to harvest low-level power from natural, microbe established, voltage gradients at marine sediment-seawater interfaces in laboratory aquaria. The sustained power harvested thus far has been on the order of 0.01 W/m2 of electrode geometric area but is dependent on electrode design, sediment composition, and temperature. It is proposed that the sediment/anode-seawater/cathode configuration constitutes a microbial fuel cell in which power results from the net oxidation of sediment organic matter by dissolved seawater oxygen. Considering typical sediment organic carbon contents, typical fluxes of additional reduced carbon by sedimentation to sea floors < 1,000 m deep, and the proven viability of dissolved seawater oxygen as an oxidant for power generation by seawater batteries, it is calculated that optimized power supplies based on the phenomenon demonstrated here could power oceanographic instruments deployed for routine long-term monitoring operations in the coastal ocean.

  6. Annual net community production and the biological carbon flux in the ocean

    NASA Astrophysics Data System (ADS)

    Emerson, Steven

    2014-01-01

    The flux of biologically produced organic matter from the surface ocean (the biological pump), over an annual cycle, is equal to the annual net community production (ANCP). Experimental determinations of ANCP at ocean time series sites using a variety of different metabolite mass balances have made it possible to evaluate the accuracy of sediment trap fluxes and satellite-determined ocean carbon export. ANCP values at the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), Ocean Station Papa (OSP) are 3 ± 1 mol C m-2 yr-1—much less variable than presently suggested by satellite remote sensing measurements and global circulation models. ANCP determined from mass balances at these locations are 3-4 times particulate organic carbon fluxes measured in sediment traps. When the roles of dissolved organic carbon (DOC) flux, zooplankton migration, and depth-dependent respiration are considered these differences are reconciled at HOT and OSP but not at BATS, where measured particulate fluxes are about 3 times lower than expected. Even in the cases where sediment trap fluxes are accurate, it is not possible to "scale up" these measurements to determine ANCP without independent determinations of geographically variable DOC flux and zooplankton migration. Estimates of ANCP from satellite remote sensing using net primary production determined by the carbon-based productivity model suggests less geographic variability than its predecessor (the vertically generalized productivity model) and brings predictions at HOT and OSP closer to measurements; however, satellite-predicted ANCP at BATS is still 3 times too low.

  7. Comparisons between POC and zooplankton swimmer flux from sediment traps in the subarctic and subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Yokoi, Naoya; Abe, Yoshiyuki; Kitamura, Minoru; Honda, Makio C.; Yamaguchi, Atsushi

    2018-03-01

    Seasonal changes in zooplankton swimmer (ZS) abundance, biomass and community structure were evaluated based on samples collected by moored sediment traps at a depth of 200 m in the subarctic (SA) and subtropical (ST) western North Pacific. Based on these samples, we made comparisons on two topics: 1) latitudinal (subarctic vs. subtropical) changes in ZS abundance, biomass and community and 2) quantitative differences between the ZS and particle organic carbon (POC) fluxes based on data from moored or drifting sediment traps. The results showed that the ZS flux was greater in the SA (annual mean: 311 ind. m-2 day-1 or 258 mg C m-2 day-1) than in the ST (135 ind. m-2 day-1 or 38 mg C m-2 day-1). The peak ZS flux was observed from July-August in the SA and from April-May in the ST. The dominant taxa were Copepoda and Chaetognatha in the SA and Ostracoda and Mollusca in the ST. These latitudinal differences are likely related to the dominance of large-sized Copepoda in the SA, regional differences in the timing of the spring phytoplankton bloom, and the magnitude and size structure of primary producers. The percent composition of ZS to the total C flux (= ZS+POC flux) varied by region: 85-95% in the SA and 47-75% in the ST. These differences between the ZS composition and the total C flux are most likely caused by the dominance of large-sized Copepoda (Neocalanus spp. and Eucalanus bungii) in the SA.

  8. Structural mapping of Chikotra River basin in the Deccan Volcanic Province of Maharashtra, India from ground magnetic data

    NASA Astrophysics Data System (ADS)

    Anand, S. P.; Erram, Vinit C.; Patil, J. D.; Pawar, N. J.; Gupta, Gautam; Suryavanshi, R. A.

    2016-03-01

    Ground magnetic data collected over Chikotra River in the peripheral region of Deccan Volcanic Province (DVP) of Maharashtra located in Kolhapur district was analysed to throw light on the structural pattern and distribution of magnetic sources within the basin. In order to isolate the magnetic anomalies showing varying trend and amplitude, several transformation operations including wavelength filtering, and upward continuation has been carried out on the reduced to pole anomaly map. Qualitative interpretation of these products help identify the distribution of magnetic sources, viz., the Deccan basalts, dolerite intrusives and older greenstone and schist belts in the subsurface. Present study suggests that the Chikotra basin is composed of three structural units; a NE-SW unit superposed on deeper NW-SE unit with randomly distributed trap flows on the surface. One of the major outcome of the present study is the delineation of almost 900-m thick Proterozoic Kaladgi sediments below the Deccan trap flows. The NE-SW magnetic sources may probably represent intrusives into the Kaladgi sediments, while the deeper NW-SE trends are interpreted as the northward extension of the Dharwars, underneath the Deccan lava flows, that forms the basement for the deposition of Kaladgi sediments.

  9. [Temporal and spatial distribution of the crab Callinectes sapidus (Decapoda: Portunidae) in Chetumal Bay, Quintana Roo, Mexico].

    PubMed

    Ortiz-León, Héctor J; Jesús-Navarrete, Alberto de; Cordero, Eloy Sosa

    2007-03-01

    In order to determine temporal and spatial distribution patterns of Callinectes sapidus, samplings were carried out during the cold-front (January-February), dry (May-June) and rainy (August-September, 2002) climatic seasons, in 30 sampling stations of Chetumal Bay, grouped in sectors A (14 stations), B (eight stations) and C (eight stations). In each sampling station crabs were collected from two transects parallel to the coast, each with three traps, separated by 30 m. Sediments were calcareous coarse and medium sand, white or lightly gray. A total of 1 031 specimens were collected. CPEU (Capture Per Effort Unit) differed spatially and temporally. Highest CPEU was found in sector C with 1.3 ind.trap(-1), and in the rainy season with 1.1 ind.trap(-1). Population was predominantly composed of male individuals. The male:female ratio was 15:1. Males and adults (group II) CPEU was significant different between sectors and climatic seasons. Both males and adults (group II) had a greater CPEU in sector C (1.2 ind.trap-) and in the rainy season (1.1 ind.trap(-1)). Abundance of female and juvenile individuals (group I) was low during the sampling period whereas group 0 juvenile individuals were not found. A greater relative frequency between sectors and climatic seasons were observed in 130-139 mm and 140-149 mm size interval (CW). C. sapidus occurred on sandy sediments in Chetumal Bay. Pearson product moment correlations exhibited significant relationships between CPEU and temperature, salinity and dissolved oxygen. In Chetumal Bay, the spatial and temporal distribution of C. sapidus can be related to salinity, temperature, habitat quality, food availability, recruitment and reproduction events of individuals.

  10. Simulation of shoreline development in a groyne system, with a case study Sanur Bali beach

    NASA Astrophysics Data System (ADS)

    Gunawan, P. H.; Pudjaprasetya, S. R.

    2018-03-01

    The process of shoreline changes due to transport of sediment by littoral drift is studied in this paper. Pelnard-Considère is the commonly adopted model. This model is based on the principle of sediment conservation, without diffraction. In this research, we adopt the Pelnard-Considère equation with diffraction, and a numerical scheme based on the finite volume method is implemented. Shoreline development in a groyne system is then simulated. For a case study, the Sanur Bali Beach, Indonesia is considered, in which from Google Earth photos, the beach experiences changes of coastline caused by sediment trapped in a groyne system.

  11. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess

    USGS Publications Warehouse

    Wang, Hongfang; Mason, J.A.; Balsam, W.L.

    2006-01-01

    The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.

  12. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    USGS Publications Warehouse

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.

  13. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the recent past, but not at the time of sampling. Copyright ?? 2000 Elsevier Science Ltd.

  14. Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize

    NASA Astrophysics Data System (ADS)

    Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.

    2016-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. We also compared our XRF results with coral biology, environmental and climate information (regional and global). Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.

  15. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.

    2012-04-01

    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during high energy events contained benthic foraminifera and exhibited significantly higher 210Pb activity indicating a longer residence time in the water column. In addition, during winter quiescent periods characterized by low mass fluxes, the content of lithogenic particles increased at the expenses of phytodetritus suggesting the presence of lateral advection of fine particles permanently in suspension within the benthic nepheloid layer. In spite of the low mass flux, organic matter content was particularly high during these periods accounting for almost 10% of the global pool of organic matter.

  16. The use of novel wooden structures to manage flooding and coarse sediment problems in responsive upland headwater catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Watson, Helen; Stutter, Marc

    2014-05-01

    Over the past decade economic losses from floods have greatly increased, with sediment related impacts as a key feature of such events. Impacts include changes in river channel course, scour of river banks, sedimentation of infrastructure (e.g. bridges), and deposition of sand and gravel on farmland. Sediment deposition can in turn reduce conveyance capacity and lead to further increased flood risk. The EU Water Framework Directive and Floods Directive highlights that sustainable approaches to flood risk reduction should be used alongside and, where possible, replace traditional structural flood defences and activities that address sediment problems. Natural Flood Management(NFM) is promoted as a method that can reduce flood risk and manage sediment by incorporating natural hydrological and morphological processes. As such, NFM measures are designed to use these fluvial processes to manage the sources and pathways of flood waters and sediments. Techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes. Here we aim to assess the effectiveness of novel flood mitigation measures for reducing flood risk and capturing coarse sediment in rapidly responding headwater catchments. We present preliminary research findings from a densely instrumented research site (Bowmont catchment, Scotland (85km2)) which regularly experiences flood events with associated coarse sediment problems. NFM measures have been installed to capture course sediment and to store water more effectively on the flood plains during these flood events. For example, novel engineered wooden structures ('bar apex log jams') constructed in the river corridor are designed to trap sediment and log bank protection structures have been installed to stop bank erosion. Within a tributary catchment of the Bowmont (0.7km2), new flow restrictors have been installed on a headwater stream to slow the flow whilst collecting coarse sediment. These were designed to have a minimal impact on upland farming practices. In addition, tree planting is also occurring in the catchment for example, within gulley, on the riparian zone and hedgerow belts perpendicular to slopes. During a recent large event, the majority of 40 bar apex structures collected coarse sediment. However, only five were associated with high deposition and modification of the spatial pattern of deposition, which highlighted the importance both of structure design and location of these features to maximise their sediment trapping effectiveness and longevity.

  17. Deployment Area Selection and Land Withdrawal/Acquisition. M-X/MPS (M-X/Multiple Protective Shelter) Environmental Technical Report. Mitigations.

    DTIC Science & Technology

    1981-10-02

    structure. Compacted soils are difficult to revegetate without adequate treatment . In addition, compacted soils have lower infiltration rates * which result...Reno, Nevada. August 1976). Erosion and sediment can be controlled on construction sites if certain principles are followed in the use of treatment of...If successful erosion control treatment is applied to the land in the watershed, sediment production can be reduced to

  18. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2012-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  19. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump

    NASA Astrophysics Data System (ADS)

    González, Humberto E.; Daneri, Giovanni; Iriarte, José L.; Yannicelli, Beatriz; Menschel, Eduardo; Barría, Claudio; Pantoja, Silvio; Lizárraga, Lorena

    2009-12-01

    The information from 54 drifting sediment traps deployed between 1997 and 2006 along the Humboldt Current System off Chile (from 19.9°S to 42.2°S) was analyzed to contribute to unveiling the recurrent global-ocean issue of the lack of relationship between gross primary production (GPP) and particulate organic carbon (POC) export below 50 m depth. When the proportion of carbon that effectively sinks is relatively low compared to the carbon being fixed through GPP, a significant amount (average of 32%) of the sinking organic matter is composed of diatoms, regardless of GPP rates. Such a fraction seems to be affected by the physiological state of phytoplankton. In contrast, when the fraction of carbon sinking is high relative to GPP, most of sinking organic matter is composed of euphausid faecal strings. Such a situation occurs at relatively low values of GPP and chlorophyll-a. Most of these high sinking rates of pellets and low phytoplankton biomass occur during summer, when physical conditions favour the presence of phytoplankton blooms, and when the GPP/Biomass ratio indicates healthy phytoplankton physiological conditions. All this evidence supports the assessment of the relevance of euphausiids as key species in the Humboldt Current System pointing to (i) the top-down control that euphausiids are capable of exerting over primary producer biomass, and (ii) euphausiids‘ paramount role on total organic carbon flux over the Concepción continental shelf, regarding both POC export to the sediments and possibly the channelling of GPP directly to higher trophic levels.

  20. Sediment Dispersal Within Poverty Bay, Offshore of the Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Bever, A. J.; McNinch, J. E.

    2006-12-01

    Transport processes change drastically as sediment crosses the boundary between land and sea. As such, developing conceptual or predictive models of transport and deposition for the shoreline and inner continental shelf is critical to understanding source-to-sink sedimentary systems. In shallow coastal areas, sediment dispersal results from both dilute suspensions driven by energetic waves and current shear stresses, and by gravitationally driven flows of fluid muds. The Waipaoa River, on the east coast of the North Island of New Zealand, delivers approximately 15 million tons per year of sediment to Poverty Bay, a small embayment with water depth less than about 25 m. Instruments deployed during the winter storm season of 2006 captured periods of high discharge from the Waipaoa River that were typically associated with energetic waves and winds from the southeast. During these times, instruments deployed at 9 and 14 m water depths recorded high turbidity. Currents measured in Poverty Bay were correlated with wind velocities, but also showed prolonged periods of offshore flow within the bottom boundary layer. Sediment texture throughout much of Poverty Bay is muddy, and thick deposits have occurred during the Holocene, as evidenced by sub-bottom seismics. Short-lived radioisotopes such as ^7Be have not been found on Poverty Bay sediments during our field work, though depocenters have been identified using ^7Be on the continental shelf. This may imply that muds exist there as ephemeral and spatially patchy deposits that may bypass Poverty Bay. Bypassing mechanisms may include offshore dispersal by dilute suspended sediment, and downslope transport of fluid muds. Energetic waves may resuspend sediment, which is then transported out of Poverty Bay by ambient ocean currents. Alternatively, fluid muds may form and transport material downslope and offshore to the continental shelf. Because of the high sediment loads of the Waipaoa River, these fluid muds may be formed by hyperpycnal river flows upon entering Poverty Bay. They may also be produced by frontal systems that focus newly delivered sediments, or within fluid muds confined to the thin near-bed wave boundary layer.

  1. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change.

  2. Longshore Sediment Transport on a Macrotidal Mixed Sediment Beach, Birling Gap, United Kingdom.

    NASA Astrophysics Data System (ADS)

    Curoy, J.; Moses, C. A.; Robinson, D. A.

    2012-04-01

    Mixed beaches (MBs), with sediment sizes ranging over three orders of magnitude, are an increasingly important coastal defence on > 1/3 of the shoreline of England and Wales. In East Sussex, the combined effect of coastal defence management schemes (extensive groyning and sea wall construction) has reduced beach sediment supply. Local authorities counteract the increased flood risk by recycling or artificially recharging beaches on the most vulnerable and populated areas. Beaches lose sediment predominantly via longshore transport (LST) whose accurate quantification is critical to calculating recharge amounts needed for effective beach management. Industry does this by using sediment transport modelling which depends on reliable input data and modelling assumptions. To improve understanding of processes and quantification of LST on MBs, this study has accurately measured sediment transport on a natural, macrotidal, MB. The 1.2 km natural MB at Birling Gap, East Sussex here is located on the downdrift end of an 80 km long sub-sedimentary cell and is oriented WNW-ESE. The beach lies on a low gradient chalk shore platform backed by sub-vertical chalk cliffs. It is composed primarily of flint gravel with a peak grain size distribution of 30 to 50 mm, and a sand content of up to 30%. Sediment transport was measured using pebble tracers and GPS surface surveys during three survey periods of three to five consecutive days in March, May and December 2006. Tracer pebbles, matching the beach pebbles' D50, were made of an epoxy resin with a copper core allowing their detection and recovery to a depth of 40 cm using a metal detector. Tracers were deployed on the upper, middle and lower beach, from the surface into the beach to depths of up to 40 cm. They were collected on the low tide following deployment. The wave conditions were recorded on a Valeport DWR wave recorder located seaward of the beach on the chalk platform. Over the three study periods a large spectrum of wave heights (0.1 to 2.6 m) and periods (2 and 13.4 s) was observed. Wave direction varied from 14 to 106° to the beach. In total, up to 300 tracers were used on every day of deployment. The recovery rate after one tide varied from 58.4 to 100%. Significant longshore transport was observed, up to a maximum of 145 m. The results show that pebble behaviour on a natural MB is extremely sensitive to position on the beach profile and to changes in the water level and wave conditions associated with tidal conditions. Longshore sediment transport rates ranged from 0 to 120.55 m3 tide-1. Longshore wave power and immersed longshore transport were calculated and a drift efficiency coefficient of 0.04 was derived. These results contribute to the data bank on LST on MBs. Ultimately they will help to refine the current models used by the industry and support beach managers in anticipating sediment volumes that will be necessary to sustain a MB prior to storm events. Key words: mixed beach, longshore sediment transport, sediment tracer.

  3. Field assessment of innovative sensor for monitoring of sediment accumulation at inshore coral reefs.

    PubMed

    Thomas, Séverine; Ridd, Peter

    2005-01-01

    Sediment accumulation rate is a frequently required parameter in environmental and management studies, in particular near coral reefs where sediment accumulation can potentially cause severe impact. However, opportunities to obtain accurate sediment accumulation measurements are often limited by a lack of adequate instrumentation, in particular for high temporal resolution monitoring. For instance the traditional use of sediment traps, as the most widespread technique, offers poor temporal resolution (commonly of weeks) besides having significant hydrodynamic shortcomings. Therefore, a new optical backscatter sediment accumulation sensor (SAS) was developed to continuously measure in situ short-term sediment accumulation in sensitive riverine and coastal environments, enabling high temporal and vertical resolution (order of 1 h and with a deposited thickness resolution in the order of 20 microm respectively). This allows investigations of various parameters that influence accumulation: tides, current, waves, rain, or anthropogenic activity such as sediment dumping. This paper briefly describes the SAS and presents three field applications on nearshore coral reefs at Ishigaki Island (Japan), Lihir Island (Papua New Guinea), and Magnetic Island (Australia).

  4. The effect of the new Massachusetts Bay sewage outfall on the concentrations of metals and bacterial spores in nearby bottom and suspended sediments

    USGS Publications Warehouse

    Bothner, Michael H.; Casso, M.A.; Rendigs, R. R.; Lamothe, P.J.

    2002-01-01

    Since the new outfall for Boston's treated sewage effluent began operation on September 6, 2000, no change has been observed in concentrations of silver or Clostridium perfringens spores (an ecologically benign tracer of sewage), in bottom sediments at a site 2.5 km west of the outfall. In suspended sediment samples collected with a time-series sediment trap located 1.3 km south of the outfall, silver and C. perfringens spores increased by 38% and 103%, respectively, in post-outfall samples while chromium, copper, and zinc showed no change. All metal concentrations in sediments are <50% of warning levels established by the Massachusetts Water Resources Authority. An 11-year data set of bottom sediment characteristics collected three times per year prior to outfall startup provides perspective for the interpretation of post-outfall data. A greater than twofold increase in concentrations of sewage tracers (silver and C. perfringens) was observed in muddy sediments following the exceptional storm of December 11-16, 1992 that presumably moved contaminated inshore sediment offshore. ?? 2002 Elsevier Science Ltd. All rights reserved.

  5. Population size, breeding biology and on-land threats of Cape Verde petrel (Pterodroma feae) in Fogo Island, Cape Verde

    PubMed Central

    Zango, Laura; Calabuig, Pascual; Stefan, Laura M.; González-Solís, Jacob

    2017-01-01

    Cape Verde petrel (Pterodroma feae) is currently considered near threatened, but little is known about its population size, breeding biology and on land threats, jeopardizing its management and conservation. To improve this situation, we captured, marked and recaptured (CMR) birds using mist-nets over 10 years; measured and sexed them; monitored up to 14 burrows, deployed GPS devices on breeders and analyzed activity data of geolocators retrieved from breeders in Fogo (Cape Verde). We set cat traps over the colony and investigated their domestic/feral origin by marking domestic cats from a nearby village with transponders, by deploying GPS devices on domestic cats and by performing stable isotope analyses of fur of the trapped and domestic cats. The population of Fogo was estimated to be 293 birds, including immatures (95% CI: 233–254, CMR modelling). Based on geolocator activity data and nest monitoring we determined the breeding phenology of this species and we found biometric differences between sexes. While monitoring breeding performance, we verified a still ongoing cat predation and human harvesting. Overall, data gathered from trapped cats without transponder, cats GPS trips and the distinct isotopic values between domestic and trapped cats suggest cats visiting the colony are of feral origin. GPS tracks from breeders showed birds left and returned to the colony using the sector NE of the islands, where high level of public lights should be avoided specially during the fledging period. Main threats for the Cape Verde petrel in the remaining breeding islands are currently unknown but likely to be similar to Fogo, calling for an urgent assessment of population trends and the control of main threats in all Cape Verde Islands and uplisting its conservation status. PMID:28369105

  6. Population size, breeding biology and on-land threats of Cape Verde petrel (Pterodroma feae) in Fogo Island, Cape Verde.

    PubMed

    Militão, Teresa; Dinis, Herculano Andrade; Zango, Laura; Calabuig, Pascual; Stefan, Laura M; González-Solís, Jacob

    2017-01-01

    Cape Verde petrel (Pterodroma feae) is currently considered near threatened, but little is known about its population size, breeding biology and on land threats, jeopardizing its management and conservation. To improve this situation, we captured, marked and recaptured (CMR) birds using mist-nets over 10 years; measured and sexed them; monitored up to 14 burrows, deployed GPS devices on breeders and analyzed activity data of geolocators retrieved from breeders in Fogo (Cape Verde). We set cat traps over the colony and investigated their domestic/feral origin by marking domestic cats from a nearby village with transponders, by deploying GPS devices on domestic cats and by performing stable isotope analyses of fur of the trapped and domestic cats. The population of Fogo was estimated to be 293 birds, including immatures (95% CI: 233-254, CMR modelling). Based on geolocator activity data and nest monitoring we determined the breeding phenology of this species and we found biometric differences between sexes. While monitoring breeding performance, we verified a still ongoing cat predation and human harvesting. Overall, data gathered from trapped cats without transponder, cats GPS trips and the distinct isotopic values between domestic and trapped cats suggest cats visiting the colony are of feral origin. GPS tracks from breeders showed birds left and returned to the colony using the sector NE of the islands, where high level of public lights should be avoided specially during the fledging period. Main threats for the Cape Verde petrel in the remaining breeding islands are currently unknown but likely to be similar to Fogo, calling for an urgent assessment of population trends and the control of main threats in all Cape Verde Islands and uplisting its conservation status.

  7. Sediment dynamics in shallow Lake Markermeer, The Netherlands: field/laboratory surveys and first results for a 3-D suspended solids model.

    PubMed

    Kelderman, P; De Rozari, P; Mukhopadhyay, S; Ang'weya, R O

    2012-01-01

    In 2007/08, a study was undertaken on sediment dynamics in shallow Lake Markermeer, The Netherlands. Firstly, the sediment characteristics median grain size, mud content and loss on ignition showed a spatial as well as water depth related pattern indicating wind-induced sediment transport. Sediment dynamics were investigated in a sediment trap field survey at two stations. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with wind speeds. Resuspension rates for Lake Markermeer were very high, viz. ca. 1,000 g/m(2)day as an annual average, leading to high suspended solids (SS) contents, due to the large lake area and its shallowness (high 'Dynamic Ratio'). Sediment resuspension behaviour was further investigated in preliminary laboratory experiments using a 'micro-flume', applying increasing water currents onto five Lake Markermeer sediments. Resuspension showed a clear exponential behaviour. Finally, a 3-D model was set up for water quality and SS contents in Lake Markermeer; first results showed a good agreement between modelled and actual SS contents. Construction of artificial islands and dams will reduce wind fetches and may be expected to cause a substantial decrease in lake water turbidity.

  8. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    USGS Publications Warehouse

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  9. 76 FR 35874 - Union Electric Company (dba Ameren Missouri); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... generators with a total installed capacity of 408 megawatts; (5) an excavated tailrace and open channel to the lower reservoir; (6) a 138-kilovolt switchyard/ substation; (7) a gravel and sedimentation trap...

  10. Mozambique upper fan: origin of depositional units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droz, L.; Mougenot, D.

    1987-11-01

    The upper Mozambique Fan includes a stable down-stream region, with a north-south channel flanked by thick (1.5 sec two-way traveltime) asymmetric levees, and a migrating upstream region where at least two main feeding paths have been successively dominant. From the Oligocene to early Miocene, the north-south Serpa Pinto Valley acted as the main conduit for the north Mozambique terrigenous sediments. From the middle Miocene, the west-east Zambezi Valley became the dominant path and supplied the fan with sediments transported by the Zambezi River from the central part of Mozanbique. The transfer from one sediment-feeding system to the other is relatedmore » to the abandonment of the Serpa Pinto Valley because of graben formation along the Davie Ridge, which trapped the sediments, and the increase of the Zambezi River sediment supply because of the creation and erosion of the East African Rift. 13 figures.« less

  11. PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities

    NASA Astrophysics Data System (ADS)

    Burns, Kathryn A.

    2014-05-01

    In view of the controversy over expanding the coastal coal ports bordering the Great Barrier Reef (GBR) Lagoon and the World Heritage Area, I re-evaluated the data published in Burns and Brinkman (2011). I used the US EPA procedures for the determination of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms (Hansen et al., 2003), and the new proposed ANZECC/ARMCANZ (2013) sediment quality guidelines (Simpson et al., 2013) and determined that the coastal sediments offshore from the Hay Point coal terminal and suspended sediments caught in sediment traps inshore and at the offshore coral reefs contained levels of PAHs that approach the estimates for toxicity to benthic and water column organisms. This result is discussed in relation to risks posed to the GBR ecosystem by the port practices and the imminent expansion of the Abbott Point, Hay Point and other coal terminals.

  12. Hydrologic data on channel adjustments, 1970 to 1975, on the Rio Grande downstream from Cochiti Dam, New Mexico before and after closure

    USGS Publications Warehouse

    Dewey, Jack D.; Roybal, F.E.; Funderburg, D.E.

    1979-01-01

    Cross-section channel profiles, sediment transport and hydrologic data have been observed and computed for a series of pre-dam and post-dam investigations from 1970 to 1975 at 37 cross sections established along a 59-mile study reach from Cochiti Dam to Isleta Diversion Dam, New Mexico. Cochiti Dam began impounding water in November 1973. Because the dam will trap virtually all of the sediment load originating upstream and water discharge will be controlled, it is expected that equilibrium values of channel width, depth, slope and sediment-transport capability in the existing main stem of the Rio Grande will change. Changes in cross sections with time and space and changes in size distribution of sediments are documented. (Woodard-USGS).

  13. FY01 Phytoremediation of Chlorinated Ethenes in Southern Sector Seepline Sediments of SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.L.

    This treatability study is now in the second year of deployment for the Southern Sector Phytoremediation Project. Phytoremediation is the use of vegetation and associated media to treat contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that promises effective and safe cleanup of certain hazardous wastes. This ongoing work addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene- (TCE-) and perchloroethylene- (PCE-) contaminated groundwater. The primary objective is to determine how the trees and sediments uptake groundwater TCE and PCE, biodegrade it, and/or transform it. The experimentalmore » focus of this project is the biological removal of VOCs from seepline groundwater and sediments.« less

  14. Capture of Xylosandrus crassiusculus and other Scolytinae (Coleoptera, Curculionidae) in response to visual and volatile cues

    USDA-ARS?s Scientific Manuscript database

    In June and July 2011 traps were deployed in Tuskegee National Forest, Macon County, Alabama to test the influence of chemical and visual cues on for the capture of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). \\using chemical and visual cues. The first experiment investigated t...

  15. Pilot in vivo study of an absorbable polydioxanone vena cava filter.

    PubMed

    Eggers, Mitchell D; McArthur, Mark J; Figueira, Tomas A; Abdelsalam, Mohamed E; Dixon, Katherine P; Pageon, Laura R; Wallace, Michael J; Huang, Steven Y

    2015-10-01

    The objectives of this study were to evaluate tensile strength retention of polydioxanone as a function of time in a swine venous system and to assess the feasibility of an absorbable inferior vena cava (IVC) filter made from polydioxanone in a pilot swine study. Twenty strands (60 cm each) of size 1 polydioxanone absorbable suture (Ethicon, Somerville, NJ) were placed in the central venous system of domestic swine. Strands were harvested at weekly intervals during 10 weeks for tensile strength testing. Results were compared with control samples obtained from an in vitro engineered circulation system containing sodium phosphate buffer solution. Three IVC filters braided from polydioxanone suture were also catheter deployed in three swine to assess absorbable IVC filter feasibility. Polydioxanone retained 82% tensile strength in vitro vs 79% in vivo at 35 days (P > .22), the desired prophylactic duration. For IVC filters made from polydioxanone, technical success of placement was achieved in all three filters deployed (100%). Autologous thrombus deployed inferior to the filter remained trapped in the filter until thrombus resorption, with no evidence of pulmonary emboli on follow-up computed tomography. There were no instances of caval penetration, filter-induced IVC thrombosis, filter migration, or tilt >15 degrees with imaging and clinical follow-up carried out to 32 weeks. Strength retention of polydioxanone suture placed in the venous system of swine is similar to earlier in vitro studies out to 10 weeks (P > .06 for all weeks) and is more than sufficient (8.20 ± 0.37 kg mean load at break for size 1) to trap thrombus. Pilot animal study suggests that an absorbable polydioxanone IVC filter can be catheter deployed to capture and to hold iatrogenically administered autologous thrombus through resorption. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction-diffusion modeling.

    PubMed

    Tcaciuc, A Patricia; Borrelli, Raffaella; Zaninetta, Luciano M; Gschwend, Philip M

    2018-01-24

    Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13 C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs ( 13 C-labeled PCBs, 13 C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13 C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d -1 at 0-10 cm and 1.4 d -1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.

  17. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces

    NASA Astrophysics Data System (ADS)

    Pfannkuche, Olaf; Lochte, Karin

    1993-04-01

    Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.

  18. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment.

    PubMed

    Cho, Yeo-Myoung; Ghosh, Upal; Kennedy, Alan J; Grossman, Adam; Ray, Gary; Tomaszewski, Jeanne E; Smithenry, Dennis W; Bridges, Todd S; Luthy, Richard G

    2009-05-15

    We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months retained a strong stabilization capability to reduce aqueous equilibrium PCB concentrations by about 90%, which also supports the long-term effectiveness of AC in the field. Additional mixing during or after AC deployment, increasing AC dose, reducing AC-particle size, and sequential deployment of AC dose will likely improve AC-sediment contact and overall effectiveness. The reductions in PCB availability observed with slow mass transfer under field conditions calls for predictive models to assess the long-term trends in pore-water PCB concentrations and the benefits of alternative in-situ AC application and mixing strategies.

  19. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2011-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...Wave dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  20. 76 FR 54752 - Union Electric Company (dba Ameren Missouri); Notice of Application Ready for Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... open channel to the lower reservoir; (6) a 138-kilovolt switchyard/ substation; (7) a gravel and sedimentation trap (bin wall) on the East Fork of the Black River; and (8) associated ancillary equipment. m. A...

  1. Sediment inflow, outflow and deposition for Lakes Marion and Moultrie, South Carolina, October 1983-March 1985

    USGS Publications Warehouse

    Cooney, T.W.

    1988-01-01

    In 1941 a Coastal Plain reach of the Santee River was impounded to form Lake Marion and diverted into a diked-off part of the Cooper River basin to form Lake Moultrie. Rates of sediment inflow and outflow of the lakes were determined by the U.S. Geological Survey for the periods July 1966 - June 1968 and October 1983 - March 1985. Total sediment discharge was estimated for two inflow stations and continuous streamflow monitors and automatic suspended-sediment samplers were used for computation of suspended-sediment discharge. Bedload discharge was computed by the modified Einstein procedure. Suspended-sediment discharge was monitored at three outflow stations, with the suspended-sediment concentration measured on a weekly basis. During the 1983-1985 study, mean annual suspended-sediment inflow to Lakes Marion and Moultrie was estimated to be 722,000 tons, and the outflow was estimated at 175,000 tons, for a trap efficiency of 76% and a deposition rate of about 547,000 tons/year. This is about 33% less than the deposition rate determined during the 1966-68 study. The deposition rate for suspended and bedload sediment during the 1983 - 1985 study was about 650,000 tons/year. (USGS)

  2. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  3. Optimising the application of multiple-capture traps for invasive species management using spatial simulation.

    PubMed

    Warburton, Bruce; Gormley, Andrew M

    2015-01-01

    Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single-capture traps rather than investing in fewer, but more expense, multiple-capture traps.

  4. Efficacy of trap modifications for increasing capture rates of aquatic snakes in floating aquatic funnel traps

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2013-01-01

    Increasing detection and capture probabilities of rare or elusive herpetofauna of conservation concern is important to inform the scientific basis for their management and recovery. The Giant Gartersnake (Thamnophis gigas) is an example of a secretive, wary, and generally difficult-to-sample species about which little is known regarding its patterns of occurrence and demography. We therefore evaluated modifications to existing traps to increase the detection and capture probabilities of the Giant Gartersnake to improve the precision with which occurrence, abundance, survival, and other demographic parameters are estimated. We found that adding a one-way valve constructed of cable ties to the small funnel opening of traps and adding hardware cloth extensions to the wide end of funnels increased capture rates of the Giant Gartersnake by 5.55 times (95% credible interval = 2.45–10.51) relative to unmodified traps. The effectiveness of these modifications was insensitive to the aquatic habitat type in which they were deployed. The snout-vent length of the smallest and largest captured snakes did not vary among trap modifications. These trap modifications are expected to increase detection and capture probabilities of the Giant Gartersnake, and show promise for increasing the precision with which demographic parameters can be estimated for this species. We anticipate that the trap modifications found effective in this study will be applicable to a variety of aquatic and semi-aquatic reptiles and amphibians and improve conservation efforts for these species.

  5. Using sediment budgets to investigate the pathogen flux through catchments.

    PubMed

    Whiteway, Tanya G; Laffan, Shawn W; Wasson, Robert J

    2004-10-01

    We demonstrate a materials budget approach to identify the main source areas and fluxes of pathogens through a landscape by using the flux of fine sediments as a proxyfor pathogens. Sediment budgets were created for three subcatchment tributaries of the Googong Reservoir in south-eastern New South Wales, Australia. Major inputs, sources, stores, and transport zones were estimated using sediment sampling, dam trap efficiency measures, and radionuclide tracing. Particle size analyses were used to quantify the fine-sediment component of the total sediment flux, from which the pathogen flux was inferred by considering the differences between the mobility and transportation of fine sediments and pathogens. Gullies were identified as important sources of fine sediment, and therefore of pathogens, with the pathogen risk compounded when cattle shelter in them during wet periods. The results also indicate that the degree of landscape modification influences both sediment and pathogen mobilization. Farm dams, swampy meadows and glades along drainage paths lower the flux of fine sediment, and therefore pathogens, in this landscape during low-flow periods. However, high-rainfall and high-flow events are likely to transport most of the fine sediment, and therefore pathogen, flux from the Googong landscape to the reservoir. Materials budgets are a repeatable and comparatively low-cost method for investigating the pathogen flux through a landscape.

  6. Marsh vertical accretion in a Southern California Estuary, U.S.A

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Powell, A.N.

    1996-01-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  7. Exploiting LSPIV to assess debris-flow velocities in the field

    NASA Astrophysics Data System (ADS)

    Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco

    2018-01-01

    The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.

  8. Marsh Vertical Accretion in a Southern California Estuary, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.

    1996-07-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  9. Tectonics and hydrocarbon potential of the Barents Megatrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, D.; Vinogradov, A.; Yunov, A.

    1991-08-01

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less

  10. Sedimentation survey of Lago de Matrullas, Puerto Rico, December 2001

    USGS Publications Warehouse

    Soler-López, Luis R.

    2003-01-01

    Lago de Matrullas reservoir, constructed in 1934, is located at an altitude of approximately 730 meters above mean sea level in the municipality of Orocovis in central Puerto Rico, and has a drainage area of 11.45 square kilometers. The reservoir is part of the Puerto Rico Electric Power Authority Toro Negro Hydroelectric Project, which also includes the Lago El Guineo reservoir and a hydroelectric plant to the south of the insular hydrographic divide. Historically, the drainage area had been protected from soil erosion by dense vegetation and the lack of basin development. However, transportation, potable water, and electric power infrastructure construction has facilitated development in rural areas resulting in the clearing of land. This trend in land-use changes is impacting the useful life of Lago de Matrullas. The reservoir storage capacity has been reduced from 3.71 million cubic meters in 1934 to 3.08 million cubic meters in 2001. This represents a total storage-capacity loss of 0.63 million cubic meters by 2001 (17 percent), or a long-term annual storage loss of 0.25 percent per year. The sediment trapping efficiency of Lago de Matrullas has been estimated at approximately 90 percent. If the current long-term sedimentation rate continues, Lago de Matrullas would fill by the year 2328. However, this life expectancy could be reduced at a faster than predicted rate as a result of rural development in the Lago de Matrullas basin and the high sediment trapping efficiency of the reservoir.

  11. Impact of the 1993 flood on the distribution of organic contaminants in bed sediments of the Upper Mississippi River

    USGS Publications Warehouse

    Barber, L.B.; Writer, J.H.

    1998-01-01

    The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides fieldscale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides field-scale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.

  12. Multi-residue method for the analysis of 85 current-use and legacy pesticides in bed and suspended sediments

    USGS Publications Warehouse

    Smalling, K.L.; Kuivila, K.M.

    2008-01-01

    A multi-residue method was developed for the simultaneous determination of 85 current-use and legacy organochlorine pesticides in a single sediment sample. After microwave-assisted extraction, clean-up of samples was optimized using gel permeation chromatography and either stacked carbon and alumina solid-phase extraction cartridges or a deactivated Florisil column. Analytes were determined by gas chromatography with ion-trap mass spectrometry and electron capture detection. Method detection limits ranged from 0.6 to 8.9 ??g/kg dry weight. Bed and suspended sediments from a variety of locations were analyzed to validate the method and 29 pesticides, including at least 1 from every class, were detected.

  13. Mountain wetlands: efficient uranium filters - potential impacts

    USGS Publications Warehouse

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  14. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe.

    PubMed

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-04-22

    The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many traps are deployed at a single site. Future work should combine light wavelengths to improve trapping sensitivity and potentially enable direct comparisons with collections from hosts, although this may ultimately require different forms of baits to be developed.

  15. The down canyon evolution of submarine sediment density flows

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  16. Investigation of River Seismic Signal Induced by Sediment Transport and Water Flow: Controlled Dam Breaking Experiments

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Chen, S. C.; Chao, W. A.

    2015-12-01

    Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.

  17. Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check

    PubMed Central

    Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter

    2015-01-01

    Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d-1, whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d-1, which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. PMID:26146995

  18. Evaluation of BG-sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment.

    PubMed

    Ball, Tamara S; Ritchie, Scott R

    2010-07-01

    The BG-Sentinel (BGS) trap uses visual and olfactory cues as well as convection currents to attract Aedes aegypti (L.). The impact of the visual environment on trapping efficacy of the BGS trap for Ae. aegypti was investigated. Four- to 5-d nulliparous female and male Ae. aegypti were released into a semicontrolled room to evaluate the effect of the presence, reflectance, and distribution of surrounding harborage sites on BGS trapping efficacy. Low-reflective (dark) harborage sites near the BGS had a negative effect on both male and nulliparous female recapture rates; however, a more pronounced effect was observed in males. The distribution (clustered versus scattered) of dark harborage sites did not significantly affect recapture rates in either sex. In a subsequent experiment, the impact of oviposition sites on the recapture rate of gravid females was investigated. Although gravid females went to the oviposition sites and deposited eggs, the efficacy of the BGS in recapturing gravid females was not compromised. Ae. aegypti sampling in the field will mostly occur in the urban environment, whereby the BGS will be among oviposition sites and dark harborage areas in the form of household items and outdoor clutter. In addition to understanding sampling biases of the BGS, estimations of the adult population size and structure can be further adjusted based on an understanding of the impact of dark harborage sites on trap captures. Outcomes from this suite of experiments provide us with important considerations for trap deployment and interpretation of Ae. aegypti samples from the BGS trap.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, Michael D.; Hanula, James L.; Horn, Scott

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce differentmore » results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.« less

  20. High resolution near-bed observations in winter near Cape Hatteras, North Carolina

    USGS Publications Warehouse

    Martini, Marinna A.; Armstrong, Brandy N.; Warner, John C.

    2010-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location.

Top