Sediment traps for measuring onslope surface sediment movement
Wade G. Wells; Peter M. Wohlgemuth
1987-01-01
Two types of small (30-cm aperture) sheet metal sediment traps were developed to monitor onslope surface sediment transport. Traditionally, sediment traps and erosion pins have been used to measure the onslope movement of surficial soil material. While pins may be appropriate for documenting landscape denudation, traps are more suitable for monitoring downslope...
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Walters, Jeffrey S.; Hedges, John I.
1999-02-01
Although recent research has indicated that bacteria may contribute an important fraction of biochemical residues in terrestrial and marine environments, it is difficult for geochemists to identify contributions from these ubiquitous and biochemically diverse organisms. Previous studies have suggested uronic acids and O-methyl sugars may be useful indicators of microbial abundance and activity, but have been limited primarily to analyses of a small number of isolated samples. We report here comparative distributions of O-methyl sugars, uronic acids, and aldoses in sediment trap material and sediments from Dabob Bay, WA and nearby Saanich Inlet, BC, where temporal and spatial trends may be used together with well-established patterns in other biochemicals to identify bacterial contributions against the background of other carbohydrate sources. O-methyl sugars and uronic acids were important contributors to the overall flux and burial of polysaccharide material in Dabob Bay and Saanich Inlet, composing ≤12 wt% of the total carbohydrate yields from sediment trap and sediment samples. O-methyl sugars accounted for an average of 5% of the carbohydrate yields from sediment trap materials and sediments, but were found rarely and only in low abundance in vascular plant tissues, phytoplankton, and kelp. In contrast, uronic acids were abundant products of sediment trap material and sediments, as well as vascular plant tissues, where in some cases they predominated among all carbohydrates. Uronic acid abundance in sediment trap material averaged 3% and ranged to >6% of total carbohydrate yields. The persistence of total minor sugar yields in water column collections from Dabob Bay throughout the seasonal cycle indicated they had a primary source that was not directly related to plankton bloom cycles nor pulsed inputs of vascular plant remains. Subsurface maxima in total minor sugar yields (and several individual components) within sediment cores from both sites indicate in situ sedimentary sources. Taken together, the observed environmental distributions strongly suggest that the minor sugar abundances in Dabob Bay and Saanich Inlet were controlled by in situ microbial production.
Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.
2009-01-01
Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson River estuary in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the estuary are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower estuary. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.
Head-of-tide bottleneck of particulate material transport from watersheds to estuaries
NASA Astrophysics Data System (ADS)
Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.
2015-12-01
We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.
Head-of-tide bottleneck of particulate material transport from watersheds to estuaries
Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine
2015-01-01
We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.
Developments in a methodology for the design of engineered invert traps in combined sewer systems.
Buxton, A; Tait, S; Stovin, V; Saul, A
2002-01-01
Sediments within sewers can have a significant effect on the operation of the sewer system and on the surrounding natural and urban environment. One possible method for the management of sewer sediments is the use of slotted invert traps. Although invert traps can be used to selectively trap only inorganic bedload material, little is known with regard to the design of these structures. This paper presents results from a laboratory investigation comparing the trapping performance of three slot size configurations of a laboratory-scale invert trap. The paper also presents comparative results from a two-dimensional computational model utilising stochastic particle tracking. This investigation shows that particle tracking consistently over-predicts sediment retention efficiencies observed within the laboratory model.
Results of a Monitoring Program at a Sediment Trap in the Elbe Estuary near Wedel
NASA Astrophysics Data System (ADS)
Ohle, N.; Entelmann, I.; Winterscheid, A.
2012-04-01
In June 2008 a sediment trap was built in the Tidal Elbe River near Wedel. The trap is about 2 km long, 2 m deep in average and spans the whole roughly 300 meter width of the navigation channel. The geometry of the trap is aligned to the zones with maximum sedimentation in the past. Therefore it has a triangular geometry on the western side. The dimensions of the sediment traps were restricted due to more or less legal circumstances. A longer and deeper sediment trap requires a planning approval as the used dimensions were evaluated as supporting maintenance works. Hamburg Port Authority (HPA) and the Waterway and Shipping Administration of the Federal Government (WSV) want jointly further improve the management of sediments and dredging activities by means of this measure. Until end of 2010 a total amount of about 4 Mio. m3 of fine sediments has been removed from the basin in 4 maintenance campaigns and was relocated about 50 km downstream to the relocation area at Elbe-km 690. The main function of the sediment trap is to reduce the residual transport of marine sediments from the North Sea in direction of Hamburg by trapping minor polluted sediments before they reach the port area. In this area these sediments mix-up with higher polluted sediments. The three specific objectives of the sediment trap are: to reduce the dredging amounts in the area of the Hamburg port; to be able to relocate minor polluted sediments further downstream to areas where the ebb-tidal current dominates the flow regime; to economically optimize maintenance dredging activities within the sediment trap. Beside these qualitative advantages the sediment trap has additional advantages in regard to maintenance works of the fairway due to a higher flexibility. Since sediments are collected in one defined place they can be dredged more efficiently through the use of optimized equipment, e.g. larger hopper dredgers can be used resulting in a cost-benefit. Another optimisation possibility can be found in the higher densities that can be dredged through a longer period of consolidation, resulting in higher hopper densities. In contrast to these advantages, a cost increase through preparation of the sediment trap in the first place needs to be considered. In order to report stakeholders, HPA runs a monitoring programme on how this sediment trap affects hydrology, morphology and ecological issues. Besides that, HPA carries out further monitoring activities tailored to system analysis and to study morphological processes in detail. The Federal Institute of Hydrology (BfG) analyses the data and carries out further investigations on the measuring data (refer to BfG, 2009 and BfG, 2010). Hydrological and morphological parameters are being constantly recorded at four monitoring stations which are located up- and downstream to the sediment trap. The current velocities were analysed by ADCP campaigns on several profiles. In order to study the near-bed morphological processes a steel-frame-platform - equipped with measurement devices and traps for suspended material - was installed directly on the bottom of the sediment trap. A pump sampler collects water samples from a survey vessel to obtain suspended matter (SPM) content. Furthermore, HPA uses a multibeam echo sounder to observe the resulting sedimentation patterns in the trap. Surface grab samples are used to collect data about grain size distributions. Echo soundings with two frequencies and sediment echo sounders were used to get a picture of the density and consolidation of the settled sediments within the trap. In this paper short results of the mentioned monitoring program should be presented.
NASA Astrophysics Data System (ADS)
Tesi, T.; Langone, L.; Ravaioli., M.; Giglio, F.; Capotondi, L.
2012-12-01
An instrumented mooring line with sediment traps, current meters and recorders of temperature and conductivity was deployed just south of the Antarctic Polar Front (63° 26‧ S, 178° 03‧E; water depth 4400 m) from January 9th 1999 to January 10th 2000. Sediment traps at 900 and 3700 m had a single large cup to collect particulate material throughout the 1-year study whereas time-series sediment traps were used to characterize the temporal variability at 1300 and 2400 m. Samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera identification. High vertical fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During autumn and winter, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~ 60 and ~ 90% of the material caught at 2400 and 3700 m, respectively. Although resuspended material showed an elemental composition relatively similar to vertical summer fluxes, samples collected during high energy events contained benthic foraminifera and exhibited significantly higher 210Pb activity indicating a longer residence time in the water column. In addition, during quiescent periods characterized by low mass fluxes, the content of lithogenic particles increased at the expense of phytodetritus indicating the influence of material advected through the benthic nepheloid layer. Organic matter content was particularly high during these periods and showed statistically significant linear correlations with metals suggesting adsorption of organic coatings onto the mineral surface of lithogenic particles.
Deposition, Alteration, and Resuspension of Colorado River Delta Sediments, Lake Powell, Utah
NASA Astrophysics Data System (ADS)
Kramer, N. M.; Parnell, R.
2002-12-01
Current drought conditions in the southwest United States have resulted in lowering water levels in Lake Powell, Utah. Delta sediments forming at the Colorado River inflow for the past 39 years are becoming exposed and reworked as lake levels continue to fall to over 22 meters below full pool level. Fine sediments act as a sink for pollutants by adsorbing contaminants to their surfaces. Reworking these sediments may pose a risk to water quality in the lake. We examine whether burial and time have sufficiently altered fine sediments in the delta and affected materials adsorbed on their surfaces. Fifteen lake cores and six sediment traps were collected from the sediment delta forming at the Colorado River inflow in Lake Powell. This research characterizes fine sediment mineralogy, the composition of exchangeable materials, and organic matter content within delta sediments to determine the type and amount of alteration of these sediments with cycles of burial and resuspension. We hypothesize that as sediments are reworked, organic carbon is degraded and organic nitrogen is released forming ammonium in these reducing conditions. Sediment trap samples will be used to test this hypothesis. Trap samples will be compared to subsamples from sediment cores to determine the amount of alteration of fine sediments. All samples are analyzed for organic carbon, organic nitrogen, ammonium, cation exchange capacity, exchangeable cation composition, and clay mineralogy. Organic carbon and nitrogen are analyzed using a Leco CN analyzer. Ammonium is analyzed using a Lachet ion chromatograph. Clay mineralogy is characterized using a Siemens D500 powder X-ray diffractometer. Cation exchange capacity and exchangeable cations are measured using standard soil chemical techniques. Clay mineral analyses indicate significant spatial and temporal differences in fine sediment entering the Lake Powell delta which complicates the use of a simple deposition/alteration/resuspension model using a single starting material.
NASA Astrophysics Data System (ADS)
Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene
2009-02-01
The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.
The effect of vegetation height and biomass on the sediment budget of a European saltmarsh
NASA Astrophysics Data System (ADS)
Reef, Ruth; Schuerch, Mark; Christie, Elizabeth K.; Möller, Iris; Spencer, Tom
2018-03-01
Sediment retention in saltmarshes is often attributed to the presence of vegetation, which enhances accretion by slowing water flow, reduces erosion by attenuating wave energy and increases surface stability through the presence of organic matter. Saltmarsh vegetation morphology varies considerably on a range of spatial and temporal scales, but the effect of different above ground morphologies on sediment retention is not well characterised. Understanding the biophysical interaction between the canopy and sediment trapping in situ is important for improving numerical shoreline models. In a novel field flume study, we measured the effect of vegetation height and biomass on sediment trapping using a mass balance approach. Suspended sediment profilers were placed at both openings of a field flume built across-shore on the seaward boundary of an intertidal saltmarsh in the Dengie Peninsula, UK. Sequential removal of plant material from within the flume resulted in incremental loss of vegetation height and biomass. The difference between the concentration of suspended sediment measured at each profiler was used to determine the sediment budget within the flume. Deposition of material on the plant/soil surfaces within the flume occurred during flood tides, while ebb flow resulted in erosion (to a lesser degree) from the flume area, with a positive sediment budget of on average 6.5 g m-2 tide-1 with no significant relationship between sediment trapping efficiency and canopy morphology. Deposition (and erosion) rates were positively correlated to maximum inundation depth. Our results suggest that during periods of calm conditions, changes to canopy morphology do not result in significant changes in sediment budgets in marshes.
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Field, M. E.; Bothner, M. H.
2011-03-01
Sediment traps are commonly used as standard tools for monitoring "sedimentation" in coral reef environments. In much of the literature where sediment traps were used to measure the effects of "sedimentation" on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about "sedimentation" on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height ( H), trap mouth diameter ( D), the height of the trap mouth above the substrate ( z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.
NASA Astrophysics Data System (ADS)
Flemming, Burg W.; Keith Martin, A.
2018-02-01
Under certain geomorphological conditions, sandy sediments supplied to a coast may become trapped in nearshore sedimentary compartments because these are laterally confined by bedload boundaries or convergences. Where sediment supply is small or the shoreface very steep, and accommodation space as a consequence large, the trapping mechanism may be very efficient. The Tsitsikamma coast along the South African south coast is a case in point, the sediment supplied by local rivers over the past 12 ka having been trapped in a nearshore sediment wedge extending at least 5 km offshore. On the basis of high-resolution seismic surveys, the volume of the sediment wedge has been estimated at 1,354×106 m3. As 5% of this volume is considered to have been contributed by bioclastic material of marine origin, the terrestrial input would be 1,286×106 m3. This amounts to an average annual terrestrial sediment input of 0.1072×106 m3. Using a detailed sediment yield map, the modern mean annual sediment supply to the Tsitsikamma coast by local rivers has been estimated at 0.1028×106 m3. Unless coincidental, the remarkable similarity of the two values suggests that the current climatic conditions along the Tsitsikamma coast correspond to the Holocene mean. This conclusion is supported by the currently available climate data for the South African south coast.
Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific
NASA Astrophysics Data System (ADS)
Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy
Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.
NASA Astrophysics Data System (ADS)
Schulz, H.; von Rad, U.
2014-06-01
Due to the lack of bioturbation, the varve-laminated muds from the oxygen minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the nearshore part of the northeastern Arabian Sea. West of Karachi (Hab area), the results of two sediment trap stations (EPT and WPT) were correlated with 16 short sediment cores on a depth transect crossing the OMZ. The top of a distinct, either reddish- or light-gray silt layer, 210Pb-dated as AD 1905 ± 10, was used as an isochronous stratigraphic marker bed to calculate sediment accumulation rates. In one core, the red and gray layer were separated by a few (5-10) thin laminae. According to our varve model, this contributes < 10 years to the dating uncertainty, assuming that the different layers are almost synchronous. We directly compared the accumulation rates with the flux rates from the sediment traps that collected the settling material within the water column above. All traps on the steep Makran continental slope show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1. Based on core results, the flux at the seafloor amounts to 4000 mg m-2 d-1 and agrees remarkably well with the bulk winter flux of material, as well as with the flux of the individual bulk components of organic carbon, calcium carbonate and opal. However, due to the extreme mass of remobilized matter, the high winter flux events exceeded the capacity of the shallow traps. Based on our comparisons, we argue that high-flux events must occur regularly during winter within the upper OMZ off Pakistan to explain the high accumulations rates. These show distribution patterns that are a negative function of water depth and distance from the shelf. Some of the sediment fractions show marked shifts in accumulation rates near the lower boundary of the OMZ. For instance, the flux of benthic foraminifera is lowered but stable below ~1200-1300 m. However, flux and sedimentation in the upper eastern Makran area are dominated by the large amount of laterally advected fine-grained material and by the pulsed nature of the resuspension events at the upper margin during winter.
Weaver, J.C.
1994-01-01
A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap efficiency of 89 percent. An overall trap efficiency for the period of 1983-91 was computed using the capacity-inflow ratio. The use of this ratio indicates that the trap efficiency for Lake Michie is 85 percent. However, the suspended-sediment trap efficiency indicates that the actual overall trap efficiency for Lake Michie was probably greater than 89 percent during this period.
Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.
2011-01-01
Sediment traps are commonly used as standard tools for monitoring “sedimentation” in coral reef environments. In much of the literature where sediment traps were used to measure the effects of “sedimentation” on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about “sedimentation” on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height (H), trap mouth diameter (D), the height of the trap mouth above the substrate (z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.
Carbon transport in Monterey Submarine Canyon
NASA Astrophysics Data System (ADS)
Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.
2017-12-01
Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.
NASA Astrophysics Data System (ADS)
Florsheim, J. L.; Ulrich, C.; Hubbard, S. S.; Borglin, S. E.; Rosenberry, D. O.
2013-12-01
An important problem in geomorphology is to differentiate between abiotic and biotic fine sediment deposition on coarse gravel river beds because of the potential for fine sediment to infiltrate and clog the pore space between gravel clasts. Infiltration of fines into gravel substrate is significant because it may reduce permeability; therefore, differentiation of abiotic vs. biotic sediment helps in understanding the causes of such changes. We conducted a geomorphic field experiment during May to November 2012 in the Russian River near Wohler, CA, to quantify biotic influence on riverbed sedimentation in a small temporary reservoir. The reservoir is formed upstream of a small dam inflated during the dry season to enhance water supply pumping from the aquifer below the channel; however, some flow is maintained in the reservoir to facilitate fish outmigration. In the Russian River field area, sediment transport dynamics during storm flows prior to dam inflation created an alternate bar-riffle complex with a coarser gravel surface layer over the relatively finer gravel subsurface. The objective of our work was to link grain size distribution and topographic variation to biotic and abiotic sediment deposition dynamics in this field setting where the summertime dam annually increases flow depth and inundates the bar surfaces. The field experiment investigated fine sediment deposition over the coarser surface sediment on two impounded bars upstream of the reservoir during an approximately five month period when the temporary dam was inflated. The approach included high resolution field surveys of topography, grain size sampling and sediment traps on channel bars, and laboratory analyses of grain size distributions and loss on ignition (LOI) to determine biotic content. Sediment traps were installed at six sites on bars to measure sediment deposited during the period of impoundment. Preliminary results show that fine sediment deposition occurred at all of the sample sites, and is spatially variable--likely influenced by topographic differences that moderate flow over the bars. Traps initially filled with coarse gravel from the bar's surface trapped more fine sediment than traps initially filled with material from the bar's subsurface sediment, suggesting that a gravel bar's armor layer may enhance the source of material available to infiltrate into the channel substrate. LOI analysis indicates that both surface and subsurface samples have organic content ranging between 2 and 4%, following winter storm flows prior to impoundment. In contrast, samples collected after the 5-month impoundment have higher organic content ranging between 5 and 11%. This work aids in differentiating between abiotic and biotic fine sediment deposition in order to understand their relative potential for clogging gravel substrate.
Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.
2006-01-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E
2006-09-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
An automated leaching method for the determination of opal in sediments and particulate matter
NASA Astrophysics Data System (ADS)
Müller, Peter J.; Schneider, Ralph
1993-03-01
An automated leaching method for the analysis of biogenic silica (opal) in sediments and particulate matter is described. The opaline material is extracted with 1 M NaOH at 85°C in a stainless steel vessel under constant stirring, and the increase in dissolved silica is continuously monitored. For this purpose, a minor portion of the leaching solution is cycled to an autoanalyzer and analyzed for dissolved silicon by molybdate-blue spectrophotometry. The resulting absorbance versus time plot is then evaluated according to the extrapolation procedure of DEMASTER (1981). The method has been tested on sponge spicules, radiolarian tests. Recent and Pliocene diatomaceous ooze samples, clay minerals and quartz, artificial sediment mixtures, and on various plankton, sediment trap and sediment samples. The results show that the relevant forms of biogenic opal in Quaternary sediments are quantitatively recovered. The time required for an analysis is dependent on the sample type, ranging from 10 to 20 min for plankton and sediment trap material and up to 40-60 min for Quaternary sediments. The silica co-extracted from silicate minerals is largely compensated for by the applied extrapolation technique. The remaining degree of uncertainty is on the order of 0.4 wt% SiO 2 or less, depending on the clay mineral composition and content.
Dependable water supplies from valley alluvium in arid regions.
Van Haveren, Bruce P
2004-12-01
Reliable sources of high-quality water for domestic use are much needed in arid regions. Valley alluvium, coarse sand and gravel deposited by streams and rivers, provides an ideal storage medium for water in many regions of the world. However, river sediments will not accumulate in a valley without a natural or artificial barrier to slow the water. Sediments will deposit upstream of a barrier dam and form an alluvial deposit of relatively well-sorted material. The alluvium then acts as both an underground water-supply reservoir and a water filter, yielding a constant flow of high-quality water. Trap dams that store water in alluvial sediments and slowly release the filtered water represent an appropriate and inexpensive technology for combating desertification and mitigating the effects of drought at the community level. Small trap dams may be built as a community project using local materials and local labor.
Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape
Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles
2015-01-01
Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.
Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California
Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.
2010-01-01
Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.
NASA Astrophysics Data System (ADS)
Matusiewicz, Henryk; Krawczyk, Magdalena
2007-03-01
The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.
NASA Astrophysics Data System (ADS)
Wang, J.; Ju, J.; Daut, G.; Wang, Y.; Maeusbacher, R.; Zhu, L.
2013-12-01
As a big and deep lake in high altitude environment, Nam Co has played an important role in the past decade concerning paleoenvironmental change study. However, the modern process monitoring research is still insufficient in this lake to understand the variations in the modern sedimentation patterns. Sediment traps are widely used in lakes monitoring and research, providing the modern sedimentation rates (SR) and flux information as well as the materials for multidisciplinary studies. Here we present the first and preliminary result of spatio-temporal variability of SR in Nam Co based on one-year sediment traps data. Three integrated self-made traps mooring were deployed in different areas in Nam Co, which were eastern area (T1, ~57m depth), middle area (T2, ~93m depth) and western area (T3, ~62m depth). There were three layers traps in T1 and T3 station while four layers in T2 station. Additionally, a time-series automatic samples changing trap (Technicap PPS 3/3, France) was set up in the bottom (~90m depth) of T2 station with a sampling interval of two weeks. All traps were established in late May, 2012 and collected in Mid-September, 2012 for the first time. Then after winter time, samples were again collected in late May, 2013. Therefore, we got results for two periods, namely summer half year (May-September) and winter half year (September-next May). The results showed remarkable variation of SR vertically in all three stations, the bottom layers received much more materials than the up and middle layers. This fact could be attributed to the distinct influence of high density flows occurring at the lake bottom. This is also supported by multiprobe measurements showing high turbidity in the water body close to the bottom. In shallow areas (T1 and T3) the SR were higher than that of deep area (T2), which could probably reflect the different distance from the terrestrial source to the sites where the traps were deployed. In T1 and T2 stations, SR of winter half year (calculated as mg/cm2/day) was much higher than summer half year and this trend was also partly detected in the time-series sediment trap (T2), which showed higher SR in October, November and early June (no data from December to May). From early June to mid-November, the average SR of T2 station (~90m depth) ranged 0.09-0.95 mg/cm2/day, showed a remarkable temporal variation. More data and detailed analysis are still needed to elucidate the variability of modern SR in Nam Co and the influencing factors, including some internal mechanisms and outside driving related to climate change.
NASA Astrophysics Data System (ADS)
Khim, Boo-Keun; Otosaka, Shigeyoshi; Park, Kyung-Ae; Noriki, Shinichiro
2018-03-01
Investigation of sediment-trap deployments in the East/Japan Sea (EJS) showed that distinct seasonal variations in particulate organic carbon (POC) fluxes of intermediate-water sediment-traps clearly corresponded to changes in chlorophyll a concentrations estimated from SeaWiFS data. The prominent high POC flux periods (e.g., March) were strongly correlated with the enhanced surface-water phytoplankton blooms. Deep-water sedimenttraps exhibited similar variation patterns to intermediate-water sediment-traps. However, their total flux and POC flux were higher than those of intermediate-water sediment-traps during some months (e.g., April and May), indicating the lateral delivery of some particles to the deep-water sediment-traps. Distinct seasonal δ13C and δ15N variations in settling particles of the intermediate-water sediment-traps were observed, strongly supporting the notion of seasonal primary production. Seasonal variations in δ13C and δ15N values from the deep-water sediment-traps were similar to those of the intermediate-water sediment-traps. However, the difference in δ13C and δ15N values between the intermediate-water and the deepwater sediment-traps may be attributed to degradation of organic matter as it sank through the water column. Comparison of fluxweighted δ13C and δ15N mean values between the deep-water sediment-traps and the core-top sediments showed that strong selective loss of organic matter components (lipids) depleted in 13C and 15N occurred during sediment burial. Nonetheless, the results of our study indicate that particles in the deep-water sediment-trap deposited as surface sediments on the seafloor preserve the record of surface-water conditions, highlighting the usefulness of sedimentary δ13C and δ15N values as a paleoceanographic application in the EJS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matty, J.M.; Anderson, J.B.; Dunbar, R.B.
1987-01-01
Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality withinmore » the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (< 1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.« less
Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention
NASA Astrophysics Data System (ADS)
Schwindt, Sebastian; Franca, Mário J.; Reffo, Alessandro; Schleiss, Anton J.
2018-03-01
Sediment traps with partially open check dams are crucial elements for flood protection in alpine regions. The trapping of sediment is necessary when intense sediment transport occurs during floods that may endanger urban areas at downstream river reaches. In turn, the unwanted permanent trapping of sediment during small, non-hazardous floods can result in the ecological and morphological degradation of downstream reaches. This study experimentally analyses a novel concept for permeable sediment traps. For ensuring the sediment transfer up to small floods, a guiding channel implemented in the deposition area of a sediment trap was systematically studied. The bankfull discharge of the guiding channel corresponds to a dominant morphological discharge. At the downstream end of the guiding channel, a permeable barrier (check dam) triggers sediment retention and deposition. The permeable barrier consists of a bar screen for mechanical deposition control, superposed to a flow constriction for the hydraulic control. The barrier obstructs hazardous sediment transport for discharges that are higher than the bankfull discharge of the guiding channel without the risk of unwanted sediment flushing (massive self-cleaning).
Periplatform carbonate flux in the northern Bahamas
NASA Astrophysics Data System (ADS)
Pilskaln, Cynthia H.; Neumann, A. Conrad; Bane, John M.
1989-09-01
In a preliminary effort to quantify the off-bank transport and vertical flux of shallow-water carbonates, a sediment trap was moored at 500 m in Northwest Providence Channel, northern, Bahamas. Two months of particulate flux data collected during a fair-weather, storm-free period revealed that the flux components differed significantly from that of the underlying sediments. Planktonic foraminifera tests, pteropod shells, fragments and coccoliths contributed 61% to the total flux of carbonate material, whereas bank-derived carbonates constituted 39%. Coccolith calcite represented half of the carbonate mass flux in the fine size fraction (< 63 μm) of the trap material. In contrast, the underlying periplatform ooze sediments consist of 80% bank-derived and 20% planktonic carbonate components. The results suggest that the flux and deposition of bank-derived carbonates in the periplatform environment are variable on a temporal scale, where a relatively minor proportion of bank-derived components is deposited during calm, storm-free periods, with the balance delivered during the passage of frequent, low-amplitude seasonal storms and occasional hurricanes.
NASA Astrophysics Data System (ADS)
Wilks, Jessica V.; Rigual-Hernández, Andrés S.; Trull, Thomas W.; Bray, Stephen G.; Flores, José-Abel; Armand, Leanne K.
2017-03-01
The Subantarctic Zone (SAZ) plays a crucial role in global carbon cycling as a significant sink for atmospheric CO2. In the Australian sector, the SAZ exports large quantities of organic carbon from the surface ocean, despite lower algal biomass accumulation in surface waters than other Southern Ocean sectors. We present the first analysis of diatom and coccolithophore assemblages and seasonality, as well as the first annual quantification of bulk organic components of captured material at the base of the mixed layer (500 m depth) in the SAZ. Sediment traps were moored in the SAZ southwest of Tasmania as part of the long-term SAZ Project for one year (September 2003 to September 2004). Annual mass flux at 500 m and 2000 m was composed mainly of calcium carbonate, while biogenic silica made up on average <10% of material captured in the traps. Organic carbon flux was estimated at 1.1 g m-2 y-1 at 500 m, close to the estimated global mean carbon flux. Low diatom fluxes and high fluxes of coccoliths were consistent with low biogenic silica and high calcium carbonate fluxes, respectively. Diatoms and coccoliths were identified to species level. Diatom and coccolithophore sinking assemblages reflected some seasonal ecological succession. A theoretical scheme of diatom succession in live assemblages is compared to successional patterns presented in sediment traps. This study provides a unique, direct measurement of the biogeochemical fluxes and their main biological carbon vectors just below the winter mixed layer depth at which effective sequestration of carbon occurs. Comparison of these results with previous sediment trap deployments at the same site at deeper depths (i.e. 1000, 2000 and 3800 m) documents the changes particle fluxes experience in the lower "twilight zone" where biological processes and remineralisation of carbon reduce the efficiency of carbon sequestration.
Capturing sediment and nutrients in irrigated terraced landscapes
NASA Astrophysics Data System (ADS)
Slaets, Johanna; Schmitter, Petra; Hilger, Thomas; Piepho, Hans-Peter; Dercon, Gerd; Cadisch, Georg
2016-04-01
Terraces are often promoted as green filters in landscapes, buffering discharge and constituent peaks. For irrigated rice terraces, however, this mitigating potential has not been assessed at the landscape level. Additionally, sediment and nutrient inputs potentially affect soil fertility in agricultural terraces and therefore yield - the extent of the impact depending on the quality and quantity of the captured material. Quantifying such upland-lowland linkages is particularly important in intensely cultivated landscapes, as declining upland soil fertility could alter beneficial hydrological connectivity between terraces and surrounding landscapes. In this study, we therefore quantified the sediment, sediment-associated organic carbon and nitrogen inputs and losses for a 13 ha paddy rice area, surrounded by upland maize cultivation in Northwest Vietnam in 2010 and 2011. Turbidity sensors were used in combination with a linear mixed model in order to obtain continuous predictions of the constituent concentrations. Sediment texture was determined using mid-infrared spectroscopy. Uncertainty on annual load estimates was quantified by calculating 95% confidence intervals with a bootstrap approach. Sediment inputs from irrigation water to the rice area amounted to 48 Mg ha-1 a-1 and runoff during rainfall events contributed an additional 16 Mg ha-1 a-1. Export from the rice terraces equalled 63 Mg ha-1 a-1 of sediments, resulting in a net balance of 28 Mg ha-1 a-1 or a trapping of almost half of the annual sediment inputs. Runoff contributed one third of the sand inputs, while irrigated sediments were predominantly silty. As paddy outflow contained almost exclusively silt- and clay-sized material, 24 Mg ha-1 a-1 of captured sediments consisted of sand. The sediment-associated organic carbon resulted in a deposit of 1.09 Mg ha-1 a-1. For sediment-associated nitrogen, 0.68 Mg ha-1 a-1 was trapped in the terraces. Combining both sediment-associated and dissolved nitrogen, irrigation water provided a total input of 1.11 Mg ha-1 a-1, of which 54% was in the plant-available forms of ammonium and nitrate - an input larger than the recommended application of chemical fertilizer. Rice terraces were net traps for sediment and protected downstream areas by filtering coarse sediments. Combined with the importance of irrigation water as a source of organic carbon and nitrogen for the rice, this connectivity underscores the vulnerability of agricultural terraces to changes in surrounding land use.
NASA Astrophysics Data System (ADS)
Kiyokawa, Shoichi; Ueshiba, Takuya
2015-04-01
Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively. The estimated production of iron oxyhydroxide for the whole fishing port from trap cores is 142.7-253.3 t/year/5000 m2. From sediment cores, however, the accumulation of iron oxyhydroxide sediments on the sea floor is 39-95 t/year/5000 m2. This finding indicates that the remaining 63%-73% of iron was transported out to sea from Nagahama Bay. Even with a high rate of iron oxyhydroxide production, the sedimentation rate of iron oxyhydroxides in the bay is considerably higher than that observed in modern deep-ocean sediments. This example of rapid and abundant oxyhydroxide sedimentation might provide a modern analog for the formation of iron deposits in the geological record, such as ironstones and banded iron formations.
Hydraulic Structures for Wetlands
1993-08-01
storage, water treatment to remove undesirable materials, sediment trapping, and ground water recharge. Also required is a knowledge of the operation ... management and maintenance resources that will be available during the life of the project.
NASA Astrophysics Data System (ADS)
Cowie, Gregory L.; Hedges, John I.; Calvert, Stephen E.
1992-05-01
A sediment-trap sample, representing an annual average particle flux at 50 m in Saanich Inlet, British Columbia, was analyzed for its elemental, amino acid, neutral sugar, and lignin composition. Amino acid analyses also were performed on underlying sediments which were analyzed previously for organic carbon, nitrogen, neutral sugars, and lignin. The results uniformly indicate primarily marine organic matter sources for all samples, although relatively higher terrigenous contributions are evident in the sediments. The δ13C values of trap materials also point to primarily autochthonous particle fluxes. Comparison of annual average water-column fluxes to sediment accumulation rates indicates under-sampling of sinking particles due to lateral sediment inputs at depth. The anoxic benthic interface appears to be an important site of diagenesis, and selective removal is observed both at compound-class and molecular levels. Cinnamyl and syringyl phenols are selectively removed relative to vanillyl phenols and loss patterns of the monosaccharides, and to a lesser degree the amino acids, strongly indicate preferential preservation of diatom cell-wall materials. Low flux ratios displayed by the nonprotein amino acids are consistent with their diagenetic origin. Preferential loss of marine organic material is indicated by the calculated δ13C value and biochemical composition of the substrate. Concentrations of all measured organic constituents decreased with depth in the uniformly varved 0-14 cm sediment interval, and suggest in situ degradation. Relative reactivities of the biochemical classes indicate a change in diagenetic substrate from that utilized above and at the benthic interface. With the exception of the amino acids, however, diagenesis is generally less selective in the sediments. The amino acid utilization pattern differs from that observed across the benthic interface, and down-core changes in protein and nonprotein amino acid compositions clearly indicate in situ degradation. The sedimentary degraded fraction also appears to be predominantly marine, but lignin yields and sugar compositions suggest a relative increase in the utilization of vascular plant remains. Protein, polysaccharide, and lignin contributions to total organic carbon decrease from 37% in the sediment-trap sample to 22% at the bottom of the 0-14 cm sediment interval. These biochemicals represent over 40 and 50-60% of the degraded carbon and nitrogen, respectively, and thus are important nutrients for the benthic and water-column communities.
Evaluation of the efficiency of some sediment trapping methods after a Mediterranean forest fire.
Fox, D M
2011-02-01
Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m³ per unit (median=1.28 m³); mean LDD height was 105.4 cm (std. dev.=21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev.=22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (< 0.050 mm) particles as coarser sediments were trapped upstream by the LDDs. Cost efficiency of LDDs was estimated at about 143 € m⁻³ for the LDDs and 217 € m⁻³ for the sedimentation basin at the time of sampling. The LDDs are therefore a cost effective method of trapping sediments, but they can only be used when pine trees or straight-trunked trees are locally available. In this case, they should be combined with LEBs, which had a cost efficiency estimated at about 250 € m⁻³. Installation of the LEBs had not been optimised and they have the advantage of trapping sediments on the slopes where they can continue to play an ecological role, so this method can give better results with more care. Sedimentation basins can be emptied if necessary and are useful in areas where pine trees are not available and where the site can be secured. Copyright © 2009 Elsevier Ltd. All rights reserved.
Pelagic origin and fate of sedimenting particles in the Norwegian Sea
NASA Astrophysics Data System (ADS)
Bathmann, Ulrich V.; Peinert, Rolf; Noji, Thomas T.; Bodungen, Bodo V.
A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g.m -2y -1, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10 3m -2d -1). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.
Sedimentological Signatures of Transient Depositional Events in the Cariaco Basin, Venezuela
NASA Astrophysics Data System (ADS)
Elmore, A. C.; Thunell, R. C.; Black, D. E.; Murray, R. W.; Martinez, N. C.
2004-12-01
The varved sediments that have accumulated in the Cariaco Basin throughout the Holocene provide a detailed archive of the region's climatic history, and act as a historical record for the occurrence of phenomena such as earthquakes and coastal flooding. In this study we compare the sedimentological characteristics of lithogenic material collected from the water column during transient depositional events to those of normal hemipelagic sedimentation in the basin. Specifically, we have examined the clay mineralogy and grain size distribution of detrital material delivered to the basin by the July 9, 1997 earthquake near Cumana, Venezuela and the coastal flooding of Venezuela in late 1999. The sample material used in our study was collected as part of an ongoing sediment trap time series in the Cariaco Basin. The sedimentological signatures associated with these two events are distinctive from the typical lithogenic input to the basin. Preliminary data for biweekly samples collected from 1997-1999 shows a tri-modal particle size distribution, with peaks at 3, 22, and 80 im. However, material collected from the deep basin immediately following the 1997 earthquake is characterized by a particle diameter distribution at 6 and 22 im with a smaller than normal peak at 80 im; this variance suggests an alternate source of material was delivered to the basin via a turbidity flow induced by the earthquake. Supporting this theory, the clay mineralogy of the same sediment trap samples shows a higher than average ratio of kaolinite to quartz for sediments delivered to the basin following both the earthquake and flooding. We hope to extend the use of these sedimentological methods to identify past transient depositional events in Cariaco Basin cores.
NASA Astrophysics Data System (ADS)
Pasqual, Catalina; Goñi, Miguel A.; Tesi, Tommaso; Sanchez-Vidal, Anna; Calafat, Antoni; Canals, Miquel
2013-11-01
Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean’s interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as lignin-derived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 μg VP g-1 lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.
Takesue, Renee K.; Bothner, Michael H.; Reynolds, Richard L.
2009-01-01
Geochemical tracers, including Ba, Co, Th, 7Be, 137Cs and 210Pb, and magnetic properties were used to characterize terrestrial runoff collected in nearshore time-series sediment traps in Hanalei Bay, Kauai, during flood and dry conditions in summer 2006, and to fingerprint possible runoff sources in the lower watershed. In combination, the tracers indicate that runoff during a flood in August could have come from cultivated taro fields bordering the lower reach of the river. Land-based runoff associated with summer floods may have a greater impact on coral reef communities in Hanalei Bay than in winter because sediment persists for several months. During dry periods, sediment carried by the Hanalei River appears to have been mobilized primarily by undercutting of low 7Be, low 137Cs riverbanks composed of soil weathered from tholeiitic basalt with low Ba and Co concentrations. Following a moderate rainfall event in September, high 7Be sediment carried by the Hanalei River was probably mobilized by overland flow in the upper watershed. Ba-desorption in low-salinity coastal water limited its use to a qualitative runoff tracer in nearshore sediment. 210Pb had limited usefulness as a terrestrial tracer in the nearshore due to a large dissolved oceanic source and scavenging onto resuspended bottom sediment. 210Pb-scavenging does, however, illustrate the role resuspension could play in the accumulation of particle-reactive contaminants in nearshore sediment. Co and 137Cs were not affected by desorption or geochemical scavenging and showed the greatest potential as quantitative sediment provenance indicators in material collected in nearshore sediment traps.
Characterization of sediment trapped by macroalgae on a Hawaiian reef flat
Stamski, R.E.; Field, M.E.
2006-01-01
Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (???1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (??0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km2 of reef flat (54 g m-2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments. ?? 2005 Elsevier Ltd. All rights reserved.
Characterization of sediment trapped by macroalgae on a Hawaiian reef flat
NASA Astrophysics Data System (ADS)
Stamski, Rebecca E.; Field, Michael E.
2006-01-01
Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (˜1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (±0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km 2 of reef flat (54 g m -2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments.
Dispersal of suspended matter in Makasar Strait and the Flores Basin
NASA Astrophysics Data System (ADS)
Eisma, D.; Kalf, J.; Karmini, M.; Mook, W. G.; van Put, A.; Bernard, P.; van Grieken, R.
In November 1984 in Makasar and the Flores Basin water samples were collected (T, S, dissolved O 2, total CO 2), bottom samples (sediment composition) and suspended matter (particle composition, particle size). A sediment trap was moored in the Flores Basin at 4600 m depth for nearly four months, covering the dry season. In the Flores Basin there are indications for bottom flow resuspending bottom material or preventing suspended material from settling; in Makasar Strait there is probably inflow of deep water both from the south and from the north, resulting in a very slow bottom water flor. Bottom deposits in Makasar Strait and the Flores Basin are predominantly terrigenous, with an admixture of organic carbonate and silica (mostly coccoliths). Volcanic material is primarily present near to the volcanoes in the south and reaches the deeper basins by slumping. In the suspended matter no volcanic particles and little planktonic material were found, although the latter form 10 to 15% of the top sediment and of the material deposited in the sediment trap. In suspension particles with a large concentration of tin (Sn) were found associated mainly with iron. They probably come from northern Kalimantan or northern Sulawesi. Suspended matter concentrations were mainly less than 0.5 mg·dm -3, only off the Mahakam river mouth were concentrations higher than 1 mg·dm -3. Particle size was erratic because of the variable composition of the coarser particles in suspension. Organic matter concentrations in suspension (in mg·dm -3) roughly follow the distribution of total suspended matter but organic content (in %) of the suspended matter does not show any trends. All organic matter in suspension is of marine origin except in the Mahakam river and estuary. Deposition rates, as estimated from the sediment trap results, are 150 mg·cm -2·a -1 for the total sediment, 26 mg·cm -2·a -1 for carbonate and 13 mg·cm -2·a -1 for organic matter. Flocs and fibres in suspension were only found in and below the Mahakam river plume that reaches ca 400 km from the river mouth to the southeast, and in surface waters associated with plankton (diatoms). The formation of these flocs (broken-up macroflocs or marine snow) is primarily related to particle concentration, turbulence, and the presence of organisms that produce sticky material or glue particles together.
Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko
2014-03-31
This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.
Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko
2014-01-01
This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium (137Cs) in four irrigation ponds, ~4–5 months after the Fukushima Dai–ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of 137Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total 137Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more 137Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of 137Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of 137Cs in pond sediment, as well as the amount lost through hydraulic flushing. PMID:24682011
NASA Technical Reports Server (NTRS)
Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.
1987-01-01
Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.
Wang, Hongfang; Mason, J.A.; Balsam, W.L.
2006-01-01
The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.
Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize
NASA Astrophysics Data System (ADS)
Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.
2016-12-01
Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. We also compared our XRF results with coral biology, environmental and climate information (regional and global). Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.
Composition and Characteristics of Particles in the Ocean: Evidence for Present Day Resuspension.
1980-11-01
various depths in the water column was identified and counted to compare this material to that on the seafloor. Sediment Traps Foramin ifera Planktonic...determined as a fraction of the total number of particles counted. Foramin ifera Planktonic foraminifera are one of the major components of material >l5Olm in
NASA Astrophysics Data System (ADS)
Piliouras, A.; Kim, W.; Goggin, H.
2014-12-01
Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important factor in determining how channel behavior may change.
NASA Astrophysics Data System (ADS)
Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.
2017-12-01
Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.
Anode Material Testing for Marine Sediment Microbial Fuel Cells
2013-09-26
of fuel cell that uses the environment of submerged sediments to provide a natural voltage difference. The fuel cell is comprised of an anode...that it is fully submerged . Air bubbles trapped in the foam matrix will be removed by placing a vacuum on the pipette. Once the air bubbles are...lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J Appl Microbiol, 2005 99(4):978–987. 16. Jung
NASA Astrophysics Data System (ADS)
Gadel, F.; Puigbó, A.; Alcan˜iz, J. M.; Charrière, B.; Serve, L.
1990-09-01
The nature of particulate organic matter was studied in suspended material sampled by bottles, particles collected by sediment traps and deposits from deltaic and open sea ecosystems of the northwestern Mediterranean. Elemental analyses were combined with pyrolysis-gas chromatography-mass spectrometry and with analysis of individual compounds such as phenols separated by high-performance liquid chromatography. In the Rhoˆne delta, a multilayered system was observed. The surficial turbid layer was enriched with fresh material of river origin. Organic matter was more altered and richer in phenols in the bottom nepheloid layer. The river regime determined the nature and quantity of suspended material: when in spate, degraded organic matter previously deposited in the river bed was transported to the sea, thereby inducing an increase of pyrolysis derived aromatic hydrocarbons. On the other hand, phenolic aldehydes increased in the bottom nepheloid layer. When water level was low, organic matter seemed to be of more local origin. The content of phenols and nitrogen-containing compounds increased. The influence of the Rhoˆne River decreased off the mouth, when terrestrial markers were diluted by products deriving from phytoplanktonic activity. Compared with suspended material, trapped organic matter was coarser, more degraded and contained more aromatic hydrocarbons. It was different in nature and size, indicating that it was trapped over a longer period. Deposits contained altered organic matter resulting from degrading processes in the water column. Sediments showed a double trend off the mouth of the river; an increase in nitrogen-containing compounds, indicating a more marine character, and a decrease in phenols and carbohydrates deriving from the terrestrial ligno-cellulosic complex. In the southwestern part of the Gulf of Lions, in the Teˆt prodelta, organic matter from sediment traps was fresher than in the Rhoˆne delta. Phenols and some carbohydrates rapidly decreased from the prodelta due to a lower runoff. During the spate, suspended material was rapidly deposited and sediments were enriched in terrestrial phenols. In the open sea environment, in the Lacaze-Duthiers Canyon at 645 m, in summer, the euphotic zone was rich in amino-sugars and contained a large diversity of phenols deriving from fish fecal pellets. In winter/spring, the development of phytoplanktonic blooms in surficial layers led to high contents of nitrogenous compounds. In deeper layers, the nature of organic matter was different from surficial layers in summer and more homogeneous in winter, although a flux of degraded material rich in pyrolysis-derived aromatic hydrocarbons and poor in nitrogenous compounds progressively sank towards the bottom. The two marine prodeltas were compared: organic matter was more degraded in suspended material and sediments collected in the submarine delta of the Rhoˆne River. Organic material originating from the river was transported further offshore, as indicated by a higher content of aromatic hydrocarbons and phenols. In the southwestern part of the Gulf of Lions, the prodelta reflected the influence of local rivers, with lower discharges.
The Rhine Delta - a record of sediment trapping over time scales from millennia to decades
NASA Astrophysics Data System (ADS)
Middelkoop, Hans; Erkens, Gilles; van der Perk, Marcel
2010-05-01
At the land-ocean interface, large river deltas are major sinks of sediments and associated matter. Over the past decennia, many studies have been conducted on the palaeogeographic, historic and sub-recent overbank deposition on the Rhine floodplains. In this study these research results are synthesises with special focus on the amounts and changes of overbank fines trapped in the Rhine delta at different time scales in the past, present, and future. This contribution forms an update of the results presented at the EGU 2009 in session HS11.3 (Sediment response to catchment disturbances). Sediment trapping in the Rhine delta throughout the Holocene was quantified using a detailed database of the Holocene delta architecture. Additional historic data allowed the reconstruction of the development of the river floodplains during the period of direct human interference on the river. Using heavy metals as tracers, overbank deposition rates over the past century were determined. Measurements of overbank deposition and channel bed sediment transport in recent years, together with modelling studies of sediment transport and deposition have provided detailed insight in the present-day sediment deposition on the floodplains, as well as their controls. Estimated annual suspended sediment delivery rates were about 1.4 Mton (million tons) yr-1 between 6000-3000 yr BP and increased to about 2.1 Mton yr-1 between 3000-1000 yr BP. After embankment between 1100 and 1350 AD the amount of sediment trapped in the floodplains reduced to about 0.92 Mton yr-1. However, when accounting for sediment reworking, the actual sediment trapping of the embanked floodplains was about 1.6 Mton yr-1. Downstream of the lower Waal branch an inland delta developed that trapped another 0.4 Mton yr-1 of overbank fines. Since channel normalisation around 1850, the average deposition amounts on the embanked floodplains have been 1.15 Mton yr-1. Scenario studies show that the future sediment trapping in the lower Rhine floodplains might double. The variations in sediment deposited in the Rhine delta during the Holocene are largely attributed to changes in land use in the upstream basin. At present, the sediment trapping is low and heavily influenced by river regulation and engineering works. Upstream changes in climate and land use, and particularly direct measures for flood reduction in the lower floodplains may again change the amounts of sediments trapped by the lower floodplains in the forthcoming decennia.
Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces
NASA Astrophysics Data System (ADS)
Pfannkuche, Olaf; Lochte, Karin
1993-04-01
Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.
Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
NASA Astrophysics Data System (ADS)
Zúñiga, Diana; Santos, Celia; Froján, María; Salgueiro, Emilia; Rufino, Marta M.; De la Granda, Francisco; Figueiras, Francisco G.; Castro, Carmen G.; Abrantes, Fátima
2017-03-01
The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (±5.6) 106 valves m-2 d-1) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom-derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Furthermore, Chaetoceros spp. dominate during spring-early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.
Pteropods are Undervalued Contributors to Aragonite Flux in Tropical Gyres
NASA Astrophysics Data System (ADS)
Pebody, C. A.; Lampitt, R. S.
2016-02-01
Pteropods are a large component of the animals routinely caught in sediment traps at 3000m at the NOG observatory in the North Atlantic Oligotrophic Gyre and at the SOG observatory in the South Atlantic Oligotrophic Gyre. Sediment traps have been used to collect downward settling material at NOG and SOG since 2008. Pteropods have been identified and removed from the samples during processing in line with best practice. Some of these animals maybe opportunistic swimmers, but some are most definitely broken and should be considered as a component of the downward particle flux. Samples from both locations demonstrate a sustained and sometimes seasonal flux of pteropods to the deep ocean interior. In gyre regions with low levels of particle flux compared to temperate regions, the additional mostly inorganic material supplied in the form of pteropod shells represents a large proportional increase. Our data set from both northern and southern Atlantic gyres demonstrates due consideration should be given to the importance of pteropod flux and the contribution this makes to the biological carbon pump. These observatories at 23°N 41°W and 18°S 25°W, are part of the FixO3 open observatory network and are supported by NOC and NERC. Analysis of the first three years of each observatory are now yielding new insight on these large and poorly sampled areas of the open ocean. Key words: pteropods; aragonite; sediment traps; NOG SOG; FixO3; biological carbon pump; biogeochemical cycles; Tropical Atlantic Gyres.
Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.
1999-01-01
An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.
A comparison of solids collected in sediment traps and automated water samplers
Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.
1996-01-01
Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.
Dinoflagellate Cyst Contribution to Settling Organic Matter in the Coastal Ocean
NASA Astrophysics Data System (ADS)
Bringue, M.; Thunell, R.; Pospelova, V.; Tappa, E.; Johannessen, S.; Macdonald, R. W.
2016-12-01
The coastal ocean hosts much of the global primary production, with an estimated 40% of carbon sequestration occurring along continental margins alone. This study characterizes the variability in organic-walled dinoflagellate cyst fluxes and assemblage composition during sedimentation through the water column, in the context of bulk organic and inorganic particulate matter export, in three different coastal settings: the Cariaco Basin (off Venezuela), the Santa Barbara Basin (Southern California) and the Strait of Georgia (western Canada). At each site, moorings of 2-5 sediment traps positioned at different depths collected settling particles over intervals of 7-14 days. The contribution of dinoflagellate cysts to particulate matter fluxes, and their fate as they are being exported to the seafloor, is investigated by comparing cyst fluxes and assemblages in samples collected simultaneously from discrete depths at each location. Preliminary results from the 1,400 m deep Cariaco Basin sediment trap time series indicate that dinoflagellate cyst fluxes during the upwelling season are high (average of 117,000 cyst m-2 day-1 in January-February 2006) and highly consistent between depths. The only notable exception is the record from the shallowest trap (Trap Z, 150 m bsl) which shows marked variations in cyst fluxes (from 7,700 to 240,000 cyst m-2 day-1) that are not reflected in the other four trap records. Dinoflagellate cyst assemblages from each interval along the five traps are statistically identical, indicating that cysts produced in the upper water column are rapidly transported to the seafloor, and that no selective degradation/preservation has altered the cyst assemblages within the water column. Excluding the Trap Z record, the ratio of dinoflagellate cyst to organic carbon fluxes shows an 35% increase from the top to bottom traps, suggesting a dinoflagellate cyst "enrichment" relative to other organic particles in settling material.
The design of temporary sediment controls with special reference to water quality.
DOT National Transportation Integrated Search
1975-01-01
The laboratory and field trapping efficiencies of several types of flow barriers were ascertained. The materials used to fabricate the barriers were various types of hay straw crushed stone and crushed stone/straw mixes. Field checks of systems of ba...
Managing sewer solids for the reduction of foul flush effects--Forfar WTP.
Fraser, A G; Sakrabani, R; Ashley, R M; Johnstone, F M
2002-01-01
In times of high sewer flow, conditions can exist which enable previously deposited material to be re-entrained back into the body of the flow column. Pulses of this highly polluted flow have been recorded in many instances at the recently constructed wastewater treatment plant (WTP) in Forfar, Scotland. Investigations have been undertaken to characterise the incoming flows and to suggest remedial measures to manage the quality fluctuations. Initial visits to the works and incoming pipes indicated a high degree of sediment deposition in the two inlet pipes. Analyses were carried out and consequently, changes to the hydraulic regime were made. Measurements of sediment level, sediment quality, wall slime and bulk water quality were monitored in the period following the remedial works to observe any improvements. Dramatic alterations in each of the determinands measured were recorded. Analyses were then undertaken to determine long term sediment behaviour and to assess the future usefulness of existing upstream sediment traps. It was concluded that with proper maintenance of the traps, the new hydraulic regime is sufficient to prevent further significant build up of sediment deposits and reduce impacts on the WTP. Further investigations made by North of Scotland Water Authority highlighted trade inputs to the system which may also have contributed to the now managed foul flush problem.
Cheung, Siu Gin; Wai, Ho Yin; Shin, Paul K S
2010-02-01
Artificial reefs can enhance habitat heterogeneity, especially in seabed degraded by bottom-dredging and trawling. However, the trophodynamics of such reef systems are not well understood. This study provided baseline data on trophic relationships in the benthic environment associated with artificial reefs in late spring and mid summer of subtropical Hong Kong, using fatty acid profiles as an indicator. Data from sediments collected at the reef base, materials from sediment traps deployed on top and bottom of the reefs, total particulate matter from the water column and oyster tissues from reef surface were subjected to principal component analysis. Results showed variations of fatty acid profiles in the total particulate matter, upper sediment trap and oyster tissue samples collected in the two samplings, indicating seasonal, trophodynamic changes within the reef system. The wastes produced by fish aggregating at the reefs can also contribute a source of biodeposits to the nearby benthic environment. Copyright 2009 Elsevier Ltd. All rights reserved.
Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems
NASA Astrophysics Data System (ADS)
Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.
2016-10-01
Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.
Suspended-sediment trapping in the tidal reach of an estuarine tributary channel
Downing-Kunz, Maureen; Schoellhamer, David H.
2015-01-01
Evidence of decreasing sediment supply to estuaries and coastal oceans worldwide illustrates the need for accurate and updated estimates. In the San Francisco Estuary (Estuary), recent research suggests a decrease in supply from its largest tributaries, implying the increasing role of smaller, local tributaries in sediment supply to this estuary. Common techniques for estimating supply from tributaries are based on gages located above head of tide, which do not account for trapping processes within the tidal reach. We investigated the effect of a tidal reach on suspended-sediment discharge for Corte Madera Creek, a small tributary of the Estuary. Discharge of water (Q) and suspended-sediment (SSD) were observed for 3 years at two locations along the creek: upstream of tidal influence and at the mouth. Comparison of upstream and mouth gages showed nearly 50 % trapping of upstream SSD input within the tidal reach over this period. At the storm time scale, suspended-sediment trapping efficiency varied greatly (range −31 to 93 %); storms were classified as low- or high-yield based on upstream SSD. As upstream peak Q increased, high-yield storms exhibited significantly decreased trapping. Tidal conditions at the mouth—ebb duration and peak ebb velocity—during storms had a minor effect on sediment trapping, suggesting fluvial processes dominate. Comparison of characteristic fluvial and tidal discharges at the storm time scale demonstrated longitudinal differences in the regulating process for SSD. These results suggest that SSD from gages situated above head of tide overestimate sediment supply to the open waters beyond tributary mouths and thus trapping processes within the tidal reach should be considered.
Measuring Fast-Temporal Sediment Fluxes with an Analogue Acoustic Sensor: A Wind Tunnel Study
Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel
2013-01-01
In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field. PMID:24058512
Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.
Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel
2013-01-01
In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field.
Using sediment budgets to investigate the pathogen flux through catchments.
Whiteway, Tanya G; Laffan, Shawn W; Wasson, Robert J
2004-10-01
We demonstrate a materials budget approach to identify the main source areas and fluxes of pathogens through a landscape by using the flux of fine sediments as a proxyfor pathogens. Sediment budgets were created for three subcatchment tributaries of the Googong Reservoir in south-eastern New South Wales, Australia. Major inputs, sources, stores, and transport zones were estimated using sediment sampling, dam trap efficiency measures, and radionuclide tracing. Particle size analyses were used to quantify the fine-sediment component of the total sediment flux, from which the pathogen flux was inferred by considering the differences between the mobility and transportation of fine sediments and pathogens. Gullies were identified as important sources of fine sediment, and therefore of pathogens, with the pathogen risk compounded when cattle shelter in them during wet periods. The results also indicate that the degree of landscape modification influences both sediment and pathogen mobilization. Farm dams, swampy meadows and glades along drainage paths lower the flux of fine sediment, and therefore pathogens, in this landscape during low-flow periods. However, high-rainfall and high-flow events are likely to transport most of the fine sediment, and therefore pathogen, flux from the Googong landscape to the reservoir. Materials budgets are a repeatable and comparatively low-cost method for investigating the pathogen flux through a landscape.
Sediment trapping efficiency of adjustable check dam in laboratory and field experiment
NASA Astrophysics Data System (ADS)
Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui
2014-05-01
Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.
1986-08-01
Stratigraphic traps account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of traps exist. The first trap type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; trapping facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of traps results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic traps. The various types of traps are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form traps at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form traps at Oedekoven, Store, and Kitty fields; (5) unconformity-related traps exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered zone, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less
Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers
NASA Astrophysics Data System (ADS)
Cabrera, Laura L.; Alonso, Ignacio
2010-03-01
Two different methods, fluorescent tracers and vertical sand traps, were simultaneously used to carry out an aeolian sediment transport study designed to test the goodness of fluorescent tracers in aeolian environments. Field experiments were performed in a nebkha field close to Famara beach at Lanzarote Island (Canary Islands, Spain) in a sector where the dunes were between 0.5 and 0.8 m height and 1-2 m wide and the vegetal cover was approximately 22%. In this dune field the sediment supply comes from Famara beach and is blown by trade winds toward the south, where the vegetation acts as natural sediment traps. Wind data were obtained by means of four Aanderaa wind speed sensors and one Aanderaa vane, all them distributed in a vertical array from 0.1 to 4 m height for 27 h. The average velocity at 1 m height during the experiment was 5.26 m s - 1 with the wind direction from the north. The tracer was under wind influence for 90 min at midday. During this period two series of sand traps (T1 and T2) N, S, E and W oriented were used. Resultant transport rates were 0.0131 and 0.0184 kg m - 1 min - 1 respectively. Tracer collection was performed with a sticky tape to sample only surface sediments. Tagged grains were visually counted under UV light. The transport rate was computed from the centroid displacement, that moved 0.875 m southwards, and the depth of the active layer considered was the size of one single grain. Taking into account these data the transport rate was 0.0072 kg m - 1 min - 1 . The discrepancy in results between both methods is related to several factors, such as the thickness of the active layer and the grain size difference between the tagged and the native material.
Soil conservation through sediment trapping: A review
NASA Astrophysics Data System (ADS)
Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Maroulis, Jerry; Stroosnijder, Leo
2014-05-01
Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment trapping (ST) can be an alternative (or additional) measure to prevent the negative off-site effects of soil erosion. Therefore, not all efforts should focus solely on on-site soil conservation, but also on the safe routing of sediment-laden flows and on creating sites and conditions where sediment can be trapped, preferably in a cost effective or even profitable way. ST can be applied on-site (in-field) and off-site and involves both vegetative and structural measures. The main vegetative measures include grass strips, tree or bush buffers, grassed waterways and restoration of the waterways and their riparian zone; while structural measures include terraces, ponds and check dams. This paper provides a review of studies that have assessed the sediment trapping efficacy (STE) of such vegetative and structural measures. Vegetation type and integration of two or more measures (vegetative as well as structural) are important factors influencing STE. In this review, the STE of most measures was evaluated either individually or in such combinations. In real landscape situations, it is not only important to select the most efficient erosion control measures, but also to determine their optimum location in the catchment. Hence, there is a need for research that shows a more integrated determination of STE at the catchment scale. If integrated measures are implemented at the most appropriate spatial locations within a catchment where they can disconnect landscape units from each other, they will decrease runoff velocity and sediment transport and, subsequently, reduce downstream flooding and sedimentation problems. KEY WORDS: Integrated sediment trapping, sediment trapping efficacy, vegetative, structural, on-site and off-site measures.
NASA Astrophysics Data System (ADS)
Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.
2018-02-01
In our original publication the particle volume flux was by mistake standardized to area A = sediment trap diameter2 ∗ pi instead of A = sediment trap radius2 ∗ pi (A being the opening of the sediment trap). In addition, the particle flux data from Spring II (30 m and 60 m) and Spring III (20 m) were standardized twice to deployment time, instead of to the deployment time and the sediment trap opening. These mistakes do not affect our conclusions, but we would like to present here the correct numbers for the result section 3.4, discussion section 4.3 and a revised Fig. 5.
Sediment depositions upstream of open check dams: new elements from small scale models
NASA Astrophysics Data System (ADS)
Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain
2015-04-01
Torrent hazard mitigation remains a big issue in mountainous regions. In steep slope streams and especially in their fan part, torrential floods mainly result from abrupt and massive sediment deposits. To curtail such phenomenon, soil conservation measures as well as torrent control works have been undertaken for decades. Since the 1950s, open check dams complete other structural and non-structural measures in watershed scale mitigation plans1. They are often built to trap sediments near the fan apexes. The development of earthmoving machinery after the WWII facilitated the dredging operations of open check dams. Hundreds of these structures have thus been built for 60 years. Their design evolved with the improving comprehension of torrential hydraulics and sediment transport; however this kind of structure has a general tendency to trap most of the sediments supplied by the headwaters. Secondary effects as channel incision downstream of the traps often followed an open check dam creation. This sediment starvation trend tends to propagate to the main valley rivers and to disrupt past geomorphic equilibriums. Taking it into account and to diminish useless dredging operation, a better selectivity of sediment trapping must be sought in open check dams, i.e. optimal open check dams would trap sediments during dangerous floods and flush them during normal small floods. An accurate description of the hydraulic and deposition processes that occur in sediment traps is needed to optimize existing structures and to design best-adjusted new structures. A literature review2 showed that if design criteria exist for the structure itself, little information is available on the dynamic of the sediment depositions upstream of open check dams, i.e. what are the geomorphic patterns that occur during the deposition?, what are the relevant friction laws and sediment transport formula that better describe massive depositions in sediment traps?, what are the range of Froude and Shields numbers that the flows tend to adopt? New small scale model experiments have been undertaken focusing on depositions processes and their related hydraulics. Accurate photogrammetric measurements allowed us to better describe the deposition processes3. Large Scale Particle Image Velocimetry (LS-PIV) was performed to determine surface velocity fields in highly active channels with low grain submersion4. We will present preliminary results of our experiments showing the new elements we observed in massive deposit dynamics. REFERENCES 1.Armanini, A., Dellagiacoma, F. & Ferrari, L. From the check dam to the development of functional check dams. Fluvial Hydraulics of Mountain Regions 37, 331-344 (1991). 2.Piton, G. & Recking, A. Design of sediment traps with open check dams: a review, part I: hydraulic and deposition processes. (Accepted by the) Journal of Hydraulic Engineering 1-23 (2015). 3.Le Guern, J. Ms Thesis: Modélisation physique des plages de depot : analyse de la dynamique de remplissage.(2014) . 4.Carbonari, C. Ms Thesis: Small scale experiments of deposition processes occuring in sediment traps, LS-PIV measurments and geomorphological descriptions. (in preparation).
A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations
NASA Astrophysics Data System (ADS)
Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing
2017-09-01
A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.
Reed, Lloyd A.
1978-01-01
A different method for controlling erosion and sediment transport during highway construction was used in each of four adjacent drainage basins in central Pennsylvania. The basins ranged in size from 240 to 490 acres (97 to 198 hectares), and the area disturbed by highway construction in each basin ranged from 20 to 48 acres (8 to 19 hectares). Sediment discharge was measured from each basin for 3 years before construction began and for 2 years during construction. In one of the basins affected by the construction, three offstream ponds were constructed to intercept runoff from the construction area before it reached the stream. In another basin, a large onstream pond was constructed to trap runoff from the construction area after it reached the stream. In a third area, seeding, mulching, and rock dams were used to limit erosion. In the fourth area, no sediment controls were used. The effectiveness of the various sediment-control measures were determined by comparing the sediment loads transported from the basins with sediment controls to those without controls. For most storms the offstream ponds trapped about 60 percent of the sediment that reached them. The large onstream pond had a trap efficiency of about 80 percent, however, it remained turbid and kept the stream flow turbid for long periods following storm periods. Samples of runoff water from the construction area were collected above and below rock dams to determine the reduction in sediment as the flow passed through the device. Rock dams in streams had a trap efficiency of about 5 percent. Seeding and mulching may reduce sediment discharge by 20 percent during construction, and straw bales placed to trap runoff water may reduce sediment loads downstream by 5 percent.
NASA Astrophysics Data System (ADS)
Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.
2017-12-01
Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.
Foster, Guy M.; King, Lindsey R.
2016-06-20
The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.
Rendigs, Richard R.; Anderson, Roger Y.; Xu, Jingping; Davis, Raymond E.; Bergeron, Emile M.
2009-01-01
This manual illustrates the development of a programmable instrument designed to deploy a series of wafer-shaped discs (partitions) into the collection tube of a sediment trap in various aquatic environments. These hydrodynamically shaped discs are deployed at discrete time intervals from the Intervalometer and provide markers that delineate time intervals within the sediments that accumulate in the collection tube. The timer and mechanical system are lodged in an air-filled, water-tight pressure housing that is vertically hung within the confines of a cone-shaped sediment trap. The instrumentation has been operationally pressure tested to an equivalent water depth of approximately 1 km. Flaws discovered during extensive laboratory and pressure testing resulted in the implementation of several mechanical modifications (such as a redesign of the rotor and the discs) that improved the operation of the rotor assembly as well as the release of discs through the end cap. These results also identified a preferred azimuth placement of the rotor disc relative to the drop hole of the end cap. In the initial field trial, five sediment traps and coupled Intervalometers were attached to moored arrays and deployed at two sites off the coast of Southern California for approximately 8 months. Each of the instruments released 18 discs at the programmed 10 day intervals, except one unit, which experienced a malfunction after approximately 4 months. Most of the discs oriented in a near-horizontal position upon the surface of the sediment in the collection tubes. Sampling of the sediments for geochemical analyses was improved by these clearly defined markers, which indicated the changes in the flux and nature of sediments accumulated during the deployment period of each sediment trap.
Chernobyl radioactivity found in mid-water sediment interceptors in the N. Pacific and Bering Sea
NASA Astrophysics Data System (ADS)
Kusakabe, M.; Ku, T.-L.; Harada, K.; Taguchi, K.; Tsunogai, S.
1988-01-01
Fission-product nuclides 134Cs, 137Cs and 103Ru originated from the Chernobyl accident have been detected in sediment traps deployed at mid-water depths ranging from 110 to 780 m in the N. Pacific and the Bering Sea. The detected radioactivities, originally associated with fine airborne particles, have apparently been incorporated into much larger aggregates of predominantly biogenic material formed in the surface ocean, and transferred downward through the water column with velocities of the order of 100 m/day.
Sedimentation survey of Lago Caonillas, Puerto Rico, February 2000
Soler-López, Luis R.
2001-01-01
Based on the ratio of storage capacity to inflow rate, the estimated trapping efficiency of Lago Caonillas is about 93 percent for 2000. The sediment yield of the Lago Caonillas net sediment-contributing drainage area (total drainage area minus the reservoir surface area) of 218.74 square kilometers, is about 1 ,266 megagrams per square kilometer per year. This represents an increase of about 69 percent in the material transport and deposition process of the Lago Caonillas basin between 1990 and 2000. The life expectancy of Lago Caonillas was more than 300 years in 1995; however, at the storm-accelerated sedimentation rate, the life expectancy has decreased to about 164 years. This implies that the reservoir could be filled with sediments by the year 2164 if major hurricanes continue to pass through Puerto Rico regularly (every 2 to 4 years).
NASA Astrophysics Data System (ADS)
von Suchodoletz, H.; Fuchs, M.; ZöLler, L.
2008-02-01
Lava flow dammed valleys (Vegas) on Lanzarote (Canary Islands) represent unique sediment traps, filled with autochthonous volcanic material and allochthonous Saharan dust. These sediments and the intercalated palaeosoil sediments document past environmental change of the last glacial-interglacial cycles, both on Lanzarote and in NW Africa. A reliable chronology must be established to use these sediment archives for palaeoclimate reconstructions. Owing to the lack of organic material and the limiting time range of the 14C-dating method, luminescence dating is the most promising method for these sediments. However, the fluvio-eolian character of these sediments is a major problem for luminescence dating, because these sediments are prone to insufficient resetting of the parent luminescence signal (bleaching) prior to sedimentation. To check for the best age estimates, we compare the bleaching behavior of (1) different grain sizes (coarse- versus fine-grain quartz OSL) and (2) different minerals (fine-grain feldspar IRSL versus fine-grain quartz OSL). The results show that owing to its bleaching characteristics, quartz is the preferable mineral for luminescence dating. On the basis of the fine- and coarse-grain quartz OSL age estimates, a chronostratigraphy up to 100 ka could be established. Beyond this age limit for OSL quartz, the chronostratigraphy could be extended up to 180 ka by correlating the vega sediments with dated marine sediment archives.
Sediment Transport Over Run-of-River Dams
NASA Astrophysics Data System (ADS)
O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.
2016-12-01
Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.
New element for optimizing the functioning of sediment traps
NASA Astrophysics Data System (ADS)
Schwindt, Sebastian; Franca, Mário; Schleiss, Anton
2017-04-01
Sediment traps protect urban areas against excessive sediment transport during hazardous floods and consist typically of a retention basin with an open sediment check dam at the downstream end. The design, as well as the morphological processes within the retention basin, were analyzed by several authors. With regard to open sediment check dams two types of triggering mechanisms for the initiation of sediment retention can be distinguished: (1) mechanical and (2) hydraulic clogging of the structure. Recent studies have shown that outlet structures combining both clogging principles may be considered to avoid undesired self-flushing. Further elements of check dams are conceivable, e.g. for retaining or conveying driftwood. This study analyses experimentally working principles and design criteria of standard elements of sediment traps. Furthermore, it introduces a new structural element to the sediment trap design with a guiding channel in the retention reservoir. Taking into account the natural shape of mountain rivers, the guiding channel has a trapezoidal cross-section shape and a rough but fixed bed. The effect of the guiding channel on sediment deposition pattern and re-mobilization are studied by means of physical model experiments with a standardized hydrograph and variable sediment supply. The results are evaluated by means of zenithal pictures and bedload transport rate, measured at the downstream end of the model. Major advantages of the combined use of both clogging principles include an improved control of the initiation of sediment deposition in order to allow for sediment transfer for small floods and a reduction of hazards related to self-flushing.
Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.
2013-01-01
Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico
Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)
NASA Astrophysics Data System (ADS)
Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.
2012-04-01
The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during high energy events contained benthic foraminifera and exhibited significantly higher 210Pb activity indicating a longer residence time in the water column. In addition, during winter quiescent periods characterized by low mass fluxes, the content of lithogenic particles increased at the expenses of phytodetritus suggesting the presence of lateral advection of fine particles permanently in suspension within the benthic nepheloid layer. In spite of the low mass flux, organic matter content was particularly high during these periods accounting for almost 10% of the global pool of organic matter.
Modeling sediment trapping in a vegetative filter accounting for converging overland flow
M. J. Helmers; D. E. Eisenhauer; T. G. Franti; M. G. Dosskey
2005-01-01
Vegetative filters (VF) are used to remove sediment and other pollutants from overland flow. When modeling the hydrology of VF, it is often assumed that overland flow is planar, but our research indicated that it can be two-dimensional with converging and diverging pathways. Our hypothesis is that flow convergence will negatively influence the sediment trapping...
Ralston, David K.; Geyer, W. Rockwell; Warner, John C.
2012-01-01
Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
NASA Astrophysics Data System (ADS)
Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Ritsema, Coen
2014-05-01
Gully erosion is a prime problem in Ethiopia. This study assessed the severity of gully erosion and the role of sediment storage dams (SSD) in restoring gullies and preventing further gully development, its sediment trapping efficacy (STE) and its capacity in converting degraded gully lands to productive land. On average 2.5 m deep, 6.6 m wide and 28.3 m long gullies were formed in Minizr watershed, northwest Ethiopia, in 2013. Concentrated surface runoff, traditional ditches, graded terraces without suitable water ways and road construction are the main causes of such serious gully erosion. Over grazing, tunnel flow and lack of proper immediate gully treatment actions after gully initiation are found to be additional causes of the problem. Gully erosion was also found as the major source of sediment for downstream rivers and water reservoirs. The annual volume of soil eroded from only four gullies was 1941.3 m3. To control gully erosion, SSDs were found to be important physical structures, which can trap significant amount of sediment within gullies and they can convert unproductive gully land to productive agricultural land for fruit and crop production. Eight SSDs trapped about 44*103 m3 of sediment within 2 to 8 years. Two representative SSDs constructed using gabion and stone were tested for their STE. Results showed that their efficacy was 74.1% and 66.4% for the gabion and stone SSDs, respectively. Six of the older SSDs were already full of sediment and created 0.75 ha of productive land within 2 to 8 years. SSDs best fits to treat large size and deep gullies where other gully control measures, check dams, could not function well. To prevent gully formation, controlling its causes that is avoiding traditional ditches, practicing grassed water ways to safely remove runoff water from graded terraces, integrated watershed and road side management practices are important solutions. KEY WORDS: Sediment storage dam, gully erosion, sediment trapping efficacy, productive land, Ethiopia
NASA Astrophysics Data System (ADS)
Schulz, H.; von Rad, U.
2013-07-01
Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps), 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth) were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m-2 d-1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction). However, the high winter flux events (HFE) by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden shifts at the lower boundary of the OMZ. However, the potential effect of the OMZ on carbon preservation in the area would by masked by high mass of fine-grained matter laterally advected, and by the pulsed nature of the resuspension events.
Global fluvial sediment retention by registered dam systems
NASA Astrophysics Data System (ADS)
Vorosmarty, C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.
2003-04-01
A framework for estimating global-scale impacts from reservoir construction on riverine sediment transport to the ocean is presented. Framework results depict a large, global-scale, and growing impact from anthropogenic impoundment. This study analyzes data on 633 of the world’s largest reservoirs (LRs) (>= 0.5 km^3 maximum storage) and uses statistical inference to assess the impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude x longitude) resolution. A residence time change BoxBox_R) for otherwise free-flowing river water is determined locally at each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. More than 40% of global river discharge is intercepted locally by the LRs analyzed and a significant proportion (≈ 70%) of this discharge maintains a sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local trapping efficiency of 80% or more. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs (n ≈ 45,000) is conservatively placed at 4 to 5 Gt yr-1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments (n ≈ 800,000). From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.
Anthropogenic sediment retention: major global impact from registered river impoundments
NASA Astrophysics Data System (ADS)
Vörösmarty, Charles J.; Meybeck, Michel; Fekete, Balázs; Sharma, Keshav; Green, Pamela; Syvitski, James P. M.
2003-10-01
In this paper, we develop and apply a framework for estimating the potential global-scale impact of reservoir construction on riverine sediment transport to the ocean. Using this framework, we discern a large, global-scale, and growing impact from anthropogenic impoundment. Our study links information on 633 of the world's largest reservoirs (LRs) (≥0.5 km 3 maximum storage capacity) to the geography of continental discharge and uses statistical inferences to assess the potential impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude×longitude) spatial resolution. A residence time change (Δ τR) for otherwise free-flowing river water is determined locally for each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. The discharge-weighted mean Δ τR for individual impoundments distributed across the globe is 0.21 years for LRs and 0.011 years for SRs. More than 40% of global river discharge is intercepted locally by the LRs analyzed here, and a significant proportion (≈70%) of this discharge maintains a theoretical sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local sediment trapping efficiency of 80% or more. Analysis of the recent history of river impoundment reveals that between 1950 and 1968, there was tripling from 5% to 15% in global LR sediment trapping, another doubling to 30% by 1985, and stabilization thereafter. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, and Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs ( n≈45,000) is conservatively placed at 4-5 Gt year -1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments ( n≈800,000). Our results demonstrate that river impoundment should now be considered explicitly in global elemental flux studies, such as for water, sediment, carbon, and nutrients. From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.
Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs
NASA Astrophysics Data System (ADS)
Samson-Do, Myriam; St-Hilaire, André
2015-04-01
Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.
NASA Astrophysics Data System (ADS)
Sridhar, M.; Markandeyulu, A.; Chaturvedi, A. K.
2017-01-01
Mapping of subtrappean sediments is a complex geological problem attempted by many interpreters applying different geophysical techniques. Variations in thickness and resistivity of traps and underlying sediments, respectively, results in considerable uncertainty in the interpretation of geophysical data. It is proposed that the transient electromagnetic technique is an effective geophysical tool for delineation of the sub-trappean sediments, due to marked resistivity contrast between the Deccan trap, and underlying sediments and/or basement. The northern margin of the Kaladgi basin is covered under trap. A heliborne time domain electromagnetic survey was conducted to demarcate the basin extent and map the sub-trappean sediments. Conductivity depth transformations were used to map the interface between conductive trap and resistive 'basement'. Two resistivity contrast boundaries are picked: the first corresponds to the bottom of the shallow conductive unit interpreted as the base of the Deccan Volcanics and the second - picked at the base of a deeper subsurface conductive zone - is interpreted as the weathered paleo-surface of the crystalline basement. This second boundary can only be seen in areas where the volcanics are thin or absent, suggesting that the volcanics are masking the EM signal preventing deeper penetration. An interesting feature, which shows prominently in the EM data but less clearly imaged in the magnetic data, is observed in the vicinity of Mudhol. The surface geology interpreted from satellite imagery show Deccan trap cover around Mudhol. Modelling of TDEM data suggest the presence of synclinal basin structure. The depth of penetration of the heliborne TDEM data is estimated to be approximately 350 m for the study area. This suggests that heliborne TDEM could penetrate significant thicknesses of conductive Deccan trap cover to delineate structure below in the Bagalkot Group.
Plankton dynamics and carbon flux in an area of upwelling off the coast of Morocco
NASA Astrophysics Data System (ADS)
Head, E. J. H.; Harrison, W. G.; Irwin, B. I.; Horne, E. P. W.; Li, W. K. W.
1996-11-01
A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m -2 (0-100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m -2 with phytoplankton carbon accounting for 16-85% of total POC. Bacterial carbon was ˜ 5% of total POC and mesozooplankton carbon concentrations were equivalent to ˜9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m -2 day -1. Bacterial consumption accounted for ˜50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m -2 day -1. while filtration rates suggested that ingestion of phytoplankton carbon was only ˜0.2 g C m -2day -1, even when phytoplankton constituted ˜85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for ˜ 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.
Brannen-Donnelly, Kathleen; Engel, Annette S
2015-01-01
Unchanging physicochemical conditions and nutrient sources over long periods of time in cave and karst subsurface habitats, particularly aquifers, can support stable ecosystems, termed autochthonous microbial endokarst communities (AMEC). AMEC existence is unknown for other karst settings, such as epigenic cave streams. Conceptually, AMEC should not form in streams due to faster turnover rates and seasonal disturbances that have the capacity to transport large quantities of water and sediment and to change allochthonous nutrient and organic matter sources. Our goal was to investigate whether AMEC could form and persist in hydrologically active, epigenic cave streams. We analyzed bacterial diversity from cave water, sediments, and artificial substrates (Bio-Traps®) placed in the cave at upstream and downstream locations. Distinct communities existed for the water, sediments, and Bio-Trap® samplers. Throughout the study period, a subset of community members persisted in the water, regardless of hydrological disturbances. Stable habitat conditions based on flow regimes resulted in more than one contemporaneous, stable community throughout the epigenic cave stream. However, evidence for AMEC was insufficient for the cave water or sediments. Community succession, specifically as predictable exogenous heterotrophic microbial community succession, was evident from decreases in community richness from the Bio-Traps®, a peak in Bio-Trap® community biomass, and from changes in the composition of Bio-Trap® communities. The planktonic community was compositionally similar to Bio-Trap® initial colonizers, but the downstream Bio-Trap® community became more similar to the sediment community at the same location. These results can help in understanding the diversity of planktonic and attached microbial communities from karst, as well as microbial community dynamics, stability, and succession during disturbance or contamination responses over time.
Sensitivity of estuarine turbidity maximum to settling velocity, tidal mixing, and sediment supply
Warner, J.C.; Sherwood, C.R.; Geyer, W.R.; ,
2007-01-01
Estuarine turbidity maximum, numerical modeling, settling velocity, stratification The spatial and temporal distribution of suspended material in an Estuarine Turbidity Maxima (ETM) is primarily controlled by particle settling velocity, tidal mixing, shear-stress thresholds for resuspension, and sediment supply. We vary these parameters in numerical experiments of an idealized two-dimensional (x-z) estuary to demonstrate their affects on the development and retention of particles in an ETM. Parameters varied are the settling velocity (0.01, 0.1, and 0.5 mm/s), tidal amplitude (0.4 m 12 hour tide and 0.3 to 0.6 m 14 day spring neap cycle), and sediment availability (spatial supply limited or unlimited; and temporal supply as a riverine pulse during spring vs. neap tide). Results identify that particles with a low settling velocity are advected out of the estuary and particles with a high settling velocity provide little material transport to an ETM. Particles with an intermediate settling velocity develop an ETM with the greatest amount of material retained. For an unlimited supply of sediment the ETM and limit of salt intrusion co-vary during the spring neap cycle. The ETM migrates landward of the salt intrusion during spring tides and seaward during neap tides. For limited sediment supply the ETM does not respond as an erodible pool of sediment that advects landward and seaward with the salt front. The ETM is maintained seaward of the salt intrusion and controlled by the locus of sediment convergence in the bed. For temporal variability of sediment supplied from a riverine pulse, the ETM traps more sediment if the pulse encounters the salt intrusion at neap tides than during spring tides. ?? 2007 Elsevier B.V. All rights reserved.
Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.
1996-01-01
Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.
Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation
NASA Astrophysics Data System (ADS)
Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon
2018-02-01
Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.
Off shore wind farms change the benthic pelagic coupling in the Belgian Part of the North Sea
NASA Astrophysics Data System (ADS)
Vanaverbeke, Jan; Coates, Delphine; Braeckman, Ulrike; Soetaert, Karline; Moens, Tom
2016-04-01
Since Europe enforced renewable energy target figures upon its member states through the implementation of two main European Directives 11 2001/77/EC and 2009/28/EC, the development of offshore wind farms (OWF) has accelerated. Belgium installed OWFs on sandbanks, characterized by permeable sediments, low in organic matter content and a species-poor macrofaunal community with species occurring in low densities. A detailed monitoring campaign in the immediate vicinity of a wind turbine (1-200m), revealed a significant decrease in median grain size and permeability, coinciding with a 6-fold increase in organic matter content. The observed fining of the sediment is explained by an altered benthic-pelagic coupling in the area. The wind turbines are colonized by an abundant fouling community producing high amounts of detritus and faeces, a continuous additional source of organic matter. The changes in sediment composition, and the availability of additional organic matter resulted in drastic increase in macrofaunal densities (from 1390 ind m-2 to 18600 ind m-2), and a change from a species-poor community to a species-rich community dominated by the ecosystem engineer Lanice conchilega. Large densities of L. conchilega, as observed in our samples, are known to trap fine material from the water column, which can result in a further decrease of sediment permeability in the vicinity of the wind turbines. A preliminary experiment, where permeable sediments were subjected to artificial fining, showed a decreased penetration depth of advective water currents and a reduced trapping of diatoms by the sediment in finer sediments. Additionally, sediment community oxygen consumption rates, and efflux of NH4+ from the sediment, measured after a simulated phytoplankton bloom, decreased significantly when sediment permeability was reduced. We hypothesize that the combination of the altered macrofaunal community composition, together with the changes in the physical properties of the sediment matrix, will lead to a change in the biogeochemical properties of the sediment: highly reactive permeable sediments, poor in organic matter will shift towards sediment where organic matter will accumulate. Degradation of organic matter will then no longer be governed by physical processes, but mediated by biological processes (bioturbation, bio-irrigation).
Zhu, Yao-Jun; Bourgeois, C; Lin, Guang-Xuan; Wu, Xiao-Dong; Guo, Ju-Lan; Guo, Zhi-Hua
2012-08-01
Mangrove wetland is an important type of coastal wetlands, and also, an important sediment trap. Sediment is an essential medium for mangrove recruitment and development, which records the environmental history of mangrove wetlands and can be used for the analysis of material sources and the inference of the materials depositing process, being essential to the ecological restoration and conservation of mangrove. In this paper, surface sediment samples were collected along a hydrodynamic gradient in Gaoqiao, Zhanjiang Mangrove National Nature Reserve in 2011. The characteristics of the surface sediments were analyzed based on grain size analysis, and the prediction surfaces were generated by the geo-statistical methods with ArcGIS 9.2 software. A correlation analysis was also conducted on the sediment organic matter content and the mangrove community structure. In the study area, clay and silt dominated the sediment texture, and the mean content of sand, silt, and clay was (27.8 +/- 15.4)%, (40.3 +/- 15.4)%, and (32.1 +/- 11.4)%, respectively. The spatial gradient of the sediment characteristics was expressed in apparent interpolation raster. With increasing distance from the seawall, the sediment sand content increased, clay content decreased, and silt content was relatively stable at a certain level. There was a positive correlation between the contents of sediment organic matter and silt, and a negative correlation between the contents of sediment organic matter and sand. Much more sediment organic matter was located at the high tide area with weak tide energy. There existed apparent discrepancies in the characteristics of the surface sediments in different biotopes. The sediment characteristics had definite correlations with the community structure of mangroves, reflecting the complicated correlations between the hydrodynamic conditions and the mangroves.
USDA-ARS?s Scientific Manuscript database
Vegetated filter strips (VFSs) are a best management practice (BMP) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents present in agricultural runoff. Although they have been widely adopted, insufficient data exist to understand their sh...
Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.
2012-01-01
The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times those at Atchison County or Banner Creek Lakes. These data indicate larger yields of sediment from watersheds with row crops and those with fewer small ponds, and smaller yields in watersheds which are primarily grassland, or agricultural with substantial tile drainage and riparian buffers along streams. These results also indicated that a cultivated watershed can produce yields similar to those observed under the assumed reference (or natural) condition. Selected small ponds were studied in the Atchison County Lake watershed to characterize the role of small ponds in sediment trapping. Studied ponds trapped about 8 percent of the sediment upstream from the sediment-sampling site. When these results were extrapolated to the other ponds in the watershed, differences in the extent of these ponds was not the primary factor affecting differences in yields among the three watersheds. However, the selected small ponds were both 45 years old at the time of this study, and have reduced capacity because of being filled in with sediments. Additionally, trapping efficiency of these small ponds decreased over five observed storms, indicating that processes that suspended or resuspended sediments in these shallow ponds, such as wind and waves, affected their trapping efficiencies. While small ponds trapped sediments in small storms, they could be a source of sediment in larger or more closely spaced storm events. Channel slope was similar at all three watersheds, 0.40, 0.46, and 0.31 percent at Atchison County, Banner Creek, and Centralia Lake watersheds, respectively. Other factors, such as increased bank and stream erosion, differences in tile drainage, extent of grassland, or riparian buffers, could be the predominant factors affecting sediment yields from these basins. These results show that reference-like sediment yields may be observed in heavily agricultural watersheds through a combination of field-scale management activities and stream channel protection. When computing loads using published erosion rates obtained by single-point survey methodology, streambank contributions from the main stem of Banner Creek are three times more than the sediment load observed by this study at the sediment sampling site at Banner Creek, 2.6 times more than the sediment load observed by this study at the sediment sampling site at Clear Creek (upstream from Atchison County Lake), and are 22 percent of the load observed by this study at the sediment sampling site at Black Vermillion River above Centralia Lake. Comparisons of study sites to similarly sized urban and urbanizing watersheds in Johnson County, Kansas indicated that sediment yields from the Centralia Lake watershed were similar to those in construction-affected watersheds, while much smaller sediment yields in the Atchison County and Banner Creek watersheds were comparable to stable, heavily urbanized watersheds. Comparisons of study sites to larger watersheds upstream from Tuttle Creek Lake indicate the Black Vermillion River watershed continues to have high sediment yields despite 98 percent of sediment from the Centralia watershed (a headwater of the Black Vermillion River) being trapped in Centralia Lake. Estimated trapping efficiencies for the larger watershed lakes indicated that Banner Creek and Centralia Lakes trapped 98 percent of incoming sediment, whereas Atchison County Lake trapped 72 percent of incoming sediment during the 3-year study period.
A method to quantify and value floodplain sediment and nutrient retention ecosystem services
Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna
2018-01-01
Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.
Sediment transport and deposition on a river-dominated tidal flat: An idealized model study
Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.
2010-01-01
A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.
Rios-Del Toro, E Emilia; López-Lozano, Nguyen E; Cervantes, Francisco J
2017-08-01
A novel reactor configuration for the enrichment of anammox bacteria from marine sediments was developed. Marine sediments were successfully kept inside the bioreactors during the enrichment process by strategically installing traps at different depths to prevent the wash-out of sediments. Three up-flow anaerobic sediment trapped (UAST) reactors were set up (α, β and ω supplied with 50, 150 and 300mgCa 2+ /L, respectively). Nitrogen removal rates (NRR) of up to 3.5gN/L-d and removal efficiencies of >95% were reached. Calcium enhanced biomass production as evidenced by increased volatile suspended solids and extracellular polymeric substances. After the long-term operation, dominant families detected were Rhodobacteracea, Flavobacteracea, and Alteromonadacea, while the main anammox genera detected in the three reactors were Candidatus Kuenenia and Candidatus Anammoximicrobium. The UAST reactor is proposed as suitable technology for the enrichment of anammox bacteria applicable for the treatment of saline industrial wastewaters with high nitrogen content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007
Meade, R.H.; Moody, J.A.
2010-01-01
Before 1900, the Missouri-Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987-2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100-150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri-Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri-Mississippi system. ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Romano, C.; Flexas, M. M.; Segura, M.; Román, S.; Bahamon, N.; Gili, J. M.; Sanchez-Vidal, A.; Martin, D.
2017-11-01
Numerous organisms, including both passive sinkers and active migrators, are captured in sediment traps together with sediments. By capturing these "swimmers", the traps become an extraordinarily tool to obtain relevant information on the biodiversity and dynamics of deep-sea organisms. Here we analyze near-bottom swimmers larger than 500 μm and their fluxes collected from eight near-bottom sediment traps installed on instrumented moorings deployed nearby Blanes Canyon (BC). Our data, obtained from November 2008 to October 2009 with a sampling rate of 15 days, constitutes the first year-long, continuous time series of the whole swimmers' community collected at different traps and bottom depths (from 300 m to 1800 m) inside a submarine canyon and on its adjacent open slope (OS). The traps captured 2155 specimens belonging to 70 taxa, with Crustacea (mainly Copepoda) and Annelida Polychaeta accounting for more than 90% of the total abundance. Almost half of the identified taxa (33) were only present in BC traps, where mean annual swimmer fluxes per trap were almost one order of magnitude higher than in the OS ones. Temporal variability in swimmer fluxes was more evident in BC than in OS. Fluxes dropped in winter (in coincidence with the stormy period in the region) and remained low until the following spring. In spring, there was a switch in taxa composition, including an increase of planktonic organisms. Additionally, we report drastic effects of extreme events, such as major storms, on deep-sea fauna. The impact of such extreme events along submarine canyon systems calls to rethink the influence of climate-driven phenomena on deep-sea ecosystems and, consequently, on their living resources.
Basaran, Mustafa; Uzun, Oguzhan; Cornelis, Wim; Gabriels, Donald; Erpul, Gunay
2016-01-01
The research on wind-driven rain (WDR) transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present study was conducted to investigate the efficiency of the BEST® sediment traps in catching the sand particles transported through the splash-saltation process under WDR conditions. Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR conditions. Not only for vertical sediment distribution, but a series of experimental tests for horizontal distribution of sediments was also performed using BEST® collectors to obtain the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel test section. Total mass transport (kg m-2) were estimated by analytically integrating the exponential functional relationship using the measured sediment amounts at the set trap heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9, 12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were, respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of BEST® did not change much as compared with those under rainless wind condition.
NASA Astrophysics Data System (ADS)
King, Linda L.; Repeta, Daniel J.
1994-10-01
The distributions of pyropheophorbide- a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all our trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide- a varied throughout the year, and we suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacent site. From these results, we suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide- a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundant PSEs found in the Black Sea are also described.
Piniak, G.A.; Brown, E.K.
2008-01-01
Fragments of the lace coral Pocillopora damicornis (Linnaeus, 1758) were transplanted to four sites on the south-central coast of Maui, Hawai'i, to examine coral growth over a range of expected sediment influence. Corals remained in situ for 11 months and were recovered seasonally for growth measurements using the buoyant weight technique. Average sediment trap accumulation rates ranged from 11 to 490 mg cm-2 day-1 and were greater at the wave-exposed reef site than at the protected harbor sites. Coral growth was highest at the donor site and was higher in the summer than in the winter. A stepwise linear regression found significant effects of sediment trap accumulation and light on growth rates, but the partial correlation coefficients suggest that these factors may be only secondary controls on growth. This study did not show a clear link between coral growth and sediment load. This result may be due, in part, to covariation of sediment load with wave exposure and the inability of trap accumulation rates to integrate all sediment effects (e.g., turbidity) that can affect coral growth. ?? 2008 by University of Hawai'i Press. All rights reserved.
Morphological processes in permeable sediment traps with check dams
NASA Astrophysics Data System (ADS)
Schwindt, S.; Franca, M. J.; Schleiss, A. J.
2017-12-01
Sediment traps serve for the retention of sediment in the case of major floods, but the retention of sediment is not wanted up to smaller frequent floods which are important to the morphodynamics of rivers. A new concept for the sediment traps that enables sediment transfer for frequent floods and safely retains sediment in the case of important floods was recently developed and experimentally tested. The tests were performed using a standardized hydrograph and different barrier types for the mechanically or hydraulically controlled retention of sediments. The deposition pattern was measured at the end of every experimental run using a motion sensing camera. These measurements show that the shape of the deposits varies as a function of the retention control type (mechanical or hydraulic) and particularly as a function of the barrier height. Deposits were large when a high barrier was applied that was not overflown, and when both control types were combined. The deposition slope was shallow in the case of the high barrier, steeper for combined controls and steepest when mechanical control only was tested. The study enables a better understanding for the optimization of the shape of artificial deposition areas upstream of partially permeable check dams to enhance the tradeoff between eco-morphological and economical aspects of flood protection.
Integrated environmental monitoring and multivariate data analysis-A case study.
Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle
2017-03-01
The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.
Isenmann, Gilles; Dufresne, Matthieu; Vazquez, José; Mose, Robert
2017-10-01
The purpose of this study is to develop and validate a numerical tool for evaluating the performance of a settling basin regarding the trapping of suspended matter. The Euler-Lagrange approach was chosen to model the flow and sediment transport. The numerical model developed relies on the open source library OpenFOAM ® , enhanced with new particle/wall interaction conditions to limit sediment deposition in zones with favourable hydrodynamic conditions (shear stress, turbulent kinetic energy). In particular, a new relation is proposed for calculating the turbulent kinetic energy threshold as a function of the properties of each particle (diameter and density). The numerical model is compared to three experimental datasets taken from the literature and collected for scale models of basins. The comparison of the numerical and experimental results permits concluding on the model's capacity to predict the trapping of particles in a settling basin with an absolute error in the region of 5% when the sediment depositions occur over the entire bed. In the case of sediment depositions localised in preferential zones, their distribution is reproduced well by the model and trapping efficiency is evaluated with an absolute error in the region of 10% (excluding cases of particles with very low density).
Lee, Casey; Foster, Guy
2013-01-01
In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.
Linking varve-formation processes to climate and lake conditions at Tiefer See (NE Germany)
NASA Astrophysics Data System (ADS)
Dräger, Nadine; Kienel, Ulrike; Plessen, Birgit; Ott, Florian; Brademann, Brian; Pinkerneil, Sylvia; Brauer, Achim
2017-04-01
Annually laminated (varved) lake sediments represent unique archives in continental areas providing both, precise chronologies and seasonally resolving proxy data. Monitoring of physical, chemical and biological processes influencing lake sediment formation are a suitable approach for detailed proxy understanding of varved sediment records. Lake Tiefer See (NE Germany) indicates deposition of varved sediments today as well as millennia ago (Dräger et al., 2016; Kienel et al., 2013). Therefore, the lake provides the possibility to trace current seasonal layer formation in the lake and to pair these data to climate and lake conditions (Kienel et al., 2016). Lake Tiefer See was formed during the last glaciation and is part of the Klocksin Lake Chain, a subglacial channel system that crosses the Pomeranian terminal moraine. The lake is a mesotrophic hard water lake with a maximum depth of 63 m and a surface area of 0.75 km2. During four consecutive years (2012-2015) the particulate matter deposition was trapped at bi-weekly to monthly resolution at three different water depths (5, 12 and 50 m). The sediment trap material was analysed for sediment flux and organic matter and calcite content. In addition, we monitored limnological parameters (e.g. temperature, pH, conductivity, oxygen content) as well as the meteorological conditions (e.g. temperature, wind speed and direction, precipitation) with a monitoring and climate station installed on the lake. These data describe strength and duration of lake mixing and lake stagnation phases. Our results show distinct seasonal peaks in sediment formation, which correspond to the spring and summer productivity phases comprising of diatom blooms and calcite precipitation. This observation is in line with microfacies results from surface sediment cores. The content of biogenic calcite content decreases in the trapped material with increasing water depth indicating dissolution processes. However, the strength of calcite dissolution varies between seasons and years. We will discuss the depositional processes in relation to conditions in the water column and to meteorological data. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415. Dräger N, Brauer A, Theuerkauf M, Szeroczyńska K, Tjallingii R, Plessen B, Kienel U and Brauer A (2016) A varve micro-facies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). The Holocene online first. Kienel U, Dulski P, Ott F, Lorenz S and Brauer A (2013) Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. Journal of paleolimnology 50 (4): 535-544. Kienel U, Kirillin G, Brademann B, Plessen B, Lampe R and Brauer A (2016) Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. Journal of paleolimnology 57 (1): 37-49.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, P.
Mud volcanoes have been widely documented in areas of overpressure where explosive expansion of trapped methane has occurred during argillokinesis. In an area with high sedimentation rate, such as the Gulf of Mexico, there may be no time for fine-grained sediment to de-water before being covered by impermeable material. In an accretionary wedge this process is complicated by overthrusting of off-scraped material which increases the overburden pressure and provides many more avenues for the migration of fluids through the system. In some cases, such as is seen in the Caribbean, the fluids may escape directly to the surface (or seabottom)more » through high permeability beds. When this happens there may be no diapirism. In other cases, such as in Venezuela, the forearc may be the site of rapid, laterally-derived, sedimentation, and fluids from the overthrusted rocks may be forced to escape through several kilometers of recent deltaic sediments. Since these fluids may include petroleum, this has obvious exploration potential. If there are no suitable reservoir rocks, such as in Timor, there may be no commercial accumulations. However, many giant fields are associated, world-wide, with mud volcanoes, such as those in Azerbaijan.« less
NASA Astrophysics Data System (ADS)
Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei
2017-02-01
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
NASA Astrophysics Data System (ADS)
Harrington, R. J.; Gray, S. C.; Ramos-Scharron, C. E.; O'Shea, B.
2012-12-01
Land development on the island of St. John, US Virgin Islands is increasing terrigenous sediment loads into coastal bays and this is adversely affecting its sensitive, near-shore coral reef systems. Accelerated erosion of by-products originating from igneous bedrock may contribute metal-rich sediment to ephemeral streams and bays around St. John. In order to determine how development is affecting the production and transportation of land-based metals from watersheds to reef environments, we compare the chemistry and mineralogy of bedrock and sediment of both an undeveloped and a developed watershed and their corresponding bays. Both watersheds are comprised of bedrock of similar lithology (Water Island Formation: plagiorhyolite and basalt). Our study objectives are to: 1) determine what metal elements could serve as reliable stable geochemical tracers to track the transport of land-derived sediments to reefs; 2) document the total change in metal concentrations from in-situ bedrock and sediment along travel paths as the sediment gets transported from the watersheds to the reefs; and 3) estimate erosion rates from active sediment sources and metal accumulation rates within the marine environment. Whole rock, soil, stream, shore and reef sediment samples were collected from both study areas to represent a ridge to reef progression of material as it is eroded from the bedrock and transported to the reefs. Samples of in-situ rock and sediments were collected by hand, while material representing sediment being eroded from the watersheds and settling in the ephemeral streams and bays was captured by terrestrial and marine sediment traps. Major and trace element concentrations and the mineralogy of rock and sediments were analyzed using X-ray fluorescence, petrography and X-ray diffraction. Analyses of bedrock samples reveal mineral and elemental compositions typical of basalt and plagiorhyolite. In hydrothermally altered bedrock Ba and K concentrations elevated above non-hydrothermally altered bedrock are detected. A chemical weathering index of bedrock and adjacent C and B soil horizons suggests that some major elements, such as Ca, K and Na, are chemically weathering from bedrock and soils. However, some major and trace elements that derive from terrigenous sources (FeO, Al2O3, TiO2, Cu, Zr) resist chemical weathering and are transported to the shore and reef within eroded terrestrial sediment. The concentrations of these metals in marine trap sediments are strongly correlated with percent terrigenous material (R2= 0.80 - 0.94, p: <0.0001). This suggests these elements can be used as tracers for sediment derived from terrestrial environments. Watershed terrestrial metals concentrations do not show a consistent pattern of change from ridge to reef, but are generally higher in the watershed than the shore and reef sites. Higher concentrations (5 to 50 times higher depending on the element) of terrigenous derived metals are detected below the developed watershed compared to the undeveloped watershed. These data support previous research showing higher rates of terrigenous sedimentation in the marine environments of developed bays. These geochemical data will be compared to a watershed-scale erosion analysis of both study areas to quantify metal flux rates in this type of sub-tropical island system.
Fine sediment trapping in river lateral cavities
NASA Astrophysics Data System (ADS)
Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.
2016-12-01
River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.
DOT National Transportation Integrated Search
2003-07-31
This Stormwater BMP Monitoring Plan details the approach to be used for monitoring : roadside ditch sediment traps located on Highway 26 in the Mt. Hood National Forest. : These sediment traps were designed and installed by ODOT for the capture of se...
NASA Astrophysics Data System (ADS)
Lyle, Mitchell; Marcantonio, Franco; Moore, Willard S.; Murray, Richard W.; Huh, Chih-An; Finney, Bruce P.; Murray, David W.; Mix, Alan C.
2014-07-01
We use flux, dissolution, and excess 230Th data from the Joint Global Ocean Flux Study and Manganese Nodule Project equatorial Pacific study Site C to assess the extent of sediment focusing in the equatorial Pacific. Measured mass accumulation rates (MAR) from sediment cores were compared to reconstructed MAR by multiplying the particulate rain caught in sediment traps by the 230Th focusing factor and subtracting measured dissolution. CaCO3 MAR is severely overestimated when the 230Th focusing factor correction is large but is estimated correctly when the focusing factor is small. In contrast, Al fluxes in the sediment fine fraction are well matched when the focusing correction is used. Since CaCO3 is primarily a coarse sediment component, we propose that there is significant sorting of fine and coarse sediments during lateral sediment transport by weak currents. Because CaCO3 does not move with 230Th, normalization typically overcorrects the CaCO3 MAR; and because CaCO3 is 80% of the total sediment, 230Th normalization overestimates lateral sediment flux. Fluxes of 230Th in particulate rain caught in sediment traps agree with the water column production-sorption model, except within 500 m of the bottom. Near the bottom, 230Th flux measurements are as much as 3 times higher than model predictions. There is also evidence for lateral near-bottom 230Th transport in the bottom nepheloid layer since 230Th fluxes caught by near-bottom sediment traps are higher than predicted by resuspension of surface sediments alone. Resuspension and nepheloid layer transport under weak currents need to be better understood in order to use 230Th within a quantitative model of lateral sediment transport.
Basaran, Mustafa; Uzun, Oguzhan; Cornelis, Wim; Gabriels, Donald; Erpul, Gunay
2016-01-01
The research on wind-driven rain (WDR) transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present study was conducted to investigate the efficiency of the BEST® sediment traps in catching the sand particles transported through the splash-saltation process under WDR conditions. Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR conditions. Not only for vertical sediment distribution, but a series of experimental tests for horizontal distribution of sediments was also performed using BEST® collectors to obtain the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel test section. Total mass transport (kg m-2) were estimated by analytically integrating the exponential functional relationship using the measured sediment amounts at the set trap heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9, 12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were, respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of BEST® did not change much as compared with those under rainless wind condition. PMID:27898716
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.L.; Repeta, D.J.
1994-10-01
The distributions of pyropheophorbide-a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide-a varied throughout the year, and the authors suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacentmore » site. From these results, they suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide-a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundance PSEs found in the Black Sea are also described.« less
Evaluating sediment capture rates for different sediment basin designs.
DOT National Transportation Integrated Search
2007-08-01
The effectiveness of sediment control devices was studied on a large NC DOT project to determine the : effects of different designs and conditions. Flow and sediment content of water exiting six different traps : and basins were measured and the amou...
NASA Astrophysics Data System (ADS)
Junge, Andrea; Lomax, Johanna; Shahack-Gross, Ruth; Dunseth, Zachary C.; Finkelstein, Israel; Fuchs, Markus
2016-04-01
OSL dating is usually applied to sediments in paleoenvironmental sciences. However, there is only limited experience with determining the age of archaeological stone structures by OSL using dust deposits associated with these structures. The age of trapped dust deposits may be used to date the onset of settlement (sediment below structures), settlement activity (occupation layer), or the time after settlement (sediment between collapsed walls and roofs). In this study, OSL dating is applied for establishing a chronology of settlement structures situated in the Negev Highlands, Israel. Two archaeological sites are investigated to identify the occupation history, by dating the aeolian dust trapped within the remains of ancient buildings. OSL dating techniques are applied using coarse grain quartz and a standard SAR protocol. First results indicate that the luminescence properties of the trapped sediments are suitable for OSL dating. Therefore, it was possible to date the onset of sedimentation in a later phase of the human occupation or shortly after the settlement was abandoned, which is supported by archaeological evidence gained from pottery finds and the architecture of the buildings.
NASA Astrophysics Data System (ADS)
Kurnia, Domas; Nugroho, Denny
2018-02-01
Trimulyo is one of coastal village in Genuk Subdistrict, Semarang City which now facing serious coastal abrasion. Such a thing has been causing loss of ponds and settlements. One of solution which currently carried is hybrid structure which combining permeable structure to break up the waves and trap sediment. The hybrid structure is designed as agitation dredging, which increase suspended sediment in sea water. The goals of this research were to studying the effectiveness of hybrid structure in handling coastal abration and to counting the volume of sedimentation during 20 months as well as rate of sedimentation. To reach the goals, high resolution satellite imagery year 2015 and 2016, scaled stick and sediment trap were applied to the study. Image processing was conducted by using Arc GIS 10.3 software. The effectiveness of hybrid structured was determined by series of field survey of existing condition. Rate of sedimentation measured during before and after hybrid structure built (20 months). The results showed that hybrid structure was effective to reduce coastal abrasion, it proven by a large amount of sediment was trapped behind the structure and coastline was upward along 170 meter since it was built. The volume of sediment during 20 months is 81.500 m3. If it assumed that the rate of sedimentation constantly, monthly rate of sedimentation is 4.075 m3/month or daily rate is 135,8 m3/day. The sediment that has formed highly recommended to use as mangrove conservation area in Semarang City.
Bacterial growth and the decomposition of particulate organic carbon collected in sediment traps
NASA Astrophysics Data System (ADS)
Ducklow, Hugh W.; Hill, Suzanne M.; Gardner, Wilford D.
We have studied bacterial abundance and production in samples from sediment traps deployed for 1 and 100 days in several areas of the shelf and slope regions of the Middle Atlantic Bight, U.S.A. By making a series of assumptions about bacterial growth at the expense of POC in traps, we have estimated that the turnover time of organic particles collected in traps during long deployments is slow (mean 1500 ± 300 days), if only bacterial activity is considered. However the abundance and biomass of bacteria in traps is very high, ranging from 3 to 30 × 10 11 cells gC -1, i.e., 0.3 to 3% of the POC is bacterial carbon. Fifteen to 88% of the particles in traps were colonized by bacteria, but usually about half the particles had only 0 to 1 cell attached. Growth of bacteria was observed at all scales relevant to these trap deployments; over periods ranging from hours to weeks, at rates of 0.01 to 0.3 d -1. In spite of slow growth, bacteria appeared to be physiologically active in that [ 3H]adenine and [ 3H]thymidine were incorporated more rapidly into RNA and protein than into DNA. Total incorporation rates were high. We conclude that even relatively old (ca. 1 y) POC in sediment traps supports high levels of active bacterial biomass, but that POC decomposition is slow, so that bacteria may not be the principal agents of POC turnover following collection.
Response and recovery of streams to an intense regional flooding event
NASA Astrophysics Data System (ADS)
Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Kantack, K. M.
2015-12-01
Determining the relative roles of frequent and infrequent events on landscape form and material transport has implications for understanding landscape development, and informs planning and infrastructure decisions. Flooding due to Tropical Storm Irene in 2011 provides a unique opportunity to examine the effects of a rare, major disturbance across a broad area (14,000 km2). Intense flooding caused variable but widespread channel and riparian reconfiguration, including 995 channel-adjacent mass-wasting events, collectively referred to here as landslides, that mostly occurred in glacial deposits. Of these, about half involved reactivation of existing scars. Landslides were generally small, ranging from 60 - 26,000 m2 in planform, and covered less than 0.01 % of land in the region, yet sediment input from landslides alone (131 mm/kyr when integrated over the study area) exceeded inferred local background erosion rates by 60 times. If Irene inputs are included in a thirty-year erosion record, the estimated erosion rate, 7.2 mm/kyr, aligns closely with long-term regional rates of 5-10 mm/kyr. Landslides also input trees to streams, increasing large wood influence on those reaches. Combined wood and sediment inputs contributed to channel changes downstream of landslides. In four years since Irene, terrestrial lidar and suspended sediment sampling has documented continued large wood and sediment input. Erosion occurred on each of seventeen monitored landslides during snowmelt, but is otherwise limited except during intense precipitation and/or flood events. Repeat lidar models have recorded erosion of up to 5,000 m3 on a single slide in one year, including as much as 4000 m3 during a single event. Tree fall on scarps during erosion events creates sediment traps at the base of landslides, contributing to an observed return to equilibrium slopes. Despite trapping, substantial sediment continues to enter streams. Ninety-five suspended sediment samples from forty sites show that landslides remain important sediment sources. Across a range of flows, 2014 - 2015 sediment flux for a given discharge is an order of magnitude higher than pre-Irene flux. Though landslide slope relaxation suggests incipient recovery from Irene, persistent rapid erosion of large wood and sediment indicates that recovery is still on-going.
Effect of Sediment Availability in Bedload-Dominated Rivers on Fluvial Geomorphic Equilibrium
NASA Astrophysics Data System (ADS)
Marti, M.
2016-12-01
Channels are known to compensate for changes in sediment supply via covariate changes in channel properties, yet the timescale for adjustment remains poorly constrained. We propose that reductions in sediment flux inhibit equilibrium re-establishment and thus impact the timescale of system adjustment. Using run-of-river dams as natural experiments, this study quantifies the geomorphic response of channels to sediment supply reduction. Channel traits that facilitate increased sediment trapping behind the dam, such as large reservoir storage capacity relative to annual inflow and low slope, were expected to inhibit a channel's ability to re-establish equilibrium following impoundment, lengthening the equilibrium establishment timescale to tens or hundreds of years. Reaches associated with increased trapping were therefore anticipated to exhibit non-equilibrium forms. Channel equilibrium was evaluated downstream of 8 ROR dams in New England with varying degrees of sediment trapping. Sites cover a range of watershed sizes (3-155 km2), channel slopes (.05-5%), 2-year discharges (1.5-60 m3/s) and storage capacity volumes. Because equilibrium channel form is just sufficient to mobilize grains under bankfull conditions in bedload-dominated rivers, the Shields parameter was used to assess equilibrium form. Unregulated, upstream Shields values and regulated, downstream values were calculated at 14 total cross-sections extending 300-450 m upstream and downstream of each dam. Sediment trapping was estimated using Brune's curve (1953). On the Charles Brown Brook (VT), a marginally significant (p=0.08) increase in Shields values from a mean of 0.14 upstream to 0.41 downstream of a 100+ year old dam was observed. In contrast, reaches downstream of the 100+ year old Pelham dam (MA) exhibit significantly lower Shields values. This suggests that trapping behind the dam inhibits the downstream channel from reaching an equilibrium state, but not always in the same way. Better understanding of geomorphic response to reduced sediment flux as a control on equilibrium establishment will broaden the knowledge of geomorphic equilibrium and aid in management of regulated, bedload-dominated rivers.
NASA Astrophysics Data System (ADS)
McLachlan, R. L.; Ogston, A. S.; Allison, M. A.
2017-09-01
River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition, and predicts how fine-sediment dynamics and morphology of large tropical deltas such as the Mekong will respond to changing fluvial and marine influences in the future.
NASA Astrophysics Data System (ADS)
Callahan, R. P.; Riebe, C. S.; Ferrier, K.
2017-12-01
For more than two decades, cosmogenic nuclides have been used to quantify catchment-wide erosion rates averaged over tens of thousands of years. These rates have been used as baselines for comparison with sediment yields averaged over decades, leading to insights on how human activities such as deforestation and agriculture have influenced the production and delivery of sediment to streams and oceans. Here we present new data from the southern Sierra Nevada, California, where sediment yields have been measured over the last ten years using sediment trapping and gauging methods. Cosmogenic nuclides measured in stream sediment reveal erosion rates that are between 13 and 400 (average = 94) times faster than erosion rates inferred from annual accumulations in sediment traps. We show that the discrepancy can be explained by extremely low sediment trapping efficiency, which leads to bias in the short-term rates due to incomplete capture of suspended sediment. Thus the short-term rates roughly agree with the long-term rates, despite intensive timber harvesting in the study catchments over the last century. This differs from results obtained in similar forested granitic catchments of Idaho, where long-term rates are more than ten times greater than short-term rates because large, rare events do not contribute to the short-term averages. Our analysis of a global database indicates that both the magnitude and sign of differences between short- and long-term average erosion rates are difficult to predict, even when the history of land use in known.
NASA Astrophysics Data System (ADS)
Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.
2015-06-01
A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.
Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream
NASA Astrophysics Data System (ADS)
Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.
2013-01-01
Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.
Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream
Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.
2012-01-01
Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.
Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai
Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.
2009-01-01
Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.
NASA Astrophysics Data System (ADS)
Kämpf, Lucas; Brauer, Achim; Mueller, Philip; Güntner, Andreas; Merz, Bruno
2015-04-01
The relation of changing climate and the occurrence of strong flood events has been controversially debated over the last years. One major limitation in this respect is the temporal extension of instrumental flood time series, rarely exceeding 50-100 years, which is too short to reflect the full range of natural climate variability in a region. Therefore, geoarchives are increasingly explored as natural flood recorders far beyond the range of instrumental flood time series. Annually laminated (varved) lake sediments provide particularly valuable archives since (i) lakes form ideal traps in the landscape continuously recording sediment flux from the catchment and (ii) individual flood events are recorded as detrital layers and can be dated with seasonal precision by varve counting. Despite the great potential of varved lake sediments for reconstructing long flood time series, there are still some confinements with respect to their interpretation due to a lack in understanding processes controlling the formation of detrital layers. For this purpose, we investigated the formation of detrital flood layers in Lake Mondsee (Upper Austria) in great detail by monitoring flood-related sediment flux and comparing detrital layers in sub-recent sediments with river runoff data. Sediment flux at the lake bottom was trapped over a three-year period (2011-2013) at two locations in Lake Mondsee, one located 0.9 km off the main inflow (proximal) and one in a more distal position at a distance of 2.8 km. The monitoring data include 26 floods of different amplitude (max. hourly discharge=10-110 cbm/s) which triggered variable fluxes of catchment sediment to the lake floor (4-760 g/(sqm*d)). The comparison of runoff and sediment data revealed empiric runoff thresholds for triggering significant detrital sediment influx to the proximal (20 cbm/s) and distal lake basin (30 cbm/s) and an exponential relation between runoff amplitude and the amount of deposited sediment. A succession of 20 sub-millimetre to maximum 8 mm thick flood-triggered detrital layers, deposited between 1976 and 2005, was detected in two varved surface sediment cores from the same locations as the sediment traps. Calibration of the detrital layer record with river runoff data revealed empirical thresholds for flood layer deposition. These thresholds are higher than those for trapped sediment flux but, similarly to the trap results, increasing from the proximal (50-60 cbm/s; daily mean=40 cbm/s) to the distal lake basin (80 cbm/s, 2 days>40 cbm/s). Three flood events above the threshold for detrital layer formation in the proximal and one in the distal lake basin were also recorded in the monitoring period. These events resulted in exceptional sediment transfer to the lake of more than 400 g/sqm at both sites, which is therefore interpreted as the minimum sediment amount for producing a visible detrital layer.
NASA Astrophysics Data System (ADS)
Goldfarb, L. A.; Kingsley, C.; Urbalejo, A. A.; Hangsterfer, A.; Gee, J. S.; Carilli, J.; Feinberg, J. M.; Mitra, R.; Bhattacharya, A.; Field, D.
2017-12-01
Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here is a progress and combination of two works presented at American Geophysical Union 2016 Fall Meeting; In this research, we explore the efficacy of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate detrital metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. Four coral cores together cover a period of 1862-2006. Trace, major and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core spanning to characterize materials present in coral skeletons. We compare the results from XRF to elemental concentrations reported from solution-based ICP-MS. Furthermore, we also compare our XRF data to magnetic measurements we have made in these same coral cores. Overall, it appears that the non-destructive XRF technique is a viable supplement to the ICP-MS in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.
Osterkamp, W.R.; Curtis, R.E.; Crowther, H.G.
1982-01-01
Analysis of hydrologic data from the Kansas River basin suggests that the channels of the lower Solomon, Saline, and Smoky Hill Rivers have narrowed and stabilized as a result of construction of upstream reservoirs. The Kansas River channel, however, remains relatively unstable and locally active. Streamflow regulation and sediment trapping by reservoirs are possible causes of changes occurring at various Kansas River sites. An inferred deficiency of the suspended-sediment load, however, is likely to cause continuing instability. Suspended sediment in the Kansas River apparently is too sparse to form and maintain stable alluvial banks. The deficiency probably results in an increase of bed material movement, general channel widening, and local braiding. Significant channel degradation is lacking at most sites, but may occur in response to long-term (decades-to-centuries) regulation. Recent degradation near Bonner Springs, Kans., may be the result of sand and gravel removal. Any imposed changes that shorten the channel or reduce the suspended-sediment discharge of the Kansas River are expected to cause additional channel instability. (USGS)
Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.
2009-01-01
Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.
Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands
Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.
2018-01-01
Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.
Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities
Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra
2016-01-01
Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.
Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.
2000-01-01
Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the recent past, but not at the time of sampling. Copyright ?? 2000 Elsevier Science Ltd.
Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean
Marsay, Chris M.; Sanders, Richard J.; Henson, Stephanie A.; Pabortsava, Katsiaryna; Achterberg, Eric P.; Lampitt, Richard S.
2015-01-01
The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean. PMID:25561526
Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris
2014-03-15
Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Particle Settling in Low Energy Turbulence
NASA Astrophysics Data System (ADS)
Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan
2014-11-01
Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.
Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance
NASA Astrophysics Data System (ADS)
Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.
2011-06-01
Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/C org data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m -2 d -1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.
NASA Astrophysics Data System (ADS)
Bussi, G.; Rodríguez, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.
2012-04-01
When using hydrological and sedimentological models, lack of historical records is often one of the main problems to face, since observed data are essential for model validation. If gauged data are poor or absent, a source of additional proxy data may be the slack-water deposits accumulated in check dams. The aim of this work is to present the result of the reconstruction of the recent hydrological and sediment yield regime of a semi-arid Mediterranean catchment (Rambla del Poyo, Spain, 184 square km) by coupling palaeoflood techniques with a distributed hydrological and sediment cycle model, using as proxy data the sandy slack-water deposits accumulated upstream a small check dam (reservoir volume 2,500 square m) located in the headwater basin (drainage area 13 square km). The solid volume trapped into the reservoir has been estimated using differential GPS data and an interpolation technique. Afterwards, the total solid volume has been disaggregated into various layers (flood units), by means of a stratigraphical description of a depositional sequence in a 3.5 m trench made across the reservoir sediment deposit, taking care of identifying all flood units; the separation between flood units is indicated by a break in deposition. The sedimentary sequence shows evidence of 15 flood events that occurred after the dam construction (early '90). Not all events until the present are included; for the last ones, the stream velocity and energy conditions for generating slack-water deposits were not fulfilled due to the reservoir filling. The volume of each flood unit has been estimated making the hypothesis that layers have a simple pyramidal shape (or wedge); every volume represents an estimation of the sediments trapped into the reservoir corresponding to each flood event. The obtained results have been compared with the results of modeling a 20 year time series (1990 - 2009) with the distributed conceptual hydrological and sediment yield model TETIS-SED, in order to assign a date to every flood unit. The TETIS-SED model provides the sediment yield series divided into textural fractions (sand, silt and clay). In order to determine the amount of sediments trapped into the ponds, trap efficiency of each check dam is computed by using the STEP model (Sediment Trap Efficiency model for small Ponds, Verstraeten and Poesen, 2001). Sediment dry bulk density is calculated according to Lane and Koelzer (1943) formulae. In order to improve the reliability of the flood reconstruction, distributed historical fire data has also been used for dating carbon layers found in the depositional sequence. Finally, a date has been assigned to every flood unit, corresponding to an extreme rainfall event; the result is a sediment volume series from 1990 to 2009, which may be very helpful for validating both hydrological and sediment yield models and can improve our understanding on erosion and sediment yield in this catchment.
Sedimentation of prairie wetlands
Gleason, Robert A.; Euliss, Ned H.
1998-01-01
Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.
Effects of land use and retention practices on sediment yields in the Stony Brook basin, New Jersey
Mansue, Lawrence J.; Anderson, Peter W.
1974-01-01
The average annual rate of suspended-sediment discharge of the Stony Brook at Princeton, N.J. (44.5 square miles) is about 8,800 tons, or 200 tons per square mile. Annual yields within the basin, which is in the Piedmont Lowlands section of the Piedmont physiographic province in west-central New Jersey, range from 25 to 400 tons per square mile. Storm runoff that transports suspended materials in excess of a ton carries 90 percent of the total suspended-sediment discharge from the basin. Observations of particlesize distributions indicate that the suspended material carried during storms is 55 percent silt, 40 percent clay, and 5 percent sand. A trend analysis of sediment records collected at Princeton between 1956 and 1970 indicated an increase in suspended-sediment discharge per unit of water discharge during 1956-61. From early 1962 to late 1967, sediment trends were difficult to interpret owing to complicating factors, such as reservoir construction, urbanization, and extreme drought. After 1967, yields decreased. Variations in sediment yields during the study are attributed to the integrated influence of several factors. A 2.9 percent decrease in croplands and an increase of 5.1 percent in idle and urban land use probably produced a net increase in sediment yields. Construction of seven sediment-retention reservoirs under Public Law 566 resulted in temporary increases in sediment yields. However, based on a trap-efficiency investigation at 1 site, the combined effect of operation of these 7 reservoirs is estimated to result in a 20 percent reduction in sediment discharge from the basin. Other factors that influence the noted decrease include reduction in yields during 5 years of drought, 1962-66, and reduced construction and development during the latter part of the study period resulting from a general economic slowdown.
Chaytor, Jason D.; ten Brink, Uri S.
2015-01-01
The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.
NASA Astrophysics Data System (ADS)
Chen, Wei; de Swart, Huib E.
2018-03-01
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.
Ferrer, I.; Furlong, E.T.
2002-01-01
Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed by ASE, were 85% for C12BAC and 79% for C14-BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 ??g/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.
Sediment deposition in the White River Reservoir, northwestern Wisconsin
Batten, W.G.; Hindall, S.M.
1980-01-01
The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.
Laboratory data on coarse-sediment transport for bedload-sampler calibrations
Hubbell, David Wellington; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.
1987-01-01
A unique facility capable of recirculating and continuously measuring the transport rates of sediment particles ranging in size from about 1 to 75 millimeters in diameter was designed and used in an extensive program involving the calibration of bedload samplers. The facility consisted of a 9-footwide by 6-foot-deep by 272-foot-long rectangular channel that incorporated seven automated collection pans and a sedimentreturn system. The collection pans accumulated, weighed, and periodically dumped bedload falling through a slot in the channel floor. Variations of the Helley-Smith bedload sampler, an Arnhem sampler, and two VUV-type samplers were used to obtain transport rates for comparison with rates measured at the bedload slot (trap). Tests were conducted under 20 different hydraulic and sedimentologic conditions (runs) with 3 uniform-size bed materials and a bed-material mixture. Hydraulic and sedimentologic data collected concurrently with the calibration measurements are described and, in part, summarized in tabular and graphic form. Tables indicate the extent of the data, which are available on magnetic media. The information includes sediment-transport rates; particle-size distributions; water discharges, depths, and slopes; longitudinal profiles of streambed-surface elevations; and temporal records of streambed-surface elevations at fixed locations.
Native iron in the Earth and space
NASA Astrophysics Data System (ADS)
Pechersky, D. M.; Kuzina, D. M.; Markov, G. P.; Tsel'movich, V. A.
2017-09-01
Thermomagnetic and microprobe studies of native iron in the terrestrial upper-mantle hyperbasites (xenoliths in basalts), Siberian traps, and oceanic basalts are carried out. The results are compared to the previous data on native iron in sediments and meteorites. It is established that in terms of the composition and grain size and shape, the particles of native iron in the terrestrial rocks are close to each other and to the extraterrestrial iron particles from sediments and meteorites. This suggests that the sources of the origin of these particles were similar; i.e., the formation conditions in the Earth were close to the conditions in the meteorites' parent bodies. This similarity is likely to be due to the homogeneity of the gas and dust cloud at the early stage of the solar system. The predominance of pure native iron in the sediments can probably be accounted for by the fact that interstellar dust is mostly contributed by the upper-mantle material of the planets, whereas the lower-mantle and core material falls on the Earth mainly in the form of meteorites. A model describing the structure of the planets in the solar system from the standpoint of the distribution of native iron and FeNi alloys is proposed.
Foster, Guy M.
2016-06-20
The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.
Phase I Source Investigation, Heckathorn Superfund Site, Richmond, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohn, Nancy P; Evans, Nathan R
This report represents Phase I of a multi-phase approach to a source investigation of DDT at the Heckathorn Superfund Site, Richmond, California, the former site of a pesticide packaging plant, and the adjacent waterway, the Lauritzen Channel. Potential identified sources of contamination were from sloughed material from undredged areas (such as side banks) and from outfall pipes. Objectives of Phase I included the (1) evaluation of pesticide concentrations associated with discharge from outfalls, (2) identification of additional outfalls in the area, (3) identification of type, quantity, and distribution of sediment under the Levin pier, (4) quantification of pesticide concentrations inmore » sediment under the pier, and (5) evaluation of sediment structure and slope stability under the pier. Field operations included the collection of sediment directly from inside the mouths of outfall pipes, when possible, or the deployment of specially designed particle traps where direct sampling was problematic. Passive water samplers were placed at the end of known outfall pipes and analyzed for DDT and other pesticides of concern. Underwater dive surveys were conducted beneath the Levin pier to document type, slope, and thickness of sediment. Samples were collected at locations of interest and analyzed for contaminants. Also sampled was soil from bank areas, which were suspected of potentially contributing to continued DDT contamination of the Lauritzen Channel through erosion and groundwater leaching. The Phase I Source Investigation was successful in identifying significant sources of DDT contamination to Lauritzen Channel sediment. Undredged sediment beneath the Levin pier that has been redistributed to the channel is a likely source. Two outfalls tested bear further investigation. Not as well-defined are the contributions of bank erosional material and groundwater leaching. Subsequent investigations will be based on the results of this first phase.« less
The effect of coarse gravel on cohesive sediment entrapment in an annular flume
NASA Astrophysics Data System (ADS)
Glasbergen, K.; Stone, M.; Krishnappan, B.; Dixon, J.; Silins, U.
2015-03-01
While cohesive sediment generally represents a small fraction (<0.5%) of the total sediment mass stored in gravel-bed rivers, it can strongly influence physical and biogeochemical processes in the hyporheic zone and alter aquatic habitat. This research was conducted to examine mechanisms governing the interaction of cohesive sediments with gravel beds in the Elbow River, Alberta, Canada. A series of erosion and deposition experiments with and without a gravel bed were conducted in a 5-m diameter annular flume. The critical shear stress for deposition and erosion of cohesive sediment without gravel was 0.115 Pa and 0.212 Pa, respectively. In experiments with a gravel bed, cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized under the maximum applied shear stresses (1.11 Pa) used in the experiment. The gravel bed had an entrapment coefficient (ratio between the entrapment flux and the settling flux) of 0.2. Accordingly, when flow conditions are sufficient to produce a shear stress that will mobilize the armour layer of the gravel bed (>16 Pa), cohesive materials trapped within the gravel bed will be entrained and transported into the Glenmore Reservoir, where sediment-associated nutrients may pose treatment challenges to the drinking water supply.
Particle Fluxes in the Marginal Seas of Antarctica: A 20-year Synthesis in Honor of Jack Dymond
NASA Astrophysics Data System (ADS)
Dunbar, R. B.; Langone, L.
2004-12-01
One of Jack Dymond's long-standing scientific passions was the study of particles moving through the ocean water column. Jack's pioneering work in this area in the 1970's and generous mentoring of others throughout his career lead directly to the first authors involvement in sediment trap studies. Here we present a synthesis of 20 years of particle flux studies in coastal Antarctic (including the work of Collier and Dymond et al.) and highlight some of the important features and unresolved issues related to integrating particle trap interceptor data with other measures of production, transport, and deposition. The first sediment trap arrays were deployed on the Antarctic shelf in 1981 and 1982 in the Antarctic Peninsula. Simple instruments were also deployed in 1984 and 1986 in the Ross Sea. Since then, several nations (US, Italy, New Zealand) have recovered time series sediment trap data on moorings in both of these areas. This current synthesis makes use of data from approximately 22 sites, the majority of which are in the Ross Sea, and includes about 900 discrete samples of particles in vertical transit through the water column. We now have many complete time series that extend through the winter, allowing several important generalizations to be made. For example, annual particle-mediated organic C fluxes to below 200 meters in the Ross Sea average 4.4±3.3 g C m-2 yr-1. These values are significantly less than export fluxes calculated using short-term surface water mass balance approaches or Th isotope techniques yet are higher than seabed sediment accumulation rates. Intriguingly, seasonal seabed arrival rates of organic C estimated from in-situ summertime benthic respirometry studies yield C flux values similar in magnitude to those from sediment traps deployed at the same time, lending strong support to trap data. The cause of current disagreements between various methods of flux estimation may in fact not be solved until process studies are accomplished that extend through the austral autumn into winter and/or the biogeochemistry of Th is better understood in coastal area of the Southern Ocean. Nearly all Ross Sea particle flux time series show relative low sedimentation during the periods of highest primary production in surface waters followed by either events or periods of enhanced sedimentation during the latest austral summer and/or autumn. This high degree of decoupling between production and sedimentation is unusual and may well represent low grazing rates. It is likely that purely physical phenomena associated with the return of winter sea ice are responsible for enhanced autumn sedimentation in the Ross Sea. Compared to the Ross Sea region, biogenic fluxes in the Palmer Basin area of the Antarctic Peninsula are higher, but are more tightly coupled to productivity in surface waters. We conclude our synthesis by presenting a general model for particle production and deposition in several end-member environments of the Antarctic Margin.
NASA Astrophysics Data System (ADS)
Dubois, N.; Kindler, P.; Spezzaferri, S.; Coric, S.
2007-12-01
The sediments deposited at ODP Site 1195 (Marion Plateau, NE Australia) record synchronous shifts in their chemistry, mineralogy, grain size and colour at 6 meters below sea floor. These significant changes are interpreted to reflect the onset of the southern province of the Great Barrier Reef (GBR). An increased deposition of carbonate-rich sediments of neritic origin, coincident with a decline in both sedimentation rate and terrigenous input, is attributed to inshore trapping of materials by the reefs. Based on an age model combining magnetostratigraphic and biostratigraphic data, we propose that the southern province of the GBR initiated between 560 and 670 kyr B.P. Our best estimate concurs with previous studies reporting an age between 500 and 930 kyr B.P., albeit constraining more tightly these earlier age estimates. However, it does not support research placing the birth of the GBR in Marine Isotope Stage 11 (about 400 kyr B.P.), nor the recent theory of a worldwide modern reef development at that time.
Graham, T.B.; Wirth, D.
2008-01-01
Wind is suspected to be a primary dispersal mechanism for large branchiopod cysts on the Colorado Plateau. We used a wind tunnel to investigate wind velocities capable of moving pothole sediment and cysts from intact and disturbed surfaces. Material moved in the wind tunnel was trapped in filters; cysts were separated from sediment and counted. Undisturbed sediment moved at velocities as low as 5.9 m s-1 (12.3 miles h-1). A single all-terrain vehicle (ATV) track increased the sediment mass collected 10-fold, with particles moving at a wind velocity of only 4.2 m s-1 (8.7 miles h-1). Cysts were recovered from every wind tunnel trial. Measured wind velocities are representative of low-wind speeds measured near Moab, Utah. Wind can move large numbers of cysts to and from potholes on the Colorado Plateau. Our results indicate that large branchiopod cysts move across pothole basins at low-wind speeds; additional work is needed to establish velocities at which cysts move between potholes. ?? 2007 Springer Science+Business Media B.V.
Preface and brief synthesis for the FOODBANCS volume
NASA Astrophysics Data System (ADS)
Smith, Craig R.; DeMaster, David J.
2008-11-01
In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.
Continuous in situ monitoring of sediment deposition in shallow benthic environments
NASA Astrophysics Data System (ADS)
Whinney, James; Jones, Ross; Duckworth, Alan; Ridd, Peter
2017-06-01
Sedimentation is considered the most widespread contemporary, human-induced perturbation on reefs, and yet if the problems associated with its estimation using sediment traps are recognized, there have been few reliable measurements made over time frames relevant to the local organisms. This study describes the design, calibration and testing of an in situ optical backscatter sediment deposition sensor capable of measuring sedimentation over intervals of a few hours. The instrument has been reconfigured from an earlier version to include 15 measurement points instead of one, and to have a more rugose measuring surface with a microtopography similar to a coral. Laboratory tests of the instrument with different sediment types, colours, particle sizes and under different flow regimes gave similar accumulation estimates to SedPods, but lower estimates than sediment traps. At higher flow rates (9-17 cm s-1), the deposition sensor and SedPods gave estimates >10× lower than trap accumulation rates. The instrument was deployed for 39 d in a highly turbid inshore area in the Great Barrier Reef. Sediment deposition varied by several orders of magnitude, occurring in either a relatively uniform (constant) pattern or a pulsed pattern characterized by short-term (4-6 h) periods of `enhanced' deposition, occurring daily or twice daily and modulated by the tidal phase. For the whole deployment, which included several very high wind events and suspended sediment concentrations (SSCs) >100 mg L-1, deposition rates averaged 19 ± 16 mg cm-2 d-1. For the first half of the deployment, where SSCs varied from <1 to 28 mg L-1 which is more typical for the study area, the deposition rate averaged only 8 ± 5 mg cm-2 d-1. The capacity to measure sedimentation rates over a few hours is discussed in terms of examining the risk from sediment deposition associated with catchment run-off, natural wind/wave events and dredging activities.
Late Cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, P.J.
1994-09-01
A Late Cretaceous submarine igneous extrusion occurs in the subsurface of southwestern Wilson County, Texas. The Coniacian-Santonian-aged (Austin Group) volcanic eruption discharged large volumes of magnetite-rich olivine nephelinite, that upon quenching, formed an extensive nontronitic clay layer. This clay deposit formed a trapping mechanism for hydrocarbons beneath the volcano; production from these features is normally attributed to the shoal-water carbonate facics developed on top of the volcano. The heat energy of the volcano may have thermally matured the calcareous sediments of the Austin Chalk contiguous with the volcano. The normally grayish-colored Austin Chalk in contact with the intrusive portion ofmore » the igneous material displays a greenish color suggesting thermal alteration. The overlying nontronite trapped the mobile hydrocarbons, and early emplacement may have preserved some of the original porosity and permeability of the Austin Chalk. Austin Chalk-aged volcanic deposits produce hydrocarbons from stratigraphic traps within the volcanic material, within the porous beachrock, and structurally within overlying sandstones. The intruded Austin Chalk also behaves as a reservoir because the original porosity and permeability is maintained through early emplacement of oil and the overlying volcanic clay prevents vertical migration. Marcefina Creek, discovered in 1980 from an {open_quotes}augen{close_quotes}-shaped seismic signature and an aerial magnetic survey, produces from the fractured chalk beneath the nontronitic clay layer. This field has produced over seven million bbl of oil from over 40 wells from fractured and porous rock beneath the volcano.« less
Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea)
NASA Astrophysics Data System (ADS)
Kim, Minkyoung; Hwang, Jeomshik; Rho, TaeKeun; Lee, Tongsup; Kang, Dong-Jin; Chang, Kyung-Il; Noh, Suyun; Joo, HuiTae; Kwak, Jung Hyun; Kang, Chang-Keun; Kim, Kyung-Ryul
2017-03-01
This study investigates the biological pump system in the East Sea (Japan Sea) by conducting an analysis of the total particle flux, biogenic material composition, and carbon isotope ratios of sinking particles. The samples were collected for one year starting from March 2011 using time-series sediment traps deployed at depths of 1040 m and 2280 m on bottom-tethered mooring at Station EC1 (37.33°N, 131.45°E; 2300 m water depth) in the Ulleung Basin (UB), southwestern part of the East Sea. The temporal variation in the particulate organic carbon (POC) flux at 1000 m shows a good relationship with the primary production in the corresponding surface water. The ratio of POC flux at 1000 m to satellite-based primary production in the corresponding region in the UB was 3%, which is comparable to the values of 2 to 5% estimated from previous studies of other part of the East Sea. The lithogenic material accounted for > 17% of the sinking particles at 1000 m and for a larger fraction of 40 to 60% at 2280 m. The radiocarbon contents of the sinking POC at both trap depths imply the additional supply of aged POC, with a much greater contribution at 2280 m. Overall, the particle flux in the deep interior of the East Sea appears to be controlled by the supply of complex sources, including aeolian input, the lateral supply of resuspended sediments, and biological production in the surface water.
Cliff R. Hupp; Michael R. Schening
2000-01-01
Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...
Sediment deposition and production in SE-Asia seagrass meadows
NASA Astrophysics Data System (ADS)
Gacia, E.; Duarte, C. M.; Marbà, N.; Terrados, J.; Kennedy, H.; Fortes, M. D.; Tri, N. H.
2003-04-01
Seagrass meadows play an important role in the trapping and binding of particles in coastal sediments. Yet seagrass may also contribute to sediment production directly, through the deposition of detritus and also the deposition of the associated mineral particles. This study aims at estimating the contribution of different seagrass species growing across an extensive range of deposition to inorganic (carbonate and non-carbonate) and organic sediment production. Total daily deposition measured with sediment traps varied from 18.8 (±2.0) g DW m -2 d -1 in Silaqui (Philippines) to 681.1 (±102) g DW m -2 d -1 in Bay Tien (Vietnam). These measurements correspond to a single sampling event and represent sedimentation conditions during the dry season in SE-Asia coastal areas. Enhalus acoroides was the most common species in the seagrass meadows visited and, together with Thalassia hemprichii, was present at sites from low to very high deposition. Halodule uninervis and Cymodocea species were present in sites from low to medium deposition. The mineral load in seagrass leaves increased with age, and was high in E. acoroides because it had the largest and long-lived leaves (up to 417 mg calcium carbonate per leaf and 507 mg non-carbonate minerals per leaf) and low in H. uninervis with short-lived leaves (4 mg calcium carbonate per leaf and 2 mg non-carbonate minerals per leaf). In SE-Asia seagrass meadows non-carbonate minerals accumulate at slower rates than the production of calcium carbonate by the epiphytic community, consequently the final loads supported by fully grown leaves were, as average, lower than calcium carbonate loads. Our results show that organic and inorganic production of the seagrasses in SE-Asia represents a small contribution (maximum of 15%) of the materials sedimented on a daily base by the water column during the sampling period. The contribution of the carbonate fraction can be locally significant (i.e. 34% in Silaqui) in areas where the depositional flux is low, but is minor (<1%) in sites were siltation is significant (i.e. Umalagan and all the visited sites in Vietnam).
NASA Astrophysics Data System (ADS)
Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki
2016-04-01
Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River-mouth areas with reservoir history can be particularly useful as the terrestrial soil strata provides a dated horizon under recent sediments.
A new sampler design for measuring sedimentation in streams
Hedrick, Lara B.; Welsh, S.A.; Hedrick, J.D.
2005-01-01
Sedimentation alters aquatic habitats and negatively affects fish and invertebrate communities but is difficult to quantify. To monitor bed load sedimentation, we designed a sampler with a 10.16-cm polyvinyl chloride coupling and removable sediment trap. We conducted a trial study of our samplers in riffle and pool habitats upstream and downstream of highway construction on a first-order Appalachian stream. Sediment samples were collected over three 6-week intervals, dried, and separated into five size-classes by means of nested sieves (U.S. standard sieve numbers 4, 8, 14, and 20). Downstream sediment accumulated in size-classes 1 and 2, and the total amount accumulated was significantly greater during all three sampling periods. Size-classes 3 and 4 had significantly greater amounts of sediment for the first two sampling periods at the downstream site. Differences between upstream and downstream sites narrowed during the 5-month sampling period. This probably reflects changes in site conditions, including the addition of more effective sediment control measures after the first 6-week period of the study. The sediment sampler design allowed for long-term placement of traps without continual disturbance of the streambed and was successful at providing repeat measures of sediment at paired sites. ?? Copyright by the American Fisheries Society 2005.
NASA Astrophysics Data System (ADS)
Maier, D. B.; Bigler, C.; Diehl, S.
2017-12-01
Diatom sediment assemblages are among the most important proxies for past climate and ecological condition reconstruction in aquatic environments, but the role of seasonality in the formation of diatom records is poorly understood. In this study we combine the diatom record of a varved sediment with year-round physico-chemical water column monitoring and the corresponding sequential sediment trap diatom record to disentangle the process information contained in a diatom sediment signal. The comparison of three consecutive annual diatom records indicates that the entire annual diatom sediment signal can be driven by winter air temperature induced timing of ice and snow melt and persistent under-ice stratification promoting an early diatom bloom under ice before spring lake over-turn. By contrast, in a year of late ice thinning when the chlorophyll a maximum occurred after spring lake over-turn, a more annually integrated diatom sediment signal was built buy a continuous diatom flux. The contrasting diatom records produced during years of different winter conditions have important implications for diatom based paleoecological reconstructions. Decadal records of sediment trap samples as well as long-term varved sediment records provide further support for the role of late winter and early spring weather conditions in determining sediment diatom assemblages.
NASA Astrophysics Data System (ADS)
Wang, B.; Xu, Y. J.
2016-02-01
A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.
Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian
2015-01-01
Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (<4 mg L-1) within mats. Water trapped within the mucilaginous Phormidium mat matrix had on average 320-fold higher DRP concentrations than bulk river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (<63 μm) was significantly higher at the site with the most extensive proliferations and concentrations of biological available phosphorus were two- to four- fold higher. Collectively these results provide evidence that fine sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491
Bothner, Michael H.; Butman, Bradford; Casso, Michael A.
2010-01-01
During the period August 14-23, 2002, the discharge of total suspended solids (TSS) from the Massachusetts Water Resources Authority sewage-treatment plant ranged from 32 to 132 milligrams per liter, causing the monthly average discharge to exceed the limit specified in the National Pollution Discharge Elimination System permit. Time-series monitoring data collected by the U.S. Geological Survey in western Massachusetts Bay were examined to evaluate changes in environmental conditions during and after this exceedance event. The rate of sediment trapping and the concentrations of near-bottom suspended sediment measured near the outfall in western Massachusetts Bay increased during this period. Because similar increases in sediment-trapping rate were observed in the summers of 2003 and 2004, however, the increase in 2002 cannot be definitively attributed to the increased TSS discharge. Concentrations of copper and silver in trapped sediment collected 10 and 20 days following the 2002 TSS event were elevated compared to those in pre-event samples. Maximum concentrations were less than 50 percent of toxicity guidelines. Photographs of surficial bottom sediments obtained before and after the TSS event do not show sediment accumulation on the sea floor. Concentrations of silver, Clostridium perfringens, and clay in surficial bottom sediments sampled 10 weeks after the discharge event at a depositional site 3 kilometers west of the outfall were unchanged from those in samples obtained before the event. Simulation of the TSS event by using a coupled hydrodynamic-wave-sediment-transport model could enhance understanding of these observations and of the effects of the exceedance on the local marine environment.
NASA Astrophysics Data System (ADS)
Gray, W. R.; Weldeab, S.; Lea, D. W.
2015-12-01
Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.
Landscape change and sediment yield of rivers in the northeastern US during 19th century
NASA Astrophysics Data System (ADS)
Urbanova, T.; Wreschnig, A. J.; Ruffing, C. M.; McCormack, S. M.; Bain, D. J.; Hermans, C. M.
2009-12-01
During the 19th century, population growth, dam construction, and large scale forest clearing, particularly for agriculture, was followed by a massive migration to urban and industrialized centers. This led to the high degree of rural land abandonment in many parts of northeastern US. Such significant changes in land use and demography impacted sediment loading and delivery to receiving waters. The objective of this study is to assess the historical changes in sediment loading to waters as a result of land use change and related change in soil erosion, dam dynamics and sediment trapping. Various methods for assessing soil erosion, sediment yield and dam influence will be used and compared (RUSLE, BQART model, dam trapping efficiency). We expect to see 1) an accelerated erosion rates and sediment yield following forest clearing and intensification of agriculture and 2) decreased sediment delivery to estuaries with an increasing number of dams. While sediment management often focuses on fluvial corridors, our understanding of historic upland dynamics remains rudimentary. This study aims to highlight and explain the interconnectedness of the landscape-hydro system; with a particular emphasis on anthropogenic forcing and influences.
Aragonite pteropod flux to the Somali Basin, NW Arabian Sea
NASA Astrophysics Data System (ADS)
Singh, A. D.; Conan, S. M.-H.
2008-05-01
Aragonite export fluxes of pteropods (>250, 150-250 and 125-150 μm) in the Somali Basin were estimated using a 9-month time-series sediment trap (MST9-E) from June 1992 to February 1993. The trap with 23 time-series sediment collectors placed at 1032 m water depth collected settling particles over a total of 249 days. Pteropods showed large seasonal variations in both the numerical and mass fluxes (>125 μm) with their maxima at the end of the SW Monsoon during September and early October. It was also observed that records of pteropod fluxes varied in different size fractions. The average numerical flux and mass flux of pteropods (>125 μm) from the 9-month record of the sediment trap was estimated to be about 1830 shells m -2 d -1 and 18 mg m -2 d -1, respectively. We estimate that about 22.5% of the total CaCO 3 in the Somali Basin was contributed by aragonitic pteropods (>125 μm).
NASA Astrophysics Data System (ADS)
Khim, B. K.; Shim, J.; Yoon, H. I.; Kang, Y. C.; Jang, Y. H.
2007-06-01
Particulate suspended material was recovered over a 23-month period using two sediment traps deployed in shallow water (˜30 m deep) off the King Sejong Station located in Marian Cove of King George Island, West Antarctica. Variability in seasonal flux and geochemical characteristics of the sediment particles highlights seasonal patterns of sedimentation of both lithogenic (terrigenous) and biogenic particles in the coastal glaciomarine environment. All components including total mass flux, lithogenic particle flux and biogenic particle flux show distinct seasonal variation, with high recovery rates during the summer and low rates under winter fast ice. The major contributor to total mass flux is the lithogenic component, comprising from 88% during the summer months (about 21 g m -2 d -1) up to 97% during the winter season (about 2 g m -2 d -1). The lithogenic particle flux depends mainly on the amount of snow-melt (snow accumulation) delivered into the coastal region as well as on the resuspension of sedimentary materials. These fine-grained lithogenic particles are silt-to-clay sized, composed mostly of clay minerals weathered on King George Island. Biogenic particle flux is also seasonal. Winter flux is ˜0.2 g m -2 d -1, whereas the summer contribution increases more than tenfold, up to 2.6 g m -2 d -1. Different biogenic flux between the two summers indicates inter-annual variability to the spring-summer phytoplankton bloom. The maximum of lithogenic particle flux occurs over a short period of time, and follows the peak of biogenic particle flux, which lasts longer. The seasonal warming and sea-ice retreat result in change in seawater nutrient status and subsequent ice-edge phytoplankton production. Meanwhile, the meltwater input to Marian Cove from the coastal drainage in January to February plays a major role in transporting lithogenic particles into the shallow water environment, although the tidal currents may be the main agents of resuspension in this kind of sheltered bay.
NASA Astrophysics Data System (ADS)
Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji
2017-05-01
Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.
1974-08-01
employ methods which differ from those employed by them in the past. This action was commenced on June 19, 1973. There followed certain proceedings in...Sedimentation in Navigation Pools - Trap Efficiency Method 66 67 Textures of Samples from Pools 4, 5, 5A,and 6 67 68- Textures of Samples from Tributary...island and surrounding waters located in the Mississippi River as aforesaid. 15. The method of disposal is such that the spoil material is placed on
Dynamics of particle export on the Northwest Atlantic margin
NASA Astrophysics Data System (ADS)
Hwang, Jeomshik; Manganini, Steven J.; Montluçon, Daniel B.; Eglinton, Timothy I.
2009-10-01
The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.
Multi-timescale sediment responses across a human impacted river-estuary system
NASA Astrophysics Data System (ADS)
Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng
2018-05-01
Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.
Sediment source fingerprinting to quantify fine sediment sources in forested catchments, Chile.
NASA Astrophysics Data System (ADS)
Schuller, P.; Walling, D. E.; Iroume, A.; Castillo, A.; Quilodran, C.
2012-04-01
A study to improve the understanding of the primary sediment sources and transfer pathways in catchments disturbed following forest plantation harvesting is being undertaken in South-Central Chile. The study focuses on two sets of paired experimental catchments (treatment and control), located about 400 km apart, with similar soil type but contrasting mean annual rainfall: Nacimiento (1,200 mm year-1) and Los Ulmos (2,500 mm year-1). Sediment source fingerprinting techniques are being used to document the primary fine sediment sources. In each catchment, three potential sediment sources were defined: clearcut slopes (Z1), forest roads (Z2) and the stream channel (Z3). In each catchment, multiple representative composite samples of the different potential source materials were collected before harvest operations from the upper 1 cm layer in Z1, Z2, and from the channel bank and bed for Z3. A time-integrating trap sampler installed in the discharge monitoring station constructed at the outlet of each catchment has been used to collect samples of the suspended sediment and these have been supplemented by sediment collected from the weir pools. Total suspended sediment load is been quantified in the monitoring stations using discharge records and integrated water sampling. Caesium-137 (137Cs), excess lead-210 (210Pbex) and other sediment properties are being used as fingerprints. After air-drying, oven-drying at 40°C and disaggregation, both the source material samples and the sediment samples collected in the discharge monitoring stations were sieved through a 63-μm sieve and the <63-μm fractions were used for subsequent analyses. For radionuclide assay, the samples were sealed in Petri dishes and after 4 weeks the mass activity density (activity concentration) of 137Cs and 210Pbex was determined by gamma analysis, using an ORTEC extended range Ge detector of 53% relative efficiency. The 137Cs and 210Pbex activity and organic carbon (Corg) concentration associated with potential source materials and the target sediment show that the two radionuclides used in combination with the Corg property provide effective source fingerprints. Additional work using a mixing model taking account of particle size effects is required to establish the relative contributions of the three sources to the fine sediment loads of the study catchments. This research is supported by the Chilean Government through FONDECYT Project 1090574 and by the IAEA through CRP D1.20.11 (Contract CHI-15531 and Technical Contract 15478) and the RLA 05/051 Project.
Avoiding The Inevitable? Capacity Loss From Reservoir Sedimentation
Gray, John R.; Randle, Timothy J.; Collins, Kent L.
2013-01-01
The inexorable loss of capacity of the nation's reservoirs—sooner or later threatening water supplies for municipal, agricultural, and industrial uses—is but one of a number of deleterious effects wrought by sediment deposition. Trapped sediments can also damage or bury dam outlets, water intakes, and related infrastructure. Downstream effects of sediment capture and retention by reservoirs can include channel and habitat degradation and biotic alterations.
Etheridge, Alexandra B.
2015-12-07
Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.
NASA Astrophysics Data System (ADS)
Buchty-Lemke, Michael; Frings, Roy; Hagemann, Lukas; Lehmkuhl, Frank; Maaß, Anna-Lisa; Schwarzbauer, Jan
2016-04-01
The Wurm River (Lower Rhine Embayment, Germany) is a small stream in a low mountain area near the Dutch-German border that has seen a lot of anthropogenic changes of its morphology since medieval times. Among other influencing factors, water mills, in particular, had an early impact on the sediment dynamics and created sediment traps. Several knickpoints in the long profile may represent the legacy of mill damming - or founded mill building at these spots. The knickpoints may also represent the aftermath of the colliery history. A study site in the upper reaches of the Wurm River features erosion terraces, incised following the demise of a mill dam in the early 20th century. The mill pond most likely collected sediment and additives e.g. used in agricultural and industrial processes. These legacy sediments from behind former mill dams provide information about anthropogenic pollution, particularly for the era of industrialization in the vicinity of the old industrial area of the city of Aachen. Along with the demise of the mill dam and the increased incision tendency, the sediments are also a secondary source for pollution in case of remobilization of contaminated sediments. Two major research questions are addressed. A) Which individual hydrological and geomorphological processes, both upstream and downstream, triggered the incision and the construction of the erosion terraces, which are preserved in the mill pond sediments? Is either the demised mill dam, or subsidence effects, or a combination of both the determining factor? B) Which contaminants are retained in the sediments? Is there a detectable point source for the pollutants or is it a mixture of diffuse anthropogenic (industry, agriculture, traffic, wastewater) and natural origin? To tackle these questions, sedimentological data are combined with geomorphological mapping and evaluation of historical data. A soil profile provides insight into the architecture of the floodplain, which is built of riverbed sediments overlain by stratified fine clastic and organic-rich material, representing the sediment being trapped when the mill dam existed. X-ray fluorescence and grain size analysis are used to determine the depositional process, provenance and chemostratigraphy. Knowledge about the distribution and fate of pollutants in sediments is valuable for river management purposes. Measures within the scope of the EU Water Framework Directive have been implemented at several breaches at the Wurm River, and further ones are planned. Potential risks due to remobilization of polluted alluvial sediments must thereby be taken into account. Furthermore, e.g. dismantling of transverse structures to improve passage for fish might trigger similar erosion processes and affects the sediment continuity.
NASA Astrophysics Data System (ADS)
Lakshmi, B. V., ,, Dr.; Gawali, Mr. Praveen B.; Deenadayalan, K., ,, Dr.; Ramesh, D. S., ,, Prof.
2017-04-01
Rock magnetic and anisotropy of magnetic susceptibility (AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India. B.V.Lakshmi, Praveen B.Gawali, K.Deenadayalan and D.S.Ramesh Indian Institute of Geomagnetism, plot 5, sector 18, Near Kalamboli Highway, New Panvel(W), Navi Mumbai 410218 Combined rock magnetism and anisotropy of magnetic susceptibility (AMS) studies on earthquake induced soft and non-soft sediments from Shillong and Latur, India have thrown up interesting results. The morphology of hysteresis loops, the pattern of isothermal remanent magnetization (IRM) acquisition, and temperature dependence of susceptibility indicate that titano-magnetite/magnetite is the main magnetic carrier in these sediments. We also analyzed the anisotropy of magnetic susceptibility (AMS) of liquefaction features within the seismically active Dauki fault, Shillong Plateau. We discovered that host sediments (non-liquefied), are characterized by an oblate AMS ellipsoid and liquefied sediment are characterized by a triaxial AMS ellipsoid, well grouped maximum susceptibility axis K1 (NNW-SSE trend). Field evidence and AMS analysis indicate that most of these features were emplaced by injection inferred to be due to seismically triggered fluidization. Anisotropy of magnetic susceptibility (AMS) of deformed and undeformed unconsolidated clay samples of Deccan Trap terrain from the 2000-year-old paleoearthquake site of Ther village, Maharashtra, India, was also studied. Such deposits are rare in the compact basaltic terrain because of which the results acquired are very important. The undeformed clay samples exhibit typical sedimentary fabric with an oblate AMS ellipsoid, whereas the deformed samples are tightly grouped in the inferred compression direction, probably effected by an earthquake, exhibiting prolate as well as oblate AMS ellipsoids. Rock magnetic and AMS methodology can help understand the behavior of different sediments to the regional deformational processes active in the Himalayan region, and possibly local deformational activities in the compact Deccan trap region. The accumulating stress and strain direction can be delineated to infer strike of the forces accumulating stresses. These studies can be used to build the chronology of past earthquakes.
NASA Astrophysics Data System (ADS)
Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Schwab, Markus; Brademann, Brian; Dräger, Nadine; Kienel, Ulrike; Pinkerneil, Sylvia; Plessen, Birgit; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim
2017-04-01
The interpretation of environmental and climate records, such as lake sediments, rely on the profound understanding of the proxy sensitivity towards past changes. Monitoring of lake sedimentation, limnological, hydrological and climate parameters are natural experiments combining measurements and observations. In this study, we present monitoring data from Lake Czechowskie (N Poland) for the period 2013-2016. Lake Czechowskie has a surface area of 73 ha and a maximum water depth of 32 m. Sediment has been trapped in a 4-cylinder and an automatic sequential trap installed at 12 and 30 m water depths close to the deepest part of the lake, respectively. Sampling intervals range from 15 (sequential) to 30 days (4 cylinder) days. The sediment has been analyzed for total sediment flux, calcium carbonate and organic matter contents. Continuous water temperature measurements (30 min. intervals) are based on 17 data loggers covering the entire water column (1 m steps from 0-12 m; 5 m steps from 12-32 m). Limnological measurements (e.g. electrical conductivity, dissolved oxygen and pH) have been carried out manually on a monthly routine. Air temperature, precipitation, wind speed and direction are available for the same period from a meteorological station installed at the shore of Lake Czechowskie. Our dataset exhibit seasonal deposition starting with diatom blooms and calcite precipitation in spring after lake stratification. A second deposition peak occurs at the onset of lake mixing in late autumn and winter. This is caused by an initial deposition of planktonic diatoms (mainly Fragilaria spp.) indicating lake productivity, followed by an increase in larger calcite patches (>30 µm) and periphyitic diatoms (mainly Navicula spp.) representing resuspension of littoral sediments. We paired sediment trap data with micro-facies analyses from a sediment core obtained in autumn 2016 covering the same time interval. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA - of the Helmholtz Association, grant number VH-VI-415.
Weekly resolution particulate flux from a sediment trap in the northern Gulf of Mexico, 2008-2012
Richey, Julie N.; Reynolds, Caitlin E.; Tappa, Eric; Thunell, Robert
2014-01-01
The U.S. Geological Survey anchored a sediment trap in the northern Gulf of Mexico to collect time-series data on sediment flux from 2008 to 2012. There are continuous measurements of total mass flux and organic carbon flux (ogC) at 7–14 day resolution from 2008 to 2012. The flux of calcium carbonate (CaCO3), particulate nitrogen (nitro), and biogenic silica (Opal) were also measured from January-December, 2008. The mass flux ranged from 0.01 g m-2day-1 (grams per square meter per day) to 2.50 g m-2day-1, with a mean mass flux of 0.20 g m -2day-1 over the 5-year study period.
Faulting of gas-hydrate-bearing marine sediments - contribution to permeability
Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael
1997-01-01
Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.
Olley, Jon; Brooks, Andrew; Spencer, John; Pietsch, Timothy; Borombovits, Daniel
2013-10-01
The Laura-Normanby River (catchment area: 24,350 km(2)), which drains into Princess Charlotte Bay, has been identified in previous studies as the third largest contributor of sediment to the Great Barrier Reef World Heritage Area. These catchment scale modelling studies also identified surface soil erosion as supplying >80% of the sediment. Here we use activity concentrations of the fallout radionuclides (137)Cs and (210)Pbex to test the hypothesis that surface soil erosion dominates the supply of fine (<10 μm) sediment in the river systems draining into Princess Charlotte Bay. Our results contradict these previous studies, and are consistent with channel and gully erosion being the dominant source of fine sediment in this catchment. The hypothesis that surface soil erosion dominates the supply of fine sediment to Princess Charlotte Bay is rejected. River sediment samples were collected using both time-integrated samplers and sediment drape deposits. We show that there is no detectable difference in (137)Cs and (210)Pbex activity concentrations between samples collected using these two methods. Two methods were also used to collect samples to characterise (137)Cs and (210)Pbex concentrations in sediment derived from surface soil erosion; sampling of surface-wash deposits and deployment of surface runoff traps that collected samples during rain events. While there was no difference in the (137)Cs activity concentrations for samples collected using these two methods, (210)Pbex activity concentrations were significantly higher in the samples collected using the runoff traps. The higher (210)Pbex concentrations are shown to be correlated with loss-on-ignition (r(2) = 0.79) and therefore are likely to be related to higher organic concentrations in the runoff trap samples. As a result of these differences we use a three end member mixing model (channel/gully, hillslope surface-wash and hillslope runoff traps) to determine the relative contribution from surface soil erosion. Probability distributions for (137)Cs and (210)Pbex concentrations were determined for each of the end members, with these distributions then used to estimate the surface soil contribution to each of the collected river sediment samples. The mean estimate of contribution of surface derived sediment for all river samples (n = 70) is 16 ± 2%. This study reinforces the importance of testing model predictions before they are used to target investment in remedial action and adds to the body of evidence that the primary source of sediment delivered to tropical river systems is derived from subsoil erosion. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fischer, G.; Karstensen, J.; Romero, O.; Baumann, K.-H.; Donner, B.; Hefter, J.; Mollenhauer, G.; Iversen, M.; Fiedler, B.; Monteiro, I.; Körtzinger, A.
2015-11-01
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks were observed in February-March 2010 when the eddy approached CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated to that of organic carbon in particular in the deep trap samples, suggesting a close coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/mesopelagic signatures to the bathypelagic traps. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some production under nutrient (nitrate) limitation in the upper few tens of meters above the zone of suboxia might have occurred in the beginning of 2010. The δ15N record showed a decrease from January to March 2010 while the organic carbon and N fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive but nutrient depletion and/or a high availability of dust as ballast mineral for organic-rich aggregates might have contributed to the elevated fluxes during the eddy passage. Remineralization of sinking organic-rich particles could have contributed to the formation of a suboxic zone at shallow depth. Although the eddy has been formed in the African coastal area in summer 2009, no indication of coastal flux signatures were found in the sediment traps, suggesting an alteration of the eddy since its formation. This confirms the assumption that suboxia developed within the eddy en-route. Screening of the biomarker fractions for the occurrence of ladderane fatty acids that could indicate the presence of anammox (anaeobic ammonia oxidation) bacteria, and isorenieratene derivatives, indicative for the presence of green sulfur bacteria and, thus for photic zone suboxia/anoxia was negative. This could indicate that suboxic conditions in the eddy had recently developed and the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped considerably in February 2010, mainly due to reduced contribution of shallow dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to stop diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage.
Sediment Trapping Pathways and Mechanisms through the Mekong Tidal River and Subaqueous Delta
2013-09-30
strive to understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and...subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis is that sediment... Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and coastal banks may be shorelines lined with vegetation ( mangroves at the
Best management practices for erosion control from bladed skid trails
Charles R. Wade; W. Michael Aust; M. Chad Bolding; William A. Lakel III
2012-01-01
Sediment from forest operations is primarily associated with roads and skid trails. We evaluated five skid trail closure treatments applied to bladed skid trails in the Virginia Piedmont. Closure treatments were Waterbars, Seed, Mulch, Pine slash, and Hardwood slash. Sediment traps were used to collect monthly sediment samples for one year. The Mulch, Pine slash, and...
William Lakel; Wallace Aust; M. Aust; Chad Bolding; C. Dolloff; Patrick Keyser; Robert Feldt
2010-01-01
Recommended widths for streamside management zones (SMZs) for sediment protection vary. The objectives of this study were to compare the effects of SMZ widths and thinning levels on sediment moving through SMZs. Four SMZ treatments were installed within 16 harvested watersheds where intermittent streams graded into small perennial streams. Sites were clearcut,...
The three-dimensional (3D) finite difference model Environmental Fluid Dynamics Code (EFDC) was used to simulate the hydrodynamics and sediment transport in a partially stratified micro-tidal estuary. The estuary modeled consisted of a 16-km reach of the St. Johns River, Florida,...
NASA Astrophysics Data System (ADS)
Chen, D.; Zhang, Y.
2008-12-01
The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.
Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline
Zabawa, C.F.; Kerhin, R.T.; Bayley, S.
1981-01-01
A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.
Interactions of frazil and anchor ice with sedimentary particles in a flume
Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.
1993-01-01
Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.
Sediment and organic carbon transport in Cap de Creus canyon, Gulf of Lions (France)
NASA Astrophysics Data System (ADS)
Tesi, T.; Puig, P.; Palanques, A.; Goni, M. A.; Miserocchi, S.; Langone, L.
2009-04-01
The off-shelf transport of particles in continental margins is responsible for much of the flux of organic matter (OM)and nutrients towards deep-sea ecosystems, playing a key role in the global oceanic biogeochemical cycles. Off-shelf sediment transport mechanism have been well described for many continental margins being triggered by a series of physical forcings such as tides, storms, internal waves, floods, earthquakes, as well as the combination of some of these processes, while topographic structures such as submarine canyons act as preferential sedimentary conduits toward deep ocean. However, the composition of the material supplied to the deep ocean during these events is still poorly understood since most studies have only investigated the magnitude of the down-slope fluxes or limited their analysis to the major bulk components. A special opportunity to characterize the biogeochemical composition of the off-shelf export in the Gulf of Lions (GoL) margin was provided during the winter 2004-2005, when an exceptional dense water cascading event occurred. Dense water overflowing off the shelf in the GoL has been recently recognized as one of the main process affecting particulate shelf-to-slope exchange in northwestern Mediterranean Sea. During the 2004-2005 cascading event, moored instruments were deployed at the Cap de Creus (CdC) canyon head to monitor the physical parameters and to characterize the temporal variability of the exported material. Post-cascading sediment cores were collected along the sediment dispersal system to trace the sediment transport pathway. In this study we developed a source tracing method using elemental compositions, alkaline CuO reaction products (lignin, cutin, lipids, hydroxy benzenes, proteins, lipids, and polysaccharides products), biogenic silica, carbon stable isotope composition, radiocarbon measurements, and grain size as a fingerprint for each sample. The aforementioned analyses were carried out on both sediment trap and sediment samples to obtain a homogeneous data matrix. The dynamic mixture of OM sources and shelf sediments was then analyzed using multivariate statistics. A quantitative mixing model was used to assess the relative contribution of allochthonous and autochthonous OM and to identify the relationship between sediment export from the shelf and down-slope particulate fluxes (sediment provenance).
Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.
1997-01-01
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.
Funderburg, D.E.
1977-01-01
The U.S. Geological Survey, in cooperation with the U.S. Soil Conservation Service, began an investigation of sedimentation of Bernalillo Floodwater Retarding Reservoir No. 1 (Piedra Lisa Arroyo) near Bernalillo, New Mexico in 1956. This investigation was part of a nationwide investigation of the trap efficiency of detention reservoirs. Reservoirs No. 1 is normally a dry reservoir and runoff from the 10.6 sq km drainage area generally occurs from high-intensity summer thundershowers. The mesa area of the drainage basin was treated to prevent erosion and gullying and to retard rapid runoff of rainfall. The land treatment consisted of pits, terraces, seeding, and restricted grazing. The total outflow recorded for the period of record (July 19, 1956 to June 30, 1974) was 133 acre-feet, yielding 1 ,439 tons of sediment. Over 99 percent of the coarse sediments and a high percentage of the silts and clays were deposited in the reservoir before reaching the outflow pipe. The determined trap efficiency of Reservoir No. 1 was 96 percent for the period of record. (Woordard-USGS)
Evaluation of Uncertainty in Bedload Transport Estimates in a Southern Appalachian Stream
NASA Astrophysics Data System (ADS)
Schwartz, J. S.
2016-12-01
Capacity estimates of bed-material transport rates are generally derived using empirical formulae as a function of bed material gradation and composition, and hydraulic shear stress. Various field techniques may be used to sample and characterize bed material gradation; some techniques assume the existing bar material is representative of that in transport. Other methods use Helly-Smith samplers, pit traps, and net traps. Very few large, complete cross-section pit traps fully instrumented to collect continuous bedload transport have been constructed, and none in the eastern United States to our knowledge. A fully-instrumented bedload collection station was constructed on Little Turkey Creek (LTC) in Farragut, Tennessee. The aim of the research was to characterize bed material transport during stormflows for a southern Appalachian stream in the Ridge and Valley Providence. Bedload transport data from LTC was compared with classic datasets including Oak Creek (Oregon), East Fork River (Wyoming), and Clearwater and Snake rivers (Idaho). In addition, data were evaluated to assess the potential accuracy of both calibrated and uncalibrated bedload transport models using bedload transport data from LTC. Uncalibrated models were assessed with regard to their estimated range of uncertainty according to Monte Carlo uncertainty analyses. Models calibrated using reference shear values determined according to station measurements are evaluated in the same manner. Finally, models calibrated using the small scale, short-term, low rate bedload sampling techniques promoted in the literature for the spreadsheet based Bedload Assessment in Gravel-bedded Streams (BAGS) software for determining the reference shear stress are compared to results of both uncalibrated models and those calibrated using data from the bedload station. This research supports design and construction of dynamically stable alluvial stream restoration projects where stream channels are largely dependent on reach-scale hydraulic geometry that provides a long-term balance between bed-material sediment supply and transport capacity.
NASA Astrophysics Data System (ADS)
Wei, Xiaoyan; Kumar, Mohit; Schuttelaars, Henk M.
2018-02-01
To investigate the dominant sediment transport and trapping mechanisms, a semi-analytical three-dimensional model is developed resolving the dynamic effects of salt intrusion on sediment in well-mixed estuaries in morphodynamic equilibrium. As a study case, a schematized estuary with a converging width and a channel-shoal structure representative for the Delaware estuary is considered. When neglecting Coriolis effects, sediment downstream of the estuarine turbidity maximum (ETM) is imported into the estuary through the deeper channel and exported over the shoals. Within the ETM region, sediment is transported seaward through the deeper channel and transported landward over the shoals. The largest contribution to the cross-sectionally integrated seaward residual sediment transport is attributed to the advection of tidally averaged sediment concentrations by river-induced flow and tidal return flow. This contribution is mainly balanced by the residual landward sediment transport due to temporal correlations between the suspended sediment concentrations and velocities at the M2 tidal frequency. The M2 sediment concentration mainly results from spatial settling lag effects and asymmetric bed shear stresses due to interactions of M2 bottom velocities and the internally generated M4 tidal velocities, as well as the salinity-induced residual currents. Residual advection of tidally averaged sediment concentrations also plays an important role in the landward sediment transport. Including Coriolis effects hardly changes the cross-sectionally integrated sediment balance, but results in a landward (seaward) sediment transport on the right (left) side of the estuary looking seaward, consistent with observations from literature. The sediment transport/trapping mechanisms change significantly when varying the settling velocity and river discharge.
Amanda L. Fox; Dean E. Eisenhauer; Michael G. Dosskey
2005-01-01
Vegetated filters (buffers) are used to intercept overland runoff and reduce sediment and other contaminant loads to streams (Dosskey, 2001). Filters function by reducing runoff velocity and volume, thus enhancing sedimentation and infiltration. lnfiltration is the main mechanism for soluble contaminant removal, but it also plays a role in suspended particle removal....
Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma
Bednar, Gene A.; Waldrep, Thomas E.
1973-01-01
A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.
Pollutant load removal efficiency of pervious pavements: is clogging an issue?
Kadurupokune, N; Jayasuriya, N
2009-01-01
Pervious pavements in car parks and driveways reduce the peak runoff rate and the quantity of runoff discharged into urban drains as well as improve the stormwater quality by trapping the sediments in the infiltrated water. The paper focuses on presenting results from the laboratory tests carried out to evaluate water quality improvements and effects of long-term decrease in infiltration rates with time due to sediments trapping (clogging) within the pavement pores. Clogging was not found to be a major factor affecting pervious pavement performance after simulating 17 years of stormwater quality samples.
Use of waste cellophane in the control of sediment : Final report.
DOT National Transportation Integrated Search
1978-01-01
Based on laboratory flume tests, it was concluded that waste cellophane could be used effectively for trapping and filtering waterborne sediment. It was also priced competitively and, like straw and burlap, it was found to be biodegradable in a soil ...
Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.
2018-01-01
Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.
NASA Astrophysics Data System (ADS)
Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.
2016-12-01
Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.
Gulf of Mexico Climate-History Calibration Study
Spear, Jessica W.; Poore, Richard Z.
2010-01-01
Reliable instrumental records of past climate are available for about the last 150 years only. To supplement the instrumental record, reconstructions of past climate are made from natural recorders such as trees, ice, corals, and microfossils preserved in sediments. These proxy records provide information on the rate and magnitude of past climate variability, factors that are critical to distinguishing between natural and human-induced climate change in the present. However, the value of proxy records is heavily dependent on calibration between the chemistry of the natural recorder and of the modern environmental conditions. The Gulf of Mexico Climate and Environmental History Project is currently undertaking a climate-history calibration study with material collected from an automated sediment trap. The primary focus of the calibration study is to provide a better calibration of low-latitude environmental conditions and shell chemistry of calcareous microfossils, such as planktic Foraminifera.
Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.
A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean
NASA Astrophysics Data System (ADS)
Danovaro, R.; Della Croce, N.; Dell'Anno, A.; Pusceddu, A.
2003-12-01
The Atacama trench, the deepest ecosystem of the southern Pacific Ocean (ca. 8000 m depth) was investigated during the Atacama Trench International Expedition. Sediments, collected at three bathyal stations (1040-1355 m depth) and at a hadal site (7800 m) were analyzed for organic matter quantity and biochemical composition (in terms of phytopigments, proteins, carbohydrates and lipids), bacterial abundance, biomass and carbon production and extracellular enzymatic activities. Functional chlorophyll- a (18.0±0.10 mg m -2), phytodetritus (322.2 mg m -2) and labile organic carbon (16.9±4.3 g C m -2) deposited on surface sediments at hadal depth (7800 m) reached concentrations similar to those encountered in highly productive shallow coastal areas. High values of bacterial C production and aminopeptidase activity were also measured (at in situ temperature and 1 atm). The chemical analyses of the Atacama hadal sediments indicate that this trench behaves as a deep oceanic trap for organic material. We hypothesize that, despite the extreme physical conditions, benthic microbial processes might be accelerated as a result of the organic enrichment.
Coking-coal deposits of the western United States
Berryhill, Louise R.; Averitt, Paul
1951-01-01
Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)
Organic Matter Polymerization by Disulfide Bonding Near the Chemocline in Cariaco Basin
NASA Astrophysics Data System (ADS)
Raven, M. R.; Adkins, J. F.; Sessions, A. L.
2013-12-01
The preservation of organic carbon in sediments as kerogen is an essential pathway in the global carbon cycle, but the chemical reactions involved in kerogen formation remain poorly understood. Previous researchers have found that many sediments deposited under euxinic conditions contain sulfur-bearing non-polar lipids as well as disulfide bonds among lipid and carbohydrate monomers. It remains unclear, however, when during organic matter decomposition and diagenesis these different sulfur-bearing structures form, and how different environmental conditions affect the extent of organic matter sulfurization. We investigate organic sulfurization processes armed with a technique for measuring the sulfur-isotopic compositions of individual organosulfur compounds by coupled gas chromatography - inductively coupled plasma mass spectrometry. Organic compounds were extracted from sediments and water column sediment traps from Cariaco Basin, a euxinic basin in the Caribbean Sea. We measured the sulfur-isotopic compositions of both non-polar lipids and of derivatized disulfide-bound compounds from eight sediment trap profiles and a six-meter-long sediment core. In Cariaco Basin, lipid sulfurization processes appear to begin near the chemocline and continue in sediments on timescales of thousands of years. Slow diagenetic sulfurization in sediments produces lipid monomers with sulfur atoms in ring structures that are 34S-depleted relative to coexisting dissolved sulfide. Lipid monomers become progressively enriched in 34S over time, indicating ongoing formation coinciding with an increase in the amount of total sulfur in bulk kerogen. One of the most abundant monomers observed in Cariaco sediments, a phytol-related thiophene, is also produced intermittently near the chemocline. Phytol thiophene δ34S values in sediment traps are similar to those observed in shallow Cariaco sediments except during occasional ';enrichment events,' when phytol thiophene δ34S values increase to as high as -2‰. In contrast, disulfide bonding appears to affect both lipids and carbohydrates and occur exclusively at the chemocline on very short timescales of days to weeks. In both the water column and the sediments, the sulfur isotope ratios of disulfide-bound monosaccharides are dramatically 34S-enriched relative to dissolved sulfide at the chemocline (~-30‰), ranging from -11‰ to +9‰. Disulfide-bound phytenes, which likely derive from the same precursor compounds as phytol thiophenes, were observed in only a few of the sediment trap extracts and have sulfur-isotopic compositions near +4.5‰. These 34S-enriched compositions indicate that the source of sulfur for rapid disulfide bonding may be an intermediate sulfur species that is not in isotopic equilibrium with dissolved sulfide. Significantly, δ34S values for disulfide-bound compounds in Cariaco Basin appear to be set at the chemocline and stable during subsequent diagenesis, opening the possibility that organic sulfur isotopes may archive information about environmental conditions at the chemocline in low-maturity sediments. Disulfide bonding does not, however, appear to be the major process driving slower diagenetic sulfur incorporation into kerogen. Compound-specific organic sulfur isotope analysis makes it possible to distinguish the products of different lipid and carbohydrate sulfurization processes for the first time.
NASA Astrophysics Data System (ADS)
Delaney, Ian; Gindraux, Saskia; Weidmann, Yvo; Bauder, Andreas
2017-04-01
Glaciated catchments are known to expel great amounts of sediment, particularly during periods of climatic perturbation. Sediment in these catchments either originates subglacially, where it is eroded by pressurized water below the glacier, or from periglacial areas, which are commonly comprised of easily erodible, unconsolidated material no longer buttressed and held in place by ice. To better forecast sediment dynamics and erosion rates in to the future, contributions of subglacial and periglacial sediment must be quantified, and the processes controlling erosion in these respective sources described. To determine the relative contributions of these sources, we examine the Griesgletscher catchment in the Swiss Alps. Its rather simplistic geometry, as well as, the presence of a proglacial reservoir that serves as a sediment trap, provides an unusually constrained environment to directly measure sediment sources and sinks in the catchment. Subtraction of three digital elevation models created from structure-from-motion and photogrammetric techniques over a one year period, from October 2015 to October 2016, were used to measured sediment flux from the proglacial area. Furthermore, comparison of bathymetries collected from the proglacial reservoir in fall of 2015 and 2016 determined total sediment flux from the entire catchment over this 10 km2time period. Data from a turbidity meter, installed below the reservoir outflow, suggest that negligible amounts of sediment leave the reservoir. Thus comparison of reservoir bathymetry and sediment fluxes from the proglacial area give estimates of the relative contribution of proglacial and subglacial sediment erosion to total catchment sedimentation. Analysis of this data suggest that while the proglacial area experiences a greater erosion rate, it is likely more sediment originates subglacially. As proglacial areas are expected to grow in area and partially stabilize, and glacial areas are predicted to shrink and possibly loose erosive capacity, these competing processes must be reconciled.
Effect of hydrograph in the morphology of a channel with lateral cavities
NASA Astrophysics Data System (ADS)
Juez, Carmelo; Thalmann, Matthias; Schleiss, Anton J.; Franca, Mário J.
2017-04-01
Local widening or river bank revitalization in a channelized river is a common practice in restoration projects. The lateral embayments built for this purpose in the river banks can be partially filled up by fine sediments that are conveyed in suspension within the main reach. The embayments areas may present a suitable combination for riparian habitats if they have a limited amount of fine sediments trapped providing morphology diversity and areas with low and high velocities. However, the design of these lateral cavities may be compromised by fluctuations in the water discharge: an increase in the flow discharge may re-mobilize the sediments destroying the shelters for the aquatic biota and causing effects that may hamper the ecology of the main channel and downstream reaches (sudden increase of the sediment concentration and turbidity for instance). Aiming at a better design of lateral embayments with the purpose of restoration projects, systematic experimental investigations were carried out with five hydrographs with different unsteadiness, for five different normalized geometries of the cavities installed in the banks of a laboratory open channel. Water depth, sediment samples, sediment concentration and area covered by the settled sediments are analyzed in each experiment. Sediments patterns evolution within the cavities prior, during and after the increase in discharge were correlated with the unsteadiness character of each hydrograph. It is shown that cavities with larger aspect ratios (defined as the width of the cavity over the length of the cavity) provides a sustainable shelter for aquatic biota. Quantified analysis reveal that the recovery of the sediments patterns before the flushing is different depending on the geometry and unsteadiness. Finally, total mass trapped inside the cavities at the end of the experiments is analyzed. It is shown that the trapping efficiency of the macro-roughness elements with variable discharge is a clear function of the geometry of the lateral cavities and of the shallowness of the flow. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement 607394-SEDITRANS. The experiments were funded by FOEN (Federal Office for the Environment, Switzerland).
NASA Astrophysics Data System (ADS)
Rey, Freddy; Louis, Séverine; Burylo, Mélanie; Raymond, Pierre
2013-04-01
On marly eroded terrains of the French Southern Alps, many researches are undertaken in order to better understand the role of vegetation and bioengineering works on erosion and sedimentation control. To this view, the eroded marly gullies of the French Southern Alps are an experimental design where an original French strategy of rehabilitation, developed by scientists from Irstea (ex-Cemagref), has been tested since 2002. It is comprised of the construction of bioengineering works, namely of "brush layers and brush mats of cuttings on deadwood microdams", and implements the use of willow cuttings (Salix purpurea and S. incana). The main objective of these works is to sustainably trap and retain marly sediment, by checking their performance (growth and survival of the cuttings, sediment trapping) in a mountainous and Mediterranean climate. In Canada, several private companies have developed their own knowledge and expertise in the conception and building of bioengineering works for erosion control, especially in the context of hilly and mountainous landscapes and climates. Therefore, it was decided to use the competence and expertise of Terra Erosion Control Ltd., a Canadian company, in the French torrential Mediterranean climate. Ten modalities were tested, the aims being to develop and/or to modify existing designs of current techniques, to experiment with other live cuttings (Populus nigra) and rooted species (Alnus spp. and Hippophae spp.), to evaluate and compare the potential use of different organic soil amendments in order to increase beneficial soil microorganisms and finally, to evaluate the potential use of specialized tools and equipment in order to increase the efficiency of the installation for vegetation establishment and sediment trapping, while decreasing the implementation costs. The experimental design was installed in March 2011 and the early observations in Spring 2012 showed that: 1/ most of the cuttings and the plants resisted to burial and to drought conditions; in particular, the structures using wooden boards instead of locally harvested logs appeared to be holding up well; 2/ designs of current techniques with vertical cuttings were better for resprouting and sediment trapping; 3/ 0.8m live cuttings of Populus nigra may represent an alternative to Salix spp., but resprout appeared lower; 4/ it was not possible to evaluate the performance of rooted species (Alnus spp. and Hippophae spp.); therefore more experiment is needed, especially with longer plants; 5/ organic soil amendments may increase vegetation development (BRF > fertilizer > compost > mixes). By comparing the results with similar sites used as benchmarks, installed since 2002, further observations in the spring of 2013 will allow us to evaluate the efficiency of the different modalities to improve vegetation establishment and sediment trapping.
Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.
2014-01-01
Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984
Marčiulionienė, D; Mažeika, J; Lukšienė, B; Jefanova, O; Mikalauskienė, R; Paškauskas, R
2015-07-01
Based on γ-ray emitting artificial radionuclide spectrometric measurements, an assessment of areal and vertical distribution of (137)Cs, (60)Co and (54)Mn activity concentrations in bottom sediments of Lake Drūkšiai was performed. Samples of bottom sediments from seven monitoring stations within the cooling basin were collected in 1988-1996 and 2007-2010 (in July-August). For radionuclide areal distribution analysis, samples from the surface 0-5 cm layer were used. Multi sample cores sliced 2 cm, 3 cm or 5 cm thick were used to study the vertical distribution of radionuclides. The lowest (137)Cs activity concentrations were obtained for two stations that were situated close to channels with radionuclide discharges, but with sediments that had a significantly smaller fraction of organic matter related to finest particles and consequently smaller radionuclide retention potential. The (137)Cs activity concentration was distributed quite evenly in the bottom sediments from other investigated monitoring stations. The highest (137)Cs activity concentrations in the bottom sediments of Lake Drūkšiai were measured in the period of 1988-1989; in 1990, the (137)Cs activity concentrations slightly decreased and they varied insignificantly over the investigation period. The obtained (238)Pu/(239,240)Pu activity ratio values in the bottom sediments of Lake Drūkšiai represented radioactive pollution with plutonium from nuclear weapon tests. Higher (60)Co and (54)Mn activity concentrations were observed in the monitoring stations that were close to the impact zones of the technical water outlet channel and industrial rain drainage system channel. (60)Co and (54)Mn activity concentrations in the bottom sediments of Lake Drūkšiai significantly decreased when operations at both INPP reactor units were stopped. The vertical distribution of radionuclides in bottom sediments revealed complicated sedimentation features, which may have been affected by a number of natural and anthropogenic factors resulting in mixing, resuspension and remobilization of sediments and radionuclides. The associated with particles (137)Cs flux was 129 Bq/(m(2) year). The (137)Cs transfer rate from water into bottom sediments was 14.3 year(-1) (or, the removal time was 25 days). The Kd value for (137)Cs in situ estimated from trap material was 80 m(3)/kg. The associated with particles (60)Co flux was 21 Bq/(m(2) year), when (60)Co activity concentration in sediment trap particles was 15.7 ± 5 Bq/kg. (60)Co activity concentration in soluble form was less than the minimum detectable activity (MDA = 1.3 Bq/m(3)). Then, the conservatively derived Kd value for (60)Co was >90 m(3)/kg. Copyright © 2015 Elsevier Ltd. All rights reserved.
Szkokan-Emilson, E J; Wesolek, B E; Gunn, J M
2011-09-01
The importance of allochthonous carbon to the productivity of stream ecosystems in temperate ecozones is well understood, but this relationship is less established in oligotrophic lakes. The nearshore littoral zones, at the interface of terrestrial and aquatic systems, are areas where the influence of terrestrial subsidies is likely greatest. We investigated the response of nearshore communities to variation in the quantity and composition of allochthonous materials, determined the landscape characteristics that regulate the variation of this subsidy, and explored the potential for terrestrial restoration practices to influence the export of organic matter to lakes. Stepwise multiple regressions revealed that diversity of nearshore macroinvertebrate families increased with the amount of fine particulate organic matter (FPOM) captured in sediment traps. The quantity of FPOM (g) increased with forest cover, and the relative amount of FPOM (percentage of total particulate material) in the traps increased with surface area of wetland in the catchments. These models suggest that terrestrially derived subsidies are important in smelter-impacted watersheds, and that the restoration of forests and wetlands will speed the return of nearshore consumer community diversity in industrially damaged lakes.
The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies
USDA-ARS?s Scientific Manuscript database
Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70...
NASA Astrophysics Data System (ADS)
Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud
2014-05-01
In the Southern French Alps under a mountainous and Mediterranean climate, bioengineering structures installed in gully bottoms of highly weathered marly catchments aim at trapping a part of the eroded materials in order to reduce suspended sediment in the water system. They are made of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are used as they proved their efficiency to survive in such environment and efficiently trap marly sediment, but only in gullies with surface area less than 1 ha. Extrapolating their use to larger gullies could allow increasing the impact of such operations for reduction of sediment yield at the scale of large catchments. To this view, bioengineering structures have been built in spring and autumn 2010 in large eroded marly gullies with surface areas between 1 and 3 ha, in the Roubines and Fontaugier catchments (Southern Alps, France). 165 bioengineering structures (150 in spring and 15 in autumn) were built in 10 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), the results revealed that 2/3 of the structures well resisted to damages due to concentrated flows. However, they were generally filled of sediment very rapidly, thus killing a large number of cuttings, particularly in the brush mats in gullies with surface area comprised between 2 and 3 ha. Therefore it has been proved that cuttings survival is possible in gullies with surface area less than 3 ha. In the French Southern Alps, bioengineering strategies have been improved by adding gullies of 1 to 3 ha in restoration plans. For gullies with surface area superior to 2 ha, it is recommended to first install the brush layers, and 1 to 2 years later the brush mats.
Interaction of rising frazil with suspended particles: tank experiments with applications to nature
Reimnitz, E.; Clayton, J.R.; Kempema, E.W.; Payne, J.R.; Weber, W.S.
1993-01-01
Widespread occurrence of sediment-laden (turbid) sea ice and high concentrations of diatoms and foraminifers in ice have recently been reported from both polar regions. Many possible mechanisms of particle entrainment into ice have been postulated, among which scavenging by rising frazil ice and nucleation or adhesion of ice onto suspended particles appear to be the most likely ones. No reliable experimental data on the mechanisms, however, are available. Because of the importance of turbid ice for sediment transport, tanks for laboratory-scale experiments were constructed, in which frazil crystals produced at the base were monitored rising through water column laden with various types of particulate matter, including plankton. Observations made in salt water are reported here. Over a distance of 1.5 m, frazil < 1 mm in diameter grew to crystals or flocs several cm in diameter, rising at average velocities of 2 to 3 cm/s. Rise velocities were a function of frazil size, but varied greatly due to interactions of ice particles of different size and velocity and the resulting turbulence. Sand-size particles could be either trapped permanently by rising frazil, or were temporarily supported and again released. With live plankton, a several-fold enrichment of ice occurred, suggesting that their irregular shapes or appendages were caught by ice flocs. Diatom- and foram tests were also relatively effectively trapped. The concentration of silt- and clay-size terrigenous detritus in frazil tended to increase relative to the water. We found no preferential sorting by ice in this size range. Various kinds of evidence showed that ice does not nucleate onto foreign particles, and has no adhesive properties. Foreign material resided in the interstices of crystal aggregates, and particles denser than water could be released by agitation, suggesting that scavenging is a mechanical process. With rising frazil, the settling of particulate matter therefore is either retarded or reversed, resulting in a net upward sediment flux and a sediment-laden ice cover from this process of suspension freezing. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, D.M.; Gibeaut, J.C.; Short, J.W.
Following the Exxon Valdez oil spill, sediment traps were deployed in nearshore subtidal areas of Prince William Sound, Alaska (PWS) to monitor particulate chemistry and mineralogy. Complemented by benthic sediment chemistry and core sample stratigraphy at the study sites, results were compared to historical trends and data from other Exxon Valdez studies. These results clearly indicate the transport of oil-laden sediments from oiled shorelines to adjacent subtidal sediments. The composition of hydrocarbons adsorbed to settling particulates at sites adjacent to oiled shorelines matched the PAH pattern of weathered Exxon Valdez crude oil.
Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.
Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf
2016-11-10
The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.
Albuquerque, Ana Luiza S; Belém, André L; Zuluaga, Francisco J B; Cordeiro, Livia G M; Mendoza, Ursula; Knoppers, Bastiaan A; Gurgel, Marcio H C; Meyers, Philip A; Capilla, Ramsés
2014-05-14
Physical and biogeochemical processes in continental shelves act synergistically in both transporting and transforming suspended material, and ocean dynamics control the dispersion of particles by the coastal zone and their subsequent mixing and dilution within the shelf area constrained by oceanic boundary currents, followed by their gradual settling in a complex sedimentary scenario. One of these regions is the Cabo Frio Upwelling System located in a significantly productive area of Southeastern Brazil, under the control of the nutrient-poor western boundary Brazil Current but also with a wind-driven coastal upwelling zone, inducing cold-water intrusions of South Atlantic Central Water on the shelf. To understand these synergic interactions among physical and biogeochemical processes in the Cabo Frio shelf, a series of four experiments with a total of 98 discrete samples using sediment traps was performed from November 2010 to March 2012, located on the 145 m isobath on the edge of the continental shelf. The results showed that lateral transport might be relevant in some cases, especially in deep layers, although no clear seasonal cycle was detected. Two main physical-geochemical coupling scenarios were identified: singular downwelling events that can enhance particles fluxes and are potentially related to the Brazil Current oscillations; and events of significant fluxes related to the intrusion of the 18°C isotherm in the euphotic zone. The particulate matter settling in the Cabo Frio shelf area seems to belong to multiple marine and terrestrial sources, in which both Paraiba do Sul River and Guanabara Bay could be potential land-sources, although the particulate material might subject intense transformation (diagenesis) during its trajectory to the shelf edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less
Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...
2015-05-19
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less
The utilisation of engineered invert traps in the management of near bed solids in sewer networks.
Ashley, R M; Tait, S J; Stovin, V R; Burrows, R; Framer, A; Buxton, A P; Blackwood, D J; Saul, A J; Blanksby, J R
2003-01-01
Large existing sewers are considerable assets which wastewater utilities will require to operate for the foreseeable future to maintain health and the quality of life in cities. Despite their existence for more than a century there is surprisingly little guidance available to manage these systems to minimise problems associated with in-sewer solids. A joint study has been undertaken in the UK, to refine and utilise new knowledge gained from field data, laboratory results and Computational Fluid Dynamics (CFD) simulations to devise cost beneficial engineering tools for the application of small invert traps to localise the deposition of sediments in sewers at accessible points for collection. New guidance has been produced for trap siting and this has been linked to a risk-cost-effectiveness assessment procedure to enable system operators to approach in-sewer sediment management pro-actively rather than reactively as currently happens.
Full implementation of a distributed hydrological model based on check dam trapped sediment volumes
NASA Astrophysics Data System (ADS)
Bussi, Gianbattista; Francés, Félix
2014-05-01
Lack of hydrometeorological data is one of the most compelling limitations to the implementation of distributed environmental models. Mediterranean catchments, in particular, are characterised by high spatial variability of meteorological phenomena and soil characteristics, which may prevents from transferring model calibrations from a fully gauged catchment to a totally o partially ungauged one. For this reason, new sources of data are required in order to extend the use of distributed models to non-monitored or low-monitored areas. An important source of information regarding the hydrological and sediment cycle is represented by sediment deposits accumulated at the bottom of reservoirs. Since the 60s, reservoir sedimentation volumes were used as proxy data for the estimation of inter-annual total sediment yield rates, or, in more recent years, as a reference measure of the sediment transport for sediment model calibration and validation. Nevertheless, the possibility of using such data for constraining the calibration of a hydrological model has not been exhaustively investigated so far. In this study, the use of nine check dam reservoir sedimentation volumes for hydrological and sedimentological model calibration and spatio-temporal validation was examined. Check dams are common structures in Mediterranean areas, and are a potential source of spatially distributed information regarding both hydrological and sediment cycle. In this case-study, the TETIS hydrological and sediment model was implemented in a medium-size Mediterranean catchment (Rambla del Poyo, Spain) by taking advantage of sediment deposits accumulated behind the check dams located in the catchment headwaters. Reservoir trap efficiency was taken into account by coupling the TETIS model with a pond trap efficiency model. The model was calibrated by adjusting some of its parameters in order to reproduce the total sediment volume accumulated behind a check dam. Then, the model was spatially validated by obtaining the simulated sedimentation volume at the other eight check dams and comparing it to the observed sedimentation volumes. Lastly, the simulated water discharge at the catchment outlet was compared with observed water discharge records in order to check the hydrological sub-model behaviour. Model results provided highly valuable information concerning the spatial distribution of soil erosion and sediment transport. Spatial validation of the sediment sub-model provided very good results at seven check dams out of nine. This study shows that check dams can be a useful tool also for constraining hydrological model calibration, as model results agree with water discharge observations. In fact, the hydrological model validation at a downstream water flow gauge obtained a Nash-Sutcliffe efficiency of 0.8. This technique is applicable to all catchments with presence of check dams, and only requires rainfall and temperature data and soil characteristics maps.
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...
Transport of bedload sediment and channel morphology of a southeast Alaska stream.
Margaret A. Estep; Robert L. Beschta
1985-01-01
During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...
Sediment flux measurements at the oceanic boundary of a large estuary
NASA Astrophysics Data System (ADS)
Downing-Kunz, M.; Work, P. A.; Schoellhamer, D. H.
2016-12-01
Sediment is an important resource for San Francisco Bay (SFB), in the context of wetland restoration projects, dredging operations, ecosystem health, and contaminant transport and fate. One way to help manage sediment (and sediment-associated contaminants) in SFB is by developing a quantitative sediment budget to account for sources, sinks, and storage of sediment. Previously developed sediment budgets have shown that sediment exchange at the oceanic boundary of SFB (Golden Gate) is the most poorly understood element of the SFB sediment budget, owing to logistical challenges that inhibit routine field observations. In this study, field observations of suspended-sediment flux at the Golden Gate were conducted on ebb and flood tides during two distinct periods of the 2016 hydrograph: peak (4,000 m3/s) and low (200 m3/s) rates of freshwater inflow to SFB. Suspended-sediment flux was estimated from a boat-mounted acoustic Doppler current profiler that provided measurements of discharge and acoustic backscatter (ABS) at a cross-section near the oceanic boundary. Discrete water samples were analyzed for suspended-sediment concentration (SSC) and related to ABS. During the period of peak freshwater inflow, maximum discharge observed at Golden Gate reached 130,000 m3/s during ebb tide; observed SSC (20-40 mg/L) were lower than expected compared to upstream conditions. A network of five SSC monitoring stations extending 5-80 km upstream demonstrated a watershed-sourced sediment pulse (SSC reaching 200 mg/L) moved downstream to within 20 km of the oceanic boundary, an observation corroborated by concurrent satellite imagery. This finding, combined with lower SSC near the Golden Gate, suggests the sediment pulse was trapped within SFB, indicating a freshwater inflow threshold exceeding 4,000 m3/s for sediment export at the oceanic boundary. Such trapping could provide additional sediment to benefit wetland restoration efforts.
NASA Astrophysics Data System (ADS)
Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir
2015-04-01
The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the improved performance of transducer at higher than over 3 atm pressure. Keywords: ultrasonic , flow , particle , Sediment , Cumulative mass
Ferrer, I.; Heine, C.E.; Thurman, E.M.
2004-01-01
Diphenhydramine (Benadryl) is a popular over-the-counter antihistaminic medication used for the treatment of allergies. After consumption, excretion, and subsequent discharge from wastewater treatment plants, it is possible that diphenhydramine will be found in environmental sediments due to its hydrophobicity (log P = 3.27). This work describes a methodology for the first unequivocal determination of diphenhydramine bound to environmental sediments. The drug is removed from the sediments by accelerated solvent extraction and then analyzed by liquid chromatography with a time-of-flight mass spectrometer and an ion trap mass spectrometer. This combination of techniques provided unequivocal identification and confirmation of diphenhydramine in two sediment samples. The accurate mass measurements of the protonated molecules were m/z 256.1703 and 256.1696 compared to the calculated mass of m/z 256.1701, resulting in errors of 0.8 and 2.3 ppm. This mass accuracy was sufficient to verify the elemental composition of diphenhydramine in each sample. Furthermore, accurate mass measurements of the primary fragment ion were obtained. This work is the first application of time-of-flight mass spectrometry for the identification of diphenhydramine and shows the accumulation of an over-the-counter medication in aquatic sediments at five different locations.
Distribution of pollutants from a new paper plant in southern Lake Champlain, Vermont and New York
Mason, D.L.; Folger, D.W.; Haupt, R.S.; McGirr, R.R.; Hoyt, W.H.
1977-01-01
From November of 1973 to May of 1974, 15 arrays of sediment traps were placed along 33 km of southern Lake Champlain to sample the distribution of effluent from a large paper plant located on the western shore which had commenced operation in 1971. In the arrays located near the effluent diffuser pipeline as much as 2.3 cm of sediment accumulated, whereas elsewhere in the lake less than 1 cm accumulated. In the area of accelerated accumulation, sediments contained high concentrations of several components used in or derived from paper manufacturing. Values for kaolinite, expressed as the ratio of kaolinite to chlorite, for example, were as high as 1.4, anatase (TiO2) concentrations were as high as 0.8%, organic carbon 8.7%, and phosphorus 254 ??g/g; all were more abundant than in sediments collected in traps to the south or north. In surficial bottom sediments collected near each array organic carbon and phosphorus were also higher (4.2% and 127 ??g/g respectively) near the diffuser than elsewhere. Thus, the new plant after three years of production measurably affected the composition of suspended sediment and surficial bottom sediment despite the construction and use of extensive facilities to reduce the flow of pollutants to the lake. ?? 1977 Springer-Verlag New York Inc.
Juracek, Kyle E.
2011-01-01
Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.
NASA Astrophysics Data System (ADS)
Romero, Oscar E.; Fischer, Gerhard
2017-12-01
A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid layers. We argue that a significant amount of valves, BSi and TOC produced in waters overlying the Banc d'Arguin and the Mauritanian shelf is effectively transported to the CBeu trap in intermediate waters at the outer Mauritanian slope. The impact of the intermediate and bottom-near nepheloid layers-driven transport in the transfer of valves and bulk particulates and its potential contribution to the export of biogenic materials from the shelf and uppermost slope might play a significant role in hemipelagial fluxes off Mauritania.
NASA Astrophysics Data System (ADS)
Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.
2016-11-01
Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.
Schrader, David L.; Holmes, Robert R.
2000-01-01
The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the tributaries to the Fox Chain of Lakes. With the exception of Grass Lake Outlet at Lotus Woods, most of the bed sediments are sand size or larger. The bed material at the streamflow-gaging station at Grass Lake Outlet at Lotus Woods contains 31.5 percent silt- and clay-sized particles. The bed material at Nippersink Creek near Spring Grove also has higher silt content (10.7 percent) than the bed material found in the Fox River at Wilmot (2.1 percent) and Johnsburg (1.3 percent). Additionally, water velocities at 80 cross sections in the Fox Chain of Lakes were collected to provide sample circulation patterns during two separate 1-week periods, and discharge was measured at 18 locations in the lakes. These data were collected to be available for use in hydrodynamic models.
Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.
Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments
NASA Astrophysics Data System (ADS)
Bölscher, Jens; Schulte, Achim; Terytze, Konstantin
2017-04-01
The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), selected nitro-compounds, selected organotin compounds and polychlorinated biphenyls (PCB, AOX and EOX) in the sediment and suspended matter. The physico-chemical conditions of the samples were examined as well. The research into soluble and mobilizable sediment-bounded pollutants is based upon a 24 hour batch test. Certain toxic effects of the sediments were determined by different ecotoxicological test methods. In addition, the thresholds of the sediment quality guidelines published by de Deckere et al. (2011) were used to assess the solid contents. Because of the high concentrations of the pollutants, the consensus 2 values are used as thresholds in this study. The results provide important details on the spatial and temporal distribution of sedimentation and contamination. All sediments of the analysed cores and traps remain highly contaminated with heavy metals and organic compounds. The results indicate the resuspension, transport and accumulation of these sediments and show at least that toxic effects for the benthic taxa are expected. This kind of approach is necessary to create a basis for a remediation programme for, and a risk assessment of, polluted water bodies.
Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106
Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.
1994-01-01
Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.
Injectivity Evaluation for Offshore CO 2 Sequestration in Marine Sediments
Dai, Zhenxue; Zhang, Ye; Stauffer, Philip; ...
2017-08-18
Global and regional climate change caused by greenhouse gases emissions has stimulated interest in developing various technologies (such as carbon dioxide (CO 2) geologic sequestration in brine reservoirs) to reduce the concentrations of CO 2 in the atmosphere. Our study develops a statistical framework to identify gravitational CO 2 trapping processes and to quantitatively evaluate both CO 2 injectivity (or storage capacity) and leakage potential from marine sediments which exhibit heterogeneous permeability and variable thicknesses. Here, we focus on sets of geostatistically-based heterogeneous models populated with fluid flow parameters from several reservoir sites in the U.S. Gulf of Mexico (GOM).more » A computationally efficient uncertainty quantification study was conducted with results suggesting that permeability heterogeneity and anisotropy, seawater depth, and sediment thickness can all significantly impact CO 2 flow and trapping. Large permeability/porosity heterogeneity can enhance gravitational, capillary, and dissolution trapping, which acts to deter CO 2 upward migration and subsequent leakage onto the seafloor. When log permeability variance is 5, self-sealing with heterogeneity-enhanced gravitation trapping can be achieved even when water depth is 1.2 km. This extends the previously identified self-sealing condition that water depth be greater than 2.7 km. Our results have yielded valuable insight into the conditions under which safe storage of CO 2 can be achieved in offshore environments. The developed statistical framework is general and can be adapted to study other offshore sites worldwide.« less
Injectivity Evaluation for Offshore CO 2 Sequestration in Marine Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Zhenxue; Zhang, Ye; Stauffer, Philip
Global and regional climate change caused by greenhouse gases emissions has stimulated interest in developing various technologies (such as carbon dioxide (CO 2) geologic sequestration in brine reservoirs) to reduce the concentrations of CO 2 in the atmosphere. Our study develops a statistical framework to identify gravitational CO 2 trapping processes and to quantitatively evaluate both CO 2 injectivity (or storage capacity) and leakage potential from marine sediments which exhibit heterogeneous permeability and variable thicknesses. Here, we focus on sets of geostatistically-based heterogeneous models populated with fluid flow parameters from several reservoir sites in the U.S. Gulf of Mexico (GOM).more » A computationally efficient uncertainty quantification study was conducted with results suggesting that permeability heterogeneity and anisotropy, seawater depth, and sediment thickness can all significantly impact CO 2 flow and trapping. Large permeability/porosity heterogeneity can enhance gravitational, capillary, and dissolution trapping, which acts to deter CO 2 upward migration and subsequent leakage onto the seafloor. When log permeability variance is 5, self-sealing with heterogeneity-enhanced gravitation trapping can be achieved even when water depth is 1.2 km. This extends the previously identified self-sealing condition that water depth be greater than 2.7 km. Our results have yielded valuable insight into the conditions under which safe storage of CO 2 can be achieved in offshore environments. The developed statistical framework is general and can be adapted to study other offshore sites worldwide.« less
Van Metre, Peter C.; Reutter, David C.
1995-01-01
Only limited suspended-sediment data were available. Four sites had daily sediment-discharge records for three or more water years (October 1 to September 30) between 1974 and 1985. An additional three sites had periodic measurements of suspended-sediment concentrations. There are differences in concentrations and yields among sites; however, the limited amount of data precludes developing statistical or cause-and-effect relations with environmental factors such as land use, soil, and geology. Data are sufficient, and the relation is pronounced enough, to indicate trapping of suspended sediment by Livingston Reservoir.
Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.
2016-05-26
On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.
Kroes, Daniel; Schenk, Edward R.; Noe, Gregory; Benthem, Adam J.
2015-01-01
The 2011 Mississippi River Flood resulted in the opening of the Morganza Spillway for the second time since its construction in 1954 releasing 7.6 km3 of water through agricultural and forested lands in the Morganza Floodway and into the Atchafalaya River Basin. This volume, released over 54 days, represented 5.5% of the Mississippi River (M.R.) discharge and 14% of the total discharge through the Atchafalaya River Basin (A.R.B.) during the Spillway operation and 1.1% of the M.R. and 3.3% of the A.R.B. 2011 water year discharge. During the release, 1.03 teragrams (Tg) of sediment was deposited on the Morganza Forebay and Floodway and 0.26 Tg was eroded from behind the Spillway structure. The majority of deposition (86 %) occurred in the Forebay (upstream of the structure) and within 4 km downstream of the Spillway structure with minor deposition on the rest of the Floodway. There was a net deposition of 26 × 10−4 Tg of N and 5.36 × 10−4 Tg of P, during the diversion, that was equivalent to 0.17% N and 0.33% P of the 2011 annual M.R. load. Median deposited sediment particle size at the start of the Forebay was 13 μm and decreased to 2 μm 15 km downstream of the Spillway structure. Minimal accretion was found greater than 4 km downstream of the structure suggesting the potential for greater sediment and nutrient trapping in the Floodway. However, because of the large areas involved, substantial sediment mass was deposited even at distances greater than 30 km. Sediment and nutrient deposition on the Morganza Floodway was limited because suspended sediment was quickly deposited along the flowpath and not refreshed by incremental water exchanges between the Atchafalaya River (A.R.) and the Floodway. Sediment and nutrient trapping could have been greater and more evenly distributed if additional locations of hydraulic input from and outputs to the A.R. (connectivity) were added.
NASA Astrophysics Data System (ADS)
Warnock, Jonathan P.; Scherer, Reed P.
2015-07-01
Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing Fragilariopsis kerguelensis, suggesting that results are applicable to a broad spectrum of diatoms typically preserved in the sediments.
Method of making nanostructured glass-ceramic waste forms
Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.
2012-12-18
A method of rendering hazardous materials less dangerous comprising trapping the hazardous material in nanopores of a nanoporous composite material, reacting the trapped hazardous material to render it less volatile/soluble, sealing the trapped hazardous material, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.
Brune, Gunnar M.
1953-01-01
Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio
Where is the Earth's missing xenon?
NASA Technical Reports Server (NTRS)
Wacker, J. F.; Anders, E.
1984-01-01
Highly volatile elements (e.g., T1, Pb, B, C1, Br, etc.) in the Earth's crust occur in C-chondrite proportions, and so do the atmospheric noble gases Ne, Ar, and Kr. This has led to the suggestion that the Earth acquired its volatiles from a late veneer of C-chondrite-like material. A glaring exception is Xe, which is depleted approx. 20x relative to Ne, Ar, Kr. Three explanations are discussed for the depletion: (1) Xe is preferentially trapped in the crust, either in sediments (3) or in Antarctic ice (4); (2) the Earth's noble gas inventory is non-chondritic (5); or (3) Xe is incompletely outgassed from the mantle.
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A
Griffiths, P.G.; Hereford, R.; Webb, R.H.
2006-01-01
Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Ramon, Batalla; Araújo José C., De; da Costa Alexandre, Cunha; Till, Francke; Andreas, Güntner; Jose, Lopez-Tarazon; George, Mamede; Müller Eva, N.
2010-05-01
About one-third of the global population currently lives in countries which experience conditions of water stress. Such regions, often located within dryland ecosystems, are exposed to the hazard that the available freshwater resources fail to meet the water demand in domestic, agricultural and industrial sectors. Water availability often relies on the retention of river runoff in artificial lakes and reservoirs. However, the water storage in reservoirs is often adversely affected by sedimentation as a result of soil erosion. Erosion of the land surface due to natural or anthropogenic reasons and deposition of the eroded material in reservoirs threatens the reliability of reservoirs as a source of water supply. To sustain future water supply, a quantification of the sediment export from large dryland catchments becomes indispensable. A comprehensive modelling framework for water and sediment transport at the meso-scale, with a particular focus on dryland regions, has been developed from a German, Catalonian and Brazilian team during the last decade. It includes novel components for erosion from erosion-prone hillslopes, sediment transfer, retention and re-mobilization through the river system and sediment distribution, trapping and transfer through a reservoir. The parameterisation for pilot catchments is based on field monitoring campaigns of water and sediment fluxes, the analysis of land-use patterns, and the identification of the sediment hot spots through remotely sensed data. We present results of erosion-prone landscape units, the role of sediment transport in the river system, and the sedimentation processes in reservoirs. The modelling studies demonstrate the wide range of environmental problems where the model may be employed to develop sustainable management strategies for land and water resources. Evaluation of scenarios (land use, climate change) combined with an integrated assessment of options in reservoir management opens the opportunity to address relevant questions of water management including problems of water yield, reservoir capacity and economical comparison of on-/ offsite sediment management.
Using rare earth elements to constrain particulate organic carbon flux in the East China Sea.
Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jianfang; Burdige, David J
2016-09-27
Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas.
Using rare earth elements to constrain particulate organic carbon flux in the East China Sea
Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J.
2016-01-01
Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82–94% using the OC mixing model, and 30–80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas. PMID:27670426
A giant sediment trap in the Florida keys
Shinn, E.A.; Reich, C.D.; Locker, S.D.; Hine, A.C.
1996-01-01
Aerial photography, high-resolution seismic profiling, coring and jet probing have revealed a large sediment-filled sinkhole in the Key Largo National Marine Sanctuary off Key Largo, Florida. The 600-m-diameter feature straddles coral reef and carbonate-sand facies and contains >55 m of marine lime sand and aragonite mud. Bulk 14C age determinations of mud from a 30- m sediment core indicate infilling rates exceeding 20 m/ka between 3 and 5.6 ka. The total thickness and nature of the sediment near the base of the sinkhole are not known.
NASA Astrophysics Data System (ADS)
Fischer, Gerhard; Karstensen, Johannes; Romero, Oscar; Baumann, Karl-Heinz; Donner, Barbara; Hefter, Jens; Mollenhauer, Gesine; Iversen, Morten; Fiedler, Björn; Monteiro, Ivanice; Körtzinger, Arne
2016-06-01
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m-2 d-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ˜ 15 and 13.3 mg m-2 d-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The δ15N record showed a decrease from 5.21 to 3.11 ‰ from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from ˜ 52 to 21.4 mg m-2 d-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.
Sedimentation in mountain streams: A review of methods of measurement
Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin
2013-01-01
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.
2009-01-01
Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.
Improvement of a free software tool for the assessment of sediment connectivity
NASA Astrophysics Data System (ADS)
Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco
2015-04-01
Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of morphometric indexes, such as the Melton ruggedness number, commonly used for discriminating debris-flow catchments from bedload catchments. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188,31-41. doi:10.1016/j.geomorph.2012.05.007
NASA Astrophysics Data System (ADS)
Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.
2016-04-01
Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The present study is supported by FOEN (Federal Office for the Environment, Switzerland).
NASA Astrophysics Data System (ADS)
Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.
2015-12-01
The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.
Belowground dynamics in mangrove ecosystems
McKee, Karen L.
2004-01-01
Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.
Langland, Michael J.
2009-01-01
The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.
Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain
Langhans, Simone D.; Tockner, Klement
2014-01-01
Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280
Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.
Langhans, Simone D; Tockner, Klement
2014-01-01
Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.
Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments
NASA Astrophysics Data System (ADS)
Phillips, J. M.; Russell, M. A.; Walling, D. E.
2000-10-01
Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, D. K., E-mail: pandey@ncaor.org; Pandey, A.; Rajan, S.
2011-03-15
The Deccan basalts in central western India are believed to occupy large onshore-offshore area. Using geophysical and geological observations, onshore sub-surface structural information has been widely reported. On the contrary, information about offshore structural variations has been inadequate due to scarcity of marine geophysical data and lack of onshore-offshore lithological correlations. Till date, merely a few geophysical studies are reported that gauge about the offshore extent of Deccan Traps and the Mesozoic sediments (pre-Deccan). To fill this gap in knowledge, in this article, we present new geophysical evidences to demonstrate offshore continuation of the Deccan volcanics and the Mesozoic sediments.more » The offshore multi-channel seismic and onshore-offshore lithological correlations presented here confirm that the Mesozoic sedimentary column in this region is overlain by 0.2-1.2-km-thick basaltic cover. Two separate phases of Mesozoic sedimentation, having very distinctive physical and lithological characteristics, are observed between overlying basaltic rocks and underlying Precambrian basement. Using onshore-offshore seismic and borehole data this study provides new insight into the extent of the Deccan basalts and the sub-basalt structures. This study brings out a much clearer picture than that was hitherto available about the offshore continuation of the Deccan Traps and the Mesozoic sediments of Kachchh. Further, its implications in identifying long-term storage of anthropogenic CO{sub 2} within sub-basalt targets are discussed. The carbon sequestration potential has been explored through the geological assessment in terms of the thickness of the strata as well as lithology.« less
NASA Astrophysics Data System (ADS)
Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie
2017-02-01
Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.
NASA Astrophysics Data System (ADS)
Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.
2016-02-01
The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.
NASA Astrophysics Data System (ADS)
Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur
2006-03-01
The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crecelius, E.A.; Fortman, T.J.; Kiesser, S.L.
1989-07-01
Concentrations of Cu, Pb, Zn, PAH's, TBT and FC bacteria were measured in surface sediment, sediment-trap, and water-column samples at two marinas in Puget Sound during summer of 1988. Levels of contaminants inside the marinas were compared with levels outside. TBT had greatest elevation in marina sediments compared to reference sediments. Few of sediments exceeded Puget Sound AET sediment quality values but most did exceed PSDDA screening levels for in-water disposal of dredged sediment. All marinas estimated to contribute less than one percent of total mass loading of Cu, Pb and Zn to main basin of Puget Sound. Contribution ofmore » TBT may be much more significant if antifouling paints are the major source for Puget Sound.« less
Modeling Sediment Detention Ponds Using Reactor Theory and Advection-Diffusion Concepts
NASA Astrophysics Data System (ADS)
Wilson, Bruce N.; Barfield, Billy J.
1985-04-01
An algorithm is presented to model the sedimentation process in detention ponds. This algorithm is based on a mass balance for an infinitesimal layer that couples reactor theory concepts with advection-diffusion processes. Reactor theory concepts are used to (1) determine residence time of sediment particles and to (2) mix influent sediment with previously stored flow. Advection-diffusion processes are used to model the (1) settling characteristics of sediment and the (2) vertical diffusion of sediment due to turbulence. Predicted results of the model are compared to those observed on two pilot scale ponds for a total of 12 runs. The average percent error between predicted and observed trap efficiency was 5.2%. Overall, the observed sedimentology values were predicted with reasonable accuracy.
Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica
NASA Astrophysics Data System (ADS)
Gardner, Wilford D.; Richardson, Mary Jo; Smith, Walker O.
The standing stock of particulate organic carbon (POC) was determined during five cruises in the Ross Sea in 1996 and 1997 and compared with primary production of carbon measured in short-term 14C-incubations and the flux of organic carbon collected in moored sediment traps. POC concentrations were estimated from transmissometer profiles that were calibrated with discrete POC bottle samples from each cruise. The mean standing stock of POC integrated to a depth of 100 m and averaged along a 330 km transect at 76.5°S in mid-October (early spring) was only 240 mmol C m -2, but more than doubled to 560 mmol C m -2 10 days later. By mid-January (summer) the standing stock had increased by an order of magnitude to ˜5300 mmol C m -2, but dropped to 3500 mmol C m -2 one week later. By late April (autumn), the standing stock was only 200 mmol C m -2. The following spring the standing stock increased from 700 mmol C m -2 in late November to 2200 mmol C m -2 in early December. Despite the high standing stock in the photic zone in summer, 1997, little POC was collected in the moored sediment traps until late summer (February-March) when the traps showed an increase in POC and silica flux. A three-fold increase in POC flux occurred in autumn (March-April) dominated by pteropods, but the standing stock of POC in the photic zone at that time was very low. Light-scattering sensor data suggest that, although present in all seasons, aggregates were most abundant in autumn and were distributed throughout the water column. These aggregates may have temporarily stored POC and provided food support for a pteropod population that died and settled into the traps in March-April. Still, the trap POC flux was only 5% of the peak standing stock. Resuspension and lateral advection of recently settled organic matter from a nearby topographic high may explain the larger flux measured in the deep sediment traps, a flux that continued into winter.
NASA Astrophysics Data System (ADS)
Schmidt, Sabine; Howa, Hélène; Diallo, Amy; Martín, Jacobo; Cremer, Michel; Duros, Pauline; Fontanier, Christophe; Deflandre, Bruno; Metzger, Edouard; Mulder, Thierry
2014-06-01
The Cap-Ferret Canyon (CFC), a major morphologic feature of the eastern margin of the Bay of Biscay, occupies a deep structural depression that opens about 60 km southwest of the Gironde Estuary. Detailed depth profiles of the particle-reactive radionuclides 234Th and 210Pb in interface sediments were used to characterise the present sedimentation (bioturbation, sediment mass accumulation, and focusing) in the CFC region. Two bathymetric transects were sampled along the CFC axis and the southern adjacent margin. Particle fluxes were recorded from the nearby Landes Plateau by means of sediment traps in 2006 and 2007. This dataset provides a new and comprehensive view of particulate matter transfer in the Cap-Ferret Canyon region, through a direct comparison of the canyon with the adjacent southern margin. Radionuclide profiles (234Th and 210Pb) and mass fluxes demonstrate that significant particle dynamics occur on the SE Aquitanian margin in comparison with nearby margins. The results also suggest show three distinct areas in terms of sedimentary activity. In the upper canyon (<500 m), there is little net sediment accumulation, suggesting a by-pass area. Sediment focusing is apparent at the middle canyon (500-1500 m), that therefore acts as a depocenter for particles from the shelf and the upper canyon. The lower canyon (>2000 m) can be considered inactive at annual or decadal scales. In contrast with the slow and continuous accumulation of relatively fresh material that characterises the middle canyon, the lower canyon receives pulses of sediment via gravity flows on longer time scales. At decadal scale, the CFC can be considered as a relatively quiescent canyon. The disconnection of the CFC from major sources of sediment delivery seems to limit its efficiency in particle transfer from coastal areas to the adjacent ocean basin.
Kristopher R. Brown; W. Michael Aust; Kevin J. McGuire
2015-01-01
Reopening of abandoned legacy roads is common in forest operations and represents a reduced cost in comparison to new road construction. However, legacy roads may have lower road standards and require additional best management practice (BMP) implementation upon reopening to protect water quality. Silt fences and elevation measurements of trapped sediment were used to...
Sediment removal by prairie filter strips in row-cropped ephemeral watersheds
Matthew J. Helmers; Xiaobo Zhou; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer; Richard M. Cruse
2012-01-01
Twelve small watersheds in central Iowa were used to evaluate the eff ectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips)...
Flow pathways and sediment trapping in a field-scale vegetative filter
M. J. Helmers; D. E. Eisenhauer; Mike G. Dosskey; T. G. Franti; J. M. Brothers; M. C. McCullough
2005-01-01
Vegetative filters (VF) are a best management practive installed in many areas to control sediment movement to water bodies. It is commonly assumed that runoff proceeds perpendicularly across a VF as sheet flow. However, there is little research information on natural pathways of water movement and performance of field-scale VF. The objectives of this study were: (1)...
The geomorphic influences of beaver dams and failures of beaver dams
NASA Astrophysics Data System (ADS)
Butler, David R.; Malanson, George P.
2005-10-01
Uncounted millions of beaver ponds and dams existed in North America prior to European contact and colonization. These ponds acted as sediment traps that contained tens to hundreds of billions of cubic meters of sediment that would otherwise have passed through the fluvial system. Removal of beavers by overtrapping in the 16th-19th centuries severely reduced their number and the number of ponds and dams. Dam removal altered the fluvial landscape of North America, inducing sediment evacuation and entrenchment in concert with widespread reduction in the wetlands environments. Partial recovery of beaver populations in the 20th century has allowed reoccupation of the entirety of the pre-contact range, but at densities of only one-tenth the numbers. Nevertheless, modern beaver ponds also trap large volumes of sediment in the high hundred millions to low billions of cubic meters range. Failure of beaver dams is a more common phenomenon than often assumed in the literature. During the past 20 years, numerous cases of dam failure have been documented that resulted in outburst floods. These floods have been responsible for 13 deaths and numerous injuries, including significant impacts on railway lines.
NASA Astrophysics Data System (ADS)
Zierholz, C.; Prosser, I. P.; Fogarty, P. J.; Rustomji, P.
2001-06-01
Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km 2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands. Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km 2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.
Yamada, Mihoko; Takada, Hideshige; Toyoda, Keita; Yoshida, Akihiro; Shibata, Akira; Nomura, Hideaki; Wada, Minoru; Nishimura, Masahiko; Okamoto, Ken; Ohwada, Kouichi
2003-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are one of the components found in oil and are of interest because some are toxic. We studied the environmental fate of PAHs and the effects of chemical dispersants using experimental 500 l mesocosm tanks that mimic natural ecosystems. The tanks were filled with seawater spiked with the water-soluble fraction of heavy residual oil. Water samples and settling particles in the tanks were collected periodically and 38 PAH compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Low molecular weight (LMW) PAHs with less than three benzene rings disappeared rapidly, mostly within 2 days. On the other hand, high molecular weight (HMW) PAHs with more than four benzene rings remained in the water column for a longer time, up to 9 days. Also, significant portions (10-94%) of HMW PAHs settled to the bottom and were caught in the sediment trap. The addition of chemical dispersant accelerated dissolution and biodegradation of PAHs, especially HMW PAHs. The dispersant amplified the amounts of PAHs found in the water column. The amplification was the greater for the more hydrophobic PAHs, with an enrichment factor of up to six times. The increased PAHs resulting from dispersant use overwhelmed the normal degradation and, as a result, higher concentrations of PAHs were observed in water column throughout the experimental period. We conclude that the addition of the dispersant could increase the concentration of water column PAHs and thus increase the exposure and potential toxicity for organisms in the natural environment. By making more hydrocarbon material available to the water column, the application of dispersant reduced the settling of PAHs. For the tank with dispersant, only 6% of chrysene initially introduced was detected in the sediment trap whereas 70% was found in the trap in the tank without dispersant.
CO2 Capillary-Trapping Processes in Deep Saline Aquifers
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.
2014-05-01
The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.
NASA Technical Reports Server (NTRS)
Barrington, A. E.; Caruso, A. J.
1970-01-01
Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.
Puget Sound sediment-trap data: 1980-1985. Data report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulson, A.J.; Baker, E.T.; Feely, R.A.
1991-12-01
In 1979, scientists at the Pacific Marine Environmental Laboratory began investigating the sources, transformation, transport and fate of pollutants in Puget Sound and its watershed under Sec. 202 of the Marine Protection, Research and Sanctuaries Act of 1971 (P.L. 92-532) which called in part for '...a comprehensive and continuing program of research with respect to the possible long range effects of pollution, overfishing, and man-induced changes of ocean ecosystems...' The effort was called the Long-Range Effects Research Program (L-RERP) after language in the Act and was later called the PMEL Marine Environmental Quality Program. The Long-Range Effect Research Program consistedmore » of (1) sampling dissolved and particulate constituents in the water column by bottle sampling, (2) sampling settling particles by sediment trap and (3) sampling sediments by grab, box, gravity and Kasten corers. In the Data Report, a variety of data from particles collected in 104 traps deployed on 34 moorings in open waters between 1980 and 1985 are presented. The text of the data report begins with the sampling and analytical methods with the accompanying quality control/quality assurance data. The text of the data sections are a summary of the available data and published literature in which the data is interpreted along with a catalogue of the data available in the Appendix (on microfiche located in the back pocket of the data report).« less
Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream
NASA Astrophysics Data System (ADS)
Eaton, B. C.; Hassan, M. A.; Davidson, S. L.
2012-12-01
In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive physical habitats than efforts using LW pieces that are free to move, interact, and form LW jams.
NASA Astrophysics Data System (ADS)
Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet
2016-04-01
The scarcity of long-term hydrological data is a barrier to reliably determining the likelihood of floods becoming more frequent and/or intense in a warmer world. Lakes and their sediments are increasingly being used to reconstruct long-term, highly-resolved datasets of past floods but the ultimate goal, generating quantitative palaeohydrological data to augment flood frequency analyses, is a persistent challenge. To this end, ascertaining the autogenic and allogenic processes influencing the character and preservation potential of palaeoflood laminations and determining the minimum discharge at which a sedimentary imprint will be deposited in a particular system are two key precursors. Some success has been achieved at lakes containing annually-laminated sequences or where event layers exhibit well-defined lithological contacts. Many non-alpine and non-polar lakes, especially those in temperate regions, are instead characterised by visually-homogeneous, organic-rich sediments from which discrete flood laminations are difficult to discriminate. Working at Brotherswater, a small upland lake in northwest England, we have successfully demonstrated an approach to obtain flood frequency and magnitude data from this type of lake system by integrating a 16 month sediment trap deployment (CE 2013-2014) with the recent (CE 1962 - 2014) depositional record. The geochemical composition and end-member modelling of the trap data shed light on the seasonal variation in background sedimentation dynamics, specifically enhanced sediment supply during winter, spring diatom blooms and heightened summer productivity, which alter the signature of coarse-grained deposition in response to higher flows. Having pinpointed the characteristic flood end-member, comparison of the short-core palaeoflood reconstruction to local river discharge data was able to reveal the hydrological thresholds of this system: flood magnitudes calculated to have a four year recurrence interval are preserved in delta-proximal sediments but the central basin was less sensitive, declining to nine years. These results have been further contextualised through comparison with the sedimentological signature of a recent extreme flood captured by sediment traps and in short cores extracted immediately post-event. On the 5-6 December Storm Desmond delivered unprecedented rainfall and multiple gauging stations in the region surpassed record river flow, offering a unique opportunity to test a sediment-based palaeoflood record. These data re-emphasise the need for systematic process monitoring and calibration of the depositional record to obtain a site-specific understanding of internal and external factors controlling event signature preservation. Wider implementation of this approach at equivalent lakes offers a vast, untapped archive of palaeohydrological data for hydrologists, climate modellers, engineers and policy makers addressing future flood risks.
NASA Astrophysics Data System (ADS)
Susperregui, A.
2010-12-01
The Rance basin (France) offers potential to make a full-scale assessment of the environmental impact of a tidal power station after 50 years of operation. Consequences on biology, hydrodynamics and sedimentology were observed and nowadays, some of these changes are still acting on the natural system. The tidal dynamic was completely artificialised by the dam construction. The two main consequences are the reduction of exundation area and the extension of slack duration. Sedimentary dynamic depending on hydrodynamics conditions, changes in sediment distribution were also observed. Before the tidal power station construction, sands lined the gravel bed channel, recovered the bottom and formed beaches and banks. Coves and the upstream part of the estuary were dominated by a fine sedimentation, forming mudflats in a classical configuration slikke/schorre. Nowadays, mudflats extended to the center of the basin and all coves are occupied. The important inertia induced by the slack extension caused a slowing down on currents velocities, making easier the fine suspension deposit. The siltation is most important upstream, were the turbidity maximum was shifted, generating problems for navigation and banks access. A solution of sediment management was envisaged from 2001, by the digging of a sediments trap of 91 000 m3, near the Châtelier Lock. Sedimentation monitoring in this trap shows an intense filling over the first two years of functioning, then a slowing down leading to a complete filling from 2005. This trap also showed a beneficial interest on the sedimentation rates of the mudflats closed to it, which decreased. To understand how fine sediment is eroded and transported into this maritime area, an optical backscatter sensor was installed 1.5 km upstream of the tidal power station. During spring tides, the tidal power station functions in a “double-acting” cycle. This particular working leads to an important increase of turbidity during the artificial tidal cycle. Currents seem very strong close to the turbines and are responsible for intense bottom erosion in their area, as it is observed in the most downstream mudflat. The importance of flood currents versus ebb ones, combined to slack extension, explain the upstream sediments fluxes. But we cannot assume for the moment that is the only fine sediment source. A second turbidimeter is installed on the oceanic front of the dam to determine if there is a coastal contribution and results will be dealt soon. Figure 2: Example of turbidity raise during a “double-acting” cycle.
NASA Astrophysics Data System (ADS)
Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.
2013-05-01
A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Dobashi, Fumi; Kato, Yoshihisa; Yamamoto, Yoshiyuki
1998-08-01
210Po, 210Pb, 228Ra, and 226Ra were measured in surface sea waters along the 1989-1990 global traverse of the oceans using the new R.V. Hakuho-Maru. Where the traverse intersects other expedition routes, the data are generally confirmatory. In the high-productivity regimes like the Red Sea, and the Arabian Sea 210Po is removed from the mixed layer at much faster rates than 210Pb. This fractionation occurs during scavenging presumably because 210Po is strongly sorbed by organic particles, whereas 210Pb is more likely associated with inorganic detritus. The 210Po/ 210Pb activity ratios leaving the mixed layer by particulate transport can be estimated from the steady state balance of 210Pb and 210Po in the surface waters for different oceanic regions, and are compared with those in the literature obtained by sediment-trap experiments. Although this comparison appears to merge, there exist some inconsistencies, which may be attributable to one of the following possibilities: (1) the model-derived atmospheric 210Pb flux is overestimated for the North Pacific and the North Atlantic, or (2) the sediment-trap data do not represent the real 210Po/ 210Pb ratio in the vertical particulate flux due to some experimental artifacts, such as incomplete trapping and size fractionation. Further careful studies of sediment trapping including seasonal variation are needed to resolve this issue. Our Ra data confirmed that strong sources for 228Ra exist in the Bay of Bengal and the Southeast Asian continental shelf zone, whereas the Mediterranean and the Red Sea, though they are surrounded by land, are not effective sources of 228Ra in the surface water.
Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef
NASA Astrophysics Data System (ADS)
Koop, K.; Larkum, A. W. D.
1987-07-01
Deposition of organic material was measured at four sites on One Tree Island coral reef using fixed sediment traps. Although no reliable data were obtained for the reef crest area because of problems of resuspension, mean deposition in the backreef area amounted to some 4 g organic C m -2 day -1 whereas in the lagoon it was about 1·5 g C m -2 day -1. This amounted to mean nitrogen deposition rates of 160 and 95 mg N m -2 day -1, respectively. As primary production by turf algae, the principal producers at One Tree Island, has been estimated at about 2·3 g C m -2 day -1 for the whole reef system and the weighted mean carbon deposition is estimated at 2·2 g C m -2 day -1, it is clear that the carbon produced by plants is largely retained in the system. Nitrogen deposition, on the other hand, amounted to only about 60% of that produced by turf algae and it must be assumed that much of this leached into the water during sedimentation. Losses of nitrogen may be minimized by incorporation of dissolved nitrogen by pelagic microheterotrophs which may in turn be consumed by filter feeders before they leave the reef.
Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface
NASA Astrophysics Data System (ADS)
Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.
2015-03-01
We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles
Brooks, Jeffrey N.; Mattas, Richard F.
1991-01-01
Apparatus for removing the helium ash from a fusion reactor having a D-T plasma comprises a helium trapping site within the reactor plasma confinement device, said trapping site being formed of a trapping material having negligible helium solubility and relatively high hydrogen solubility; and means for depositing said trapping material on said site at a rate sufficient to prevent saturation of helium trapping.
Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin
NASA Astrophysics Data System (ADS)
Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.
2014-12-01
In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary results from this study demonstrate the biogeomorphic relationships between hydrologic regime, vegetation establishment, and sediment storage within the MRB. An understanding of these relationships will aid in development and implication of management actions necessary to address sediment related impairments in the MRB.
Magnitude and variability of Holocene sediment accumulation in Santa Monica Bay, California
Sommerfield, C.K.; Lee, H.J.
2003-01-01
The spatial variability of Holocene (past 10,000 years) sediment accumulation in Santa Monica Bay (California) was examined to identify controls sediment trapping in a bathymetrically complex coastal embayment and to provide geologic context for the post-industrial sedimentary record and associated pollution gradients. Sediment chronologies based on downcore AMS 14C dates were used to quantify long-term (millennia) accumulation rates in an effort to elucidate particle-transport pathways and sinks. Sediment accumulation rates for the full range of bayfloor environments (50-630 m water depths) range from 22 to 102 mg/cm2/year (15-88 mm/100 year), have an overall mean of 51??21 mg/cm2/year (1??, n=11), and are comparable to rates reported for adjacent borderland basins. Maximal accumulation rates on the Malibu shelf and within a reentrant to Redondo canyon are interpreted to reflect (1) proximity to sediment sources and (2) localized oceanographic and topographic conditions conducive to sediment trapping and deposition. The 14C-derived accumulation rates are 2-10 times lower than rates determined through 210Pb geochronology for the same sites in a related study, revealing that Holocene sediment accumulation has been non-steady-state. Santa Monica Bay is an important sink for suspended matter; averaged over the past several millennia a mass of sediment equivalent to 10-80% of the modern annual river supply is sequestered yearly. Net influx of suspended matter derived from the adjacent Palos Verdes shelf is evinced by a concentration gradient of p,p???-DDE in bayfloor sediments, whereas the distribution of anthropogenic silver suggests transport from Santa Monica shelf to the southeastern boundary of the bay. The results of this study provide new insight to the long-term fates of particulate matter in Los Angeles coastal waters. ?? 2003 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramirez, M. T.; Allison, M. A.
2017-12-01
The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.
Production Biology of Phytoplankton
1999-09-30
the publishing house, Universities Press (India) in Hyderabad ( Deccan ). New title: Breeding, Growth Rates, and Production of Marine Copepods. The...into sediment traps at 3 km depth indicate an onset of high primary production very soon after the arrival of the SWM and suggest a long open-sea...into the traps is disconcerting. For future modeling of plankton production in the open Arabian Sea, the use of two size classes of phytoplankton is
Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L
2014-01-01
BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.
Oscillatory erosion and transport flume with superimposed unidirectional flow
Jepsen, Richard A.; Roberts, Jesse D.
2004-01-20
A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.
Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08
Bragg, Heather M.; Uhrich, Mark A.
2010-01-01
Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.
Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington
Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.
2009-01-01
Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.
Particulate Matter Fluxes in Cuenca Alfonso During 2002-2005
NASA Astrophysics Data System (ADS)
Silverberg, N.; Aguirre-Bahena, F.
2007-05-01
Time-series sediment trap data were collected between 2002 and 2005 from Cuenca Alfonso, a 400m-deep basin in Bahía de La Paz, a large embayment on the southwestern coast of the Gulf of California. Despite the lack of significant land drainage in this semi-dessert environment, terrigenous material, probably wind-born, dominates the sinking particulate matter. Peak lithogenic fluxes appear to be associated with higher frequencies of wind gusts stronger than 5 ms-1. Total mass flux fluctuated from week to week, and between years, averaging 277 gm-2y-1, essentially the same as radiometrically-determined accumulation rates of about 0.4 mmy-1 in cores of the underlying sediment. In 2003, the passage of 2 hurricanes induced high winds and flash flooding and the total mass flux offshore remained very high for two weeks following each event. This unusual sedimentation was equivalent to that of a full year without hurricanes and such events may account for some of the laminations found in cores. During most of 2005, on the other hand, sedimentation rates were lower than average. Although fluxes of all components tended to be highest during late fall and early winter, biogenic fluxes displayed peaks during all seasons of the year in Cuenca Alfonso. This is in contrast to the strong seasonal alternation between terrigenous sedimentation and diatom blooms observed in Guaymas Basin in the central Gulf. Furthermore, calcium carbonate dominated over biogenic silica within the marine component. Average annual fluxes of CaCO3, biogenic silica and POC were 52.5, 32.5 and 13.9 gm-2y-1, respectively.
A Catchment Systems Engineering (CSE) approach to managing intensively farmed land
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg
2014-05-01
Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.
NASA Astrophysics Data System (ADS)
Sagawa, T.; Saito, T.; Irino, T.
2017-12-01
Multi-species approach of planktonic foraminiferal Mg/Ca thermometry has been applied to marine sediments to reconstruct past change of the upper ocean thermal structure. Depth of thermocline and thickness of mixed layer depth in the western equatorial Pacific are of particular interest in terms of the relationship between global climate and ocean heat content in that region. One of questions arising from this approach is which species and calibration are suitable for reconstructing thermocline temperature variations in the past. Knowledge about depth habitat and response of shell Mg/Ca to temperature change is essential to answer this question. Sediment trap experiment has great advantages that allow evaluating seasonal and inter-annual variation of depth habitat of planktonic foraminifera in natural environment. In this study, we analyzed stable isotopes and Mg/Ca of Pulleniatina obliquiloculata collected by two sediment traps moored on the equator in the western and central Pacific during 1999-2002. We estimated habitat depth by comparing the calcification temperature, which is calculated from oxygen isotope, and instrumental data collected by moored buoys in the studied region. The estimated habitat depth of P. obliquiloculata is 100-150 m, which corresponds to the upper thermocline in this region. The habitat depth in western site (175E) is slightly deeper than central Pacific site (160W), probably reflecting thicker mixed layer and deeper thermocline in the western site. Although relationship between Mg/Ca and δ18O-derived calcification temperature is not statistically significant, Mg/Ca values give reasonable temperatures for the upper thermocline when calculated using calibration of Anand et al. (2003). The results of this study confirms the potential of P. obliquiloculata Mg/Ca as a thermocline temperature proxy.
Infiltration performance of engineered surfaces commonly used for distributed stormwater management
NASA Astrophysics Data System (ADS)
Valinski, Nicholas A.
Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas.
Infiltration performance of engineered surfaces commonly used for distributed stormwater management.
Valinski, N A; Chandler, D G
2015-09-01
Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, the infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bauerfeind, E.; Nöthig, E.-M.; Pauls, B.; Kraft, A.; Beszczynska-Möller, A.
2014-04-01
Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200-300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from < 20 to ~ 870 specimen m- 2 d- 1 in the years 2000-2009, being lower during the period 2000-2006. At the beginning of the time series, pteropods were dominated by the cold-water-adapted L. helicina, whereas the subarctic boreal L. retroversa was only occasionally found in large quantities (> 50 m- 2 d- 1). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11-77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes.
NASA Astrophysics Data System (ADS)
Silkoset, Petter; Svensen, Henrik; Planke, Sverre
2014-05-01
The Toarcian (Early Jurassic) event was manifested by globally elevated temperatures and anoxic ocean conditions that particularly affected shallow marine taxa. The event coincided with the emplacement of the vast Karoo-Ferrar Large Igneous Province. Among the suggestions for trigger mechanisms for the climatic perturbation is metamorphic methane generation from black shale around the sills in the Karoo Basin, South Africa. The sill emplacement provides a mechanism for voluminous in-situ production and emission of greenhouse gases, and establishes a distinct link between basin-trapped and atmospheric carbon. In the lower stratigraphic levels of the Karoo Basin, black shales are metamorphosed around sills and the sediments are cut by a large number of pipe structures with metamorphic haloes. The pipes are vertical, cylindrical structures that contain brecciated and baked sediments with variable input of magmatic material. Here, we present borehole, petrographic, geochemical and field data from breccia pipes and contact aureoles based on field campaigns over a number of years (2004-2014). The metamorphism around the pipes show equivalent metamorphic grade as the sediments around nearby sills, suggesting a more prominent phreatomagmatic component than previously thought. The stratigraphic position of pipes and the breccia characteristics strengthens the hypothesis of a key role in the Toarcian carbon isotope excursion.
Upper cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, P.J.
1994-12-31
An Upper Cretaceous submarine igneous extrusion occurs in the subsurface of southwestern Wilson County, Texas. The Coniacian-Santonian-aged (Austin Group) volcanic eruption discharged large volumes of magnetite-rich olivine nephelinite that upon quenching formed an extensive nontronitic clay layer. This clay deposit formed a trapping mechanism for hydrocarbon beneath the volcano. Production from volcanic plugs is normally attributed to the shoal-water carbonate facies developed on top of the volcanic, the palagonite tuff ({open_quotes}serpentine{close_quotes}), and overlying sandstones. The heat energy of the volcano may have thermally matured the calcarous sediments of adjacent parts of the Austin Chalk. The normally grayish-colored suggesting thermal alteration.more » The overlying nontronite trapped mobile hydrocarbons, and this early emplacement of oil may have preserved some of the original porosity and permeability of the Austin Chalk. Austin Chalk-aged volcanic deposits produce hydrocarbons from stratigraphic traps within the volcanic material, within the porous beachrock, and structurally within overlying sandstones. The intruded Austin Chalk also behaves as a reservoir because the original porosity and permeability are maintained by early emplacement of oil and the overlying volcanic clay acts as a seal by preventing vertical migration. Marcelina Creek field, discovered in 1980 from an {open_quotes}augen{close_quotes}-shaped seismic signature and an aerial magnetic survey, produces from the fractured chalk beneath the nontronitic clay layer. This field has produced more than 15 million barrels of oil from more than 60 wells in fractured and porous rock beneath the volcano.« less
NASA Astrophysics Data System (ADS)
Kadko, D.
2004-12-01
Jack Dymond pioneered the use of sediment traps to understand the chemistry and flux of material emanating from submarine hydrothermal vents. For example, in one paper Roth and Dymond (1989) used the ratio of Corg/CCaCO3 between traps to determine the fraction of chemosynthetically derived organic carbon (OC) in collected material. Knowledge of the relative proportion of chemosynthetic and photosynthetic OC is critical to mass balance calculations of hydrothermal OC inputs/exports and can also be determined from the 210Pb/Pb ratio measured in the sediment traps and suspended particles. The 210Pb/Pb ratio of particles in the ridge environment is diagnostic of the source and path of the particles. At the Endeavour Ridge, particles emanating directly from vents have a ratio close to that of the vent fluids and basalt ( ˜0.5 dpm/μ g) from where they are derived, and subsequently scavenge additional 210Pb as they disperse. It is therefore reasonable to assume that particles with a 210Pb/Pb ratio of 0.5 are "fresh" and any OC associated with them must be chemosynthetic in origin. This ratio is much smaller than that of typical (non-vent) seawater (>3 dpm/μ g) and thus particles in the upper water column (or distant from vents) will have a high 210Pb/Pb ratio and contain OC predominantly from photosynthetic production. The 210Pb/Pb ratio of Endeavour particles increase markedly from <0.70 at a vent orifice, to 1.22 within the buoyant plume ( ˜20 ma vent), to 1.4 downstream (~2 km) within the neutrally-buoyant plume at 2100 m depth. These plume particles are distinguished from those above the plume (at 1700 m with 210Pb/Pb = 3.2 dpm/μ g) by lower 210Pb/Pb ratios but much higher 210Pb content. The high Pb content attests to a hydrothermal component of the plume particles. Therefore, the 210Pb/Pb ratio can be used to define two conservative endmembers for a particle population: those derived from the vents will have a ratio of 0.5 (with 100% chemosynthetic OC) and those derived from the surface ocean will have a ratio of 3.2 (from the 1700m trap, with 100% photosynthetic OC). With these endmembers, a linear relationship between the % chemosynthetic OC and 210Pb/Pb is: % OCchemo = -37 x (210Pb/Pb) + 118.45 The flux of OCchemo can be compared to the downward flux of photosynthetic OC from the surface ocean by another method utilizing 210Pb as a proxy of OC flux in the Pacific which was introduced in Moore and Dymond, (1988).
NASA Astrophysics Data System (ADS)
Lu, Xixi; Ran, Lishan
2015-04-01
The Yellow River system used to have very high sediment export to ocean (around 1.5 Gt/yr in the 1950s) because of severe soil erosion on the Loess Plateau. However, its sediment export has declined to <0.25 Gt/yr in recent years (in the 2000s), mainly due to human activities like construction of reservoirs and check dams and other soil and water conservations such as construction of terraces and vegetation restoration. Such drastic reduction in soil erosion and sediment flux and subsequently in associated Particular Organic Carbon (POC) transport can potentially play a significant role in carbon cycling. Through the sediment flux budget we examined POC budget and carbon sequestration through vegetation restoration and various soil and water conservations including reservoirs construction over the past decades in the Yellow River system. Landsat imageries were used to delineate the reservoirs and check dams for estimating the sediment trapping. The reservoirs and check dams trapped a total amount of sediment 0.94 Gt/yr, equivalent to 6.5 Mt C. Soil erosion controls through vegetation restoration and terrace construction reduced soil erosion 1.82 Gt/yr, equivalent to 12 Mt C. The annual NPP increased from 0.150 Gt C in 2000 to 0.1889 Gt C in 2010 with an average increment rate of 3.4 Mt C per year over the recent decade (from 2000 to 2010) through vegetation restoration. The total carbon stabilized on slope systems through soil erosion controls (12 Mt C per year) was much higher than the direct carbon sequestration via vegetation restoration (3.4 Mt C per year), indicating the importance of horizontal carbon mobilization in carbon cycling, albeit a high estimate uncertainty.
NASA Astrophysics Data System (ADS)
Kilian, R.; Breuer, S.; Behrmann, J. H.; Baeza, O.; Diaz-Michelena, M.; Mutschke, E.; Arz, H.; Lamy, F.
2017-12-01
Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since 15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.
Where on Earth can we find Mars? Characterization of an Aeolian Analogue in Northwestern Argentina
NASA Astrophysics Data System (ADS)
Favaro, E. A.; Hugenholtz, C.; Barchyn, T.
2017-12-01
The Puna Plateau of northwestern Argentina is as a promising analogue for Martian aeolian processes owing to its altitude, low atmospheric pressure, aridity, and widespread granular and bedrock aeolian features. The study was conducted in and surrounding the area known as the Campo de Piedra Pómez - a prominent expanse of wind-carved ignimbrite in Argentina's Catamarca Province. To interpret the evolution of this unique laboratory, which is limited by its isolated location and dearth of in situ measurements, we investigated contemporary aeolian sediment transport through a combination of modeled meteorological data, satellite imagery, field measurements, and sediment traps. Our objective is to utilize modeled meteorological data, satellite imagery, and field measurements and samples to characterize the aeolian environment here to base analogue studies. Satellite imagery from Terra MODIS, GeoEye, and Ikonos indicate recent large-scale aeolian sediment transport events and migration of gravel in the region. A prominent, region-wide sediment transport event on 14 August 2015 coincided with synoptic-scale pressure patterns indicating a strong Zonda (Foehn) winds. Sediment traps and marbles provide additional evidence of wind-driven transport of sand and gravel. Yet, despite the body of evidence for sediment transport on the Puna Plateau, modeled wind data from the European Center for Midrange Weather Forecasting suggest wind rarely attains the speeds necessary to initiate sediment transport. This disconnect is reminiscent of the Martian Saltation Paradox which suggested winds on Mars were incapable of mobilizing sediment, despite widespread evidence from rover, lander, and satellite observations. This raises questions about: (i) the suitability of modeled wind data for characterizing aeolian processes on both planets, and (ii) the possibility that most geomorphic work is conducted in extreme, but infrequent events in this region (possibly analogous to Mars). We suggest future research should attempt to reconcile disparities between sediment transport observations and modeled wind data.
NASA Astrophysics Data System (ADS)
Kilian, R.; Breuer, S.; Behrmann, J. H.; Baeza, O.; Diaz-Michelena, M.; Mutschke, E.; Arz, H.; Lamy, F.
2018-06-01
Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since 15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.
Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.
2015-01-01
The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.
NASA Astrophysics Data System (ADS)
Vorrath, Maria-Elena; Lahajnar, Niko; Fischer, Gerhard; Libuku, Viktor Miti; Schmidt, Martin; Emeis, Kay-Christian
2018-04-01
Marine particle fluxes from high productive coastal upwelling systems return upwelled CO2 and nutrients to the deep ocean and sediments and have a substantial impact on the global carbon cycle. This study examines relations between production regimes on the shelf and over the continental margin of the Benguela Upwelling System (BUS) in the SE Atlantic Ocean. Data of composition and timing of vertical particle flux come from sediment trap time series (deployed intermittently between 1988 and 2014) in the regions Walvis Ridge, Walvis Bay, Luederitz and Orange River. We compare their seasonal variability to modelled patterns of chlorophyll concentrations in a 3-D ecosystem model. Both modelled seasonal chlorophyll a standing stocks and sampled particle flux patterns are highly correspondent with a bimodal seasonal cycle offshore the BUS. The material in the particle flux in offshore traps is dominantly carbonate (40-70%), and flux peaks in offshore particle flux originate from two independent events: in austral autumn thermocline shoaling and vertical mixing are decoupled from coastal upwelling, while fluxes in spring coincide with the upwelling season, indicated by slightly elevated biogenic opal values at some locations. Coastal particle fluxes are characterized by a trimodal pattern and are dominated by biogenic opal (22-35%) and organic matter (30-60%). The distinct seasonality in observed fluxes on the shelf is caused by high variability in production, sinking behaviour, wind stress, and hydrodynamic processes. We speculate that global warming will increase ocean stratification and alter coastal upwelling, so that consequences for primary production and particle flux in the BUS are inevitable.
NASA Astrophysics Data System (ADS)
Wang, W.; Lee, C.; Cochran, K. K.; Armstrong, R. A.
2016-02-01
Sinking particles play a pivotal role transferring material from the surface to the deeper ocean via the "biological pump". To quantify the extent to which these particles aggregate and disaggregate, and thus affect particle settling velocity, we constructed a box model to describe organic matter cycling. The box model was fit to chloropigment data sampled in the 2005 MedFlux project using Indented Rotating Sphere sediment traps operating in Settling Velocity (SV) mode. Because of the very different pigment compositions of phytoplankton and fecal pellets, chloropigments are useful as proxies to record particle exchange. The maximum likelihood statistical method was used to estimate particle aggregation, disaggregation, and organic matter remineralization rate constants. Eleven settling velocity categories collected by SV sediment traps were grouped into two sinking velocity classes (fast- and slow-sinking) to decrease the number of parameters that needed to be estimated. Organic matter degradation rate constants were estimated to be 1.2, 1.6, and 1.1 y^-1, which are equivalent to degradation half-lives of 0.60, 0.45, and 0.62 y^-1, at 313, 524, and 1918 m, respectively. Rate constants of chlorophyll a degradation to pheopigments (pheophorbide, pheophytin, and pyropheophorbide) were estimated to be 0.88, 0.93, and 1.2 y^-1, at 313, 524, and 1918 m, respectively. Aggregation rate constants varied little with depth, with the highest value being 0.07 y^-1 at 524 m. Disaggregation rate constants were highest at 524 m (14 y^-1) and lowest at 1918 m (9.6 y^-1)
Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988
Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.
2000-01-01
Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.
Yan, Hexiang; Lipeme Kouyi, Gislain; Gonzalez-Merchan, Carolina; Becouze-Lareure, Céline; Sebastian, Christel; Barraud, Sylvie; Bertrand-Krajewski, Jean-Luc
2014-04-01
Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.
Can coarse surface layers in gravel-bedded rivers be mobilized by finer gravel bedload?
NASA Astrophysics Data System (ADS)
Venditti, J. G.; Dietrich, W. E.; Nelson, P. A.; Wydzga, M. A.; Fadde, J.; Sklar, L.
2005-12-01
In response to reductions in sediment supply, gravel-bed rivers undergo a coarsening of the sediments that comprise the river's bed and, over some longer time scale, a river's grade may also be reduced as sediments are depleted from upstream reaches. Coarse, degraded river reaches are commonly observed downstream of dams across the Western United States. Following dam closure, these riverbeds become immobile under the altered flow and sediment supply regimes, leading to a reduction in the available salmon spawning and rearing habitat. Gravel augmentation to these streams is now common practice. This augmentation is typically seen as resurfacing the static coarse bed. As an alternative, we propose that the addition of appropriately finer gravels to these channels may be capable of mobilizing an otherwise immobile coarse surface layer, creating the potential to release fine material trapped beneath the surface. A series of laboratory experiments are being undertaken to test this hypothesis in a 30 m long and 0.86 m wide gravel-bedded flume channel using a constant discharge and a unimodal bed sediment with a median grain size of 8 mm and no sand present. The channel width-to-depth ratio of ~4 suppresses the development of lateral topography and allows us to focus on grain-to-grain interactions. Experiments proceed by maintaining a constant sediment feed until an equilibrium grade and transport rate are established, starving the flume of sediment for at least 24 hours, and then adding narrowly graded gravel over a period of one to two hours at a rate that is ~4x the bedload rate observed prior to terminating the sediment supply. The bed prior to sediment addition has an armor median grain size that is typically twice that of the subsurface and feed size distribution. The volume and median grain size of the resulting pulses are varied. Pulses move downstream rapidly with well-defined fronts in the form of bedload sheets and cause peaks in the sediment flux approximately equal to the supply rate. Once the pulse has passed through the flume, bedload flux rapidly drops to background values, leaving few introduced grains on the bed. When the sediment feed is the median grain size of the subsurface bed material mixture, few armor grains are mobilized, although there is some exchange between the surface and bedload. Pulses composed of the fine tail of the surface grain size distribution are capable of mobilizing all grain sizes in the armor (including the largest grains) as finer bedload fills the interstices of the coarse surface layer. This suggests that gravel augmentation using fine gravel may provide an effective means of improving bed mobility conditions. Further experiments are underway to explore the effects of repeated fine gravel addition on bed state.
Impact of methane flow through deformable lake sediments on atmospheric release
NASA Astrophysics Data System (ADS)
Scandella, B.; Juanes, R.
2010-12-01
Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.
Pigati, Jeffrey S.; Reheis, Marith C.; McGeehin, John P.; Honke, Jeffrey S.; Bright, J.
2016-01-01
Desert wetlands are common features in arid environments and include a variety of hydrologic facies, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Wet ground conditions and dense stands of vegetation in these settings combine to trap eolian, alluvial, and fluvial sediments that accumulate over time. The resulting deposits are collectively called ground-water discharge (GWD) deposits, and contain information on how small desert watersheds responded to climate change in the past. Most GWD studies in the southwestern U.S. have focused on the late Pleistocene because the Holocene was too dry to support the extensive wetland systems that were so pervasive just a few millennia earlier. Here we describe the results of a pilot project that involves coring extant wetlands and analyzing the sedimentology and microfauna of the recovered sediment to infer Holocene hydrologic conditions. In 2011, a series of cores were taken near wetlands situated along the western margin of the Soda Lake basin in the Mojave National Preserve of southern California. The core sediments appear to show that the wetlands responded to the relatively minor climate fluctuations that characterized the Holocene. However, our analysis was limited by relatively low sediment recovery (which only averaged 70-80%) and a general paucity of datable materials in the cores. Additional studies aimed at improving recovery and developing new techniques for concentrating plant microfossils (plant remains that are <150 m in diameter) for radiocarbon dating are ongoing.
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2013 and FY2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Julianne J.; Nikolich, George; Mizell, Steve
The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. Emphasis is given to collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are beingmore » developed, which will facilitate appropriate closure design and postclosure monitoring. Desert Research Institute installed two meteorological monitoring stations south (station number 1) and north (station number 2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA in 2011. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters is recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during FY2013 and FY2014.« less
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Mizell, Steve; McCurdy, Greg
Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans thatmore » are being developed, which will facilitate the appropriate closure design and post-closure monitoring. In 2011, DRI installed two meteorological monitoring stations south (station #1) and north (station #2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters are recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during fiscal year (FY) 2015.« less
Bottom Backscatter from Trapped Bubbles
1993-07-30
work included studies of a Blot model for acoustic transmission and reflection, originally developed by Stern, Bedford, and Millwater . 2 Also included...This model was originally developed by Stem, Bedford, and Millwater 7 and later modified to treat gassy sediments. This was done by varying the... Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent Properties,’ J. Acoust. Soc. Am. 77(5), 1781-1788 (1985). 3. L. M
Stratified Fronts in Well-Mixed Estuaries
2013-09-01
Thornton Thomas Murphree Professor of Oceanography (Emer.) Professor of Meteorology Approved by...J. C. Warner (2012), Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping, J. Geophys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G.H.; Watkins, J.S.
1996-12-31
The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G.H.; Watkins, J.S.
1996-01-01
The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less
Plant basket hydraulic structures (PBHS) as a new river restoration measure.
Kałuża, Tomasz; Radecki-Pawlik, Artur; Szoszkiewicz, Krzysztof; Plesiński, Karol; Radecki-Pawlik, Bartosz; Laks, Ireneusz
2018-06-15
River restoration has become increasingly attractive worldwide as it provides considerable benefits to the environment as well as to the economy. This study focuses on changes of hydromorphological conditions in a small lowland river recorded during an experiment carried out in the Flinta River, central Poland. The proposed solution was a pilot project of the construction of vegetative sediment traps (plant basket hydraulic structures - PBHS). A set of three PBSH was installed in the riverbed in one row and a range of hydraulic parameters were recorded over a period of three years (six measurement sessions). Changes of sediment grain size were analysed, and the amount and size of plant debris in the plant barriers were recorded. Plant debris accumulation influencing flow hydrodynamics was detected as a result of the installation of vegetative sediment traps. Moreover, various hydromorphological processes in the river were initiated. Additional simulations based on the detected processes showed that the proposed plant basket hydraulic structures can improve the hydromorphological status of the river. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamborg, C. H.; Buesseler, K. O.; Valdes, J.; Bertrand, C. H.; Bidigare, R.; Manganini, S.; Pike, S.; Steinberg, D.; Trull, T.; Wilson, S.
2008-07-01
As part of the VERTIGO program, we collected and analyzed sinking particles using tethered and neutrally buoyant sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). This effort represented the first large-scale use of neutrally buoyant traps and represents a significant step forward in the study of the marine biological pump. In this paper, we present the results of mass, macronutrient, biominerals and phytoplankton pigment determinations made on these samples. The impact of a variety of potential collection biases were examined, including those from in-trap particle degradation, zooplankton swimmers and poisons. Though these factors have been observed to affect results in other programs, we found them to have relatively little impact on measured fluxes in this study. There was evidence, however, that the neutrally buoyant traps performed better than the tethered traps in terms of flux accuracy during one deployment, possibly because of improved large particle collection efficiency. Fluxes of material exhibited three different patterns through the mesopelagic: increasing, decreasing and constant with depth. Decreasing fluxes with depth were observed for all biogenic material formed in the euphotic zone. The attenuation of flux with depth was not the same for all components, however, with phytoplankton pigments exhibiting the greatest degradation with depth and particulate inorganic carbon the least. Organic carbon and nitrogen showed a very high correlation in these samples, with little evidence of different attenuation length scales. Increasing fluxes with depth were observed for particulate Ba at both sites and Al at K2. The increases in Ba are attributed to the formation of barite in degrading particles, while increasing Al at K2 was the result of lateral inputs from a continental shelf/slope. Constant fluxes with depth were observed for Al at ALOHA, where fluxes appeared to be in steady state with atmospheric dust deposition. The mesopelagic zone at K2 was observed to attenuate particle flux less than at ALOHA, and with a higher POC/PIC ("rain") ratio. These two factors combine to imply that the Subarctic province had a much more efficient biological pump than had the subtropical gyre during our occupations. This could be the result of either faster sinking particles, generated from grazing by large zooplankton, or inherently slower particle degradation rates.
Kamalakkannan, Ragunathan; Zettel, Vic; Goubatchev, Alex; Stead-Dexter, Karen; Ward, Neil I
2004-03-01
Chemical (polycyclic aromatic hydrocarbon - PAH and heavy metal) levels in stormwater and sediment samples collected from the London Orbital (M25) motorway drainage dry detention pond at Oxted, Surrey, UK were determined. Such chemicals are derived from vehicular combustion products and the wear and tear materials deposited onto the motorway surface. Gas chromatography-mass spectrometry (GC-MS) was used for the qualitative and quantitative determination of 16 USEPA priority PAHs in motorway drainage sediments. The GC-MS method, incorporating a solid phase extraction step, provides detection limits ranging from 0.17 to 0.41 mg kg(-1)(dry weight). Almost all of the 16 USEPA listed PAHs were detected. Phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene (PAH numbers 5, 7, 8, 9, 10, 11, 13 and 16) were among the PAHs found at "higher" levels (ranging from 0.3-10.2 mg kg(-1), dry weight) in the sediment samples. PAH levels show little change along the motorway drainage silt trap (facility for reducing the levels of suspended particulate matter in the stormwater). PAH concentrations are considerably higher in the dry detention pond outflow interceptor. Statistical analysis showed that significant correlation coefficients (based on a t-test at the 95% confidence interval) were obtained between those PAHs found at high concentrations over all of the sampling sites. Several PAHs were dispersed beyond the treatment facility and accumulation in the sediment of the deer park resulted in levels ranging from 0.3-1.6 mg kg(-1), dry weight. These PAHs found beyond the treatment facility (in the local farm deer park) may contribute a serious health threat to farm animals or even fish in the aquatic environment. Heavy metal levels (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sb and Pb) of the drainage stormwater and sediments were determined by inductively coupled plasma mass spectrometry (ICP-MS), with quality control evaluation using two certified reference materials. Typical detection limits were found to be below 0.1 [micro sign]g l(-1) for stormwater and 0.005 mg kg(-1) for acid digested sediments. Raised heavy metal levels were found throughout the dry detention pond facility and only decrease when the stormwater is diluted following discharge into the river Eden. Statistical analysis also confirms that some significant correlations exist between various heavy metals and PAHs. However, no overall conclusive trend is found indicating that a particular PAH is deposited in sediment relative to a specific heavy metal/s. These results raise some serious concerns about the dispersion and accumulation of chemicals in the sediments of motorway stormwater drainage systems and the need for maintenance and clean-up of contaminated material from such systems.
Bothner, Michael H.; Rendigs, R. R.; Campbell, Esma; Doughten, M.W.; Parmenter, C.M.; O'Dell, C. H.; DiLisio, G.P.; Johnson, R.G.; Gillison, J.R.; Rait, Norma
1986-01-01
Of the 12 elements analyzed in bulk (undifferentiated) sediments collected adjacent to drilling rigs on Georges Bank, only barium was found to increase in concentration during the period when eight exploratory wells were drilled (July 1981 until September 1982). The maximum postdrilling concentration of barium (a major element in drilling mud) reached 172 ppm in bulk sediments near the drill site in block 410. This concentration is higher than the predrilling concentration at this location by a factor of 5.9. This maximum barium concentration is within the range of predrilling concentrations (28-300 ppm) measured in various sediment types from the regional stations of this program. No drilling-related changes in the concentrations of the 11 other metals have been observed in bulk sediments at any of the locations sampled in this program. We estimate that about 25 percent of the barite discharged at block 312 was present in the sediments within 6 km of the rig, 4 weeks after drilling was completed at this location (drilling period was December 8, 1981-June 27, 1982). For almost a year following completion of this well, the inventory of barite decreased rapidly, with a half-life of 0.34 year. During the next year, the inventory decreased at a slower rate (half-life of 3.4 years). The faster rate probably reflects resuspension and sediment transport of bariterich material residing at the sediment surface. Elevated barium concentrations in post-drilling sediment-trap samples from block 312 indicate that such resuspension can occur up to at least 25 m above the sea floor. As the remaining barite particles are reworked deeper into the sediments by currents and bioturbation, removal by sediment-transport processes is slower. The barite discharged during the exploratory phase of drilling is associated with the fine fraction of sediment and is widely distributed around the bank. We found evidence for barium transport to Great South Channel, 115 km west of the drilling, and to stations 2 and 3, 35 km east of the easternmost drilling site. Small increases in barium concentrations, present in the fine fraction of sediment only, were measured also at the heads of both Lydonia and Oceanographer Canyons, located 8 and 39 km, respectively, seaward of the nearest exploratory well.
Particle-bound metal transport after removal of a small dam in ...
The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa
Tracer constraints on organic particle transfer efficiency to the deep ocean
NASA Astrophysics Data System (ADS)
Weber, T. S.; Cram, J. A.; Deutsch, C. A.
2016-02-01
The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.
Zhuang, Yixi; Lv, Ying; Wang, Le; Chen, Wenwei; Zhou, Tian-Liang; Takeda, Takashi; Hirosaki, Naoto; Xie, Rong-Jun
2018-01-17
Deep-trap persistent luminescence materials exhibit unique properties of energy storage and controllable photon release under additional stimulation, allowing for both wavelength and intensity multiplexing to realize high-capacity storage in the next-generation information storage system. However, the lack of suitable persistent luminescence materials with deep traps is the bottleneck of such storage technologies. In this study, we successfully developed a series of novel deep-trap persistent luminescence materials in the Ln 2+ /Ln 3+ -doped SrSi 2 O 2 N 2 system (Ln 2+ = Yb, Eu; Ln 3+ = Dy, Ho, Er) by applying the strategy of trap depth engineering. Interestingly, the trap depth can be tailored by selecting different codopants, and it monotonically increases from 0.90 to 1.18 eV in the order of Er, Ho, and Dy. This is well explained by the energy levels indicated in the host-referred binding energy scheme. The orange-red-emitting SrSi 2 O 2 N 2 :Yb,Dy and green-emitting SrSi 2 O 2 N 2 :Eu,Dy phosphors are demonstrated to be good candidates of information storage materials, which are attributed to their deep traps, narrow thermoluminescence glow bands, high emission efficiency, and excellent chemical stability. This work not only validates the suitability of deep-trap persistent luminescence materials in the information storage applications, but also broadens the avenue to explore such kinds of new materials for applications in anticounterfeiting and advanced displays.
NASA Astrophysics Data System (ADS)
Uchida, T.; Takashima, I.; Sunaga, H.; Sasaki, S.; Matsumoto, R.
2011-12-01
In 2010 the MD179 project was undertaken by the Marion Dufresne aiming at recovery of deep seated gas and gas hydrate, methane induced carbonate, and deep sediments older than 300 ka in order to develop geologic model of gas hydrate accumulation and evaluate the possible environmental impact of gas hydrate for the last glacial-interglacial cycles. Sediment samples below the seafloor were obtained in the Umitaka Spur, Joetsu Channel, Toyama Trough, Japan Basin, Nishi Tsugaru and Okushiri Ridge areas by the MD179 cruise. Small amounts of sandy sediment have been retrieved as thin intercalations in Pleistocene and Holocene silty layers, where trace fossils and strong bioturbations are commonly observed. Those sandy sediments consist of very fine- to fine-grained sand grains, and are sometimes tuffaceous. Pore-size distribution measurements and thin-section observations of these arenite sands were undertaken, which indicatesd that porosities of muddy sediments are around 50 % but those of arenites range from 42 to 52 %, of which mean pore sizes and permeabilities are larger than those of siltstones and mudstones. These coarser sediments might have been transported approximately around 3 to 30 ka, where supplying sediments may not be abundant due to sea level fluctuation during the Pleistocene ice age. While the presence of gas hydrate in intergranular pores of arenite sands has not been confirmed, the soupy occurrence in recovered sediments may strongly indicate the presence of gas hydrate filling the intergranular pore system of arenite sands that is called pore-space hydrates. They have been recognized till now in the Mallik as well as in the Nankai Trough areas, which are considered to be very common even in the subsurface sandy sediments at the eastern margin of Japan Sea. Concentration of gas hydrate may need primary intergranular pores large enough to occur within a host sediment that may be arenite sand without matrix grains deposited in the sedimentary environment such as deep sea channels. The geological modeling of the gas hydrate formation and evolution system is concerned for energy resource potential in the Japan Sea as well as the Nankai Trough areas. Time of deposition of coarse-grained sediments can be recognized by the thermoluminescence (TL) dating method. TL dating works on the principle that materials containing naturally occurring radioactive isotopes such as uranium, thorium or potassium are subject to low levels of radiation. In mineral crystals, this leads to ionization of the atoms in the host material and freed electrons may become trapped in structural defects or holes in the mineral crystal lattice. These electrons can be released by heating under controlled conditions, and an emission of light occurs which is the basis of TL dating. Additionally they usually provide information about the provenance and the paleoenvironment when the sediments deposited. This study was performed as a part of the MH21 Research Consortium on methane hydrate in Japan.
Electron-trapping polycrystalline materials with negative electron affinity.
McKenna, Keith P; Shluger, Alexander L
2008-11-01
The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials with applications as sensors, varistors and fuel cells, reliability issues for solar cell and semiconductor technologies and electromagnetic seismic phenomena in the Earth's crust. Surprisingly, considering their relevance for applications and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials and is unusual as the electron is confined in the empty space inside the dislocation cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekni, Omar, E-mail: omarmekni-lmop@yahoo.fr; Arifa, Hakim; Askri, Besma
2014-09-14
Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε{sup ´} and the dissipation factor Tan(δ). We prove that themore » evolution of the imaginary part of the complex permittivity against temperature ε{sup ′′}=f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q{sub p}(T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.« less
Flux and fate of Yangtze River sediment delivered to the East China Sea
NASA Astrophysics Data System (ADS)
Liu, J. P.; Xu, K. H.; Li, A. C.; Milliman, J. D.; Velozzi, D. M.; Xiao, S. B.; Yang, Z. S.
2007-03-01
Numerous cores and dating show the Yangtze River has accumulated about 1.16 × 10 12 t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (˜ 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from ˜ 40 m thickness between the 20 and 30 m water depth to < 1-2 m between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 × 10 11 m 3, equivalent to ˜ 5.4 × 10 11 t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 × 10 12 t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as farming and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean.
Spatial distribution of allergenic pollen through a large metropolitan area.
Werchan, Barbora; Werchan, Matthias; Mücke, Hans-Guido; Gauger, Ulrich; Simoleit, Anke; Zuberbier, Torsten; Bergmann, Karl-Christian
2017-04-01
For nearly a decade, the majority of the world's population has been living in cities, including a considerable percentage of people suffering from pollen allergy. The increasing concentration of people in cities results in larger populations being exposed to allergenic pollen at the same time. There is almost no information about spatial distribution of pollen within cities as well as a lack of information about the possible impact to human health. To obtain this increasing need for pollen exposure studies on an intra-urban scale, a novelty screening network of 14 weekly changed pollen traps was established within a large metropolitan area-Berlin, Germany. Gravimetric pollen traps were placed at a uniform street-level height from March until October 2014. Three important allergenic pollen types for Central Europe-birch (Betula), grasses (Poaceae), and mugwort (Artemisia)-were monitored. Remarkable spatial and temporal variations of pollen sedimentation within the city and the influences by urban local sources are shown. The observed differences between the trap with the overall highest and the trap with the overall lowest amount of pollen sedimentation were in the case of birch pollen 245%, grass pollen 306%, and mugwort pollen 1962%. Differences of this magnitude can probably lead to different health impacts on allergy sufferers in one city. Therefore, pollen should be monitored preferably in two or more appropriate locations within large cities and as a part of natural air quality regulations.
NASA Astrophysics Data System (ADS)
Kirkbride, Martin P.; Deline, Philip
2017-04-01
Rapid 20th Century and early 21st Century retreat of cirque glaciers in the western European Alp has revealed extensive forelands across and onto which a variety of thermal, slope and fluvial process operate. These effect a transition from a subglacial to a proglacial landsystem, by reworking sediment and reorganising drainage networks. The landsystem achieves a state of preservation once no more adjustment is possible due to buffering by channel network evolution, channel armouring, vegetation growth, and (rarely) sediment exhaustion. We find that no consistent trajectory of change across all sites. Rather, paraglacial responses in the cirque environment show differences from the classical valley-glacier landscape response model, involving variable slope-channel coupling. Reasons for diverse and site-specific behaviour include inherited landforms of deglaciation (glacier ice core survival and degradation), scale and gradient, and surface materials (bedrock, fine till, and/or blocky till). At some cirques, these are anticipated to restrict the downstream propagation of a paraglacial "signal" of diffusion of fluvial-transported sediment through the catchment. At others, such a signal may be propagated from the headwater basin. However a high proportion of glacial material generally remains within the glacier foreland, due to some combination of (1) formation of proglacial basin sediment traps; (2) inefficiency of disorganised fluvial networks, (3) armouring of cirque floors by coarse melt-out-tills, and (4) locking of streams into rock-controlled channels. These effects appear to be more pronounce for the early 21st century paraglacial landsystems than they were for the post-"Little Ice Age" maximum landsystems of the late 19th Century at the same sites. The long-term preservation potential of most recent primary glacial deposits and within-cirque paraglacial landforms appears to be high. These landform assemblages represent the dramatic termination from the long-term advanced glacier positions of the Little Ice Age.
Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico
NASA Astrophysics Data System (ADS)
Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.
2007-05-01
This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.
Dean, W.
2002-01-01
Most of the sediment components that have accumulated in Elk Lake, Clearwater County, northwestern Minnesota, over the past 1500 years are authigenic or biogenic (CaCO3, biogenic SiO2, organic matter, iron and manganese oxyhydroxides, and iron phosphate) and are delivered to the sediment-water interface on a seasonal schedule where they are preserved as distinct annual laminae (varves). The annual biogeochemical cycles of these components are causally linked through the 'carbon pump', and are recapitulated in longer-term cycles, most prominently with a periodicity of about 400 years. Organic carbon is fixed in the epilimnion by photosynthetic removal of CO2, which also increases the pH, triggering the precipitation of CaCO3. The respiration and degradation of fixed organic carbon in the hypolimnion consumes dissolved oxygen, produces CO2, and lowers the pH so that the hypolimnion becomes anoxic and undersaturated with respect to CaCO3 during the summer. Some of the CaCO3 produced in the epilimnion is dissolved in the anoxic, lower pH hypolimnion and sediments. The amount of CaCO3 that is ultimately incorporated into the sediments is a function of how much is produced in the epilimnion and how much is consumed in the hypolimnion and the sediments. Iron, manganese, and phosphate accumulate in the anoxic hypolimnion throughout the summer. Sediment-trap studies show that at fall overturn, when iron-, manganese-, and phosphate-rich bottom waters mix with carbonate- and oxygen-rich surface waters, precipitation of iron and manganese oxyhydroxides, iron phosphate, and manganese carbonate begins and continues into the winter months. Detrital clastic material in the sediments of Elk Lake deposited over the last 1500 years is a minor component (<10% by weight) that is mostly wind-borne (eolian). Detailed analyses of the last 1500 years of the Elk Lake sediment record show distinct cycles in eolian clastic variables (e.g. aluminum, sodium, potassium, titanium, and quartz), with a periodicity of about 400 years. The 400-yr cycle in eolian clastic material does not correspond to the 400-yr cycles in redox-sensitive authigenic components, suggesting that the clastic component is responding to external forcing (wind) whereas the authigenic components are responding to internal forcing (productivity), although both may ultimately be forced by climate change. Variations in the oxygen and carbon isotopic composition of CaCO3 are small but appear to reflect small variations in ground water influx that are also driven by external forcing.
Spatial characterization of riparian buffer effects on sediment loads from watershed systems.
Momm, Henrique G; Bingner, Ronald L; Yuan, Yongping; Locke, Martin A; Wells, Robert R
2014-09-01
Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Forecasting the Cumulative Impacts of Dams on the Mekong Delta: Certainties and Uncertainties
NASA Astrophysics Data System (ADS)
Kondolf, G. M.; Rubin, Z.; Schmitt, R. J. P.
2016-12-01
The Mekong River basin is undergoing rapid hydroelectric development, with 7 large mainstem dams on the upper Mekong (Lancang) River in China and 133 dams planned for the Lower Mekong River basin (Laos, Cambodia, Thailand, Vietnam), 11 of which are on the mainstem. Prior analyses have shown that all these dams built as initially proposed would trap 96% of the natural sediment load to the Mekong Delta. Such a reduction in sediment supply would compromise the sustainability of the delta itself, but there are many uncertainties in the timing and pattern of land loss. The river will first erode in-channel sediment deposits, partly compensating for upstream sediment trapping until these deposits are exhausted. Other complicating factors include basin-wide accelerated land-use change, road construction, instream sand mining, dyking-off floodplains, and changing climate, accelerated subsidence from groundwater extraction, and sea level rise. It is certain that the Mekong Delta will undergo large changes in the coming decades, changes that will threaten its very existence. However, the multiplicity of compounding drivers and lack of good data lead to large uncertainties in forecasting changes in the sediment balance on the scale of a very large network. We quantify uncertainties in available data and consider changes due to additional, poorly quantified drivers (e.g., road construction), putting these drivers in perspective with the overall sediment budget. We developed a set of most-likely scenarios and their implications for the delta's future. Uncertainties are large, but there are certainties about the delta's future. If its sediment supply is nearly completely cut off (as would be the case with `business-as-usual' ongoing dam construction and sediment extraction), the Delta is certainly doomed to disappear in the face of rising seas, subsidence, and coastal erosion. The uncertainty is only when and how precisely the loss will progress.
Tang, Xianqiang; Wu, Min; Li, Rui
2018-09-01
The transportation and sedimentation of particulate phosphorus (PP) in a huge reservoir such as the Three Gorges Reservoir (TGR) are closely related to the phosphorus distribution characteristics and nutritional status of the water body. In this study, the PP distribution, sedimentation, and bioavailability in the mainstream section of the TGR were investigated through a field survey, indoor simulated settlement experiment, and historical data analysis. The results indicated that PP was the major component of the total phosphorus (TP) and that the Three Gorges Dam (TGD) trapped nearly 76.25% of suspended sediment (SS) and 75.35% of PP in the TGR, even during the flood season. A decline in flow velocity promoted the deposition of PP; additionally, PP concentrations gradually dropped from 0.35 mg/L in Chongqing to 0.02 mg/L in Zigui. The static PP sedimentation process adequately fitted a pseudo-second-order kinetic equation with a maximum correlation coefficient of 0.97. Moreover, more than half of the PP sedimentation process was achieved in less than 60 min for samples collected from the upper river reaches within simulated sedimentation process. The median particle size of SS and absolute value of the water column's zeta potential were negatively and positively related to the t 12 values of PP sedimentation, respectively. Compared with the concentration and particle size of SS obtained in the pre-TGR period, the values in the mainstream section of the TGR were lower. However, the TP and Fe/Al-P contents in SS increased several times. Due to the combined effects of flow velocity reduction and SS trapping, the water transparency and bioavailability of water column phosphorus were enhanced. Thus, the risk of water bloom outburst significantly increased when the impounded water level of 175 m in the TGR became the normal state. Copyright © 2018 Elsevier Ltd. All rights reserved.
Background radioactivity in sediments near Los Alamos, New Mexico.
McLin, Stephen G
2004-07-26
River and reservoir sediments have been collected annually by Los Alamos National Laboratory since 1974 and 1979, respectively. These background samples are collected from five river stations and four reservoirs located throughout northern New Mexico and southern Colorado. Analyses include 3H, 90Sr, 137Cs, total U, 238Pu, 239,240Pu, 241Am, gross alpha, gross beta, and gross gamma radioactivity. Surprisingly, there are no federal or state regulatory standards in the USA that specify how to compute background radioactivity values on sediments. Hence, the sample median (or 0.50 quantile) is proposed for this background because it reflects central data tendency and is distribution-free. Estimates for the upper limit of background radioactivity on river and reservoir sediments are made for sampled analytes using the 0.95 quantile (two-tail). These analyses also show that seven of ten analytes from reservoir sediments are normally distributed, or are normally distributed after a logarithmic or square root transformation. However, only three of ten analytes from river sediments are similarly distributed. In addition, isotope ratios for 137Cs/238Pu, 137Cs/239,240Pu, and 239,240Pu/238Pu from reservoir sediments are independent of clay content, total organic carbon/specific surface area (TOC/SSA) and cation exchange capacity/specific surface area (CEC/SSA) ratios. These TOC/SSA and CEC/SSA ratios reflect sediment organic carbon and surface charge densities that are associated with radionuclide absorption, adsorption, and ion exchange reactions on clay mineral structures. These latter ratio values greatly exceed the availability of background radionuclides in the environment, and insure that measured background levels are a maximum. Since finer-grained reservoir sediments contain larger clay-sized fractions compared to coarser river sediments, they show higher background levels for most analytes. Furthermore, radioactivity values on reservoir sediments have remained relatively constant since the early 1980s. These results suggest that clay contents in terrestrial sediments are often more important at concentrating background radionuclides than many other environmental factors, including geology, climate and vegetation. Hence, reservoirs and floodplains represent ideal radionuclide sampling locations because fine-grained materials are more easily trapped here. Ultimately, most of these differences still reflect spatial and temporal variability originating from global atmospheric nuclear weapons testing and disintegration of nuclear-powered satellites upon atmospheric reentry. Copyright 2004 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei
2017-05-01
Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change.
Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system
NASA Astrophysics Data System (ADS)
Picard, Michel; Schneider, Jean-Luc; Boudon, Georges
2006-12-01
Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.
Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system
Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.
1995-01-01
The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap efficiency of 34 percent for 1987, much less than the measured efficiency of 71 percent.
Al-Rousan, Saber; Al-Taani, Ahmed A; Rashdan, Maen
2016-09-15
The Gulf of Aqaba is of significant strategic and economic value to all gulf-bordering states, particularly to Jordan, where it provides Jordan with its only marine outlet. The Gulf is subject to a variety of impacts posing imminent ecological risk to its unique marine ecosystem. We attempted to investigate the status of metal pollution in the coastal sediments of the Jordanian Gulf of Aqaba. The distribution of Cd, Cr, Zn, Cu, Pb, Al, Fe, and Mn concentrations were determined in trapped and bottom-surface sediments at three selected sites at different depths. In addition, monthly sedimentation rates at varying water depths were also estimated at each sampling site using sediment traps. The high concentrations of Cd, Cr, Zn were recorded at the Phosphate Loading Birth (PLB) site followed by the Industrial Complex (IC) site indicating their dominant anthropogenic source (i.e., the contribution of industrial activities). However, Fe, Al, and Mn contents were related to inputs from the terrigenous (crustal) origin. Except for Al, Fe and Mn at the PLB site, the concentrations of metals exhibited a decreasing trend with increasing water depth (distance from the shoreline). The PLB site also showed the highest sedimentation rate which decreased with increasing water depth. The Enrichment factors (EFs) showed that Cd was the most enriched element in the sediment (indicating that Cd pollution is widespread), whereas the least enriched metal in sediments was Cu. EF values suggested that the coastal area is impacted by a combination of human and natural sources of metals, where the anthropogenic sources are intense in the PLB site (north of Gulf of Aqaba). The MSS area is potentially the least polluted, consistent with being a marine reserve. The IC sediments have been found to be impacted by human activities but less intensely compared to the PLB area. These results suggested that there are two sources of metals in sediments; the primary source is likely closer to PLB, while the secondary is nearby the IC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anderson, Chauncey W.
2007-01-01
Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.
Miyawaki, Takashi; Kawashima, Ayato; Honda, Katsuhisa
2008-01-01
A method involving supercritical fluid extraction (SFE) with a solid phase trap containing activated alumina was investigated for the rapid analysis of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin like polychlorinated biphenyls (DL-PCBs) in soils and sediments. The samples were extracted by using supercritical carbon dioxide with water (2% versus CO(2) flow velocity) being used as an entrainer at a pressure of 30 MPa and a temperature of 130 degrees C for 50 min. The extracts were adsorbed on an activated alumina trap that was maintained at a temperature of 150 degrees C, and then, PCDD/DFs and DL-PCBs were eluted with 20 ml of hexane at 60 degrees C. After concentration, they were measured with a high-resolution gas chromatograph interfaced to a high-resolution mass spectrometric detector. The average concentrations of PCDD/DFs and DL-PCBs corresponded to the results obtained by the conventional method, and the reproducibility of this SFE method was below 21% of the relative standard deviations for all samples. The total time required for the analysis of the pretreatment of this method was only 2 h.
Enhanced export of carbon by salps during the northeast monsoon period in the northern Arabian Sea
NASA Astrophysics Data System (ADS)
Ramaswamy, V.; Sarin, M. M.; Rengarajan, R.
2005-07-01
A drifting sediment trap was deployed and 234Th activity in the water column was measured to calculate export flux of carbon at a time-series station in the northern Arabian Sea (lat. 21°30' N; long. 64°00' E) during the winter monsoon, 10-23 February 1997. The sampling period was characterised by an extensive salp swarm, and salp faecal pellets were the dominant contributors to the particulate matter in the sediment traps. Average 234Th flux out of the photic zone was 2300 dpm m -2 d -1 and average POC/ 234Th ratio in trap-derived particles was 0.14 mg/dpm. Average 234Th-derived export flux of carbon was about 332 mg m -2 d -1, representing 36% of the daily primary production (PP) (925 mg C m -2 d -1). Export of about one-third of the daily PP during the end of the winter monsoon could be due to the episodic nature of salp swarms. Salp swarms are frequently observed in the Arabian Sea and may be a significant pathway for rapid export of carbon from the euphotic zone.
McMillan, Sara K.; Noe, Gregory
2017-01-01
Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.
NASA Astrophysics Data System (ADS)
Kawahata, Hodaka; Minoshima, Kayo; Ishizaki, Yui; Yamaoka, Kyoko; Gupta, Lallan P.; Nagao, Masayuki; Kuroyanagi, Azumi
2009-12-01
In order to understand settling process of particles in high sedimentation area, one mooring of sediment trap was deployed right above the IMAGES coring site in the northwestern North Pacific. In spite of two large maxima of settling particle fluxes in June-July 2002 and October-early January 2003, organic matter (OM) and carbonate showed higher peaks in June-July while lithogenics showed a large peak in October-early January with degraded OM (low aspartic acid/beta-alanine (Asp/Bala) and glutamic acid/gamma-aminobutyric (Glu/Gaba) ratios). Fresh OM production peaked in June-July 2002 and April-May 2003. Thus a large export production occurred in spring-early summer (April-June). Alkenone production was enhanced mainly in June-July. The mean alkenone SST of the settling particles was rather consistent with the observed annual mean SST and alkenone SST determined from the surface sediments. On the other hand, the maximum lithogenic flux along with the degradation of OM indicated that a significant amount of resuspended matter contaminated the bottom sediments. Based upon idealized model, the current and settling speeds make fractionation by size and density of resuspended particles during the settling process. Accumulation rates of lithogenics were ~ 5 times those in the sediment traps, which indicate large contribution of resuspended particles to settling particles especially during October-early January, when the Tsugaru current showed high current speed. These observations call our attention to carefully reconstruct paleo-environments based upon lithogenics and several other proxies such as biogenic silica, which would be biased for example in the record of IMAGES core at Site Shimokita located on the gentle continental slope.
Gyrotactic trapping: A numerical study
NASA Astrophysics Data System (ADS)
Ghorai, S.
2016-04-01
Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.
A 2000-year palaeoflood record from northwest England from lake sediments
NASA Astrophysics Data System (ADS)
Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet
2014-05-01
Greater insight into the relationship between climatic fluctuations and the frequency and magnitude of precipitation events over recent centuries is crucial in the context of future warming and projected intensification of hydrological extremes. However, the detection of trends in flood frequency and intensity is not a straightforward task as conventional flood series derived from instrumental sources rarely span sufficiently long timescales to capture the most extreme events. Usefully, the geomorphic effects of extreme hydrological events can be effectively recorded in upland lake basins as efficient sediment trapping preserves discharge-related proxy indicators (e.g., particle size). Provided distinct sedimentary signatures of historic floods are discernable and the sediment sequence can be well-constrained in time, these lacustrine archives offer a valuable data resource. We demonstrate that a series of sediment cores (3 - 5 m length) from Brotherswater, northwest England, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry, which are interpreted as reflecting a palaeoflood record extending to ~2000 yr BP. The presence of thick facies which exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Data from an on-going sediment trapping protocol at Brotherswater that shows a relationship between river discharge (recorded via short-term lake level change representing flood events) and the calibre of particles captured in the traps lends further support to our interpretation. Well-constrained chronologies were constructed for the cores through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating within a Bayesian age-depth modelling protocol. Geochemical markers of known-age that reflect phases of local point-source lead (Pb) mining were used to resolve time periods where radiocarbon dates returned multiple possible age solutions. We subsequently build a regression model using the time-window where recorded river discharge and the sedimentary record overlap (1961-2013) in order to reconstruct discharge estimates for the palaeoflood laminations. These quantitative palaeoflood data can thus be inserted into statistical flood frequency analyses and compared with outputs using instrumental data and regional flood information.
NASA Astrophysics Data System (ADS)
Kaplan, Kayla L.; Nordstrom, Karl F.; Jackson, Nancy L.
2016-10-01
Landforms present in undeveloped beach enclaves located between properties developed with houses and infrastructure are often left to evolve naturally but are influenced by the human structures near them. This field study evaluates how buildings and sand-trapping fences change the direction of wind approach, reduce wind speed, and restrict fetch distances for sediment entrainment, thereby reducing the potential for aeolian transport and development of dunes in enclaves. Field data were gathered in an 80 m long, 44 m deep beach enclave on the ocean shoreline of New Jersey, USA. Comparison of wind characteristics in the enclave with a site unaffected by buildings revealed that offshore winds in the enclave are reduced in strength and altered in direction by landward houses, increasing the relative importance of longshore winds. Vertical arrays of anemometers on the foredune crest, foredune toe and berm crest in the enclave revealed increasing wind speed with distance offshore, with strongest winds on the berm crest. Vertical cylindrical traps on the foredune crest, foredune toe, mid-backshore, berm crest and upper foreshore revealed the greatest rate of sediment transport on the berm crest. Sediment samples from the beach and from traps revealed limited potential for aeolian transport because of coarse grain sizes. Strong oblique onshore winds are common in this region and are normally important for transporting sand to dunes. The length of an enclave and the setback distance on its landward side determine the degree to which sediment delivered by oblique winds contributes to dune growth. The landward edge of the enclave (defined by a sand fence near the dune toe) is sheltered along its entire length from winds blowing at an angle to the shoreline of 25° or less. A foredune set back this distance in an enclave the length of an individual lot (about 20 m) would be sheltered at an angle of 57° or less, reducing the opportunity for dune building by onshore winds. Reduced potential for aeolian transport in enclaves implies that human actions may be required to build dunes artificially to protect buildings and roads from storm overwash.
Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand
NASA Astrophysics Data System (ADS)
Wattayakorn, Gullaya; Wolanski, Eric; Kjerfve, Björn
1990-11-01
The Klong Ngao estuary in Thailand is a 7·5-km long tidal creek facing the Andaman Sea and drains 11·5 km 2 of mangrove swamps. Physical processes in the estuary differ greatly from the wet season to the dry season. In the dry season, vertical homogeneity prevails and the swamp behaves like an evaporation pond. Salt and water are trapped upstream, longitudinal gradients result and, through tidal dispersion, nutrient outwelling may result for SiO 2, possibly NO 2 and NO 3, but not PO 4. The outflow is trapped in a coastal boundary layer. In the wet season, short-lived local floods generate a strong stratification in salinity and episodical flushing of the estuary and may make measurements of nutrient budgets inconclusive. The Klong Ngao mangrove swamp traps land-derived sediments in the wet season.
1989-06-01
thousands of acres of wetlands have been lost as a result of rapid coastal development. In view of their important ecological functions, it becomes... ecological roles: 1. trap sediment and stabilize bottom sediments; 2. carry on basic productivity that, in the eastern gulf, may considerably exceed the...be different, depending on the ecological attributes of the replacement habitat. This would result in no net loss of total habitat value, but might
NASA Astrophysics Data System (ADS)
Ziervogel, K.; Dike, C.; Asper, V.; Montoya, J.; Battles, J.; D`souza, N.; Passow, U.; Diercks, A.; Esch, M.; Joye, S.; Dewald, C.; Arnosti, C.
2016-07-01
Bottom nepheloid layers (BNLs) in the deep sea transport and remobilize considerable amounts of particulate matter, enhancing microbial cycling of organic matter in cold, deep water environments. We measured bacterial abundance, bacterial protein production, and activities of hydrolytic enzymes within and above a BNL that formed in the deep Mississippi Canyon, northern Gulf of Mexico, shortly after Hurricane Isaac had passed over the study area in late August 2012. The BNL was detected via beam attenuation in CTD casts over an area of at least 3.5 km2, extending up to 200 m above the seafloor at a water depth of 1500 m. A large fraction of the suspended matter in the BNL consisted of resuspended sediments, as indicated by high levels of lithogenic material collected in near-bottom sediment traps shortly before the start of our sampling campaign. Observations of suspended particle abundance and sizes throughout the water column, using a combined camera-CTD system (marine snow camera, MSC), revealed the presence of macroaggregates (>1 mm in diameter) within the BNL, indicating resuspension of canyon sediments. A distinct bacterial response to enhanced particle concentrations within the BNL was evident from the observation that the highest enzymatic activities (peptidase, β-glucosidase) and protein production (3H-leucine incorporation) were found within the most particle rich sections of the BNL. To investigate the effects of enhanced particle concentrations on bacterial activities in deep BNLs more directly, we conducted laboratory experiments with roller bottles filled with bottom water and amended with experimentally resuspended sediments from the study area. Macroaggregates formed within 1 day from resuspended sediments; by day 4 of the incubation bacterial cell numbers in treatments with resuspended sediments were more than twice as high as in those lacking sediment suspensions. Cell-specific enzymatic activities were also generally higher in the sediment-amended compared to the unamended treatments. The broader range and higher activities of polysaccharide hydrolases in the presence of resuspended sediments compared to the unamended water reflected enzymatic capabilities typical for benthic bacteria. Our data suggest that the formation of BNLs in the deep Gulf of Mexico can lead to transport of sedimentary organic matter into bottom waters, stimulating bacterial food web interactions. Such storm-induced resuspension may represent a possible mechanism for the redistribution of sedimented oil-fallout from the Deepwater Horizon spill in 2010.
Assessing the impacts of sediments from dredging on corals.
Jones, Ross; Bessell-Browne, Pia; Fisher, Rebecca; Klonowski, Wojciech; Slivkoff, Matthew
2016-01-15
There is a need to develop water quality thresholds for dredging near coral reefs that can relate physical pressures to biological responses and define exposure conditions above which effects could occur. Water quality characteristics during dredging have, however, not been well described. Using information from several major dredging projects, we describe sediment particle sizes in the water column/seabed, suspended sediment concentrations at different temporal scales during natural and dredging-related turbidity events, and changes in light quantity/quality underneath plumes. These conditions differ considerably from those used in past laboratory studies of the effects of sediments on corals. The review also discusses other problems associated with using information from past studies for developing thresholds such as the existence of multiple different and inter-connected cause-effect pathways (which can confuse/confound interpretations), the use of sediment proxies, and the reliance on information from sediment traps to justify exposure regimes in sedimentation experiments. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Methods and apparatus for producing and storing positrons and protons
Akers, Douglas W [Idaho Falls, ID
2010-07-06
Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.
Porous materials with pre-designed single-molecule traps for CO2 selective adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, JR; Yu, JM; Lu, WG
2013-02-26
Despite tremendous efforts, precise control in the synthesis of porous materials with pre-designed pore properties for desired applications remains challenging. Newly emerged porous metal-organic materials, such as metal-organic polyhedra and metal-organic frameworks, are amenable to design and property tuning, enabling precise control of functionality by accurate design of structures at the molecular level. Here we propose and validate, both experimentally and computationally, a precisely designed cavity, termed a 'single-molecule trap', with the desired size and properties suitable for trapping target CO2 molecules. Such a single-molecule trap can strengthen CO2-host interactions without evoking chemical bonding, thus showing potential for CO2 capture.more » Molecular single-molecule traps in the form of metal-organic polyhedra are designed, synthesised and tested for selective adsorption of CO2 over N-2 and CH4, demonstrating the trapping effect. Building these pre-designed single-molecule traps into extended frameworks yields metal-organic frameworks with efficient mass transfer, whereas the CO2 selective adsorption nature of single-molecule traps is preserved.« less
Rare earth element association with foraminifera
NASA Astrophysics Data System (ADS)
Roberts, Natalie L.; Piotrowski, Alexander M.; Elderfield, Henry; Eglinton, Timothy I.; Lomas, Michael W.
2012-10-01
Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ˜20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes significantly to elevated REE concentrations in foraminifera. The most likely source of REE ions at this stage of enrichment is from bottom waters and from the remineralisation of oxide phases which are in chemical equilibrium with the bottom waters. As planktonic foraminifera are buried below the sediment-water interface redox-sensitive ion concentrations are adjusted within the shells depending on the pore-water oxygen concentration. The concentration of ions which are passively redox sensitive, such as REE3+ ions, is also controlled to some extent by this process. We infer that (a) the Nd isotope signature of bottom water is preserved in planktonic foraminifera and (b) that it relies on the limited mobility of particle reactive REE3+ ions, aided in some environments by micron-scale precipitation of MnCO3. This study indicates that there may be sedimentary environments under which the bottom water Nd isotope signature is not preserved by planktonic foraminifera. Tests to validate other core sites must be carried out before downcore records can be used to interpret palaeoceanographic changes.
NASA Astrophysics Data System (ADS)
Revels, Brandi N.; Zhang, Ruifeng; Adkins, Jess F.; John, Seth G.
2015-10-01
Iron (Fe) is an essential nutrient for life on land and in the oceans. Iron stable isotope ratios (δ56Fe) can be used to study the biogeochemical cycling of Fe between particulate and dissolved phases in terrestrial and marine environments. We have investigated the dissolution of Fe from natural particles both to understand the mechanisms of Fe dissolution, and to choose a leach appropriate for extracting labile Fe phases of marine particles. With a goal of finding leaches which would be appropriate for studying dissolved-particle interactions in an oxic water column, three particle types were chosen including oxic seafloor sediments (MESS-3), terrestrial dust (Arizona Test Dust - A2 Fine), and ocean sediment trap material from the Cariaco basin. Four leaches were tested, including three acidic leaches similar to leaches previously applied to marine particles and sediments (25% acetic acid, 0.01 N HCl, and 0.5 N HCl) and a pH 8 oxalate-EDTA leach meant to mimic the dissolution of particles by organic complexation, as occurs in natural seawater. Each leach was applied for three different times (10 min, 2 h, 24 h) at three different temperatures (25 °C, 60 °C, 90 °C). MESS-3 was also leached under various redox conditions (0.02 M hydroxylamine hydrochloride or 0.02 M hydrogen peroxide). For all three sample types tested, we find a consistent relationship between the amount of Fe leached and leachate δ56Fe for all of the acidic leaches, and a different relationship between the amount of Fe leached and leachate δ56Fe for the oxalate-EDTA leach, suggesting that Fe was released through proton-promoted dissolution for all acidic leaches and by ligand-promoted dissolution for the oxalate-EDTA leach. Fe isotope fractionations of up to 2‰ were observed during acidic leaching of MESS-3 and Cariaco sediment trap material, but not for Arizona Test Dust, suggesting that sample composition influences fractionation, perhaps because Fe isotopes are greatly fractionated during leaching of silicates and clays but only minimally fractionated during dissolution of Fe oxyhydroxides. Two different analytical models were developed to explain the relationship between amount of Fe leached and δ56Fe, one of which assumes mixing between two Fe phases with different δ56Fe and different dissolution rates, and the other of which assumes dissolution of a single phase with a kinetic isotope effect. We apply both models to fit results from the acidic leaches of MESS-3 and find that the fit for both models is very similar, suggesting that isotope data will never be sufficient to distinguish between these two processes for natural materials. Next, we utilize our data to choose an optimal leach for application to marine particles. The oxalate-EDTA leach is well-suited to this purpose because it does not greatly fractionate Fe isotopes for a diversity of particle types over a wide variety of leaching conditions, and because it approximates the conditions by which particulate Fe dissolves in the oceans. We recommend a 2 h leach at 90 °C with 0.1 M oxalate and 0.05 M EDTA at pH 8 to measure labile ;ligand-leachable; particulate δ56Fe on natural marine materials with a range of compositions.
Annual net community production and the biological carbon flux in the ocean
NASA Astrophysics Data System (ADS)
Emerson, Steven
2014-01-01
The flux of biologically produced organic matter from the surface ocean (the biological pump), over an annual cycle, is equal to the annual net community production (ANCP). Experimental determinations of ANCP at ocean time series sites using a variety of different metabolite mass balances have made it possible to evaluate the accuracy of sediment trap fluxes and satellite-determined ocean carbon export. ANCP values at the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), Ocean Station Papa (OSP) are 3 ± 1 mol C m-2 yr-1—much less variable than presently suggested by satellite remote sensing measurements and global circulation models. ANCP determined from mass balances at these locations are 3-4 times particulate organic carbon fluxes measured in sediment traps. When the roles of dissolved organic carbon (DOC) flux, zooplankton migration, and depth-dependent respiration are considered these differences are reconciled at HOT and OSP but not at BATS, where measured particulate fluxes are about 3 times lower than expected. Even in the cases where sediment trap fluxes are accurate, it is not possible to "scale up" these measurements to determine ANCP without independent determinations of geographically variable DOC flux and zooplankton migration. Estimates of ANCP from satellite remote sensing using net primary production determined by the carbon-based productivity model suggests less geographic variability than its predecessor (the vertically generalized productivity model) and brings predictions at HOT and OSP closer to measurements; however, satellite-predicted ANCP at BATS is still 3 times too low.
NASA Astrophysics Data System (ADS)
Yokoi, Naoya; Abe, Yoshiyuki; Kitamura, Minoru; Honda, Makio C.; Yamaguchi, Atsushi
2018-03-01
Seasonal changes in zooplankton swimmer (ZS) abundance, biomass and community structure were evaluated based on samples collected by moored sediment traps at a depth of 200 m in the subarctic (SA) and subtropical (ST) western North Pacific. Based on these samples, we made comparisons on two topics: 1) latitudinal (subarctic vs. subtropical) changes in ZS abundance, biomass and community and 2) quantitative differences between the ZS and particle organic carbon (POC) fluxes based on data from moored or drifting sediment traps. The results showed that the ZS flux was greater in the SA (annual mean: 311 ind. m-2 day-1 or 258 mg C m-2 day-1) than in the ST (135 ind. m-2 day-1 or 38 mg C m-2 day-1). The peak ZS flux was observed from July-August in the SA and from April-May in the ST. The dominant taxa were Copepoda and Chaetognatha in the SA and Ostracoda and Mollusca in the ST. These latitudinal differences are likely related to the dominance of large-sized Copepoda in the SA, regional differences in the timing of the spring phytoplankton bloom, and the magnitude and size structure of primary producers. The percent composition of ZS to the total C flux (= ZS+POC flux) varied by region: 85-95% in the SA and 47-75% in the ST. These differences between the ZS composition and the total C flux are most likely caused by the dominance of large-sized Copepoda (Neocalanus spp. and Eucalanus bungii) in the SA.
Trace Elements in Cretaceous-Tertiary Boundary Clay at Gubbio, Italy
NASA Astrophysics Data System (ADS)
Ebihara, M.; Miura, T.
1992-07-01
In 1980, Alvarez et al. reported high Ir concentrations for the Cretaceous-Tertiary (hereafter, K/T) boundary layer, suggesting an impact of extraterrestrial material as a possible cause of the sudden mass extinction at the end of the Cretaceous period. Since then, high Ir abundances have been reported for K/T layers all over the world. Iridium enrichments were alternatively explained in terms of volcanic eruptions (Officer and Drake, 1982) or sedimentation (Zoller et al, 1982). Thus, abundances of Ir only cannot be critical in explaining the cause of the mass extinctions at the K/T boundary. In contrast to the fairly large number of Ir data for K/T boundary geological materials, only limited data are available for other siderophile elements. Relative abundances of siderophiles must be more informative in considering the causes of extinction, and provide further data on the type of extraterrestrial material of the projectile if siderophile abundances are in favor of an impact as the cause of the mass extinction at the K/T boundary. Thus, we analyzed additional K/T boundary materials for trace elements, including some of the siderophiles. A total of 7 samples collected from the K/T boundary near Gubbio, Italy (three from Bottaccione, four from Contessa) were analyzed. For comparison, we analyzed three additional samples, one from a Cretaceous sediment layer and the remaining two from a Tertiary layer. Four siderophile elements (Ir, Pt, Au, and Pd) were measured by RNAA and more than 25 elements, including 9 lanthanoids, were measured by INAA. The siderophiles listed above and Ni were found to be present in all of the boundary clay samples. They have C1-normalized abundances of 0.02 for Ni, Ir, and Pt, 0.04 for Pd, and Au was exceptionally depleted at 0.005. Both Ni and Ir show fairly small variations in abundances among the clay samples, whereas the other three elements show quite large variations, exceeding error limits. We believe that similar enrichments for these siderophiles in the K/T boundary clays were caused by an impact of extraterrestrial material having siderophiles that have not been largely fractionated. Similar abundance patterns of REE were confirmed not only for clay samples but also for the Cretaceous and Tertiary sediments. This suggests that sedimentation continued in similar circumstances without a large disturbance at the K/T boundary. We confirmed excellent correlations among Ir, As, and Sb abundances in the K/T samples, suggesting that they had a similar solution chemistry when sedimentation occurred. Both As and Sb show similar abundances, even for the Cretaceous as well as the Tertiary sediments, while Ir does not. Neither Pd nor Pt shows any correlation with these elements or with each other. This suggests that Ir was trapped into the clay together with As and Sb, but not with Pd or Pt. It is highly unlikely that these siderophiles were supplied only from sea water, and were eventually greatly enriched in clay materials, with the relative elemental abundances coinciding with those in chondrites. Thus, our data strongly suggest that a large impact of extraterrestrial material (chondritic?) caused the enrichment of siderophiles at K/T boundary. Acknowledgment. We are indebted to M. Ozima and S. Amari for samples analyzed in this work. References Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980) Science 208, 1095-1108. Officer, C.B. and Drake, C.L. (1982) Science 219, 1383-1390. Zoller, W.H., Parrington, J.R., and Kotra, J.M.P. (1983) Science 222, 1118-1120.
NASA Astrophysics Data System (ADS)
Anand, S. P.; Erram, Vinit C.; Patil, J. D.; Pawar, N. J.; Gupta, Gautam; Suryavanshi, R. A.
2016-03-01
Ground magnetic data collected over Chikotra River in the peripheral region of Deccan Volcanic Province (DVP) of Maharashtra located in Kolhapur district was analysed to throw light on the structural pattern and distribution of magnetic sources within the basin. In order to isolate the magnetic anomalies showing varying trend and amplitude, several transformation operations including wavelength filtering, and upward continuation has been carried out on the reduced to pole anomaly map. Qualitative interpretation of these products help identify the distribution of magnetic sources, viz., the Deccan basalts, dolerite intrusives and older greenstone and schist belts in the subsurface. Present study suggests that the Chikotra basin is composed of three structural units; a NE-SW unit superposed on deeper NW-SE unit with randomly distributed trap flows on the surface. One of the major outcome of the present study is the delineation of almost 900-m thick Proterozoic Kaladgi sediments below the Deccan trap flows. The NE-SW magnetic sources may probably represent intrusives into the Kaladgi sediments, while the deeper NW-SE trends are interpreted as the northward extension of the Dharwars, underneath the Deccan lava flows, that forms the basement for the deposition of Kaladgi sediments.
2012-04-21
the photoelectric effect. The typical shortest wavelengths needed for ion traps range from 194 nm for Hg+ to 493 nm for Ba +, corresponding to 6.4-2.5...REPORT Comprehensive Materials and Morphologies Study of Ion Traps (COMMIT) for scalable Quantum Computation - Final Report 14. ABSTRACT 16. SECURITY...CLASSIFICATION OF: Trapped ion systems, are extremely promising for large-scale quantum computation, but face a vexing problem, with motional quantum
NASA Astrophysics Data System (ADS)
Marquis, G. A.; Roy, A. G.
2012-02-01
This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.
Ortiz-León, Héctor J; Jesús-Navarrete, Alberto de; Cordero, Eloy Sosa
2007-03-01
In order to determine temporal and spatial distribution patterns of Callinectes sapidus, samplings were carried out during the cold-front (January-February), dry (May-June) and rainy (August-September, 2002) climatic seasons, in 30 sampling stations of Chetumal Bay, grouped in sectors A (14 stations), B (eight stations) and C (eight stations). In each sampling station crabs were collected from two transects parallel to the coast, each with three traps, separated by 30 m. Sediments were calcareous coarse and medium sand, white or lightly gray. A total of 1 031 specimens were collected. CPEU (Capture Per Effort Unit) differed spatially and temporally. Highest CPEU was found in sector C with 1.3 ind.trap(-1), and in the rainy season with 1.1 ind.trap(-1). Population was predominantly composed of male individuals. The male:female ratio was 15:1. Males and adults (group II) CPEU was significant different between sectors and climatic seasons. Both males and adults (group II) had a greater CPEU in sector C (1.2 ind.trap-) and in the rainy season (1.1 ind.trap(-1)). Abundance of female and juvenile individuals (group I) was low during the sampling period whereas group 0 juvenile individuals were not found. A greater relative frequency between sectors and climatic seasons were observed in 130-139 mm and 140-149 mm size interval (CW). C. sapidus occurred on sandy sediments in Chetumal Bay. Pearson product moment correlations exhibited significant relationships between CPEU and temperature, salinity and dissolved oxygen. In Chetumal Bay, the spatial and temporal distribution of C. sapidus can be related to salinity, temperature, habitat quality, food availability, recruitment and reproduction events of individuals.
Simulation of shoreline development in a groyne system, with a case study Sanur Bali beach
NASA Astrophysics Data System (ADS)
Gunawan, P. H.; Pudjaprasetya, S. R.
2018-03-01
The process of shoreline changes due to transport of sediment by littoral drift is studied in this paper. Pelnard-Considère is the commonly adopted model. This model is based on the principle of sediment conservation, without diffraction. In this research, we adopt the Pelnard-Considère equation with diffraction, and a numerical scheme based on the finite volume method is implemented. Shoreline development in a groyne system is then simulated. For a case study, the Sanur Bali Beach, Indonesia is considered, in which from Google Earth photos, the beach experiences changes of coastline caused by sediment trapped in a groyne system.
Brosnahan, Michael L; Ralston, David K; Fischer, Alexis D; Solow, Andrew R; Anderson, Donald M
2017-11-01
New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella , a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya , is also discussed.
Three dimensional separation trap based on dielectrophoresis and use thereof
Mariella, Jr., Raymond P.
2004-05-04
An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Watson, Helen; Stutter, Marc
2014-05-01
Over the past decade economic losses from floods have greatly increased, with sediment related impacts as a key feature of such events. Impacts include changes in river channel course, scour of river banks, sedimentation of infrastructure (e.g. bridges), and deposition of sand and gravel on farmland. Sediment deposition can in turn reduce conveyance capacity and lead to further increased flood risk. The EU Water Framework Directive and Floods Directive highlights that sustainable approaches to flood risk reduction should be used alongside and, where possible, replace traditional structural flood defences and activities that address sediment problems. Natural Flood Management(NFM) is promoted as a method that can reduce flood risk and manage sediment by incorporating natural hydrological and morphological processes. As such, NFM measures are designed to use these fluvial processes to manage the sources and pathways of flood waters and sediments. Techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes. Here we aim to assess the effectiveness of novel flood mitigation measures for reducing flood risk and capturing coarse sediment in rapidly responding headwater catchments. We present preliminary research findings from a densely instrumented research site (Bowmont catchment, Scotland (85km2)) which regularly experiences flood events with associated coarse sediment problems. NFM measures have been installed to capture course sediment and to store water more effectively on the flood plains during these flood events. For example, novel engineered wooden structures ('bar apex log jams') constructed in the river corridor are designed to trap sediment and log bank protection structures have been installed to stop bank erosion. Within a tributary catchment of the Bowmont (0.7km2), new flow restrictors have been installed on a headwater stream to slow the flow whilst collecting coarse sediment. These were designed to have a minimal impact on upland farming practices. In addition, tree planting is also occurring in the catchment for example, within gulley, on the riparian zone and hedgerow belts perpendicular to slopes. During a recent large event, the majority of 40 bar apex structures collected coarse sediment. However, only five were associated with high deposition and modification of the spatial pattern of deposition, which highlighted the importance both of structure design and location of these features to maximise their sediment trapping effectiveness and longevity.
NASA Astrophysics Data System (ADS)
Dong, Yuan; Li, Qian P.; Wu, Zhengchao; Zhang, Jia-Zhong
2016-12-01
Export fluxes of phosphorus (P) by sinking particles are important in studying ocean biogeochemical dynamics, whereas their composition and temporal variability are still inadequately understood in the global oceans, including the northern South China Sea (NSCS). A time-series study of particle fluxes was conducted at a mooring station adjacent to the Xisha Trough in the NSCS from September 2012 to September 2014, with sinking particles collected every two weeks by two sediment traps deployed at 500 m and 1500 m depths. Five operationally defined particulate P classes of sinking particles including loosely-bound P, Fe-bound P, CaCO3-bound P, detrital apatite P, and refractory organic P were quantified by a sequential extraction method (SEDEX). Our results revealed substantial variability in sinking particulate P composition at the Xisha over two years of samplings. Particulate inorganic P was largely contributed from Fe-bound P in the upper trap, but detrital P in the lower trap. Particulate organic P, including exchangeable organic P, CaCO3-bound organic P, and refractory organic P, contributed up to 50-55% of total sinking particulate P. Increase of CaCO3-bound P in the upper trap during 2014 could be related to a strong El Niño event with enhanced CaCO3 deposition. We also found sediment resuspension responsible for the unusual high particles fluxes at the lower trap based on analyses of a two-component mixing model. There was on average a total mass flux of 78±50 mg m-2 d-1 at the upper trap during the study period. A significant correlation between integrated primary productivity in the region and particle fluxes at 500 m of the station suggested the important role of biological production in controlling the concentration, composition, and export fluxes of sinking particulate P in the NSCS.
Efficient Retention of Mud for Land Building on the Mississippi Delta Plain
NASA Astrophysics Data System (ADS)
Esposito, C. R.; Shen, Z.; Tornqvist, T. E.; Marshak, J.; White, C. D.
2016-02-01
Levee breaching and crevasse splay deposition are fundamental drivers of floodplain and delta plain aggradation in lowland river systems, but questions persist as to whether floodplains and delta plains are faithful recorders of riverine sediment load. In the Mississippi River Delta, where land preservation strategies depend on the sediment delivery capability of human-made, managed crevasse splays, this gap in understanding is also a major management concern. Here we present data characterizing the deposit of the Attakapas Crevasse Splay, which was active in the Lafourche Subdelta of the Mississippi River Delta approximately 1100 to 600 years ago. At the time of its inception the splay was 100 river kilometers from the shoreline, and discharged into a mature cypress swamp. We use LiDAR data and 132 cores (up to 13 m deep and described at 10 cm intervals for sediment texture and organic matter) to develop a three-dimensional model of the crevasse splay deposit. Our model is sufficient to measure the sedimentary composition and volume of the entire deposit, and to resolve the channel bodies preserved within it. We demonstrate that the Attakapas Crevasse Splay deposit is dominated by mud, with only 5-8% of its mass consisting of sand. The sand fraction preserved in the splay is very similar to the sand fraction in suspension in the upper 5 to 10 meters of the modern Mississippi River, suggesting that the splay was a highly efficient trap for material that escaped the confines of the trunk channel. Accretion rates in the splay of 1-4 cm/yr persisted over centennial timescales, and sediment retention rates were between 70 and 100%. We attribute the extremely high sediment retention rate to the splay's protected inland location and its densely vegetated environment, and we note the contrast with lower sediment retention rates (20 to 30% according to various studies, although these estimates may be too low) estimated in settings on the open coast such as the Wax Lake Delta.
Leenheer, J.A.; Noyes, T.I.; Brown, P.A.
1994-01-01
The Mississippi River and some of its tributaries were sampled for natural organic substances dissolved in water and in suspended and bed sediments during seven sampling cruises from 1987-90. The sampling cruises were made during different seasons, in the free-flowing reaches of the river from St. Louis, Missouri, to New Orleans, Louisiana. The first three cruises were made during low-water conditions, and the last four cruises during high-water conditions. The purpose for sampling and characterizing natural organic substances in the various phases in the river was to provide an understanding of how these substances facilitate contaminant transport and transformations in the Mississippi River. Significant conclusions of this study were: (1) Natural organic substances appear to stabilize ' certain colloids against aggregation; therefore, these colloids remain in suspension and can act as transport agents that are not affected by sedimentation. Bacteria were found to be a significant fraction of organic colloids. (2) A new class of organic contaminants (polyethylene glycols) derived from nonionic surfactant residues was discovered dissolved with natural organic substances in water. These polyethylene glycols have the potential to affect both organic and inorganic contaminant transport in water. (3) The entire dissolved organic-matter component under varying hydrologic and seasonal conditions was characterized. (4) A method was developed to characterize organic matter in sediment by solid-state, 13C-nuclear magnetic resonance spectrometry. (5) The organic matter in suspended sediments was characterized by a variety of spectral and nonspectral methods. The protein component (significant in trace-metal binding) and lipid component (significant in organic-contaminant binding) were found to be major constituents in natural organic matter in suspended sediment. (6) Pools are reservoirs acting as traps of sedimentary organic matter of allochthonous origin and export material of autochthonous nitrogen. (7) A major portion of the mass of organic colloids in transport consisted of bacterial cells.
Method of capturing or trapping zinc using zinc getter materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunyadi Murph, Simona E.; Korinko, Paul S.
2017-07-11
A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.
Thomas, Séverine; Ridd, Peter
2005-01-01
Sediment accumulation rate is a frequently required parameter in environmental and management studies, in particular near coral reefs where sediment accumulation can potentially cause severe impact. However, opportunities to obtain accurate sediment accumulation measurements are often limited by a lack of adequate instrumentation, in particular for high temporal resolution monitoring. For instance the traditional use of sediment traps, as the most widespread technique, offers poor temporal resolution (commonly of weeks) besides having significant hydrodynamic shortcomings. Therefore, a new optical backscatter sediment accumulation sensor (SAS) was developed to continuously measure in situ short-term sediment accumulation in sensitive riverine and coastal environments, enabling high temporal and vertical resolution (order of 1 h and with a deposited thickness resolution in the order of 20 microm respectively). This allows investigations of various parameters that influence accumulation: tides, current, waves, rain, or anthropogenic activity such as sediment dumping. This paper briefly describes the SAS and presents three field applications on nearshore coral reefs at Ishigaki Island (Japan), Lihir Island (Papua New Guinea), and Magnetic Island (Australia).
Bothner, Michael H.; Casso, M.A.; Rendigs, R. R.; Lamothe, P.J.
2002-01-01
Since the new outfall for Boston's treated sewage effluent began operation on September 6, 2000, no change has been observed in concentrations of silver or Clostridium perfringens spores (an ecologically benign tracer of sewage), in bottom sediments at a site 2.5 km west of the outfall. In suspended sediment samples collected with a time-series sediment trap located 1.3 km south of the outfall, silver and C. perfringens spores increased by 38% and 103%, respectively, in post-outfall samples while chromium, copper, and zinc showed no change. All metal concentrations in sediments are <50% of warning levels established by the Massachusetts Water Resources Authority. An 11-year data set of bottom sediment characteristics collected three times per year prior to outfall startup provides perspective for the interpretation of post-outfall data. A greater than twofold increase in concentrations of sewage tracers (silver and C. perfringens) was observed in muddy sediments following the exceptional storm of December 11-16, 1992 that presumably moved contaminated inshore sediment offshore. ?? 2002 Elsevier Science Ltd. All rights reserved.
Kelderman, P; De Rozari, P; Mukhopadhyay, S; Ang'weya, R O
2012-01-01
In 2007/08, a study was undertaken on sediment dynamics in shallow Lake Markermeer, The Netherlands. Firstly, the sediment characteristics median grain size, mud content and loss on ignition showed a spatial as well as water depth related pattern indicating wind-induced sediment transport. Sediment dynamics were investigated in a sediment trap field survey at two stations. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with wind speeds. Resuspension rates for Lake Markermeer were very high, viz. ca. 1,000 g/m(2)day as an annual average, leading to high suspended solids (SS) contents, due to the large lake area and its shallowness (high 'Dynamic Ratio'). Sediment resuspension behaviour was further investigated in preliminary laboratory experiments using a 'micro-flume', applying increasing water currents onto five Lake Markermeer sediments. Resuspension showed a clear exponential behaviour. Finally, a 3-D model was set up for water quality and SS contents in Lake Markermeer; first results showed a good agreement between modelled and actual SS contents. Construction of artificial islands and dams will reduce wind fetches and may be expected to cause a substantial decrease in lake water turbidity.
Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation
Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.
2012-01-01
Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baly, L.; Otazo, M. R.; Molina, D.
2006-09-08
A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... generators with a total installed capacity of 408 megawatts; (5) an excavated tailrace and open channel to the lower reservoir; (6) a 138-kilovolt switchyard/ substation; (7) a gravel and sedimentation trap...
Mozambique upper fan: origin of depositional units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droz, L.; Mougenot, D.
1987-11-01
The upper Mozambique Fan includes a stable down-stream region, with a north-south channel flanked by thick (1.5 sec two-way traveltime) asymmetric levees, and a migrating upstream region where at least two main feeding paths have been successively dominant. From the Oligocene to early Miocene, the north-south Serpa Pinto Valley acted as the main conduit for the north Mozambique terrigenous sediments. From the middle Miocene, the west-east Zambezi Valley became the dominant path and supplied the fan with sediments transported by the Zambezi River from the central part of Mozanbique. The transfer from one sediment-feeding system to the other is relatedmore » to the abandonment of the Serpa Pinto Valley because of graben formation along the Davie Ridge, which trapped the sediments, and the increase of the Zambezi River sediment supply because of the creation and erosion of the East African Rift. 13 figures.« less
PAHs in the Great Barrier Reef Lagoon reach potentially toxic levels from coal port activities
NASA Astrophysics Data System (ADS)
Burns, Kathryn A.
2014-05-01
In view of the controversy over expanding the coastal coal ports bordering the Great Barrier Reef (GBR) Lagoon and the World Heritage Area, I re-evaluated the data published in Burns and Brinkman (2011). I used the US EPA procedures for the determination of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms (Hansen et al., 2003), and the new proposed ANZECC/ARMCANZ (2013) sediment quality guidelines (Simpson et al., 2013) and determined that the coastal sediments offshore from the Hay Point coal terminal and suspended sediments caught in sediment traps inshore and at the offshore coral reefs contained levels of PAHs that approach the estimates for toxicity to benthic and water column organisms. This result is discussed in relation to risks posed to the GBR ecosystem by the port practices and the imminent expansion of the Abbott Point, Hay Point and other coal terminals.
Dewey, Jack D.; Roybal, F.E.; Funderburg, D.E.
1979-01-01
Cross-section channel profiles, sediment transport and hydrologic data have been observed and computed for a series of pre-dam and post-dam investigations from 1970 to 1975 at 37 cross sections established along a 59-mile study reach from Cochiti Dam to Isleta Diversion Dam, New Mexico. Cochiti Dam began impounding water in November 1973. Because the dam will trap virtually all of the sediment load originating upstream and water discharge will be controlled, it is expected that equilibrium values of channel width, depth, slope and sediment-transport capability in the existing main stem of the Rio Grande will change. Changes in cross sections with time and space and changes in size distribution of sediments are documented. (Woodard-USGS).
Liftable Bedload Trap for Large Alpine Gravel-Bed Rivers - Experiences and Goals
NASA Astrophysics Data System (ADS)
Seitz, Hugo; Strahlhofer, Lukas; Habersack, Helmut
2010-05-01
The aim of the work is to figure out the bedload transport processes for the free flowing reach of the Drau River in Dellach, Drau Valley, amongst other measurement techniques also under the use of a recently invented liftable bedload trap. In general, there are some techniques for measuring transported debris in natural streams; we use collecting moving particles (Birkbeck-type traps, Large Helley Smith sampler) and indirectly determining transport intensity (geophones) at the study sites in Austria. In addition hydrological, geological, meteorological and other related data are collected. Two further almost fully equipped measurement stations in Lienz at the Drau River and its most important tributary Isel River, both large Alpine gravel-bed rivers, situated in the south western part of Austria are completing the integrative and innovative bedload measurement system. Former measurements in the study reach were performed also using mobile bedload samplers and fixed bedload samplers. Individually they all are adequate bedload measurement instruments - used in combination they are complementing one another, whereas each applied separately leads to specific deficits. In general the investigation pays special attention on results out of the geophone installations. The spatio-temporal distribution of the transported bedload material, its amount and the transport processes itself could be figured out. But for calibration purposes direct moving particle sampling is essential. Compared to Large Helley-Smith sampling fixed bedload traps are flood protected and robust to withstand the strain during flood conditions and so are capable to take bedload samples of e.g. a flood peak. The disadvantage of this type of direct bedload measurement is that in perennial alpine rivers the only chance to empty them and analyze their content is during the wintertime at very low water stages. Therefore a liftable bedload trap was installed direct downstream the geophone installation into the river bed of the Drau River in Dellach, Drau Valley, in 2008 as an enlargement of the since 2006 built bedload measurement system. The 1.6 m long and 0.5 m wide slot opening is held close in between measurements while the trap remains in zero position even with the river bed. During a flood event the slot can be opened unlocking the closure hydraulically. Transported bedload material is now able to enter the inner trap positioned on a balance to measure the increase of mass. The detected data is stored automatically in a computer device. Between flood events the water stage lowers and the bedload movement decreases; now it is possible to empty the trap for several times in a summer period. The trap is elevated over the water level, the cover will be dismounted and the inner trap removed with a crane for analyzing the traps content. After this the trap is inserted again and lowered ready for the next measurement. As a result it could be shown that the counted number of geophone impulses per unit time and its associated flow discharge is proportional to the trapped sediment volume. Measurements take place during the rainfall and snow melting season from May to August, and sometimes due to heavy rainfall in November. Furthermore, the assumed spatial and temporal variability of the bedload movement could now be proven. In addition it could be shown, that commonly used bedload predictors underestimate the measured bedload transport. In conclusion the results of the investigation are showing new aspects for understanding bedload transport processes, the installed traps will help to clarify the transport processes during flood events. The installed bedload measurement system will be improved and enlarged year by year. For further investigations there is a chance to test new measurement techniques under well known boundary conditions at the fully equipped gauging stations.
Reimnitz, Erk; Kempema, E.W.
1982-01-01
Strudel scours are craters as much as 20 m wide and 4 m deep, that are excavated by vertical drainage flow during the yearly spring flooding of vast reaches of fast ice surrounding arctic deltas; they form at a rate of about 2.5 km^-2 yr^-1. Monitoring two such craters in the Beaufort Sea, we found that in relatively unprotected sites they fill in by deposition from bedload in 2 to 3 years. Net westward sediment transport results in sand layers dipping at the angle of repose westward into the strudel-scour crater, whereas the west wall of the crater remains steep to vertical. Initially the crater traps almost all bedload: sand, pebbles, and organic detritus; as infilling progresses, the materials are increasingly winnowed, and bypassing must occur. Over a 20-m-wide sector, an exposed strudel scour trapped 360 m3 of bedload during two seasons; this infilling represents a bedload transport rate of 9 m3 yr^-1 m^-1. This rate should be applicable to a 4.5-km-wide zone with equal exposure and similar or shallower depth. Within this zone, the transport rate is 40,500 m3 yr^-1, similar to estimated longshore transport rates on local barrier beaches. On the basis of the established rate of cut and fill, all the delta-front deposits should consist of strudel-scour fill. Vibracores typically show dipping interbedded sand and lenses of organic material draped over very steep erosional contacts, and an absence of horizontal continuity of strata--criteria that should uniquely identify high-latitude deltaic deposits. Given a 2- to 3-year lifespan, most strudel scours seen in surveys must be old. The same holds true for ice gouges and other depressions not adjusted to summer waves and currents, although these features record events of only the past few years. In view of such high rates of bottom reworking of the shallow shelf, any human activities creating turbidity, such as dredging, would have little effect on the environment. However, huge amounts of transitory material trapped by long causeways planned for offshore development would result in major changes in the environment.
NASA Astrophysics Data System (ADS)
Nentwig, V.; Bahlburg, H.; Monthy, D.
2012-12-01
The Seychelles were severely affected by the December 26, 2004 tsunami in the Indian Ocean. Since the tsunami history of small islands often remains unclear due to a young historiography we conducted a study of onshore tsunami deposits on the Seychelles in order to understand the scale of impact of the 2004 Indian Ocean tsunami and potential predecessors. As part of this project we found and studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond bay on the east coast of Curieuse Island. The 2004 Indian Ocean tsunami caused a change of habitat due to sedimentation of an extended sand sheet in the mangrove forest. We present results of the first detailed sedimentological study of onshore tsunami deposits of the 2004 Indian Ocean tsunami conducted on the Seychelles. The Curieuse mangrove forest at Old Turtle Pond bay is part of the Curieuse Marine National Park. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The silt to fine sand sized and organic rich mangrove soil was subsequently covered by carbonate fine to medium sand (1.5 to 2.1 Φ) containing coarser carbonate shell debris which had been trapped outside the mangrove bay before the tsunami. The tsunami deposited a sand sheet which is organized into different lobes. They extend landwards to different inundation distances as a function of morphology. Maximum inundation distance is 200 m. The sediments often cover the pneumatophores of the mangroves. No landward fining trend of the sand sheet has been observed. On the different sand lobes carbonate-cemented sandstone debris ranging in size from 0.5 up to 12 cm occurs. Also numerous mostly fragmented shells of bivalves and molluscs were distributed on top of the sand lobes. Intact bivalve shells were mostly positioned with the convex side upwards. On small ledges of a granitic body at 120 m from the shore fragmented and complete shells were deposited at different elevations of up to 4 m. This implies a run up height of at least 4 m above sea level at this distance from the shore. Our study presents the mapping of the tsunamigenic sand lobes, their grain size distribution and petrographic variations of their components compared to the mangrove soil. The difference in the grain size and amount of organic material of the mangrove soil compared to the sand lobes indicate that the coarser material was entrained from outside of the mangrove forest by the tsunami. The similarity of the grain size distributions of the sediment of the sand lobes and of a reference beach/intertidal sample suggests the lagoon between the mangrove forest and the causeway as the probable sediment source area. The fact that the mangrove forest is surrounded by granitic hills and the appearance of the carbonate sandstone debris mostly on the surface of the sand sheets supports this assumption.
NASA Astrophysics Data System (ADS)
Sukigara, Chiho; Mino, Yoshihisa; Tripathy, Sarat Chandra; Ishizaka, Joji; Matsuno, Takeshi
2017-12-01
Intensive surveys with repeated CTD and microstructure turbulent observations, water and sediments sampling as well as onboard incubation and sediment trap experiments were conducted to reveal the nitrogen budget in the center of the East China Sea (ECS) during July 2010 and 2011. Low salinity water (Changjiang Diluted Water, CDW) covered the study area in 2010, but not in 2011. Higher chlorophyll a (chl. a) concentration, primary productivity, and downward particle flux in the upper layer were observed in 2010 than those in 2011. Existence of the CDW resulted in a steep pycnocline and an associated subsurface chl. a maximum (SCM) layer directly beneath the CDW. From chemical analyses of particulate carbon and nitrogen contents and isotope ratios, it became apparent that the particles sunk out the euphotic zone in 2010 was primarily originated in the CDW layer and secondly in the SCM layer. Whereas, in 2011, sinking particles were originated in the surface layer but a part of them were decomposed in the bottom of pycnocline. Our findings indicate that the CDW would supply particles into the deep layer and contribute to the downward transport of materials and the efficiency of biological pump in the ECS.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... open channel to the lower reservoir; (6) a 138-kilovolt switchyard/ substation; (7) a gravel and sedimentation trap (bin wall) on the East Fork of the Black River; and (8) associated ancillary equipment. m. A...
Cooney, T.W.
1988-01-01
In 1941 a Coastal Plain reach of the Santee River was impounded to form Lake Marion and diverted into a diked-off part of the Cooper River basin to form Lake Moultrie. Rates of sediment inflow and outflow of the lakes were determined by the U.S. Geological Survey for the periods July 1966 - June 1968 and October 1983 - March 1985. Total sediment discharge was estimated for two inflow stations and continuous streamflow monitors and automatic suspended-sediment samplers were used for computation of suspended-sediment discharge. Bedload discharge was computed by the modified Einstein procedure. Suspended-sediment discharge was monitored at three outflow stations, with the suspended-sediment concentration measured on a weekly basis. During the 1983-1985 study, mean annual suspended-sediment inflow to Lakes Marion and Moultrie was estimated to be 722,000 tons, and the outflow was estimated at 175,000 tons, for a trap efficiency of 76% and a deposition rate of about 547,000 tons/year. This is about 33% less than the deposition rate determined during the 1966-68 study. The deposition rate for suspended and bedload sediment during the 1983 - 1985 study was about 650,000 tons/year. (USGS)
Van Metre, P.C.; Callender, E.
1996-01-01
Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.
Muddy marine sediments are gels
NASA Astrophysics Data System (ADS)
Dorgan, K. M.; Clemo, W. C.; Barry, M. A.; Johnson, B.
2016-02-01
Marine sediments cover 70% of the earth's surface, are important sites of carbon burial and nutrient regeneration, and provide habitat for diverse and abundant infaunal communities. The majority of these sediments are muds, in which bioturbation affects sediment structure and geochemical gradients. How infaunal activites result in particle mixing depends on the mechanical properties of muddy sediments. At the scale of burrowing animals, muds are elastic solids. Animals move through these elastic muds by extending crack-shaped burrows by fracture. The underlying mechanism driving this elasticity, however, has not been explicitly illustrated. Here, we test the hypothesis that the elastic behavior of muddy sediments is disrupted by removal of organic material by measuring fracture toughness and stiffness of manipulated and control sediments. Our results indicate that the mechanical responses of sediments to forces are governed by the muco-polymeric matrix of organic material. Similar effects of organic material oxidation were not observed in sands, indicating a clear mechanical distinction between fine- and coarse-grained sediments. Muddy sediments are gels, not fluids or granular materials, and models of how sediments respond to forces imposed by, e.g., organisms, gases, and ambient water should explicitly consider the role of organic material.
Marsh vertical accretion in a Southern California Estuary, U.S.A
Cahoon, D.R.; Lynch, J.C.; Powell, A.N.
1996-01-01
Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.
Exploiting LSPIV to assess debris-flow velocities in the field
NASA Astrophysics Data System (ADS)
Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco
2018-01-01
The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.
Marsh Vertical Accretion in a Southern California Estuary, U.S.A.
NASA Astrophysics Data System (ADS)
Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.
1996-07-01
Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.
Tectonics and hydrocarbon potential of the Barents Megatrough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, D.; Vinogradov, A.; Yunov, A.
1991-08-01
Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less
Sedimentation survey of Lago de Matrullas, Puerto Rico, December 2001
Soler-López, Luis R.
2003-01-01
Lago de Matrullas reservoir, constructed in 1934, is located at an altitude of approximately 730 meters above mean sea level in the municipality of Orocovis in central Puerto Rico, and has a drainage area of 11.45 square kilometers. The reservoir is part of the Puerto Rico Electric Power Authority Toro Negro Hydroelectric Project, which also includes the Lago El Guineo reservoir and a hydroelectric plant to the south of the insular hydrographic divide. Historically, the drainage area had been protected from soil erosion by dense vegetation and the lack of basin development. However, transportation, potable water, and electric power infrastructure construction has facilitated development in rural areas resulting in the clearing of land. This trend in land-use changes is impacting the useful life of Lago de Matrullas. The reservoir storage capacity has been reduced from 3.71 million cubic meters in 1934 to 3.08 million cubic meters in 2001. This represents a total storage-capacity loss of 0.63 million cubic meters by 2001 (17 percent), or a long-term annual storage loss of 0.25 percent per year. The sediment trapping efficiency of Lago de Matrullas has been estimated at approximately 90 percent. If the current long-term sedimentation rate continues, Lago de Matrullas would fill by the year 2328. However, this life expectancy could be reduced at a faster than predicted rate as a result of rural development in the Lago de Matrullas basin and the high sediment trapping efficiency of the reservoir.
Barber, L.B.; Writer, J.H.
1998-01-01
The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides fieldscale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides field-scale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.
Smalling, K.L.; Kuivila, K.M.
2008-01-01
A multi-residue method was developed for the simultaneous determination of 85 current-use and legacy organochlorine pesticides in a single sediment sample. After microwave-assisted extraction, clean-up of samples was optimized using gel permeation chromatography and either stacked carbon and alumina solid-phase extraction cartridges or a deactivated Florisil column. Analytes were determined by gas chromatography with ion-trap mass spectrometry and electron capture detection. Method detection limits ranged from 0.6 to 8.9 ??g/kg dry weight. Bed and suspended sediments from a variety of locations were analyzed to validate the method and 29 pesticides, including at least 1 from every class, were detected.
Mountain wetlands: efficient uranium filters - potential impacts
Owen, D.E.; Otton, J.K.
1995-01-01
Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-Jie, E-mail: qfyingjie@iphy.ac.cn; Institute of Physics, Chinese Academy of Sciences, Beijing, 100190; Han, Wei
In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement suddenmore » death can be prevented by weak measurement in photonic band gap.« less
NASA Astrophysics Data System (ADS)
Chen, H. Y.; Chen, S. C.; Chao, W. A.
2015-12-01
Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.
Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter
2015-01-01
Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d-1, whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d-1, which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. PMID:26146995
Spatial Patterns of Road-Induced Backwater Sediment Storage Across A Rural to Urban Gradient
NASA Astrophysics Data System (ADS)
Copeland, M.; Bain, D.
2017-12-01
Road networks dominate many landscapes and often interact with stream networks to alter basin sediment dynamics. Currently, conceptual models of catchment-scale sediment fluxes remain at a coarse scale (i.e., the entire catchment) and are unable to resolve important human-driven sediment storage processes. The spatio-temporal complexity of the interactions between road networks and streams has made it challenging to infer the fine-scale impacts of road crossings on fluvial systems. Here, road crossings in multiple drainage networks and the associated backwater sediment accumulations are examined along a rural to urban gradient around Pittsburgh, PA. Preliminary results indicate that upstream drainage area, channel slope, and human activities control stream crossing type and therefore drive associated sediment accumulation, particularly in urban headwater channels. The data indicate that the combination of land use intensity and infrastructure age influences the volume of sediment trapped in road-induced backwaters. Clarification of the coupled human, road-building, and natural stream adjustments will allow for more effective treatments of fluvial impacts, such as the "urban stream syndrome."
Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.
2003-01-01
Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.
A detrital sediment budget of a Maldivian reef platform
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Kench, P. S.
2014-10-01
Sediment dynamics are an important control on the morphology and development of reef systems by actively removing and redistributing excess detrital sediment. This study presents quantitative data from direct point measurements of sediment transport on the platform surface and fore-reef slope of Vabbinfaru reef, North Malé Atoll, Maldives. A suite of sediment traps were used to construct actual rates of platform sediment fluxes and off-reef export over different spatial and temporal (seasonal) scales to establish key sediment transport pathways. Findings showed that high sediment fluxes occur on Vabbinfaru platform in the absence of major storm activity (up to 1905 g m- 1 d- 1), with 95% of annual transport occurring during the southwest monsoon as a result of increased wave energy. Climate-driven changes in the platform process regime caused a reversal of net sediment transport pathways between each monsoon season. Off-reef export rates were high, reaching a maximum of 12.58 kg m- 1 y- 1 for gravel and 407 g m- 1 d- 1 for sand-sized sediment. An estimated 127,120 kg is exported from the platform annually equating to a significant loss from the reef sediment budget and contributing to the long-term geomorphic development of the fore-reef slope and atoll basin. Detrital sediment reservoirs on Vabbinfaru are not purely depositional carbonate sinks, but rather temporary stores that are important in the transfer of sediment between reef zones.
Trapping Efficiency of Agricultural Runoff in a Modified Riverine Backwater Wetland
USDA-ARS?s Scientific Manuscript database
Riverine backwater wetlands within river floodplains have important economic and ecological functions such as acting as filters for suspended sediment, nutrients and pesticides entering from adjacent agricultural fields. These wetlands hydrology can be modified to increase the efficiency of their n...
Effects of chemical states of carbon on deuterium retention in carbon-containing materials
NASA Astrophysics Data System (ADS)
Oyaidzu, Makoto; Kimura, Hiromi; Nakahata, Toshihiko; Nishikawa, Yusuke; Tokitani, Masayuki; Oya, Yasuhisa; Iwakiri, Hirotomo; Yoshida, Naoaki; Okuno, Kenji
2007-08-01
Deuterium retention behavior in highly oriented pyrolytic graphite (HOPG), poly-crystalline diamond, poly-crystalline SiC, sintered WC, and converted B 4C were investigated to reveal tritium behavior in re-deposition and co-deposition layers. Such layers would contain carbon, when the first wall and/or divertor were made of graphite or carbon-containing materials. Furthermore, the employment of other materials such as tungsten, and first wall conditioning such as boronization would complicate the layers. No different deuterium trapping sites due to carbon from those in HOPG were found in all the samples, where two deuterium trapping processes were observed: hot atom chemical trapping of energetic deuterium by a dangling bond of carbon and thermochemical trapping of thermalized deuterium in a constituent atom vacancy surrounded by carbons. Additionally, the latter reaction could be easily counteracted by or competed with the other deuterium trapping reactions by constituent atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repeta, D.J.; Gagosian, R.B.
1987-04-01
The authors report here the distribution of carotenoids in Peru marine surface sediments, including partial identification of 37 pigments, 33 of which have not been previously reported to occur in marine sediments. Their analysis demonstrates that zooplanktonic crustacea, diatoms, dinoflagellates, cryptomonads, purple nonsulfur photosynthetic bacteria, and unidentified species of photosynthetic bacteria are contributors to sedimentary organic matter. Fucoxanthin, fucoxanthinol, diadinoxanthin, peridinin and peridininol, the principal carotenoids of diatoms and dinoflagellates observed in sediment traps, are nearly absent from their sample, even though these phytoplankton are the primary source of organic matter. They attribute this to the presence of 5,6 epoxidesmore » in these pigments, a feature which causes rapid cleavage of the polyene and fragmentation to low molecular weight compounds.« less
2000 years of sustainable use of watersheds and coral reefs in Pacific Islands: A review for Palau
NASA Astrophysics Data System (ADS)
Koshiba, Shirley; Besebes, Meked; Soaladaob, Kiblas; Ngiraingas, Madelsar; Isechal, Adelle Lukes; Victor, Steven; Golbuu, Yimnang
2014-05-01
In Palau and everywhere in the world, coastal coral reefs are threatened by sedimentation resulting from land clearing in the watersheds. Palau's largest island of Babeldaob is particularly susceptible to significant erosion due to its steep topography, high rainfall, and highly erodible volcanic soil. Previous studies have shown the damaging impacts of sedimentation on coral reefs around Babeldaob Island. Related studies conducted in Micronesia have also documented that mangroves can trap about 30% of the fine eroded sediment from land. This paper examines the sediment trapping capability of cultivated wetlands, in particular taro (Colocasia esculenta) fields, which are natural wetlands used to grow taro, a main staple crop for the population. A 7-months long field study was undertaken to quantify the sediment accumulation rate for taro fields and to determine their sediment trapping efficiency. The results showed that the taro fields were able to trap on average 90% of sediment, therefore sheltering coastal coral reefs and their fisheries from the negative impacts of terrestrial runoff. Based on the results of this study, we suggest that the combined sediment trapping capacity of taro fields and mangroves helped reduce sedimentation on coral reefs around Babeldaob Island. This enabled human settlement for over 2000 years on a small Pacific Island with the main staple food being taro for starch and reef fish for protein. Even with a population of 30,000 people over Babeldaob Island, the living was sustainable for at least 1000 years, implying that the population was able to survive and prosper with its main food being the starch from taro fields and protein from reef fish. While there was intensive cultivation on land the sustainability of reef fisheries must have required that the reef be sheltered from excessive soil erosion.The structure of the taro field (mesei) initialized by the Palauan ancestors, has been maintained to this day. Their development, probably mostly after about A.D. 900 to 1100, was presumably the culmination of accelerated erosion in the island's interior following extensive clearing of the vegetation on slopes. Sediment analyses, radiocarbon dating, and archaeological investigations indicate substantial inland land disturbance starting around 2400 years ago (Liston and Tuggle, 2006; Liston, 2009). These findings almost certainly signify the use of the interior of Babeldaob Island by this time, including the onset of major earthwork (terrace) construction. Intensive and extensive inland use continued for about another 1200 years. The continuous deposition of inland erosional soils expanded the coastal plains and formed expansive fertile wetlands” (Athens, 2009).Culturally in Palau taro fields were tendered by women (Del Rosario and Esguerra, 2003). In other parts of Micronesia, taro is planted in well drained mixed gardens or ditches (Falanruw, 1980; Englberger et al., 2009). In Palau taro is commonly grown in swampy areas, often man-made, in the lowlands usually just upstream of the mangrove areas. Traditional management of taro cultivation in Palau can be considered a type of intensive agricultural method found in societies that possess a complex social structure that is reflected in traditional Palauan society. Taro cultivation in Palau is an amalgamation of skills and knowledge for both the plant and agricultural system.Palau taro field structure, regulations of water flow and management have persisted for many generations and have proven to an integral part of Palauan life which continues to be seen today. Taro fields are distinguished separately depending on cultivation methods and taro species being planted. To illustrate, an omrekongel is a marsh land in which giant taro (Cyrtosperma merkusii) is planted. A mesei is an irrigated wet land for planting taro (Colocasia esculenta) and dechel is a marsh land where taro and giant taro is cultivated (Palau Society of Historians, 2001). Culturally, Cyrtosperma is treated as a food source for famine where it has high resistance to saltwater and longer plant life (3-5 years); it's a rich source of starch in times of droughts and other natural disaster. Colocasia, on the other hand, is viewed as prestigious source of food in Palau. Whereas Cyrtosperma requires little tending once it has been planted Colocasia is more delicate for its fragility and shorter plant life (8-12 months). Therefore more efforts are spent tending Colocasia than Cyrtosperma (McKnight and Obak, 1960; Bammann and Wey, 1991). Although both are eaten quite often, Colocasia can be found in many aspects of Palauan cultural practices (funerals, first birth ceremonies, transfer of title ceremonies) and used symbolically in chants, dances, proverbs, and stories with moral lessons (Palau Society of Historians, 2008).
Zhang, Qian; Hirsch, Robert M; Ball, William P
2016-02-16
Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.
Adhikari, Puspa L; Maiti, Kanchan; Bosu, Somiddho; Jones, Patrick R
2016-06-15
Particle-mediated vertical flux of polycyclic aromatic hydrocarbons (PAHs) plays an important role in their removal from upper oceans and sets a limit on the amount delivered to the deep-sea sediments. In this study, we applied a one-dimensional steady-state (234)Th scavenging model to estimate vertical flux of PAHs in the northern Gulf of Mexico and compared them with sediment trap based flux estimates. The (234)Th-based ∑PAH43 fluxes were 6.7±1.0μgm(-2)d(-1) and 3.7±0.6μgm(-2)d(-1) while sediment trap-based fluxes were 4.0±0.6μgm(-2)d(-1) and 4.5±0.7μgm(-2)d(-1) at 150m and 250m, respectively. Alkylated homologues contributed to 80% of the total PAH fluxes which is in contrary to other regions where combustion derived parent PAHs dominate the fluxes. The results indicate that the (238)U-(234)Th disequilibria can be an effective tracer of particulate PAH fluxes in upper mesopelagic zones and can provide flux estimates with high spatial coverage needed to quantify their long term fate and transport in the marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Qian; Hirsch, Robert M.; Ball, William P.
2016-01-01
Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay’s largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river’s mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986–2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.
Optical trapping and optical force positioning of two-dimensional materials.
Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M
2018-01-18
In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.
Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, H.L.; Word, J.Q.; Kohn, N.P.
1993-10-01
The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less
NASA Astrophysics Data System (ADS)
Méar, Y.; Poizot, E.; Murat, A.; Lesueur, P.; Thomas, M.
2006-12-01
The eastern Bay of the Seine (English Channel) was the subject in 1991 of a sampling survey of superficial sediments. Geostatistic tools were used to examine the complexity of the spatial distribution of the fine-grained fraction (<50 μm). A central depocentre of fine sediments (i.e. content up to 50%) oriented in a NW-SE direction in a muddy coastal strip, in a very high energy hydrodynamical situation due to storm swells and its megatidal setting, is for the first time recognised and discussed. Within this sedimentary unit, the distribution of the fine fraction is very heterogeneous, with mud patches of less than 4000 m diameter; the boundary between these mud patches and their substratum is very sharp. The distribution of this fine fraction appears to be controlled by an anticyclonic eddy located off the Pays de Caux. Under the influence of this, the suspended material expelled from the Seine estuary moves along the coast and swings off Antifer harbour, towards the NW. It is trapped within this eddy because of the settling of suspended particulate matter. Both at a general scale and a local scale the morphology (whether inherited or due to modern processes) has a strong influence on the spatial distribution of the fine fraction. At the general scale, the basin-like shape of the area facilitates the silting, and the presence of the submarine dunes, called "Ridins d'Antifer", clearly determines the northern limit of the muddy zone. At a local scale, the same influence is obvious: paleovalleys trap the fine sediments, whereas isolated sand dunes and ripples limit the silting. This duality of role of the morphology is therefore one of the reasons why the muddy surface is extremely heterogeneous spatially. The presence of an important population of suspension feeding echinoderm, the brittle-star Ophiothrix fragilis Abildgaard, has led to a local increase in the silting, and to the modification of the physicochemical and sedimentological parameters. A complex relationship is shown to occur between the amount of fine fraction and the number of brittle-stars (ind. m -2). Classical statistical methods are not appropriate to study the spatial distribution of the mud fraction, because the spatial component of the percentage of the distribution is not integrated in the analysis. On the other hand, this is the main property of the geostatistic concepts. The use of geostatistic tools within a strict and clearly identified procedure enables the proposal of an accurate cartography. Further application of the proposed protocol (based on a semivariographic study and a conditional simulation interpolation) for surficial sediments mapping will help explain spatial and temporal variations of fine-grained fraction. Then assessments of sedimentation and erosion stages allow highlighting signature of environmental processes.
Belt, Edward S.; Lyons, P.C.
1990-01-01
Two differential depositional sequences are recognized within a 37-m-thick lowermost section of the Conemaugh Group of Late Pennsylvanian (Westphalian D) age in the southern part of the Upper Potomac coal field (panhandle of Maryland and adjacent West Virginia). The first sequence is dominated by the Upper Freeport coal bed and zone (UF); the UF consists of a complex of interfingered thick coal beds and mudrocks. The UF underlies the entire 500 km2 study area (approximately 40 km in a NE-SW direction). The second sequence is dominated by medium- to coarse-grained sandstone and pebbly sandstone. They were deposited in channel belts that cut into and interfingered laterally with mudrock and fine- to medium-grained sandstone facies of floodbasin and crevasse-lobe origin. Thin lenticular coals occur in the second sequence. Nowhere in the study area does coarse-grained sandstone similar to the sandstone of the channel belts of the second sequence occur within the UF. However, 20 km north of the study area, coarse channel belts are found that are apparently synchronous with the UF (Lyons et al., 1984). The southeastern margin of the study are is bounded by the Allegheny Front. Between it and the North Mountain thrust (75 km to the southeast), lie at least eight other thrusts of unknown extent (Wilson, 1887). All these thrusts are oriented northwest; Devonian and older strata are exposed at the surface between the Allegheny Front and the North Mountain thrust. A blind-thrust ridge model is proposed to explain the relation of the two markedly depositional sequences to the thrusts that lie to the southeast of the Upper Potomac coal field. This model indicates that thrust ridges diverted coarse clastics from entering the swamp during a period when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions are envisioned to have developed parallel to the Appalachian orogen during Middle and early Late Pennsylvanian time. A blind thrust developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.
C:N:P Molar Ratios, Sources and 14C Dating of Surficial Sediments from the NW Slope of Cuba.
de la Lanza Espino, Guadalupe; Soto, Luis A
2015-01-01
The surficial sediments recovered from 12 sites located near the channel axis of the Florida Straits and the lower slope off NW Cuba were analyzed for total organic carbon (TOC), nitrogen (TN), phosphorus (TP), elemental C:N:P ratios, C and N isotopic values, and 14C dating. The depth profiles of TOC, TN, and TP (0-18 cm) displayed a downcore trend and a significant variation. The TOC values were low (0.15 to 0.62%; 66 to 516 µmol g(-1)). Sites near the island's lower slope had lower TOC average concentrations (158-333 µmol g(-1)) than those closer to the channel axis (averaging 341-516 µmol g(-1); p <0.05). The TN concentrations near the lower slope attained 0.11% (80 µmol g(-1)), whereas, towards the channel axis, they decreased to 0.07% (55 µmol g(-1); p<0.05). The C:N ratios ranged from 1.9 to 10.2. The mean molar C:N ratio (5.4) indicated a marine hemipelagic deposition. The TP was lower at sites near the lower slope (38.4 to 50.0 µmol gv; 0.12% to 0.16%) than those near the channel axis (50.0 to 66 µmol g(-1); 0.15 to 0.21%). C:P fluctuated from 7.7 to 14.1 in the surficial sediment layer. The bulk organic δ13Corg and δ15N values confirmed pelagic organic sources, and the 14C dating revealed that the sediments were deposited during the Holocene (1000-5000 yr BP). We suggest that the hydrodynamic conditions in the Straits influence vertical and advective fluxes of particulate organic material trapped in the mixed-layer, which reduces the particulate matter flux to the seabed.
Decadal to Millennial Sedimentation Patterns of the Hudson River Estuary
NASA Astrophysics Data System (ADS)
Jones, M.; McHugh, C. M.; Burckle, L.; Pekar, S.; Pereira, G.; Ryan, W. B.; Bell, R.; Carbotte, S.
2002-12-01
The Hudson River Estuary (HRE) is adjacent to large metropolitan areas including New York City. Understanding the variable energy conditions for transporting sediments is key to deal with environmental pollution such as the controversial burial and dredging of PCB's in the HRE. We studied sediment transport in the HRE by examining more than 150 cores and grab samples interpreted within the framework of acoustic images. The HRE sedimentary environments were defined based on quantitative estimates of grain size, sedimentary structures, bioturbation, and sedimentation rates and were divided into: channel, channel banks, subtidal flats, tributaries, and islands. Diatom assemblages were used to determine the extent of salt-water intrusion and sediment reworking in the estuary. Along a longitudinal profile, the estuary can be subdivided into: (1) sandy inner fluvial (furthest upstream), (2) muddy central portions, and (3) sandy outer marine. We classified sedimentary facies for the central and fluvial parts of the system (1 and 2). The HRE basin is nearly filled with sediment and tidal energy is focused within the channel and its banks. In the central basin where the estuary is wide (up to 4 km), flood currents are more energetic along the eastern channel bank and the ebb currents lead to minor sediment deposition on the western bank, but only where the system is out of equilibrium with its sediment load. The energy of the tides is accentuated along narrow segments of the estuary that are locally constrained by gorges of the Hudson Valley Highlands leading to erosion and the trapping of sediments. Beyond the banks of the channel, the subtidal flats that were filled with sediment by 0.5 to 3ka, are tranquil environments where the sediment is homogenized by bioturbation and reworked by waves as the estuary shallowed. Occasional high-energy events, (possibly flood-related) eroded the subtidal flats sediment as shown by rare rip-up clasts found in the cores. The inner fluvial part of the estuary is filling with sediments above sea-level forming islands. Here, the energy of tidal currents is strong as evidenced by the sand-mud rhythmic alternations of the sediments. Tributaries contribute a generally low sediment budget, but only on a seasonal basis and the fluvial energy is not strong enough to transport the gravel-size components that remain near the mouths of the tributaries forming localized deltas. The fluvial sands, form waves that migrate along the channel floor, but this coarser-grained bedload is rarely transported south of Kingston, New York, resulting in a muddy estuarine bottom further downstream. Results show that tidal energy is a dominant force in the transport and deposition of HRE sediments and that only fine-grained sediments are transported throughout most of the studied areas. Because the HRE basin is nearly filled, most sediment bypasses the system with only localized areas of sediment trapping where the estuary is out of equilibrium with its sediment load, and in the estuarine turbidity maxima, an area previously shown to contain high sediment concentrations.
Fullerenes and interplanetary dust at the Permian-Triassic boundary.
Poreda, Robert J; Becker, Luann
2003-01-01
We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).
Prouty, Nancy G.; Mienis, Furu; Campbell, P.; Roark, E. Brendan; Davies, Andrew; Robertson, Craig M.; Duineveld, Gerard; Ross, Steve W.; Rhodes, M.; Demopoulos, Amanda W.J.
2017-01-01
Submarine canyons are often hotspots of biomass and productivity in the deep sea. However, the majority of deep-sea canyons remain poorly sampled. Using a multi-tracer approach, results from a detailed geochemical investigation from a year-long sediment trap deployment reveals details concerning the source, transport, and fate of particulate matter to the depositional zone (1318 m) of Baltimore Canyon on the US Mid-Atlantic Bight (MAB). Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that on an annual basis particulate matter from marine and terrestrially-derived organic matter are equally important. However, elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight the seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive elements cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of biomass during seasonal blooms in response to enhanced surface production within the nutricline. While internal waves within the canyon resuspend sediment between 200 and 600 m, creating a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone is minimal. Instead, vertical transport and lateral transport across the continental margin are the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter may be linked to benthic faunal composition and ecosystem scale carbon cycling.
NASA Astrophysics Data System (ADS)
Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.
2016-12-01
Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.
NASA Astrophysics Data System (ADS)
Simmons, S.; Parsons, D. R.; Paull, C. K.; Barry, J.; Chaffey, M. R.; Gwiazda, R.; O'Reilly, T. C.; Maier, K. L.; Rosenberger, K. J.; Talling, P.; Xu, J.
2017-12-01
Turbidity currents are responsible for transporting large volumes of sediment to the deep ocean, yet remain poorly understood due to the limited number of field observations of these episodic, high energy events. As part of the Monterey Coordinated Canyon Experiment high resolution, sub-minute acoustic velocity and backscatter profiles were acquired with downward-looking acoustic Doppler current profilers (ADCPs) distributed along the canyon on moorings at depths ranging from 270 to 1,900 m over a period of 18 months. Additionally, three upward-looking ADCPs on different frequencies (300, 600 and 1200 kHz) profiled the water column above a seafloor instrument node (SIN) at 1850 m water depth. Traps on the moorings collected sediment carried by the flows at different heights above the seafloor and sediment cores were taken to determine the depositional record produced by the flows. Several sediment-laden turbidity flows were observed during the experiment, three of which ran out for more than 50 km to water depths of greater than 1,900 m and were observed on all of the moorings. Flow speeds of up to 6 m/s were observed and individual moorings, anchored by railroad wheels, moved up to 7.8 km down-canyon during these powerful events. We present results based on a novel analysis of the multiple-frequency acoustic data acquired by the ADCPs at the SIN integrated with grain size data from the sediment traps, close to the deepest mooring in the array where the flow thickened to the 70 m height of the ADCP above the bed. The analysis allows, for the first time, retrieval of the suspended sediment concentration and vertical distribution of grain size structure within a turbidity in spectacular detail. The details of the stratification and flow dynamics will be used to re-evaluate and discuss our existing models for these deep-sea flows.
Electro-chemical sensors, sensor arrays and circuits
Katz, Howard E.; Kong, Hoyoul
2014-07-08
An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.
Estimation of sediment deposits in the Ghézala reservoir in northern Tunisia
NASA Astrophysics Data System (ADS)
Mathlouthi, Majid; Lebdi, Fethi
2018-04-01
The control of sedimentation in a reservoir provides a global evaluation of the process of erosion and transportation of sediment. Knowledge of sedimentation is useful for reservoir management. Bathymetric surveys can be used to assess the silting volume of dams. The results of two surveys of the Ghézala dam reservoir in northern Tunisia are available. The measurements provide initial information about the quantity and variability of silting and the mechanism of sediment deposition. According to the results of measurements, the average annual specific sediment yield of the Ghézala dam watershed is estimated at 1851 t km-2 yr-1. The annual average sediment volume trapped varies from 23 000 m3 in 1993 to 66 692 m3 in 2011. The sedimentation rates increases from 0.20 to 0.57 % overtime. The results indicate interdependence between the specific erosion rates and the occurrence of soils on steep slopes. The pressure exerted on the soil by plowing as well as overgrazing to meet the needs of the population of this area has exposed the soil to continued deterioration manifested by increased erosion endangering the only source of revenue for the area.
An effective box trap for capturing lynx
Jay A. Kolbe; John R. Squires; Thomas W. Parker
2003-01-01
We designed a box trap for capturing lynx (Lynx lynx) that is lightweight, safe, effective, and less expensive than many commercial models. It can be constructed in approximately 3-4 hours from readily available materials. We used this trap to capture 40 lynx 89 times (96% of lynx entering traps) and observed no trapping related injuries. We compare our box...
50 CFR 622.413 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Capitol Street NW., Suite 700, Washington, DC. For more information on the availability of this material...) F.A.C., Chapter 68B-55: Trap retrieval and trap debris removal, Rule 68B-55.002: Retrieval of Trap...). (7) F.A.C., Chapter 68B-55: Trap retrieval and trap debris removal, Rule 68B-55.004: Retrieval of...
50 CFR 622.413 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Capitol Street NW., Suite 700, Washington, DC. For more information on the availability of this material...) F.A.C., Chapter 68B-55: Trap retrieval and trap debris removal, Rule 68B-55.002: Retrieval of Trap...). (7) F.A.C., Chapter 68B-55: Trap retrieval and trap debris removal, Rule 68B-55.004: Retrieval of...
Origin of large dark current increase in InGaAs/InP avalanche photodiode
NASA Astrophysics Data System (ADS)
Wen, J.; Wang, W. J.; Chen, X. R.; Li, N.; Chen, X. S.; Lu, W.
2018-04-01
The large dark current increase near the breakdown voltage of an InGaAs/InP avalanche photodiode is observed and analyzed from the aspect of bulk defects in the device materials. The trap level information is extracted from the temperature-dependent electrical characteristics of the device and the low temperature photoluminescence spectrum of the materials. Simulation results with the extracted trap level taken into consideration show that the trap is in the InP multiplication layer and the trap assisted tunneling current induced by the trap is the main cause of the large dark current increase with the bias from the punch-through voltage to 95% breakdown voltage.
Dean, W.E.
2009-01-01
Sediments deposited over the past 220,000 years in Bear Lake, Utah and Idaho, are predominantly calcareous silty clay, with calcite as the dominant carbonate mineral. The abundance of siliciclastic sediment indicates that the Bear River usually was connected to Bear Lake. However, three marl intervals containing more than 50% CaCO3 were deposited during the Holocene and the last two interglacial intervals, equivalent to marine oxygen isotope stages (MIS) 5 and 7, indicating times when the Bear River was not connected to the lake. Aragonite is the dominant mineral in two of these three high-carbonate intervals. The high-carbonate, aragonitic intervals coincide with warm interglacial continental climates and warm Pacific sea-surface temperatures. Aragonite also is the dominant mineral in a carbonate-cemented microbialite mound that formed in the southwestern part of the lake over the last several thousand years. The history of carbonate sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, organic carbon content, CaCO3 content, X-ray diffraction mineralogy, and HCl-leach chemistry on samples from sediment traps, gravity cores, piston cores, drill cores, and microbialites. Sediment-trap studies show that the carbonate mineral that precipitates in the surface waters of the lake today is high-Mg calcite. The lake began to precipitate high-Mg calcite sometime in the mid-twentieth century after the artificial diversion of Bear River into Bear Lake that began in 1911. This diversion drastically reduced the salinity and Mg2+:Ca2+ of the lake water and changed the primary carbonate precipitate from aragonite to high-Mg calcite. However, sediment-trap and core studies show that aragonite is the dominant mineral accumulating on the lake floor today, even though it is not precipitating in surface waters. The isotopic studies show that this aragonite is derived from reworking and redistribution of shallow-water sediment that is at least 50 yr old, and probably older. Apparently, the microbialite mound also stopped forming aragonite cement sometime after Bear River diversion. Because of reworking of old aragonite, the bulk mineralogy of carbonate in bottom sediments has not changed very much since the diversion. However, the diversion is marked by very distinct changes in the chemical and isotopic composition of the bulk carbonate. After the last glacial interval (LGI), a large amount of endogenic carbonate began to precipitate in Bear Lake when the Pacific moisture that filled the large pluvial lakes of the Great Basin during the LGI diminished, and Bear River apparently abandoned Bear Lake. At first, the carbonate that formed was low-Mg calcite, but ???11,000 years ago, salinity and Mg2+:Ca2+ thresholds must have been crossed because the amount of aragonite gradually increased. Aragonite is the dominant carbonate mineral that has accumulated in the lake for the past 7000 years, with the addition of high-Mg calcite after the diversion of Bear River into the lake at the beginning of the twentieth century. Copyright ?? 2009 The Geological Society of America.
Contact between traps and surfaces during contact sampling of explosives in security settings.
Chaffee-Cipich, Michelle N; Hoss, Darby J; Sweat, Melissa L; Beaudoin, Stephen P
2016-03-01
Realistic descriptions of interfacial contact between rough, deformable surfaces under load are difficult to obtain; however, this contact is of great import in a wide range of applications. Here, we detail, through experiment and computational simulation, the interfacial contact between four common traps and five commonly investigated surfaces encountered in explosives detection applications associated with airport security. The Young's modulus and hardness of four traps and seven substrates were measured using nanoindentation. These properties determine how deformation occurs when traps are applied for contact sampling of explosives. The nanoindentation data were analyzed using the Oliver-Pharr method, and an indenter area function was created using silicon and gold as the reference materials. The Young's moduli of the traps ranged from 0.2 to 8 GPa, while those of the surfaces ranged from 0.5 to 4 GPa. The hardness values of the traps ranged from 0.005 to 0.22 GPa, while those of the surfaces ranged from 0.02 to 0.2 GPa. For each of 20 scenarios (4 traps, 5 surfaces), six contact simulations were performed. In these contact simulations, the Greenwood-Willliamson microcontact model was used to represent the behavior of the asperities on the traps, while the Timoshenko Beam model was used to describe the macroscopic behavior of the bulk trap materials spanning the space between asperities. This combination of feature- and trap-scale modeling provides a more realistic description of the interfacial contact than either model applied individually. The calculated distributions of separation distances between the traps and surfaces when the traps were contacted with the surfaces under a normal load were compared to estimate the relative effectiveness of the traps at interrogating the topography of the surfaces. This method is proposed as a tool to guide the development of trap materials for surface sampling and surface cleaning applications. Copyright © 2016. Published by Elsevier Ireland Ltd.
Yin, Hongbin; Kong, Ming; Han, Meixiang; Fan, Chengxin
2016-12-01
Modified clay-based solid-phase phosphorous (P) sorbents are increasingly used as lake geoengineering materials for lake eutrophication control. However, some still dispute the feasibility of using these materials to control internal P loading from shallow eutrophic lakes. The lack of information about P behavior while undergoing frequent sediment resuspension greatly inhibits the modified minerals' use. In this study, a sediment resuspension generating system was used to simulate the effect of both moderate winds (5.1 m/s) and strong winds (8.7 m/s) on the stability of sediment treated by two geoengineering materials, Phoslock ® (a lanthanum modified bentonite) and thermally-treated calcium-rich attapulgite. This study also presents an analysis of the P dynamics across the sediment-water interface of two shallow eutrophic lakes. In addition, the effect of wind velocity on P forms and P supply from the treated sediment were studied using chemical extraction and diffusive gradients in thin films (DGT) technique, respectively. Results showed that adding geoengineering materials can enhance the stability of surface sediment and reduce the erosion depth caused by wind accordingly. All treatments can effectively reduce soluble reactive phosphorus (SRP) concentration in overlying water when sediment is capped with thermally-treated calcium-rich attapulgite, which performs better than sediment mixed with modified attapulgite but not as well as sediment treated with Phoslock ® . However, their efficiency decreased with the increase in occurrences of sediment resuspension. The addition of the selected geoengineering materials effectively reduced the P fluxes across sediment-water interface and lowered P supply ability from the treated sediment during sediment resuspension. The reduction of mobile P and enhancement of calcium bound P and residual P fraction in the treated sediment was beneficial to the long-term lake internal P loading management. All of the results indicated that the studied geoengineering materials are suitable for application in shallow eutrophic lakes with frequent sediment resuspension activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Review of Effectiveness of Vegetative Buffers on Sediment Trapping in Agricultural Areas
In recent years, there has been growing recognition of the importance of riparian buffers between agricultural fields and waterbodies. Riparian buffers play an important role in mitigating the impacts of land use activities on water quality and aquatic ecosystems. However, eval...
Modeling vegetative filter performance with VFSMOD
Matthew J. Helmers; Dean E. Eisenhauer; Michael G. Dosskey; Thomas G. Franti
2002-01-01
The model VFSMOD was used to investigate the effect of varying watershed characteristics and buffer dimensions on the sediment trapping efficiency of vegetative filters. This investigation allows for a better understanding of how watershed characteristics, buffer dimensions, and storm characteristics impact the performance of vegetative filters. Using VFSMOD,...
Field Confirmation and Monitoring Tools for Aerobic Bioremediation of TBA and MTBE
NASA Astrophysics Data System (ADS)
North, K.; Rasa, E.; Mackay, D. M.; Scow, K. M.; Hristova, K. R.
2009-12-01
We have been investigating in situ biotreatment of an existing tert-butyl alcohol (TBA) plume at Vandenberg AFB by recirculation/oxygenation and evaluating monitoring tools for microbial community composition and activity inside and outside of the treatment zone. Results indicate that recirculation/oxygenation by two pairs of recirculation wells is effective at adding oxygen and decreasing methyl tert-butyl ether (MTBE) and TBA concentrations to detection limits along the flowpaths predicted. Compound-specific isotope analyses (CSIA) of groundwater and microbial community analyses (extraction and analysis of DNA) of groundwater and sediments are underway for sampling locations along flowpaths inside and outside of the treatment zone to seek confirmation of in situ biodegradation. We are also evaluating a novel approach to compare the performance of microbial “traps” in characterizing microbial communities: groundwater from the aerobic treatment zone is extracted, separated and directed to multiple chambers located in an air-conditioned ex situ experimental setup. The “traps” under evaluation are in separate chambers; influent and effluent are monitored. The traps being evaluated include Bio-Trap® housings containing Bio-Sep® beads baited with MTBE or TBA labeled with 13C and various unbaited materials. Insights from the various monitoring approaches will be discussed and compared.
NASA Astrophysics Data System (ADS)
Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David
2013-04-01
Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy sediment, the potential role of dissolved metal leaching and subsequent sediment-water interaction within the channel on signature modification remained unclear. Consideration of sediment signature modification en route from primary source to stream elucidated important information regarding sediment transfer pathways and dynamics relevant to sediment management decisions. Further work on sediment-water interactions and potential for signature transformation in the channel environment is required.
Sediment laboratory quality-assurance project: studies of methods and materials
Gordon, J.D.; Newland, C.A.; Gray, J.R.
2001-01-01
In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2.74 percent. The percent difference was calculated as follows: Percent difference = (( reported mass - known mass)/known mass ) X 100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallayer, B.; Hourquebie, P.; Marsacq, D.
1996-12-31
In the field of Space Charge Physics, the role of electrical traps on space charge behavior and therefore on the breakdown properties has been now well-established. However, the traps in polymers are very difficult to define compared to the case of ceramics for which a lot of studies have been performed. A new specific method for measuring the trapping and detrapping properties of dielectric materials has been developed. This method allows to characterize the electrostatic state of an insulating sample after irradiation by a high energy electron beam. The authors discuss the basis of the method and its general possibilitiesmore » to measure the breakdown relevant parameters as the secondary electron yield for instance. Moreover, the method has been used on several polymers as HDPE and LDPE. The difference of trapping properties between those materials can be explained by microstructure evolutions (crystallinity ratio) due to a difference of the branching rate. This difference of trapping and detrapping properties of these two polymers could be connected to the breakdown behavior of the two materials which is known to be very different.« less
NASA Astrophysics Data System (ADS)
Tsutsui, H.; Takahashi, K.; Fowell, S. J.; Matsuoka, K.; Jordan, R. W.; Yamamoto, S.
2014-12-01
From 1990 to 2009, sediment traps in the subarctic Pacific (SA; 49°N, 174°W) were deployed and recovered during each summer, allowing the long-term observation of particle fluxes. As the Pacific Decadal Oscillation index changed in 1999 as air-temp cooled, this study focused on pollen, land plant debris and insect scale fluxes at SA during 1998 to 2006. The max pollen and fern spores flux was a mean of 74 grains m2 d-1, and the following details: 65% of the total pollen counts represented by wind-pollinated trees (e.g., alder, birch and pine), 24% by the herbaceous plants (as herbs), and 11% by fern spores. Spore, herbaceous and wind-pollinated tree pollen (as wind-pollen) fluxes peaked in May and Sep-Oct, but flux peaks of the latter also occurred in April and Jun. The annual flux peaks of insect scales (of unknown origin) and land-plant debris were in May and Sep, but over the entire study period the max insect scale flux of 161 was in Aug 2002, with a mean of 16 scales m2d-1, while the max (in Aug 2004) and mean land-plant debris fluxes were 107 and 10 plant fragments m2d-1, respectively. The sediment traps are situated both side of the Aleutian Is., where snow and ice occurs from Oct to May. The ice-snow season accounts for 25% of the total annual particle flux in SA trap, with 75% throughout the rest of the year. The correlation coefficient among pollen, insect scales and land plant debris are: 1) 0.58 (p<1%) between wind-pollen and insect scales, 2) 0.75 (p<5%) between herb-pollen and land plant debris, 3) but only 0.14 between insect scales and herbaceous pollen. Thus, the production location, residence time, route and mode of transport of the particles are important factors. Normally, the wind-pollinated tree flowering season in the northern part of Alaska and Japan where are an upper stream to the stations is from Apr to Jun, with the pollen usually transported across the ocean by winds. Assuming that the pollen takes several months to arrive SA, the wind speed and direction during the summer months also need to be considered. The debris needs about 1 month to sink to the trap water depth. Accordingly, the pollen transported to the trap area in Apr, Aug and Sep, when local wind speeds are 8 to 13 m s-1, are represented by the fluxes in May, Sep and Oct. In summary, the wind-pollen and insect scales in SA appear to be conveyed by wind over long distances.
NASA Astrophysics Data System (ADS)
Ings, Steven; Albertz, Markus
2014-05-01
Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in autochthonous salt basins and thick packages of pure halite in allochthonous salt sheets.
NASA Astrophysics Data System (ADS)
Panagiotopoulos, C.; Sempéré, R.
2003-04-01
Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in Polar Front and Sub-Antarctic Zones indicated that ribose seems to be a labile sugar, rapidly degraded especially in Polar Front Zone whereas it was below the detection limit in Sub-Antarctic zone where a high bacterial activity was recorded in surface waters. Our results also showed that the relative abundance of deoxysugars (fucose + rhamnose) increased overtime in Sub-Antarctic Zone (deoxyinitial = 18%, deoxyfinal = 23%) and Polar Front Zone (deoxyinitial = 6%, deoxyfinal = 21%) indicating that these sugars are preserved during organic matter decomposition.
NASA Astrophysics Data System (ADS)
Richey, J. N.; Reynolds, C. E.; Fehrenbacher, J. S.
2017-12-01
The Ba/Ca of planktic foraminifera in marine sediment cores has been used primarily to track changes in riverine input over time, and thus may be a potentially powerful proxy for reconstructing past changes in the terrestrial hydrologic cycle. Using Ba/Ca as a proxy for riverine freshwater input requires the assumption that Ba/Ca in foraminiferal calcite reflects the Ba/Ca of seawater, and that the partition coefficient for barium between seawater and foraminiferal calcite is independent of the influence of temperature, salinity, pH, alkalinity and light availability. Although it has been shown that this partition coefficient is nearly identical for common species of spinose planktic foraminifera (e.g., Globigerinoides ruber, Orbulina universa, Globigerinoides sacculifer), some non-spinose species have been demonstrated to have Ba/Ca ratios that are much higher than that of co-occurring spinose specimens. We investigate environmental controls on Ba/Ca in the tests of Globorotalia truncatulinoides, a planktic species of foraminifera with a unique life history in the Gulf of Mexico (GoM). G. truncatulinoides experiences 92% of its annual flux to the sediment trap during winter (JFM) in the GoM. The Mg/Ca and ∂18O of the ontogenetic calcite suggests that primary calcification occurs within the surface mixed layer (0-150 meters), and a thick secondary crust is added at depths below the thermocline. We use LA-ICP-MS to analyze the Ba/Ca of both encrusted and non-encrusted G. truncatulinoides from a sediment trap time series in the GoM and find that the Ba/Ca in ontogenetic calcite of non-encrusted specimens varies between 10 and 200 mmol/mol, while the Ba/Ca of the secondary crust varies between 0 and 3 mmol/mol. The Ba/Ca of the non-encrusted G. truncatulinoides specimens is two to three orders of magnitude higher than that of co-occurring spinose planktic foraminifera (O. universa and G. ruber) in the GoM sediment trap, while the secondary crust has Ba/Ca similar to the spinose species. This suggests that the Ba/Ca of ontogenetic calcite in G. truncatulinoides is governed by fundamentally different processes, and does not necessarily reflect the Ba/Ca of seawater.
NASA Astrophysics Data System (ADS)
Smith, Craig R.; Mincks, Sarah; DeMaster, David J.
2008-11-01
The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter-annual time scales, yielding dramatic temporal variability in the flux of food for detritivores to the Antarctic shelf floor.
NASA Astrophysics Data System (ADS)
Kubo, A. I.; Day, J. M.; Ryabov, V. V.; Taylor, L. A.
2016-12-01
Precise dating techniques have established the contemporaneous eruption of the Siberian Traps at the beginning of the Permian faunal mass extinction at 248 ± 2 Ma. Within a relatively limited time-period ( 1 Ma), the Siberian Traps expelled approximately ninety percent of its total volume ( 1.5 Mkm3), each episode of volcanism adding substantial amounts of CO2, CH4, and SO2 to the atmosphere. The Permian-Triassic Boundary shows average organic carbon isotope excursions of -6.4 ± 4.4‰ (253 Ma), from a long-term average δ13Corg of -25‰. Retallack and Jahren [2008; Journal of Geology] suggested that eruption into C-rich sediments and resulting methane degassing would satisfy necessary conditions to cause such large, variable perturbations in the carbon isotope record. To test this hypothesis, we measured C isotope variations in upper crustal sediments and metalliferous basalts from the Khungtukun and Dzhatul Intrusions, of the Siberian Traps. We find that δ13C values for Siberian coal and sandstones are restricted at -23 to -25‰, with similar values measured in the metalliferous basalts. Anticipated thermogenic methane from disassociation of these sources would be considerably lighter and consistent with low δ13C isotopic values. We further test this mechanism by employing a zero dimensional energy balance model to examine three key parameters: eruption duration, amounts of CO2 and CH4 emission, and the frequency of eruptions. Greater methane emissions than previously estimated due to carbonaceous sediment-basalt interactions have a sustained temperature effect due to high global warming potential (GWP), between 28 and 36 over 100 years compared to the CO2 reference value. Our model predicts that a quick succession of massive effusive eruptions would cause a sustained and substantial temperature effect consistent with estimated equatorial levels of 40°C during the Permian-Triassic Boundary. This mechanism could explain the deficit between the amount of volatiles necessary to cause a runaway greenhouse effect and the estimated emission of flood basalts.
Nanocarpets for Trapping Microscopic Particles
NASA Technical Reports Server (NTRS)
Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel
2004-01-01
Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.
Crevasse Splays Versus Avulsions: A Recipe for Land Building With Levee Breaches
NASA Astrophysics Data System (ADS)
Nienhuis, Jaap H.; Törnqvist, Torbjörn E.; Esposito, Christopher R.
2018-05-01
Natural-levee breaches can not only initiate an avulsion but also, under the right circumstances, lead to crevasse splay formation and overbank sedimentation. The formative conditions for crevasse splays are not well understood, yet such river sediment diversions form an integral part of billion-dollar coastal restoration projects. Here we use Delft3D to investigate the influence of vegetation and soil consolidation on the evolution of a natural-levee breach. Model simulations show that crevasse splays heal because floodplain aggradation reduces the water surface slope, decreasing water discharge into the flood basin. Easily erodible and unvegetated floodplains increase the likelihood for channel avulsions. Denser vegetation and less potential for soil consolidation result in small crevasse splays that are not only efficient sediment traps but also short-lived. Successful crevasse splays that generate the largest land area gain for the imported sediment require a delicate balance between water and sediment discharge, vegetation root strength, and soil consolidation.
Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John
2014-08-01
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.
Process-Response Numerical Modeling in Carbonate Systems - Current Status and Importance (Invited)
NASA Astrophysics Data System (ADS)
Sarg, J.; Jenkins, C. J.; Burgess, P. M.; Budd, D. A.; Rankey, E. C.; Demicco, R. V.
2009-12-01
Developing predictive models of carbonate systems has important implications for monitoring and managing global climate change affecting societies around the world. Carbonate sediments and rocks form an important part of the global carbon cycle. More than 80% of Earth’s carbon is locked up in carbonate rocks, and is the primary ultimate sink for CO2 introduced into the atmosphere. Reefs and carbonate platforms, in general, are sensitive climatic indicators, and contain important records of past climate change. Ancient carbonate platforms and systems play a significant role in the global economy. They are the raw material for construction, and through their high permeability’s and porosities, carbonate rocks serve as important fresh water aquifers and petroleum reservoirs. They host more than half of the world’s petroleum. The systems that produce carbonate sediments have multiple interacting biologic, chemical, and hydrodynamic elements. Carbonate sediments are originally and predominantly derived from biological mineralization directly from seawater. Waves, tides, and marine currents can redistribute these sediments landward into lagoons or tidal flats, send them seaward into the deep or sea, or trap them within the hydraulic regime in which they originated. The characteristics of carbonate sediments are thus sensitive to environmental parameters like light, bathymetry, temperature, salinity, turbidity, nutrient and oxygen levels, hydrodynamics, and mineral saturation states. Localized buildups of carbonate sediments can alter the local hydraulic regime and change the nature of surrounding sediments. The prospect of modeling carbonates in detail has been daunting. Existing carbonate models are a class of rule-based ‘simulations’ with limited predictive qualities. The earliest computer models of carbonate deposition were 1-D and 2-D, and essentially modeled carbonates as “in-place” accumulations of sediment. In most cases, sediment production in these models was directly related to water depth based on assumptions that carbonate production is a function of light attenuation with depth. These models were followed by so-called “geometric” models (SedPak), where sediment transport was allowed, and models were based on simply depositing sediment vertically into assumed shoreline geometries. There are computer models of carbonate deposition that model wave and current dynamics over platforms and then base sediment erosion, transport and deposition on the results of the circulation modeling: Carb3D and Carb3D+, Dionysus and Carbonate GPM. In addition, Carb3D+ approximates some diagenetic processes as a function of hydrologic residence times. New types of rule-based models, such as cellular automata have also been developed that model the interaction of many different elements of carbonate deposition. Based on this progress, and with recent advances in ecological modeling, treating uncertainty in models, high performance computing, and handling heterogeneous and linguistic data types, the time is right to tackle the challenges of mathematically modeling carbonate sediments.
Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Loucks, Daniel P.; Wild, Thomas B.
2015-04-01
Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.
A distributed analysis of Human impact on global sediment dynamics
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Syvitski, J. P.
2012-12-01
Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.
Human impacts on sediment in the Yangtze River: A review and new perspectives
NASA Astrophysics Data System (ADS)
Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.
2018-03-01
Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.
NASA Astrophysics Data System (ADS)
Pacheco, Aldo S.; Uribe, Roberto A.; Thiel, Martin; Oliva, Marcelo E.; Riascos, Jose M.
2013-03-01
Post-larval dispersal along the sediment-water interface is an important process in the dynamics of macrobenthic populations and communities in marine sublittoral sediments. However, the modes of post-larval dispersal in low energy sublittoral habitats have been poorly documented. Herein we examined the specific dispersal mechanisms (diel vertical migration, water column, and bedload transport) and corresponding biological traits of the dispersing assemblage. At two sublittoral sites (sheltered and exposed) along the northern coast of Chile, we installed different trap types that capture benthic organisms with specific modes of dispersal (active emergence and passive water column drifting) and also by a combination of mechanisms (bedload transport, passive suspension and settlement from the water column). Our results show that even though there were common species in all types of traps, the post-larval macrobenthic assemblage depended on specific mechanisms of dispersal. At the sheltered site, abundant emerging taxa colonized sediments that were placed 0.5 m above the bottom and bedload-transported invertebrates appeared to be associated to the passive drifting of macroalgae. At the exposed site, assemblage dispersal was driven by specific mechanisms e.g. bedload transport and active emergence. At both sites the biological traits "small size, swimming, hard exoskeleton, free living and surface position" were associated to water column and bedload dispersal. This study highlights the importance of (i) the water-sediment interface for dispersal of post-larvae in sublittoral soft-bottom habitat, and (ii) a specific set of biological traits when dispersing either along the bottom or through the water column.
NASA Astrophysics Data System (ADS)
Taniguchi, K.; Onda, Y.; Kuramoto, T.; Smith, H.; Blake, W.; Onuma, S.; Sato, T.; Arai, H.; Blake, W.
2017-12-01
Radiocaesium released from Fukushima Daiichi Nuclear Power Plant were widely distributed in the surrounded area. The radiocaesium deposited inland area were adsorbed to fine particles of the surface soils such as silt and clay particles. The contaminated particles were eroded by rainfall events, and then transported through river systems. The purpose of this research is to investigate the impact of existence of large reservoirs on the riverine transport of fine sediments by using the 137Cs as a kind of tracer. At 30 monitoring sites located in 9 river systems in the area affected by the accident, suspended sediments (SS) ware collected by time-integrated SS samplers. The particulate radiocaesium activity concentration was measured by germanium detector. The water discharge and SS flux each site were calculated by the water level and turbidity data every 10 minutes obtained by monitoring. The 137Cs flux was calculated by multiplying the activity concentration and the SS flux. The Cs-137 flux normalized by the water discharge and initial deposition of 137Cs in the watershed (L/QD) showed a correlation with the coverages of land use types in the watershed in the case of monitoring sites where there was no large reservoir in the watershed. However, at the sites that have large reservoir in the watershed, the value of L/QD were 6.5 -21 % of the values estimated by the coverage of land use types. This result implies that approximately more than 80 % of the fine SS is trapped by the reservoirs.
Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore
2008-06-25
Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB7 in the urban runoff sediments ranged between < 0.0004 and 0.704 mg/kg. For PAH16, the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 microm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients.
The Character and Formation of Elongated Depressions on the Upper Bulgarian Slope
NASA Astrophysics Data System (ADS)
Xu, Cuiling; Greinert, Jens; Haeckel, Matthias; Bialas, Jörg; Dimitrov, Lyubomir; Zhao, Guangtao
2018-06-01
Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slopeparallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slopeparallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.
Sun, Ruoyu; Enrico, Maxime; Heimbürger, Lars-Eric; Scott, Clint; Sonke, Jeroen E
2013-08-01
High-precision mercury (Hg) stable isotopic analysis requires relatively large amounts of Hg (>10 ng). Consequently, the extraction of Hg from natural samples with low Hg concentrations (<1-20 ng/g) by wet chemistry is challenging. Combustion-trapping techniques have been shown to be an appropriate alternative. Here, we detail a modified off-line Hg pre-concentration protocol that is based on combustion and trapping. Hg in solid samples is thermally reduced and volatilized in a pure O2 stream using a temperature-programmed combustion furnace. A second furnace, kept at 1,000 °C, decomposes combustion products into H2O, CO2, SO2, etc. The O2 carrier gas, including combustion products and elemental Hg, is then purged into a 40% (v/v) acid-trapping solution. The method was optimized by assessing the variations of Hg pre-concentration efficiency and Hg isotopic compositions as a function of acid ratio, gas flow rate, and temperature ramp rate for two certified reference materials of bituminous coals. Acid ratios of 2HNO3/1HCl (v/v), 25 mL/min O2 flow rate, and a dynamic temperature ramp rate (15 °C/min for 25-150 and 600-900 °C; 2.5 °C/min for 150-600 °C) were found to give optimal results. Hg step-release experiments indicated that significant Hg isotopic fractionation occurred during sample combustion. However, no systematic dependence of Hg isotopic compositions on Hg recovery (81-102%) was observed. The tested 340 samples including coal, coal-associated rocks, fly ash, bottom ash, peat, and black shale sediments with Hg concentrations varying from <5 ng/g to 10 μg/g showed that most Hg recoveries were within the acceptable range of 80-120%. This protocol has the advantages of a short sample processing time (∼3.5 h) and limited transfer of residual sample matrix into the Hg trapping solution. This in turn limits matrix interferences on the Hg reduction efficiency of the cold vapor generator used for Hg isotopic analysis.
An ancient example of fluvial cave sediment derived from dust (eolian silt) infiltration
NASA Astrophysics Data System (ADS)
Evans, J. E.
2011-12-01
Silt-rich grain size distributions are geologically rare and typically eolian. Such sediments (and lithified equivalents) are called dust/dustites in a general case, or loess/loessite in the special case of eolian silts derived from glacial deposits. In both cases, silt-rich deposits require a source area of silt-sized materials, transport mechanisms (prevailing winds of sufficient energy) and one or more depositional mechanisms (such as trapping in the lee of topographic obstacles or adhesion to surfaces with moisture or vegetation). This study evaluates a third type of silt-rich geological deposit, paleo-cave sediments derived from mixtures of dust (eolian silt) and karst breccias. Cave sediments can be autochthonous (speleothems), parautochthonous (karst breccias), and allochthonous (such as fluvial cave sediments). The provenance of fluvial cave sediments is the landscape overlying the cave-karst system, and they are introduced to the cave-karst system by flood events. The Mississippian Leadville Limestone (SW Colorado) was subject to karst processes following Late Mississippian eustatic sea-level fall. These processes included formation of phreatic tubes, tower karst (kegelkarst), solution valleys (poljes), sinkholes (dolines), solution-enhanced joints (grikes), surficial flutes (rillenkarren), solution pans (kamenitzas), and breakout domes containing mosaic and crackle breccias. Flowstone, dripstone, and cave pearls are interbedded with karst breccias and fluvial cave sediments in the Leadville Limestone. The overlying Pennsylvanian Molas Formation is an eolian siltstone (dustite) with sediment sources from the peri-Gondwanan and Grenville rocks of eastern North America. Evidence that the fluvial cave sediments in the Leadville Limestone are derived from this dustite include compositional and textural matches, especially grain size distribution trends vertically downward from the former landscape surface. These grain size trends indicate infiltration of the dustite into the underlying cave-karst system. There is a significant amount of evidence that the resedimentation process was episodic. Some individual phreatic tubes have complex infill history of up to eight events (successive debrites or inundites interbedded with speleothems). Some individual vertical grikes have complex infill histories of as many as six laminated or massive jointites with weakly developed paleosols superimposed on these individual deposits. Late Cenozoic cave sediments are increasingly utilized as archives of geologic change. The role of dust (eolian silt), including its inherited compositional and textural properties from a distant source area, land-atmosphere transfer processes, and resedimentation processes on the land surface overlying the cave-karst system, remain promising areas for research.
Modeling the Stability of Volatile Deposits in Lunar Cold Traps
NASA Technical Reports Server (NTRS)
Crider, D. H.; Vondrak, R. R.
2002-01-01
There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.
Deuterium trapping in tungsten
NASA Astrophysics Data System (ADS)
Poon, Michael
Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.
Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods
2008-04-01
Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Research Program ERDC/EL TR-08-16 April 2008 Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity Methods Jeffery...potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of dredged material
Brigham, Mark E.; McCullough, Carolyn J.; Wilkinson, Philip M.
2001-01-01
We examined historical suspended-sediment data and activities of fallout radioisotopes (lead-210 [210Pb], cesium-137 [137Cs], and beryllium-7 [7Be]) associated with suspended sediments and source-area sediments (cultivated soils, bank material, and reference soils) in the Wild Rice River Basin, a tributary to the Red River of the North, to better understand sources of suspended sediment to streams in the region. Multiple linear regression analysis of suspended-sediment concentrations from the Wild Rice River at Twin Valley, Minnesota indicated significant relations between suspended-sediment concentrations and streamflow. Flow-adjusted sediment concentrations tended to be slightly higher in spring than summer-autumn. No temporal trends in concentration were observed during 1973-98. The fallout radioisotopes were nearly always detectable in suspended sediments during spring-summer 1998. Mean 210Pb and 7Be activities in suspended sediment and surficial, cultivated soils were similar, perhaps indicating little dilution of suspended sediment from low-isotopic-activity bank sediments. In contrast, mean 137Cs activities in suspended sediment indicated a mixture of sediment originating from eroded soils and from eroded bank material, with bank material being a somewhat more important source upstream of Twin Valley, Minnesota; and approximately equal fractions of bank material and surficial soils contributing to the suspended load downstream at Hendrum, Minnesota. This study indicates that, to be effective, efforts to reduce sediment loading to the Wild Rice River should include measures to control soil erosion from cultivated fields.
Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137
NASA Astrophysics Data System (ADS)
Ormerod, L. M.
1998-06-01
While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.
Development of high velocity gas gun with a new trigger system-numerical analysis
NASA Astrophysics Data System (ADS)
Husin, Z.; Homma, H.
2018-02-01
In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.
Rosenfeld, Jordan; Hogan, Daniel; Palm, Daniel; Lundquist, Hans; Nilsson, Christer; Beechie, Timothy J
2011-01-01
Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and land use affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Land-use impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of in-stream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Land-use impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting land-use impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional land-use impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.
Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea
NASA Astrophysics Data System (ADS)
Huang, S.; Conte, M. H.
2009-01-01
Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight coupling in particle flux compositional variability throughout the water column. Seasonality in flux composition is primarily driven by dilution of the lithogenic component with freshly-produced biogenic material during the late winter primary production maximum. Temporal trends in scores reveal subtle non-seasonal changes in flux composition occurring on month long timescales. This non-seasonal variability may be driven by changes in the biogeochemical properties of intermediate water masses that pass through the region and which affect rates of chemical scavenging and/or aggregation within the water column.
Optical trapping apparatus, methods and applications using photonic crystal resonators
Erickson, David; Chen, Yih-Fan
2015-06-16
A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.
Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Weinstein, Roy
1993-01-01
For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.
Electrostatic particle trap for ion beam sputter deposition
Vernon, Stephen P.; Burkhart, Scott C.
2002-01-01
A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.
Trends in the sediment yield of the Sacramento River, California, 1957-2001
Wright, Scott A.; Schoellhamer, David H.
2004-01-01
Human activities within a watershed, such as agriculture, urbanization, and dam building, may affect the sediment yield from the watershed. Because the equilibrium geomorphic form of an estuary is dependent in part on the sediment supply from the watershed, anthropogenic activities within the watershed have the potential to affect estuary geomorphology. The Sacramento River drains the northern half of California’s Central Valley and is the primary source of sediment to San Francisco Bay. In this paper, it is shown that the delivery of suspended-sediment from the Sacramento River to San Francisco Bay has decreased by about one-half during the period 1957 to 2001. Many factors may be contributing to the trend in sediment yield, including the depletion of erodible sediment from hydraulic mining in the late 1800s, trapping of sediment in reservoirs, riverbank protection, altered land-uses (such as agriculture, grazing, urbanization, and logging), and levees. This finding has implications for planned tidal wetland restoration activities around San Francisco Bay, where an adequate sediment supply will be needed to build subsided areas to elevations typical of tidal wetlands as well as to keep pace with projected sea-level rise. In a broader context, the study underscores the need to address anthropogenic impacts on watershed sediment yield when considering actions such as restoration within downstream depositional areas.
Use of lichen biomass to monitor dissolved metals in natural waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, J.N.; Ramelow, G.J.
1990-02-01
The use of lichens for monitoring airborne metals is based on their immobility and a tendency to accumulate metals to a high degree by the trapping of atmospheric particles and by adsorptive ion exchange processes in which dissolved metals in rainwater are picked up by cellular membranes. The powerful metal-accumulating ability of lichens has been demonstrated in the laboratory. This strong metal accumulating ability of lichen biomass from aqueous solutions would seem to make lichen material an ideal biomonitor of dissolved metals in natural waters. To test this the present study was initiated to monitor dissolved zinc, copper, lead, nickel,more » cadmium, iron, manganese, chromium, and mercury in an industrially-impacted bayou in southwestern Louisiana. The results obtained with lichen biomonitors will be compared with other studies of the same metals in periphyton and sediments from this waterway.« less
Fullerenes: An extraterrestrial carbon carrier phase for noble gases
Becker, Luann; Poreda, Robert J.; Bunch, Ted E.
2000-01-01
In this work, we report on the discovery of naturally occurring fullerenes (C60 to C400) in the Allende and Murchison meteorites and some sediment samples from the 65 million-year-old Cretaceous/Tertiary boundary layer (KTB). Unlike the other pure forms of carbon (diamond and graphite), fullerenes are extractable in an organic solvent (e.g., toluene or 1,2,4-trichlorobenzene). The recognition of this unique property led to the detection and isolation of the higher fullerenes in the Kratschmer/Huffmann arc evaporated graphite soot and in the carbon material in the meteorite and impact deposits. By further exploiting the unique ability of the fullerene cage structure to encapsulate and retain noble gases, we have determined that both the Allende and Murchison fullerenes and the KTB fullerenes contain trapped noble gases with ratios that can only be described as extraterrestrial in origin. PMID:10725367
NASA Astrophysics Data System (ADS)
Patault, Edouard; Alary, Claire; Franke, Christine; Gauthier, Arnaud; Abriak, Nor-Edine
2016-04-01
In France, erosion by water run-off is estimated to 1.5 t ha-1yr-1 and can exceed 10 t ha-1yr-1 in large growing areas, such as the North of France (Nord-Pas-de-Calais). In this region, the Canche watershed (1294 km2) sustains heavy loss of fertile soils. The land use is mainly dominated by arable lands (80%) and in 2013, 104 kt of suspended sediment transited to the estuary. As demonstrated in literature, agricultural soil erosion leads to the gradual disappearance and depletion of fertile soil, which constitute a non-renewable resource at human time scale. Additionally, water erosion can significantly damage the aquatic habitat and can be responsible for the input of nutrients, bacteria, pesticides, heavy metals and radionuclides into surface waters. Conscious of these effects, many programs have emerged in the Nord-Pas-de-Calais to reduce erosion. This study presents a combination of environmental magnetic proxy parameters and geochemical analyses on sediments and suspended particulate matter. The aim is to develop effective tools to trace erosion by water run-off and quantify this process. In order to identify the respective sediment sources in the Canche watershed, sediment trap samples of suspended particulate matter were recovered at key positions along the Canche watershed. The preliminary results show that magnetic concentration (Mrs) shows typical values for the agricultural soils in the region, but these variations in magnetic concentrations and total irons concentrations are not always correlated, which may be explained by the iron speciation. In calculating the so-called S-ratio for each sample we can distinguish changes in magneto-mineralogy (and thus iron speciation) from magnetite-dominated assemblages in the mainstream Canche (naturel background signal) to high-coercivity-dominated assemblages in the tributaries, typical for soil erosion material rich in hematite/goethite. In combination with the element concentrations from ICP analyses, this proxy parameter may give valuable insight into the tracing of the suspended sediment sources. In perspective, the seasonal variability and the discharge in the Canche watershed have to be taken into account.
Field Monitoring Shows Smaller Sediment Deficit to the Louisiana Coast
NASA Astrophysics Data System (ADS)
Sanks, K. M.; Shaw, J.
2017-12-01
Current reports suggest that the Louisiana Coast will undergo significant drowning due to high subsidence rates and low sediment supply. One report suggests that sediment supply is just 30% of the amount necessary to sustain the current land area (Blum & Roberts, 2009). A novel dataset (CRMS) put together by the USGS and Louisiana's Coastal Protection and Restoration Authority provides direct measurements of sediment accumulation, subsidence rates, and sediment characteristics along the Louisiana Coast over the past 10 years (Jankowski et al., 2017). By interpolating bulk density, percent organic matter, and vertical accretion rates across the coast (274 sites), a more accurate estimate of sediment accumulation, both organic and inorganic, can be determined. Preliminary interpolation shows that an average of 53 MT organic and 132 MT inorganic sediment accumulates on coastal marshes each year. Assuming an average 9 mm/yr subsidence rate (Nienhuis et al., 2017) and 3 mm/yr sea-level rise (Blum & Roberts, 2009), this accumulation results in only a 12 MT/yr, or 6.5%, sediment deficit. Assuming a fluvial sediment discharge of 205 MT/yr, 64% of sediment is being trapped on the delta top. Although the sediment load estimates (MT/yr) may be slightly liberal due to interpolation over water, the fraction sediment deficit is unlikely to significantly change. These results suggest that even if current subsidence rates and sea level rise do not change, the gap between accommodation and accumulation may not be as dire as previously thought.
Oblinger, C.J.; Treece, M.W.
1996-01-01
The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly greater than all other site categories. Phosphorus was significantly greater than for reservoir sites or headwater streams. Few concentrations of trace metals were greater than the minimum reporting limit, and U.S. Environmental Protection Agency drinking-water standards were rarely exceeded. Detections, when they occurred, were most frequent for sites below urban areas and wastewater-treatment plant effluents. A small number of samples for analysis of acetanilide, triazine, carbamate, and chlorophenoxy acid pesticides indicate that some of these compounds are generally present in area waters in small concentrations. Organochlorine and organophosphorus pesticides are ubiquitous in the study area in very small concentrations. Trihalomethanes were detected at sites below urban areas and wastewater-treatment plants. Otherwise, volatile organic compounds and semivolatile compounds were generally not detected. Suspended-sediment, nitrogen, phosphorus, lead, and zinc loads into Falls Lake, Jordan Lake, University Lake, Cane Creek Reservoir, Little River Reservoir, and Lake Michie were calculated. In general, reservoirs act as traps for suspended sediment and constituents associated with suspended sediments. During 1989-94, annual suspended-sediment load to Falls Lake ranged from 29,500 to 88,200 tons. Because Lake Michie trapped from 83 to 93 percent of the suspended sediment delivered by Flat River, Flat River is a minor contributor of suspended sediment to Falls Lake. Yields of suspended sediment from Little River, Little Lick Creek, and Flat River Basins were between 184 and 223 tons per square mile and appear to have increased increased slightly from yields reported in a study for the period 1970-79. Annual suspended-sediment load to Jordan Lake ranged from 271,000 to 622,000 tons from 1989 through 1994 water years. The Haw River contributed more than 75 percent of the tota load to Jordan Lake. The suspended-sediment yields for Haw River and Northeast Cree
Grams, P.E.; Schmidt, J.C.; Topping, D.J.
2007-01-01
Closure of Glen Canyon Dam in 1963 transformed the Colorado River by reducing the magnitude and duration of spring floods, increasing the magnitude of base flows, and trapping fine sediment delivered from the upper watershed. These changes caused the channel downstream in Glen Canyon to incise, armor, and narrow. This study synthesizes over 45 yr of channel-change measurements and demonstrates that the rate and style of channel adjustment are directly related to both natural processes associated with sediment deficit and human decisions about dam operations. Although bed lowering in lower Glen Canyon began when the first cofferdam was installed in 1959, most incision occurred in 1965 in conjunction with 14 pulsed high flows that scoured an average of 2.6 m of sediment from the center of the channel. The average grain size of bed material has increased from 0.25 mm in 1956 to over 20 mm in 1999. The magnitude of incision at riffles decreases with distance downstream from the dam, while the magnitude of sediment evacuation from pools is spatially variable and extends farther downstream. Analysis of bed-material mobility indicates that the increase in bed-material grain size and reduction in reach-average gradient are consistent with the transformation of an adjustable-bed alluvial river to a channel with a stable bed that is rarely mobilized. Decreased magnitude of peak discharges in the post-dam regime coupled with channel incision and the associated downward shifts of stage-discharge relations have caused sandbar and terrace erosion and the transformation of previously active sandbars and gravel bars to abandoned deposits that are no longer inundated. Erosion has been concentrated in a few pre-dam terraces that eroded rapidly for brief periods and have since stabilized. The abundance of abandoned deposits decreases downstream in conjunction with decreasing magnitude of shift in the stage-discharge relations. In the downstream part of the study area where riffles controlling channel elevation have not incised, channel narrowing has resulted from decreased magnitude of peak discharges and minor post-dam deposition. These physical changes to the aquatic and riparian systems have supported the establishment and success of an artifact ecosystem dominated by non-native species. Models for the channel response downstream from large dams typically consider factors such as the degree of sediment deficit, the pre-dam surface and subsurface grain size, and the magnitude of post-dam average flows. These results suggest that it is also necessary to consider (1) the possibility of variable responses among different channel elements and (2) the potential importance of exceptional flows resulting from management decisions. ?? 2007 Geological Society of America.
Moody, J.A.; Butman, B.; Bothner, Michael H.
1987-01-01
A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care.The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank.
Novel pyropheophorbide steryl esters in Black Sea sediments
NASA Astrophysics Data System (ADS)
King, Linda L.; Repeta, Daniel J.
1991-07-01
A series of non-polar chlorophyll degradation products (NPCs) with greater than 10 components has been isolated from Black Sea sediment and identified as pyropheophorbide steryl esters by visible and mass spectrometry. These compounds have been previously observed in seawater and sediment trap samples, and may be formed during grazing of phytoplankton by zooplanktonic herbivores. In Black Sea sediments, NPCs constitute 14% of the total phorbins determined spectroscopically at 660 nm, and 39% of the total chlorophyll degradation products measured by high pressure liquid chromatography. NPCs therefore constitute a significant sedimentary sink for chlorophyll. The distribution of sterols released by hydrolysis of NPCs most closely resembles sterols in suspended particulate matter collected from the euphotic zone and is quite different from the distribution of solvent-extractable sterols in sediments. Sterols extracted from sediments have high concentrations of 4-methylsterols and high stanol/stenol ratios. NPC-derived sterols have very low concentrations of 4-methylsterols and low stanol/stenol ratios. We suggest that these differences reflect an enhanced preservation of NPCs in sediments relative to free sterols and phorbins. As a result, the original production of sterols in the euphotic zone may be more closely approximated by the distribution of NPC-derived sterols than by the distribution of free sterols in sediments.
Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike
2010-06-15
Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.
Staunton, Jack R.; Blehm, Ben; Devine, Alexus; Tanner, Kandice
2017-01-01
In optical trapping, accurate determination of forces requires calibration of the position sensitivity relating displacements to the detector readout via the V-nm conversion factor (β). Inaccuracies in measured trap stiffness (k) and dependent calculations of forces and material properties occur if β is assumed to be constant in optically heterogeneous materials such as tissue, necessitating calibration at each probe. For solid-like samples in which probes are securely positioned, calibration can be achieved by moving the sample with a nanopositioning stage and stepping the probe through the detection beam. However, this method may be applied to samples only under select circumstances. Here, we introduce a simple method to find β in any material by steering the detection laser beam while the probe is trapped. We demonstrate the approach in the yolk of living Danio rerio (zebrafish) embryos and measure the viscoelastic properties over an order of magnitude of stress-strain amplitude. PMID:29519028
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Djuma, Hakan; Zoumides, Christos; Eliades, Marinos; Charalambous, Katerina; Bruggeman, Adriana
2017-04-01
In the Mediterranean region, rural communities in topographically challenging sites have converted large areas into dry-stone terraces, as the only way to develop sustainable agriculture. Terraces allow softening the steep mountainous slopes, favoring water infiltration and reducing water runoff and soil erosion. However, population decrease over the past 30 years has led to a lack of maintenance of the terraces and the onset of a process of land degradation. The objective of this study is the quantification of the effect of terrace maintenance on soil erosion. We selected two terraces - A and B, 11 and 14 m long, respectively - for monitoring purposes. They are located in a small catchment (10,000 m2) in the Troodos Mountains of Cyprus, at an elevation of 1,300 m a.s.l., and cultivated with vineyards, which is the main agricultural land use of the region. We monitored soil erosion by means of sediment traps, which are installed along 1-m long sections of terrace. We monitored four sections on terrace A and seven on terrace B. During the first monitoring season (winter 2015/16), on terrace A the traps caught sediment of two collapsed and two standing sections of dry-stone wall. The catchment areas of one set of traps (degraded and non-degraded) were closed by a 1x4-m2 plot, to relate erosion rates to a known draining area. On terrace B the traps were all open and caught four collapsed and three standing sections. Also, we installed a weather station (5-minute rainfall, temperature, and relative humidity) and 15 soil moisture sensors, to relate soil erosion processes with climate and (sub)surface hydrology. From the open traps, we observed that soil loss is on average 8 times higher from degraded terrace sections than from standing, well maintained sections, which in our case study corresponds to an 87% reduction of soil loss due to terrace maintenance. If we compare data from the two closed plots, we obtain a much higher soil loss ratio (degraded/standing) of 56, which corresponds to a soil loss reduction of 98%. From the closed plots, we derived an erosion rate of 2.8 t ha-1 y-1 for degraded terraces and 0.05 t ha-1 y-1 for well-maintained terraces. Also, soil moisture monitoring confirmed that standing terraces favor surface water infiltration. For the second season (winter 2016/17), given the differences in results between open and closed traps and therefore the difficulty in consistently upscaling the results, we modified the monitoring design. The 11 traps were kept, all open, but the comparison between maintained and degraded areas is carried out on a sub-catchment basis, rather than on a section basis. We restored the whole sub-catchment of terrace A (≈480-m2) to be considered the maintained treatment of our experiment and kept the sub-catchment of terrace B (≈600-m2) in degraded conditions. To obtain the sub-catchment erosion rate, the sediment collected in the traps is averaged on running meter of wall and integrated on the wall length. This research is supported by the European Union's FP7 RECARE Project (GA 603498).
Hydrogen isotopes transport parameters in fusion reactor materials
NASA Astrophysics Data System (ADS)
Serra, E.; Benamati, G.; Ogorodnikova, O. V.
1998-06-01
This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.
Abila, P.P.; Okello-Onen, J.; Okoth, J.O.; Matete, G.O.; Wamwiri, F.; Politzar, H.
2007-01-01
Several trap designs have been used for sampling and control of the tsetse fly, Glossina fuscipes fuscipes, Newstead (Diptera: Glossinidae) based on preferences of individual researchers and program managers with little understanding of the comparative efficiency and cost-effectiveness of trap designs. This study was carried out to evaluate the cost-effectiveness of four commonly used trap designs: monoscreen, modified pyramidal and pyramidal, relative to the standard biconical trap. The study was performed under high tsetse challenge on Buvuma Island, Lake Victoria, Uganda, using a 4 × 4 Latin square design replicated 3 times, so as to separate the trap positions and day effects from the treatment effect. A total of 12 trap positions were tested over 4 days. The monoscreen trap caught significantly higher numbers of G. f. fuscipes (P<0.05) followed by biconical, modified pyramidal and pyramidal traps. Analysis of variance showed that treatment factor was a highly significant source of variation in the data. The index of increase in trap catches relative biconical were O.60 (pyramidal), 0.68 (modified pyramidal) and 1.25 (monoscreen). The monoscreen trap was cheaper (US$ 2.61) and required less material to construct than pyramidal trap (US$ 3.48), biconical and the modified pyramidal traps (US$ 4.06 each). Based on the number of flies caught per meter of material, the monoscreen trap proved to be the most cost-effective (232 flies/m) followed by the biconical trap (185 flies/m). The modified pyramidal and the pyramidal traps caught 112 and 125 flies/m, respectively. PMID:20345292
NASA Technical Reports Server (NTRS)
2002-01-01
Extremely high sediment loads are delivered to the Arabian Sea along the coast of Pakistan (upper left) and western India. In the case of the Indus River (far upper left) this sedimentation, containing large quantities of desert sand, combines with wave action to create a large sand-bar like delta. In the arid environment, the delta lacks much vegetation, but contains numerous mangrove-lined channels. This true-color image from May 2001 shows the transition from India's arid northwest to the wetter regions farther south along the coast. The increase in vegetation along the coast is brought about by the moisture trapping effect of the Western Ghats Mountain Range that runs north-south along the coast. Heavy sediment is visible in the Gulf of Kachchh (north) and the Gulf of Khambhat(south), which surround the Gujarat Peninsula.
Characterization and physical properties of hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Terzariol, M.; Santamarina, C.
2016-12-01
The amount of carbon trapped in hydrates is estimated to be larger than in conventional oil and gas reservoirs, thus methane hydrate is a promising energy resource. The high water pressure and the relatively low temperature needed for hydrate stability restrict the distribution of methane hydrates to continental shelves and permafrost regions. Stability conditions add inherent complexity to coring, sampling, handling, testing and data interpretation, have profound implications on potential production strategies. Thus a novel technology is developed for handling, transferring, and testing of natural hydrate bearing sediments without depressurization in order to preserve the sediment structure. Results from the first deployment of these tools on natural samples from Nankai Trough, Japan will also be summarized. Finally, to avoid consequences of poor sampling, a new multi-sensor in-situ characterization tool will be introduced.
Concentrated flow paths in riparian buffer zones of southern Illinois
R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards
2012-01-01
Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...
Riparian Restoration and Watershed Management: Some Examples from the California Coast
Laurel Marcus
1989-01-01
Managing and restoring watersheds often involves recreation of riparian habitats. The natural functions of riparian forest natural to slow flood water, stabilize stream banks and trap sediments can be used in restoring disturbed creek systems. The State Coastal Conservancy's wetland enhancement program is preserving wetlands on the California coast through repair...
Coast of California Storm and Tidal Waves Study.
1986-07-01
Nee0y d Identify by block mbr ) THIS IS THE THIRD ANNUAL REPORT OF THE CORPS OF ENGINEERS’ LANDMARK STUDY OF THE COAST OF CALIFORNIA. IT IS A REPORT...rods driven into the bottom and by measuring changes in depth from submerged reference lines. In addition, sediment traps are fastened to canyon walls
Assessment of concentrated flow through riparian buffers
M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer; T.G. Franti; K.D. Hoagland
2002-01-01
Concentrated flow of surface runoff from agricultural fields may limit the capability of riparian buffers to remove pollutants. This study was conducted on four farms in southeastern Nebraska to develop a method for assessing the extent of concentrated flow in riparian buffers and for evaluating the impact that it has on sediment-trapping efficiency. Field methods...
Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction
NASA Astrophysics Data System (ADS)
Stukel, Michael R.; Aluwihare, Lihini I.; Barbeau, Katherine A.; Chekalyuk, Alexander M.; Goericke, Ralf; Miller, Arthur J.; Ohman, Mark D.; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M.; Landry, Michael R.
2017-02-01
Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg Cṡm-2ṡd-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ˜225 mg Cṡm-2ṡd-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.