Sample records for sediment wave fields

  1. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  2. Wave field and evanescent waves produced by a sound beam incident on a simulated sediment

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.; Morse, Scot F.

    2005-09-01

    When a sound beam in water is incident on a sediment at a sufficiently small grazing angle, the resulting wave field in the sediment is complicated, even for the case of flat, fluidlike sediments. The wave field in the sediment for a sound beam from a simple, unshaded, finite transducer has an evanescent component and diffractive components. These components can interfere to produce a series of nulls outside the spatial region dominated by the evanescent wave field. This situation has been experimentally simulated by using a combination of previously described immiscible liquids [Osterhoudt et al., J. Acoust. Soc. Am. 117, 2483 (2005)]. The spacing between the observed nulls is similar to that seen in a wave-number-integration-based synthesis (using OASES) for a related problem. An analysis of a dephasing distance for evanescent and algebraically decaying components [T .J. Matula and P. L. Marston, J. Acoust. Soc. Am. 97, 1389-1398 (1995)] explains the spacing of the nulls. [Work supported by ONR.

  3. Variability in form and growth of sediment waves on turbidite channel levees

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Posamentier, H.; Pirmez, C.; Migeon, S.

    2002-01-01

    Fine-grained sediment waves have been observed in many modern turbidite systems, generally restricted to the overbank depositional element. Sediment waves developed on six submarine fan systems are compared using high-resolution seismic-reflection profiles, sediment core samples (including ODP drilling), multibeam bathymetry, 3D seismic-reflection imaging (including examples of burried features), and direct measurements of turbidity currents that overflow their channels. These submarine fan examples extend over more than three orders of magnitude in physical scale. The presence or absence of sediment waves is not simply a matter of either the size of the turbidite channel-levee systems or the dominant initiation process for the turbidity currents that overflow the channels to form the wave fields. Both sediment-core data and seismic-reflection profiles document the upslope migration of the wave forms, with thicker and coarser beds deposited on the up-current flank of the waves. Some wave fields are orthogonal to channel trend and were initiated by large flows whose direction was controlled by upflow morphology, whereas fields subparallel to channel levees resulted from local spillover. In highly meandering systems, sediment waves may mimic meander planform. Larger sediment waves form on channel-levee systems with thicker overflow of turbidity currents, but available data indicate that sediment waves can be maintaned during conditions of relatively thin overflow. Coarser-grained units in sediment waves are typically laminated and thin-bedded sand as much as several centimetres thick, but sand beds as thick as several tens of centimetres have been documented from both modern and buried systems. Current production of hydrocarbons from sediment-wave deposits suggests that it is important to develop criteria for recognising this overbank element in outcrop exposures and borehole data, where the wavelength of typical waves (several kilometres) generally exceeds outcrop scales and wave heights, which are reduced as a result of consolidation during burial, may be too subtle to recognise. Crown Copyright ?? 2002 Published by Elsevier Science B.V. All rights reserved.

  4. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Shaotong; Jia, Yonggang; Zhang, Yaqi; Liu, Xiaolei; Shan, Hongxian

    2018-03-01

    A specially designed benthic chamber for the field observation of sediment resuspension that is caused by the wave-induced oscillatory seepage effect (i.e., the wave pumping of sediments) is newly developed. Observational results from the first sea trial prove that the geometry design and skillful instrumentation of the chamber well realize the goal of monitoring the wave pumping of sediments (WPS) continuously. Based on this field dataset, the quantitative contribution of the WPS to the total sediment resuspension is estimated to be 20-60% merely under the continuous action of normal waves (Hs ≤ 1.5 m) in the subaqueous Yellow River Delta (YRD). Such a large contribution invalidates a commonly held opinion that sediments are purely eroded from the seabed surface by the horizontal "shearing effect" from the wave orbital or current velocities. In fact, a considerable amount of sediments could originate from the shallow subsurface of seabed driven by the vertical "pumping effect" of the wave-generated seepage flows during wavy periods. According to the new findings, an improved conceptual model for the resuspension mechanisms of silty sediments under various hydrodynamics is proposed for the first time.

  5. Bottom currents and sediment waves on a shallow carbonate shelf, Northern Carnarvon Basin, Australia

    NASA Astrophysics Data System (ADS)

    Belde, Johannes; Reuning, Lars; Back, Stefan

    2017-04-01

    The modern seafloor of the Australian Northwest Shelf between Exmouth and Dampier was analyzed for large scale sedimentary bedforms on 3D seismic reflection data. The Carnarvon MegaSurvey of Petroleum Geo-Services (PGS), a merged dataset of multiple industrial 3D seismic reflection surveys with a total size of 49,717 km2, offers an extensive view of the continental shelf, slope and rise of the Northern Carnarvon Basin. Over the shelf two fields of large scale sediment waves were observed in water depths between 55-130 m, where the seafloor may be influenced by different processes including internal waves, tides and storms. Based on the dimensions and orientations of the sediment waves the dominant direction and approximate strength of local bottom currents could be estimated. Information on local sediment grain-size distribution was provided by the auSEABED database allowing a classification of the observed sediment waves into sand- or mudwaves. The first sediment wave field is positioned northwest of the Montebello Islands where the shelf is comparatively narrow and local sediment is mainly sand-sized. It most likely formed by increased bottom currents induced by the diversion of tidal flows around the islands. The second sediment wave field is located north of the Serrurier and Bessieres Islands within a local seafloor depression. Local sediments are poorly sorted, containing significant amounts of mud and gravel in addition to the mainly sand-sized grains. The coarser sediment fraction could have been reworked to sandwaves by cyclone-induced bottom currents. Alternatively, the finer sediment fraction could form mudwaves shaped by less energetic along-slope oriented currents in the topographic depression. The sediment waves consist partially of carbonate grains such as ooids and peloids that formed in shallow water during initial stages of the post glacial sea-level rise. These stranded carbonate grains thus formed in a different environment than the sediment waves in which they were redeposited. In fossil examples of similar high-energy ramp systems this possible out-of-equilibrium relationship between grains and bedforms has to be taken into account for the interpretation of the depositional environment.

  6. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Hongjun; Zhan, Wenhuan; Li, Liqing; Wen, Ming-ming

    2017-07-01

    In this study, we reveal a series of newly discovered submarine canyons, sediment waves, and mass movements on a flat and smooth seafloor using high-resolution, multi-beam bathymetry and shallow seismic surveys along the northern slope of the South China Sea. We also describe their geomorphology and seismic stratigraphy characteristics in detail. These canyons display U-shaped cross sections and are roughly elongated in the NNW-SSE direction; they are typically 8-25 km long, 1.2-7 km wide, and form incisions up to 175 m into Pliocene-Quaternary slope deposits at water depths of 400-1000 m. Slide complexes and the sediment wave field are oriented in the NE-SW direction and cover areas of approximately 1790 and 926 km2, respectively. Debris/turbidity flows are present within these canyons and along their lower slopes. Detailed analysis of seismic facies indicates the presence of six seismic facies, in which Cenozoic strata located above the acoustic basement in the study area can be roughly subdivided into three sequences (1-3), which are separated by regional unconformities (Tg, T4, and T3). By combining these data with the regional geological setting and the results of previous studies, we are able to determine the genetic mechanisms used to create these canyons, sediment wave field, and mass movements. For example, frontally confined slide complexes could have been influenced by high sedimentation rates and high pore pressures. A series of very large subaqueous sediment waves, which record wavelengths of 1.4-2 km and wave heights of 30-50 m, were likely produced by interactions between internal solitary waves and along-slope bottom (contour) currents. Canyons were likely initially created by landslides and then widened laterally by the processes of downcutting, headward erosion, and active bottom currents and debris/turbidity flows on canyon floors. We therefore propose a three-dimensional model to describe the development of these mass movements, the sediment wave field, and canyons. The four stages of this model include a stable stage, followed by the failure of the slope, and subsequent formations of the sediment wave field and canyons.

  7. Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Klammer, H.; Sheremet, A.

    2017-12-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  8. Dispersal of Sediment in the Western Adriatic during Energetic Wintertime Forcing

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Sherwood, C. R.; Mullenbach, B. L.; Pullen, J. D.

    2003-12-01

    EuroSTRATAFORM aims to relate sediment delivery and reworking to seabed morphology and stratigraphy through observations and modeling of water column transport. The Po River dominates buoyancy and sediment input into the Adriatic Sea, but small Apeninne rivers (the Chienti, Pescara, etc.) may produce locally important signals. Sedimentation is influenced by fluvial supply, resuspension by waves and currents, and transport by oceanographic currents forced by winds and buoyancy. Transport is likely highest during times of energetic forcing; including Bora events with northeasterly winds and Sirocco events with southeasterly winds. It is difficult, from field measurements alone, to characterize dispersal and convergence patterns over the relevant spatial scales. We applied a three-dimensional hydrodynamic model that includes fluvial delivery, transport, resuspension, and deposition of sediment to quantify sediment dispersal with a 2-km resolution over the entire Adriatic. Circulation calculations were driven by spatially- and temporally-varying wind fields for the Fall / Winter of 2002 / 2003 and realistic Po and Apennine river discharges. Waves were hindcast with the SWAN model. Dispersion of both resuspended and river-derived sediment was estimated for periods that contained intense Bora and Sirocco winds. Predicted sediment dispersal rates and patterns are sensitive to forcing winds, buoyancy flux, and wave patterns. Higher sediment flux was predicted during Bora conditions than during Sirocco conditions. Sirocco winds weaken the Western Adriatic Coastal Current (WACC), and because they tend to concentrate over the Eastern Adriatic, they often fail to create especially energetic waves in the Western Adriatic. Bora wind conditions, on the other hand, intensify the WACC and can build high wave energies over the northwestern Adriatic. Most of the sediment transport occurs during Bora, with a net southward flux. These predictions will be compared to field observations made as part of the EuroSTRATAFORM experiment.

  9. Observations and Simulations of the Impact of Wave-Current Interaction on Wave Direction in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt

    2017-04-01

    Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.

  10. Field observation and analysis of wave-current-sediment movement in Caofeidian Sea area in the Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Zuo, Li-qin; Lu, Yong-jun; Wang, Ya-ping; Liu, Huai-xiang

    2014-06-01

    In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m3 and the average value being 0.03 kg/m3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended load sediment concentration is mainly influenced by wave-induced sediment suspension.

  11. Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary

    NASA Astrophysics Data System (ADS)

    Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.

    2012-12-01

    Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be created with multiple vegetation types.

  12. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    NASA Astrophysics Data System (ADS)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  13. Wave-Sediment Interaction in Muddy Environments: A Field Experiment

    DTIC Science & Technology

    2007-01-01

    in Years 1 and 2 (2007-2008) and a data analysis and modeling effort in Year 3 (2009). 2. “A System for Monitoring Wave-Sediment Interaction in...project was to conduct a pilot field experiment to test instrumentation and data analysis procedures for the major field experiment effort scheduled in...Chou et al., 1993; Foda et al., 1993). With the exception of liquefaction processes, these models assume a single, well- defined mud phase

  14. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Butman, B.; Limeburner, R.

    1994-08-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.

  15. Prediction and observation of munitions burial in energetic storms

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Sheremet, Alexandru; Calantoni, Joseph

    2017-04-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may be transported in uncontrolled ways to create potentially dangerous situations at places like beaches or ports. Alternatively, they may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and (surrogate) munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability excludes the possibility of burial by a migrating bed form or by sediment deposition, and strongly indicates that the munitions sank into the bed. The depth of burial also suggest an extreme state of sand agitation during the storm. For predicting munitions burial depths, we explore existing analytical solutions for the dynamic interaction between waves and sediment. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses are then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  16. Effects of proposed sediment borrow pits on nearshore wave climate and longshore sediment transport rate along Breton Island, Louisiana

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Mickey, Rangley C.; Long, Joseph W.; Flocks, James G.

    2015-05-02

    As part of a plan to preserve bird habitat on Breton Island, the southernmost extent of the Chandeleur Islands and part of the Breton National Wildlife Refuge in Louisiana, the U.S. Fish and Wildlife Service plans to increase island elevation with sand supplied from offshore resources. Proposed sand extraction sites include areas offshore where the seafloor morphology suggests suitable quantities of sediment may be found. Two proposed locations east and south of the island, between 5.5–9 kilometers from the island in 3–6 meters of water, have been identified. Borrow pits are perturbations to shallow-water bathymetry and thus can affect the wave field in a variety of ways, including alterations in sediment transport and new erosional or accretional patterns along the beach. A scenario-based numerical modeling strategy was used to assess the effects of the proposed offshore borrow pits on the nearshore wave field. Effects were assessed over a range of wave conditions and were gaged by changes in significant wave height and wave direction inshore of the borrow sites, as well as by changes in the calculated longshore sediment transport rate. The change in magnitude of the calculated sediment transport rate with the addition of the two borrow pits was an order of magnitude less than the calculated baseline transport rate.

  17. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2011-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...Wave dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  18. Gravitational, erosional and sedimentary processes on volcanic ocean islands: Insights from the submarine morphology of Madeira archipelago

    NASA Astrophysics Data System (ADS)

    Quartau, R.; Ramalho, R.; Madeira, J.; Santos, R.; Rodrigues, A.; Roque, C.; Carrara, G.; da Silveira, A. B.

    2017-12-01

    In this work we report detailed observations of high-resolution bathymetric and backscatter mosaics of Madeira archipelago covering from the nearshore to the deep sea and relate them with the physical and geological setting of the islands. Our observations reveal that the submarine flanks of the archipelago are deeply dissected by large landslide scars and that most of them have involved subaerial material. Below the shelf break, landslide chutes develop downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels develop where no significant rocky/ridge outcrops are present. This system is likely formed by turbidity currents that are triggered by hyperpicnal flows in Madeira or by storm-induced offshore sediment transport on Porto Santo and Desertas islands. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5º-3º, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter. Sediment waves are often associated with the depositional lobes of the landslides but also occur offshore poorly-developed tributary systems. Sediment wave fields and scours are mostly absent on areas where the tributary systems are well developed and/or are dominated by rocky outcrops. Our study suggests that scours and sediment wave fields are probably formed by turbidity currents that suffer hydraulic jumps where the seafloor gradients are significantly reduced and where the currents become unconfined. The largest scours were found in areas without upslope channel systems and independently of wave fields, although also related to unconfined turbidity currents. Our observations show that tributary systems are better developed in prominent and rainy islands such as Madeira. On low and dry islands such as Porto Santo and Desertas, these are poorly developed and unconfined turbidite currents favour the development of scours and sediment wave fields. AcknowledgmentsThis work is funded by FCT-Fundação para a Ciência e a Tecnologia through the PLATMAR project (PTDC/GEO-GEO/0051/2014)

  19. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  20. Sea-Floor Character and Sedimentary Processes in the Vicinity of Woods Hole, Massachusetts

    USGS Publications Warehouse

    Poppe, Lawrence J.; McMullen, Katherine Y.; Foster, David S.; Blackwood, Dann S.; Williams, S. Jeffress; Ackerman, Seth D.; Barnum, Steven R.; Brennan, Rick T.

    2008-01-01

    Continuous-coverage multibeam bathymetric models and sidescan-sonar imagery have been verified with high-resolution seismic-reflection profiles, sediment sampling, and bottom photography. Together these data layers provide detailed base maps that yield topographic, compositional, and environmental perspectives of the sea floor in the vicinity of Woods Hole, an important harbor and major passage between the Elizabeth Islands and Cape Cod, Massachusetts. Tidally dominated high-energy environments within Woods Hole have prevented deposition of Holocene marine sediments, exposed underlying glacial drift of the Buzzards Bay moraine, and winnowed finer grained sediments, leaving lag deposits of boulders and gravel. These conditions have also enlarged and preserved depressions in the moraine surface that were originally kettle holes and formed ebb-tidal deltas at the entrances to passages. Fields of transverse and barchanoid sand waves dominate across the southern part of the study area in Vineyard Sound, where benthic environments are characterized by processes associated with coarse-bedload transport. Transverse sand waves dominate near shoals where sediment supply is greater and have asymmetries that indicate that the shoals are shaped and maintained by clockwise gyres of net sediment transport. Barchanoid sand waves, which are most common where Holocene sediments are thinner, commonly align into elongate fields that have smaller isolated waves concentrated at the eastern ends and that progressively widen and have waveforms that increase in amplitude, wavelength, and complexity westward. The northern, protected parts of the Little and Inner Harbors are characterized by muddy sediment and processes associated with deposition. A pockmark field in Little Harbor and the muddy, organic-rich sediments that form a scarp along the edge of Parker Flat are evidence for the presence of submerged marsh deposits formed during the Holocene rise in sea level.

  1. Data on nearshore wave process and surficial beach deposits, central Tamil Nadu coast, India.

    PubMed

    Joevivek, V; Chandrasekar, N

    2017-08-01

    The chronicles of nearshore morphology and surficial beach deposits provide valuable information about the nature of the beach condition and the depositional environment. It imparts an understanding about the spatial and temporal relationship of nearshore waves and its influence over the distribution of beach sediments. This article contains data about wave and sediment dynamics of the ten sandy beaches along the central Tamil Nadu coast, India. This present dataset comprises nearshore wave parameters, breaker wave type, beach morphodynamic state, grain size distribution and weight percentage of heavy and light mineral distribution. The dataset will figure out the beach morphology and hydrodynamic condition with respect to the different monsoonal season. This will act as a field reference to realize the coastal dynamics in an open sea condition. The nearshore entities were obtained from the intensive field survey between January 2011 and December 2011, while characteristics of beach sediments are examined by the chemical process in the laboratory environment.

  2. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment.

    PubMed

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term.

  3. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    NASA Astrophysics Data System (ADS)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2018-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  4. Sedimentation Waves on the Martian North Polar Cap: Analogy with Megadunes in Antarctica

    NASA Astrophysics Data System (ADS)

    Herny, C.; Masse, M.; Bourgeois, O.; Carpy, S.; Le Mouelic, S.; Appéré, T.; Smith, I. B.; Spiga, A.; Perret, L.; Rodriguez, S.; Piquet, T.; Gaudin, D.; Le Menn, E.

    2014-12-01

    Complex feedbacks between katabatic winds and the cryosphere may lead to the development of sedimentation waves at the surface of ice sheets. These have been first described and named megadunes in Antarctica. Here we use topographic data, optical images, spectroscopic data and radar soundings, acquired by Mars orbiters, to show that the surface of the Martian North Polar Cap displays two superimposed sets of sedimentation waves with differing wavelengths. These sedimentation waves grow and migrate upwind in response to the development of periodic accumulation/ablation patterns controlled by katabatic winds. They have similarities with Antarctic megadunes regarding their surface morphology, texture, grain size, and internal stratigraphic architecture. Based on this analogy, we are currently developing a model of ice/wind interaction at the surface of ice sheets. In Antarctica the accumulation processes on megadunes fields is generally attributed to the wind-blown snow transport while on sedimentation waves of the North Polar Cap of Mars the accumulation seems to be dominated by sublimation/condensation processes at the surface. The model is designed to explore the implication of the water vapor mass transfer and heat transfer on the development of sedimentation waves both on Mars and Earth.

  5. Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments

    NASA Astrophysics Data System (ADS)

    Block, Gareth I.; Harris, John G.

    2006-01-01

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study the conductivity dependence of the electrokinetic (EK) effect are described, and outcomes for studies in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves and (2) the electromagnetic waves produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores; this feature is characteristic of poroelastic (Biot) media but is not predicted by either viscoelastic fluid or solid models. A model of plane wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both loose glass microspheres and medium-grain sand.

  6. Characterisation of physical environmental factors on an intertidal sandflat, Manukau Harbour, New Zealand

    USGS Publications Warehouse

    Bell, R.G.; Hume, T.M.; Dolphin, T.J.; Green, M.O.; Walters, R.A.

    1997-01-01

    Physical environmental factors, including sediment characteristics, inundation time, tidal currents and wind waves, likely to influence the structure of the benthic community at meso-scales (1-100 m) were characterised for a sandflat off Wiroa Island (Manukau Harbour, New Zealand). In a 500 x 250 m study site, sediment characteristics and bed topography were mostly homogenous apart from patches of low-relief ridges and runnels. Field measurements and hydrodynamic modelling portray a complex picture of sediment or particulate transport on the intertidal flat, involving interactions between the larger scale tidal processes and the smaller scale wave dynamics (1-4 s; 1-15 m). Peak tidal currents in isolation are incapable of eroding bottom sediments, but in combination with near-bed orbital currents generated by only very small wind waves, sediment transport can be initiated. Work done on the bed integrated over an entire tidal cycle by prevailing wind waves is greatest on the elevated and flatter slopes of the study site, where waves shoal over a wider surf zone and water depths remain shallow e enough for wave-orbital currents to disturb the bed. The study also provided physical descriptors quantifying static and hydrodynamic (tidal and wave) factors which were used in companion studies on ecological spatial modelling of bivalve distributions and micro-scale sediment reworking and transport.

  7. The influence of sea-level rise on fringing reef sediment dynamics: field observations and numerical modeling

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine

    2011-01-01

    While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.

  8. The numerical calculation of hydrological processes in the coastal zone of the Black Sea region in the city of Poti

    NASA Astrophysics Data System (ADS)

    Saghinadze, Ivane; Pkhakadze, Manana

    2016-04-01

    (The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of sea level, 0.1m was taken as the initial value, which corresponds to the actual conditions The calculations have found that in the excitement, the sediment transport rates at a depth of 10-15m are almost zero. The maximum value of the velocity of sediment transport change within 0.006-0.0065m2/s.In the case of the western waves it is essential for longshore sediment transport directions, which varies in the range 0.0015-0.0022m2/s. The rate of sediment transport perpendicular to the bank in this case is irrelevant, and their maximum values in the range 0.00001-0.000017m2/s. Changes in the water depth varies from -0.25 to 0.29m. The rate of coastal erosion south of the port of 8-10 m/year.

  9. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  10. The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha

    2017-11-01

    The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.

  11. Sediment transport and mixing depth on a coral reef sand apron

    NASA Astrophysics Data System (ADS)

    Vila-Concejo, Ana; Harris, Daniel L.; Power, Hannah E.; Shannon, Amelia M.; Webster, Jody M.

    2014-10-01

    This paper investigates the mechanics of sediment transport on a subtidal sand apron located on a coral reef environment. In this environment 100% of the sediment is carbonate bioclasts generated in situ. The sand apron is located on the back reef and only affected by waves during high tides. It is commonly accepted in the literature that sand aprons are features that prograde lagoonwards and that most of the progradation occurs during high-energy events. Measurements of water depths, waves, currents and near bed suspended sediment concentrations (all at 10 Hz) on the sand apron were undertaken over a nine day intensive field campaign over both spring and neap tides; waves and tides were also measured in the lagoon. The topography and bathymetry of the sand apron were measured and mixing depth was obtained on three transects using depth of disturbance rods. We found that sediment transport on sand aprons is not solely restricted to high-energy events but occurs on a daily basis during spring tides. The main factor controlling the sediment transport was the water depth above the bed, with depths of 2-2.3 m allowing waves to promote the most sediment transport. This corresponds to a depth over the reef crest of 1.6-1.9 m. The second most important control was waves; transport was observed when Hs on the apron was 0.1 m or greater. In contrast, current magnitude was not a controlling mechanism for sediment entrainment but did affect sediment transport. The morphology of the sand apron was shown to affect the direction of currents with the currents also expected to influence the morphology of the sand apron. The currents measured during this field campaign were aligned with a shallow channel in the sand apron. Mixing depths were small (< 2.5 cm) yet they were larger than the values predicted by empirical formulae for gentle siliciclastic ocean beaches.

  12. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment

    PubMed Central

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term. PMID:26070156

  13. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait.

    PubMed

    Droghei, R; Falcini, F; Casalbore, D; Martorelli, E; Mosetti, R; Sannino, G; Santoleri, R; Chiocci, F L

    2016-11-03

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary "current" that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  14. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-11-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  15. Ship Shoal as a prospective borrow site for barrier island restoration, coastal south-central Louisiana, Usa: Numerical wave modeling and field measurements of hydrodynamics and sediment transport

    USGS Publications Warehouse

    Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.

    2004-01-01

    Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.

  16. Numerical Modeling of Geomorphic Change on Sandy Coasts as a Function of Changing Wave Climate

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; McNamara, D.; Murray, A. B.; Lovering, J.

    2009-12-01

    Climate change is expected to affect sandy coast geomorphology through two principal mechanisms: (1) sea level rise, which affects cross-shore sediment transport tending to drive shoreline retreat, and (2) alteration of statistical distributions in ocean storm wave climate (deep water wave height, period, and direction), which affects longshore sediment transport gradients that result in shoreline erosion and accretion. To address potential climate change-driven effects on longshore sediment transport gradients, we are developing techniques to link various numerical models of wave transformation with several different longshore sediment transport formulae in accordance with the Community Surface Dynamics Modeling System (CSDMS) project. Results of the various wave transformation models are compared to field observations of cross-shelf wave transformation along the North Florida Atlantic coast for purposes of model verification and calibration. Initial comparisons between wave-transformation methods (assumption of shore-parallel contours, simple wave ray tracing, and the SWAN spectral wave model) on artificially constructed continental shelves reveal an increasing discrepancy of results for increasing complexity of shelf bathymetry. When the more advanced SWAN spectral wave model is coupled with a simple CERC-type formulation of longshore sediment transport and applied to a real coast with complex offshore shoals (Cape Canaveral region of the North Florida Atlantic Coast), the patterns of erosion and accretion agree with results of the simplest wave-propagation models for some wave conditions, but disagree in others. Model simulations in which wave height and period are held constant show that locations of divergence and convergence of sediment flux shift with deep water wave-approach angle in ways that would not always be predicted using less sophisticated wave propagation models. Thus, predicting long-term local shoreline change on actual coastlines featuring complex bathymetry requires the extra computational effort to run the more advanced model over a wide range of wave conditions.

  17. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    PubMed Central

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-01-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities. PMID:27808239

  18. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    USGS Publications Warehouse

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  19. Dispersal and transport of river sediment on the Catalan Shelf (NW Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Gracia, Vicente; Espino, Manuel; Sánchez-Arcilla, Agustín

    2014-05-01

    A three-dimensional coupled hydrodynamics-sediment transport model for the Catalan shelf (NW Mediterranean Sea) is implemented and used to represent the fluvial sediment transport and depositional patterns. The modelling system COAWST (Warner et al., 2010) allows to exchange field from the water circulation model ROMS and the wave model SWAN including combined wave-current bed stress and both sediment transport mechanisms: bed and suspended load. Two rivers surrounding Barcelona harbour are considered in the numerical experiments. Different temporal and spatial scales are modelled in order to evaluate physical mechanisms such as: fine deposits formation in the inner-shelf, harbour siltation or sediment exporting to the outer shelf. Short-time simulations in a high-resolution mesh have been used to reproduce the initial stages of the sediment dispersal. In this case, sediment accumulation occurs confined in an area attached to the coastline. A subsequent reworking is observed due to the wave-induced bottom stresses which resuspend fine material exported then towards the mid-shelf by seawards fluxes. The long-term water circulation simulations explains the observed fine deposits over the shelf. The results provide knowledge of sediment transport processes in the near-shore area of a micro-tidal domain. REFERENCES: Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, v. 35, no. 3, p. 230-244.

  20. Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago

    NASA Astrophysics Data System (ADS)

    Quartau, Rui; Ramalho, Ricardo S.; Madeira, José; Santos, Rúben; Rodrigues, Aurora; Roque, Cristina; Carrara, Gabriela; Brum da Silveira, António

    2018-01-01

    The submarine flanks of volcanic ocean islands are shaped by a variety of physical processes. Whilst volcanic constructional processes are relatively well understood, the gravitational, erosional and depositional processes that lead to the establishment of large submarine tributary systems are still poorly comprehended. Until recently, few studies have offered a comprehensive source-to-sink approach, linking subaerial morphology with near-shore shelf, slope and far-field abyssal features. In particular, few studies have addressed how different aspects of the subaerial part of the system (island height, climate, volcanic activity, wave regime, etc.) may influence submarine flank morphologies. We use multibeam bathymetric and backscatter mosaics of an entire archipelago - Madeira - to investigate the development of their submarine flanks. Crucially, this dataset extends from the nearshore to the deep sea, allowing a solid correlation between submarine morphologies with the physical and geological setting of the islands. In this study we also established a comparison with other island settings, which allowed us to further explore the wider implications of the observations. The submarine flanks of the Madeira Archipelago are deeply dissected by large landslides, most of which also affected the subaerial edifices. Below the shelf break, landslide chutes extend downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels has formed where no significant rocky/ridge outcrops are present. In Madeira Island these were likely generated by turbidity currents that originated as hyperpycnal flows, whilst on Porto Santo and Desertas their origin is attributed to storm-induced offshore sediment transport. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5°-3°, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter. Sediment waves are often associated with the depositional lobes of the landslides but also occur offshore poorly-developed tributary systems. Sediment wave fields and scours are mostly absent in areas where the tributary systems are well developed and/or are dominated by rocky outcrops. This suggests that scours and sediment wave fields are probably generated by turbidity currents, which experience hydraulic jumps where seafloor gradients are significantly reduced and where the currents become unconfined. The largest scours were found in areas without upslope channel systems and where wave fields are absent, and are also interpreted to have formed from unconfined turbidity currents. Our observations show that tributary systems are better developed in taller and rainy islands such as Madeira. On low-lying and dry islands such as Porto Santo and Desertas, tributary systems are poorly developed with unconfined turbidite currents favouring the development of scours and sediment wave fields. These observations provide a more comprehensive understanding of which factors control the gravitational, erosional, and depositional features shaping the submarine flanks of volcanic ocean islands.

  1. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    NASA Astrophysics Data System (ADS)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was very high. These results suggest that vertical velocity or turbulent shear stress may be a better parameter for predicting sediment pick-up rate than turbulent kinetic energy. It was also found that splash-up vortices enhanced onshore transport relative to the condition when no vortex impinged on the bottom.

  2. Sediment sorting along tidal sand waves: A comparison between field observations and theoretical predictions

    NASA Astrophysics Data System (ADS)

    Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries

    2013-07-01

    A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.

  3. Storm-driven sediment transport in Massachusetts Bay

    USGS Publications Warehouse

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.

  4. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2012-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  5. Current Pattern Change in the Fram Strait at the Pliocene/Pleistocene Boundary

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Geissler, W. H.; Matthiessen, J. J.; Jokat, W.

    2014-12-01

    Thick packages of drift-type sediments were identified in the northwestern and central part of the Fram Strait, mainly along the western Yermak Plateau flank, but also in the central, flat part of the Fram Strait. A large-scale field of sediment waves was found north of 80.5°, along the Yermak Plateau rise. This field separates two drift bodies, a deeper one towards west and a shallower one towards east. The drift bodies were deposited by bottom currents, most likely by the northbound Yermak Branch of the West Spitsbergen Current, but an influence of a southbound current on the westren drift body cannot be ruled out. Within the drift bodies and even more pronounced withing the sediment waves, a stratigraphic boundary is clearly visible. It separates a lower package of waves migrating upslope at a low angle of ~5° from an upper package with significantly increased wave crest migration at ~16.5°. Using the seismic network, this stratigraphic boundary could be tracked to ODP Leg 151, Site 911, where it corresponds to the lithostratigraphic boundary between units IA and IB dated to 2.7 Ma. The increase in wave-crest migration angle points at a shift towards higher sedimentation rates at 2.7 Ma. This corresponds to the intensification of the Northern Hemisphere glaciation with a major expansion of the Scandinavian, northern Barents Sea, North American and Greenland ice sheets. The Barents Shelf that was subaerially exposed and the expansion of the northern Barents Sea ice sheet (as well as Svalbard) are the likely sources for enhanced erosion and fluvial input along the pathway of the West Spitsbergen Current, resulting in higher sedimentation rates in the Fram Strait.

  6. Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.

    2012-12-01

    Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.

  7. Waves, Hydrodynamics and Sediment Transport Modeling at Grays Harbor, WA

    DTIC Science & Technology

    2010-12-01

    Grays Harbor Federal navigation project. At the same time, offshore wind and wave data were available from NDBC Buoy 46029 and CDIP Buoy 036 / NDBC...is forced by the regional ADCIRC water levels and currents, surface wind field, and offshore waves based on the CDIP Buoy 036 (NDBC 46211). Figures

  8. Modeling of Nonlinear Hydrodynamics of the Coastal Areas of the Black Sea by the Chain of the Proprietary and Open Source Models

    NASA Astrophysics Data System (ADS)

    Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim

    2014-05-01

    The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.

  9. Characterization of the Subsurface Using Vp, Vs, Vp/Vs, and Poisson's Ratio from Body and Surface Waves

    NASA Astrophysics Data System (ADS)

    Catchings, R.

    2017-12-01

    P- and S-wave propagation differ in varying materials in the Earth's crust. As a result, combined measurements of P- and S-wave data can be used to infer properties of the shallow crust, including bulk composition, fluid saturation, faulting and fracturing, seismic velocities, reflectivity, and general structures. Ratios of P- to S-wave velocities and Poisson's ratio, which can be derived from the P- and S-wave data, can be particularly diagnostic of subsurface materials and their physical state. In field studies, S-wave data can be obtained directly with S-wave sources or from surface waves associated with P-wave sources. P- and S-wave data can be processed using reflection, refraction, and surface-wave-analysis methods. With the combined data, unconsolidated sediments, consolidated sediments, and rocks can be differentiated on the basis of seismic velocities and their ratios, as can saturated versus unsaturated sediments. We summarize studies where we have used combined P- and S-wave measurements to reliably map the top of ground water, prospect for minerals, locate subsurface faults, locate basement interfaces, determine basin shapes, and measure shear-wave velocities (with calculated Vs30), and other features of the crust that are important for hazards, engineering, and exploration purposes. When compared directly, we find that body waves provide more accurate measures than surface waves.

  10. Integrating field research, modeling and remote sensing to quantify morphodynamics in a high-energy coastal setting, ocean beach, San Francisco, California

    USGS Publications Warehouse

    Barnard, P.L.; Hanes, D.M.

    2006-01-01

    Wave and coastal circulation modeling are combined with multibeam bathymetry, high-resolution beach surveys, cross-shore Personal Water Craft surveys, digital bed sediment camera surveys, and real-time video monitoring to quantify morphological change and nearshore processes at Ocean Beach, San Francisco. Initial SWAN (Simulating Waves Nearshore) wave modeling results show a focusing of wave energy at the location of an erosion hot spot on the southern end of Ocean Beach during prevailing northwest swell conditions. During El Nin??o winters, swell out of the west and southwest dominates the region, and although the wave energy is focused further to the north on Ocean Beach, the oblique wave approach sets up a strong northerly littoral drift, thereby starving the southern end of sediment, leaving it increasingly vulnerable to wave attack when the persistent northwest swell returns. An accurate assessment of the interaction between wave and tidal processes is crucial for evaluating coastal management options in an area that includes the annual dredging and disposal of ship channel sediment and an erosion hot spot that is posing a threat to local infrastructure. Copyright ASCE 2006.

  11. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.

    Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30more » Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E-12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1-25 to 1-24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1-3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1-12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1-25 to 1-24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1-3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves.« less

  12. High-resolution modelling of waves, currents and sediment transport in the Catalan Sea.

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, Agustín; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2013-04-01

    In order to investigate coastal shelf dynamics, a sequence of high resolution multi-scale models have been implemented for the Catalan shelf (North-western Mediterranean Sea). The suite consists of a set of increasing-resolution nested models, based on the circulation model ROMS (Regional Ocean Modelling System), the wave model SWAN (Simulation Waves Nearshore) and the sediment transport model CSTM (Community Sediment Transport Model), covering different ranges of spatial (from ~1 km at shelf-slope regions to ~40 m around river mouth or local beaches) and temporal scales (from storms events to seasonal variability). Contributions in the understanding of local processes such as along-shelf dynamics in the inner-shelf, sediment dispersal from the river discharge or bi-directional wave-current interactions under different synoptic conditions and resolution have been obtained using the Catalan Coast as a pilot site. Numerical results have been compared with "ad-hoc" intensive field campaigns, data from observational models and remote sensing products. The results exhibit acceptable agreement with observations and the investigation has allowed developing generic knowledge and more efficient (process-based) strategies for the coastal and shelf management.

  13. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote sensing data and the reasons of deviations and uncertainties are unbiased. The probability of changes and impact of sediment drift over ocean dynamic model over the long running of years is estimated.

  14. Sea-floor geology of Long Island Sound north of Duck Pond Point, New York

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Danforth, W.W.; Blackwood, D.S.; Schaer, J.D.; Glomb, K.A.; Doran, E.F.

    2012-01-01

    The U.S. Geological Survey, the National Oceanic and Atmospheric Administration (NOAA), and the Connecticut Department of Environmental Protection are mapping the sea floor in coastal areas of the northeastern United States. As part of the project, more than 100 square kilometers of multibeam-echosounder data, 23 sediment samples, bottom video, and 86 still photographs were obtained from an area in Long Island Sound north of Duck Pond Point, New York, in the study area of NOAA survey H11999. This report delineates the sediment types and sea-floor features found within this area in order to better understand the sea-floor processes occurring in this part of Long Island Sound. The sea floor in the study area is dominated by ubiquitous sand-wave fields and three northeast-southwest trending bathymetric depressions. Barchanoid and transverse sand waves, including sinusoidal, bifurcating, arced, and straight-crested morphologies, are variably present. Asymmetrical sand-wave profiles indicate a westward to southwestward direction of sediment transport in most of the study area; current ripples and megaripples on the stoss slopes of the sand waves indicate transport is ongoing. The majority of the sediment on the sea floor is sand, although bouldery, gravelly, and muddy sediments are also present. Gray, cohesive mud crops out on the walls of some of the scour depressions associated with the troughs of large sand waves. Clasts of the muddy sediment scattered on the sea floor around the depressions demonstrate the intensity of the scour and suggest erosion of the underlying distal deltaic sediments.

  15. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Yanxin; Cheng Yipik; Xu Xiaomin

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wavemore » velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.« less

  16. Tsunami Waves Joint Inversion Using Tsunami Inundation, Tsunami Deposits Distribution and Marine-Terrestrial Sediment Signal in Tsunami Deposit

    NASA Astrophysics Data System (ADS)

    Tang, H.; WANG, J.

    2017-12-01

    Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as the tsunami. However, the generation of a tsunami is not fully understood yet, especially for paleo-tsunami. Tsunami deposits are one of the concrete evidence in the geological record which we can apply for studying paleo-tsunami. The understanding of tsunami deposits has significantly improved over the last decades. There are many inversion models (e.g. TsuSedMod, TSUFLIND, and TSUFLIND-EnKF) to study the overland-flow characteristics based on tsunami deposits. However, none of them tries to reconstruct offshore tsunami wave characteristics (wave form, wave height, and length) based on tsunami deposits. Here we present a state-of-the-art inverse approach to reconstruct offshore tsunami wave based on the tsunami inundation data, the spatial distribution of tsunami deposits and Marine-terrestrial sediment signal in the tsunami deposits. Ensemble Kalman Filter (EnKF) Method is used for assimilating both sediment transport simulations and the field observation data. While more computationally expensive, the EnKF approach potentially provides more accurate reconstructions for tsunami waveform. In addition to the improvement of inversion results, the ensemble-based method can also quantify the uncertainties of the results. Meanwhile, joint inversion improves the resolution of tsunami waves compared with inversions using any single data type. The method will be tested by field survey data and gauge data from the 2011 Tohoku tsunami on Sendai plain area.

  17. Analyze of waves dynamic over an intertidal mudflat of a sandy-gravely estuarine beach - Field survey and preliminary modeling approach

    NASA Astrophysics Data System (ADS)

    Morio, Olivier; Sedrati, Mouncef; Goubert, Evelyne

    2014-05-01

    As well as marine submersion or erosive phenomena, clay-silted sediment in-filling on estuarial and bay beaches are a main issue in these human-attractive areas. Coupled sandy/gravely and clay/silty intertidal areas can be observed in these particular coastal areas, depending of rivers characteristic (discharge of particle, water flow), ocean dynamics (wave exposure, current) and sediments sources. All around the world, sandy/gravely beaches are exposed to punctual or continuous input clay sediments. Vilaine estuary, Bay of Arcachon and Bay of Seine in France, Plymouth Bay in UK and also Wadden Sea in Deutschland are few examples of muddy/sandy coupled or mixed system. The beach of Bétahon (Ambon town, Brittany - France) is located on the external Vilaine estuary and is an example of this issue. This meso-macrotidal intermediate (low tide terrace) beach presents heterogeneous sediments. The upper intertidal zone is composed by sand and gravel and characterized by a steep slope. A very gentle slope characterized the lower part of the beach and is constituted by silt and clay. Clay/sand limit is characterized by a decimetric erosion cliff of mudflat along the beach. In order to understand bed variations and sediment transport of this complex heterogeneous beach, a well understanding of wave dynamic across the beach is necessary. This study focus on wave dynamics over the beach, using field observations and MIKE 21 3D wave numerical model. This paper is a preliminary approach of an upcoming global understanding of this estuarial beach behavior. Swell from deep-sea to near-shore area is modeled over a 100 km² area and real wind, deep sea wave characteristic, river water flow and tidal level are defined as open boundary conditions for the regional model. This last one is based on multiple bathymetric surveys over the last 50 years. Local model, triangular mesh gridded to 5 meters, covering Bétahon beach , is based on topographic and photographic survey of the mudflat since 2005 (an amplitude above 1.4 meters has been observed over a start reference state). Modeling significant wave height, wave direction and period are compared to a cross-shore wave dynamics survey over the beach, during one week. Surf zone positions over the beach, wave characteristics at local and regional scales, impacts of mudflat altitude on waves are analyzed and discussed.

  18. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  19. A regional sediment transport modeling for assessing dispersal and recirculation of land-derived radionuclides in the Fukushima coast

    NASA Astrophysics Data System (ADS)

    Yamanishi, T.; Uchiyama, Y.; Tsumune, D.; Miyazawa, Y.

    2014-12-01

    Fluvial discharge from the rivers is viewed as a missing piece in the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP). The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended fine particles (sediments) that are transported quite differently to the dissolved matter. Therefore, we implement a sediment transport model proposed by Blaas et al. (2007) consisting of a multi-class non-cohesive sediment transport model, a wave-enhanced bed boundary layer model, and a stratigraphy model into ROMS. A 128 x 256 km domain with the grid resolution of dx = 250 m centered at FNPP is configured as a test bed embedded in the existing ROMS model domain at dx = 1 km (Uchiyama et al., 2012, 2013). A spectral wave model SWAN at dx = 1 km nested in the JMA GPV-CWM wave reanalysis is used for the wave forcing field. A surface runoff model (Toyota et al., 2009) provides daily-mean discharges and associated sediment fluxes at the mouths of 20 rivers in the study area.The model results show that bed stresses are enhanced in the coastal area about 10 to 20 km from the shore, most part of the semi-sheltered Sendai Bay, and on the continental shelf slope at about 600 m deep. In contrast, band-like structures are formed between the nearshore and the shelf slope where bed stresses are found to be modest. This low stress bands correspond to the areas where fine particles such as silt and clay are predominant in the bed. Since the cesium 137 is quite readily attached to fine particles rather than coarse sediments (sand), this result suggests that the band acts as a hot spot of the sediment-attached radionuclides. Indeed, a qualitative correlation is found between the low stress band with high radioactivity of cesium 137 in the bed sediment off FNPP based on the field measurement (Ambe et al., 2013).

  20. A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Cheng, Z.; Yu, X.

    2016-02-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.

  1. Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications

    USGS Publications Warehouse

    Apotsos, Alex; Buckley, Mark; Gelfenbaum, Guy; Jaffe, Bruce; Vatvani, Deepak

    2011-01-01

    Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.

  2. Self-organising of wave and beach relief in storm: field experiments

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Olga; Saprykina, Yana; Kuznetsov, Sergey; Stremel, Margarita; Korsinin, Dmitry; Trifonova, Ekaterina; Andreeva, Natalia

    2017-04-01

    This paper presents results of waves and morfodynamics observation carried out in frame of complex field experiments "Shkorpilowtsy-2016" and "Shkorpilowtsy-2007", which were made in order to understand how bottom deformations depend on wave parameters and how wave-bottom self-organisation process runs during storm events. Sediment transport and profile deformations were analysed taking into account the presence of underwater bar (data 2007) and without it (data 2016). Experiments were made on field base of Institute of Oceanology "Fridtjof Nansen" (Bulgarian Academy of Sciences) in Shkorpilowtsy settlement, that is locates on Black Sea coast, 40 km from Varna. The base is equipped with 253 m research pier that provide measuring until 5 m depth on distance 200 m from shore. During filed works synchronous observations on wave parameters and bottom changes were made on average three times a day for one month: 18.09-08.10.2007 and 07.10-02.11.2016. Morphological observations involved cross-shore beach profile deformations measuring along the scientific pier from shore to sea through each 2 m using metal pole in 2007 and metal or rope lot in 2016. Wave measurements included visual observations of breaking and surf zones location, wave type (wind or swell wave) and direction as well as free surface deviation (wave chronogram) registrations using high-frequency capacitive or resistance sensors mounted along the pier. In 2007 registration of free surface elevation was carried out with 7 capacitance and 8 resistant wire gauges, in 2016 - with 18 capacitance wire gauges. Sampling frequency was 5 Hz in 2007 and 20 Hz in 2016, duration of the records varied from 20 min up to one hour in 2007 and between 10 min and one hour in 2016. Wave spectra computed from chronogram allowed to estimate wave spectral (significant wave height, spectral peak and mean periods and complex) and integral parameters (Irribaren and Ursell numbers) to analyse dependence bottom deformations on it. Self-organising of bottom relief and waves were studied on a scale of several storms. Results of investigations show that increase of significant wave height and spectral peak period of wave entering in coastal zone as well as Ursell number lead to erosion, which was localised in first 100 m near on barred profile and covered whole observed profile in case without bar. Features of sediment transport by forming a mobile temporal underwater bar were examined for cases of flat sloping and barred underwater beach profiles. On timescale of one storm type of wave breaking affect sediment transport: plunging wave breaking is responsible for formation and evolution of underwater sand bar as well as decreasing of sediment amount in upper part of beach profile and shoreline regression, while spilling do not lead to significant bottom deformations. The work was supported by Russian Foundation of Basic Research (grants 16-55-76002 (ERA-a), 16-35-00542 (mol_a), 15-05-08239, 15-05-04669).

  3. Toxicity evaluation with the microtox® test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation

    USGS Publications Warehouse

    Lee, Kenneth; Wohlgeschaffen, Gary; Tremblay, Gilles H.; Johnson, B. Thomas; Sergy, Gary A.; Prince, Roger C.; Guenette, Chantal C.; Owens, Edward H.

    2003-01-01

    Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery––no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56′ N, 16°45′ E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.

  4. Nearshore disposal of fine-grained sediment in a high-energy environment: Santa Cruz Harbor case study

    USGS Publications Warehouse

    Cronin, Katherine; van Ormondt, Maarten; Storlazzi, Curt D.; Presto, Katherine; Tonnon, Pieter K.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Current regulations in California prohibit the disposal of more than 20% fine-grained sediment in the coastal zone; this threshold is currently being investigated to determine if this environmental regulation can be improved upon. A field monitoring and numerical modeling experiment took place late 2 009 to determine the fate of fine-grained dredge disposal material from Santa Cruz Harbor, California, U.S.A. A multi-nested, hydrodynamic-sediment transport modeling approach was used to simulate the direction and dispersal of the dredge plume. Result s show that the direction and dispersal of the plume was influenced by the wave  climate, a large proportion of which moved in a easterly direction during wave events. Therefore it is vitally important to accurately simulate the tides, waves, currents, temperature and salinity when modeling the dispersal of the fine-grained dredge plume. 

  5. Low-canopy seagrass beds still provide important coastal protection services.

    PubMed

    Christianen, Marjolijn J A; van Belzen, Jim; Herman, Peter M J; van Katwijk, Marieke M; Lamers, Leon P M; van Leent, Peter J M; Bouma, Tjeerd J

    2013-01-01

    One of the most frequently quoted ecosystem services of seagrass meadows is their value for coastal protection. Many studies emphasize the role of above-ground shoots in attenuating waves, enhancing sedimentation and preventing erosion. This raises the question if short-leaved, low density (grazed) seagrass meadows with most of their biomass in belowground tissues can also stabilize sediments. We examined this by combining manipulative field experiments and wave measurements along a typical tropical reef flat where green turtles intensively graze upon the seagrass canopy. We experimentally manipulated wave energy and grazing intensity along a transect perpendicular to the beach, and compared sediment bed level change between vegetated and experimentally created bare plots at three distances from the beach. Our experiments showed that i) even the short-leaved, low-biomass and heavily-grazed seagrass vegetation reduced wave-induced sediment erosion up to threefold, and ii) that erosion was a function of location along the vegetated reef flat. Where other studies stress the importance of the seagrass canopy for shoreline protection, our study on open, low-biomass and heavily grazed seagrass beds strongly suggests that belowground biomass also has a major effect on the immobilization of sediment. These results imply that, compared to shallow unvegetated nearshore reef flats, the presence of a short, low-biomass seagrass meadow maintains a higher bed level, attenuating waves before reaching the beach and hence lowering beach erosion rates. We propose that the sole use of aboveground biomass as a proxy for valuing coastal protection services should be reconsidered.

  6. Beach Erosion and Accretion: Comparison of the Seasonal Influence of Suspended- and Bedload-Sediment Transport at Grays Harbor, Washington, U. S. A.

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.

    2001-12-01

    We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast, Spring wave conditions were much milder (maximum Hs of ~4 m), and waves approached mostly from the WNW. There were long periods of upwelling-favorable circulation interrupted by intervals of storm-induced northward flow. Net suspended-sediment transport was directed northward at the deeper sites and southward at the inshore sites. Near-bottom transport remained offshore at the deeper sites, but was lower, with negligible net cross-shore component at the shallow sites. The relative contribution of shoreward bedload transport was much larger. These changes in sediment transport outside the breaker zone are consistent with measured changes in beach and bar morphology.

  7. Wind and Wave Driven Nearshore Circulation at Cape Hatteras Point

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Voulgaris, G.; Warner, J. C.; List, J. H.

    2012-12-01

    We have used a measurement and modeling approach to identify hydrodynamic processes responsible for alongshore transport of sediment that can support the maintenance of Diamond Shoals, NC, a large inner-shelf sedimentary convergent feature. As a part of Carolina Coastal Change Processes project, a one month field experiment was conducted around Cape Hatteras point during February, 2010. The instrumentation consisted of 15 acoustic current meters (measuring pressure and velocity profile) deployed in water depths varying from 3-10m and a very high frequency (VHF) beam forming radar system providing surface waves and currents with a resolution of 150 m and a spatial coverage of 10-15 km2. Analysis of field observation suggests that wind-driven circulation and littoral current dominate surf zone and inner shelf processes at least at an order higher than tidally rectified flows. However, the data analysis identified that relevant processes like non-linear advective acceleration, pressure gradient and vortex-force (due to interaction between wave-induced drift and mean flow vorticity), may be significant, but were not assessed accurately due to instrument location and accuracy. To obtain a deeper physical understanding of the hydrodynamics in this study-site, we applied a three-dimensional Coupled-Ocean-Atmosphere-Wave_Sediment-Transport (COAWST) numerical model. The COAWST modeling system is comprised of nested, coupled, three-dimensional ocean-circulation model (ROMS) and wave propagation model (SWAN), configured for the study site to simulate wave height, direction, period and mean current velocities (both Eulerian and Lagrangian). The nesting follows a two-way grid refinement process for the circulation module, and one-way for the wave model. The coarsest parent grid resolved processes on the spatial and temporal scales of mid-shelf to inner-shelf, and subsequent child grids evolved at inner-shelf and surf zone scales. Preliminary results show that the model successfully reproduces wind-driven circulation and littoral currents. Furthermore, model simulation provides evidence for (a) circulation pattern suggesting a mechanism for sediment movement from littoral zone to the Diamond Shoals complex; (b) Diamond shoals complex acting as independent coastline, which restricts the littoral currents to follow the coastline orientation around Cape Hatteras point. As a part of this study, simulated hydrodynamic parameters will be validated against field observations of wave height and direction and Eulerian velocities from acoustic current meters, and sea surface maps of wave height and Lagrangian flows provided by the VHF radar. Moreover, the model results will be analyzed to (a) identify the significance of the terms in momentum balance which are not estimated accurately through field observations; (b) provide a quasi-quantitative estimate of sediment transport contributing to shoal building process.

  8. A Numerical Study of Hydrodynamics and Sediment Transport in Fourleague Bay, Louisiana

    NASA Astrophysics Data System (ADS)

    Hu, K.; Chen, Q. J.; Xu, K.; Bentley, S. J.; WANG, J.

    2017-12-01

    Fourleague Bay is a shallow and vertically well-mixed estuary in south-central Louisiana. This estuary is highly impacted by wind (e.g., cold fronts and tropical storms), river discharge from the Atchafalaya River and tides from the Gulf of Mexico, and is being used as an analog site to study impacts of sediment-diversion restoration strategies in the Mississippi River Delta. In this study, a coupled flow-wave Delft3D model was setup and applied to study hydrodynamics and sediment transport in this area. The model grid size is 1071x631 with a 50-m resolution in the bay. Vegetation is considered by rigid cylinders in both flow and wave modules. The offshore water level boundary conditions were provided by a Gulf-scale Delft3D model. Model parameters, especially for cohesive sediment transport such as settling velocity, erosion rate and critical bottom shear stress, were calibrated using the field observation data during three seasons from May 2015 to March 2016. The modeled water levels, currents, significant wave heights and suspended sediment concentrations agreed fairly well with measurements, which suggests a reasonable model performance. Seasonal variations were analyzed based on different scenarios. A series of numerical experiments were set up to quantify the contributions of different factors, such as river discharge, tides and waves to sediment transport in this area. This model will be further applied to be part of a landscape ecosystem model to test landscape and population change over time with manipulations to sediment delivery. This study was funded by the National Science Foundation (SEES-1427389 and CCF-1539567).

  9. Quaternary geology and sedimentary processes in the vicinity of Six Mile Reef, eastern Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Williams, S.J.; Moser, M.S.; Forfinski, N.A.; Stewart, H.F.; Doran, E.F.

    2008-01-01

    Six Mile Reef, a sandy, 22-m-high shoal trending east-west and located about 7.8 km off the Connecticut coast, has a core of postglacial marine deltaic deposits mantled by tidally reworked modern sediments. Sedimentary environments off the eastern end of the shoal are characterized by processes associated with long-term erosion or nondeposition, a mobile-sediment-limited seafloor armored by gravelly sand, and scattered elongate fields of barchanoid sand waves. The barchanoid waves reach amplitudes of 20 m, are concave westward, and occur in individual and coalesced forms that become progressively more complex westward. The seafloor on and adjacent to the shoal is characterized by processes associated with coarse bedload transport and covered primarily with asymmetrical transverse sand waves. The transverse waves exceed 8 m in amplitude, have slip faces predominantly oriented to the west and southwest, and have straight, slightly sinuous, and curved crests. Megaripples, which mimic the asymmetry of the sand waves, are commonly present on stoss slopes and in troughs; current ripples are ubiquitous. The amplitude and abundance of large bedforms decrease markedly westward of Six Mile Reef. The seabed there is covered with small, degraded ripples, reflecting lower-energy environments and processes associated with sorting and reworking of seafloor sediments. Megaripples and current ripples on the sand waves suggest that transport is active and that the bedforms are propagating under the present hydraulic regime. Net bedload sediment transport is primarily to the west, as evidenced by textural trends of surficial sediments, orientation of the barchanoid waves, and asymmetry of the transverse waves and of the scour marks around bedrock outcrops, boulders, and shipwrecks. One exception occurs at the western tip of the shoal, where sand-wave morphology indicates long-term eastward transport, suggesting that countercurrents in this area shape the shoal and are important to its maintenance.

  10. Elastic properties of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2001-01-01

    Downhole-measured compressional- and shear-wave velocities acquired in the Mallik 2L-38 gas hydrate research well, northwestern Canada, reveal that the dominant effect of gas hydrate on the elastic properties of gas hydrate-bearing sediments is as a pore-filling constituent. As opposed to high elastic velocities predicted from a cementation theory, whereby a small amount of gas hydrate in the pore space significantly increases the elastic velocities, the velocity increase from gas hydrate saturation in the sediment pore space is small. Both the effective medium theory and a weighted equation predict a slight increase of velocities from gas hydrate concentration, similar to the field-observed velocities; however, the weighted equation more accurately describes the compressional- and shear-wave velocities of gas hydrate-bearing sediments. A decrease of Poisson's ratio with an increase in the gas hydrate concentration is similar to a decrease of Poisson's ratio with a decrease in the sediment porosity. Poisson's ratios greater than 0.33 for gas hydrate-bearing sediments imply the unconsolidated nature of gas hydrate-bearing sediments at this well site. The seismic characteristics of gas hydrate-bearing sediments at this site can be used to compare and evaluate other gas hydrate-bearing sediments in the Arctic.

  11. Field Observations of Swash-Zone Dynamics on a Sea-Breeze Dominated Beach at the Yucatán Peninsula, México

    NASA Astrophysics Data System (ADS)

    Chardon-Maldonado, P.; Puleo, J. A.; Torres-Freyermuth, A.

    2016-02-01

    Sea breezes can modify the nearshore processes and alter beach morphology depending on the geographical location. Prior studies have shown that surf zone wave energy intensifies during strong sea-breeze conditions (wind speeds > 10 ms-1) and the impact on the coast can be similar to a small storm. However, few research efforts have investigated the coastal dynamics on sea-breeze dominated beaches (e.g., Masselink and Pattiaratchi, 1998, Mar. Geol.; Pattiaratchi et al., 1997, Cont. Shelf Res.) and, to the authors' knowledge, only one study has focused on swash-zone processes (Sonu et al., 1973, EOS). A field study was performed on a microtidal, low wave energy, sea-breeze dominated sandy beach in order to investigate the effects of local (sea breeze) and synoptic (storm) scale meteorological events on swash-zone dynamics. In-situ measurements of swash-zone hydrodynamics and sediment transport processes were collected from March 31st to April 12th, 2014 in Sisal, Yucatán located on the northern coast of the Yucatán Peninsula. Flow velocities and suspended sediment concentrations were measured concurrently, at multiple cross-shore and alongshore locations, using Vectrino-II profiling velocimeters and optical backscatter sensors, respectively. The high resolution data allowed the quantification of bed shear stress, turbulent dissipation rate, sediment loads and sediment flux during a mesoscale frontal system (cold-front passage referred to as an El Norte) and local sea-breeze cycles. Field observations showed that strong swash-zone bed shear stresses, turbulence intensity and sediment suspension occur during energetic conditions (i.e., El Norte event). On the other hand, despite milder energy conditions during the sea-breeze events, the alongshore component of bed-shear stresses and velocities can be significant owing to the high incidence wave angle associated with the sea-breeze system in the study area. The increased forcing in the swash zone induced sediment suspension, eroding the foreshore and causing accretion in the surf zone. The preliminary analysis demonstrates that strong sea-breeze events induce a significant alongshore swash-zone sediment transport that may be more important than that observed during an El Norte event.

  12. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2) absence of sediment waves on the basin floor, which is covered mainly by muds and hemipelagic sediments with a low sand-mud ratio; and (3) presence of sediment waves on the lower slope with a moderate sand-mud ratio.

  13. A Coastal Environment Field and Laboratory Activity for an Undergraduate Geomorphology Course

    ERIC Educational Resources Information Center

    Ellis, Jean T.; Rindfleisch, Paul R.

    2006-01-01

    A field and laboratory exercise for an undergraduate geomorphology class is described that focuses on the beach. The project requires one day of fieldwork and two laboratory sessions. In the field, students measure water surface fluctuations (waves) with a pressure sensor, survey beach profiles, collect sediment samples, and observe the beach…

  14. A new approximation for pore pressure accumulation in marine sediment due to water waves

    NASA Astrophysics Data System (ADS)

    Jeng, D.-S.; Seymour, B. R.; Li, J.

    2007-01-01

    The residual mechanism of wave-induced pore water pressure accumulation in marine sediments is re-examined. An analytical approximation is derived using a linear relation for pore pressure generation in cyclic loading, and mistakes in previous solutions (Int. J. Numer. Anal. Methods Geomech. 2001; 25:885-907; J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11) are corrected. A numerical scheme is then employed to solve the case with a non-linear relation for pore pressure generation. Both analytical and numerical solutions are verified with experimental data (Laboratory and field investigation of wave-sediment interaction. Joseph H. Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1983), and provide a better prediction of pore pressure accumulation than the previous solution (J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11). The parametric study concludes that the pore pressure accumulation and use of full non-linear relation of pore pressure become more important under the following conditions: (1) large wave amplitude, (2) longer wave period, (3) shallow water, (4) shallow soil and (5) softer soils with a low consolidation coefficient. Copyright

  15. Wave Driven Fluid-Sediment Interactions over Rippled Beds

    NASA Astrophysics Data System (ADS)

    Foster, Diane; Nichols, Claire

    2008-11-01

    Empirical investigations relating vortex shedding over rippled beds to oscillatory flows date back to Darwin in 1883. Observations of the shedding induced by oscillating forcing over fixed beds have shown vortical structures to reach maximum strength at 90 degrees when the horizontal velocity is largest. The objective of this effort is to examine the vortex generation and ejection over movable rippled beds in a full-scale, free surface wave environment. Observations of the two-dimensional time-varying velocity field over a movable sediment bed were obtained with a submersible Particle Image Velocimetry (PIV) system in two wave flumes. One wave flume was full scale and had a natural sand bed and the other flume had an artificial sediment bed with a specific gravity of 1.6. Full scale observations over an irregularly rippled bed show that the vortices generated during offshore directed flow over the steeper bed form slope were regularly ejected into the water column and were consistent with conceptual models of the oscillatory flow over a backward facing step. The results also show that vortices remain coherent during ejection when the background flow stalls (i.e. both the velocity and acceleration temporarily approach zero). These results offer new insight into fluid sediment interaction over rippled beds.

  16. Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event

    NASA Astrophysics Data System (ADS)

    Malott, Spencer; O'Carroll, Denis M.; Robinson, Clare E.

    2016-07-01

    Dynamic coastal forcing influences the transport of pollutants in nearshore aquifers and their ultimate flux to coastal waters. In this study, field data are presented that show, for the first time, the influence of a period of intensified wave conditions (wave event) on nearshore groundwater flows and geochemistry in a sandy beach. Field measurements at a freshwater beach allow wave effects to be quantified without other complex forcing that are present along marine shorelines (e.g., tides). Pressure transducer data obtained over an isolated wave event reveal the development of transient groundwater flow recirculations. The groundwater flows were simulated in FEFLOW using a phase-averaged wave setup approach to represent waves acting on the sediment-water interface. Comparison of measured and simulated data indicates that consideration of wave setup alone is able to adequately capture wave-induced perturbations in groundwater flows. While prior studies have shown sharp pH and redox spatial zonations in nearshore aquifers, this study reveals rapid temporal variations in conductivity, pH, and redox (ORP) in shallow sediments (up to 0.5 m depth) in response to varying wave conditions. Comparison of head gradients with calculated conductivity and pH mixing ratios indicates the controlling effect of the wave-induced water exchange and flows in driving the observed geochemical dynamics. While we are not able to conclusively determine the extent to which temporal variations are caused by conservative mixing versus reactive processes, the pH and ORP variations observed will have significant implications for the fate of reactive pollutants discharging through sandy nearshore aquifers.

  17. Hydro and morphodynamic simulations for probabilistic estimates of munitions mobility

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Penko, A.

    2017-12-01

    Probabilistic estimates of waves, currents, and sediment transport at underwater munitions remediation sites are necessary to constrain probabilistic predictions of munitions exposure, burial, and migration. To address this need, we produced ensemble simulations of hydrodynamic flow and morphologic change with Delft3D, a coupled system of wave, circulation, and sediment transport models. We have set up the Delft3D model simulations at the Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA. The FRF is the prototype site for the near-field munitions mobility model, which integrates far-field and near-field field munitions mobility simulations. An extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data are available at the FRF, as well as existing observations of munitions mobility for model testing. Here, we present results of ensemble Delft3D hydro- and morphodynamic simulations at Duck. A nested Delft3D simulation runs an outer grid that extends 12-km in the along-shore and 3.7-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The inner nested grid extends 3.2-km in the along-shore and 1.2-km in the cross-shore with 5-m resolution and a maximum depth of approximately 11-m. The inner nested grid initial model bathymetry is defined as the most recent survey or remotely sensed estimate of water depth. Delft3D-WAVE and FLOW is driven with spectral wave measurements from a Waverider buoy in 17-m depth located on the offshore boundary of the outer grid. The spectral wave output and the water levels from the outer grid are used to define the boundary conditions for the inner nested high-resolution grid, in which the coupled Delft3D WAVE-FLOW-MORPHOLOGY model is run. The ensemble results are compared to the wave, current, and bathymetry observations collected at the FRF.

  18. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  19. Wave characteristics and hydrodynamics at a reef island on Dongsha Atoll in the South China Sea

    NASA Astrophysics Data System (ADS)

    Su, Shih-Feng; Chiang, Te-Yun; Lin, Yi-Hao; Chen, Jia-Lin

    2017-04-01

    An inhabited coral reef island, located at the Dongsha Atoll in the northern South China Sea, is frequently attacked by typhoon waves. Coastline has suffered severe erosion and coastal inundation during certain typhoon paths. Groins were therefore built surround the island to stabilize the shoreline. However, the engineering structures redistributed the characteristics of hydrodynamics, which resulted in the disappearance of seasonal sediment movements on the reef flat. Additionally, infragravity waves (20-200 sec) on reefs have be found to generate strong resonance during energetic wave events. To understand wave characteristics and nearshore circulations around the reef under typical waves and typhoon waves, a phase-averaged and a phase-resolving wave models validated with previous field experiments are used to simulate significant wave height, wave setup and reef circulations. The phase-resolving model is specially applied to investigate infragravity motions around the island. Model results will illustrate the spatial variations of infragravity-wave field and wave-induced nearshore circulation and can provide information for coastal management and protection.

  20. Evaluation of the horizontal-to-vertical spectral ratio (HVSR) seismic method to determine sediment thickness in the vicinity of the South Well Field, Franklin County, OH

    USGS Publications Warehouse

    Haefner, Ralph J.; Sheets, Rodney A.; Andrews, Robert E.

    2011-01-01

    The horizontal-to-vertical spectral ratio (HVSR) seismic method involves analyzing measurements of ambient seismic noise in three dimensions to determine the fundamental site resonance frequency. Resonance is excited by the interaction of surface waves (Rayleigh and Love) and body waves (vertically incident shear) with the high-contrast aconstic impedance boundary at the bedrock-sediment interface. Measurements were made to determine the method's utility for estimating thickness of unconsolidated glacial sediments at 18 locations at the South Well Field, Franklin County, OH, and at six locations in Pickaway County where sediment thickness was already known. Measurements also were made near a high-capacity production well (with pumping on and off) and near a highway and a limestone quarry to examine changes in resonance frequencies over a 20-hour period. Although the regression relation for resonance frequency and sediment thickness had a relatively low [r.sup.2] (0.322), estimates of sediment thickness were, on average, within 14 percent of known thicknesses. Resonance frequencies for pumping on and pumping off were identical, although the amplitude of the peak was nearly double under pumping conditions. Resonance frequency for the 20-hour period did not change, but the amplitude of the peak changed considerably, with a maximum amplitude in the early afternoon and minimum in the very early morning hours. Clay layers within unconsolidated sediments may influence resonance frequency and the resulting regression equation, resulting in underestimation of sediment thickness; however, despite this and other complicating factors, hydrogeologists should consider this method when thickness data are needed for unconsolidated sediments.

  1. Evaluation of the horizontal-to-vertical spectral ratio (HVSR) seismic method to determine sediment thickness in the vicinity of the south well field, Franklin county, OH

    USGS Publications Warehouse

    Haefner, R.J.; Sheets, R.A.; Andrews, R.E.

    2010-01-01

    The horizontal-to-vertical spectral ratio (HVSR) seismic method involves analyzing measurements of ambient seismic noise in three dimensions to determine the fundamental site resonance frequency. Resonance is excited by the interaction of surface waves (Rayleigh and Love) and body waves (vertically incident shear) with the high-contrast acoustic impedance boundary at the bedrock-sediment interface. Measurements were made to determine the method's utility for estimating thickness of unconsolidated glacial sediments at 18 locations at the South Well Field, Franklin County, OH, and at six locations in Pickaway County where sediment thickness was already known. Measurements also were made near a high-capacity production well (with pumping on and off ) and near a highway and a limestone quarry to examine changes in resonance frequencies over a 20-hour period. Although the regression relation for resonance frequency and sediment thickness had a relatively low r 2(0.322), estimates of sediment thickness were, on average, within 14 percent of known thicknesses. Resonance frequencies for pumping on and pumping off were identical, although the amplitude of the peak was nearly double under pumping conditions. Resonance frequency for the 20-hour period did not change, but the amplitude of the peak changed considerably, with a maximum amplitude in the early afternoon and minimum in the very early morning hours. Clay layers within unconsolidated sediments may influence resonance frequency and the resulting regression equation, resulting in underestimation of sediment thickness; however, despite this and other complicating factors, hydrogeologists should consider this method when thickness data are needed for unconsolidated sediments. ?? 2011 by The Ohio Academy of Science. All Rights Reserved.

  2. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  3. The role of beach morphodynamic state on infragravity swash on beaches: field observations.

    NASA Astrophysics Data System (ADS)

    Gomes da Silva, Paula; González, Mauricio; Medina, Raul

    2017-04-01

    The runup generated by waves can be defined as the maximum height above sea water level on the coastline and is an important criterion for costal structures/nourishment design and erosion/flooding risk analysis. Given the complexity of nonlinear processes involved in the runup generation, its prediction is commonly made by means of empirical formulations that relate wave and beach parameters. The most accepted parametrization presented till the moment was proposed by Stockdon et al. (2006), in which the runup exceeded by 2 percent of the waves (R2) is described in terms of setup (η - the steady superelevation of the mean water level caused by breaking waves) and incident and infragravity swash (Sinc and Sig- time-varying fluctuations around the setup caused by non-breaking waves). Such formulation has been widely accepted and its efficiency was appraised in many works. Nevertheless, although empirical parametrization of infragravity swash using incident wave's parameters shows reasonable skill, the correlation can still present considerable scatter. The amount of infragravity energy on swash is directly related to the morphodynamic beach state, in a way that beach profiles classified as reflective (low wave energy, coarse sediment and higher beach slope) tend to show lower Sig values than dissipative ones (high wave energy, fine sediment and lower beach slope). However, since Stockdon's formula for predicting infragravity swash consider only wave parameters, its use implies that beaches receiving the same wave energy but with different grain size and beach slope would present the same Sig values. This work assumed the hypothesis that the scatter verified on the predictions of the infragravity swash is mainly related to the lack of information about the beach state in Stockdon formula. Based on that, a field campaign was designed and carried out in Somo-El Puntal beach, north Spain, with the aim of generating data to be analyzed in terms of infragravity swash. An important aspect about this field site is that, given the gradient of wave energy that reaches each part of the beach, it can present many morphodynamic states simultaneously, allowing a high range of measurements in a single beach. Thus, wave, currents, sediment and runup data were measured in three different profiles, as well as the whole beach topography, bathymetry and video camera images. These data, summed to those available from Stockdon study, were used to verify the validity of the hypothesis and to propose a new approach for empirically determining infragravity swash on beaches.

  4. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.

  5. Field assessment of innovative sensor for monitoring of sediment accumulation at inshore coral reefs.

    PubMed

    Thomas, Séverine; Ridd, Peter

    2005-01-01

    Sediment accumulation rate is a frequently required parameter in environmental and management studies, in particular near coral reefs where sediment accumulation can potentially cause severe impact. However, opportunities to obtain accurate sediment accumulation measurements are often limited by a lack of adequate instrumentation, in particular for high temporal resolution monitoring. For instance the traditional use of sediment traps, as the most widespread technique, offers poor temporal resolution (commonly of weeks) besides having significant hydrodynamic shortcomings. Therefore, a new optical backscatter sediment accumulation sensor (SAS) was developed to continuously measure in situ short-term sediment accumulation in sensitive riverine and coastal environments, enabling high temporal and vertical resolution (order of 1 h and with a deposited thickness resolution in the order of 20 microm respectively). This allows investigations of various parameters that influence accumulation: tides, current, waves, rain, or anthropogenic activity such as sediment dumping. This paper briefly describes the SAS and presents three field applications on nearshore coral reefs at Ishigaki Island (Japan), Lihir Island (Papua New Guinea), and Magnetic Island (Australia).

  6. Seafloor character and sedimentary processes in eastern Long Island Sound and western Block Island Sound

    USGS Publications Warehouse

    Poppe, Lawrence J.; Cohen-DiGiacomo, M. L.; Smith, S.M.; Stewart, H.F.; Forfinski, N.A.

    2006-01-01

    Multibeam bathymetric data and seismic-reflection profiles collected in eastern Long Island Sound and western Block Island Sound reveal previously unrecognized glacial features and modern bedforms. Glacial features include an ice-sculptured bedrock surface, a newly identified recessional moraine, exposed glaciolacustrine sediments, and remnants of stagnant-ice-contact deposits. Modern bedforms include fields of transverse sand waves, barchanoid waves, giant scour depressions, and pockmarks. Bedform asymmetry and scour around obstructions indicate that net sediment transport is westward across the northern part of the study area near Fishers Island, and eastward across the southern part near Great Gull Island.

  7. Impacts of severe wave event to the coastal environment, east Taiwan: a case study of 2015 Typhoon Soudelor

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Yi; Yen, Jiun-Yee; Wu, Bo-Lin; Kao, Yu-Hsuan; Chang, Ting-Yi

    2017-04-01

    As an island surrounded by open water bodies, Taiwan faces associated challenges of oceanic events such as tidal, current and seasonsal wave cycles. In addition to the secular variations of the adjacent oceans, researchers have raised public awareness toward extreme wave events such as tsunamis and storm surges that may cause great damage to coastal infrastructures and loss of valuable lives. The east coast of Taiwan is prone to suffer from typhoons every year and records have shown that more than 30% of the low-pressure centers took the east coastline as their landing point. In year 2015, Typhoon Soudelor attacked the east coast of Taiwan and resulted in a great number of casualties and severe damage to the infrastructures all over the island. Soudelor is not the greatest typhoon of the year yet still brought in significant influences to the coastal topography due to its path and robust structure. In order to understand the impacts of typhoons like Soudelor, we investigated the coastal areas of Hualien, east Taiwan, to document how sediments and debris are transported along the shoreline under the extreme wave condition. Four coastal areas were surveyed to extract applicable information such as local relief profiles, grain size distribution of drifted sediments/debris, maximum inundation limit and so forth. Field observation suggests that the waves displayed great capability of transporting the sediments and redistributing the beach morphology. For instance, the beach of Qixing Lake (Chishingtan) has astonishing records like maximum volume of transported boulder around 3,000,000 cm3, maximum long axis of transported boulder around 144 cm, maximum distance of boulder transportation of 70 m, and maximum inundation distance of ca. 180 m. The composition and distribution of the drifted sediments in every areas vary with local geological conditions but in general all suggest similar characteristics: 1. the transported materials size down toward inland; 2. The sediments are originated from the vicinity and link positively with the local beach relief; 3. The occurrence of the drifted boulders shows a pattern of boulder field instead of sheet beds which is commonly observed at tsunami-related outcrops. By adding the detailed documentations of coastal environmental changes after the typhoon events, we hope to establish a thorough database that can facilitate tracking and predicting the behavior of extreme wave events in the future.

  8. Great differences in the critical erosion threshold between surface and subsurface sediments: A field investigation of an intertidal mudflat, Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong

    2018-06-01

    Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.

  9. Impact of Natural (Storm) and Anthropogenic (Trawl) Resuspension the Sediment Transport on the Gulf of Lion's Shelf (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferre, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2006-12-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. On shelves with strong fishing activity, resuspension by bottom trawling processes can modify the scale of natural disturbance by waves and currents. Recent field data shows that the impact of bottom trawls on the resuspension of the fine sediments per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of river-borne particles and shelf sediments on the Gulf of Lion's Shelf. Realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers were developed. Simulations were conducted for a 16-month period to characterize the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediment. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents is controlled by the shear stress, whereas resuspension by the bottom trawler fleet is controlled by its density and distribution. Natural resuspension by waves and currents mostly occurs during short winter episodes, and is concentrated on the inner-shelf. Trawling-induced resuspension, in contrast, occurs regularly throughout the year and is concentrated on the outer shelf. The total annual net resuspension by trawls (8×106 T y-1 is four orders of magnitude lower than the resuspension induced by waves and currents (4×1010 T y-1. However, because trawled regions are located on the outer shelf, closer to the continental slope, export of fine sediment resuspended by trawls (0.6×106 T y-1 is only one order of magnitude lower than export associated with natural resuspension (8×106 T y-1. A simulation combining both resuspension processes reveals a decrease of about 10% in resuspension and export rates, compared with the sum of each individual process.

  10. Cohesive Sedimentary Processes on River-Dominated Deltas: New Perspectives from the Mississippi River Delta Front, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Keller, G. P.; Obelcz, J.; Maloney, J. M.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-12-01

    On river deltas dominated by proximal sediment accumulation (Mississippi, Huang He, others), the delta front region is commonly dominated by rapid accumulation of cohesive fluvial sediments, and mass-wasting processes that remobilize recently deposited sediments. Mass transport is preconditioned in sediments by high water content, biogenic gas production, over steepening, and is commonly triggered by strong wave loading and other processes. This understanding is based on extensive field studies in the 1970's and 80's. Recent studies of the Mississippi River Delta Front are yielding new perspectives on these processes, in a time of anthropogenically reduced sediment loads, rising sea level, and catastrophic deltaic land loss. We have synthesized many industry data sets collected since ca. 1980, and conducted new pilot field and modeling studies of sedimentary and morphodynamic processes. These efforts have yielded several key findings that diverge from historical understanding of this dynamic setting. First, delta distributary mouths have ceased seaward progradation, ending patterns that have been documented since the 18th century. Second, despite reduced sediment supply, offshore mass transport continues, yielding vertical displacements at rates of 1 m/y. This displacement is apparently forced by wave loading from storm events of near-annual return period, rather than major hurricanes that have been the focus of most previous studies. Third, core analysis indicates that this vertical displacement is occurring along failure planes >3 m in the seabed, rather than in more recently deposited sediments closer to the sediment-water interface. These seabed morphodynamics have the potential to destabilize both nearshore navigation infrastructure, and seabed hydrocarbon infrastructure offshore. As well, these findings raise more questions regarding the future seabed evolution offshore of major river deltas, in response to anthropogenic and climatic forcing.

  11. Effects of Wave Energy Converter (WEC) Arrays on Wave, Current, and Sediment Circulation

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Roberts, J. D.; Jones, C.; Magalen, J.; James, S. C.

    2012-12-01

    The characterization of the physical environment and commensurate alteration of that environment due to Wave Energy Conversion (WEC) devices, or arrays of devices, must be understood to make informed device-performance predictions, specifications of hydrodynamic loads, and environmental evaluations of eco-system responses (e.g., changes to circulation patterns, sediment dynamics, and water quality). Hydrodynamic and sediment issues associated with performance of wave-energy devices will primarily be nearshore where WEC infrastructure (e.g., anchors, piles) are exposed to large forces from the surface-wave action and currents. Wave-energy devices will be subject to additional corrosion, fouling, and wear of moving parts caused by suspended sediments in the water column. The alteration of the circulation and sediment transport patterns may also alter local ecosystems through changes in benthic habitat, circulation patterns, or other environmental parameters. Sandia National Laboratories is developing tools and performing studies to quantitatively characterize the environments where WEC devices may be installed and to assess potential affects to hydrodynamics and local sediment transport. The primary tools are wave, hydrodynamic, and sediment transport models. To ensure confidence in the resulting evaluation of system-wide effects, the models are appropriately constrained and validated with measured data where available. An extension of the US EPA's EFDC code, SNL-EFDC, provides a suitable platform for modeling the necessary hydrodynamics;it has been modified to directly incorporate output from a SWAN wave model of the region. Model development and results are presented. In this work, a model is exercised for Monterey Bay, near Santa Cruz where a WEC array could be deployed. Santa Cruz is located on the northern coast of Monterey Bay, in Central California, USA. This site was selected for preliminary research due to the readily available historical hydrodynamic data (currents and wave heights, periods, and directions), sediment characterization data, and near-shore bathymetric data. In addition, the region has been under evaluation for future ocean energy projects. The modeling framework of SWAN and SNL-EFDC combined with field validation datasets allows for a robust quantitative description of the nearshore environment within which the MHK devices will be evaluated. This quantitative description can be directly incorporated into environmental impact assessments to eliminate guesswork related to the effects of the presence of large-scale arrays. These results can be used to design more efficient arrays while minimizing impacts on the nearshore environments. Further investigations into fine-scale scour near the structures will help determine if these large-scale results show that, in fact, there is deposition adjacent to the arrays, which could have design implications on anchorage and cabling systems.

  12. Characteristics of sediment resuspension in Lake Taihu, China: A wave flume study

    NASA Astrophysics Data System (ADS)

    Ding, Yanqing; Sun, Limin; Qin, Boqiang; Wu, Tingfeng; Shen, Xia; Wang, Yongping

    2018-06-01

    Lake Taihu is a typical shallow lake which frequently happens sediment resuspension induced by wind-induced waves. The experiments are carried on to simulate the wave disturbance processes in wave flume by setting a series of wave periods (1.2 s, 1.5 s, 1.8 s) and wave heights (2 cm, 10 cm). It aims to analyze the characteristics of sediment resuspension and the mechanisms of nutrients release and to evaluate the effects of sediment dredging on sediment resuspension and nutrients release in Lake Taihu. The results show that wave shear stress during 2 cm and 10 cm wave height processes ranges 0.018-0.023 N/m2 and 0.221-0.307 N/m2, respectively. Wave shear stress has no significant differences between wave periods. Wave height has much more effects on sediment resuspension. Wave height of 2 cm could induce total suspended solids (TSS) reaching up to 5.21 g/m2 and resuspension flux of sediment (M) up to 1.74 g/m2. TSS sharply increases to 30.33-52.41 g/m2 and M reached up to 48.94 g/m2 when wave height reaches to 10 cm. The disturbance depth under different sediment bulk weights ranges from 0.089 to 0.161 mm. Variation of suspended solids in 3 layers (1 cm, 5 cm, 20 cm above sediment interface) has no significant differences. Organic matter, TN and TP have positive relationship with SS. Organic matter is only accounted for 5.7%-7.3% of SS. The experiments under different sediment bulk densities (1.34 g/cm3, 1.47 g/cm3 and 1.59 g/cm3) find that TSS and M fall by 44.2% and 39.8% with sediment bulk density increasing, respectively. Total TN, DTN, TP and DTP decrease by 24.3%-33.6%. It indicates that sediment dredging could effectively reduce SS concentration and nutrient levels in water column. The researches provide a theoretical basis for sediment dredging to control the shore zone of Lake Taihu for lake management.

  13. Ridge-Runnel and Swash Dynamics Field Experiment on a Steep Meso-Tidal Beach

    NASA Astrophysics Data System (ADS)

    Figlus, J.; Song, Y.-K.; Chardon-Maldonado, P.; Puleo, J. A.

    2014-12-01

    Ridge-runnel (RR) systems are morphological features that may form in the intermittently wet and dry zone of the beach immediately after storm events. Their onshore migration provides a natural way of recovery for an eroded beach but the detailed swash interactions and complex feedback mechanisms between wave dynamics, sediment transport and profile evolution are not well understood and challenging to measure in-situ. During a storm, elevated water levels and large waves can significantly erode the beach profile in a matter of hours through offshore-directed sediment transport. The beach recovery process, on the other hand, occurs over a much longer time period during less intense wave conditions. In the beginning of this 3-week field campaign at South Bethany Beach, Delaware, a Nor'easter, eroded significant portions of this steep, meso-tidal beach and formed a pronounced RR system which then evolved during the less energetic conditions after the storm. An extensive cross-shore array of sensors was installed immediately after the storm measuring near-bed velocity profiles (5 Nortek Vectrino Profilers) and horizontal velocities (6 Sontec Electromagnetic Current Meters; 1 side-looking Nortek Vectrino) suspended sediment concentrations (10 Optical Backscatter Sensors OBS-3+), and pressure fluctuations (7 GE Druck pressure transducers) in the swash zone. Dense topography surveys of the RR system were conducted twice a day during low tide conditions with a Leica RTK GPS rover system. In addition, sediment grab samples along the entire RR cross-section were collected daily. An offshore ADCP with surface wave tracking capability (Nortek 2MHz AWAC AST) measured directional wave spectra and current profiles at a water depth of approximately 6m. The RR system showed rapid onshore migration over the two tide cycles immediately after the storm, followed by a period of vertical ridge accretion of up to 3 ft at certain locations. A first look at the collected data and analysis results related to the feedback mechanisms between wave forcing and RR evolution is presented along with a discussion of difficulties encountered during the experiment.

  14. Sheet flow and suspended sediment due to wave groups in a large wave flume

    USGS Publications Warehouse

    Dohmen-Janssen, C. M.; Hanes, D.M.

    2005-01-01

    A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data

    NASA Astrophysics Data System (ADS)

    Tóth, Zsuzsanna; Spiess, Volkhard; Mogollón, José M.; Jensen, Jørn Bo

    2014-12-01

    A 2-D high-resolution velocity field was obtained from marine seismic data to quantify free gas content in shallow muddy sediments at in situ pressure and temperature. The velocities were acquired applying Migration Velocity Analysis on prestack time-migrated data. Compressional wave velocities are highly sensitive to free gas as very small amounts of gas can cause a significant decrease in the medium velocity. The analyzed profile crosses a depression filled with organic-rich Holocene mud in the Bornholm Basin, Baltic Sea. The interval velocity field reveals two low-velocity patches, which extend from the reversed polarity reflections marking the top of the gassy sediment layer down to the base of the Holocene mud. Average interval velocities within the gassy mud are lower than the seafloor migration velocity by up to ˜500 m/s. This decrease, using a geoacoustic model, is caused by an average 0.046% gas volume fraction. The interval velocities in individual cells of the velocity field are reduced to ˜200 m/s predicting up to 3.4% gas content. The velocity field is limited in resolution due to velocity determination at and between reflections; however, together with the stratigraphic interpretation, geological units containing free gas could be identified. Shallow gas occurs vertically throughout most of the Holocene mud in the gassy area. Comparison with biogeochemical studies at other Baltic Sea sites suggests that the distribution of free gas is likely to be patchy in the sediment, but the gas concentration may peak below the sulfate-methane transition zone and gradually decrease below.

  16. Induced dynamic nonlinear ground response at Gamer Valley, California

    USGS Publications Warehouse

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  17. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples

    USGS Publications Warehouse

    Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.

    2007-01-01

    Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly

  18. Multiphysics and Multiscale Model Coupling Using Gerris

    NASA Astrophysics Data System (ADS)

    Keen, T. R.; Dykes, J. D.; Campbell, T. J.

    2012-12-01

    This work is implementing oceanographic processes encompassing multiple physics and scales using the Gerris Flow Solver (GFS) in order to examine their interdependence and sensitivity to changes in the physical environment. The processes include steady flow due to tides and the wind, phase-averaged wave-forced flow and oscillatory currents, and sediment transport. The 2D steady flow is calculated by the Ocean module contained within GFS. This model solves the Navier-Stokes (N-S) equations using the finite volume method. The model domain is represented by quad-tree adaptive mesh refinement (AMR). A stationary wave field is computed for a specified wave spectrum is uniformly distributed over the domain as a tracer with local wind input parameterized as a source, and dissipation by friction and breaking as a sink. Alongshore flow is included by a radiation stress term; this current is added to the steady flow component from tides and wind. Wave-current interaction is parameterized using a bottom boundary layer model. Sediment transport as suspended and bed load is implemented using tracers that are transported via the advection equations. A bed-conservation equation is implemented to allow changes in seafloor elevation to be used in adjusting the AMR refinement. These processes are being coupled using programming methods that are inherent to GFS and that do not require modification or recompiling of the code. These techniques include passive tracers, C functions that operate as plug-ins, and user-defined C-type macros included with GFS. Our results suggest that the AMR model coupling method is useful for problems where the dynamics are governed by several processes. This study is examining the relative influence of the steady currents, wave field, and sedimentation. Hydrodynamic and sedimentation interaction in nearshore environments is being studied for an idealized beach and for the Sandy Duck storm of Oct. 1998. The potential behavior of muddy sediments on the inner shelf is being evaluated for cold fronts near Atchafalaya Bay in the Gulf of Mexico. Due to the complexity of the model output results, fields are loaded into ArcMAP, a GIS-based application developed by Environmental Systems Research Institute (ESRI), with additional software that facilitates analysis of the results and assessment of model performance. GFS provides output with sufficient georeferencing information to be suitable for nearly seamless ingestion by ArcMAP. Analysis tools include comparisons between data layers; these may be intra-model, inter-model, or model-observation data. The comparisons become new data layers with additional parameters such as enhancements curves, time series, and statistics.

  19. Internal waves and modern and ancient hiatuses in pelagic caps of Pacific guyots and seamounts

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil; Simmons, Harper; Lear, Carrie

    2013-04-01

    Locations of recent non-deposition and ancient hiatuses in the pelagic caps of guyots and seamounts are compared with paleotemperature and physiographic information to speculate on the character of internal tidal waves in the upper Pacific Ocean through the Cenozoic. Internal tidal waves are generated where the ocean barotropic tide passes over the Hawaiian and other major ridges in the Pacific basin. Drill core and geophysical evidence for sediment accumulation, non-deposition or erosion are used to classify broadly sites as either accumulating or eroding/non-depositing in the recent geological past. When these classified sites are compared against results of a numerical model of the internal tide field (Simmons, Ocean Mod. 2008), the sites accumulating particles over the past few million years are all found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in areas of high internal wave energy. Given the correspondence to modern internal wave conditions, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from universal factors (e.g., water chemistry) but local, probably physical factors, such as internal tides. We investigate how changing boundary conditions such as ocean temperature and basin physiography may have affected the geometry and vigour of internal tides through the Cenozoic. Changes in the geometry of ridges underlying the Solomon, Bonin and Marianas Island chains caused by plate tectonics and subsidence may be responsible for sediment hiatuses at these far-field guyot sites.

  20. Internal waves and modern and ancient hiatuses in pelagic caps of Pacific guyots and seamounts

    NASA Astrophysics Data System (ADS)

    Mitchell, N. C.; Simmons, H. L.; Lear, C. H.

    2012-12-01

    Locations of recent non-deposition and ancient hiatuses in the pelagic caps of guyots and seamounts are compared with paleotemperature and physiographic information to speculate on the character of internal tidal waves in the upper Pacific Ocean through the Cenozoic. Internal tidal waves are generated where the ocean barotopic tide passes over the Hawaiian and other major ridges in the Pacific basin. Drill core and geophysical evidence for sediment accumulation, non-deposition or erosion are used to classify broadly sites as either accumulating or eroding/non-depositing in the recent geological past. When these classified sites are compared against results of a numerical model of the internal tide field (Simmons, Ocean Mod. 2008), the sites accumulating particles over the past few million years are all found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in areas of high internal wave energy. Given the correspondence to modern internal wave conditions, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from universal factors (e.g., water chemistry) but local, probably physical factors, such as internal tides. We investigate how changing boundary conditions such as ocean temperature and basin physiography may have affected the geometry and vigour of internal tides through the Cenozoic. Changes in the geometry of ridges underlying the Solomon, Bonin and Marianas Island chains caused by plate tectonics and subsidence may be responsible for sediment hiatuses at these far-field guyot sites.

  1. Sediment Dispersal Within Poverty Bay, Offshore of the Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Bever, A. J.; McNinch, J. E.

    2006-12-01

    Transport processes change drastically as sediment crosses the boundary between land and sea. As such, developing conceptual or predictive models of transport and deposition for the shoreline and inner continental shelf is critical to understanding source-to-sink sedimentary systems. In shallow coastal areas, sediment dispersal results from both dilute suspensions driven by energetic waves and current shear stresses, and by gravitationally driven flows of fluid muds. The Waipaoa River, on the east coast of the North Island of New Zealand, delivers approximately 15 million tons per year of sediment to Poverty Bay, a small embayment with water depth less than about 25 m. Instruments deployed during the winter storm season of 2006 captured periods of high discharge from the Waipaoa River that were typically associated with energetic waves and winds from the southeast. During these times, instruments deployed at 9 and 14 m water depths recorded high turbidity. Currents measured in Poverty Bay were correlated with wind velocities, but also showed prolonged periods of offshore flow within the bottom boundary layer. Sediment texture throughout much of Poverty Bay is muddy, and thick deposits have occurred during the Holocene, as evidenced by sub-bottom seismics. Short-lived radioisotopes such as ^7Be have not been found on Poverty Bay sediments during our field work, though depocenters have been identified using ^7Be on the continental shelf. This may imply that muds exist there as ephemeral and spatially patchy deposits that may bypass Poverty Bay. Bypassing mechanisms may include offshore dispersal by dilute suspended sediment, and downslope transport of fluid muds. Energetic waves may resuspend sediment, which is then transported out of Poverty Bay by ambient ocean currents. Alternatively, fluid muds may form and transport material downslope and offshore to the continental shelf. Because of the high sediment loads of the Waipaoa River, these fluid muds may be formed by hyperpycnal river flows upon entering Poverty Bay. They may also be produced by frontal systems that focus newly delivered sediments, or within fluid muds confined to the thin near-bed wave boundary layer.

  2. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    NASA Astrophysics Data System (ADS)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  3. Deep-water bedforms induced by refracting Internal Solitary Waves

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  4. Underwater MASW to evaluate stiffness of water-bottom sediments

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.; Sonnichsen, G.V.; Hunter, J.A.; Good, R.L.; Burns, R.A.; Christian, H.

    2005-01-01

    The multichannel analysis of surface waves (MASW) is initially intended as a land survey method to investigate the near-surface materials for their elastic properties. The acquired data are first analyzed for dispersion characteristics and, from these the shear-wave velocity is estimated using an inversion technique. Land applications show the potential of the MASW method to map 2D bedrock surface, zones of low strength, Poisson's ratio, voids, as well as to generate shear-wave profiles for various othe geotechnical problems. An overview is given of several underwater applications of the MASW method to characterize stiffness distribution of water-bottom sediments. The first application details the survey under shallow-water (1-6 m) in the Fraser River (Canada). The second application is an innovative experimental marine seismic survey in the North Atlantic Ocean near oil fields in Grand Bank offshore Newfoundland.

  5. The South Carolina Coastal Erosion Study: Nearshore Hydrodynamics Field Experiment

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Voulgaris, G.; Demir, H.; Work, P. A.; Hanes, D. M.

    2004-12-01

    As part of the South Carolina Coastal Erosion Study (SCCES) a nearshore field experiment was carried out for five days in December 2003 just north of Myrtle Beach, South Carolina, providing measurements of the waves, currents and morphological evolution. This experiment occurred concurrently with an extensive field campaign several kilometers offshore which included measurements of the waves and currents on and near a significant sand shoal. The purpose of the nearshore experiment was to aid in the identification of the effect of the offshore shoal on the nearshore processes. The resulting dataset will be used for verification of numerical models being used to investigate the hydrodynamics of the region. The experiment was carried out from December 10 to December 15 and consisted of measurements of the waves and currents, extensive surveys of the bathymetry every day, grab samples of the sediments, and video imagery. The hydrodynamics were measured using two Sontek Triton downward-looking Acoustic Doppler Velocimeters and two Nortek AquaDopp profilers arranged in a cross-shore line from inside the swash to several surf zone widths past the breakers. The bathymetric surveying was accomplished using both a differential GPS system and a total station. Surveying was performed each day in order to capture the morphological changes. On the last day, seven sediment samples were taken along a single cross-section to determine the sediment characteristics across the beach. Additionally, a video camera was located on a balcony of the top floor of a nearby hotel providing an excellent field of view of the entire experimental area. Digital video was captured directly onto a computer during all daylight hours and many control points were surveyed in each day to facilitate rectification of the imagery. A variety of conditions were encountered during the experiment, including two storm fronts which passed through, generating wind speeds up to 15 m/s. The first storm generated waves from the south driving a longshore current towards the north. After several relatively calm days with nearly normal incident waves the second front passed through the area with strong wind and waves approaching the shore with a large angle of incidence from the north. This drove an extremely strong longshore current in excess of 1.4 m/s and caused significant morphological changes.

  6. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  7. Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.

    2014-12-01

    We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in-situ imaging of biofilm formation in field settings with significant implication for bioremediation and microbial enhanced oil recovery monitoring.

  8. Sediment Transport over a Dredge Pit, Sandy Point Southeast, west flank of the Mississippi River during Summer Upcoast Currents: a Coupled Wave, Current and Sediment Numerical Model

    NASA Astrophysics Data System (ADS)

    Chaichitehrani, N.; Li, C.; Xu, K.; Bentley, S. J.; Miner, M. D.

    2017-12-01

    Sandy Point southeast, an elongated sand resource, was dredged in November 2012 to restore Pelican Island, Louisiana. Hydrodynamics and wave propagation patterns along with fluvial sediments from the Mississippi River influence the sediment and bottom boundary layer dynamics over Sandy Point. A state-of-the-art numerical model, Delft3D, was implemented to investigate current variations and wave transformation on Sandy Point as well as sediment transport pattern. Delft3d FLOW and WAVE modules were coupled and validated using WAVCIS and NDBC data. Sediment transport model was run by introducing both bed and river sediments, consisted of mainly mud and a small fraction of sand. A sediment transport model was evaluated for surface sediment concentration using data derived from satellite images. The model results were used to study sediment dynamics and bottom boundary layer characteristics focused on the Sandy Point area during summer. Two contrasting bathymetric configurations, with and without the Sandy Point dredge pit, were used to conduct an experiment on the sediment and bottom boundary layer dynamics. Preliminary model results showed that the presence of the Sandy Point pit has very limited effect on the hydrodynamics and wave pattern at the pit location. Sediments from the Mississippi River outlets, especially in the vicinity of the pit, get trapped in the pit under the easterly to the northeasterly upcoast current which prevails in August. We also examined the wave-induced sediment reworking and river-borne fluvial sediment over Sandy Point. The effect of wind induced orbital velocity increases the bottom shear stress compared to the time with no waves, relatively small wave heights (lower than 1.5 meters) along the deepest part of the pit (about 20 meters) causes little bottom sediment rework during this period. The results showed that in the summertime, river water is more likely the source of sedimentation in the pit.

  9. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2008-08-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4×10 6 t y -1) was one order of magnitude lower than export associated with natural resuspension (8.5×10 6 t y -1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.

  10. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    NASA Astrophysics Data System (ADS)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  11. Oscillatory bedload transport: Data review and simple formulation

    NASA Astrophysics Data System (ADS)

    Hallermeier, Robert J.

    1982-11-01

    This review displays over 700 rates of sediment transport by oscillatory flow from 20 sources. Sediments include fine sands to pebbles, both of quartz and of lightweight materials, and the transport rates in water range over seven orders of magnitude. Most data are average gross (to and fro) bedload rates collinear with laboratory flow over a horizontal sediment bed, although other situations with net transport, suspended load, or oblique field waves are considered. As peak flow velocity nears twice the threshold velocity for sediment motion, bedload appears to be fully developed and the transport rate is near that given by a simple formula including flow frequency and peak velocity, and sediment size and density. At lesser peak velocities, bedload rates are markedly smaller and distinctly different regimes of sediment mobilization and transport may be identified.

  12. A numerical model investigation of the formation and persistence of an erosion hotspot

    USGS Publications Warehouse

    Hansen, Jeff E.; Elias, Edwin; List, Jeffrey H.; Barnard, Patrick L.

    2011-01-01

    A Delft3D-SWAN coupled flow and wave model was constructed for the San Francisco Bight with high-resolution at 7 km-long Ocean Beach, a high-energy beach located immediately south of the Golden Gate, the sole entrance to San Francisco Bay. The model was used to investigate tidal and wave-induced flows, basic forcing terms, and potential sediment transport in an area in the southern portion of Ocean Beach that has eroded significantly over the last several decades. The model predicted flow patterns that were favorable for sediment removal from the area and net erosion from the surf-zone. Analysis of the forcing terms driving surf-zone flows revealed that wave refraction over an exposed wastewater outfall pipe between the 12 and 15 m isobaths introduces a perturbation in the wave field that results in erosion-causing flows. Modeled erosion agreed well with five years of topographic survey data from the area.

  13. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  14. Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River

    USGS Publications Warehouse

    Elias, Edwin P.L.; Gelfenbaum, Guy R.; van der Westhuysen, André J.

    2012-01-01

     A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.

  15. Validation of a coupled wave-flow model in a high-energy setting: The mouth of the Columbia River

    NASA Astrophysics Data System (ADS)

    Elias, Edwin P. L.; Gelfenbaum, Guy; Van der Westhuysen, André J.

    2012-09-01

    A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.

  16. Modes of cross-shore sediment transport on the shoreface of the Middle Atlantic Bight

    USGS Publications Warehouse

    Wright, L.D.; Boon, John D.; Kim, S.C.; List, J.H.

    1991-01-01

    The mechanisms responsible for onshore and offshore sediment fluxes across the shoreface zone seaward of the surf zone were examined in a 3-year field study. The study was conducted in the southern part of the Middle Atlantic Bight in the depth region 7–17 m using instrumented tripods supporting electromagnetic current meters, pressure sensors, suspended sediment concentration sensors, and sonar altimeters. The observations embraced fairweather, moderate energy, swell-dominated, and storm conditions. Cross-shore mean flows ranged from near zero during fairweather to > 20 cm s−1 during the storm; oscillatory flows were on the order of 10 cm s−1 during fairweather and 100 cm s−1 during the storm. Suspended sediment concentrations at about 10 cm above the bed were < 0.1 kg m−3 under fairweather conditions, 1–2 kg m−3 under moderate swell conditions, and > 5 kg m−3 during the storm.Three methods were applied to evaluate the relative importance of incident waves, long-period oscillations, mean flows and gravity in effecting shoreward or seaward sediment flux: (1) an energetics transport model was applied to instantaneous near-bottom velocity data, (2) higher moments of near-bottom flows were estimated and compared, and (3) suspended sediment fluxes were estimated directly from the instantaneous products of cross-shore velocity and suspended sediment concentration. The results show that measurable contributions were made by all four of the processes. Most significantly, mean flows were seen to dominate and cause offshore fluxes during the storm and to contribute significantly to onshore and offshore flux during fairweather and moderate energy. Incident waves were, in all cases, the major source of bed shear stress but also caused shoreward as well as seaward net sediment advection. Low-frequency effects involving wave groups and long-period waves made secondary contributions to cross-shore sediment flux. Contrary to expectations, low-frequency fluxes were just as often shoreward as seaward. Whereas cross-correlations between suspended sediment concentration and the instantaneous near-bottom current speed were high and in phase under storm conditions, they were weak and out of phase during fairweather conditions. This suggests that simple energetics models are probably inadequate for predicting fairweather transport of suspended sediment.

  17. Mobility of maerl-siliciclastic mixtures: Impact of waves, currents and storm events

    NASA Astrophysics Data System (ADS)

    Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin

    2017-04-01

    Maerl beds are free-living, non-geniculate coralline algae habitats which form biogenic reefs with high micro-scale complexity supporting a diversity and abundance of rare epifauna and epiflora. These habitats are highly mobile in shallow marine environments where substantial maerl beds co-exist with siliciclastic sediment, exemplified by our study site of Galway Bay. Coupled hydrodynamic-wave-sediment transport models have been used to explore the transport patterns of maerl-siliciclastic sediment during calm summer conditions and severe winter storms. The sediment distribution is strongly influenced by storm waves even in water depths greater than 100 m. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. A combined wave-current Sediment Mobility Index during storm conditions shows correlation with multibeam backscatter and surficial sediment distribution. A combined wave-current Mobilization Frequency Index during storm conditions acts as a physical surrogate for the presence of maerl-siliciclastic mixtures in Galway Bay. Both indices can provide useful integrated oceanographic and sediment information to complement coupled numerical hydrodynamic, sediment transport and erosion-deposition models.

  18. A nearshore processes field experiment at Cape Hatteras, North Carolina, U.S.A.

    USGS Publications Warehouse

    List, Jeffrey H.; Warner, John C.; Thieler, E. Robert; Haas, Kevin; Voulgaris, George; McNinch, Jesse E.; Brodie, Katherine L.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    A month-long field experiment focused on the nearshore hydrodynamics of Diamond Shoals adjacent to Cape Hatteras Point, North Carolina, was conducted in February 2010. The objectives of this multi-institutional experiment were to test hypotheses related to Diamond Shoals as a sink in the regional sediment budget and to provide data for evaluating numerical models. The experiment included in-situ instrumentation for measuring waves and currents; a video camera system for measuring surface currents at a nearshore transect; a radar system for measuring regional surface currents over Diamond Shoals and the adjacent coast; a vehicle-based scanning lidar and radar system for mapping beach topography, nearshore wave breaking intensity, bathymetry (through wave celerity inversion), and wave direction; and an amphibious vehicle system for surveying single-beam bathymetry. Preliminary results from wave and current measurements suggest that shoal-building processes were active during the experiment.

  19. Laboratory Observations of Dune Erosion

    NASA Astrophysics Data System (ADS)

    Maddux, T. B.; Ruggiero, P.; Palmsten, M.; Holman, R.; Cox, D. T.

    2006-12-01

    Coastal dunes are an important feature along many coastlines, owing to their input to the sediment supply, use as habitat, and ability to protect onshore resources from wave attack. Correct predictions of the erosion and overtopping rates of these features are needed to develop improved responses to coastal dune damage events, and to determining the likelihood and magnitude of future erosion and overtopping on different beaches. We have conducted a large-scale laboratory study at Oregon State University's O.H. Hinsdale Wave Research Laboratory (HWRL) with the goal of producing a comprehensive, near prototype-scale, physical model data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The two goals of this work are (1) to develop a better understanding of swash/dune dynamics and (2) to evaluate and guide further development of dune erosion models. We present initial results from the first phase of the experimental program. An initial beach and dune profile was selected based on field LIDAR-based observations of various U.S. east coast and Gulf coast dune systems. The laboratory beach was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water level and offshore wave heights. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Future work will include studies of fluid overtopping of the dune and sediment overwash and assessment of the resilience of man-made "push-up" dunes to wave attack in comparison with their more-compacted "natural" cousins.

  20. Three-dimensional modelling for assessment of far-field impact of tidal stream turbine: A case study at the Anglesey Coast, Wales, UK

    NASA Astrophysics Data System (ADS)

    Li, Xiaorong; Li, Ming; Wolf, Judith

    2017-04-01

    As a response to worldwide climate change, clean non-carbon renewable energy resources have been gaining significant attention. Among a range of renewable alternatives, tidal stream energy is considered very promising; due to its consistent predictability and availability. To investigate impacts of tidal stream devices on their surroundings, prototype experiments involving small scale laboratory studies have been implemented. Computational Flow Dynamics (CFD) modelling is also commonly applied to study turbine behaviours. However, these studies focus on impacts of the turbine in the near-field scale. As a result, in order to study and predict the far-field impacts caused by the operation of turbines, large scale 2D and 3D numerical oceanography models have been used, with routines added to reflect the impacts of turbines. In comparison to 2D models, 3D models are advantageous in providing complete prediction of vertical flow structures and hence mixing in the wake of a turbine. This research aims to deliver a thorough 3D tidal stream turbine simulation system, by considering major coastal processes, i.e. current, waves and sediment transport, based on a 3D wave-current-sediment fully coupled numerical oceanography model — the Unstructured Grid Finite Volume Community Ocean Model (FVCOM). The energy extraction of turbines is simulated by adding a body force to the momentum equations. Across the water depth, the coefficient related to the additional body force is given different values according to the turbine configuration and operation to reflect the vertical variation of the turbine's impacts on the passing flow. Three turbulence perturbation terms are added to the turbulence closure to simulate the turbine-induced turbulence generation, dissipation and interference for the turbulence length-scale. Impacts of turbine operation on surface waves are also considered by modification of wave energy flux across the device. A thorough validation study is carried out in which the developed model is tested; based on a combination of laboratory measured data and CFD simulated results. The developed turbine simulation system is then applied to the Anglesey coast, North Wales, UK for a case study. The validation study suggests that the developed turbine simulation system is able to accurately simulate both hydrodynamics and wave dynamics in the turbine wake. The case study with 18 turbines (diameter is 15 m) modelled individually in the waterway between the north-west Anglesey and the Skerries reveals impacts of the turbine farm on free surface elevation, flow field, turbulence kinetic energy (TKE), surface waves, bottom shear stress and suspended sediment transport. The wake is observable up to 4.5 km downstream of the device farm. Flow near the bed in the wake is accelerated, leading to enhanced bottom shear stress. The device farm has a strong influence on TKE and hence the vertical mixing of suspended sediment in the wake. Further, the eastwards directed residual sediment transport along the north coast of Anglesey is found to be weakened by the turbine farm.

  1. An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay

    DTIC Science & Technology

    2012-09-30

    parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and quadruplet wave-wave...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to...N00014-08-1-1115 which supported the hydrodynamic model development. Wind forcing for the wave and hydrodynamic models for realistic experiments will

  2. Bathymetric Changes Shaped by Longshore Currents on a Natural Beach

    NASA Astrophysics Data System (ADS)

    Reilly, W. L.; Slinn, D.; Plant, N.

    2004-12-01

    The goal of the project is to simulate beach morphology on time scales of hours to days. Our approach is to develop finite difference solutions from a coupled modeling system consisting of existing nearshore circulation, wave, and sediment flux models. We initialize the model with bathymetry from a dense data set north of the pier at the Field Research Facility (FRF) in Duck, NC. We integrate the model system forward in time and compare the results of the hind-cast of the beach evolution with the field observations. The model domain extends 1000 meters in the alongshore direction and 500 meters in the cross-shore direction with 5 meter grid spacing. The bathymetry is interpolated and filtered from CRAB transects. A second-degree exponential smoothing method is used to return the cross-shore beach profile near the edges of the modeled domain back to the mean alongshore profile, because the circulation model implements periodic boundary conditions in the alongshore direction. The offshore wave height and direction are taken from the 8-meter bipod at the FRF and input to the wave-model, SWAN (Spectral Wave Nearshore), with a Gaussian-shaped frequency spectrum and a directional spreading of 5 degrees. A constant depth induced wave breaking parameter of 0.73 is used. The resulting calculated wave induced force per unit surface area (gradient of the radiation stress) output from SWAN is used to drive the currents in the circulation model. The circulation model is based on the free-surface non-linear shallow water equations and uses the fourth order compact scheme to calculate spatial derivatives and a third order Adams-Bashforth time discretization scheme. Free slip, symmetry boundary conditions are applied at both the shoreline and offshore boundaries. The time averaged sediment flux is calculated at each location after one hour of circulation. The sediment flux model is based on the approach of Bagnold and includes approximations for both bed-load and suspended load. The bathymetry is then updated by computing the divergence of the time averaged sediment fluxes. The process is then repeated using the updated bathymetry in both SWAN and the circulation model. The cycle continues for a simulation of 10 hours. The results of bathymetric change vary for different time-dependent wave conditions and initial bathymetric profiles. Typical results indicate that for wave heights on the order of one meter, shoreline advancement and sandbar evolution is observed on the order of tens of centimeters.

  3. Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia)

    USGS Publications Warehouse

    Oberle, Ferdinand; Storlazzi, Curt D.; Hanebuth, Till

    2014-01-01

    Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.

  4. Modelling of sediment transport pattern in the mouth of the Rhone delta: Role of storm and flood events

    NASA Astrophysics Data System (ADS)

    Boudet, L.; Sabatier, F.; Radakovitch, O.

    2017-11-01

    The delta of the Rhone River is one of the most important in the Mediterranean Sea. Beach erosion problems along its coasts have developed in recent decades, raising the need for a better understanding of the sediment transport processes at the Rhone mouth and the adjacent beaches. Because field data are very difficult to obtain in such an energetic environment, a high-resolution numerical model (Delft3D) is applied to this area. This model is calibrated by taking into account hydrodynamical and morphological observations. Special attention is given to storm and flood events, which are the major morphological drivers. Therefore, scenarios with different wave and flow conditions are run to estimate the influence of these events on the sediment transport. The analysis of historical hydrological data shows that storms from the southeast represent 70% of the events between 1979 to 2010 and that 20% of them were followed by a flood within a few days. Consequently, specific simulations for such conditions are performed using Delft3D. The model simulates trends in the bedload sediment transport that are consistent with the bedforms observed in the bathymetry data. The total sediment transport at the outlet is only influenced by the river flow, but sediment transport at the mouth-bar depends on an equilibrium between the influence of floods and storms and the succession of these events. A period of 2 or 3 days separating the storm and flood peaks is sufficient to differentiate wave and river flow-induced sediment transport. The waves constrain the total transport on the mouth-bar and shallow mouth-lobe and induce a longshore transfer towards the adjacent beaches. The riverine sediments can be exported seaward only if a flood is energetic enough compared to the storm intensity. Regardless, when a flood is greater than the decadal return period (7800 m3 s-1), the sediment is transported from the outlet across the mouth-bar and is directed offshore.

  5. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  6. The South Carolina Coastal Erosion Study: Integrated Circulation and Sediment Transport Studies. A Project Overview.

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Warner, J. C.; Work, P. A.; Hanes, D. M.; Haas, K. A.

    2004-12-01

    The South Carolina Coastal Erosion Study (SCCES) is a cooperative research program funded by the U.S. Geological Survey Coastal and Marine Geology Program and managed by the South Carolina Sea Grant Consortium. The main objective of the study is to understand the factors and processes that control coastal sediment movement along the northern part of the South Carolina coast while at the same time advance our basic understanding of circulation, wave propagation and sediment transport processes. Earlier geological framework studies carried out by the same program provided detailed data on bathymetry, bottom sediment thickness and grain size distribution. They identified an extensive (10km long, 2km wide) sand body deposit located in the inner shelf that has potential use for beach nourishment. The main objectives are to: (1) identify the role of wind-driven circulation in controlling regional sediment distribution on the SC shelf; (2) examine the hypothesis that the shoal is of the "fair-weather type" with bedload being the dominant sediment transport mode and the tidally-averaged flow being at different directions at the two flanks of the shoal; (3) investigate the possibility that the sediment source for the shoal is derived from the nearshore as the result of the convergence of the longshore sediment transport; and finally, (4) quantify the control that the shoal exerts on the nearshore conditions through changes on the wave energy propagation characteristics. Field measurements and numerical modeling techniques are utilized in this project. Two deployments of oceanographic and sediment transport systems took place for a period of 6 months (October 2003 to April 2004) measuring wind forcing, vertical distribution of currents, stratification, and wave spectral characteristics. Further, bed-flow interactions were measured at two locations, with instrumented tripods equipped with pairs of ADVs for measuring turbulence, PC-ADPs for measuring vertical current profiles in the near bed and OBS and ABS for measuring suspended sediment concentrations. The numerical modeling effort utilizes ROMS for 3-D coastal circulation, SWAN for wave propagation on the inner shelf, and SHORECIRC for circulation in the nearshore. As part of the nearshore component of this project a focused short-term surf zone experiment was also carried out.

  7. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S. R.

    2007-10-01

    Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate-bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada, demonstrate significant wave attenuation for hydrate-bearing sediments. These results are in agreement with previous attenuation estimates obtained from sonic logs and crosshole data at different frequency intervals. The application of an inverse Q-filter to compensate attenuation effects of permafrost and hydrate-bearing sediments improved the resolution of surface 3D seismic data and its correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.

  8. Nearshore Coastal Dynamics on a Sea-Breeze Dominated Micro-Tidal Beach (NCSAL)

    NASA Astrophysics Data System (ADS)

    Torres-Freyermuth, A.; Puleo, J. A.; Ruiz de Alegría-Arzaburu, A.; Figlus, J.; Mendoza, T.; Pintado-Patino, J. C.; Pieterse, A.; Chardon-Maldonado, P.; DiCosmo, N. R.; Wellman, N.; Garcia-Nava, H.; Palemón-Arcos, L.; Roberts, T.; López-González, J.; Bravo, M.; Ojeda, E.; Medellín, G.; Appendini, C. M.; Figueroa, B.; González-Leija, M.; Enriquez, C.; Pedrozo-Acuña, A.; Salles, P.

    2014-12-01

    A comprehensive field experiment devoted to the study of coastal processes on a micro-tidal beach was conducted from March 30th to April 12th 2014 in Sisal, Yucatán México. Wave conditions in the study area are controlled by local (i.e., sea-breezes) and meso-scale (i.e., Nortes) meteorological events. Simultaneous measurements of waves, tides, winds, currents, sediment transport, runup, and beach morphology were obtained in this experiment. Very dense nearshore instrumentation arrays allow us the study of the cross-/along- shore variability of surf/swash zone dynamics during different forcing conditions. Strong sea-breeze wind events produced a diurnal cycle with a maximum wind speed of 14 m/s. The persistent sea-breeze system forces small-amplitude (Hs<1 m) short-period (Tp<4 s) NE waves approaching with a high incidence wave angle. These wave conditions drive westward alongshore currents of up to 0.6 m/s in the inner surf zone and hence produce an active sediment transport in the swash zone. On the other hand, the more energetic (Hs>1 m) Norte event, lasting 48 hours, reached the coast on April 8th generating a long-period swell (Tp>10 s) arriving from the NNW. This event induced an eastward net sediment transport across a wide surf zone. However, long-term observations of sand impoundment at a groin located near the study area suggests that the net sediment transport in the northern Yucatan peninsula is controlled by sea-breeze events and hence swash zone dynamics play an important role in the net sediment budget of this region. A comparative study of surf and swash zone dynamics during both sea-breeze and Norte events will be presented. The Institute of Engineering of UNAM, throughout an International Collaborative Project with the University of Delaware, and CONACYT (CB-167692) provided financial support. The first author acknowledges ONR Global for providing financial support throughout the Visiting Scientist Program.

  9. Evolution of a sediment wave in an experimental channel

    Treesearch

    Thomas E. Lisle; James E. Pizzuto; Hiroshi Ikeda; Fujiko Iseya; Yoshinori Kodama

    1997-01-01

    Abstract - The routing of bed material through channels is poorly understood. We approach the problem by observing and modeling the fate of a low-amplitude sediment wave of poorly sorted sand that we introduced into an experimental channel transporting sediment identical to that of the introduced wave. The wave essentially dispersed upstream and downstream without...

  10. Finescale turbulence and seabed scouring around pneumatophores in a wave-exposed mangrove forest

    NASA Astrophysics Data System (ADS)

    Mullarney, J. C.; Norris, B. K.; Henderson, S. M.; Bryan, K. R.

    2015-12-01

    Coastal mangroves provide a barrier between the coast and lower energy intertidal environments. The presence of mangrove roots (pneumatophores) alters local hydrodynamics by slowing currents, dissipating waves, enhancing within-canopy turbulence, and introducing significant spatial variability to the flow, particularly on the stem scale. To date, limited measurements exist within pneumatophore regions owing to the difficulties of measuring on sufficiently small scales. Hence, little is known about the turbulence controlling sediment transport within these regions. We report unique field observations near the seaward edge of a mangrove forest in the Mekong Delta, Vietnam. This forest is exposed to moderate wave energy (maximum heights of around 1 m), with waves observed to propagate and break up to 100 m inside the forest. Our measurements focus on a rapidly prograding area with a relatively sandy substrate and a gentle topographic slope. We resolved millimeter-scale turbulent flows within and above the pneumatophore canopy. Precise measurements of vegetation densities as a function of height were obtained using photogrammetry techniques. The dissipation rate of turbulent kinetic energy was enhanced at the canopy edge (ɛ ~ 10-4 W/kg), and decreased with distance into the forest (ɛ ~ 10-5 W/kg), although rates remained elevated above values measured on the tidal flat immediately offshore of the mangroves (ɛ ~ 10-6 W/kg). The dependence of turbulence on vegetation characteristics and on the stage of the tidal cycle is explored. The hydrodynamic measurements are then linked with changes in bathymetric features noted after a large wave event. Finer mud sediments were deposited outside the forest on the intertidal mudflat, whereas sandy sediments in the fringe region were significant scoured around regions of dense pneumatophores, and sediment mounds developed in the gaps between pneumatophores.

  11. Shipboard magnetic field "noise" reveals shallow heavy mineral sediment concentrations in Chesapeake Bay

    USGS Publications Warehouse

    Shah, Anjana K.; Vogt, Peter R.; Rosenbaum, Joseph G.; Newell, Wayne L.; Cronin, Thomas M.; Willard, Debra A.; Hagen, Rick A.; Brozena, John; Hofstra, Albert

    2012-01-01

    Shipboard magnetic field data collected over Chesapeake Bay exhibit low-amplitude, short-wavelength anomalies that most likely indicate shallow concentrations of heavy mineral sediments. Piston core layers and black sand beach samples exhibit enhanced magnetic susceptibilities and carry remanent magnetization, with mineralogical analyses indicating ilmenite and trace magnetite and/or maghemite and hematite. The anomalies are subtle and would be filtered as noise using traditional approaches, but can instead be highlighted using spectral methods, thus providing nearly continuous coverage along survey tracks. The distribution of the anomalies provides constraints on relevant sorting mechanisms. Comparisons to sonar data and previous grab samples show that two of three areas surveyed exhibit short-wavelength anomalies that are clustered over sand-covered areas, suggesting initial sorting through settling mechanisms. This is supported by a correlation between core magnetic susceptibility and grain size. Near the Choptank River, where sediment resuspension is wave-dominated, anomalies show a sharp decrease with seafloor depth that cannot be explained by signal attenuation alone. In Pocomoke Sound, where both tidal currents and wave-action impact sediment resuspension, anomalies show a more gradual decrease with depth. Near the mouth of the bay, where there is a higher influx of sediments from the continental shelf, short-wavelength anomalies are isolated and do not appear to represent heavy mineral sand concentrations. These combined observations suggest the importance of further sorting by erosional processes in certain parts of the bay. Additionally, comparisons of these data to cores sampling pre-Holocene sediments suggest that the sorting of heavy minerals in higher energy, shallow water environments provides a mechanism for correlations between core magnetic susceptibility and sea-level changes.

  12. Wave-Sediment Interaction in Muddy Environments: A Field Experiment

    DTIC Science & Technology

    2009-01-01

    Geosciences project includes a field experiment on the Atchafalaya shelf, Louisiana, in Years 1 and 2 (2007-2008) and a data analysis and modeling effort in... analysis procedures. During the major field experiment effort in 2008 (Year 2), a total of 5 tripods were deployed at locations fronting the Atchafalaya...experiment effort. This final year of the project (2009, Year 3) has been focused upon data analysis and preparation of publications. APPROACH

  13. Hydro- and morphodynamic tsunami simulations for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces

    NASA Astrophysics Data System (ADS)

    Röbke, B. R.; Schüttrumpf, H.; Vött, A.

    2018-04-01

    In order to derive local tsunami risks for a particular coast, hydro- and morphodynamic numerical models that are calibrated and compared with sedimentary field data of past tsunami impacts have proven very effective. While this approach has widely been used with regard to recent tsunami events, comparable investigations into pre-/historical tsunami impacts hardly exist, which is the objective of this study focusing on the Ambrakian Gulf in northwestern Greece. The Ambrakian Gulf is located in the most active seismotectonic and by this most tsunamigenic area of the Mediterranean. Accordingly, palaeotsunami field studies have revealed repeated tsunami impacts on the gulf during the past 8000 yr. The current study analyses 151 vibracores of the Ambrakian Gulf coast in order to evaluate tsunami signals in the sedimentary record. Based on a hydro- and morphodynamic numerical model of the study area, various tsunami waves are simulated with the aim of finding scenarios that compare favourably with tsunami deposits detected in the field. Both, field data and simulation results suggest a decreasing tsunami influence from the western to the eastern Ambrakian Gulf. Various scenarios are needed to explain tsunami deposits in different parts of the gulf. Whereas shorter period tsunami waves (T = 30 min) from the south and west compare favourably with field data in the western gulf, longer period waves (T = 80 min) from a western direction show the best agreement with tsunami sediments detected in southwestern Aktio Headland and in the more central parts of the Ambrakian Gulf including Lake Voulkaria. Tsunamis from the southwest generally do not accord with field traces. Besides the spatial sediment distribution, the numerical model accurately reflects the sedimentary composition of the detected event deposits and reproduces a number of essential features typical of tsunamites, which were also observed in the field. Such include fining- and thinning-landward and the marine character of the deposits. By contrast, the simulated thickness of tsunami sediments usually lags behind the observed thickness in the field and some event layers cannot be explained by any of the simulated scenarios. Regarding the frequency of past tsunami events and their spatial dimensions indicated by both field data and simulation results, a high tsunami risk has to be derived for the Ambrakian Gulf.

  14. The effect of pneumatophore density on turbulence: A field study in a Sonneratia-dominated mangrove forest, Vietnam

    NASA Astrophysics Data System (ADS)

    Norris, Benjamin K.; Mullarney, Julia C.; Bryan, Karin R.; Henderson, Stephen M.

    2017-09-01

    This paper examines the role of mangrove pneumatophore roots as a spatial control over the turbulent kinetic energy (TKE) dissipation rate within a natural mangrove forest. Measurements of turbulence at millimeter scales were compared with vegetation geometries reconstructed using a novel photogrammetric technique. These small-scale relationships were then averaged to show larger-scale patterns in turbulence across the mudflat and mangrove fringe-forest transition. Although turbulence estimates varied with across-shore position, TKE dissipation was always elevated in the fringe relative to mudflat and forest interior sample sites. The largest dissipation rates (4.5 × 10-3 W kg-1) were measured as breaking waves propagated over canopies in very shallow water. Dissipation was reduced, but often remained intense (10-5-10-4 W kg-1) under non-breaking waves at the fringe, likely indicating turbulent generation in pneumatophore wakes. Pneumatophore density was positively correlated with the spatial distribution of TKE dissipation. Turbulence was also correlated positively with wave height and negatively with water depth. Fringe sediments were more sandy and less muddy than sediments onshore and offshore, suggesting that the intense turbulence may lead to winnowing of fine-grained sediments at the fringe.

  15. Modeling Small-Scale Nearshore Processes

    NASA Astrophysics Data System (ADS)

    Slinn, D.; Holland, T.; Puleo, J.; Puleo, J.; Hanes, D.

    2001-12-01

    In recent years advances in high performance computing have made it possible to gain new qualitative and quantitative insights into the behavior and effects of coastal processes using high-resolution physical-mathematical models. The Coastal Dynamics program at the U.S. Office of Naval Research under the guidance of Dr. Thomas Kinder has encouraged collaboration between modelers, theoreticians, and field and laboratory experimentalists and supported innovative modeling efforts to examine a wide range of nearshore processes. An area of emphasis has been small-scale, time-dependent, turbulent flows, such as the wave bottom boundary layer, breaking surface waves, and the swash zone and their effects on shoaling waves, mean currents, and sediment transport that integrate to impact the long-term and large-scale response of the beach system to changing environmental conditions. Examples of small-scale modeling studies supported by CD-321 related to our work include simulation of the wave bottom boundary layer. Under mild wave field conditions the seabed forms sand ripples and simulations demonstrate that the ripples cause increases in the bed friction, the kinetic energy dissipation rates, the boundary layer thickness, and turbulence in the water column. Under energetic wave field conditions the ripples are sheared smooth and sheet flow conditions can predominate, causing the top few layers of sand grains to move as a fluidized bed, making large aggregate contributions to sediment transport. Complementary models of aspects of these processes have been developed simultaneously in various directions (e.g., Jenkins and Hanes, JFM 1998; Drake and Calantoni, 2001; Trowbridge and Madsen, JGR, 1984). Insight into near-bed fluid-sediment interactions has also been advanced using Navier-Stokes based models of swash events. Our recent laboratory experiments at the Waterways Experiment Station demonstrate that volume-of-fluid models can predict salient features of swash uprush-backwash interactions under controlled conditions. While much has been achieved towards understanding the intricacies of these natural systems using nonlinear models, many questions remain to challenge future engineers and scientists. During his tenure at ONR, Tom Kinder has championed the importance of nearshore science and increased resources within the area, made accomplishments visible to the broader ocean community, increased communication between researchers through comprehensive initiatives, field experiments and workshops, helped develop 10 year plans focusing future priorities, maintained a stable environment for researchers, and encouraged them to tackle the hardest (most interesting) problems and to develop new tools along the way with which to solve them.

  16. Modeling Sediment Bypassing around Rocky Headlands

    NASA Astrophysics Data System (ADS)

    George, D. A.; Largier, J. L.; Pasternack, G. B.; Erikson, L. H.; Storlazzi, C. D.; Barnard, P.

    2016-12-01

    Sediment bypassing rocky headlands remains understudied despite the importance of characterizing littoral processes and sediment budgets for erosion abatement, climate change adaptation, and beach management. This study was developed to identify controlling factors on and the mechanisms supporting sediment bypassing. Sediment flux around four idealized rocky headlands was investigated using the hydrodynamic model Delft3D and spectral wave model SWAN. The experimental design involved 120 simulations to explore the influence of headland morphology, substrate composition, sediment grain size, and oceanographic forcing. Headlands represented sizes and shapes found in natural settings, grain sizes ranged from fine to medium sand, and substrates from sandy beds to offshore bedrock reefs. The oceanography included a constructed representative tide, an alongshore background current, and four wave conditions derived from observational records in the eastern Pacific Ocean. A bypassing ratio was developed for alongshore flux between upstream and downstream cross-shore transects to determine the degree of blockage by a headland. Results showed that northwesterly oblique large waves (Hs = 7 m, Tp = 16 s) generated the most flux around headlands, whereas directly incident waves blocked flux across a headland apex. The headland shape heavily influenced the sediment fate by changing the relative angle between the shoreline and the incident waves. The bypassing ratio characterized each headland's capacity to allow alongshore flux under different wave conditions. All headlands may allow flux, although larger ones block sediment more effectively, promoting their ability to be littoral cell boundaries compared to smaller headlands. The controlling factors on sediment bypassing were determined to be wave angle, shape and size of the headland, and sediment grain size. This novel numerical modeling study advances headland modeling from the generic realm to broadly applicable classes of headlands and encourages further investigation into the mechanics of sediment bypassing.

  17. Influence of Vegetation on Sediment Accumulation in Restored Tidal Saltmarshes: Field Evidence from the Blackwater Estuary, Essex, UK

    NASA Astrophysics Data System (ADS)

    Price, D.; French, J.; Burningham, H.

    2013-12-01

    Tidal saltmarshes in the UK, and especially in the estuaries of southeast England, have been subject to degradation and erosion over the last few decades, primarily caused by sea-level rise and coastal squeeze due to fixed coastal defences. This is of great concern to a range of coastal stakeholders due to the corresponding loss of functions and services associated with these systems. The coastal defence role that saltmarshes play is well established, and the importance of saltmarsh ecosystems as habitats for birds, fish, and other species is evidenced in the fact that a large proportion of saltmarsh in the southeast England is designated for its scientific and conservation significance. Sediment accumulation is critical for the maintenance of marsh elevation within the tidal frame and for delivery of the aforementioned functions and services. Although many studies have examined accumulation processes, key questions have yet to be fully tested through intensive field observations. One such question relates to the role of vegetation in mediating the retention of newly introduced sediment, as recent research has called into doubt the traditional view of halophytes significantly enhancing rates of sedimentation through wave dissipation. This study presents early results from a project designed to advance our understanding of the processes controlling sediment accumulation. The research focuses on the UK's first large-scale experimental managed flood defence realignment at Tollesbury, Blackwater estuary, Essex. The seawall protecting 21ha of reclaimed agricultural land was artificially breached in 1995 and saltmarsh has progressively developed as tidal exchange has introduced fine sediment into the site. Results from a 12 month monitoring campaign involving hierarchical two-week sediment trap deployments indicates that the role of vegetation in marsh development is less clear cut that previously thought. Gross sedimentation rates were generally higher in non-vegetated areas, even when other influences, such as elevation were removed. However, sediment retention at the vegetated sites was higher, at times double that in the bare areas. This implies that vegetation acts primarily to inhibit sediment resuspension by waves rather than by favouring deposition from tidal flows.

  18. Interaction of oil and mineral fines on shorelines: review and assessment.

    PubMed

    Owens, Edward H; Lee, Kenneth

    2003-01-01

    The interaction of fine mineral particles with stranded oil in an aqueous medium reduces the adhesion of the oil to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. This interaction, referred to as oil-mineral aggregate (OMA) formation, can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. OMA formation also plays an important role in the efficacy of shoreline treatment techniques, such as physical mixing and sediment relocation that move oiled sediments into the zone of wave action to promote the interaction between oil and mineral fines. Successful application of these shoreline treatment options has been demonstrated at two spill events (the Tampa Bay response in Florida and the Sea Empress operation in Wales) and at a controlled oil spill experiment in the field (the 1997 Svalbard ITOSS program). Sediment relocation harnesses the hydraulic action of waves so that the processes of fine-particle interaction and physical abrasion usually occur in tandem on open coasts. There has been no evidence of significant detrimental side-effects of residual oil in pelagic or benthic environments associated with the use of these treatment options to enhance rates of dispersion and oil biodegradation.

  19. Estimating the sound speed of a shallow-water marine sediment from the head wave excited by a low-flying helicopter.

    PubMed

    Bevans, Dieter A; Buckingham, Michael J

    2017-10-01

    The frequency bandwidth of the sound from a light helicopter, such as a Robinson R44, extends from about 13 Hz to 2.5 kHz. As such, the R44 has potential as a low-frequency sound source in underwater acoustics applications. To explore this idea, an experiment was conducted in shallow water off the coast of southern California in which a horizontal line of hydrophones detected the sound of an R44 hovering in an end-fire position relative to the array. Some of the helicopter sound interacted with seabed to excite the head wave in the water column. A theoretical analysis of the sound field in the water column generated by a stationary airborne source leads to an expression for the two-point horizontal coherence function of the head wave, which, apart from frequency, depends only on the sensor separation and the sediment sound speed. By matching the zero crossings of the measured and theoretical horizontal coherence functions, the sound speed in the sediment was recovered and found to take a value of 1682.42 ± 16.20 m/s. This is consistent with the sediment type at the experiment site, which is known from a previous survey to be a fine to very-fine sand.

  20. Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.

    1986-01-01

    Bed shear stress was estimated using wave and current measurements obtained with the GEOPROBE bottom-tripod system during resuspension events in Norton Sound, Alaska, and on the northern California shelf. The boundary-layer model of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808) was used to compute the bed shear stress under combined wave-generated and quasi-steady currents. Resuspension events were identified by sudden, large increases in light scattering at 1.9 m above the sea floor. The shear-stress values were used to compute the Shields parameter (??). The results for Norton Sound are in excellent agreement with the Shields threshold criterion; the data for the California shelf plot somewhat above the Shields threshold curve, though generally within the scatter envelope. Although the surface sediments in each area contain substantial fine-grained fractions (mean diameters were 0.007 cm in Norton Sound and 0.002 cm on the California shelf), the results do not indicate significant cohesion, because the sediment was entrained at bed shear-stress values close to those predicted by the modified Shields curve for cohesionless fine-grained particles. We suspect that frequent wave stirring and observed plowing of the surface sediment by benthonic animals maintain a high water content and contribute to the ease with which these materials are resuspended. ?? 1986.

  1. In-situ erosion of cohesive sediment in a large shallow lake experiencing long-term decline in wind speed

    NASA Astrophysics Data System (ADS)

    Wu, Tingfeng; Timo, Huttula; Qin, Boqiang; Zhu, Guangwei; Janne, Ropponen; Yan, Wenming

    2016-08-01

    In order to address the major factors affecting cohesive sediment erosion using high-frequency in-situ observations in Lake Taihu, and the response of this erosion to long-term decline in wind speed, high-frequency meteorological, hydrological and turbidity sensors were deployed to record continuous field wind-induced wave, current and sediment erosion processes; Statistical analyses and mathematic modeling spanning 44 years were also conducted. The results revealed that the unconsolidated surficial cohesive sediment frequently experiences the processes of erosion, suspension and deposition. Wind waves, generated by the absorption of wind energy, are the principal force driving this cycle. When the wavelength-to-water depth ratio (L/D) is 2-3, wave propagation is affected by lakebed friction and surface erosion occurs. When L/D > 3, the interaction between wave and lakebed increases to induce massive erosion. However, influenced by rapid urbanization in the Lake Taihu basin, wind speed has significantly decreased, by an average rate of -0.022 m s-1 a-1, from 1970 to 2013. This has reduced the erodible area, represented by simulated L/D, at a rate of -16.9 km2 a-1 in the autumn and winter, and -8.1 km2 a-1 in the spring and summer. This significant decrease in surface erosion area, and the near disappearance of areas experiencing massive erosion, imply that Lake Taihu has become calmer, which can be expected to have adverse effects on the lake ecosystem by increasing eutrophication and nuisance cyanobacteria blooms.

  2. Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico

    USGS Publications Warehouse

    Lee, Myung W.

    2013-01-01

    Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.

  3. Wave-current interaction: Effect on the wave field in a semi-enclosed basin

    NASA Astrophysics Data System (ADS)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2013-10-01

    The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further investigations reveal that, when applied to intense storms, the effect of coupling on waves results in variations of significant wave height up to 0.6 m, with some areas experiencing significant increase/decrease of wave spectral energy for opposite/following currents respectively.

  4. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.

    1994-08-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.

  5. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    USGS Publications Warehouse

    Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.

    1994-01-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.

  6. Bottom boundary layer spectral dissipation estimates in the presence of wave motions

    NASA Astrophysics Data System (ADS)

    Gross, T. F.; Williams, A. J.; Terray, E. A.

    1994-08-01

    Turbulence measurements are an essential element of the Sediment TRansport Events on Shelves and Slopes experiment (STRESS). Sediment transport under waves is initiated within the wave boundary layer at the seabed, at most a few tens of centimeters deep. The suspended load is carried by turbulent diffusion above the wave boundary layer. Quantification of the turbulent diffusion active above the wave boundary layer requires estimates of shear stress or energy dissipation in the presence of oscillating flows. Measurements by Benthic Acoustic Stress Sensors of velocity fluctuations were used to derive the dissipation rate from the energy level of the spectral inertial range (the -5/3 spectrum). When the wave orbital velocity is of similar magnitude to the mean flow, kinematic effects on the estimation techniques of stress and dissipation must be included. Throughout the STRESS experiment there was always significant wave energy affecting the turbulent bottom boundary layer. LUMLEY and TERRAY [(1983) Journal of Physical Oceanography, 13, 2000-2007] presented a theory describing the effect of orbital motions on kinetic energy spectra. Their model is used here with observations of spectra taken within a turbulent boundary layer which is affected by wave motion. While their method was an explicit solution for circular wave orbits aligned with mean current we extrapolated it to the case of near bed horizontal motions, not aligned with the current. The necessity of accounting for wave orbital motion is demonstrated, but variability within the field setting limited our certainty of the improvement in accuracy the corrections afforded.

  7. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii

    USGS Publications Warehouse

    Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  8. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii.

    PubMed

    Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E

    2006-09-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  9. In situ time-series measurements of subseafloor sediment properties

    USGS Publications Warehouse

    Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.

    2007-01-01

    The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.

  10. Nearshore substrate and morphology offshore of the Elwha River, Washington

    USGS Publications Warehouse

    Warrick, J.A.; Cochrane, G.R.; Sagy, Y.; Gelfenbaum, G.

    2008-01-01

    The planned removal of two dams on the Elwha River, Washington, will likely increase river sediment flux to the coast, which may alter coastal habitats through sedimentation and turbidity. It is therefore important to characterize the current habitat conditions near the river mouth, so that future changes can be identified. Here we provide combined sonar and video mapping results of approximately 20 km2 of seafloor offshore of the Elwha River collected with the purpose to characterize nearshore substrate type and distribution prior to dam removal. These combined data suggest that the nearshore of the western delta and Freshwater Bay are dominated by coarse sediment (sand, gravel, cobble, and boulders) and bedrock outcrops; no fine-grained sediment (mud or silt) was identified within the survey limits. The substrate is generally coarser in Freshwater Bay and on the western flank of the delta, where boulders and bedrock outcrops occur, than directly offshore and east of the river mouth. High variation in substrate was observed within much of the study area, however, and distinct boulder fields, gravel beds and sand waves were observed with spatial scales of 10-100 m. Gravel beds and sand waves suggest that sediment transport is active in the study area, presumably in response to tidal currents and waves. Both historic (1912) and recent (1989-2004) distributions of Bull Kelp (Nereocystis sp.) beds were preferentially located along the boulder and bedrock substrates of Freshwater Bay. Although kelp has also been mapped in areas dominated by gravel and sand substrate, it typically has smaller canopy areas and lower temporal persistence in these regions.

  11. Sand waves on an epicontinental shelf: Northern Bering Sea

    USGS Publications Warehouse

    Field, M.E.; Nelson, C.H.; Cacchione, D.A.; Drake, D.E.

    1981-01-01

    Sand waves and current ripples occupy the crests and flanks of a series of large linear sand ridges (20 km ?? 5 km ?? 10 m high) lying in an open-marine setting in the northern Bering Sea. The sand wave area, which lies west of Seward Peninsula and southeast of Bering Strait, is exposed to the strong continuous flow of coastal water northward toward Bering Strait. A hierarchy of three sizes of superimposed bedforms, all facing northward, was observed in successive cruises in 1976 and 1977. Large sand waves (height 2 m; spacing 200 m) have smaller sand waves (height 1 m; spacing 20 m) lying at a small oblique angle on their stoss slopes. The smaller sand waves in turn have linguoid ripples on their stoss slopes. Repeated studies of the sand wave fields were made both years with high-resolution seismic-reflection profiles, side-scan sonographs, underwater photographs, current-meter stations, vibracores, and suspended-sediment samplers. Comparison of seismic and side-scan data collected along profile lines run both years showed changes in sand wave shape that indicate significant bedload transport within the year. Gouge marks made in sediment by keels of floating ice also showed significantly different patterns each year, further documenting modification to the bottom by sediment transport. During calm sea conditions in 1977, underwater video and camera observations showed formation and active migration of linguoid and straight-crested current ripples. Current speeds 1 m above the bottom were between 20 and 30 cm/s. Maximum current velocities and sand wave migration apparently occur when strong southwesterly winds enhance the steady northerly flow of coastal water. Many cross-stratified sand bodies in the geologic record are interpreted as having formed in a tidal- or storm-dominated setting. This study provides an example of formation and migration of large bedforms by the interaction of storms with strong uniform coastal currents in an open-marine setting. ?? 1981.

  12. Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Chickadel, C. C.; Jessup, A. T.

    2016-02-01

    In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.

  13. Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington

    USGS Publications Warehouse

    Miller, I.M.; Warrick, J.A.; Morgan, C.

    2011-01-01

    Mixed beaches, with poorly sorted grains of multiple sizes, are a common and globally distributed shoreline type. Despite this, rates and mechanisms of sediment transport on mixed beaches are poorly understood. A series of tracer deployments using native clasts implanted with Radio Frequency Identifier (RFID) tags was used to develop a better understanding of sediment transport directions and magnitudes on the mixed grain-size beach of the Elwha River delta. Using tracer samples selected to match the distribution of the coarse fraction on the beach we find that all grain sizes, up to large cobbles (128-256 mm), were mobile under most measured wave conditions and move in relationship to the direction of the alongshore component of wave energy as estimated by incident breaking wave angles. In locations where the breaking wave is normal to the shoreline we find that tracers move in both alongshore directions with approximately equal frequency. In locations where breaking waves are oblique to the shoreline we find that alongshore transport is more unidirectional and tracers can approach average velocities of 100. m/day under winter wave conditions. We use the tracer cloud to estimate the beach active width, the mobile layer depth and sediment velocity. Our results suggest that, while sediment velocity increases under increased incident wave angles, the active layer depth and width decrease, reducing sediment flux at the site with the more oblique breaking waves. This result is contrary to what is suggested by traditional wave energy transport models of alongshore sediment transport. ?? 2011 Elsevier B.V.

  14. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  15. Wave-Sediment Interaction in Muddy Environments: A Field Experiment

    DTIC Science & Technology

    2008-01-01

    project includes a field experiment on the Atchafalaya shelf, Louisiana, in Years 1 and 2 (2007-2008) and a data analysis and modeling effort in Year 3...2008), in collaboration with other researchers funded by ONR CG program. The pilot experiment has tested the instrumentation and data analysis ...1993; Foda et al., 1993). With the exception of liquefaction processes, these models assume a single, well­ defined mud phase. However

  16. Modeling of sedimentation and resuspension processes induced by intensive internal gravity waves in the coastal water systems with the use of the advection-diffusion equation for sediment concentration

    NASA Astrophysics Data System (ADS)

    Rouvinskaya, Ekaterina; Kurkin, Andrey; Kurkina, Oxana

    2017-04-01

    Intensive internal gravity waves influence bottom topography in the coastal zone. They induce substantial flows in the bottom layer that are essential for the formation of suspension and for the sediment transport. It is necessary to develop a mathematical model to predict the state of the seabed near the coastline to assess and ensure safety during the building and operation of the hydraulic engineering constructions. There are many models which are used to predict the impact of storm waves on the sediment transport processes. Such models for the impact of the tsunami waves are also actively developing. In recent years, the influence of intense internal waves on the sedimentation processes is also of a special interest. In this study we adapt one of such models, that is based on the advection-diffusion equation and allows to study processes of resuspension under the influence of internal gravity waves in the coastal zone, for solving the specific practical problems. During the numerical simulation precomputed velocity values are substituted in the advection - diffusion equation for sediment concentration at each time step and each node of the computational grid. Velocity values are obtained by the simulation of the internal waves' dynamics by using the IGW Research software package for numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations of hydrodynamics of inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind the impact of barotropic tide. It is necessary to set the initial velocity and density distribution in the computational domain, bottom topography, as well as the value of the Coriolis parameter and, if necessary, the parameters of the tidal wave to carry out numerical calculations in the software package IGW Research. To initialize the background conditions of the numerical model we used data records obtained in the summer in the southern part of the shelf zone of Sakhalin Island from 1999 to 2003, provided by SakhNIRO, Russia. The process of assimilation of field data with numerical model is described in detail in our previous studies. It has been shown that process of suspension formation is quite intense for the investigated condition. Concentration of suspended particles significantly increases during the tide, especially on naturally uneven bottom relief as well as on the right boundary of the computational domain (near shoreline). Pronounced nepheloid layer is produced. Its thickness is about 5.6 m. At the phase of low tide, the process of suspension sediment production stops, and suspended particles are beginning to settle because of the small vertical velocities. Thickness of nepheloid layer is actively reduced. Obviously, this should lead to a change in the bottom relief. The presented results of research were obtained with the support of the Russian President's scholarship for young scientists and graduate students SP-2311.2016.5.

  17. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers

    Treesearch

    Thomas E. Lisle; Yantao Cui; Gary Parker; James E. Pizzuto; Annjanette M. Dodd

    2001-01-01

    Abstract - Bed material waves are temporary zones of sediment accumulation created by large sediment inputs. Recent theoretical, experimental and field studies examine factors in fluencing dispersion and translation of bed material waves in quasi-uniform, gravel-bed channels. Exchanges of sediment between a channel and its floodplain are...

  18. 3D model of radionuclide dispersion in coastal areas with multifraction cohesive and non-cohesive sediments

    NASA Astrophysics Data System (ADS)

    Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae

    2015-04-01

    We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Periáñez, R. Abril, J.M., Garcia-Leon, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters'Part 1: conceptual and mathematical model. Journal of Environmental Radioactivity 31 (2), 127-141 Roland, A., Y. J. Zhang, H. V. Wang, Y. Meng, Y.-C. Teng, V. Maderich, I. Brovchenko, M. Dutour-Sikiric, and U. Zanke (2012), A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33 Pinto L., Fortunato A.B., Zhang Y., Oliveira A., Sancho F.E.P. (2012) Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments, Ocean Modell., (57-58), 1-14

  19. Field observations of slush ice generated during freeze-up in arctic coastal waters

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.

    1987-01-01

    In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during a brief time period in the previous fall. Ocean turbulence is greatly reduced while the congealing slush ice drifts about. Therefore, new ice then forming in intervening open-water areas is clean. These events explain the patchy appearance of the fast ice after the summer snowmelt. More work on the important phenomena reported here is needed to close a major gap in the knowledge of the arctic marine environment. ?? 1987.

  20. Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Hornowski, T.; Závišová, V.; Skumiel, A.; Kubovčíková, M.; Timko, M.

    2014-03-01

    The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).

  1. Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating.

    PubMed

    Józefczak, A; Hornowski, T; Závišová, V; Skumiel, A; Kubovčíková, M; Timko, M

    2014-01-01

    The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).

  2. Distribution of basic sediments (bedload transport) on changes in coastal coastline Donggala, Central Sulawesi Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Amiruddin

    2018-03-01

    This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.

  3. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  4. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  5. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  6. Mechanisms of sediment flux between shallows and marshes

    USGS Publications Warehouse

    Lacy, Jessica R.; Schile, L.M.; Callaway, J.C.; Ferner, M.C.

    2015-01-01

    We conducted a field study to investigate temporal variation and forcing mechanisms of sediment flux between a salt marsh and adjacent shallows in northern San Francisco Bay. Suspended-sediment concentration (SSC), tidal currents, and wave properties were measured over the marsh, in marsh creeks, and in bay shallows. Cumulative sediment flux in the marsh creeks was bayward during the study, and was dominated by large bayward flux during the largest tides of the year. This result was unexpected because extreme high tides with long inundation periods are commonly assumed to supply sediment to marshes, and long-term accretion estimates show that the marsh in the study site is depositional. A water mass-balance shows that some landward transport bypassed the creeks, most likely across the marsh-bay interface. An estimate of transport by this pathway based on observed SSC and inferred volume indicates that it was likely much less than the observed export.

  7. The origin of SH-wave resonance frequencies in sedimentary layers

    NASA Astrophysics Data System (ADS)

    van der Baan, Mirko

    2009-09-01

    Resonance frequencies are often analysed in geo-engineering studies to evaluate seismic risk and microzonation in urban areas. The Nakamura technique constitutes a popular approach that computes the spectral ratio of horizontal-to-vertical ground motion in ambient noise recordings to reveal the existence of any site resonance frequencies. Its theoretical basis remains however unclear with some authors arguing that the method de-emphasizes any Rayleigh-wave contributions and that the resonance frequencies are solely caused by vertically incident SH waves. Other authors explain the same resonance frequencies by the ellipticity of the fundamental Rayleigh wave. Recent numerical simulations reveal that the magnitude of the peak frequency is proportional to the relative portion of Love waves present. This study demonstrates that Love waves alone can be responsible for any observed resonance frequencies in sedimentary layers. Yet sharp SH-wave resonance frequencies are only excited by a source in the bedrock. These resonance frequencies are caused by inhomogeneous waves excited by the bedrock source that tunnel through the high-velocity bedrock to emerge in the low-velocity sediments with a very reduced range of slownesses. The resulting SH waves are then free to interfere constructively thereby creating the observed resonance frequencies. This general trigger mechanism leads to resonances that are almost offset independent. The resulting resonance frequencies map onto points of maximum curvature in the Love-wave phase-velocity dispersion curves at or just beyond the critical horizontal slowness. They can be analysed with the quarter-wavelength law if a large velocity contrast exists between the unconsolidated sediments and the bedrock. A minor modification of the quarter-wavelength law provides more accurate predictions, also for smaller velocity contrasts. Multisource simulations show that site amplification factors as determined by horizontal-over-vertical (H/V) spectral ratios would not only depend on the relative portion of Love waves in the total wavefield but also on the depth distribution and the relative strength of the SH sources inside the bedrock compared with those in the sediments. An accurate interpretation of site amplification factors by means of H/V peak frequencies would thus require in-depth knowledge of the causes and origins of the local microseismic noise field.

  8. Autogenic and Allogenic: Emergent Coastline Patterns Interact With Forcing Variations

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Alvarez Antolinez, J. A.; Mendez, F. J.; Moore, L. J.; Wood, J.; Farley, G.

    2017-12-01

    A range of coastline shapes can emerge from large-scale morphodynamic interactions. Coastline shape determines local wave influences. Local wave influences (fluxes of alongshore momentum), determine sediment fluxes, and gradients in these sediment fluxes, in turn, alter coastline shape. Modeling studies show that such feedbacks lead to an instability, and to subsequent finite-amplitude interactions, producing self-organized patterns and emergent structures including sandwaves, capes, and spits (e.g. Ashton and Murray, 2006; Ashton et al., 2015); spiral bays on rocky coastlines (e.g. Barkwith et al., 2014); and convex, spit-bounded coastlines (Ells et al., in prep.). Coastline shapes depend sensitively on wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Therefore, shifts in wave climate arising from shifts in storms (decadal scale fluctuations or longer-term trends) will tend to change coastline shape. Previous efforts have detected changing coastline shape, likely related to changing influence from hurricane-generated waves, as expressed in changes in the location and intensity of coastal erosion zones along the cuspate capes in North Carolina, USA (Moore et al., 2013). These efforts involved the assumption that coastline response to changing forcing occurs in a quasi-equilibrium manner. However, in some cases coastline responses can exhibit long-term memory and path dependence (Thomas et al., 2016). Recently, we have hindcast the wave climate affecting the North Carolina coast since 1870, using a series of statistical analyses to downscale from basin-scale surface pressure fields to regional deep-water wave climate, and then a numerical transformation to local offshore wave climate. We used this wave climate as input for the Coastline Evolution Model (CEM). The results show that the emergent coastline features respond to decadal-scale shifts in wave climate, but with time lags that complicate the relationship between forcing and coastline shape. Comparisons between model predictions and observed shoreline-change patterns support the suggestion that the relationship between emergent coastline behaviours (autogenic processes) and external influences (autogenic forcing) involves such memory effects (Antolinez et al., in revision).

  9. The influence of wave-, wind- and tide-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira da Silva, Guilherme; Toldo, Elírio E., Jr.; Klein, Antonio H. da F.; Short, Andrew D.

    2018-07-01

    Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.

  10. An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay

    DTIC Science & Technology

    2011-09-30

    source term parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and...I. Total energy and peak frequency. Coastal Engineering (29), 47-78. Zijlema, M. Computation of wind -wave spectra in coastal waters with SWAN on unstructured grids Coastal Engineering, 2010, 57, 267-277 ...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to

  11. Waves, Currents, and Sediment Transport in the Surf Zone Along Long, Straight Beaches

    DTIC Science & Technology

    2005-08-01

    e.g., Inman, 1957; Keneddy and Falcon, 1965; Carstens et al., 1969; Mogridge and Kamphuis, 1972; Dingler, 1974; Miller and Komar, 1980; Nielsen, 1981...laboratory experiments and through field observations (e.g., Inman, 1957; Keneddy and Falcon, 1965; Carstens et al., 1969; Mogridge and Kamphuis, 1972; Dingler

  12. The effect of vegetation height and biomass on the sediment budget of a European saltmarsh

    NASA Astrophysics Data System (ADS)

    Reef, Ruth; Schuerch, Mark; Christie, Elizabeth K.; Möller, Iris; Spencer, Tom

    2018-03-01

    Sediment retention in saltmarshes is often attributed to the presence of vegetation, which enhances accretion by slowing water flow, reduces erosion by attenuating wave energy and increases surface stability through the presence of organic matter. Saltmarsh vegetation morphology varies considerably on a range of spatial and temporal scales, but the effect of different above ground morphologies on sediment retention is not well characterised. Understanding the biophysical interaction between the canopy and sediment trapping in situ is important for improving numerical shoreline models. In a novel field flume study, we measured the effect of vegetation height and biomass on sediment trapping using a mass balance approach. Suspended sediment profilers were placed at both openings of a field flume built across-shore on the seaward boundary of an intertidal saltmarsh in the Dengie Peninsula, UK. Sequential removal of plant material from within the flume resulted in incremental loss of vegetation height and biomass. The difference between the concentration of suspended sediment measured at each profiler was used to determine the sediment budget within the flume. Deposition of material on the plant/soil surfaces within the flume occurred during flood tides, while ebb flow resulted in erosion (to a lesser degree) from the flume area, with a positive sediment budget of on average 6.5 g m-2 tide-1 with no significant relationship between sediment trapping efficiency and canopy morphology. Deposition (and erosion) rates were positively correlated to maximum inundation depth. Our results suggest that during periods of calm conditions, changes to canopy morphology do not result in significant changes in sediment budgets in marshes.

  13. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    USGS Publications Warehouse

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  14. Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China.

    PubMed

    Li, Yiping; Tang, Chunyan; Wang, Jianwei; Acharya, Kumud; Du, Wei; Gao, Xiaomeng; Luo, Liancong; Li, Huiyun; Dai, Shujun; Mercy, Jepkirui; Yu, Zhongbo; Pan, Baozhu

    2017-02-01

    The disturbance of the water-sediment interface by wind-driven currents and waves plays a critical role in sediment resuspension and internal nutrient release in large, shallow lakes. This study analyzed the effects of the interactions between wind-induced currents an1d waves on the driving mechanism of sediment resuspension in Lake Taihu, the third largest freshwater lake in China, using acoustic and optic techniques to collect long-term, high-frequency, synchronous in situ measurements of wind, currents, waves, and suspended solid concentrations (SSCs). The results suggested that water turbidity started to increase at wind speeds of approximately 4 m/s and significantly increased when wind speeds exceeded 6 m/s. In most cases, wind-induced waves were the main energy source for changes in turbidity. Wave-generated shear stress contributed more than 95% to sediment resuspension and that only in weak wind conditions (<4 m/s) did the lake bottom shear stresses generated by currents and waves contributed equally. The relationship between SSC and bottom shear stress generated by wave was established by fitting the observed results. The processes of sediment dynamics were divided into four stages (A through D) according to three shear-stress thresholds. In stage A, SSC remained stable (about 45 mg/L) and τ w was less than 0.02 N/m 2 . In stage B, the sediment bed was starting to be activated (SSC 45∼60 mg/L) and τ w was in the range of 0.02∼0.07 N/m 2 . In stage C, a medium amount of sediment was suspended (SSC 60∼150 mg/L) and τ w ranged from 0.07 to 0.3 N/m 2 . In stage D, large amount of sediment was suspended (SSC 150∼300 mg/L) and τ w was larger than 0.3 N/m 2 . The findings of this paper reveal the driving mechanism of sediment resuspension, which may further help to evaluate internal nutrient release in large shallow Lake Taihu.

  15. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy

    USGS Publications Warehouse

    Hu, Kelin; Chen, Qin; Wang, Hongqing; Hartig, Ellen K.; Orton, Philip M.

    2018-01-01

    The salt marshes of Jamaica Bay serve as a recreational outlet for New York City residents, mitigate wave impacts during coastal storms, and provide habitat for critical wildlife species. Hurricanes have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. In this study, the Delft3D modeling suite was utilized to examine the effects of Hurricane Sandy (2012) on salt marsh morphology in Jamaica Bay. Observed marsh elevation change and accretion from rod Surface Elevation Tables and feldspar Marker Horizons (SET-MH) and hydrodynamic measurements during Hurricane Sandy were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model. The model results agreed well with in situ field measurements. The validated model was then used to detect salt marsh morphological change due to Sandy across Jamaica Bay. Model results indicate that the island-wide morphological changes in the bay's salt marshes due to Sandy were in the range of −30 mm (erosion) to +15 mm (deposition), and spatially complex and heterogeneous. The storm generated paired deposition and erosion patches at local scales. Salt marshes inside the west section of the bay showed erosion overall while marshes inside the east section showed deposition from Sandy. The net sediment amount that Sandy brought into the bay is only about 1% of the total amount of reworked sediment within the bay during the storm. Numerical experiments show that waves and vegetation played a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Furthermore, without the protection of vegetation, the marsh islands of Jamaica Bay would experience both more erosion and less accretion in coastal storms.

  16. Investigations of the Origin of the Magnetic Remanence in Late Pleistocene Lacustrine Sediments in the Mono Basin, CA

    NASA Astrophysics Data System (ADS)

    Vasquez, N.; Corley, A. D.

    2015-12-01

    In the Mono Basin, CA, fine sand, silt, and volcanic ash deposited in Pleistocene Lake Russell is exposed on the margin of Mono Lake, and on Paoha Island in the lake. The silt records the Mono Lake Excursion (MLE: Denham and Cox, 1971) and several tens of thousands of years of paleomagnetic secular variation (PSV: Denham and Cox, 1971; Liddicoat, 1976; Lund et al., 1988). The sediment is believed to be an accurate recorder of PSV because the MLE has the same signal at widely separated localities in the basin (Denham, 1974; Liddicoat and Coe, 1979; Liddicoat, 1992) with the exception at wave-cut cliffs on the southeast side of the lake (Coe and Liddicoat, 1994). Magnetite, titanomagnetite, and titanomaghemite are present in the sediment (Denham and Cox, 1971; Liddicoat, 1976; Liddicoat and Coe, 1979), which is glacial flour from the adjacent Sierra Nevada (Lajoie, 1968). X-rays of the sediment and lineation measurements show patterns of normal bedding with layers aligned such that the minimum axes are within 5-10 degrees of normal bedding, with 10 percent foliation and 1 percent lineation (Coe and Liddicoat, 1994). We explore reasons for the difference in part of the PSV record at the wave-cut cliffs beyond the interpretation of Coe and Liddicoat (1994) that paleomagnetic field strength is a controlling factor. Possibilities include the sedimentation rate - at localities on the margin of Mono Lake the rate is about 60 percent less than at the wave-cut cliffs - and lithology of the sediment. At Mill Creek on the northwest side of Mono Lake, the non-magnetic sediment fraction is coarser-grained than at the wave-cut cliffs by a factor of about two, and there is a similar difference in the total inorganic carbon (TIC) percentage by weight for the two localities. (Spokowski et al., 2011) Studies of the sediment at two localities in the basin where the Hilina Pali Excursion (Teanby et al., 2002) might be recorded (Wilson Creek and South Shore Cliffs; Liddicoat and Coe, 2013) and at an extension of the PSV record of Lund et al. (1988) show a similar pattern to the grain size distribution and TIC percentage described above. Additional measurements of the TIC in the sediments from both sides of Mono Lake for the intervals recording the possible HPE and PSV extension of Lund et al. (1988) are in progress and will be presented.

  17. The Massachusetts Bay internal wave experiment, August 1998: data report

    USGS Publications Warehouse

    Butman, Bradford; Alexander, P. Soupy; Anderson, Steven P.; Lightsom, Frances L.; Scotti, Alberto; Beardsley, Robert C.

    2006-01-01

    This data report presents oceanographic observations made in Massachusetts Bay (fig. 1) in August 1998 as part of the Massachusetts Bay Internal Wave Experiment (MBIWE98). MBIWE98 was carried out to characterize large-amplitude internal waves in Massachusetts Bay and to investigate the possible resuspension and transport of bottom sediments caused by these waves. This data report presents a description of the field program and instrumentation, an overview of the data through summary plots and statistics, and the time-series data in NetCDF format. The objective of this report is to make the data available in digital form and to provide summary plots and statistics to facilitate browsing of the data set. The existence of large-amplitude internal waves in Massachusetts Bay was first described by Halpern (1971). In summer when the water is stratified, packets of waves propagate westward into the bay on the flood (westward flowing) tide at about 0.5 m/s. The internal waves are observed in packets of 5-10 waves, have periods of 5-10 minutes and wavelengths of 200-400 m, and cause downward excursions of the thermocline of as much as 30 m. The waves are generated by interaction of the barotropic tide with Stellwagen Bank (Haury and others (1979). Several papers present analyses and interpretations of the data collected during the MBIWE98. Grosenbaugh and others (2002) report on the results of the horizontal array, Scotti and others (2005) describe a strategy for processing observations made by Acoustic Doppler Current Profilers (ADCPs) in the presence of short-wavelength internal waves, Butman and others (in press) describe the effect of these waves on sediment transport, and Scotti and others (in press) describe the energetics of the internal waves.

  18. Lidar Observations of Wave Shape

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Raubenheimer, B.; Spore, N.; Gorrell, L.; Slocum, R. K.; Elgar, S.

    2016-02-01

    As waves propagate across the inner-surf zone, through a shorebreak, to the swash, their shapes can evolve rapidly, particularly if there are large changes in water depth over a wavelength. As wave shapes evolve, the time history of near-bed wave-orbital velocities also changes. Asymmetrical near-bed velocities result in preferential directions for sediment transport, and spatial variations in asymmetries can lead to morphological evolution. Thus, understanding and predicting wave shapes in the inner-surf and swash zones is important to improving sediment transport predictions. Here, rapid changes in wave shape, quantified by 3rd moments (skewness and asymmetry) of the sea-surface elevation time series, were observed on a sandy Atlantic Ocean beach near Duck, NC using terrestrial lidar scanners that measure the elevation of the water surface along a narrow cross-shore transect with high spatial [O(1 cm)] and temporal [O(0.5 s)] resolution. The terrestrial lidar scanners were mounted on a tower on the beach dune (about 8 m above the water surface) and on an 8-m tall amphibious tripod [the Coastal Research Amphibious Buggy (CRAB)]. Observations with the dune lidar are used to investigate how bulk wave shape parameters such as wave skewness and asymmetry, and the ratio of wave height to water depth (gamma) vary with beach slope, tide level, and offshore wave conditions. Observations with the lidar mounted on the CRAB are used to investigate the evolution of individual waves propagating across the surf zone and shorebreak to the swash. For example, preliminary observations from the CRAB include a wave that appeared to shoal and then "pitch" backwards immediately prior to breaking and running up the beach. Funded by the USACE Coastal Field Data Collection Program, ASD(R&E), and ONR.

  19. Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: Mechanisms and potential implications for cohesive sediment transport

    USGS Publications Warehouse

    Brand, Andreas; Lacy, Jessica R.; Hsu, Kevin; Hoover, Daniel; Gladding, Steve; Stacey, Mark T.

    2010-01-01

    We investigated the driving forces of sediment dynamics at the shoals in South San Francisco Bay. Two stations were deployed along a line perpendicular to a 14 m deep channel, 1000 and 2000 m from the middle of the channel. Station depths were 2.59 and 2.19 m below mean lower low water, respectively. We used acoustic Doppler velocimeters for the simultaneous determination of current velocities, turbulence, sediment concentration and fluxes. Maximum current shear velocities were 0.015 m s−1 at the station further from the channel (closer to the shore) and 0.02 m s−1 at the station closer to the channel. Peak wave-induced shear velocities exceeded 0.015 m s−1 at both stations. Maximum sediment concentrations were around 30 g m−3 during calm periods (root mean square wave height −3 and sediment fluxes were 5 times higher than in calm conditions (0.02 g m−2 s−1 versus >0.10 g m−2 s−1) at the station further from the channel 0.36 m above the bed. Closer to the channel, sediment concentrations and vertical fluxes due to wind wave resuspension were persistently lower (maximum concentrations around 50 g m−3 and maximum fluxes around 0.04 g m−2 s−1). Most resuspension events occurred during flood tides that followed wave events during low water. Although wave motions are able to resuspend sediment into the wave boundary layer at low tide, the observed large increases in sediment fluxes are due to the nonlinear interaction of wind waves and the tidal currents.

  20. Late Quaternary transgressive large dunes on the sediment-starved Adriatic shelf

    USGS Publications Warehouse

    Correggiari, A.; Field, M.E.; Trincardi, F.

    1996-01-01

    The Adriatic epicontinental basin is a low-gradient shelf where the late-Quaternary transgressive systems tract (TST) is composed of thin parasequences of backbarrier, shoreface and offshore deposits. The facies and internal architecture of the late-Quaternary TST in the Adriatic epicontinental basin changed consistently from early transgression to late transgression reflecting: (1) fluctuations in the balance between sediment supply and accommodation increase, and (2) a progressive intensification of the oceanographic regime, driven by the transgressive widening of the basin to as much as seven times its lowstand extent. One of the consequences of this trend is that high-energy marine bedforms such as sand ridges and sand waves characterize only areas that were flooded close to the end of the late-Quaternary sea-level rise, when the wind fetch was maximum and bigger waves and stronger storm currents could form. We studied the morphology, sediment composition and sequence-stratigraphical setting of a field of asymmetric bedforms (typically 3 m high and 600 m in wavelength) in 20-24 m water depth offshore the Venice Lagoon in the sediment-starved North Adriatic shelf. The sand that forms these large dunes derived from a drowned transgressive coastal deposit reworked by marine processes. Early cementation took place over most of the dune crests limiting their activity and preventing their destruction. Both the formation and deactivation of this field of sand dunes occurred over a short time interval close to the turn-around point that separates the late-Quaternary sea-level rise and the following highstand and reflect rapid changes in the oceanographic regime of the basin.

  1. Oscillatory erosion and transport flume with superimposed unidirectional flow

    DOEpatents

    Jepsen, Richard A.; Roberts, Jesse D.

    2004-01-20

    A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.

  2. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  3. Sediment transport on the Palos Verdes shelf over seasonal to decadal time scales

    USGS Publications Warehouse

    Wiberg, P.L.; Drake, D.E.; Harris, C.K.; Noble, M.

    2002-01-01

    We combine direct observations, longer-term wave data, and model calculations to characterize resuspension and transport of fine-grained, effluent-affected sediment on the Palos Verdes shelf. Near-bed waves, currents, and suspended sediment concentrations were monitored during the winter of 1992-93 with a bottom tripod and current-meter mooring at a 63-m-deep site. Wave conditions that winter were moderate (??? 2 year recurrence interval), and mean current was alongshelf to the northwest; currents were not significantly correlated with wave conditions. Seven wave events during the winter (December-March) produced near-bed wave orbital velocities at the study site in excess of 14 cm s-1, the observed threshold for significant resuspension. Three of these events occurred during the bottom tripod deployment and are characterized by the highest persistent suspended sediment concentrations in the tripod record. Suspended sediment flux was alongshelf to the northwest for 5 of the 6 wave events for which current data were available; one event occurred during low southeast currents. Measured suspended sediment concentration and grain size generally agree with values that were calculated using a shelf sediment transport model with no adjustment of parameters from values determined for two muddy sites on the northern California shelf. We extend our seasonal observations to a period of almost 2 decades by applying the observed thresholds for wave-driven resuspension to near-bed wave conditions calculated from NDBC Buoy 46025 surface wave data. An average of 10 resuspension events per year, with an average duration of 1.6 days, were identified at a water depth of 60 m; the number of events dropped to 3 per year at 90 m, beyond the shelf break. For the majority of these events, calculated net suspended sediment flux is toward the northwest (alongshelf) at an average rate of 140 kg m-1 h-1; about a third of the events have net southeastward flux at an average rate of 30 kg m-1 h-1. The calculated thickness of the resuspended surface layer of the bed was less than 1 cm for all events at 60 m. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Effects of nourishment on the form and function of an estuarine beach

    USGS Publications Warehouse

    Jackson, N.L.; Nordstrom, K.F.; Saini, S.; Smith, D.R.

    2010-01-01

    Beach nourishment programs in estuaries can enhance shore protection, but they decrease habitat suitability by creating higher berms and wider backshores than would occur under natural conditions. Use of sediment sources from outside the area can result in sedimentary characteristics that differ from native sediments on the surface and at depth, altering conditions for both aeolian transport to dunes and interstitial fauna. Field data were gathered on an estuarine beach to determine differences in beach profile change, depth of sediment reworking, and potential for aeolian transport due to nourishment. Data were gathered over a 20-month period 6 months prior to nourishment, 3 days after nourishment, 6 months after nourishment, and 14 months after nourishment when the beach was mechanically graded to eliminate a vertical scarp in the foreshore. The nourishment consisted of 87,900m3 of sediment emplaced to create a 1.34-km-long, 30-m-wide berm 2.3m above mean tide level. Seven percent of the fill was removed from the profile within 6 months after nourishment, accompanied by 7m in horizontal retreat of the artificial berm. The fill on the backshore remained above the zone of wave influence over a winter storm season and was separated from the active foreshore by the scarp. Nourished sediments on the intertidal foreshore were significantly different from native sediments to a depth of 0.20m below the surface. A lag surface of coarse sediment formed by deflation on the backshore, resulting in a rate of aeolian transport <2% of the rate on the wave-reworked foreshore.Nourishing a beach to a level higher than would be created by natural processes can create a profile that compartmentalizes and restricts transport of sediment and movement of fauna between the foreshore and backshore. Mechanical grading can eliminate the scarp, allow for faunal interaction, and reestablish wave reworking of the backshore that will facilitate aeolian transport. Using an initial design to nourish the backshore at a lower elevation and allowing a dune to provide protection against flooding during major storms could prevent a scarp from forming and eliminate the need for follow-up grading. ?? 2010 Elsevier B.V.

  5. Wavelike movement of bedload sediment, East Fork River, Wyoming

    USGS Publications Warehouse

    Meade, R.H.

    1985-01-01

    Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500-600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area ?? 1985 Springer-Verlag New York Inc.

  6. Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais-Dover Strait

    NASA Astrophysics Data System (ADS)

    Cherlet, J.; Besio, G.; Blondeaux, P.; van Lancker, V.; Verfaillie, E.; Vittori, G.

    2007-06-01

    The capability of the model of Besio et al. (2006) to predict the main geometrical characteristics (crest orientation, wavelength,…) of tidal sand waves is tested by comparing the theoretical predictions with field data. In particular the field observations carried out by Mouchet (1990) and Van Lancker et al. (2005) along the continental shelf of Belgium are used. Additional comparisons are carried out against the field measurements described by Le Bot (2001) and Le Bot and Trenteseaux (2004) which were carried out in an adjacent region. Attention is focused on the prediction of the wavelength of the bottom forms. Indeed, the capability of a linear stability analysis to predict the occurrence of sand waves has been already tested by Hulscher and van den Brink (2001) and more recently by van der Veen et al. (2006). The obtained results show that the theoretical predictions fairly agree with field observations even though some of the comparisons suggest that the accuracy of the predictions depends on the accurate evaluation of the local current and sediment characteristics.

  7. Coastal Erosion in a Coral Reef Island, Taiping Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Su, S.; Ma, G.; Liang, M.; Chu, J.

    2011-12-01

    Reef flats surrounding islands are known to dissipate much offshore wave energy, and thereby protect beaches from erosion. Taiping Island, the largest coral reef islands of the Spratly Islands in the South China Sea, has been observed the shorelines erosion on the southwest coast over past decades. It is recognized that wave and current processes across coral reefs affect reef-island development and morphology. A number of studies suggest effects of climate changes, sea-level rise and storm-intensity increase, determine the magnitude of wave energy on the reef platform and will likely intensify the erosion. The topographical change in the local region, the southwest reef flat was dredged a channel for navigation, may be a significant factor in influencing current characteristics. Numerical modeling is used to describe both hydrodynamics and sediment dynamics because there are no field measurements available around the reef flat. Field observations off the island conducted in August 2004 and November 2005 provides offshore wave characteristics of the predominant wind seasons. Numerical simulations perform the spatial and temporal variation of waves and current patterns and coastal erosion potential on the reef platform.

  8. Quantification of Beach Profile Change

    DTIC Science & Technology

    1988-01-01

    complex fluid motion over an irregular bottom, and absence of rigorous descriptions of broken waves and sediment-sediment interaction, also make the...monochromatic and irregular waves for a dune-like foreshore with and without a significant surf zone. For one case starting from a beach without...34foreshore", mono- chromatic waves produced a bar, whereas irregular waves of significant height and peak spectral period of the monochromatic waves did

  9. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site

    NASA Astrophysics Data System (ADS)

    Harris, Courtney K.; Wiberg, Patricia L.

    1997-09-01

    Modeling shelf sediment transport rates and bed reworking depths is problematic when the wave and current forcing conditions are not precisely known, as is usually the case when long-term sedimentation patterns are of interest. Two approaches to modeling sediment transport under such circumstances are considered. The first relies on measured or simulated time series of flow conditions to drive model calculations. The second approach uses as model input probability distribution functions of bottom boundary layer flow conditions developed from wave and current measurements. Sediment transport rates, frequency of bed resuspension by waves and currents, and bed reworking calculated using the two methods are compared at the mid-shelf STRESS (Sediment TRansport on Shelves and Slopes) site on the northern California continental shelf. Current, wave and resuspension measurements at the site are used to generate model inputs and test model results. An 11-year record of bottom wave orbital velocity, calculated from surface wave spectra measured by the National Data Buoy Center (NDBC) Buoy 46013 and verified against bottom tripod measurements, is used to characterize the frequency and duration of wave-driven transport events and to estimate the joint probability distribution of wave orbital velocity and period. A 109-day record of hourly current measurements 10 m above bottom is used to estimate the probability distribution of bottom boundary layer current velocity at this site and to develop an auto-regressive model to simulate current velocities for times when direct measurements of currents are not available. Frequency of transport, the maximum volume of suspended sediment, and average flux calculated using measured wave and simulated current time series agree well with values calculated using measured time series. A probabilistic approach is more amenable to calculations over time scales longer than existing wave records, but it tends to underestimate net transport because it does not capture the episodic nature of transport events. Both methods enable estimates to be made of the uncertainty in transport quantities that arise from an incomplete knowledge of the specific timing of wave and current conditions. 1997 Elsevier Science Ltd

  10. Summertime conditions of a muddy estuarine environment: the EsCoSed project contribution.

    PubMed

    Brocchini, Maurizio; Calantoni, Joseph; Reed, Allen H; Postacchini, Matteo; Lorenzoni, Carlo; Russo, Aniello; Mancinelli, Alessandro; Corvaro, Sara; Moriconi, Giacomo; Soldini, Luciano

    2015-01-01

    As part of the Estuarine Cohesive Sediments (EsCoSed) project, a field experiment was performed in a highly engineered environment, acting as a natural laboratory, to study the physico-chemical properties of estuarine sediments and the associated hydro-morphodynamics during different seasons. The present contribution focuses on the results obtained from the summertime monitoring of the most downstream part of the Misa River (Senigallia, Italy). The measured hydrodynamics suggested a strong interaction between river current, wave forcing and tidal motion; flow velocities, affected by wind waves traveling upstream, changed significantly along the water column in both direction and magnitude. Surficial salinities in the estuary were low in the upper reaches of the estuary and exceeded 10 psu before the river mouth. Montmorillonite dominated the clay mineral assemblage, suggesting that large, low density flocs with high settling velocities (>1 mm s(-1)) may dominate the suspended aggregate materials.

  11. Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.

    2018-01-01

    Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.

  12. Measurements of near-bed intra-wave sediment entrainment above vortex ripples

    NASA Astrophysics Data System (ADS)

    Thorne, Peter D.; Davies, Alan G.; Williams, Jon J.

    2003-10-01

    In general, descriptions of suspended sediment transport beneath surface waves are based on the turbulent diffusion concept. However, it is recognised that this approach is questionable for the suspension of sediment when the seabed is rippled. In this case, at least if the ripples are sufficiently steep, the entrainment process is likely to be well organised, and associated with vortex formation and shedding from the ripples. To investigate the entrainment process above ripples, a study was carried out in a large-scale wave flume facility. Utilising acoustic techniques, visualisations of the intra-wave sediment entrainment above vortex ripples have been generated. The observations provide a detailed description of entrainment, which is interpreted here in relation to the process of vortex formation and shedding. It is anticipated that such measurements will contribute to the development of improved physical process models of sediment transport in the rippled bed regime.

  13. Transient controls on estuarine SPM fluxes: case study in the Dee Estuary, UK.

    NASA Astrophysics Data System (ADS)

    Amoudry, Laurent; Williams, Megan; Todd, David

    2017-04-01

    Estuaries are a critical interface between land and coastal ocean across which freshwater, suspended particulate matter (SPM), and consequently terrestrial carbon, nutrients and anthropogenic contaminants are exchanged. Suspended particulate matter is closely linked to estuarine turbidity; it affects water quality and estuarine ecology; and it contributes to overall estuarine sediment budgets. However, predicting the response of estuarine ecosystems to climate change and human interventions remains difficult partly due to a lack of comprehensive understanding of SPM concentrations and fluxes across time scales from intratidal to seasonal and interannual variability. We investigate the dynamics of suspended sediment and suspended particulate matter in a hypertidal estuary with a maximum tidal range in excess of 10 m and tidal currents reaching over 1 m/s: the Dee Estuary. This estuary is located in northwest England and outflows in Liverpool Bay, itself in the eastern Irish Sea. The Dee Estuary is a funnel-shaped, coastal plain estuary, which is about 30 km long with a maximum width of 8.5 km at the mouth, and consists of mixed sediments. We focus on field observations, collected during several campaigns in the channels of the Dee Estuary from 2004 to 2009 using acoustic and optical instrumentation, which provide intratidal measurements of flow velocity and suspended sediment, and thus sediment fluxes, over approximately a month. Measurements in February-March 2008 highlight three distinct hydrodynamic regimes: a current dominant regime at neap tides (14-21 February); a combined wave-current regime at spring tides (21-29 February); and a wave dominant regime at neap tide (1-4 March). While analysis of tidal distortion and dominance predicts weak ebb dominant channels, the observations yield flood dominant sediment transport. The net sediment flux exhibits a two-layer structure - import near the bed, export near the surface - that is consistent with the residual circulations in the estuary. Wavelet analysis provides clear evidence that such influx of sediment in the estuary is alternatively the result of periodic stratification at neap tides and of tidal asymmetry in suspended sediment concentration at spring tides. Such transient processes will be important to determine and predict estuarine responses to short-lived perturbations. Further analysis of other field campaigns will enable to determine the persistence of these processes over seasonal and annual timescales.

  14. Numerical modeling of hydrodynamics and sediment transport—an integrated approach

    NASA Astrophysics Data System (ADS)

    Gic-Grusza, Gabriela; Dudkowska, Aleksandra

    2017-10-01

    Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind-wave fields, whereas wave-induced currents were calculated using the Kołodko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.

  15. Shoreline changes at the mouths of the Mekong River delta over the last 50 years: fluctuating sediment supply and shoreline cells

    NASA Astrophysics Data System (ADS)

    Anthony, E.; Besset, M.; Brunier, G.; Dussouillez, P.; Dolique, F.; Nguyen, V. L.; Goichot, M.

    2014-12-01

    River delta shorelines may be characterized by complex patterns of sediment transport and sequestering at various timescales in response to changes in sediment supply, hydrodynamic conditions, and deltaic self-organization. While being good indicators of delta stability, these changes also have important coastal management and defence implications. These aspects are examined with reference to the mouths of the Mekong River delta, the world's third largest delta, backbone of the Vietnamese economy and home to nearly 20 million people. We conducted an analysis of shoreline fluctuations over the last five decades using low-resolution Landsat (1973-2014), very high-resolution SPOT 5 (2003-2011) satellite imagery, topographic maps (1950, 1965), and field hydrodynamic and shoreline topographic measurements. The results show that the 250 km-long river-mouth sector of the delta shoreline has been characterized by overall accretion but with marked temporal and spatial variations. The temporal pattern is attributed to fluctuations in sediment supply due to both human activities and natural variations in catchment sediment loads (e.g., 2000-2003), and natural adjustments in delta-plain sediment storage and delivery to the coast. The spatial pattern is indicative of discrete sediment cells that may be a response to an overall decreasing sand supply, especially since 2003, following increasingly massive riverbed mining with concomitant losses in channel-bed sand. Field measurements show the prevalence of mesotidal bar-trough beaches characterized by sand migration to the southwest in response to energetic dry-season monsoon waves. Beaches underfed as a result of both wave-energy gradients and possible diminishing sand supply from the adjacent river mouths are eroded to feed accreting beaches. Understanding this cell pattern has important implications in terms of: (1) interpreting past patterns of shoreline translation involved in the construction of successive beach ridges that characterise the prograding mouths sector of the Mekong; (2) linking shoreline stability/instability with coastal sand supply by the Mekong River and the impacts of human activities on this supply; (3) shoreline management and defence planning in the critical sandy river-mouth sector of this densely populated delta.

  16. Electrokinetic Transduction of Acoustic Waves In Ocean Sediments

    DTIC Science & Technology

    2002-09-30

    acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029

  17. Slide-induced waves, seiching and ground fracturing caused by the earthquake of March 27, 1964 at Kenai Lake, Alaska: Chapter A in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    McCulloch, David S.

    1966-01-01

    The March 27, 1964, earthquake dislodged slides from nine deltas in Kenai Lake, south-central Alaska. Sliding removed protruding parts of deltas-often the youngest parts-and steepened delta fronts, increasing the chances of further sliding. Fathograms show that debris from large slides spread widely over the lake floor, some reaching the toe of the opposite shore; at one place debris traveled 5,000 feet over the horizontal lake floor. Slides generated two kinds of local waves: a backfill and far-shore wave. Backfill waves were formed by water that rushed toward the delta to fill the void left by the sinking slide mass, overtopped the slide scrap, and came ashore over the delta. Some backfill waves had runup heights of 30 feet and ran inland more than 300 feet, uprooting and breaking off large trees. Far-shore waves hit the shore opposite the slides. They were formed by slide debris that crossed the lake floor and forced water ahead of it, which then ran up the opposite slope, burst above the lake surface, and struck the shore. One far-shore wave had a runup height of 72 feet. Kenai Lake was tilted and seiched; a power spectrum analysis of a limnogram shows a wave having the period of the calculated uninodal seiche (36 minutes) and several shorter period waves. In constricted and shallow reaches, waves caused by seiching had 20- and 30-foot runup heights. Deep lateral spreading of sediments toward delta margins displaced deeply driven railroad-bridge piles, and set up stress fields in the surface sediments which resulted in the formation of many shear and some tension fractures on the surface of two deltas.

  18. Nearshore hydrodynamics at pocket beaches with contrasting wave exposure in southern Portugal

    NASA Astrophysics Data System (ADS)

    Horta, João; Oliveira, Sónia; Moura, Delminda; Ferreira, Óscar

    2018-05-01

    Pocket beaches on rocky coasts with headlands that control hydro-sedimentary processes are considered to be constrained sedimentary systems, generally with limited sediment inputs. Pocket beaches face severe changes over time. Under worst-case scenarios, these changes can result in the loss of the beach, causing waves to directly attack adjacent cliffs. Studies of nearshore hydrodynamics can help to understand such changes and optimise sediment nourishment procedures. The present work contributes to the knowledge of hydrodynamic forcing mechanisms at pocket beaches by providing a comprehensive description of the nearshore circulation at two beaches with contrasting wave exposures. Two pocket beaches in southern Portugal were studied by combining field measurements of waves and currents with numerical models (STWAVE and BOUSS-2D). The aim of this analysis was to evaluate nearshore hydrodynamics under different wave exposure forcing conditions (e.g. variable wave heights/directions and different tidal levels). The results show that the beach circulation can rapidly shift from longshore-to rip-dominated depending on changes in both the offshore wave direction and tidal levels. Waves with higher obliquity (for both low and moderate wave energy conditions) tend to generate longshore circulation in all considered tidal stages, while waves with lower obliquity tend to produce rip flow with higher-velocity rip currents during low to intermediate tidal stages. The results indicate that the location and intensity of rip currents strongly depend on geomorphological constraints, that is, the control exerted by shore platforms. A larger morphological control is observed at mean sea level because most platforms are submerged/exposed during high/low tide and therefore exert less control on nearshore circulation.

  19. Impact of boat generated waves over an estuarine intertidal zone of the Seine estuary (France)

    NASA Astrophysics Data System (ADS)

    Deloffre, Julien; Lafite, Robert

    2015-04-01

    Water movements in macrotidal estuaries are controlled by the tidal regime modulated seasonally by the fluvial discharge. Wind effect on hydrodynamics and sediment transport is also reported at the mouth. Besides estuaries are frequently man altered our knowledge on the human impact on hydrodynamics and sediment transport is less extended. As an example on the Seine estuary (France) port authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity over the last century. These developments led to secure sea vessel traffic in the Seine estuary but they also resulted in a change of estuarine hydrodynamics and sediment transport features. Consequences of boat generated waves are varied: increased water turbidity and sediment transfer, release of nutrient and contaminants in the water column, harmful to users, ecosystems and infrastructures generating important maintenance spending. The aim of this study is to analyse the impact of boat generated waves on sediment transport over an intertidal area. The studied site is located on the left bank in the fluvial part of the Seine estuary. On this site the maximum tidal range ranges between 1.25 and 3.5m respectively during neap and spring tide. The sampling strategy is based on continuous ADV acquisition at 4Hz coupled with turbidimeter and altimeter measurements (1 measurement every minute) in order to decipher sediment dynamics during one year. Our results indicate that sediment dynamics are controlled by river flow while medium term scale evolution is dependent on tidal range and short term dynamics on sea-vessels waves. 64% of boat passages generated significant sediment reworking (from few mm.min-1 to 3cm.min-1). This reworking rate is mainly controlled by two parameters: (i) water height on the site and (ii) vessels characteristics; in particular the distance between seabed and keel that generate a Bernoulli wave (with maximum amplitude of 0.6m). Simultaneous hydrodynamics and bed elevation measurements permit to quantify the impact of the boat generated wave. Measurements demonstrate that the sediment transport occurs during the Bernoulli wave (few mm up to 8cm). This mechanism induces mainly a long-shore transfer of particles over the interdal area. This study proves that the sediment transport generated by boat waves cannot be neglected in the Seine estuary case.

  20. Multimode seismoelectric phenomena generated using explosive and vibroseis sources

    NASA Astrophysics Data System (ADS)

    Butler, Karl E.; Kulessa, Bernd; Pugin, André J.-M.

    2018-05-01

    A field trial of seismoelectric surveying was carried out at a site underlain by 20 m of water-saturated clayey Champlain Sea sediments, renowned for their amenability to high resolution imaging by seismic reflection surveys. Seismically induced electrokinetic effects were recorded using an array of 26 grounded dipole electric field antennas, and two different seismic sources including an eight-gauge shotgun, and a moderate power (10 000 lb Minivib) vibrator. Despite the high electrical conductivity of the sediments, shot records show evidence of possible interfacial seismoelectric conversions caused by the arrival of P-waves at the base of the clay/top of bedrock and at the top of a layer of elevated porosity and conductivity within the clay at 7 m depth. However, the data are more remarkable for the fact that P-wave, S-wave, and PS/SP converted wave reflections evident in the seismic records all give rise to electrical arrivals exhibiting very similar moveout patterns in the seismoelectric records. Superficially, these electrical responses could be misinterpreted as simple coseismic seismoelectric effects associated with the arrival of reflected seismic waves at each dipole antenna on surface. However, their broader bandwidth, superior coherency and earlier arrival times compared to their corresponding seismic arrivals indicate that the electrical effects are generated by the arrival of seismic reflections below each dipole at the shallow intraclay interface 7 m below surface. Such quasi-coseismic arrivals have recently been predicted by full-waveform seismoelectric modelling and characterized as evanescent electromagnetic (EM) waves. In retrospect, they were also observed in earlier seismoelectric field trials, but not measured as clearly nor recognized as a distinct seismoelectric mode intermediate between interfacial and coseismic effects. We propose that the observed quasi-coseismic effect can be understood physically as a fringing field emanating from the travelling charge separation associated with a P-wave (direct or mode-converted) crossing a subsurface interface at an oblique angle. Such effects may be nearly indistinguishable from coseismic effects if the interface depth is small compared to the seismic wavelength, but recognition of the phenomenon contributes to an improved understanding of the seismoelectric wavefield, and will lead to improved interpretations. From a practical standpoint, the results of this field trial suggest that using electric field receivers to supplement geophones on surface could yield significantly higher resolution seismic reflection images in those areas where suitable near-surface layers exist for the generation of quasi-coseismic effects. The results also reinforce the importance of using multichannel recording to allow interfacial seismoelectric conversions originating at depth to be distinguished from stronger coseismic and quasi-coseismic arrivals originating in the near-surface by measurement of their arrival time versus offset (moveout) and amplitude versus offset behaviours.

  1. Seismic wave velocity of hydrate-bearing fine-grained sediments sampled from the Ulleung basin in East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kwon, T.; Cho, G.

    2012-12-01

    Synthesizing gas hydrate in a fine-grained natural seabed sediment sample, mainly composed of silty-to-clayey soils, has been hardly attempted due to the low permeability. It has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in core-scale play a critical role in determining physical properties of hydrate-bearing sediments. In the presented study, we attempted to identify the effect of hydrate growth morphology on seismic velocities in natural fine-grained sediments sampled from the Ulleung Basin in East Sea. We synthesized CO2 hydrate in clayey silt sediments in an instrumented oedometric cell and measured seismic velocities during hydrate formation and loading processes. Herein, we present the experiment results on P-wave and S-wave velocities of gas hydrate-bearing fine-grained sediments. It is found that the geophysical properties of gas hydrate-bearing sediments are governed by hydrate saturation and effective stress as well as morphological feature of hydrate formation in sediments.

  2. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  3. Vortex-induced suspension of sediment in the surf zone

    NASA Astrophysics Data System (ADS)

    Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori

    2017-12-01

    A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.

  4. [Effects of sediment on the early settlement stage of Sargassum horneri on rocky subtidal reefs].

    PubMed

    Bi, Yuan-Xin; Zhang, Shou-Yu; Wu, Zu-Li

    2013-05-01

    By using sediment trap and suction pump to measure the relative sediment levels across different sites and water depths, and through the in situ measurements of Sargassum horneri density, this paper assessed the relationships between the distribution of S. horneri and the sediment levels and wave exposure on the rocky subtidal platforms around Gouqi Island, China. The laboratory-based experiments were also conducted to test the effects of different sediment levels on the attachment of S. horneri zygote and the survival rate of S. horneri germling after the attachment. S. horneri predominated at the sites with lesser sediment and wave exposure, but less distributed in the sites with high level sediment and wave-exposure. At different water depths, the distribution of S. horneri was negatively correlated with the amount of sediment. A medium dusting (dry mass 10.47 mg x cm(-2), approximate 0.543 mm deep) of sediment on the plate reduced the percentage of S. horneri zygotes attached to the substratum by 4.4%, and a heavy dusting (dry mass 13.96 mg x cm(-2), approximate 0.724 mm deep) of sediment on the plate completely prevented the attachment. One week after the settlement of the zygotes, there were 24% of the germlings still survived when the dry mass sediment coverage was 13.96 mg x cm(-2). However, when the dry mass sediment coverage was up to 34.9 mg x cm(-2) (approximate 1.81 mm deep), 100% of the germlings died. Overall, the distribution of S. horneri was not only related to sediment level, but also restricted by wave exposure to some extent. Sediment level was a critical factor affecting the distribution of S. horneri, particularly at its zygote attachment stage.

  5. Patterns of sediment dispersion coastwise the State of Bahia - Brazil.

    PubMed

    Bittencourt; Dominguez; Martin; Silva

    2000-06-01

    Using the average directions of the main wave-fronts which approach the coast of Bahia State - coinciding with that of the main wind occurring in the area - and of their periods, we define a wave climate model based on the construction of refraction diagrams. The resulting model of sediment transport was able to reproduce, in a general way, the sediment dispersion patterns furnished by geomorphic indicators of the littoral drift. These dispersion patterns control the generation of different types of sediment accumulations and of coastal stretches under erosion. We demonstrate that the presence of the Abrolhos and Corumbaú Point coral reefs is an important factor controlling the sediment dispersion patterns, since them act as a large protection against the waves action.

  6. Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

    USGS Publications Warehouse

    Jaffe, B.E.; Rubin, D.M.

    1996-01-01

    The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

  7. Cross-shore transport of nearshore sediment by river plume frontal pumping

    NASA Astrophysics Data System (ADS)

    Horner-Devine, Alexander R.; Pietrzak, Julie D.; Souza, Alejandro J.; McKeon, Margaret A.; Meirelles, Saulo; Henriquez, Martijn; Flores, Raúl P.; Rijnsburger, Sabine

    2017-06-01

    We present a new mechanism for cross-shore transport of fine sediment from the nearshore to the inner shelf resulting from the onshore propagation of river plume fronts. Onshore frontal propagation is observed in moorings and radar images, which show that fronts penetrate onshore through the nearshore and surf zone, almost to the waterline. During frontal passage a two-layer counterrotating velocity field characteristic of tidal straining is immediately set up, generating a net offshore flow beneath the plume. The seaward flow at depth carries with it high suspended sediment concentrations, which appear to have been generated by wave resuspension in the nearshore region. These observations describe a mechanism by which vertical density stratification can drive exchange of material between the nearshore region and the inner shelf. To our knowledge these are the first observations of this frontal pumping mechanism, which is expected to play an important role in sediment transport near river mouths.

  8. Effects of wind-wave disturbances on adsorption and desorption of tetracycline and sulfadimidine in water-sediment systems.

    PubMed

    Liao, Qianjiahua; Huang, Zheng; Li, Shu; Wang, Yi; Liu, Yuqing; Luo, Ran; Shang, Jingge

    2018-05-28

    Wind-wave disturbances frequently disperse sediment particles into overlying water, which facilitates the adsorption and desorption of contaminants in aquatic ecosystems. Tetracycline (TC) and sulfadimidine (SM2) are common antibiotics that are frequently found in aquatic environments. This study utilized microcosms, comprising sediment and water from Lake Taihu, China, to examine the adsorption and desorption of TC and SM2 under different wind-wave disturbances in a shallow lake environment. The adsorption experiments were conducted with three different concentrations (1, 5, 10 mg/L) of TC and SM2 in the overlying water, and two different (background and strong) wind-wave conditions for 72 h. Subsequently, four microcosms were employed in a 12-h desorption study. Analysis of adsorption progress showed that TC concentration in the overlying water decreased quickly, while SM2 remained almost constant. In the desorption experiments, SM2 released to the overlying water was an order of magnitude greater than TC. These results indicate that sediment particles strongly adsorb TC but weakly adsorb SM2. Compared to background conditions, the strong wind-wave conditions resulted in higher concentrations of TC and SM2 in sediment and facilitated their migration to deeper sediment during adsorption, correspondingly promoting greater release of TC and SM2 from sediment particles into the overlying water during desorption.

  9. Supply and dispersal of flood sediment from a steep, tropical watershed: Hanalei Bay, Kaua'i, Hawai'i, USA

    USGS Publications Warehouse

    Draut, A.E.; Bothner, Michael H.; Field, M.E.; Reynolds, R.L.; Cochran, S.A.; Logan, J.B.; Storlazzi, C.D.; Berg, C.J.

    2009-01-01

    In contrast to many small, mountainous watersheds in temperate coastal regions, where fluvial discharge and wave energy commonly coincide, deposition and reworking of tropical flood sediment can be seasonally decoupled, and this has important implications for coral-reef ecosystems. An understanding of the interaction between tropical flood sedimentation and wave climate is essential to identifying and mitigating effects of watershed changes on coral reefs as urbanization and climate change proceed. Sedimentary facies and isotopic properties of sediment in Hanalei Bay, on the island of Kaua'i, Hawai'i, USA, were used to assess deposition and reworking of flood deposits from the Hanalei River in a case study demonstrating the potential ecosystem effects of runoff from a steep, tropical watershed. In Hanalei Bay, the youngest and thickest terrigenous sediment was consistently present near the river mouth and in a bathymetric depression that acted as at least a temporary sediment sink. During this 2 yr study, the largest flood events occurred in late winter and spring 2006; substantial terrestrial sediment delivered by those floods still remained in the bay as of June 2006 because oceanic conditions were not sufficiently energetic to transport all of the sediment offshore. Additional sediment was deposited in the bay by a summer 2006 flood that coincided with seasonal low wave energy. In most years, flood sediment accumulating in the bay and on its fringing reefs would be remobilized and advected out of the bay during winter, when the wave climate is energetic. Turbidity and sedimentation on corals resulting from late spring and summer floods during low wave energy could have a greater impact on coral-reef ecosystems than floods in other seasons, an effect that could be exacerbated if the incidence and sediment load of tropical summer floods increase due to urbanization and climate change. ?? 2008 Geological Society of America.

  10. Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach

    NASA Astrophysics Data System (ADS)

    Bakhtyar, R.; Barry, D. A.; Kees, C. E.

    2012-11-01

    A mechanistic understanding of beach environments needs to account for interactions of oceanic forcing and beach materials, in particular the role of waves on the evolution of the beach profile. A fully coupled two-phase flow model was used to simulate nearshore fluid-sediment turbulent flow in the cross-shore direction. It includes the Reynolds-Averaged Navier-Stokes equations and turbulent stress closures for each phase, and accounts for inter-granular stresses. The model has previously been validated using laboratory-scale data, so the results are likely more reliable for that scale. It was used to simulate wave breaking and the ensuing hydrodynamics and sediment transport processes in the surf/swash zones. Numerical experiments were conducted to investigate the effects of varying beach and wave characteristics (e.g., beach slope, sediment grain size, wave periods and heights) on the foreshore profile changes. Spilling and plunging breakers occur on dissipative and intermediate beaches, respectively. The impact of these wave/beach types on nearshore zone hydrodynamics and beach morphology was determined. The numerical results showed that turbulent kinetic energy, sediment concentrations and transport rate are greater on intermediate than on dissipative beaches. The results confirmed that wave energy, beach grain size and bed slope are main factors for sediment transport and beach morphodynamics. The location of the maximum sediment transport is near the breaking point for both beach types. Coarse- and fine-sand beaches differ significantly in their erosive characteristics (e.g., foreshore profile evolutions are erosive and accretionary on the fine and coarse sand beaches, respectively). In addition, a new parameter (based on main driving factors) is proposed that can characterize the sediment transport in the surf and swash zones. The results are consistent with existing physical observations, suggesting that the two-phase flow model is suitable for the simulation of hyper-concentrated mixed water-sediment flows in the nearshore. The model thus has potential as a useful tool for investigating interactions between nearshore hydrodynamics and beach morphology.

  11. Longshore Sediment Transport Rate Calculated Incorporating Wave Orbital Velocity Fluctuations

    DTIC Science & Technology

    2006-09-01

    distribution of longshore sediment transport in the surf zone is necessary in the design and planning of groins, jetties, weirs and pipeline landfalls...transported by any current. Breaker height is defined as the vertical distance between the wave crest and the preceding wave trough at incipient...terminology; spilling breakers occur if the wave crest becomes unstable and flows down the front face of the wave producing a foamy water surface; plunging

  12. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    NASA Astrophysics Data System (ADS)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  13. Instrument Correction and Dynamic Site Profile Validation at the Central United States Seismic Observatory, New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Brengman, C.; Woolery, E. W.; Wang, Z.; Carpenter, S.

    2016-12-01

    The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located in southwestern Kentucky within the New Madrid seismic zone. It is intended to describe the effects of local geology, including thick sediment overburden, on seismic-wave propagation, particularly strong-motion. The three-borehole array at CUSSO is composed of seismic sensors placed on the surface, and in the bedrock at various depths within the 585 m thick sediment overburden. The array's deep borehole provided a unique opportunity in the northern Mississippi embayment for the direct geological description and geophysical measurement of the complete late Cretaceous-Quaternary sediment column. A seven layer, intra-sediment velocity model is interpreted from the complex, inhomogeneous stratigraphy. The S- and P-wave sediment velocities range between 160 and 875 m/s and between 1000 and 2300 m/s, respectively, with bedrock velocities of 1452 and 3775 m/s, respectively. Cross-correlation and direct comparisons were used to filter out the instrument response and determine the instrument orientation, making CUSSO data ready for analysis, and making CUSSO a viable calibration site for other free-field sensors in the area. The corrected bedrock motions were numerically propagated through the CUSSO soil profile (transfer function) and compared, in terms of both peak acceleration and amplitude spectra, to the recorded surface observations. Initial observations reveal a complex spectral mix of amplification and de-amplification across the array, indicating the site effect in this deep sediment setting is not simply generated by the shallowest layers.

  14. Summary of oceanographic and water-quality measurements in Rachel Carson National Wildlife Refuge, Wells, Maine, in 2013

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Ganju, Neil K.; Dickhudt, Patrick J.; Borden, Jonathan; Martini, Marinna A.; Brosnahan, Sandra M.

    2015-01-01

    Suspended-sediment transport is a critical element controlling the geomorphology of tidal wetland complexes. Wetlands rely on organic material and inorganic sediment deposition to maintain their elevation relative to sea level. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration and water flow rates in the tidal channels of the wetlands in the Rachel Carson National Wildlife Refuge in Wells, Maine. The objective was to characterize the sediment-transport mechanisms that contribute to the net sediment budget of the wetland complex. We deployed a meteorological tower, optical turbidity sensors, and acoustic velocity meters at sites on Stephens Brook and the Ogunquit River between March 27 and December 9, 2013. This report presents the time-series oceanographic and atmospheric data collected during those field studies. The oceanographic parameters include water velocity, depth, turbidity, salinity, temperature, and pH. The atmospheric parameters include wind direction, speed, and gust; air temperature; air pressure; relative humidity; short wave radiation; and photosynthetically active radiation.

  15. Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor

    NASA Astrophysics Data System (ADS)

    Ridd, P.; Day, G.; Thomas, S.; Harradence, J.; Fox, D.; Bunt, J.; Renagi, O.; Jago, C.

    2001-02-01

    An optical method for measuring siltation of sediment has been developed using an optical fibre backscatter (OBS) nephelometer. Sediment settling upon the optical fibre sensor causes an increase in the backscatter reading which can be related to the settled sediment surface density (SSSD) as measured in units of mg cm -2. Calibration and laboratory tests indicate that the resolution of measurements of SSSD is 0·01 mg cm -2and an accuracy of 5% in still water. In moving water it is more difficult to determine the accuracy of the method because other methods with suitable resolution are unavailable. However, indirect methods using measurements of changing suspended sediment concentration in a ring flume, indicate that the OBS method under-predicts deposition. The series of siltation from three field sites are presented. This sensor offers considerable advances over other methods of measuring settling because time series of settling may be taken and thus settling events may be related to other hydrodynamic parameters such as wave climate and currents.

  16. Sediment dispersal in modern and mid-Holocene basins: implications for shoreline progradation and sediment bypassing, Poverty Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; Harris, C. K.; McNinch, J.

    2006-12-01

    Poverty Bay is a small embayment located on the eastern shore of New Zealand's North Island. The modern Waipaoa River, a small mountainous river that drains highly erodible mudstone and siltstone, discharges ~15 million tons of sediment per year to Poverty Bay. Rates of bay infilling from fluvial sediment have varied since the maximum shoreline transgression, ~7000 kya. The evolving geometry of Poverty Bay has likely impacted sediment dispersal over these timescales, and thereby influenced the stratigraphic architecture, rates of shoreline progradation, and sediment supply to the continental shelf. This modeling study investigates sediment transport within both modern and paleo, ~7000 kya, Poverty Bays. The Regional Ocean Modeling System was used to examine sediment transport within modern and ~7000 kya Poverty Bay basin geometries. The numerical model includes hydrodynamics driven by winds and buoyancy, and sediment resuspension from energetic waves and currents. Strong winds and waves from the southeast were used, along with high Waipaoa freshwater and sediment discharge, consistent with storm conditions. Besides shedding light on short term transport mechanisms, these results are being incorporated into a stratigraphic model by Wolinsky and Swenson. The paleo basin geometry narrowed at the head of the bay, causing currents to converge and promoting near- field sediment deposition. Buoyancy and wind driven across-shelf currents in the modern bay transport sediment away from the river mouth. Sediment was deposited closer to the river mouth in the paleo than the modern bay, and the modern bay exported much more sediment to the continental shelf than predicted for the middle Holocene bay. Net across-shelf fluxes decreased from a maximum at the head of the bay to nearly zero at the mouth during the paleo run. The modern run, however, had net across-shelf fluxes still half the maximum at the bay mouth. Results from short term model runs indicated that, with similar river discharges, the 7000 kya Poverty Bay shoreline should have prograded rapidly as sediment was deposited near the river mouth at the head of the bay, an area of little accommodation space. The trapping of sediment within the bay would have lead to a relatively sediment starved continental shelf. As the river mouth progressed towards the wider section of the bay, progradation should have been reduced as both proximal accommodation space and sediment export to the continental shelf increased.

  17. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.

    PubMed

    Roberts, David A

    2012-04-01

    Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally variable exposures to RCS is required, as well as research into the relative importance of various disturbances under field conditions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Southwest Washington littoral drift restoration—Beach and nearshore morphological monitoring

    USGS Publications Warehouse

    Stevens, Andrew W.; Gelfenbaum, Guy; Ruggiero, Peter; Kaminsky, George M.

    2012-01-01

    A morphological monitoring program has documented the placement and initial dispersal of beach nourishment material (280,000 m3) placed between the Mouth of the Columbia River (MCR) North Jetty and North Head, at the southern end of the Long Beach Peninsula in southwestern Washington State. A total of 21 topographic surveys and 8 nearshore bathymetric surveys were performed between July 11, 2010, and November 4, 2011. During placement, southerly alongshore transport resulted in movement of nourishment material to the south towards the MCR North Jetty. Moderate wave conditions (significant wave height around 4 m) following the completion of the nourishment resulted in cross-shore sediment transport, with most of the nourishment material transported into the nearshore bars. The nourishment acted as a buffer to the more severe erosion, including dune overtopping and retreat, that was observed at the northern end of the study area throughout the winter. One year after placement of the nourishment, onshore transport and beach recovery were most pronounced within the permit area and to the south toward the MCR North Jetty. This suggests that there is some long-term benefit of the nourishment for reducing erosion rates locally, although the enhanced recovery also could be due to natural gradients in alongshore transport causing net movement of the sediment from north to south. Measurements made during the morphological monitoring program documented the seasonal movement and decay of nearshore sand bars. Low-energy conditions in late summer resulted in onshore bar migration early in the monitoring program. Moderate wave conditions in the autumn resulted in offshore movement of the middle bar and continued onshore migration of the outer bar. High-energy wave conditions early in the winter resulted in strong cross-shore transport and creation of a 3-bar system along portions of the coast. More southerly wave events occurred later in the winter and early spring and coincided with the complete loss of the outer bar and net loss of sediment from the study area. These data suggest that bar decay may be an important mechanism for exporting sediment from Benson Beach north to the Long Beach Peninsula. The measurements presented in this report represent one component of a broader monitoring program designed to track the movement of nourishment material on the beach and shoreface at this location, including continuous video monitoring (Argus), in situu measurements of hydrodynamics, and a physical tracer experiment. Field data from the monitoring program will be used to test numerical models of hydrodynamics and sediment transport and to improve the capability of numerical models to support regional sediment management.

  19. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    DTIC Science & Technology

    2014-09-30

    marine sediments. New focus is on very fine- grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient...density, grain size and overburden pressure. A new focus is on the inter-particle cohesive forces in silts and clays and their role in controlling wave...algebraic expressions. The GS theory is the basis for new research on very fine-grained sediments (silts and clays ), in which inter-granular cohesion is

  20. Understanding Nearshore Processes Of a Large Arctic Delta Using Combined Seabed Mapping, In Situ Observations, Remote Sensing and Modeling

    NASA Astrophysics Data System (ADS)

    Solomon, S. M.; Couture, N. J.; Forbes, D. L.; Hoque, A.; Jenner, K. A.; Lintern, G.; Mulligan, R. P.; Perrie, W. A.; Stevens, C. W.; Toulany, B.; Whalen, D.

    2009-12-01

    The Mackenzie River Delta and the adjacent continental shelf in the southeastern Beaufort Sea are known to host significant quantities of hydrocarbons. Recent environmental reviews of proposed hydrocarbon development have highlighted the need for a better understanding of the processes that control sediment transport and coastal stability. Over the past several years field surveys have been undertaken in winter, spring and summer to acquire data on seabed morphology, sediment properties, sea ice, river-ocean interaction and nearshore oceanography. These data are being used to improve conceptual models of nearshore processes and to develop and validate numerical models of waves, circulation and sediment transport. The timing and location of sediment erosion, transport and deposition is complex, driven by a combination of open water season storms and spring floods. Unlike temperate counterparts, the interaction between the Mackenzie River and the Beaufort Sea during spring freshet is mediated by the presence of ice cover. Increasing discharge exceeds the under-ice flow capacity leading to flooding of the ice surface, followed by vortex drainage through the ice and scour of the seabed below (“strudel” drainage and scour). During winter months, nearshore circulation slows beneath a thickening ice canopy. Recent surveys have shown that the low gradient inner shelf is composed of extensive shoals where ice freezes to the seabed and intervening zones which are slightly deeper than the ice is thick. The duration of ice contact with the bed determines the thermal characteristics of the seabed. Analysis of cores shows that the silts comprising the shoals are up to 6 m thick. The predominantly well sorted and cross-laminated nature of the silts at the top of the cores suggests an active delta front environment. Measurements of waves, currents, conductivity, temperature and sediment concentration during spring and late summer have been acquired. During moderate August storm events, waves attenuate rapidly inshore of the 3 m isobath. Entrainment of fine material and rapid flocculation due to the presence of brackish water may induce the transient formation of high density suspensions near the seabed which contributes to this rapid attenuation. The relatively poor performance of shallow water wave models (e.g. SWAN) in very shallow depths during storm simulations appears to be related to inaccurate formulations for wave attenuation in this environment.

  1. Mechanisms of sediment transport to shoreline salients onshore of fringing coral reefs

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Cuttler, M.; Traykovski, P.; Lowe, R.; Buckley, M. L.; Storlazzi, C. D.; Rosenberger, K. J.

    2016-12-01

    Shoreline salients, often extending several hundred metres seaward relative to the adjacent shoreline, are a common morphological feature found in the lee of many fringing coral reefs globally. However, the physical mechanisms that govern the formation and equilibrium dynamics of these salients remains poorly understood. A recent field experiment in NW Australia at Ningaloo Reef examined the mechanism of sediment delivery to a salient that extends 700 m seaward onshore of a 4 km long fringing reef that sits 2 km offshore. The experimental array consisted of wave, water level, and velocity measurements at >20 sites from 20 m depth offshore of the reef, the reef crest, and numerous sites throughout the 3 m depth lagoon shoreward of the reef. Two sites within the lagoon, one each side of the salient, also measured the migration of 0.5 m wavelength, 0.1 m high sand ripples using horizontal and vertically mounted echo sounders. Consistent with existing theory, mean (wave-averaged) flows in the lagoon shoreward of the reef and along the shoreline were divergent up to 0.2 m/s, corresponding to the circulation pattern resulting from wave breaking induced setup on the reef and associated mass flux into the lagoon, and seaward return flow through two lateral channels. These divergent alongshore mean flows are inconsistent the accreted shoreline morphology. However, the two sites that measured ripple properties and migration showed consistent migration in the local (salient following) onshore direction up to 2 m/day (mean 0.14 m/day across the two sites) resulting in onshore sediment fluxes as large as 200 kg/m/day (mean 10.1 kg/m/day) assuming ripple migration equates to net bedload transport. Despite the considerable infragravity energy within the lagoon ( 50% of the energy spectrum) the 0.5 m wavelength ripples were suborbital based on the orbital diameter of the 0.2-0.5 m high short waves which enter the lagoon via refraction through the lateral channels and incomplete dissipation over the reef. These preliminary results indicate that onshore ripple migration of biogenic sediment generated by the coral reef from short waves within the lagoon is the primary source of sediment to the salient. Additional analyses will focus on the hydrodynamic mechanisms responsible for the variable rate of migration.

  2. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.

    PubMed

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-12-01

    Several physics-based seabed geoacoustic models (including the Biot theory) predict that compressional wave attenuation α(2) in sandy marine sediments approximately follows quadratic frequency dependence at low frequencies, i.e., α(2)≈kf(n) (dB/m), n=2. A recent paper on broadband geoacoustic inversions from low frequency (LF) field measurements, made at 20 locations around the world, has indicated that the frequency exponent of the effective sound attenuation n≈1.80 in a frequency band of 50-1000 Hz [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)]. Carey and Pierce hypothesize that the discrepancy is due to the inversion models' neglect of shear wave effects [J. Acoust. Soc. Am. 124, EL271-EL277 (2008)]. The broadband geoacoustic inversions assume that the seabottom is an equivalent fluid and sound waves interact with the bottom at small grazing angles. The shear wave velocity and attenuation in the upper layer of ocean bottoms are estimated from the LF field-inverted effective bottom attenuations using a near-grazing bottom reflection expression for the equivalent fluid model, derived by Zhang and Tindle [J. Acoust. Soc. Am. 98, 3391-3396 (1995)]. The resultant shear wave velocity and attenuation are consistent with the SAX99 measurement at 25 Hz and 1000 Hz. The results are helpful for the analysis of shear wave effects on long-range sound propagation in shallow water.

  3. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2011-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific...identify mechanisms for the capturing of nearbed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field...resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical/acoustic

  4. CRUST 5.1: A global crustal model at 5° x 5°

    USGS Publications Warehouse

    Mooney, Walter D.; Laske, Gabi; Masters, T. Guy

    1998-01-01

    We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.

  5. Sediment transport in the area of the Sopot pier

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan

    2017-04-01

    Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with distance from the shoreline. Numerical sediment transport model DHI MIKE also shows that the Sopot marina generates a 'shadow' of waves. The shadow causes a disturbance in the continuity of natural sediment transport along the beach, the consequence of which is the creation of the sand shapes at the bottom in the form of convexity of coastline known as a spit. The model results also shows that 80% of the accumulated sand near the pier come from local beaches south-east of the pier. The remaining 20% was transported from the north-west. The direction of sediment transport corresponds to the directions of local waves

  6. Modeling transport and deposition of the Mekong River sediment

    USGS Publications Warehouse

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  7. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in fluvial zones of the Apalachicola River and its distributaries through field investigation and laboratory analysis of a series of total suspended solid (TSS) samples. Time-series TSS samples are collected at the alluvial zone. TSS and particle-size distribution analyses are performed to determine the TSS hydrograph and particle-size distribution of suspended solids. Relationships between the TSS hydrograph, discharge hydrograph, and tidal data provide a better understanding of the deposition and re-suspension of the fluvial system in the region. Total suspended particle-size distribution data are used to determine the deposition rate or diminishing rate of alluvial landform in the estuarine system. This dataset and analysis provide excellent information for future modeling work and wetland morphologic studies in the Apalachicola River and similar systems.

  8. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled model was run to predict the effects of Sandy-like and Irene-like hurricanes with different storm tracks and wind intensities on wetland morphology in Jamaica Bay. Model results indicate that, in Jamaica Bay salt marshes, the morphological changes (greater than 5 millimeters [mm] determined by the long-term marsh accretion rate) caused by Hurricane Sandy were complex and spatially heterogeneous. Most of the erosion (5–40 mm) and deposition (5–30 mm) were mainly characterized by fine sand for channels and bay bottoms and by mud for marsh areas. Hurricane Sandy-generated deposition and erosion were generated locally. The storm-induced net sediment input through Rockaway Inlet was only about 1 percent of the total amount of the sediment reworked by the hurricane. Salt marshes inside the western part of the bay showed erosion overall while marshes inside the eastern part showed deposition from Hurricane Sandy. Model results indicated that most of the marshes could recover from Hurricane Sandy-induced erosion after 1 year and demonstrated continued marsh accretion after the hurricane over the course of long simulation periods although the effect (accretion) was diminished. Local waves and currents generated by Hurricane Sandy appeared to play a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Hypothetical hurricanes, depending on their track and intensity, cause variable responses in spatial patterns of sediment deposition and erosion compared to simulations without the hurricane. In general, hurricanes passing west of the Jamaica Bay estuary appear to be more destructive to the salt marshes than those passing the east. Consequently, marshes inside the western part of the bay were likely to be more vulnerable to hurricanes than marshes inside the eastern part of the bay. 

  9. Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai

    USGS Publications Warehouse

    Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.

    2009-01-01

    Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.

  10. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    PubMed

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  11. Tidal and meteorological forcing of sediment transport in tributary mudflat channels

    PubMed Central

    Ralston, David K.; Stacey, Mark T.

    2011-01-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572

  12. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; moremore » intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.« less

  13. Sediment resuspension in a shallow lake with muddy substrates: St Lucia, South Africa

    NASA Astrophysics Data System (ADS)

    Zikhali, Vulindlela; Tirok, Katrin; Stretch, Derek

    2015-10-01

    Wind-driven sediment resuspension affects the physical and biological environment of the water column in shallow estuarine lakes. This study investigated the relationship between wind-driven waves and suspended sediment concentration (SSC) using the 33 km2 South Lake basin of Lake St Lucia, South Africa as a case study. Five wave poles measuring significant wave height and turbidity were deployed over an aggregate period of twenty days at distributed locations where sediment substrate compositions varied from muddy to sandy and depths ranged from 0.7 m to 2.1 m. The resulting turbidity dynamics were used to test a simple depth-averaged model of suspended sediment concentrations. The model performed best in the muddy regions of the lake and was able to simulate the resuspension dynamics more accurately than the settling dynamics. Peak suspended sediment concentration levels were best captured for the deeper muddy locations. The model provides a means to make spatially explicit predictions of suspended sediment concentrations that can be used to understand the forcing mechanisms for primary producer growth and distribution or to improve sediment budget calculations.

  14. Capabilities of the Large-Scale Sediment Transport Facility

    DTIC Science & Technology

    2016-04-01

    experiments in wave /current environments. INTRODUCTION: The LSTF (Figure 1) is a large-scale laboratory facility capable of simulating conditions...comparable to low- wave energy coasts. The facility was constructed to address deficiencies in existing methods for calculating longshore sediment...transport. The LSTF consists of a 30 m wide, 50 m long, 1.4 m deep basin. Waves are generated by four digitally controlled wave makers capable of producing

  15. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  16. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.

  17. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  18. Effect of transient wave forcing on the behavior of arsenic in a sandy nearshore aquifer

    NASA Astrophysics Data System (ADS)

    Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.

    2016-12-01

    Waves cause large quantities of coastal water to recirculate across the groundwater-coastal water interface in addition to inducing complex groundwater flows in the nearshore aquifer. Due to the distinct chemical composition of recirculating coastal water compared with discharging terrestrial groundwater, wave-induced recirculations and flows can alter geochemical gradients in the nearshore aquifer which may subsequently affect the mobilization and transport of reactive pollutants (e.g., arsenic). The impact of seasonal geochemical and hydrological variability on the occurrence and mobility of arsenic near the groundwater-surface water interface has been shown previously in riverine settings, however, the impact of high frequency geochemical variations (e.g., varying wave conditions) on arsenic mobility in groundwater-surface water environments is unclear. The objective of the study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer to determine the factors regulating its mobility and transport to receiving coastal waters. Field investigations were conducted at a permeable beach on the Great Lakes during a period of intensified wave conditions (wave event). High spatial resolution pore water sampling captured the geochemical conditions in the nearshore aquifer prior to the wave event, immediately after the wave event and over a recovery period of 3 weeks following the wave event. Shifts in pH and redox potential (ORP) gradients in response to varying wave conditions caused shifts in the iron and arsenic distributions in the aquifer. Sediment analysis was combined with the pore water distributions to assess the release of sediment-bound arsenic in response to the varying wave conditions. Insight into the effect of transient forcing on arsenic mobility and transport in groundwater-surface water environments is important for evaluating the potential risks associated with this toxic metalloid. The findings of this study also have significant implications for the fate of other reactive constituents (heavy metals, nutrients) discharging through nearshore aquifers to coastal waters.

  19. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  20. Wave-current induced erosion of cohesive riverbanks in northern Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, N.; Clark, S.; Ahmari, H.; Hunt, J.

    2015-03-01

    The field of cohesive soil erosion is still not fully understood, in large part due to the many soil parameters that affect cohesive soil erodibility. This study is focused on two channels, 2-Mile and 8-Mile channels in northern Manitoba, Canada, that were built to connect Lake Winnipeg with Playgreen Lake and Playgreen Lake with Kiskikittogisu Lake, respectively. The banks of the channels consist of clay rich soils and alluvial deposits of layered clay, silts and sands. The study of erosion at the sites is further complicated because the flow-induced erosion is combined with the effects of significant wave action due to the large fetch length on the adjacent lakes, particularly Lake Winnipeg that is the seventh largest lake in North America. The study included three main components: field measurements, laboratory experiments and numerical modelling. Field measurements consisted of soil sampling from the banks and bed of the channels, current measurements and water sampling. Grab soil samples were used to measure the essential physical and electrochemical properties of the riverbanks, and standard ASTM Shelby tube samples were used to estimate the critical shear stress and erodibility of the soil samples using an erosion measurement device (EMD). Water samples were taken to estimate the sediment concentration profile and also to monitor changes in sediment concentration along the channels over time. An Acoustic Doppler Current Profiler (ADCP) was used to collect bathymetry and current data, and two water level gauges have been installed to record water levels at the entrance and outlet of the channels. The MIKE 21 NSW model was used to simulate waves using historical winds and measured bathymetry of the channels and lakes. Finally, results from the wave numerical model, laboratory tests and current measurement were used to estimate the effect of each component on erodibility of the cohesive banks.

  1. From DNS to RANS: A Multi-model workflow to understand the Influence of Hurricanes on Generating Turbidity Currents in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Arango, H.; Harris, C. K.; Meiburg, E. H.; Jenkins, C. J.; Auad, G.; Hutton, E.; Kniskern, T. A.; Radhakrishnan, S.

    2016-12-01

    A loosely coupled numerical workflow is developed to address land-sea pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down the continental slope canyon system of the northern Gulf of Mexico (GOM). Model simulations represent a range of environmental conditions that might lead to the generation of turbidity-currents. The workflow comprises: 1) A simulator for the water and sediment discharged from rivers into the GOM with WMBsedv2 with calibration using USGS and USACE gauged river data; 2) Domain grids and bathymetry (ETOPO2) for the ocean models and realistic seabed sediment texture grids (dbSEABED) for the sediment transport models; 3) A spectral wave action simulator (10 km resolution) (WaveWatch III) driven by GFDL - GFS winds; 4) A simulator for ocean dynamics (ROMS) forced with ECMWF ERA winds; 5) A simulator for seafloor resuspension and transport (CSTMS); 6) Simulators (HurriSlip) of seafloor failure and flow ignition locations for boundary input to a turbidity current model; and 7) A RANS turbidity current model (TURBINS) to route sediment flows down GOM canyons, providing estimates of bottom shear stresses. TURBINS was developed first as a DNS model and then converted to an LES model wherein a dynamic turbulence closure scheme was employed. Like most DNS to LES model comparisons (these being done by the UCSB team), turbulence scaling allowed for higher Re applications but were found still not capable of simulating field scale (GOM continental canyons) environments. The LES model was next converted to a non-hydrostatic RANS model capable of field scale applications but only with a daisy-chain approach to multiple model runs along the simulated canyon floor. These model adaptations allowed the workflow to be tested for the year 1-Oct-2007 to 30-Sep-2008 that included two domain Hurricanes (Ike and Gustav). The RANS-TURBINS employed further boundary simplifications on both sediment erosion and deposition in line with the ocean model ROMS-CSTMS.

  2. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)

    USGS Publications Warehouse

    Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.

  3. Turbidity Current Head Mixing

    NASA Astrophysics Data System (ADS)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on coastal diffusion using image analysis. Applied Scientific Research 59,.191-204. 1998. [5] J.M. Redondo. Turbulent mixing in the Atmosphere and Ocean. Fluid Physics. 584-597. World Scientific. New York. 1994

  4. Physical response of a back-barrier estuary to a post-tropical cyclone

    USGS Publications Warehouse

    Beudin, Alexis; Ganju, Neil Kamal; Defne, Zafer; Aretxabaleta, Alfredo

    2017-01-01

    This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.

  5. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2012-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives...capturing of nearbed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to...generated resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical

  6. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2014-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives...identify mechanisms for the capturing of near-bed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field...distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical/acoustic signals of importance to

  7. Formation Mechanisms for Spur and Groove Features on Fringing Reefs

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Perron, J. T.

    2016-12-01

    Spur and groove systems (SAGs) are ubiquitous morphological features found on fore-reef slopes globally. SAGs consist of parallel, roughly shore-normal ridges of actively growing coral and coralline algae (spurs) separated by offshore-sloping depressions typically carpeted by a veneer of sediment (grooves). Although anecdotal observations and recent statistical analyses have reported correlations between wave exposure and the distribution of SAGs on fore-reef slopes, the physical mechanisms driving SAG formation remain poorly understood. For example, there remains significant debate regarding the importance of coral growth versus bed erosion for SAG formation. Here we investigate a hypothesis that SAG formation is controlled by feedbacks between sediment production and diffusion and coral growth. Using linear stability analysis, we find that sediment production, coral growth, and the feedbacks between them are unable to produce stable periodic structures without a sediment sink. However, if incipient grooves act as conduits for sediment transport offshore, a positive feedback can develop as the groove bed erodes through wave-driven abrasion during offshore transport. Eventually a negative feedback slows groove deepening when the groove bed is armored by sediment, and the groove bed relaxes to a sediment-veneered equilibrium profile analogous to sediment-rich shorefaces. To test this hypothesis, we apply a numerical model that incorporates coral growth and sediment production, sediment diffusion, non-linear wave-driven abrasion, and sediment advection offshore. This model produces the periodic, linear features characteristic of SAG morphology. The relative magnitude of growth, production, diffusion, abrasion, and advection rates affect periodic spacing or wavelength of the modeled SAGs. Finally, we evaluate the ability of the model to replicate geographical variability in SAG characteristics using previously published datasets and reanalysis wave data.

  8. Maps Showing Composition of Surficial Sediments on the Insular Shelf of Southwestern Puerto Rico

    USGS Publications Warehouse

    Shideler, Gerald L.

    1980-01-01

    The limited availability of onshore sand deposits for use in construction appears to be a future major problem in Puerto Rico (U.S. Bureau of Mines, 1972; Committee on Puerto Rico and the Sea, 1974). Consequently, the mining of offshore sand deposits as supplemental sources of construction aggregate may becom e necessary. For this reason, the U.S. Geological Survey and the Department of Natural Resources of the Commonwealth of Puerto Rico have conducted investigations of potential offshore sand deposits on the Puerto Rico insular shelf. This report provides information on the composition of surficial sediments on the southwestern Puerto Rico shelf (fig. 1), an area that may be one of the more favorable potential sites for offshore sand resources. Water depths over most of the study area are less than 22 meters (m). The sea floor is composed of live and dead patch and fringing reefs, areas of rock exposures, and sedim ent-covered areas. The adjacent coastline includes prominent embaym ents and a conspicuous rock promontory (Cabo Rojo) connected by a tombolo to the mainland of Puerto Rico. The study area is in the belt of northeast trade winds. Waves approach the coast predominantly from the southeast, resulting in a predominantly westward littoral drift along the south coast (Grove and Trumbull, 1978). Local sand movement on the southern shelf is shown by an active sand wave field south of Bah1a Sucia in which the sand wave crests have migrated toward the southwest (Grove and Trumbull, 1978). The presence of the sand wave field suggests that large volumes of sand having potential for mining are locally present in the study area.

  9. Continental Affinities of the Alpha Ridge

    NASA Astrophysics Data System (ADS)

    Jackson, H. Ruth; Li, Qingmou; Shimeld, John; Chian, Deping

    2017-04-01

    Identifying the crustal attributes of the Alpha Ridge (AR) part of the High Arctic Large Igneous Province and tracing the spreading centre across the Amerasia Basin plays a key role in understanding the opening history of the Arctic Ocean. In this approach, we report the evidence for a continental influence on the development of the AR and reduced ocean crust in the Amerasia Basin. These points are inferred from a documented continental sedimentation source in the Amerasia Basin and calculated diagnostic compressional and shear refraction waves, and from the tracing of the distinct spreading centre using the potential field data. (1) The circum-Arctic geology of the small polar ocean provides compelling evidence of a long-lived continental landmass north of the Sverdrup Basin in the Canadian Arctic Islands and north of the Barents Sea continental margin. Based on sediment distribution patterns in the Sverdrup Basin a continental source is required from the Triassic to mid Jurassic. In addition, an extensive continental sediment source to the north of the Barents Sea is required until the Barremian. (2) Offshore data suggest a portion of continental crust in the Alpha and Mendeleev ridges including measured shear wave velocities, similarity of compressional wave velocities with large igneous province with continental fragments and magnetic patterns. Ocean bottom seismometers recorded shear waves velocities that are sensitive to the quartz content of rocks across the Chukchi Borderland and the Mendeleev Ridge that are diagnostic of both an upper and lower continental crust. On the Nautilus Spur of the Alpha Ridge expendable sonobuoys recorded clear converted shear waves also consistent with continental crust. The magnetic patterns (amplitude, frequency, and textures) on the Northwind Ridge and the Nautilus Spur also have similarities. In fact only limited portions of the deepest water portions of the Canada Basin and the Makarov Basin have typical oceanic layer 2 and 3 crustal velocities and lineated magnetic anomalies. (3) The gravity and magnetic anomalies associated with the spreading centre in the Canada Basin unveiled by multifractal singularity analysis of the potential field data can now be traced as far as the Lomonosov Ridge. In addition, linear magnetic features cutting across the spreading centres are identified as transform faults. The combination of the detected continental attributes of AR, the quantification of transform faults, and the outlined reduced extent of oceanic crust in the Amerasia Basin provide new insights into the opening history of the basin.

  10. Lidar observations of wind- and wave-driven morphological evolution of coastal foredunes

    NASA Astrophysics Data System (ADS)

    Spore, N.; Brodie, K. L.; Kershner, C. M.

    2016-02-01

    Coastal foredunes are continually evolving geomorphic features that are slowly built up by wind-blown sand and rapidly eroded during storms by large waves and swash. Landward aeolian transport removes sediment from the active beach and surf-zone, trapping it in the dune, where as coastal erosion both removes sediment from the dune and can decrease the overall fetch and sediment supply available to the dune. Understanding how wave and wind-driven process interact with each other and the dune-beach system itself is a critical component of improving predictions of coastal evolution. To investigate these processes, two 50 m alongshore by 25 m cross-shore patches of dune along an open coast beach fronting the Atlantic Ocean in Duck, NC were scanned with a high resolution terrestrial lidar scanner ( 5000 points per m^2) every three weeks over the last year to observe detailed morphological evolution of the dune and upper beach. Sequential scans were co-registered to each other using fixed objects in the field of view, significantly increasing precision and accuracy of the observations. The north study site featured a 7.5 m tall scarped foredune system, where as the southern study site featured a 6 m tall, hummocky, prograding foredune. Initial analyses show large accretion events on the southern prograding site. For example, during one three week period in February, portions of the site accreted over 40 cm. In contrast, during the same three week period at the northern site (less than 1 km away), response was alongshore variable with erosion and accretion of roughly 10 cm on the foredune face. Further analysis will focus on separating wind vs. wave driven evolution of these sites. Funded by the USACE Coastal Inlets Research Program.

  11. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  12. Offset-vertical seismic profiling for marine gas hydrate exploration: Is it a suitable technique? First results from ODP Leg 164

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Stephen, R.A.; Hoskins, H.; Lizarralde, D.; Hutchinson, D.R.; Wood, W.T.

    1997-01-01

    Walkaway vertical seismic profiles were acquired during Ocean Drilling Project (ODP) Leg 164 at the Blake Ridge to investigate seismic properties of hydrate-bearing sediments and the zone of free gas beneath them. An evaluation of compressional (P-) wave arrivals Site 994 indicates P-wave anisotrophy in the sediment column. We identified several shear (S-) wave arrivals in the horizontal components of the geophone array in the borehole and in data recorded with an ocean bottom seismometer deployed at the seafloor. S-waves were converted from P-waves at several depth levels in the sediment column. One of the most prominent conversion points appears to be the bottom simulating reflector (BSR). It is likely that other conversion points are located in the zone of low P-wave reflectivity above the BSR. Modeling suggests that a change of the shear modulus is sufficient to cause significant shear conversion without a significant normal-incidence P-wave reflection.

  13. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments. Contrary to previous studies, the pore pressure gradient exhibited a range of values when erosion occurred, which indicates that erosion is the result of multiple physical mechanisms competing to secure or destabilize the sediment bed. The observations provide a better understanding of the forces acting within the sediment, and could improve parameters used in coastal sediment transport models to better predict coastal change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917445N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917445N"><span>Removing Wave Artifacts from Eddy Correlation Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neumann, Andreas; Brand, Andreas</p> <p>2017-04-01</p> <p>The German Wadden Sea is an extensive system of back-barrier tidal basins along the margin of the southern North Sea. Due to their high productivity and the strong retention potential of labile organic carbon high mineralization rates are expected in this system. Since the sediment bed is sandy, the oxygen fluxes across the sediment-water interface (SWI) may be enhanced by strong tidal currents as well as by wind-induced surface waves. In order to measure oxygen fluxes in-situ without disturbance of the sediment, the Eddy Correlation method (ECM) was introduced to aquatic geoscience by Berg et al. (2003). The method is based on correlating turbulent fluctuations of oxygen concentration and vertical velocity measured at high frequency above the SWI. The method integrates over spatial heterogeneities and allows the observation of total benthic oxygen fluxes in complex systems where other methods like flux chamber deployments and oxygen profile measurements in the sediment fail. Therefore, the method should also reflect effects like the enhancement of oxygen fluxes by porewater advection driven by waves and currents over sandy sediments. Unfortunately the ECM suffers from wave contamination due to stirring sensitivity of the electrodes, spatial separation between the oxygen electrode and the location of velocity measurement as well as by a tilt of the measurement setup at the deployment side. In order to correct for this wave contamination we tested the method of spectral reconstruction initially introduced by Bricker and Monismith (2007) for the determination of Reynolds-stresses in wave-affected environments. In short, this method attempts to remove the wave signal from the Power spectral densities of oxygen concentration and vertical velocity fluctuations by cutting off the wave peak in these spectra. The wave contribution to the co-spectrum between both quantities is then reconstructed by assuming that the phasing in the wave band is dominated by the waves. Based on the example of the North-Frisian Wadden Sea we will discuss the potentials and limits of this method. References: Berg, P., H. Roy, F. Janssen, V. Meyer, B. Jorgensen, M. Huettel, and D. de Beer (2003), Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique, Marine Ecology-Progress Series, 261, 75-83, doi:10.3354/meps261075. Bricker, J. D., and S. G. Monismith (2007), Spectral wave turbulence decomposition, J. Atmos. Oceanic Technol., 24(8), 1479-1487, doi:10.1175/JTECH2066.1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191434','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191434"><span>Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.</p> <p>2008-01-01</p> <p>Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X– ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000389','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000389"><span>Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.</p> <p>2008-01-01</p> <p>Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......249P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......249P"><span>Contribution to the study of the Ria de Aveiro inlet morphodynamics =</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plecha, Sandra Marta Nobre</p> <p></p> <p>Over the years it was observed at the Ria de Aveiro lagoon inlet, near the head of the north breakwater, a depth increase that might threaten the stability of this structure. A trend of accretion in the navigation channel of this lagoon is observed, endangering the navigation in this region. In order to understand the origin of these and other trends observed, the knowledge of the sediment transport in the study area is imperative. The main aim of this work is understanding the dominant physical processes in the sediment transport of sediment at the Ria de Aveiro lagoon inlet and adjacent area, improving knowledge of this region morphodynamics. The methodology followed in this study consisted in the analyzes of the topohydrographic surveys performed by the Administration of the Aveiro Harbor, and in the numerical simulations results performed with the morphodynamic modeling system MORSYS2D. The analysis of the surveys was performed by studying the temporal evolution of the bathymetry. The numerical analysis was based on the implementation of the model at the study area, sensitivity analysis of the formulations used to compute the sediment transport to the variation of input parameters (e.g. depth, sediment size, tidal currents) and analysis of the sediment fluxes and bathymetric changes predicted. The simulations considered as sediment transport forcing the tidal currents only and the coupled forcing of tides and waves. Considering the wave effect as sediment transport forcing, both monochromatic waves and a wave regime were simulated. The results revealed that the observed residual sediment transport patterns are generated due to the channel configuration. Inside the lagoon the fluxes are mainly induced by the tidal currents action, restricting the action of waves to the inlet and adjacent coast. In the navigation channel the residual sediment fluxes predicted are directed offshore with values between 7 and 40 m3/day generating accretions of approximately 10 m3/day for the shallower region and 35 m3/day for the region between the tidal gauge and the triangulo das mares. At the inlet, the residual fluxes are approximately 30 m3/day inducing trends of erosion of approximately 20 m3/day. At the North side of the nearshore accretion is predicted, while at the South side is predicted erosion, at the rates of 250 and 1500 m3/day, respectively. It was also concluded that the waves with higher contribution to the residual sediment uxes are those with heights between 4 and 5 m. However, the storm waves with heights bigger than 5 m, despite their 10% of frequency of occurrence are responsible for 25% of the observed sediment transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG13A..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG13A..05D"><span>Hydrodynamic Controls on Muddy Sedimentary Fabric Development on Low-Gradient Shelves: Atchafalaya Chenier Plain Subaqueous Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denommee, K.; Bentley, S. J.; Harazim, D.; Macquaker, J.</p> <p>2016-02-01</p> <p>Short sediment cores and geophysical data collected on the Southwest Louisiana Chenier Plain inner shelf have been studied in order to examine the sedimentary products of current-wave-enhanced sediment gravity flows (CWESGFs), a type of sediment gravity flow where the driving energy required to transport sediment across low-gradient settings is augmented by the near-bed orbital velocity of surface gravity wave and near-bed currents. Sedimentary fabrics observed on the SWLA shelf document the following flow evolution: (1) the erosion of the underlying substrate in response to wave-generated shear stresses in the bottom boundary layer, followed by (2) the deposition of ripple a crossbeded unit during wave-mediated oscillatory motions in low-viscosity suspension; (3) the deposition of subtle intercalated laminae during laminar flow at higher suspended sediment concentrations; followed by the deposition of (4) normally graded sediments during the waning phases of the flow. Significantly, the sedimentary fabrics deposited by CWESGFs on SWLA shelf show diagnostic variations from CWESGF-generated sedimentary fabrics observed on the Eel and Amazon shelves. Differences between the observed sedimentary fabrics are hypothesized to result from variations in the relative contribution of near-bed currents, wave orbital velocities, and bed slope (gravity) to the driving energy of the CWESGF, and as such can be catalogued as diagnostic recognition criteria using a prismatic ternary diagram where current-, wave-, and gravity-dominated end members form the vertices of a triangle, and wave period forms the prism axis. In this framework forcing mechanisms can be represented quantitatively, based on wave period and the relative contribution of each of the CWESGF velocity terms. This framework can be used to explore relationships between hydrodynamics and CWESGF fabrics, providing geologists with a tool with which to better recognize the depositional products of CWESGFs in the rock record; allowing for more accurate paleoenvironmental interpretations of extensive muddy successions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023248','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023248"><span>A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harris, C.K.; Wiberg, P.L.</p> <p>2001-01-01</p> <p>A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193626','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193626"><span>Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.</p> <p>2014-01-01</p> <p>A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26093817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26093817"><span>Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J</p> <p>2015-08-15</p> <p>A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..106a2067I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..106a2067I"><span>The numerical model of the sediment distribution pattern at Lampulo National fisheries port</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irham, M.; Setiawan, I.</p> <p>2018-01-01</p> <p>The spatial distribution of sediment pattern was studied at Lampulo Fisheries Port, Krueng Aceh estuarial area, Banda Aceh. The research was conducted using the numerical model of wave-induced currents at shallow water area. The study aims to understand how waves and currents react to the pattern of sediment distribution around the beach structure in that region. The study demonstrated that the port pool area had no sedimentation and erosion occurred because the port was protected by the jetty as the breakwater to defend the incoming waves toward the pool. The protected pool created a weak current circulation to distribute the sediments. On the other hand, the sediments were heavily distributed along the beach due to the existence of longshore currents near the shoreline (outside the port pool area). Meanwhile, at the estuarial area, the incoming fresh water flow responded to the coastal shallow water currents, generating Eddy-like flow at the mouth of the river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA374586','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA374586"><span>Oceanography and Mine Warfare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-03-13</p> <p>of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70100648','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70100648"><span>Dispersal of fine sediment in nearshore coastal waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warrick, Jonathan A.</p> <p>2013-01-01</p> <p>Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore of the nourishment site. However, a mass balance of sediment suggests that the majority of the fine sediment moved far away (over 2 km) from the nourishment site or to water depths greater than 10 m, where fine sediment represents a substantial portion of the bed material. Thus, the fate of fine sediment in nearshore waters was influenced strongly by wave conditions, surf zone and rip current transport, and the vertical density and flow conditions of coastal waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA212212','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA212212"><span>SBEACH: Numerical Model for Simulating Storm-Induced Beach Change. Report 1. Empirical Foundation and Model Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-07-01</p> <p>such as the complex fluid motion over aii irregular bottom and absence of rigorous descriptions of broken waves and sediment-sediment interaction, also...prototype-scale conditions. The tests were carried out with both monochromatic and irregular waves for a dunelike foreshore with and without a...significant surf zone. For one case starting from a beach without "fore- shore," monochromatic waves produced a bar, whereas irregular waves of significant</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034686','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034686"><span>Deposition and flux of sediment from the Po River, Italy: An idealized and wintertime numerical modeling study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bever, A.J.; Harris, C.K.; Sherwood, C.R.; Signell, R.P.</p> <p>2009-01-01</p> <p>Recent studies of sediment dynamics and clinoform development in the northern Adriatic Sea focused on winter 2002-2003 and provided the data and motivation for development of a detailed sediment-transport model for the area near the Po River delta. We used both idealized test cases and more realistic simulations to improve our understanding of seasonal sediment dynamics there. We also investigated the relationship between physical processes and the observed depositional products; e.g. the accumulation of sediment very near the Po River distributary mouths. Sediment transport near the Po River was evaluated using a three-dimensional ocean model coupled to sediment-transport calculations that included wave- and current-induced resuspension, suspended-sediment transport, multiple grain classes, and fluvial input from the Po River. High-resolution estimates from available meteorological and wave models were used to specify wind, wave, and meteorological forcing. Model results indicated that more than half of the discharged sediment remained within 15??km of the Po River distributary mouths, even after two months of intensive reworking by winter storms. During floods of the Po River, transport in the middle to upper water column dominated sediment fluxes. Otherwise, sediment fluxes from the subaqueous portion of the delta were confined to the bottom few meters of the water column, and correlated with increases in current speed and wave energy. Spatial and temporal variation in wind velocities determined depositional patterns and the directions of sediment transport. Northeasterly Bora winds produced relatively more eastward transport, while southwesterly Sirocco winds generated fluxes towards both the north and the south. Eastward transport accounted for the majority of the sediment exported from the subaqueous delta, most likely due to the frequent occurrence of Bora conditions. Progradation of the Po River delta into the Adriatic Sea may restrict the formation of the Western Adriatic Coastal Current, increasing sediment retention at the Po delta and reducing the supply of sediment to the Apennine margin. A positive morphodynamic feedback may therefore be present whereby the extension of the delta into the Adriatic increases sediment accumulation at the delta and facilitates further progradation. ?? 2009 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..157a2040L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..157a2040L"><span>Oceanographic conditions and sediment dynamic of the Barrang Caddi Island (Spermonde Archipelago, Indonesia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanuru, M.; Samad, W.; Amri, K.; Priosambodo, D.</p> <p>2018-05-01</p> <p>Small islands are vulnerable to long-term natural disasters like coastal erosion due to their size and topography. Barrang Caddi is one the small island in the Spermonde Archipelago (South Sulawesi) that encountered serious coastal erosion. Several attempts have been done by the relevant parties like by building a wave breaker to prevent erosion. But in fact some parts of the island are still eroded. A comprehensive oceanographic study of the wave climate and coastal processes at work to delineate the factors responsible for shoreline chance and to identify the location that need protection is needed. In this study, physical oceanographic data including waves, currents, tide, bathymetry, sediment characteristics and sediment transport were collected in the Barrang Caddi Island to analyze the factors responsible for shoreline chance (erosion) in the island. Results of the study showed that tide in the study site is mixed tide, predominantly semidiurnal with tidal range of 118 cm. Current measurements using a electromagnetic current meter revealed that current velocities at the study site were relatively low and vary spatially and temporally with magnitude of 0.02 – 0.58 m/s. Under normal conditions (no storms) the significant wave height (H 1/3) varied from 0.04 to 0.20 m. The wave height decreases from the fore reef to the reef flat due to the presence of coral reefs that reduce wave energy (wave height). Sediments were dominated by biogenic sand with grain diameter of 0.38 – 1.04 mm. Island erosion analysis showed that wave action was a main factor that responsible for shoreline chance (erosion) at the island. Current velocity alone with average of 0.19 m/s was not strong enough to move (erode) sediments at the island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044431','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044431"><span>Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.</p> <p>2013-01-01</p> <p>Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23B2038S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23B2038S"><span>Shallow water observations of the bottom boundary during an energetic storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheremet, A.; Klammer, H.; Calantoni, J.</p> <p>2016-12-01</p> <p>We report high-resolution field observations collected at the U.S. Army Corps of Engineers, Field Research Facility, Duck, NC from 26 January - 10 March 2015. The experiment deployed two instrument arrays near the 6-m and 8-m isobaths that included acoustic Doppler current profilers, acoustic Doppler velocimeters, pressure and CTD sensors to monitor waves, currents, turbulence, temperature, conductivity and suspended sediment concentration at high temporal and vertical resolution. Additionally, munitions, or "targets", were deployed that spanned a range of sizes and densities with munitions mobility and burial monitored continuously at the 8-m array with sector scanning sonars and at the 6-m array with a pencil beam sonar. The roughly 6-week long experiment observed a sequence of at least 10 winter storm events, six of which were characterized by significant wave heights exceeding 2 m at the 8-m instrument array, with peak periods typically around 10 s. During the strongest storm from 10 - 15 February 2015, waves at the 8-m array had peak periods around 14 s and significant wave heights exceeding 2 m for more than 3 days, with significant wave heights exceeding 5 m at the peak of activity. Despite the tremendous amount of hydrodynamic activity bathymetric surveys performed on 16 January 2015 (before) and 17 March 2015 (after) the experiment showed only 5 - 10 cm variation in bed elevation at the 8-m array, suggesting that the local gradients in sediment transport were nearly negligible. Additionally, time series of tilt and heading sensors indicated periods of "jacking" of the instrument frame that was initially moored using four pipes, about 3 m in length, jetted into the seafloor, while some targets were found buried up to 60 cm deep. We will present a detailed analysis of the near-bed hydrodynamics during the most energetic storm and present a simple model to explain the observed burial depths of targets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197092','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197092"><span>Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.</p> <p>2018-01-01</p> <p>Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1849S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1849S"><span>Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST r1234)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherwood, Christopher R.; Aretxabaleta, Alfredo L.; Harris, Courtney K.; Rinehimer, J. Paul; Verney, Romaric; Ferré, Bénédicte</p> <p>2018-05-01</p> <p>We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST Subversion repository revision 1234). These include the following: floc dynamics (aggregation and disaggregation in the water column); changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive) sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP14A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP14A..01H"><span>Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holland, A.; Moses, C.; Sear, D. A.; Cope, S.</p> <p>2016-12-01</p> <p>As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617208','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617208"><span>Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-05-27</p> <p>leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives of this now-terminated project consisted of: • Using Large...particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to identify the...mapping. Finally, the generated resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601055','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601055"><span>Near Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific...capturing of nearbed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to...distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical/acoustic signals of importance to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AdWR...33..277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AdWR...33..277B"><span>Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.</p> <p>2010-03-01</p> <p>A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190320','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190320"><span>Directional bottom roughness associated with waves, currents, and ripples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.</p> <p>2011-01-01</p> <p>Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5233/sir2007-5233.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5233/sir2007-5233.pdf"><span>Wave-driven spatial and temporal variability in sea-floor sediment mobility in the Monterey Bay, Cordell Bank, and Gulf of the Farallones National Marine Sanctuaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, Curt D.; Reid, Jane A.; Golden, Nadine E.</p> <p>2007-01-01</p> <p>Wind and wave patterns affect many aspects of continental shelves and shorelines geomorphic evolution. Although our understanding of the processes controlling sediment suspension on continental shelves has improved over the past decade, our ability to predict sediment mobility over large spatial and temporal scales remains limited. The deployment of robust operational buoys along the U.S. West Coast in the early 1980s provides large quantities of high-resolution oceanographic and meteorologic data. By 2006, these data sets were long enough to clearly identify long-term trends and compute statistically significant probability estimates of wave and wind behavior during annual and interannual climatic cycles (that is, El Niño and La Niña). Wave-induced sediment mobility on the shelf and upper slope off central California was modeled using synthesized oceanographic and meteorologic data as boundary input for the Delft SWAN model, sea-floor grain-size data provided by the usSEABED database, and regional bathymetry. Differences in waves (heights, periods, and directions) and winds (speeds and directions) between El Niño and La Niña months cause temporal and spatial variations in peak wave-induced bed shear stresses. These variations, in conjunction with spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in predicted sediment mobility widely varying in both time and space. These findings indicate that these factors have significant consequences for both geological and biological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1844G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1844G"><span>Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem</p> <p>2017-04-01</p> <p>With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP13A0837G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP13A0837G"><span>Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.</p> <p>2013-12-01</p> <p>The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased residual wave energy transported to the coast may result in the alteration of alongshore sediment transport gradients and substantial changes to coastal morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032235','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032235"><span>The influence of wave energy and sediment transport on seagrass distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stevens, Andrew W.; Lacy, Jessica R.</p> <p>2012-01-01</p> <p>A coupled hydrodynamic and sediment transport model (Delft3D) was used to simulate the water levels, waves, and currents associated with a seagrass (Zostera marina) landscape along a 4-km stretch of coast in Puget Sound, WA, USA. A hydroacoustic survey of seagrass percent cover and nearshore bathymetry was conducted, and sediment grain size was sampled at 53 locations. Wave energy is a primary factor controlling seagrass distribution at the site, accounting for 73% of the variability in seagrass minimum depth and 86% of the variability in percent cover along the shallow, sandy portions of the coast. A combination of numerical simulations and a conceptual model of the effect of sea-level rise on the cross-shore distribution of seagrass indicates that the area of seagrass habitat may initially increase and that wave dynamics are an important factor to consider in predicting the effect of sea-level rise on seagrass distributions in wave-exposed areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026756','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026756"><span>Wave- and tidally-driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, C.D.; Ogston, A.S.; Bothner, Michael H.; Field, M.E.; Presto, M.K.</p> <p>2004-01-01</p> <p>The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1m) and its advection across the reef crest and onto the deeper fore reef. The time-series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000035','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000035"><span>Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.</p> <p>2008-01-01</p> <p>We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031952"><span>Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.</p> <p>2008-01-01</p> <p>Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.cerf-jcr.org/index.php/international-coastal-symposium/ics-2009portugal/1328-littoral-transport-rates-in-the-santa-barbara-littoral-cell-a-process-based-model-analysis-epl-elias-pl-barnard-and-j-brocatus','USGSPUBS'); return false;" href="http://www.cerf-jcr.org/index.php/international-coastal-symposium/ics-2009portugal/1328-littoral-transport-rates-in-the-santa-barbara-littoral-cell-a-process-based-model-analysis-epl-elias-pl-barnard-and-j-brocatus"><span>Littoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elias, E. P. L.; Barnard, Patrick L.; Brocatus, John</p> <p>2009-01-01</p> <p>Identification of the sediment transport patterns and pathways is essential for sustainable coastal zone management of the heavily modified coastline of Santa Barbara and Ventura County (California, USA). A process-based model application, based on Delft3D Online Morphology, is used to investigate the littoral transport potential along the Santa Barbara Littoral Cell (between Point Conception and Mugu Canyon). An advanced optimalization procedure is applied to enable annual sediment transport computations by reducing the ocean wave climate in 10 wave height - direction classes. Modeled littoral transport rates compare well with observed dredging volumes, and erosion or sedimentation hotspots coincide with the modeled divergence and convergence of the transport gradients. Sediment transport rates are strongly dependent on the alongshore variation in wave height due to wave sheltering, diffraction and focusing by the Northern Channel Islands, and the local orientation of the geologically-controlled coastline. Local transport gradients exceed the net eastward littoral transport, and are considered a primary driver for hot-spot erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CG.....90...24X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CG.....90...24X"><span>Shelf sediment transport during hurricanes Katrina and Rita</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze</p> <p>2016-05-01</p> <p>Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between estuaries and shelves and the field measurement of erosional rates and settling velocities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T22D..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T22D..01D"><span>Crust And Upper Mantle Structure Of The Bengal Basin And Bay Of Bengal From Surface Wave Group Velocity Dispersion Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.</p> <p>2007-12-01</p> <p>Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the lithosphere and sets a good starting point for modeling the anisotropic structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..113.6102R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..113.6102R"><span>Biot-type scattering effects in gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubino, J. GermáN.; Ravazzoli, Claudia L.; Santos, Juan E.</p> <p>2008-06-01</p> <p>This paper studies the energy conversions that take place at discontinuities within gas hydrate-bearing sediments and their influence on the attenuation of waves traveling through these media. The analysis is based on a theory recently developed by some of the authors, to describe wave propagation in multiphasic porous media composed of two solids saturated by a single-phase fluid. Real data from the Mallik 5L-38 Gas Hydrate Research well are used to calibrate the physical model, allowing to obtain information about the characteristics of the cementation between the mineral grains and gas hydrates for this well. Numerical experiments show that, besides energy conversions to reflected and transmitted classical waves, significant fractions of the energy of propagating waves may be converted into slow-waves energy at plane heterogeneities within hydrated sediments. Moreover, numerical simulations of wave propagation show that very high levels of attenuation can take place in the presence of heterogeneous media composed of zones with low and high gas hydrate saturations with sizes smaller or on the order of the wavelengths of the fast waves at sonic frequencies. These attenuation levels are in very good agreement with those measured at the Mallik 5L-38 Gas Hydrate Research Well, suggesting that these scattering-type effects may be a key-parameter to understand the high sonic attenuation observed at gas hydrate-bearing sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572756','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572756"><span>Tidal Channel Dynamics and Muddy Substrates: A Comparison between a Wave Dominated and a Tidal Dominated System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>standard linear wave theory. Suspended sediment concentration (SSC) was estimated using the backscatter signal of the ADCP and the turbidity value...measured by the OBS when present. The OBS turbidity signal was calibrated against SSC measured in a laboratory tank, using sediments collected on the...link the geotechnical properties of sediment substrates to the spatial and hydrodynamic characteristics of tidal channels • To develop new</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS23B1206W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS23B1206W"><span>Sediment Transport and Infilling of a Borrow Pit on an Energetic Sandy Ebb Tidal Delta Offshore of Hilton Head Island, South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wren, A.; Xu, K.; Ma, Y.; Sanger, D.; Van Dolah, R.</p> <p>2014-12-01</p> <p>Bottom-mounted instrumentation was deployed at two sites on an ebb tidal delta to measure hydrodynamics, sediment transport, and seabed elevation. One site ('borrow site') was 2 km offshore and used as a dredging site for beach nourishment of nearby Hilton Head Island in South Carolina, and the other site ('reference site') was 10 km offshore and not directly impacted by the dredging. In-situ time-series data were collected during two periods after the dredging: March 15 - June 12, 2012('spring') and August 18 - November 18, 2012 ('fall'). At the reference site directional wave spectra and upper water column current velocities were measured, as well as high-resolution current velocity profiles and suspended sediment concentration profiles in the Bottom Boundary Layer (BBL). Seabed elevation and small-scale seabed changes were also measured. At the borrow site seabed elevation and near-bed wave and current velocities were collected using an Acoustic Doppler Velocimeter. Throughout both deployments bottom wave orbital velocities ranged from 0 - 110 m/s at the reference site. Wave orbital velocities were much lower at the borrow site ranging from 10-20 cm/s, as wave energy was dissipated on the extensive and rough sand banks before reaching the borrow site. Suspended sediment concentrations increased throughout the BBL when orbital velocities increased to approximately 20 cm/s. Sediment grain size and critical shear stresses were similar at both sites, therefore, re-suspension due to waves was less frequent at the borrow site. However, sediment concentrations were highly correlated with the tidal cycle at both sites. Semidiurnal tidal currents were similar at the two sites, typically ranging from 0 - 50 cm/s in the BBL. Maximum currents exceeded the critical shear stress and measured suspended sediment concentrations increased during the first hours of the tidal cycle when the tide switched to flood tide. Results indicate waves contributed more to sediment mobility at the reference site, while tidal forcing was the dominant factor at the borrow site. The seabed elevation data corraborates these results as active migrating ripples of 10 cm were measured at the reference site, while changes in seabed elevation at the borrow site were more gradual with approximately 30 cm of net accretion throughout the study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614602R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614602R"><span>Headland sediment bypassing and beach rotation in a rocky coast: an example at the western Portuguese coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribeiro, Mónica; Taborda, Rui; Lira, Cristina; Bizarro, Aurora; Oliveira, Anabela</p> <p>2014-05-01</p> <p>Headland sediment bypassing plays a major role in definition of coastal sedimentary budget and consequently in coastal management. This process is particularity important at headland-bay beaches on rocky coasts. However, headland-bay beach research is usually focused on the beach rotation since these beaches are generally regarded as closed systems. The sediment bypassing mechanisms have been extensively studied in the context of artificial structures (e.g. groins and jetties) but studies of natural headland sediment bypassing are scarce and usually applied to decadal time scales. This work aims to contribute to the understanding of headland sediment bypassing processes in non-artificial environments, taking as a case study a natural coastal stretch at the Portuguese west coast. The study is supported on the analysis of planform beach changes using Landsat satellite images (with an acquisition frequency of 16 days) complemented with field surveys with DGPS-RTK and ground-based photographic monitoring. The study area can be described as a cliffed rocky coast that accommodates a series of headland-bay beaches with different geometries: some are encased in the dependence of fluvial streams, while others correspond to a narrow and elongated thin sand strip that covers a rocky shore platform. This coast is generally characterized by a weak, but active, sediment supply and high levels of wave energy due to the exposure to the swells generated in the North Atlantic. The long-term stability of the beaches in conjunction with active sediment supply along the study area (from streams and cliff erosion) and a sink at the downdrift end of this coastal stretch (an active dune system) support the existence of headland sediment bypassing. The analysis of planform beach changes show a coherent signal in time but with a range that depends on the orientation of the stretch where each beach is included. In general, beaches displays a clockwise rotation during summer related to the NW (less energetic) incident wave conditions. The persistence of these conditions induces an enlargement of the beach downdrift (southward) and eventually sediment bypassing. This process can result in a continuous inner bar along the headland coast, which migrates downdrift in the surf zone and weld to the downdrift beach. The counter-clockwise rotation observed in the winter is more variable being in agreement with the less persistent W and SW incident wave conditions, suggesting that sediment bypassing occurs only southwards. The work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and FCT National Funds - Portuguese Foundation for Science and Technology under the project Beach to Canyon Head Sedimentary Processes (PTDC/MAR/114674/2009). First author benefits from a PhD grant funded by FCT (SFRH/BD/79126/2011).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC14B..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC14B..06K"><span>Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.</p> <p>2017-12-01</p> <p>Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of the Huanghe delta by minimizing expected flood-damage cost. Taken together, these studies can inform management policies and promote consideration of the natural evolution of deltas to achieve sustainability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP43A0654Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP43A0654Y"><span>Reconstruction of sediment transport pathways in modern microtidal sand flat by multiple classification analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamashita, S.; Nakajo, T.; Naruse, H.</p> <p>2009-12-01</p> <p>In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H12E..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H12E..07R"><span>Impact of Varying Wave Conditions on the Mobility of Arsenic in a Nearshore Aquifer on the Great Lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.</p> <p>2017-12-01</p> <p>Groundwater-coastal water interactions play an important role in controlling the behavior of inorganic chemicals in nearshore aquifers and the subsequent flux of these chemicals to receiving coastal waters. Previous studies have shown that dynamic groundwater flows and water exchange across the sediment-water interface can set up strong geochemical gradients and an important reaction zone in a nearshore aquifer that affect the fate of reactive chemicals. There is limited understanding of the impact of transient coastal forcing such as wave conditions on groundwater dynamics and geochemistry in a nearshore aquifer. The goal of this study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer and to determine the hydrological and geochemical factors controlling its fate and ultimate delivery to receiving coastal waters. Field investigations were conducted over the period of intensified wave conditions on a freshwater beach on Lake Erie, Canada. High spatial resolution aqueous and sediment sampling was conducted to characterize the subsurface distribution of inorganic species in the nearshore aquifer. Numerical groundwater flow and transport simulations were conducted to evaluate wave-induced perturbations in the flow dynamics including characterizing changes in the groundwater flow recirculations in the nearshore aquifer. The combination of field data and numerical simulations reveal that varying wave conditions alter groundwater flows and set up geochemical transition zones within the aquifer resulting in the release and sequestration of arsenic. Interactions between oxic surface water, mildly reducing shallow groundwater, and reducing sulfur- and iron-rich deep groundwater promote dynamic iron, sulfur and manganese cycling which control the mobility of arsenic in the aquifer. The findings of this study have potential implications for the fate and transport of other reactive chemicals (e.g. phosphorus, mercury) in nearshore marine and freshwater aquifers exposed to transient coastal forcing. Understanding the fate of chemicals and the dynamics of the reaction zone in nearshore aquifers is critical for evaluating the importance of groundwater as a pathway for delivering pollutants to coastal waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP22A..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP22A..07D"><span>Dynamics of Debris Supply and Removal from Coastal Cliffs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dickson, M. E.; Vann Jones, E. C.; Payo, A.; Matsumoto, H.</p> <p>2016-12-01</p> <p>Progress in obtaining a morphodynamic understanding of rocky shores has been limited by slow rates of change and lack of preserved evidence of erosion processes. As a result we do not have a detailed understanding of the relative contributions of failure events across the magnitude-frequency spectrum. This talk describes field experiments, supported by simple stock-flow modelling, on a coastal cliff-face in eastern New Zealand. Key features of this site are that it is composed of near-homogenous rapidly eroding mudstone, and it is fronted by a wide intertidal rock platform that results in the cliff toe being exposed to waves every high tide. Several techniques were used to measure the cliff debris supply-removal system. Sediment traps at the cliff toe directly recorded rates of debris supply from the cliff-face at five discrete locations. Repeated high-resolution terrestrial laser scans over several consecutive low-tide stages documented changes in cliff-toe talus volumes along 50m of shoreline. Optical back-scatter sensors located on the rock shore platform in front of the cliff toe constrained the timing of talus-debris resuspension during tidal inundation of the cliff toe. Wave pressure gauges were used to characterise the wave field acting on the cliff. Results demonstrate that high-resolution (<5mm) laser scanning can meaningfully characterise rates of coastal cliff erosion at the very high-frequency low-magnitude end of the erosion spectrum. We find that rates of debris supply from the cliff face are dependent on the subaerial weathering system, in particular wetting and drying and associated expansion and contraction of clay minerals within the cliff rock. Rates of debris removal from the cliff toe depend on tide and wave conditions: even under low wave-energy conditions, waves at infragravity frequencies can access the cliff toe at high tide leading to sediment suspension. We explore the basic feedback structure of cliff, talus and debris removal using a simple stock-flow model, and discuss implications for progressive (ongoing) cliff erosion in the presence of an ever-widening shore platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS21B1226W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS21B1226W"><span>The South Carolina Coastal Erosion Study: Numerical modeling of circulation and sediment transport in Long Bay, SC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.</p> <p>2004-12-01</p> <p>Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53E1026H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53E1026H"><span>Sediment Transport Dynamics and Bedform Evolution During Unsteady Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, H.; Parsons, D. R.; Ockelford, A.; Hardy, R. J.; Ashworth, P. J.; Best, J.</p> <p>2016-12-01</p> <p>Dunes are ubiquitous features in sand bed rivers and estuaries, and their formation, growth and kinematics play a dominant role in boundary flow structure, flow resistance and sediment transport processes. However, bedform evolution and dynamics during the rising/falling limb of a flood wave remain poorly understood. Herein, we report on a series of flume experiments, undertaken at the University of Hull's Total Environment Simulator flume/wave tank facility, with imposed flow variations and different hydrographs: i) a sudden (shock) change, ii) a fast flood wave and iii) a slow flood wave. Our analysis shows that, because of changes of sediment transport mechanisms with discharge, the sediment flux rather than bedform migration rate is a more appropriate parameter to relate to transport stage. This is particularly the case during bedload transport dominated periods at lower flow discharge, where a strong power law relationship was detected. In terms of varying processes across the hydrograph limbs, bedform evolution during the rising limb is dominated not only by bedform amalgamation but also by the washing out of smaller-scale bedforms. Furthermore, bedform growth is independent of the rising rate of the hydrograph limb, while evolution of bedform decay is affected by the rate of discharge decrease. This results in an anticlockwise hysteresis between transport stage and total flux was found in fast wave experiment, indicating a significant role of the change in sediment transport mechanisms on bedform evolution. Moreover, analysis on the variation of deformation fraction (F, ratio of the deformation flux to the total bed material flux) suggests that net degradation of the bed enhances bedform deformation and leads to a higher F ( 0.65). This work extends our knowledge on how dunes generate and develop under variable flows and has begun to explore how variations in transport stage can be coupled with the variation in sediment transport mechanisms, and/or sediment supply which can help improve the modelling of sediment transport processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13C1643F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13C1643F"><span>Stability of Fluvial and Gravity-flow Antidunes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedele, J. J.; Hoyal, D. C. J. D.; Demko, T. M.</p> <p>2017-12-01</p> <p>Antidunes develop as a consequence of interface (free surface) deformation and sediment transport feedback in supercritical flows. Fluvial (open-channel flow) antidunes have been studied extensively in the laboratory and the field, and recognized in ancient sedimentary deposits. Experiments on gravity flow (turbidity and density currents) antidunes indicate that they are more stable and long-lived than their fluvial counterpart but the mechanism controlling this stability is poorly understood. Sea floor bathymetric and subsurface data suggest that large-scale, antidune-like sediment waves are extremely common in deep-water, found in a wide range of settings and sediment characteristics. While most of these large features have been interpreted as cyclic steps, the term has been most likely overused due to the lack of recognition criteria and basic understanding on the differences between antidunes and cyclic steps formed under gravity flows. In principle, cyclic steps should be more common in confined or channel-lobe transition settings where flows tend to be more energetic or focused, while antidunes should prevail in regions of less confinement, under sheet-like or expanding flows. Using published, fluvial stable-antidune data, we show that the simplified 1D, mechanical-energy based analysis of flow over a localized fixed obstacle (Long, 1954; Baines, 1995; Kubo and Yokokawa, 2001) is inaccurate for representing flow over antidunes and their stability. Instead, a more detailed analysis of a flow along a long-wavelength (in relation to flow thickness) wavy bed that also considers the interactions between flow and sediment transport is used to infer conditions of antidune stability and the breaking of surface waves. In particular, the position of the surface wave crest in relation to the bedform crest, along with the role of average flow velocity, surface velocity, and surface wave celerity appear relevant in determining antidune instability. The analysis is extended to the case of gravity flow antidunes to explain differences with subaerial antidunes on the basis of the particularities of both velocity and density profiles in these flows. Laboratory experimental data on gravity flow antidunes are used to compare with the theory presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.901a2038W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.901a2038W"><span>Deep Shear Wave Velocity of Southern Bangkok and Vicinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wongpanit, T.; Hayashi, K.; Pananont, P.</p> <p>2017-09-01</p> <p>Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036843','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036843"><span>Reply to the Comment on "Wave climate, sediment supply and the depth of the sand-mud transition: A global survey" by D.A. George and P.S. Hill [Marine Geology 254 (2008) 121-128</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>George, D.A.; Hill, P.S.</p> <p>2009-01-01</p> <p>An analysis of concepts presented by George and Hill [George, D.A., Hill, P.S., 2008. Wave climate, sediment supply and the depth of the sand-mud transition: A global survey. Marine Geology, 254, 121-128.] regarding the depth of the sand-mud transition (hSMT) was performed by Guill??n and Jim??nez [Jorge Guill??n and Jos?? A. Jim??nez, Comment on "Wave climate, sediment supply and the depth of the sand-mud transition: A global survey" by D.A. George and P.S. Hill [Marine Geology 254 (2008) 121-128], Marine Geology, in press]. We are pleased that our proposed definition of the hSMT was confirmed to be appropriate. We are encouraged that the authors agree that wave period and wave height should both be used to determine hSMT as we demonstrated in our Eq. (1), which calculates the bed shear stress at hSMT. More in-depth research should focus on characterizing the role of sediment supply in determining hSMT. ?? 2009 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810187M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810187M"><span>Determining the Controlling Factors of Coastal Development along an Active Margin - A Case Study from Aceh, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monecke, Katrin; Meilianda, Ella; Hill, Emma; McAdoo, Brian; Qiang, Qui; Storms, Joep; Walstra, Dirk-Jan; Setiawan, Agus; Masputri, Aisha S.; Mayasari, Cut D.; Riandi, Indra; Nasir, Muhammad</p> <p>2016-04-01</p> <p>Understanding the recovery of shorelines after catastrophic events is crucial for sustainable coastal development and future hazard mitigation. Here, we present post-seismic coastal development data from West Aceh, Indonesia, an area that was severely affected by the 2004 Sumatra Andaman earthquake and ensuing Indian Ocean tsunami. Using a combined approach of spatial data analysis, field surveys and numerical modeling, we reconstruct the build-up of a new beach ridge along a 10 kilometer long stretch of the western Acehnese coast after the complete destruction of the beach in 2004. The coastline of West Aceh can be characterized as a microtidal, wave dominated environment with the wave climate being controlled by the monsoon seasons reaching a significant wave height of Hs = 1.2 m during the more energetic West Monsoon from April to September. Waves approach the shoreline at a very low angle resulting in minor and variable longshore sediment transport. The beach has an average foreshore slope of 0.07 and is composed of well sorted medium sand. Recently obtained bathymetric data indicates a steep upper shoreface with a slope of 0.03. Further offshore the slope decreases to 0.01 with 14 m water depth being reached in about 700 m distance to the shoreline. Grab samples obtained in 10 m water depth are composed of fine to medium sand but lenses of medium to coarse sand with abundant shell debris do also occur. Beach ridges can be traced up to 2 km inland and indicate long-term coastal progradation and abundant sediment supply to the littoral zone. The western Acehnese shoreline parallels the Sunda trench and subsided 50 to 100 cm during the 2004 rupture. Modeled land elevation changes as a result of afterslip and viscoelastic mantle relaxation, indicate rapid post-seismic uplift of 4.4 cm/year in the year following the earthquake, but more moderate uplift rates of 1.4 cm/year since mid-2006. In 2004, co-seismic subsidence and tsunami scouring caused the coastline to recede on average 110 m. However, by 2006 a new 22 m wide beach ridge had formed probably due to reworking of sediment transported offshore by the back flow of the tsunami. In the following two years the coast prograded by an additional 30 m, but experienced only minor changes between 2009 and 2011. 2012 and 2013 were characterized by a renewed retreat of up to 41 m, which might be attributed to seasonal hydrodynamic variations. Field surveys in 2015 show that the coastline most recently grew back to its approximate 2011 position. The application of the coastal model UNIBEST allows us to simulate cross-shore profile changes using the acquired field data, to investigate the complex interaction of vertical ground movement, sediment supply, and hydrodynamic parameters and to gain insights into the controlling factors of long-term coastal development and the short-term effects of seismic events on coastal morphology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28116682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28116682"><span>Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kroon, Aart; Abermann, Jakob; Bendixen, Mette; Lund, Magnus; Sigsgaard, Charlotte; Skov, Kirstine; Hansen, Birger Ulf</p> <p>2017-02-01</p> <p>A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14C0991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14C0991M"><span>Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.</p> <p>2016-02-01</p> <p>A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed (< 3 cm above the bed) velocities were estimated using Nortek Vectrino-II profiling velocimeters, while sheet layer sediment concentration profiles (volumetric concentrations > 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812742D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812742D"><span>The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Droghei, Riccardo; Falcini, Federico; Martorelli, Eleonora; Casalbore, Daniele; Mosetti, Renzo; Salusti, Ettore; Sannino, Gianmaria; Santoleri, Rosalia; Chiocci, Francesco</p> <p>2016-04-01</p> <p>Joint marine geology and physical oceanography studies seek to demonstrate the inherited connection between seafloor sedimentary processes and seawater dynamics in a fruitful exchange. While seafloor morphology highlights the long-term action of bottom currents, oceanographic models attempt to explain and predict morphogenetic processes and sedimentary pattern at the seafloor [Blodeaux, 2001; Martorelli et al., 2010; Belde et al., 2015]. A sand waves field we observed off the Messina Strait (Mediterranean Sea) give us the opportunity to demonstrate the value of such a multidisciplinary approach. We interpret these sand-waves as formed by tidal-induced internal solitary waves (ISWs) that generate within the Strait [Alpers and Salusti, 1983; Sapia and Salusti; 1987; Artale et al., 1990; Bradt et al., 1999]. We hypothesize that the deflected pattern (i.e., the depth-dependent orientation) of these sand waves is due to refraction of ISWs occurring at the interface between the Levantine Intermediate Water (LIW) and the Modified Atlantic Water (MAW), caused by interaction with a topographic mound; while the motion of sediment is caused by the bottom velocity field associated with the ISW trough. Both numerical and in situ data provide hints regarding the formation of the observed geometries and give useful information about their dynamics and migration rate. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, adding some insights on the role of ISWs on sedimentary process and the structure of continental margins [Puig et al, 2004; Haren et al., 2013]. References: Blondeaux, P. (2001). Mechanics of coastal forms. Annual Review of Fluid Mechanics, 33(1), 339-370. Martorelli, E., Falcini, F., Salusti, E., & Chiocci, F. L. (2010). Analysis and modeling of contourite drifts and contour currents off promontories in the Italian Seas (Mediterranean Sea). Marine Geology, 278(1), 19-30. Belde, J., Back, S., & Reuning, L. (2015). Three-dimensional seismic analysis of sediment waves and related geomorphological features on a carbonate shelf exposed to large amplitude internal waves, Browse Basin region, Australia. Sedimentology, 62(1), 87-109. Alpers, W., & Salusti, E. (1983). Scylla and Charybdis observed from space. Journal of Geophysical Research: Oceans (1978-2012), 88(C3), 1800-1808. Sapia, A., & Salusti, E. (1987). Observation of nonlinear internal solitary wave trains at the northern and southern mouths of the Strait of Messina. Deep Sea Research Part A. Oceanographic Research Papers, 34(7), 1081-1092. Artale, V., Levi, D., Marullo, S., & Santoleri, R. (1990). Analysis of nonlinear internal waves observed by Landsat thematic mapper. Journal of Geophysical Research: Oceans (1978-2012), 95(C9), 16065-16073. Brandt, P., Rubino, A., Quadfasel, D., Alpers, W., Sellschopp, J., & Fiekas, H. V. (1999). Evidence for the influence of Atlantic-Ionian stream fluctuations on the tidally induced internal dynamics in the Strait of Messina. Journal of physical oceanography, 29(5), 1071-1080. Puig, P., Palanques, A., Guillén, J., & El Khatab, M. (2004). Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: implications for continental margin shaping. Journal of Geophysical Research: Oceans (1978-2012), 109(C9). Haren, H., Ribó, M., & Puig, P. (2013). (Sub-) inertial wave boundary turbulence in the Gulf of Valencia. Journal of Geophysical Research: Oceans, 118(4), 2067-2073.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194949','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194949"><span>Seafloor environments within the Boston Harbor- Massachusetts Bay sedimentary system: A regional synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knebel, H.J.; Circe, R.C.</p> <p>1995-01-01</p> <p>Modern seafloor sedimentary environments within the glaciated, topographically complex Boston Harbor and Massachusetts Bay area have been interpreted and mapped from an extensive collection of sidescan sonar records and supplemental marine geologic data. Three categories of environments are present that reflect the dominant long-term processes of erosion or nondeposition, deposition, and sediment reworking. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, coarse lag deposits, and possibly coastal plain rocks that contain sediments (where present) ranging from boulder fields to gravelly sands and occur in areas of relatively strong currents. (2) Environments of deposition contain fine-grained sediments ranging from muddy sands to muds that have accumulated in areas of predominantly weak bottom currents. (3) Environments of sediment reworking contain patches with textures ranging from sandy gravels to muds that have been produced by a combination of erosion and deposition in areas with variable bottom currents. The distribution of sedimentary environments across the Boston Harbor-Massachusetts Bay area is extremely patchy. Locally, this patchiness is due either to modifications of bottom-current strength (caused by the irregular topography and differences in water depth) or to small-scale changes in the supply of fine-grained sediments. Regional patchiness, however, reflects differences in geologic and oceanographic conditions among the estuarine, inner shelf, and basinal parts of the sedimentary system. The estuarine part of the system (Boston Harbor) is a depositional trap for fine-grained sediments because it is protected from large waves, has generally weak and variable tidal currents, and receives a large supply of fine grained detritus from natural and anthropogenic sources. The inner shelf, on the other hand, is largely an area of erosion or nondeposition due to sediment removal and redistribution during past sea-level changes, to sediment resuspension and winnowing by modern waves and currents, and to an inadequate supply of fine-grained sediments. The basinal part of the system (Stellwagen Basin) is mainly a tranquil depositional environment in which fine-grained sediments from several potential sources settle through the water column and accumulate under weak bottom currents. This study indicates areas within the Boston Harbor-Massachusetts Bay sedimentary system where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CSR...109...78K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CSR...109...78K"><span>Wave-induced coherent turbulence structures and sediment resuspension in the nearshore of a prototype-scale sandy barrier beach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kassem, Hachem; Thompson, Charlotte E. L.; Amos, Carl L.; Townend, Ian H.</p> <p>2015-10-01</p> <p>The suspension of sediments by oscillatory flows is a complex case of fluid-particle interaction. The aim of this study is to provide insight into the spatial (time) and scale (frequency) relationships between wave-generated boundary layer turbulence and event-driven sediment transport beneath irregular shoaling and breaking waves in the nearshore of a prototype sandy barrier beach, using data collected through the Barrier Dynamics Experiment II (BARDEX II). Statistical, quadrant and spectral analyses reveal the anisotropic and intermittent nature of Reynolds' stresses (momentum exchange) in the wave boundary layer, in all three orthogonal planes of motion. The fractional contribution of coherent turbulence structures appears to be dictated by the structural form of eddies beneath plunging and spilling breakers, which in turn define the net sediment mobilisation towards or away from the barrier, and hence ensuing erosion and accretion trends. A standing transverse wave is also observed in the flume, contributing to the substantial skewness of spanwise turbulence. Observed low frequency suspensions are closely linked to the mean flow (wave) properties. Wavelet analysis reveals that the entrainment and maintenance of sediment in suspension through a cluster of bursting sequence is associated with the passage of intermittent slowly-evolving large structures, which can modulate the frequency of smaller motions. Outside the boundary layer, small scale, higher frequency turbulence drives the suspension. The extent to which these spatially varied perturbation clusters persist is associated with suspension events in the high frequency scales, decaying as the turbulent motion ceases to supply momentum, with an observed hysteresis effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T13A2578Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T13A2578Y"><span>Relationship between compressional-wave velocity and porosity of sediments along subduction plate interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaguchi, M.; Hashimoto, Y.</p> <p>2012-12-01</p> <p>Evolution of physical properties of sediments along subduction interface has effects on wedge strength, wedge geometry, dewatering and dehydration processes, and seismic behavior. Sediments have initially more than 70% of porosity prior to subduction. Through underthrusting and accretion, porosity of sediments decreases by compaction and cementation to be lithified sediments. The purpose of this study is to understand evolution of physical properties from a state before subduction to a state within a wedge using a relationship between compressional-wave velocity and porosity. In this study, we obtained new data for sediments from a reference site in IODP NanTroSEIZE, Expedition 333. In addition to that, we have complied velocity-porosity relationships for the samples and also for previous studies from NanTroSEIZE (off Kumano) (Hashimoto et al., 2010, 2011), ODP Leg 190 (off Shikoku) (Hoffman and Tobin, 2004) and ODP Leg 170 (off Costa Rica) (Gettemy and Tobin, 2003). Velocity measurement procedure in this study to obtain new data is as following: Two pumps were used to control pore fluid pressure and confining pressure. The pore pressure of 1000kPa was kept under drained conditions. Confining (effective) pressure was increased stepwise in the measurements. Velocity measurements were conducted under isotropic pressure conditions. Confining pressure was pressurized in tens seconds and kept for more than 8 hours for next step to obtain equilibrium conditions between effective pressure and sediments strain. Lead zirconate titanate (PZT) shear wave transducers (500kHz) were used in a source-receiver pair to measure wave speed. Porosity and P-wave velocity ranges about 27 - 75% and 1.4 - 2.2 km/s in this study, respectively. In the comparison in Vp-porosity relationships between sedimetns from reference sites and others, sediments were classified into two, simply compacted sediments (reference site and slope sediments) and wedge sediments. Different trends in Vp-porosity relationships were observed for the classified sediments. For compacted sediments, Vp-porosity relationships are along the global empirical relationships (Erickson and Jarrard 1988) and almost within the area between normal and highly compaction curves. On the other hand, some of Vp-porosity relationships for wedge sediments represent trends with higher velocity at a porosity. Such trend was observed for wedge sediments from Site C0001 and C0004. Those higher Vp trend in Vp-porosity relationship for wedge sediments can be explained by shear strain of sediments and/or cementation. Even though the velocity measurements was conducted under hydrostatic condition, we examined the void ratio-porosity curve as a kind of compaction curve. On the basis of the curves, break points were observed at the pressure which corresponds to the effective pressure assuming the hydrostatic pore fluid pressure. The result suggests that the sediments were under condition of normal compaction. Some of void ratio-porosity curve represent a evidence of weak cement which can correspond with anomaly in porosity-depth curve in the shallow portion of the reference sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044436','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044436"><span>Large submarine sand waves and gravel lag substrates on Georges Bank off Atlantic Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Todd, B.J.; Valentine, Page C.; Harris, Peter T; Baker, E.K.</p> <p>2012-01-01</p> <p>Georges Bank is a large, shallow, continental shelf feature offshore of New England and Atlantic Canada. The bank is mantled with a veneer of glacial debris transported during the late Pleistocene from continental areas lying to the north. These sediments were reworked by marine processes during postglacial sea-level transgression and continue to be modified by the modern oceanic regime. The surficial geology of the Canadian portion of the bank is a widespread gravel lag overlain in places by well sorted sand occurring as bedforms. The most widespread bedforms are large, mobile, asymmetrical sand waves up to 19 m in height formed through sediment transport by strong tidal-driven and possibly storm-driven currents. Well-defined curvilinear bedform crests up to 15 km long form a complex bifurcating pattern having an overall southwest–northeast strike, which is normal to the direction of the major axis of the semidiurnal tidal current ellipse. Minor fields of immobile, symmetrical sand waves are situated in bathymetric lows. Rare mobile, asymmetrical barchan dunes are lying on the gravel lag in areas of low sand supply. On Georges Bank, the management of resources and habitats requires an understanding of the distribution of substrate types, their surface dynamics and susceptibility to movement, and their associated fauna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2734D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2734D"><span>The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Droghei, Riccardo; Falcini, Federico; Martorelli, Eleonora; Salusti, Ettore; Sannino, Gianmaria; Santoleri, Rosalia; Chiocci, Francesco</p> <p>2015-04-01</p> <p>In the last decade joint marine geology and physical oceanography studies are demonstrating the inherited connection between deep-water sedimentary processes and dynamics of water masses in a fruitful exchange in which bedforms type and geometry highlight slow or periodic bottom current processes or event of and oceanography explains and predicts morphological and sedimentary pattern at the seafloor. We investigate the presence of an intriguing up-slope migrating and rotating sand waves observed off the north entrance of the Messina Strait by taking into account the main oceanographic process occurring in the Strait, namely the presence of tidal induced internal solitary waves (ISWs). We hypothesize that the observed deflected pattern of these sand waves is due to refraction of wave occurring at the LIW-MAW interface and that the motion of the grains is due to the increased particle velocity field during the passage of ISWs. We modeled their formations and compared the results with the observed geometries of the dune field. Our findings suggest an intrinsic relationship between the dune filed and the presence of internal solitary waves, and provide some insights about their dynamics and migration rate as in accordance with previous measurements and analysis. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, and gives some insights on the role of ISWs on sedimentary process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA41A2162S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA41A2162S"><span>Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.</p> <p>2015-12-01</p> <p>Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70103833','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70103833"><span>Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.</p> <p>2014-01-01</p> <p>Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GGG....11.AD05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GGG....11.AD05H"><span>Velocity-porosity relationships for slope apron and accreted sediments in the Nankai Trough Seismogenic Zone Experiment, Integrated Ocean Drilling Program Expedition 315 Site C0001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hashimoto, Y.; Tobin, H. J.; Knuth, M.</p> <p>2010-12-01</p> <p>In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for accreted sediments can be explained by weak cementation, critical porosity or differences in loading history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.S21A..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.S21A..08L"><span>Is Seismically Determined Q an Intrinsic Material Property?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langston, C. A.</p> <p>2003-12-01</p> <p>The seismic quality factor, Q, has a well-defined physical meaning as an intrinsic material property associated with a visco-elastic or a non-linear stress-strain constitutive relation for a material. Measurement of Q from seismic waves, however, involves interpreting seismic wave amplitude and phase as deviations from some ideal elastic wave propagation model. Thus, assumptions in the elastic wave propagation model become the basis for attributing anelastic properties to the earth continuum. Scientifically, the resulting Q model derived from seismic data is no more than a hypothesis that needs to be verified by other independent experiments concerning the continuum constitutive law and through careful examination of the truth of the assumptions in the wave propagation model. A case in point concerns the anelasticity of Mississippi embayment sediments in the central U.S. that has important implications for evaluation of earthquake strong ground motions. Previous body wave analyses using converted Sp phases have suggested that Qs is ~30 in the sediments based on simple ray theory assumptions. However, detailed modeling of 1D heterogeneity in the sediments shows that Qs cannot be resolved by the Sp data. An independent experiment concerning the amplitude decay of surface waves propagating in the sediments shows that Qs must be generally greater than 80 but is also subject to scattering attenuation. Apparent Q effects seen in direct P and S waves can also be produced by wave tunneling mechanisms in relatively simple 1D heterogeneity. Heterogeneity is a general geophysical attribute of the earth as shown by many high-resolution data sets and should be used as the first litmus test on assumptions made in seismic Q studies before a Q model can be interpreted as an intrinsic material property.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33B1935L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33B1935L"><span>The dynamics of sediment size and transient erosional signals in heterogeneous lithologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.</p> <p>2017-12-01</p> <p>Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon preservation of a base level change signal in low order streams. This result implies that transient erosion signals inferred using topography can be transformed or destroyed in certain lithologies, complicating efforts to infer climatic and tectonic history from topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T23E..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T23E..02T"><span>Seismic anisotropy from walk-around VSP data in the Kumano basin south of Kii Peninsula (IODP Site C0009A)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuji, T.; Hino, R.; Sanada, Y.; Park, J.; No, T.; Araki, E.; Kinoshita, M.; Bangs, N. L.; von Huene, R.; Moore, G. F.</p> <p>2010-12-01</p> <p>We estimated seismic anisotropy from the walk-around Vertical Seismic Profiling (VSP) data in Site C0009A obtained during Integrated Ocean Drilling Program (IODP) Expedition 319. It is generally agreed that seismic anisotropy within sediments is related to the cracks. For vertical cracks (Horizontal Transverse Isotropy; HTI), the fast velocity direction coincides with the direction of crack alignment, while the degree of velocity difference provides information about crack density (Crampin, 1985). If cracks are produced by a regional tectonic stress field, seismic anisotropy can be used to estimate stress orientation and magnitude. In unconsolidated sequence, furthermore, the stress-induced anisotropy can be observed due to increasing contact between grains (Johnson et al., 1998). In this case (increasing grain-contact), the fast velocity direction from walk-around VSP experiment is also consistent with the principal horizontal stress direction. Site C0009A is located in the Kumano basin where ~1350m unconsolidated Kumano basin sediment overlies the accretionary prism. During VSP operations, we obtained walk-away, walk-around, and zero-offset VSP data (Saffer et al., 2009). We used mainly walk-around VSP data to study seismic anisotropy. In the walk-around VSP experiments, R/V Kairei deployed 4 air-gun strings (128 L total volume) and generated 275 shots. The shooting interval was 30s and the distance from the borehole was a constant 3.5 km. We deployed the Vertical Seismic Imager (VSI) wireline tool into the borehole between 2989 and 3218m below the sea surface (935-1164m below seafloor). This interval corresponds to the bottom of the Kumano basin sediment section. From the walk-around VSP data, we obtained the following anisotropic parameters: (1) P-wave velocity anisotropy derived from azimuthal velocity analysis (Grechka and Tsvankin, 1998), (2) P-wave amplitude variation with azimuth (AVAZ), and (3) S-wave amplitude variation with azimuth associated with S-wave splitting (Haacke et al., 2009). We observed the S-wave splitting both from the upgoing and downgoing converted S-waves. These analyses demonstrate that the P-wave velocity anisotropy within the Kumano basin sediment (above the VSI tool) is ~5 %. The fast velocity direction and strong amplitude direction are aligned with the convergence vector of the Philippine Sea plate. The fast velocity as well as strong amplitude is clearly observed for at 180 degree from the convergence vector. Therefore the dip of the Kumano basin sequence (Tilted Transverse Isotropy; TTI) should have only a subtle effect on our results. These results indicate that the maximum horizontal stress orientation is the subduction direction at Site C0009C. This observation is consistent with the principal stress orientation estimated from borehole breakout at same borehole (Kinoshita et al., 2008).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1007542','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1007542"><span>Analytical Model of Inlet Growth and Equilibrium Cross-Sectional Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-04-01</p> <p>performance in a real-world setting. BACKGROUND: Long-term inlet stability in bar-built systems is determined by the tidal and wave forces that...across the node was limited due to convergence of the two incoming tidal waves . As such, the equivalent bay area was calculated using the midpoint as a...sediment transport is driven by tides and does not incorporate other forcing and associated sediment pathways. The ratio of wave to tidal energy is an</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70101724','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70101724"><span>Interactions between waves, sediment, and turbulence on a shallow estuarine mudflat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>MacVean, Lissa J.; Lacy, Jessica R.</p> <p>2014-01-01</p> <p>stress, which diffused sediment upward and limited stratification. Our findings highlight a pathway for waves to supply energy to both the production and destruction of turbulence, and demonstrate that in such shallow depths, TKE and SSC can be elevated over more of the water column than predicted by traditional models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA255700','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA255700"><span>Bottom Penetration at Shallow Grazing Angles II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-06-19</p> <p>Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent Properties," J. Acoust. Soc. Am. 77, 1781- 1788 (1985). 35 8. N. P. Chotiros, ’High...Acoust. Soc. Am. 8B1 S131 (1990). 12. M. Stern, A. Bedford, and H. R. Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1293/of2006-1293.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1293/of2006-1293.pdf"><span>Reconnaissance investigation of Caribbean extreme wave deposits--Preliminary observations, interpretations, and research directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morton, Robert A.; Richmond, Bruce M.; Jaffe, Bruce E.; Gelfenbaum, Guy</p> <p>2006-01-01</p> <p> This report presents an overview of preliminary geological investigations and recommended future research activities in the Caribbean region pertaining to coastal hazards with an emphasis on establishing tsunami risk for U.S. territories. Fieldwork was conducted in March 2006 on the islands of Bonaire, Puerto Rico, and Guadeloupe to evaluate the stratigraphic records of extreme wave deposits as possible indicators of paleotsunami recurrence. Morphological, sedimentological, and stratigraphic evidence indicate that shore-parallel coral rubble deposits composed of coarse clasts and sand that are 10s of meters wide and several meters thick are depositional complexes that have accumulated for a few centuries or millennia, and are not entirely the result of one or a few tsunamis as previously reported. The origins of boulder fields on elevated rock platforms of the Caribbean islands are more complicated than the origins of ridge complexes because boulder fields can be constructed by either storm waves or tsunamis. What is needed now for more conclusive interpretations is a systematic sedimentological approach to deposit analysis and a set of criteria for distinguishing between coarse clast storm and tsunami deposits. Assembling more field data from other Caribbean islands, analyzing stratigraphic deposits on Puerto Rico and Bonaire, and investigating boulder field deposits resulting from a historical tsunami can accomplish this. Also needed are improved sediment transport models for coarse clasts that can be used to estimate the competence and capacity of tsunamis and storms waves and to determine whether a deposit likely was created by a tsunami or extreme storm. Improved models may also be useful for reconstructing the magnitude of extreme wave events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70120281','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70120281"><span>Monitoring and modeling nearshore dredge disposal for indirect beach nourishment, Ocean Beach, San Francisco</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnard, Patrick L.; Hanes, Daniel M.; Lescinski, Jamie; Elias, Edwin</p> <p>2007-01-01</p> <p>Nearshore dredge disposal was performed during the summer of 2005 at Ocean Beach, San Francisco, CA, a high energy tidal and wave environment. This trial run was an attempt to provide a buffer to a reach of coastline where wave attack during the winter months has had a severe impact on existing sewage infrastructure. Although the subsequent beach response was inconclusive, after one year the peak of the disposal mound had migrated ~100 m toward the shore, providing evidence that annual dredge disposal at this site could be beneficial over the long-term by at the very least providing: 1) additional wave dissipation during storms 2) compatible sediment to feed nearshore bars, 3) sediment cover on an exposed sewage outfall pipe, and 4) a viable alternative to the shoaling offshore disposal site. Numerical modeling suggests that despite the strong tidal currents in the region, wave forcing is the dominant factor moving the sediment slowly toward shore, and placing sediment at just slightly shallower depths (e.g. 9 m) in the future would have a more immediate impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1018/title_page.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1018/title_page.html"><span>Sea-floor geology in northwestern Block Island Sound, Rhode Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McMullen, Katherine Y.; Poppe, Lawrence J.; Ackerman, Seth D.; Blackwood, Dann S.; Woods, D.A.</p> <p>2014-01-01</p> <p>Multibeam-echosounder and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 69-square-kilometer area of northwestern Block Island Sound, are used with sediment samples, and still and video photography of the sea floor, collected by the U.S. Geological Survey at 43 stations within this area, to interpret the sea-floor features and sedimentary environments. Features on the sea floor include boulders, sand waves, scour depressions, modern marine sediments, and trawl marks. Boulders, which are often several meters wide, are found in patches in the shallower depths and tend to be overgrown with sessile flora and fauna. They are lag deposits of winnowed glacial drift, and reflect high-energy environments characterized by processes associated with erosion and nondeposition. Sand waves and megaripples tend to have crests that either trend parallel to shore with 20- to 50-meter (m) wavelengths or trend perpendicular to shore with several-hundred-meter wavelengths. The sand waves reflect sediment transport directions perpendicular to shore by waves, and parallel to shore by tidal or wind-driven currents, respectively. Scour depressions, which are about 0.5 m lower than the surrounding sea floor, have floors of gravel and coarser sand than bounding modern marine sediments. These scour depressions, which are conspicuous in the sidescan-sonar data because of their more highly reflective coarser sediment floors, are likely formed by storm-generated, seaward-flowing currents and maintained by the turbulence in bottom currents caused by their coarse sediments. Areas of the sea floor with modern marine sediments tend to be relatively flat to current-rippled and sandy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GML....38...63V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GML....38...63V"><span>A non-deltaic clinoform wedge fed by multiple sources off São Sebastião Island, southeastern Brazilian Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vieira, Ivo; Lobo, Francisco José; Montoya-Montes, Isabel; Siegle, Eduardo; Passos, Jorge Luiz; De Mahiques, Michel Michaelovitch</p> <p>2018-02-01</p> <p>São Sebastião Island (SSI) marks the latitudinal boundary between two sedimentological and geochemical provinces in the São Paulo Bight, an arc-shaped sector of the southeastern Brazilian Shelf. The island is separated from the continent by the narrow, deep São Sebastião Channel (SSC). A relatively thick sediment wedge—the São Sebastião Wedge (SSW)—has been formed offshore SSI. This study explores the possible genetic and evolutionary mechanisms of the wedge, bearing in mind that clinoform wedges can form at considerable distances from major fluvial sources. For that, a marine geological database has been interpreted comprising high-resolution seismic data, a surficial sediment map and several sediment cores, from which radiocarbon dates were obtained and sedimentation rates deduced. A wave model was also applied to obtain the dominant wave directions. The SSW is a wedge-shaped deposit, and its internal structure presents three seismic units. The two lowest are wedge shaped and arranged in a backstepping pattern. The most recent unit is mostly aggradational and can be divided into three seismic subunits. Sedimentological data show that at least the most recent unit is composed of a mixture of sands and silts. Modeled wave conditions indicate a major influence from southerly waves that are able to remobilize shelf sediments and to create a bypass sediment zone until the foreset of the deposit is reached at the water depths where the SSW is found. Taken together, these data suggest that the SSW formed through contributions from different sediment sources, and should be regarded as an intermediate case of a non-deltaic clinoform wedge. Sand transport in the area involves wind-driven currents passing through the SSC and sediment remobilization by energetic southerly waves. Fine-grained sediment is derived mostly from the joint contributions of many minor catchments located north of the island, and this sediment is later transported southwestward by the prevailing surface currents. The morphological obstacle presented by the island leads to current veering and subsequent sediment deposition. The internal architecture of the wedge indicates that its deposition was probably initiated during the last part of the postglacial transgression, but its present-day morphology is mostly a product of episodic highstand sedimentation that began under conditions of gently falling sea levels during the last 5 ka, after the Holocene glacio-eustatic maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMOS43A0605H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMOS43A0605H"><span>Effects of fracture and crack healing in sI methane and sII methane-ethane gas hydrate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helgerud, M. B.; Waite, W. F.; Stern, L. A.; Kirby, S. H.</p> <p>2005-12-01</p> <p>Cracking within gas hydrate-bearing sediment can occur in the field at core-scales, due to unloading as material is brought to the surface during conventional coring, and at reservoir scales if the formation is fractured prior to production. Cracking can weaken hydrate-bearing sediment, but can also provide additional surface area for dissociation and permeability pathways for enhanced gas and fluid flow. In pulse-transmission wave speed measurements, we observe cracking in laboratory-formed pure sI methane and sII methane-ethane hydrates when samples are axially unloaded while being held under gas pressure to maintain hydrate stability. Cracking events are inferred from repeated, sharp decreases in shear wave speed occurring concurrently with abrupt increases in sample length. We also visually observe cracks in the solid samples after their recovery from the apparatus following each experiment. Following a cracking event, we observe evidence of rapid crack healing, or annealing expressed as nearly complete recovery of the shear wave speed within approximately 20 minutes. Gas hydrate recrystallization, grain growth, and annealing have also been observed in optical cell experiments and SEM imagery over a similar time frame. In a recovered hydrate-bearing core that is repressurized for storage or experimentation, rapid crack healing and recrystallization can partly restore lost mechanical strength and raise wave speeds. In a fractured portion of a hydrate-bearing reservoir, the rapid healing process can close permeable cracks and reduce the surface area available for dissociation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Geomo.222..132H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Geomo.222..132H"><span>Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.</p> <p>2014-10-01</p> <p>Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CSR....26..622H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CSR....26..622H"><span>Measurements and modelling of beach groundwater flow in the swash-zone: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horn, Diane P.</p> <p>2006-04-01</p> <p>This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport and beach profile evolution can be successfully modelled. Beach groundwater hydrodynamics are a result of combined forcing from the tide and waves at a range of frequencies, and a large number of observations exist which describe the shape and elevation of the beach watertable in response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. Models of beach watertable response to tidal forcing have been successfully validated; however, models of watertable response to wave forcing are less well developed and require verification. Improved predictions of swash zone sediment transport and beach profile evolution cannot be achieved unless the complex fluid and sediment interactions between the surface flow and the beach groundwater are better understood, particularly the sensitivity of sediment transport processes to flow perpendicular to the permeable bed. The presence of a capillary fringe, particularly when it lies just below the sand surface, has influences on beach groundwater dynamics. The presence of a capillary fringe can have a significant effect on the exchange of water between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the aquifer. Field and laboratory observations have also shown that natural groundwater waves usually propagate faster and decay more slowly in aquifers with a capillary fringe, and observations which suggest that horizontal flows may also occur in the capillary zone have been reported. The effects of infiltration and exfiltration are generally invoked to explain why beaches with a low watertable tend to accrete and beaches with a high watertable tend to erode. However, the relative importance of processes such as infiltration losses in the swash, changes in the effective weight of the sediment, and modified shear stress due to boundary layer thinning, are not yet clear. Experimental work on the influence of seepage flows within sediment beds provides conflicting results concerning the effect on bed stability. Both modelling and experimental work indicates that the hydraulic conductivity of the beach is a critical parameter. However, hydraulic conductivity varies both spatially and temporally on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but poorly understood, consideration in beach groundwater studies is the role of air encapsulation during the wetting of beach sand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3108011K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3108011K"><span>The Effectiveness of Hybrid Structure in Overcoming Coastal Abration in Trimulyo, Genuk Subdistrict Semarang City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurnia, Domas; Nugroho, Denny</p> <p>2018-02-01</p> <p>Trimulyo is one of coastal village in Genuk Subdistrict, Semarang City which now facing serious coastal abrasion. Such a thing has been causing loss of ponds and settlements. One of solution which currently carried is hybrid structure which combining permeable structure to break up the waves and trap sediment. The hybrid structure is designed as agitation dredging, which increase suspended sediment in sea water. The goals of this research were to studying the effectiveness of hybrid structure in handling coastal abration and to counting the volume of sedimentation during 20 months as well as rate of sedimentation. To reach the goals, high resolution satellite imagery year 2015 and 2016, scaled stick and sediment trap were applied to the study. Image processing was conducted by using Arc GIS 10.3 software. The effectiveness of hybrid structured was determined by series of field survey of existing condition. Rate of sedimentation measured during before and after hybrid structure built (20 months). The results showed that hybrid structure was effective to reduce coastal abrasion, it proven by a large amount of sediment was trapped behind the structure and coastline was upward along 170 meter since it was built. The volume of sediment during 20 months is 81.500 m3. If it assumed that the rate of sedimentation constantly, monthly rate of sedimentation is 4.075 m3/month or daily rate is 135,8 m3/day. The sediment that has formed highly recommended to use as mangrove conservation area in Semarang City.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21E1880S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21E1880S"><span>Development and Application of a Cohesive Sediment Transport Model in Coastal Louisiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorourian, S.; Nistor, I.</p> <p>2017-12-01</p> <p>The Louisiana coast has suffered from rapid land loss due to the combined effects of increasing the rate of eustatic sea level rise, insufficient riverine sediment input and subsidence. The sediment in this region is dominated by cohesive sediments (up to 80% of clay). This study presents a new model for calculating suspended sediment concentration (SSC) of cohesive sediments. Several new concepts are incorporated into the proposed model, which is capable of estimating the spatial and temporal variation in the concentration of cohesive sediment. First, the model incorporates the effect of electrochemical forces between cohesive sediment particles. Second, the wave friction factor is expressed in terms of the median particle size diameter in order to enhance the accuracy of the estimation of bed shear stress. Third, the erosion rate of cohesive sediments is also expressed in time-dependent form. Simulated SSC profiles are compared with field data collected from Vermilion Bay, Louisiana. The results of the proposed model agree well with the experimental data, as soon as steady state condition is achieved. The results of the new numerical models provide a better estimation of the suspended sediment concentration profile compared to the initial model developed by Mehta and Li, 2003. Among the proposed developments, the formulation of a time-dependent erosion rate shows the most accurate results. Coupling of present model with the Finite-Volume, primitive equation Community Ocean Model (FVCOM) would shed light on the fate of fine-grained sediments in order to increase overall retention and restoration of the Louisiana coastal plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033832','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033832"><span>Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.</p> <p>2010-01-01</p> <p>Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSeis..22..697B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSeis..22..697B"><span>Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim</p> <p>2018-05-01</p> <p>In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSeis.tmp....8B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSeis.tmp....8B"><span>Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim</p> <p>2018-01-01</p> <p>In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ECSS...56.1041D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ECSS...56.1041D"><span>The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Díez, I.; Santolaria, A.; Gorostiaga, J. M.</p> <p>2003-04-01</p> <p>Subtidal vegetation distribution patterns in relation to environmental conditions (pollution, wave exposure, sedimentation, substratum slope and depth) were studied along the western Basque coast, northern Spain, by applying canonical correspondence analysis and log-linear regressions. A total of 90 species of macrophytes were recorded by systematic sampling along 21 transects. Mesophyllum lichenoides and Cystoseira baccata were the most abundant (accounting for 47% of the overall algal cover). Gelidium sesquipedale, Pterosiphonia complanata, Zanardinia prototypus, Codium decorticatum and Asparagopsis armata ( Falkenbergia phase) were other macrophytes with significant cover. Ordination analysis indicates that the five environmental variables explored account between them for 52% of the species data variance. Pollution, sedimentation and wave exposure were the principal factors explaining differences in flora composition and abundance (24, 14 and 12% of the explained variance, respectively). Log-linear regressions and canonical correspondence analyses reveal that C. baccata and G. sesquipedale exhibit a negative relationship with pollution, while sediment loading negatively affects G. sesquipedale, and C. baccata cannot stand high wave exposure levels. In contrast, P. complanata and C. decorticatum show a positive relationship with pollution and can bear high levels of sedimentation and wave exposure. M. lichenoides and Z. prototypus present a wide tolerance range for all these factors. Macroalgal cover, species richness and diversity remain practically constant from unpolluted to slightly polluted sites, but they decrease sharply under moderately polluted conditions. In the same way, algal cover decreases as sediment loading increases, but diversity and species richness show the highest values at intermediate levels of sedimentation. In relation to wave exposure, maximum algal cover was achieved at very exposed habitats whereas diversity and species richness were higher under semi-exposed conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..221W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..221W"><span>S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Sheng; Li, Zhiwei</p> <p>2018-06-01</p> <p>S-wave velocity and attenuation structures of shallow sediments play important roles in accurate prediction of strong ground motion. However, it is more difficult to investigate the attenuation than velocity structures. In this study, we developed a new approach for estimating frequency-dependent S-wave attenuation (Q_S^{ - 1}) structures of shallow sediments based on multiple time window analysis of borehole seismograms from local earthquakes. Multiple time windows for separating direct and surface-reflected S-waves in local earthquake waveforms at borehole stations are selected with a global optimization scheme. With respect to different time windows, the transfer functions between direct and surface-reflected S-waves are achieved with a weighted averaging scheme, based on which frequency dependent Q_S^{ - 1} values are obtained. Synthetic tests suggest that the proposed method can restore robust and reliableQ_S^{ - 1} values, especially when the dataset of local earthquakes is not abundant. We utilize this method for local earthquake waveforms at 14 borehole seismic stations in the North China basin, and obtain Q_S^{ - 1} values in 2 ˜ 10 Hz frequency band, as well as average {V_P}, {V_S} and {V_P}/{{}}{V_S} ratio for shallow sediments deep to a few hundred meters. Results suggest that Q_S^{ - 1} values are to 0.01˜0.06, and generally decrease with frequency. The average attenuation structure of shallow sediments within the depth of a few hundred meters beneath 14 borehole stations in the North China basin can be modeled as Q_S^{ - 1} = 0.056{f^{ - 0.61}}. It is generally consistent with the attenuation structure of sedimentary basins in other areas, such as Mississippi Embayment sediments in the United States and Sendai basin in Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP23B0964B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP23B0964B"><span>ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.</p> <p>2015-12-01</p> <p>The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on central Pacific atolls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....7703A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....7703A"><span>Self-organized behavior of modeled shoreline shapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashton, A.; Murray, A. B.</p> <p>2003-04-01</p> <p>Whenever waves approach a coast and break at oblique angles, they drive a current along the shore. This current, along with wave-induced sediment suspension, transports relatively large amounts of sediment, affecting the shape and evolution of a coastline. Traditionally, researchers have assumed that alongshore sediment transport will diffuse, or smooth, bumps along a shoreline. Recent research, however, shows that when the angle between wave crests in deep water and the shoreline is sufficiently high (greater than approximately 45 degrees), a shoreline is unstable. Linear stability analysis does not predict that this instability will cause a preferred wavelength of shoreline perturbation growth or that organized patterns will emerge. However, a simple numerical model of shoreline change shows those when there is a predominance of high angle waves approaching a shoreline, finite-amplitude features will develop that interact with each other and increase in wavelength over time, translating in the direction of net alongshore sediment transport. Some of these simulated features resemble naturally occurring shoreline features, such as 'alongshore sandwaves', 'ords', 'cuspate spits', and 'cuspate forelands'. By varying two wave climate parameters, one describing the relative dominance of waves approaching at high angles and the other controlling the signs of the approach angle of incoming waves (i.e., the asymmetry of waves approaching from the right vs. the left), we investigate how the attributes of the input wave climate determine the aspect ratio and characteristic form of the simulated features. Varying these two parameters also affects the wavelength of the initially fastest growing perturbation. By tracking the average wavelength of simulated features, which increases over time for all simulations, we show that more complicated phenomena, such as rapid period doubling, can dominate simulated shoreline evolution. These rich behaviors result from large-scale emergent interactions. Although the wave distribution determines the character of shoreline features, their specific configuration and evolution is sensitively dependant on both initial conditions and the stochastic sequencing of wave approach angles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS23C1323M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS23C1323M"><span>Sediment Resuspension and Transport During Bora in the Western Adriatic Coastal Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mullenbach, B. L.; Geyer, W. R.; Sherwood, C. R.</p> <p>2004-12-01</p> <p>The Western Adriatic Coastal Current (WACC) is an important agent for along-shelf transport of sediment and fresh water in the western Adriatic Sea. The WACC is driven by a combination of buoyancy forcing from the Po River (northern Adriatic) and wind forcing from northeasterly Bora winds. The large seasonal pulse of freshwater (during the winter) from the Po River influences WACC strength; however, preliminary results from current measurements and model runs indicate that the WACC responds quickly and strongly to Bora wind events, with a strengthening of the current moving southward. Along-margin sediment transport to the south is significantly increased as a result of Bora wind events, presumably because of enhanced wave resuspension and WACC velocity. Elevated sediment fluxes have been observed in both the upper water column (i.e., core of the WACC) and bottom boundary layer (BBL) during these events, which suggests that wind-driven currents may be coupled with the near-bottom transport. This study addresses the interaction of the WACC with the BBL and the impact of this interaction on sediment transport in the western Adriatic. Two benthic tripods were deployed from November 2002 to June 2003 on an across-shelf transect near the Chienti River (at 10 and 20-m water depth), in the region where WACC begins to intensify (200 km south of Po River). Continuous measurements of suspended sediment concentration and current velocity were recorded in the upper-water column and BBL to document sediment transport events. A time series of sediment fluxes and shear velocities (from currents only, u*c; from waves and currents, u*wc) were calculated from these data. Results show that suspended sediment concentrations near the seabed (few cmab) during Bora wind events are strongly correlated with u*wc, which supports a previous hypothesis that wave resuspension (rather than direct fluvial input) is responsible for much of the suspended sediment available for transport southward of the Po River. In contrast, suspended sediment concentrations farther away from the bed (50 cmab) are highly correlated with u*c, but not with u*wc. These results suggest that WACC velocity during Bora events controls the ability of sediment to escape the wave boundary layer and be suspended farther away from the seabed. This implies that turbulence induced by currents, rather than waves, allows sediment to move higher in the water column and become available for transport by fast-moving currents generated by the WACC, thus producing strong southward sediment fluxes observed during Bora events. Specific mechanisms responsible for the vertical structure of suspended sediment and estimates of vertically integrated fluxes during these Bora events are yet to be established because of the difficulty in estimating suspended sediment concentrations throughout the water column from acoustic data; these issues are still under investigation and progress will be assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC12B..08A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC12B..08A"><span>Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.</p> <p>2017-12-01</p> <p>Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves, and cross-shore profiles are used to extract wave properties. Combined with accurate georeferencing information, LiDAR has the potential to be a powerful remote sensing tool for coastal monitoring systems and the study of nearshore processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010915','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010915"><span>Large sand waves on the Atlantic Outer Continental Shelf around Wilmington Canyon, off Eastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knebel, H.J.; Folger, D.W.</p> <p>1976-01-01</p> <p>New seismic-reflection data show that large sand waves near the head of Wilmington Canyon on the Atlantic Outer Continental Shelf have a spacing of 100-650 m and a relief of 2-9 m. The bedforms trend northwest and are asymmetrical, the steeper slopes being toward the south or west. Vibracore sediments indicate that the waves apparently have formed on a substrate of relict nearshore sediments. Although the age of the original bedforms is unknown, the asymmetry is consistent with the dominant westerly to southerly drift in this area which has been determined by other methods; the asymmetry, therefore, is probably modern. Observations in the sand-wave area from a submersible during August 1975, revealed weak bottom currents, sediment bioturbation, unrippled microtopography, and lack of scour. Thus, the asymmetry may be maintained by periodic water motion, possibly associated with storms or perhaps with flow in the canyon head. ?? 1976.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC24B1086R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC24B1086R"><span>Evaluation of Bajo Blanco Sandbar as a Potential Beach Nourishment Borrow Site for Eroding Beaches in Rincon, Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rojas, C. A.; Canals, M.</p> <p>2016-02-01</p> <p>The municipality of Rincón, Puerto Rico is recognized for its world-class surfing beaches. Unfortunately, the coast from Punta Higüero to Punta Cadena in Rincón is experiencing long-term erosion (Thieler 2007), which has caused the destruction of many beachfront homes and hotels and had negative impacts on the local tourism-driven economy. The purpose of this project is to evaluate whether the nearby Bajo Blanco sandbar, located just offshore of these eroded beaches, could be used as a possible beach nourishment borrow site. A high-resolution bathymetric survey of Bajo Blanco sandbar was conducted along with a grain size analysis to compare the grain size distribution of the Bajo Blanco sandbar with the sediment properties of the eroded beaches. It was found that the sediment from Bajo Blanco is finer yet may be suitable as beach fill material for these beaches according to Dean's overfill ratio. Compatibility analysis suggests a total volume of sandbar sediment of approximately 685,555 cubic meters to allow successful beach equilibrium. To evaluate the potential effects of the sand extraction on the nearshore wave climate, numerical simulations were performed using the spectral wave model of the USACE Coastal Modeling System (CMS-Wave). Wave model results for several dredging scenarios suggest that wave energy flux concentrates around the shoal causing an increase in wave height at the northern and southern edges of the shoal. Therefore, conservation of energy leads to a reduction of wave energy flux shoreward of the shoal, causing a shadow of reduced wave height. In addition, the Tres Palmas Marine reserve is located just north of Bajo Blanco sandbar and features some of the healthiest Elkorn Corals in the Caribbean. To avoid excessive sedimentation of these reefs during dredging activities, the Particle Tracking Module (PTM), integrated in the Surface-water Modeling System (SMS), was used to evaluate the Lagrangian particle transport processes along Bajo Blanco under various wave conditions. Results suggest that dredging operations be conducted during small to moderate wave events, since the wave-induced currents related to these events force sediment particles to advect south and thus away from the Tres Palmas Marine Reserve.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1279/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1279/"><span>Hurricane Gustav: Observations and Analysis of Coastal Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.</p> <p>2009-01-01</p> <p>Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline, beaches, dunes, and infrastructure in the region that was heavily impacted by Hurricane Gustav.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016342','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016342"><span>Stability of giant sand waves in eastern Long Island Sound, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fenster, M.S.; FitzGerald, D.M.; Bohlen, W.F.; Lewis, R.S.; Baldwin, C.T.</p> <p>1990-01-01</p> <p>A combination of a highly accurate bathymetric surveying technique and in-situ submersible observations and measurements were used to assess the migrational trends and morphological changes of large sand waves (Ht ??? 17 m) in eastern Long Island Sound. Although residing in a high-energy tidal environment characterized by a net westward sediment flux, the large bedforms are relatively stable over the short term. Over a 7 month period, 55.1% of a total 2942 m of sand wave crestline lengths migrated less than the horizontal accuracy limits of navigation (2 m). Approximately 35% of the remaining sand wave crests migrated less than 4 m. Net migration of the sand wave crests in the study area was 0.2 m. In addition, the bulk form (center of area in profile view) or the base of the sand waves showed little, if any, movement. These data, in conjunction with flow data within the sand wave field, suggest that net migration rates are greater than the time span of this study and/or the sand waves move in response to large residual flows created by high-energy, aperiodic storm events. The latter scenerio suggests that day to day processes only serve to rework and modify the sand waves. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/289/ds289.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/289/ds289.pdf"><span>Sedimentary properties of shallow marine cores collected in June and September 2006, Hanalei Bay, Kaua‘i, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Draut, Amy E.; Bothner, Michael H.; Reynolds, Richard L.; Buchan, Olivia C.; Cochran, Susan A.; Casso, Michael A.; Baldwin, Sandra M.; Goldstein, Harland L.; Xiao, Jiang; Field, Michael E.; Logan, Joshua B.</p> <p>2007-01-01</p> <p>Sedimentary facies, short-lived isotopes 7Be, 137Cs, and 210Pb, and magnetic properties of sediment cores in Hanalei Bay, Kaua‘i, Hawai‘i, were used to assess sediment sources and patterns of deposition associated with seasonal flooding of the Hanalei River. Sediment cores were collected from the seafloor in June and September of 2006 to supplement similar data collected during the summer of 2005. The youngest and thickest terrigenous sediment was observed on the east side of the bay: near the Hanalei River mouth and in a bathymetric depression, known locally as the Black Hole, that acts as a temporary sediment sink. Deposits from floods that occurred between February and April 2006 left flood deposits in the eastern bay that, by June of 2006, were on the order of 10 cm thick. A flood occurred on August 7, 2006, that was smaller than floods that occurred the previous winter but was a substantial discharge event for the summer season. Deposits from the winter 2006 floods continued to dominate the sedimentary record in the eastern bay through early fall, even after the addition of newer sediment during the August 7 flood; this is consistent with the much higher sediment input of the winter floods compared with the August 7 flood. Broad variations in magnetic grain size and relative magnetite-hematite abundance in several sediment cores indicate many sources of upland terrigenous sediment. As a group, recent flood deposits show much less variation in these properties compared with older deposits, implying either that the 2006 winter–spring flood sediment originated from one or more distinct upland settings, or that substantial mixing of sediment from multiple sources occurred during transport. Sediment is most readily remobilized and advected out of the bay during winter, when oceanic conditions are energetic. In summer, wave and current measurements made concurrently with this study showed weak currents and little wave energy, indicating that sediment delivered during summer floods most likely remains in the bay until winter storms can remove it. Increased turbidity and sedimentation on corals resulting from floods of the Hanalei River could affect the sustainability of coral reefs and their many associated species. This possibility is of particular concern during summer months when wave energy is low and sediment is not readily remobilized and transported out of the bay. The timing (seasonality) and magnitude of sediment input to the coastal ocean relative to seasonal variations in wave and current energy could have significant ecological consequences for coral-reef communities in the Hawaiian Islands.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B51B0373A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B51B0373A"><span>2D Process-based Microbialite Growth Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Airo, A.; Smith, A.</p> <p>2007-12-01</p> <p>A 2D process-based microbialite growth model (MGM) has been developed that integrates the coupled effects of the microbialite growth and sediment distribution within a two-dimensional cross-section of a subaqueous bedrock profile. Sediment transport is realized through particle erosion and deposition that are a function of local wave energy which is computed on the basis of linear wave theory. Surface-normal microbialite growth is directly correlated to light intensity, which is computed for every point of the microbialite surface by using a Henyey- Greenstein-type relation for scattering and the Beer's Law for absorption in the water column. Shadowing effects by surrounding obstacles and/or overlying sediment are also considered. Sediment particles can be incorporated into the microbialite framework if growth occurs in the presence of sediment. The resulting meter-size microbialite constructs develop morphologies that correspond well to natural microbialites. Furthermore, changes of environmental factors such as light intensity, wave energy, and bedrock profile result in morphological variations of the microbialites that would be expected on the basis of the current understanding of microbialite growth and development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geomo.253..478J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geomo.253..478J"><span>Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David</p> <p>2016-01-01</p> <p>A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP31C..03O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP31C..03O"><span>Modeling Megacusps and Dune Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orzech, M.; Reniers, A. J.; Thornton, E. B.</p> <p>2009-12-01</p> <p>Megacusps are large, concave, erosional features of beaches, of O(200m) alongshore wavelength, which sometimes occur when rip channel bathymetry is present. It is commonly hypothesized that erosion of the dune and back beach will be greater at the alongshore locations of the megacusp embayments, principally because the beach width is narrower there and larger waves can more easily reach the dune toe (e.g., Short, J. Geol., 1979, Thornton, et al., Mar. Geol., 2007). At present, available field data in southern Monterey Bay provide some support for this hypothesis, but not enough to fully confirm or refute it. This analysis utilizes XBeach, a 2DH nearshore sediment transport model, to test the above hypothesis under a range of wave conditions over several idealized rip-megacusp bathymetries backed by dunes. Model results suggest that while specific wave conditions may result in erosional hot spots at megacusp embayments, other factors such as tides, wave direction, and surf zone bathymetry can often play an equal or stronger role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13B1623K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13B1623K"><span>Mechanisms of Sediment Transport to an Abandoned Distributary Channel on the Huanghe (Yellow River) Delta, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumpf, L. L.; Kineke, G. C.; Carlson, B.; Mullane, M.</p> <p>2017-12-01</p> <p>Avulsions on the fine-grained Huanghe delta have left it scarred with traces of abandoned distributary channels that become intertidal systems, open to water and sediment exchange with the sea. In 1996, an engineered avulsion of the Huanghe left a 30 km long abandoned channel to the south of the modern active river channel. Though all fluvial input was cut off, present-day sedimentation on the new tidal flats has been observed at rates around 2 cm/yr. The source must be suspended-sediment from the Bohai Sea conveyed by the tidal channel network, but the mechanisms promoting sediment import are unknown. Possible mechanisms include (A) import sourced from the sediment-rich buoyant coastal plume, (B) wave resuspension on the shallow shelf, (C) reverse-estuarine residual circulation in the tidal channel, and (D) tidal asymmetry in the channel. Over three summers, in situ measurements of current velocity, suspended-sediment concentration (SSC), and wave climate were made on the delta front, and measurements of velocity, SSC, and salinity were made within the tidal channel. Results suggest that the buoyant plume from the active Huanghe channel can transport sediment south toward the tidal channel mouth (A). Additionally, wave resuspension (B) takes place on the subaqueous topset beds when the significant wave height exceeds 1 m, providing potential sources of suspended-sediment to the tidal channel. Within the abandoned channel, the tidal channel can become hypersaline and exhibit reverse-estuarine circulation (C), which would promote import of turbid coastal water near the surface. Time-series of velocity in the tidal channel indicate that ebb currents are consistently higher than flood currents through the spring-neap cycle (D), with maximum velocities exceeding 1 m/s and corresponding maximum SSC reaching 2 g/L during spring tide. While ebb dominance would typically tend to flush the system of its sediment over time, sediment supplied to the tidal flats may not be removed during the ebb, leading to net accumulation. Flocculation may also enhance settling over the inundated mudflats, contributing to the observed sedimentation. If import and sedimentation proceed at current rates, this abandoned channel may eventually anneal, contributing to the stability of the Huanghe delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000118','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000118"><span>Wave climate, sediment supply and the depth of the sand-mud transition: A global survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>George, D.A.; Hill, P.S.</p> <p>2008-01-01</p> <p>The influences of wave climate and sediment supply on the depths of sand-mud transitions (hSMT) are investigated. Depths of sand-mud transitions (SMT) are based on published granulometric data from surface samples gathered from 14 sites in different wave-dominated coastal environments with fluvial input, including high energy (Columbia, Eel, Russian, San Lorenzo, Copper, and Nepean rivers), moderate energy (Ebro, Nile, Santa Clara, Tseng-wen and Kao-ping rivers), and low energy (Po, Pescara and Tronto rivers) regimes. Geometric mean diameter (GMD) and mud percent are compiled from samples along shore-normal transects, and significant correlation is found between these two textural descriptors. Nominally, the SMT is defined as the transition from GMD > 63????m to 25% mud. This dual definition is applied to the 14 systems, and hSMT is tabulated for each system. Correlation is found between hSMT and the depth at which wave-induced bottom shear stress equals the critical erosion shear stress of the largest mud particles and also between hSMT and significant wave height. Lack of correlation between hSMT and sediment load of nearby rivers indicates either that the influence of sediment supply on depth of the sand-mud transition is small or is not adequately represented in this study. Shelf width and slope do not correlate with residuals from a formalized linear relationship between hSMT and significant wave height. The relationship between hSMT and wave climate is useful for calibration of numerical models of erosion and deposition in wave-dominated coastal environments, for prediction of seabed properties in remote or inaccessible areas, and for reconstruction of paleodepth based on facies changes from sand to mud in ancient rocks. ?? 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26168283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26168283"><span>Influence of wave action on the partitioning and transport of unattached and floc-associated bacteria in fresh water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sousa, Andrew J; Droppo, Ian G; Liss, Steven N; Warren, Lesley; Wolfaardt, Gideon</p> <p>2015-08-01</p> <p>The dynamic interaction of bacteria within bed sediment and suspended sediment (i.e., floc) in a wave-dominated beach environment was assessed using a laboratory wave flume. The influence of shear stress (wave energy) on bacterial concentrations and on the partitioning and transport of unattached and floc-associated bacteria was investigated. The study showed that increasing wave energy (0.60 and 5.35 N/s) resulted in a 0.5 to 1.5 log increase in unattached cells of the test bacterium Pseudomonas sp. strain CTO7::gfp-2 in the water column. There was a positive correlation between the bacterial concentrations in water and the total suspended solids, with the latter increasing from values of near 0 to up to 200 mg/L over the same wave energy increase. The median equivalent spherical diameter of flocs in suspension also increased by an order of magnitude in all experimental trials. Under both low (0.60 N/s) and high (5.35 N/s) energy regime, bacteria were shown to preferentially associate with flocs upon cessation of wave activity. The results suggest that collecting water samples during periods of low wave action for the purpose of monitoring the microbiological quality of water may underestimate bacterial concentrations partly because of an inability to account for the effect of shear stress on the erosion and mobilization of bacteria from bed sediment to the water column. This highlights the need to develop a more comprehensive beach analysis strategy that not only addresses presently uncharacterized shores and sediments but also recognizes the importance of eroded flocs as a vector for the transport of bacteria in aquatic environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMOS21D..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMOS21D..06S"><span>Thirty Years of Nearshore Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanton, T. P.</p> <p>2006-12-01</p> <p>An assessment of Ed Thornton's contributions to nearshore wave, current and morphology research on the eve of his retirement reveals his ability to identify important unresolved processes, and to participate in multidisciplinary research programs that address those issues. While doing this, he has consistently helped foster the new generations of field scientists both by supervising strong masters and PhD students from around the world, and through working with successful postdoctoral students, many of whom will present talks in this session. This presentation will summarize the major field programs that he has very actively participated in starting from my first field work with him as a colleague/helper in the NSTS Blacks Beach and Santa Barbara experiments. In reviewing these experiments it is interesting to see the evolution of our understanding of the surf zone from simplified 2D wave breaking processes to the 3D wave/current/sediment transport problems seen in morphologically controlled rip currents, both through our ability to measure these processes, but also in the sophistication of numerical models of the nearshore. This review also shows how the consistent and well directed basic research funding from the Coastal Geosciences program at ONR has greatly benefited the Navy and the community at large. I know the nearshore community looks forward to continued associations with him during his very active retirement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3607L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3607L"><span>Dependence of ripple dimensions on cohesive and non-cohesive bed properties in the intertidal Dee Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtman, Ian; Thorne, Peter; Baas, Jacobus; O'Boyle, Louise; Cooke, Richard; Amoudry, Laurent; Bell, Paul; Aspden, Rebecca; Bass, Sarah; Davies, Alan; Hope, Julie; Malarkey, Jonathan; Manning, Andrew; Parsons, Daniel; Paterson, David; Peakall, Jeffrey; Schindler, Robert; Ye, Leiping</p> <p>2014-05-01</p> <p>There is a need to better understand the effects of cohesive and mixed sediments on coastal processes, to improve sediment transport models for the management of coastal erosion, siltation of navigation channels and habitat change. Although reasonable sediment transport predictors are available for pure sands, it still is not the case for mixed cohesive and non-cohesive sediments. Existing predictors mostly relate ripple dimensions to hydrodynamic conditions and median sediment grain diameter, assuming a narrow unimodal particle size distribution. Properties typical of mixed conditions, such as composition and cohesion for example, are not usually taken into account. This presents severe shortcomings to predictors' abilities. Indeed, laboratory experiments using mixed cohesive sediments have shown that bedform dimensions decrease with increasing bed mud content. In the field, one may expect current predictors to match data for well-sorted sands closely, but poorly for mixed sediments. Our work is part of the COHBED project and aims to: (1) examine, in field conditions, if ripple dimensions are significantly different for mixed cohesive sediment beds compared to beds with pure sand; (2) compare the field data with laboratory results that showed reduced ripple length due to cohesive mud content; and (3) assess the performance of a selection of ripple predictors for mixed sediment data. The COHBED project was set up to undertake laboratory experiments and fieldwork to study how physical and biological processes influence bedform development in a mixed cohesive-cohesionless sediment environment. As part of COHBED, a suite of instruments was deployed on tidal flats in the Dee Estuary (on the NW coast of England), collecting co-located measurements of the hydrodynamics, suspended sediment properties and bed morphology. The instruments occupied three sites collecting data over different bed compositions during a two week period (21 May to 4 June 2013). One site was located above a sandy bed, and the two others were above mixed beds of different mud content. The tide covered a full cycle from neaps to neaps and the weather provided onshore and offshore winds of varying strength. Bedform measurements were taken every half an hour using an Acoustic Ripple Profiler (ARP) that covered an area of about two square metres. Dynamic measurements of tides and waves were made using an Acoustic Doppler Velocimeter (ADV) at 8 Hz. Bed samples were taken when the tidal flats dried out at low tide and a sediment trap collected suspended load near the bed. In the presentation, comparisons of the sites will be made from measurements of the proportion of mud and biological sediment binders at each site and the ripple dimensions for different hydrodynamic conditions. Key words: bed morphology, current ripple, mixed sediment, cohesion, hydrodynamics, observations, tidal flat, estuary, Dee</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GML....35...23B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GML....35...23B"><span>Modern sedimentation processes in a wave-dominated coastal embayment: Espírito Santo Bay, southeast Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bastos, Alex Cardoso; Costa Moscon, Daphnne Moraes; Carmo, Dannilo; Neto, José Antonio Baptista; da Silva Quaresma, Valéria</p> <p>2015-02-01</p> <p>Sediment dynamics in wave-dominated coastal embayments are generally controlled by seasonal meteorological conditions, storms having a particularly strong influence. In the present study, such hydrodynamic processes and associated deposits have been investigated in a coastal embayment located along the southeast coast of Brazil, i.e. Espírito Santo Bay, in the winter (June/July) of 2008. The bay has undergone a series of human interventions that have altered the local hydrodynamic processes and, consequently, the sediment transport patterns. Facies distribution and sediment dynamics were examined by acoustic seabed mapping, sediment and core sampling, hydrodynamic measurements and sand transport modelling. The results show that sediment distribution can be described in terms of nearshore and offshore zones. The offshore bay sector is predominantly composed of "palimpsest" lithoclastic medium-coarse sands deposited in the course of the early Holocene transgression that peaked about 5,000 years ago. In the inner bay or nearshore zone (up to depths of 4-8 m), these older transgressive deposits are today overlain by a thin (up to 30-cm-thick) and partly patchy blanket of younger regressive fine sand/muddy fine sands. Both coarse- and fine-grained facies are being reworked during high-energy events (Hs>1.5 m) when fine sediment is resuspended, weak tide-induced drift currents causing the sand patches to be displaced. The coarser sediment, by contrast, is mobilized as bedload to produce wave ripples with spacings of up to 1.2 m. These processes lead to a sharp spatial delimitation between a fine sand/mud facies and a rippled coarse sand facies. The fine sand patches have a relief of about 20-30 cm and reveal a typical internal tempestite depositional sequence. Fair-weather wave-induced sediment transport (Hs<1 m), supported by weak tidal currents, seems to only affect the fine sediment facies. Sediment dynamics in Espírito Santo Bay is thus essentially controlled by wave action during storms, tidal currents playing a very subordinate role. Anthropogenic changes due to the construction of a port at the entrance of the bay have not only produced erosion along the beach, but could also explain the occurrence of sand patches concentrated in the north-eastern part of the bay. Because storm-induced deposits of the type observed in this study have an inherently patchy distribution, this feature needs to be taken into consideration when interpreting the rock record in terms of modern analogues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034533','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034533"><span>Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hanes, D.M.; Ward, K.; Erikson, L.H.</p> <p>2011-01-01</p> <p>Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711496M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711496M"><span>Impact of wave action on the structure of material on the beach in Calypsobyen (Spitsbergen)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mędrek, Karolina; Herman, Agnieszka; Moskalik, Mateusz; Rodzik, Jan; Zagórski, Piotr</p> <p>2015-04-01</p> <p>The research was conducted during the XXVI Polar Expedition of Maria Curie-Sklodowska University in Lublin on Spitsbergen. It involved recording water wave action in the Bellsund Strait, and taking daily photographs of the beach on its shore in Calypsobyen. The base of polar expeditions of UMCS, Calypsobyen, is located on the coast of Calypsostranda, developed by raised marine terraces. Weakly resistant Tertiary sandstones occur in the substrate, covered with glacigenic sediments and marine gravels. No skerries are encountered along this section of the accumulation coast. The shore is dominated by gravel deposits. The bottom slopes gently. The recording of wave action was performed from 8 July to 27 August 2014 by means of a pressure based MIDAS WTR Wave and Tide Recorder set at a depth of 10 m at a distance of about 1 km from the shore. The obtained data provided the basis for the calculation of the significant wave height, and the corresponding mean wave period . These parameters reflect wave energy and wave level, having a considerable impact on the dynamics of coastal processes and the type and grain size of sediments accumulated on the beach. Material consisting of medium gravel and seaweed appeared on the beach at high values of significant wave height and when the corresponding mean wave period showed average values. The contribution of fine, gravel-sandy material grew with an increase in mean period and a decrease in significant wave height. At maximum values of mean period and low values of significant wave height, the beach was dominated by well-sorted fine-grained gravel. The lowest mean periods resulted in the least degree of sorting of the sediment (from very coarse sand to medium gravel). The analysis of data from the wave and tide recorder set and their comparison with photographs of the beach suggest that wave action, and particularly wave energy manifested in significant wave height, has a considerable impact on the type and grain size of material occurring on the shore of the fjord. The mean period is mainly responsible for sorting out the sediment, and the size of gravels is associated with significant wave height. Project of National Science Centre no. DEC-2013/09/B/ST10/04141</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS71A0262B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS71A0262B"><span>Beach protection by a system of permeable groins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boczar-Karakiewicz, B.; Romanczyk, W.; Roy, N.</p> <p>2002-12-01</p> <p>A new type of permeable groin (called System of Groins Maltec-Savard - SGMS) has been installed at three eroded sites located in the coastal area on the north shore of the St. Lawrence, Quebec, Canada. In this area, the narrow sandy beaches with sandy or sand-silty cliff of variable height (10-15~m) are exposed to obliquely incident waves arriving from both west (summer) and east (autumn), and to tidal currents (maximum tidal rate is 4.3~m). The periods of summer waves equal 3-5~s, with wave heights of about 0.4-0.7~m. In the autumn, major storm waves reach periods of up to 7-10~s, with wave heights of 1.0-1.2~m. The new groins are sediment traps formed by a central double and permeable groin with several smaller lateral, groins installed on one or both sides of the central groin (Boczar-Karakiewicz et al., 2001). The permeable central and lateral groins are structured by inserting double ranges of wooden piles (diameter of about 10 cm). The space between the ranges of piles (some 0.8~m wide) is filled with tree branches (e.g., the top parts of pine trees, a waste product of the local forest industry). A permeable grid covering the top of the groins forms a cage that holds the branches in place. The lateral groins, are identical but much shorter than the central groin. The whole system dissipates the incident energy of wave- and tidally-generated currents and causes accretion of sand transported by these currents. The GSMS also allows the by-pass of some sediment to adjacent zones without groins. Observations and results of measurements from three experiments field show that: (1) a sandy beach in front of a coastal cliff secures its stability and attenuates the erosion caused by waves and tidal currents; (2) permeability and flexibility of the SGMS causes the accretion of sediment in the protected area without erosion in the neighboring zones; (3) the SGMS does not generate wave reflection and any secondary current; (4) the materials of the groins are easily available, and the cost is low (waste material of the local forest industry); (5) the construction is simple and can be carried out by low-skilled labor force. Boczar-Karakiewicz, B., W. Romanczyk, N. Roy, N. Pelletier, L. Maltec and J.-P. Savard. 2001. New method of beach protection adapted to coastal zones of the estuary of the Saint Lawrence river, Quebec, Canada. Proc. Can. Coast. Conf., Quebec, QC, Canada: 201-214 (in French).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026604','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026604"><span>Process based modeling of total longshore sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haas, K.A.; Hanes, D.M.</p> <p>2004-01-01</p> <p>Waves, currents, and longshore sand transport are calculated locally as a function of position in the nearshore region using process based numerical models. The resultant longshore sand transport is then integrated across the nearshore to provide predictions of the total longshore transport of sand due to waves and longshore currents. Model results are in close agreement with the I1-P1 correlation described by Komar and Inman (1970) and the CERC (1984) formula. Model results also indicate that the proportionality constant in the I1-P1 formula depends weakly upon the sediment size, the shape of the beach profile, and the particular local sediment flux formula that is employed. Model results indicate that the various effects and influences of sediment size tend to cancel out, resulting in little overall dependence on sediment size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6883T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6883T"><span>Upper crustal structure of the North Anatolian Fault Zone from ambient seismic noise Rayleigh and Love wave tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, George; Rost, Sebastian; Houseman, Gregory; Hillers, Gregor</p> <p>2017-04-01</p> <p>By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a region that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ˜1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand moved in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in surface wave group velocity. To the north of the NAFZ, we observe low Rayleigh wave group velocities ( 1.2 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ, we detect high velocities ( 2.5 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026773','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026773"><span>Methane hydrate formation in partially water-saturated Ottawa sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waite, W.F.; Winters, W.J.; Mason, D.H.</p> <p>2004-01-01</p> <p>Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21C0724Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21C0724Y"><span>Joint inversion of high resolution S-wave velocity structure underneath North China Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, C.; Li, G.; Niu, F.</p> <p>2017-12-01</p> <p>North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn..68....1D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn..68....1D"><span>Hindcast of breaking waves and its impact at an island sheltered coast, Karwar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dora, G. Udhaba; Kumar, V. Sanil</p> <p>2018-01-01</p> <p>Variability in the characteristics of depth-induced wave breakers along a non-uniform coastal topography and its impact on the morpho-sedimentary processes is examined at the island sheltered wave-dominated micro-tidal coast, Karwar, west coast of India. Waves are simulated using the coupled wind wave model, SWAN nested in WAVEWATCH III, forced by the reanalysis winds from different sources (NCEP/NCAR, ECMWF, and NCEP/CFSR). Impact of the wave breakers is evaluated through mean longshore current and sediment transport for various wave energy conditions across different coastal morphology. Study revealed that the NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the SWAN model nested by 2D wave spectra generated from WAVEWATCH III. The Galvin formula for estimating mean longshore current using the crest wave period and the Kamphuis approximation for longshore sediment transport is observed realistically at the sheltered coastal environment while the coast interacts with spilling and plunging breakers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP23A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP23A..03K"><span>Sediment fluxes and delta evolution at Tuapaat, Disko Island, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kroon, A.; Andersen, T. J.; Bendixen, M.</p> <p>2013-12-01</p> <p>Ice and snow and freezing temperatures have an important influence on the coastal morphodynamics in arctic polar coastal environments. Global climate changes induce many changes along the arctic coasts. Sea-levels are rising due to thermal expansion and due to an increased fresh water flux from the glaciers and land ice masses while ice coverage of the coastal waters decreases and the open water periods in summer extend. On a yearly basis, there is a strong variation over the seasons with open waters and active rivers in summer and ice-covered coastal waters and inactive rivers in winter. The coastal processes by waves and tides are thus often limited to the summer and early fall. On a daily basis, there is also a strong variation in fluvial discharges due to the daily variations in glacier melt with maximum melt in the afternoon and minimum values at night. At the same time, the actual flux of the river to the coastal bay is also influenced by the tidal phase: low tides in the afternoon will probably give the maximum plumes in the coastal waters and high tides in the early morning will reduce the input of sediments to the coastal waters to zero. The southern shore of Disko Island in western Greenland has four deltas: Igpik, Signiffik, Tuappat and Skansen. The sediments of these deltas are a mixture of sand and gravel and they are fed by melting glaciers. The Tuapaat delta is located at the end of a pro-glacial and fluvial valley at about 16 km from the glacier. The shores of the delta are reworked by waves, predominantly from southwestern (largest fetch, over 50 km), southern, and southeastern directions. The environment has a micro- to meso- tidal range with a spring tidal range of 2.7m. The morphologic changes on the delta over the last decades clearly showed an eastward migration of the main delta channel, probably due to wave-driven alongshore processes in the ice-free periods. In this presentation, we focus on quantification of sediment fluxes on the Tuapaat delta in western Greenland. We highlight the variation of the fluxes over days with changing river discharges and tidal phases. We use field observations of discharges and sediment fluxes at the lower part of the river close to the delta apex and at the delta mouth (ADV-frame and CTD-observations) during an 8 days period from neap-tide to spring-tide in July 2013. Besides, we estimate the wave impact during the period, using climatic variables and a numerical model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1041/pdf/ofr2015-1041_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1041/pdf/ofr2015-1041_pamphlet.pdf"><span>California State Waters Map Series: Drakes Bay and vicinity, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.</p> <p>2015-01-01</p> <p>Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS43B1287B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS43B1287B"><span>Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brodie, K. L.; McNinch, J. E.</p> <p>2008-12-01</p> <p>Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129159','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129159"><span>Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.</p> <p>2014-01-01</p> <p>We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.1446B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.1446B"><span>Insights into lateral marsh retreat mechanism through localized field measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H.</p> <p>2016-02-01</p> <p>Deterioration of salt marshes may be due to several factors related to increased anthropic pressure, sea level rise, and erosive processes. While salt marshes can reach equilibrium in the vertical direction, adapting to sea level rise, they are inherently unstable in the horizontal direction. Marsh boundaries are characterized by scarps with bare sediment below the vegetated surface layer that can be easily removed by wave-induced erosion. In this work, we explore the different mechanisms involved in the erosion of marsh borders through the interpretation of field data. The analysis is based on a systematic field monitoring of a salt marsh in the Venice Lagoon subject to lateral erosion. Measurements included horizontal retreat of the scarp at various locations and wave height in front of the marsh during three storm surges. Continuous erosion and mass failures alternated during the observed period, leading to an average retreat up to 80 cm/yr. The data, collected roughly every month for 1.5 year, indicate that the linear relation that links the observed erosion rate to the impinging wave power exhibits a larger slope than that already estimated in literature on the basis of long-term surveys. Moreover, an increase in the gradient of erodibility is detected along the marsh scarp, due to the combined action of soil strengthening by vegetation on the marsh surface and the impact of wave breaking at the bank toe, which promote cantilever failures and increase the lateral erosion rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA422568','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA422568"><span>Experimental Study of Sound Waves in Sandy Sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-05-01</p> <p>parameter model ) and measurements (using a reflection ratio technique) includes derivations and measurements of acoustic imped- ances, effective densities...22 2.9 Model Used to Find Acoustic Impedance of Biot Medium . . . . . . . . . . . . . . 24 2.10 Free Body Diagram of...38] derived the complex reflection coefficient of plane acoustic waves from a poro-elastic sediment half-space. The boundary condition model is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMOS51A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMOS51A..07S"><span>Measurements of Sediment Transport in the Western Adriatic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherwood, C. R.; Hill, P. S.</p> <p>2003-12-01</p> <p>Instrumented bottom tripods were deployed at two depths (10 and 20 m) off the mouth of the Chienti River in the western Adriatic Sea from November 2002 to May 2003 as part of the EuroSTRATAFORM Po and Apennine Sediment Transport and Accumulation (PASTA) Experiment. Waves, currents, and proxies for suspended-sediment concentrations were measured with upward-looking acoustic Doppler current meters, downward looking pulse-coherent acoustic Doppler profilers, single-point acoustic Doppler velocimeters, and acoustic and optical backscatter sensors. Flow was dominated by the western Adriatic coastal current (WACC) during the experiment. Mean southward alongshore velocity 2 m below the surface was 0.10 m/s at the 10-m site and 0.23 m/s at the 20-m site, and flow was modulated by tides, winds, and fluctuating riverflow. The largest waves (3 m significant height) were generated by winds from the southeast during a Sirocco event in late November that generated one of the few episodes of sustained northward flow and sediment transport. Most of the time, however, sediment resuspension and transport was dominated by Bora events, when downwelling-favorable winds from the northeast generated waves that resuspended sediment and simultaneously enhanced southward flow in the WACC. Mean flow near the bottom was slightly offshore at the 20-m site (0.01 m/s at 3 m above the bottom), but there was no significant correlation between downwelling and wave-induced resuspension, and cross-shelf sediment fluxes were small. The combination of persistent southward flow with low rates of cross-shelf leakage makes the WACC an efficient conduit for sediment past the Chienti region. If these observations are representative of typical winter conditions along the entire western Adriatic, they may help explain the enigmatic development of Holocene shelf-edge clinoforms that have formed hundreds of kilometers south of the Po River, which provides most of the sediment to the Adriatic Sea. Future data analysis and modeling is planned to investigate the mechanism(s) that apparently limit(s) sediment leakage from the WACC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CSR....47...55O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CSR....47...55O"><span>Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central Great Barrier Reef: A reappraisal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orpin, Alan R.; Ridd, Peter V.</p> <p>2012-09-01</p> <p>Suspended sediment in the coastal zone is an important limiting factor for the growth and health of inshore coral reefs. The Great Barrier Reef (GBR) lagoon receives sediment from a number of tropical rivers and the physical and biological effects of riverine discharge and turbidity within the lagoon are of considerable scientific and public interest. Published data from two inshore regions of the GBR are reviewed herein to evaluate the relative influence of river plumes and wave resuspension on suspended sediment concentration (SSC) around coral communities over a range of timescales. Data from Cleveland Bay and from other sites near the mouth of the Tully River show that wave resuspension is the most dominant mechanism controlling SSC at inshore reefs. At many nearshore areas today fine-grained bed sediment is abundant, consistent with millennial-scale geological evidence of sediment dispersal prior to European settlement and catchment impacts. Flocculation, particle settling and dilution occurs within the river plume, and riverine sediment concentrations at reefs directly attributable to individual flood inputs is significantly reduced, suggesting that the plume component is a relatively small contribution to the total suspended sediment mass balance over inter-annual timescales. Resuspension events can generate higher ambient SSC than that measured in flood waters (e.g. Tully River). In addition, while visually spectacular, satellite and aerial images offer limited quantitative information of total sediment load carried by hypopycnal plumes, as many of these plumes may contain algal blooms but relatively low concentrations of suspended sediment (ca. <5 mg/l). Nonetheless, the cumulative effect of sediment-laden plumes may be a vector for other adsorbed contaminants of potential ecological concern, but coral smothering by hypopycnal plumes alone appears an unlikely impact particularly at inner- and middle-shelf reefs exposed to high wave energy and resuspension. Terrigenous sediment dispersal and turbidity within the GBR is governed by physical processes common to many continental shelves globally. Despite the examples examined in detail herein, the role of frequency, magnitude and duration in determining the impact or exposure of corals to elevated SSCs is poorly constrained by limited quantitative measurements during events, and our ability to place these into a broader temporal context. More high-quality observational data, at meaningful length-scales, can only enhance our ability to disentangle potential behavioural shifts in environmental responses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018668','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018668"><span>Observations of sediment transport on the Amazon subaqueous delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sternberg, R.W.; Cacchione, D.A.; Paulson, B.; Kineke, G.C.; Drake, D.E.</p> <p>1996-01-01</p> <p>A 19-day time series of fluid, flow, and suspended-sediment characteristics in the benthic boundary layer is analyzed to identify major sedimentary processes active over the prodelta region of the Amazon subaqueous delta. Measurements were made by the benthic tripod GEOPROBE placed on the seabed in 65 m depth near the base of the deltaic foreset beds from 11 February to 3 March 1990, during the time of rising water and maximum sediment discharge of the Amazon River; and the observations included: hourly measurements of velocity and suspended-sediment concentration at four levels above the seabed; waves and tides; and seabed elevation. Results of the first 14-day period of the time series record indicate that sediment resuspension occurred as a result of tidal currents (91% of the time) and surface gravity waves (46% of the time). Observations of suspended sediment indicated that particle flux in this region is 0.4-2% of the flux measured on the adjacent topset deposits and is directed to the north and landward relative to the Brazilian coast (268??T). Fortnightly variability is strong, with particle fluxes during spring tides five times greater than during neap tides. On the 15th day of the data record, a rapid sedimentation event was documented in which 44 cm of sediment was deposited at the study site over a 14-h period. Evaluation of various mechanisms of mass sediment movement suggests that this event represents downslope migration of fluid muds from the upper foreset beds that were set in motion by boundary shear stresses generated by waves and currents. This transport mechanism appears to occur episodically and may represent a major source of sediment to the lower foreset-bottomset region of the subaqueous delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28301502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28301502"><span>Long-term moderate wind induced sediment resuspension meeting phosphorus demand of phytoplankton in the large shallow eutrophic Lake Taihu.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chao, Jian-Ying; Zhang, Yi-Min; Kong, Ming; Zhuang, Wei; Wang, Long-Mian; Shao, Ke-Qiang; Gao, Guang</p> <p>2017-01-01</p> <p>The objective of this study was to investigate the impact of sediment resuspension and phosphorus (P) release on phytoplankton growth under different kinds of wind-wave disturbance conditions in the large and shallow eutrophic Lake Taihu in China. Short-term strong wind (STSW) conditions, long-term moderate wind (LTMW) conditions, and static/calm conditions were investigated. To address this objective, we (1) monitored changes in surface water P composition during field-based sediment resuspension caused by STSW conditions in Lake Taihu, and also conducted (2) a series of laboratory-based sediment resuspension experiments to simulate LTMW and calm conditions. The results showed that under both strong and moderate wind-wave conditions, suspended solids (SS) and total phosphorus (TP) in the water column increased significantly, but total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) remained low throughout the experiments, indicating that the P released from sediments mainly existed in particulate forms. In STSW conditions, alkaline phosphatase activity (APA) and enzymatically hydrolysable phosphorus (EHP) increased rapidly, with the peak value occurring following the peak value of wind speed for 1-2 days, and then rapidly decreased after the wind stopped. Under LTMW conditions, APA and EHP increased steadily, and by the end of the laboratory experiments, APA increased by 11 times and EHP increased by 5 times. Chlorophyll a (Chl-a) in LTMW conditions increased significantly, but remained low under STSW conditions, demonstrating that the former type of sediment P release promoted phytoplankton growth more effectively, and the latter type did not. Despite the fact that STSW conditions resulted in the release of more TP, TP settled to the bottom rapidly with SS after the wind stopped, and did not promote algal growth. Under LTMW conditions, suspended particulate P was hydrolyzed to SRP by phosphatase and promoted algae growth. Algal growth in turn secreted more phosphatase and accelerated particulate P regeneration, which may be the main mechanism of sediment bio-available P release that promotes phytoplankton growth in shallow lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3195332','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3195332"><span>Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Myung W.; Waite, William F.</p> <p>2011-01-01</p> <p>Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. PMID:21476628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMS...129...96S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMS...129...96S"><span>Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soomere, Tarmo; Viška, Maija</p> <p>2014-01-01</p> <p>Alongshore variations in sediment transport along the eastern Baltic Sea coast from the Sambian (Samland) Peninsula up to Pärnu Bay in the Gulf of Riga are analysed using long-term (1970-2007) simulations of the nearshore wave climate and the Coastal Engineering Research Centre (CERC) wave energy flux model applied to about 5.5 km long beach sectors. The local rate of bulk transport is the largest along a short section of the Sambian Peninsula and along the north-western part of the Latvian coast. The net transport has an overall counter-clockwise nature but contains a number of local temporary reversals. The alongshore sediment flux has several divergence and convergence points. One of the divergence points at the Akmenrags Cape divides the sedimentary system of the eastern coast of the Baltic Proper into two almost completely separated compartments in the simulated wave climate. Cyclic relocation of a highly persistent convergence point over the entire Curonian Spit suggests that this landform is in almost perfect dynamical equilibrium in the simulated approximation of the contemporary wave climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP21E..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP21E..04G"><span>Onset and Dynamics of a Subaqueous Dune Field in a Tideless Erosional Deltaic Shoreface: an Analog for the Initial Development of Sand Ridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guerrero, Q.; Guillén, J.; Durán, R.; Urgeles, R.</p> <p>2016-12-01</p> <p>A subaqueous dune field located over a retreating deltaic lobe in the Ebro delta (NW Mediterranean) is morphodynamically characterized by analyzing three sets of co-located, multibeam bathymetric data acquired in 2004, 2013 and 2015, measurements of near-bottom currents and suspended sediment concentrations, high-resolution seismic profiles and aerial photographs. The dunes, made of fine sand, extend from 5 to 15 m water depth, have straight crestlines and maximum heights and wavelengths of 2.5 and 350 m, respectively (Fig. 1). Results suggest that the onset of dune field development is closely related to the contemporary evolution of the Ebro delta. A change in the main river channel in the 1940s led to the progressive abandonment of the former river mouth, severe coastal retreatment ( 37 m·y-1) and increased sediment availability. The characteristic NW winds of the region induce near-bottom currents flowing towards the SE which are able to rework and transport these sediments. The dune field developed over the shoreface of the abandoned river mouth and is currently active with mean SE migration rates of 10 m·y-1, most likely when high-energetic currents occur. The morphology of the dune field and crestline obliquity to shoreline orientation agree well with that observed in sand ridges of continental shelves worldwide. Mid-outer shelf sand ridges have been interpreted as sedimentary bodies formed in coastal waters and detached from the coast during sea level rise. The studied dune field could therefore be an example of the initial stages of sand ridges development when large amounts of sand are suddenly available. The field developed when the river mouth switched, favored by a pre-existing seafloor irregularity. Despite the time-scale for the genesis and evolution of shoreface sand ridges has been set in time-scales of hundreds/thousands of years, this study shows that shoreface sand ridges can develop during shorter time-scales (tens of years). Furthermore, it is discussed that, in absence of a rapid sea level rise, these sand ridges probably will vanish as a consequence of sediment scarcity and wave reworking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.4584J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.4584J"><span>Sediment gravity flows triggered by remotely generated earthquake waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.</p> <p>2017-06-01</p> <p>Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189210','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189210"><span>Sediment gravity flows triggered by remotely generated earthquake waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie</p> <p>2017-01-01</p> <p>Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176404','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176404"><span>Studying seafloor bedforms using autonomous stationary imaging and profiling sonars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Montgomery, Ellyn T.; Sherwood, Christopher R.</p> <p>2014-01-01</p> <p>The Sediment Transport Group at the U.S. Geological Survey, Woods Hole Coastal and Marine Science Center uses downward looking sonars deployed on seafloor tripods to assess and measure the formation and migration of bedforms. The sonars have been used in three resolution-testing experiments, and deployed autonomously to observe changes in the seafloor for up to two months in seven field experiments since 2002. The sonar data are recorded concurrently with measurements of waves and currents to: a) relate bedform geometry to sediment and flow characteristics; b) assess hydrodynamic drag caused by bedforms; and c) estimate bedform sediment transport rates, all with the goal of evaluating and improving numerical models of these processes. Our hardware, data processing methods, and test and validation procedures have evolved since 2001. We now employ a standard sonar configuration that provides reliable data for correlating flow conditions with bedform morphology. Plans for the future are to sample more rapidly and improve the precision of our tripod orientation measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.S51C0068M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.S51C0068M"><span>Sub-basaltic Imaging of Ethiopian Mesozoic Sediments Using Surface Wave Dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mammo, T.; Maguire, P.; Denton, P.; Cornwell, D.</p> <p>2003-12-01</p> <p>The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) involved the deployment of a 400km NW-SE cross-rift profile across the Main Ethiopian Rift. The profile extended to about 150km on either side of the rift over the uplifted Ethiopian plateau characterized by voluminous Tertiary flood basalts covering a thick sequence of Mesozoic sediments. These consist of three major stratigraphic units, the Cretaceous Upper Sandstone (medium grained, friable and moderately to well-sorted) overlying the Jurassic Antalo limestone (with intercalations of marl, shale, mudstone and gypsum) above the Triassic Adigrat sandstone. These sediments are suggested to be approximately 1.5km thick at the north-western end of the profile, thickening to the south-east. They are considered a possible hydrocarbon reservoir and therefore crucial to the economy of Ethiopia. The EAGLE cross-rift profile included the deployment of 97 Guralp 6TD seismometers (30sec - 80Hz bandwidth) at a nominal 5km spacing. A 5.75 tonne explosion from the Muger quarry detonated specifically for the EAGLE project generated the surface waves used in this study. Preliminary processing involving the multiple filter technique has enabled the production of group velocity dispersion curves. These curves have been inverted to provide 1-D shear wave models, with the intention of providing an in-line cross-rift profile of Mesozoic sediment thickness. Preliminary results suggest that the sediments can be distinguished from both overlying plateau basalt and underlying basement, with their internal S-wave velocity structure possibly indicating that the three sediment units described above can be separately identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5721B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5721B"><span>Poisson's ratio model derived from P- and S-wave reflection seismic data at the CO2CRC Otway Project pilot site, Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beilecke, Thies; Krawczyk, Charlotte M.; Tanner, David C.; Ziesch, Jennifer; Research Group Protect</p> <p>2014-05-01</p> <p>Compressional wave (P-wave) reflection seismic field measurements are a standard tool for subsurface exploration. 2-D seismic measurements are often used for overview measurements, but also as near-surface supplement to fill gaps that often exist in 3-D seismic data sets. Such supplementing 2-D measurements are typically simple with respect to field layout. This is an opportunity for the use of shear waves (S-waves). Within the last years, S-waves have become more and more important. One reason is that P- and S-waves are differently sensitive to fluids and pore fill so that the additional S-wave information can be used to enhance lithological studies. Another reason is that S-waves have the advantage of higher spatial resolution. Within the same signal bandwidth they typically have about half the wavelength of P-waves. In near-surface unconsolidated sediments they can even enhance the structural resolution by one order of magnitude. We make use of these capabilities within the PROTECT project. In addition to already existing 2-D P-wave data, we carried out a near surface 2-D S-wave field survey at the CO2CRC Otway Project pilot site, close to Warrnambool, Australia in November 2013. The combined analysis of P-wave and S-wave data is used to construct a Poisson's Ratio 2-D model down to roughly 600 m depth. The Poisson's ratio values along a 1 km long profile at the site are surprisingly high, ranging from 0.47 in the carbonate-dominated near surface to 0.4 at depth. In the literature, average lab measurements of 0.22 for unfissured carbonates and 0.37 for fissured examples have been reported. The high values that we found may indicate areas of rather unconsolidated or fractured material, or enhanced fluid contents, and will be subject of further studies. This work is integrated in a larger workflow towards prediction of CO2 leakage and monitoring strategies for subsurface storage in general. Acknowledgement: This work was sponsored in part by the Australian Commonwealth Government through the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC). PROTECT is funded through the Geotechnologien research programme in Germany (grant 03G0797).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156313','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156313"><span>Tidal asymmetry and variability of bed shear stress and sediment bed flux at a site in San Francisco Bay, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brennan, Matthew L.; Schoellhamer, David H.; Burau, Jon R.; Monismith, Stephen G.; Winterwerp, J.C.; Kranenburg, C.</p> <p>2002-01-01</p> <p>The relationship between sediment bed flux and bed shear stress during a pair of field experiments in a partially stratified estuary is examined in this paper. Time series of flow velocity, vertical density profiles, and suspended sediment concentration were measured continuously throughout the water column and intensely within 1 meter of the bed. These time series were analyzed to determine bed shear stress, vertical turbulent sediment flux, and mass of sediment suspended in the water column. Resuspension, as inferred from near-bed measurements of vertical turbulent sediment flux, was flood dominant, in accordance with the flood-dominant bed shear stress. Bathymetry-induced residual flow, gravitational circulation, and ebb tide salinity stratification contributed to the flood dominance. In addition to this flow-induced asymmetry, the erodibility of the sediment appears to increase during the first 2 hours of flood tide. Tidal asymmetry in bed shear stress and erodibility help explain an estuarine turbidity maximum that is present during flood tide but absent during ebb tide. Because horizontal advection was insignificant during most of the observation periods, the change in bed mass can be estimated from changes in the total suspended sediment mass. The square wave shape of the bed mass time series indicates that suspended sediment rapidly deposited in an unconsolidated or concentrated benthic suspension layer at slack tides and instantly resuspended when the shear stress became sufficiently large during a subsequent tide. The variability of bed mass associated with the spring/neap cycle (about 60 mg/cm2) is similar to that associated with the semidiurnal tidal cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27476427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27476427"><span>Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Lei; Fang, Hongwei; He, Guojian; Jiang, Helong; Wang, Changhui</p> <p>2016-12-01</p> <p>Wind-driven sediment resuspension exerts significant effects on the P behavior in shallow lake ecosystems. In this study, a comprehensive dynamic phosphorus (P) model that integrates hydrodynamic, wind wave and sediment transport is proposed to assess the importance of internal P cycling due to sediment resuspension on water column P levels. The primary contribution of the model is detailed modeling and rigorous coupling of sediment and P dynamics. The proposed model is applied to predict the P behavior in the shallow Taihu Lake, which is the third largest lake in China, and quantitatively estimate the effects of wind waves and lake currents on P release and distribution. Both the prevailing southeast winds in summer and northwest winds in winter are applied for the simulation, and different wind speeds of 5 m/s and 10 m/s are also considered. Results show that sediment resuspension and the resulting P release have a dominant effect on P levels in Taihu Lake, and likely similar shallow lakes. Wind-driven waves at higher wind speeds significantly enhance sediment resuspension and suspended sediment concentration (SSC). Total P concentration in the water column is also increased but not in proportion to the SSC. The different lake circulations resulting from the different prevailing wind directions also affect the distribution of suspended sediment and P around the lake ultimately influencing where eutrophication is likely to occur. The proposed model demonstrates that internal cycling in the lake is a dominant factor in the lake P and must be considered when trying to manage water quality in this and similar lakes. The model is used to demonstrate the potential effectiveness of remediation of an area where historical releases have led to P accumulation on overall lake quality. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS21B1721H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS21B1721H"><span>Modeled alongshore circulation and morphologic evolution onshore of a large submarine canyon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, J. E.; Raubenheimer, B.; List, J. H.; Elgar, S.; Guza, R. T.; Lippmann, T. C.</p> <p>2012-12-01</p> <p>Alongshore circulation and morphologic evolution observed at an ocean beach during the Nearshore Canyon Experiment, onshore of a large submarine canyon in San Diego, CA (USA), are investigated using a two-dimensional depth-averaged numerical model (Delft3D). The model is forced with waves observed in ~500 m water depth and tidal constituents derived from satellite altimetry. Consistent with field observations, the model indicates that refraction of waves over the canyon results in wave focusing ~500 m upcoast of the canyon and shadowing onshore of the canyon. The spatial variability in the modeled wave field results in a corresponding non-uniform alongshore circulation field. In particular, when waves approach from the northwest the alongshore flow converges near the wave focal zone, while waves that approach from the southwest result in alongshore flow that diverges away from the wave focal zone. The direction and magnitude of alongshore flows are determined by a balance between the (often opposing) radiation stress and alongshore pressure gradients, consistent with observations and previous results. The largest observed morphologic evolution, vertical accretion of about 1.5 m in about 3 m water depth near the wave focal zone, occurred over a one-week period when waves from the northwest reached heights of 1.8 m. The model, with limited tuning, replicates the magnitude and spatial extent of the observed accretion and indicates that net accretion of the cross-shore profile was owing to alongshore transport from converging alongshore flows. The good agreement between the observed and modeled morphology change allows for an in-depth examination of the alongshore force balance that resulted in the sediment convergence. These results indicate that, at least in this case, a depth-averaged hydrodynamic model can replicate observed surfzone morphologic change resulting from forcing that is strongly non-uniform in the alongshore. Funding was provided by the Office of Naval Research, The National Science Foundation, a Woods Hole Oceanographic Institution and United States Geological Survey joint postdoctoral fellowship, and a National Security Science and Engineering Faculty Fellowship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8319G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8319G"><span>Field_ac: a research project on ocean modelling in coastal areas. The experience in the Catalan Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grifoll, Manel; Pallarès, Elena; Tolosana-Delgado, Raimon; Fernandez, Juan; Lopez, Jaime; Mosso, Cesar; Hermosilla, Fernando; Espino, Manuel; Sanchez-Arcilla, Agustín</p> <p>2013-04-01</p> <p>The EU founded Field_ac project has investigated during the last three years methods and strategies for improving operational services in coastal areas. The objective has been to generate added value for shelf and regional scale predictions from GMES Marine Core Services. In this sense the experience in the Catalan Sea site has allowed to combine high-resolution numerical modeling tools nested into regional GMES services, data from intensive field campaigns or local observational networks and remote sensing products. Multi-scale coupled models have been implemented to evaluate different temporal and spatial scales of the dominant physical processes related with waves, currents, continental/river discharges or sediment transport. In this sense the experience of the Field_ac project in the Catalan Sea has permit to "connect" GMES marine core service results to the coastal (local) anthropogenic forcing (e.g. causes of morphodynamic evolution and ecosystem degradation) and will support a knowledge-based assessment of decisions in the coastal zone. This will contribute to the implementation of EU directives (e.g., the Water Framework Directive for water quality at beaches near harbour entrances or the Risk or Flood Directives for waves and sea-level at beach/river-mouth scales).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.304..141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.304..141S"><span>A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seminack, Christopher T.; McBride, Randolph A.</p> <p>2018-03-01</p> <p>A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt). Rotating wave-dominated tidal inlets follow a six-stage evolutionary model; whereas wave-dominated tidal inlets that exhibit little-to-no rotation follow a five-stage evolutionary model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5856C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5856C"><span>Longshore Sediment Transport on a Macrotidal Mixed Sediment Beach, Birling Gap, United Kingdom.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curoy, J.; Moses, C. A.; Robinson, D. A.</p> <p>2012-04-01</p> <p>Mixed beaches (MBs), with sediment sizes ranging over three orders of magnitude, are an increasingly important coastal defence on > 1/3 of the shoreline of England and Wales. In East Sussex, the combined effect of coastal defence management schemes (extensive groyning and sea wall construction) has reduced beach sediment supply. Local authorities counteract the increased flood risk by recycling or artificially recharging beaches on the most vulnerable and populated areas. Beaches lose sediment predominantly via longshore transport (LST) whose accurate quantification is critical to calculating recharge amounts needed for effective beach management. Industry does this by using sediment transport modelling which depends on reliable input data and modelling assumptions. To improve understanding of processes and quantification of LST on MBs, this study has accurately measured sediment transport on a natural, macrotidal, MB. The 1.2 km natural MB at Birling Gap, East Sussex here is located on the downdrift end of an 80 km long sub-sedimentary cell and is oriented WNW-ESE. The beach lies on a low gradient chalk shore platform backed by sub-vertical chalk cliffs. It is composed primarily of flint gravel with a peak grain size distribution of 30 to 50 mm, and a sand content of up to 30%. Sediment transport was measured using pebble tracers and GPS surface surveys during three survey periods of three to five consecutive days in March, May and December 2006. Tracer pebbles, matching the beach pebbles' D50, were made of an epoxy resin with a copper core allowing their detection and recovery to a depth of 40 cm using a metal detector. Tracers were deployed on the upper, middle and lower beach, from the surface into the beach to depths of up to 40 cm. They were collected on the low tide following deployment. The wave conditions were recorded on a Valeport DWR wave recorder located seaward of the beach on the chalk platform. Over the three study periods a large spectrum of wave heights (0.1 to 2.6 m) and periods (2 and 13.4 s) was observed. Wave direction varied from 14 to 106° to the beach. In total, up to 300 tracers were used on every day of deployment. The recovery rate after one tide varied from 58.4 to 100%. Significant longshore transport was observed, up to a maximum of 145 m. The results show that pebble behaviour on a natural MB is extremely sensitive to position on the beach profile and to changes in the water level and wave conditions associated with tidal conditions. Longshore sediment transport rates ranged from 0 to 120.55 m3 tide-1. Longshore wave power and immersed longshore transport were calculated and a drift efficiency coefficient of 0.04 was derived. These results contribute to the data bank on LST on MBs. Ultimately they will help to refine the current models used by the industry and support beach managers in anticipating sediment volumes that will be necessary to sustain a MB prior to storm events. Key words: mixed beach, longshore sediment transport, sediment tracer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5735N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5735N"><span>Chenier plain genesis explained by feedbacks between waves, mud, and sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nardin, William; Fagherazzi, Sergio</p> <p>2017-04-01</p> <p>Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss ontogeny of chenier plains through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and inner-shelf slope play an important role in the formation of chenier plains. In our numerical experiments, waves affect chenier plain development in three ways: by winnowing coarse sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex chenier plains. Low inner-shelf slopes are the most favorable for strand plain and chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP23B0960N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP23B0960N"><span>Chenier plain development: feedbacks between waves, mud and sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nardin, W.; Fagherazzi, S.</p> <p>2015-12-01</p> <p>Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss Chenier plains ontogeny through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and shelf slope play an important role in the formation of Chenier plains. In our numerical experiments waves affect Chenier plain development in three ways: by winnowing sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex Chenier plains. Low inner-shelf slopes are the most favorable for strand plain and Chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029129','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029129"><span>Observations of plan-view sand ripple behavior and spectral wave climate on the inner shelf of San Pedro Bay, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xu, J. P.</p> <p>2005-01-01</p> <p>Concurrent video images of sand ripples and current meter measurements of directional wave spectra are analyzed to study the relations between waves and wave-generated sand ripples. The data were collected on the inner shelf off Huntington Beach, California, at 15 m water depth, where the sea floor is comprised of well-sorted very fine sands (D50=92 ??m), during the winter of 2002. The wave climate, which was controlled by southerly swells (12-18 s period) and westerly wind waves (5-10 s period), included three wave types: (A) uni-modal, swells only; (B) bi-modal, swells dominant; and (C) bi-modal, wind-wave dominant. Each wave type has distinct relations with the plan-view shapes of ripples that are classified into five types: (1) sharp-crested, two-dimensional (2-D) ripples; (2) sharp-crested, brick-pattern, 3-D ripples; (3) bifurcated, 3-D ripples; (4) round-crested, shallow, 3-D ripples; and (5) flat bed. The ripple spacing is very small and varies between 4.5 and 7.5 cm. These ripples are anorbital as ripples in many field studies. Ripple orientation is only correlated with wave directions during strong storms (wave type C). In a poly-modal, multi-directional spectral wave environment, the use of the peak parameters (frequency, direction), a common practice when spectral wave measurements are unavailable, may lead to significant errors in boundary layer and sediment transport calculations. ?? 2004 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...155...45Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...155...45Y"><span>Recent coarsening of sediments on the southern Yangtze subaqueous delta front: A response to river damming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, H. F.; Yang, S. L.; Meng, Y.; Xu, K. H.; Luo, X. X.; Wu, C. S.; Shi, B. W.</p> <p>2018-03-01</p> <p>After more than 50,000 dams were built in the Yangtze basin, especially the Three Gorges Dam (TGD) in 2003, the sediment discharge to the East China Sea decreased from 470 Mt/yr before dams to the current level of 140 Mt/yr. The delta sediment's response to this decline has interested many researchers. Based on a dataset of repeated samplings at 44 stations in this study, we compared the surficial sediment grain sizes in the southern Yangtze subaqueous delta front for two periods: pre-TGD (1982) and post-TGD (2012). External factors of the Yangtze River, including water discharge, sediment discharge and suspended sediment grain size, were analysed, as well as wind speed, tidal range and wave height of the coastal ocean. We found that the average median size of the sediments in the delta front coarsened from 8.0 μm in 1982 to 15.4 μm in 2012. This coarsening was accompanied by a decrease of clay components, better sorting and more positive skewness. Moreover, the delta morphology in the study area changed from an overall accretion of 1.0 cm/yr to an erosion of - 0.6 cm/yr. At the same time, the riverine sediment discharge decreased by 70%, and the riverine suspended sediment grain size increased from 8.4 μm to 10.5 μm. The annual wind speed and wave height slightly increased by 2% and 3%, respectively, and the tidal range showed no change trend. Considering the increased wind speed and wave height, there was no evidence that the capability of the China Coastal Current to transport sediment southward has declined in recent years. The sediment coarsening in the Yangtze delta front was thus mainly attributed to the delta's transition from accumulation to erosion which was originally generated by river damming. These findings have important implications for sediment change in many large deltaic systems due to worldwide human impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047857','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047857"><span>The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, Curt D.; Reid, Jane A.</p> <p>2010-01-01</p> <p>Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916414C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916414C"><span>Sorting waves and associated eigenvalues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbonari, Costanza; Colombini, Marco; Solari, Luca</p> <p>2017-04-01</p> <p>The presence of mixed sediment always characterizes gravel bed rivers. Sorting processes take place during bed load transport of heterogeneous sediment mixtures. The two main elements necessary to the occurrence of sorting are the heterogeneous character of sediments and the presence of an active sediment transport. When these two key ingredients are simultaneously present, the segregation of bed material is consistently detected both in the field [7] and in laboratory [3] observations. In heterogeneous sediment transport, bed altimetric variations and sorting always coexist and both mechanisms are independently capable of driving the formation of morphological patterns. Indeed, consistent patterns of longitudinal and transverse sorting are identified almost ubiquitously. In some cases, such as bar formation [2] and channel bends [5], sorting acts as a stabilizing effect and therefore the dominant mechanism driving pattern formation is associated with bed altimetric variations. In other cases, such as longitudinal streaks, sorting enhances system instability and can therefore be considered the prevailing mechanism. Bedload sheets, first observed by Khunle and Southard [1], represent another classic example of a morphological pattern essentially triggered by sorting, as theoretical [4] and experimental [3] results suggested. These sorting waves cause strong spatial and temporal fluctuations of bedload transport rate typical observed in gravel bed rivers. The problem of bed load transport of a sediment mixture is formulated in the framework of a 1D linear stability analysis. The base state consists of a uniform flow in an infinitely wide channel with active bed load transport. The behaviour of the eigenvalues associated with fluid motion, bed evolution and sorting processes in the space of the significant flow and sediment parameters is analysed. A comparison is attempted with the results of the theoretical analysis of Seminara Colombini and Parker [4] and Stecca, Siviglia and Blom [6]. [1] Kuhnle, R.A. and Southard, J.B. 1988. Bed Load Transport Fluctuations in a Gravel Bed Laboratory Channel. Water Resources Research, 24(2), 247-260. [2] Lanzoni, S. and Tubino, M. 1999. Grain sorting and bar instability. Journal of Fluid Mechanics. 393, 149-174. [3] Recking, A., Frey, P., Paquier, A. and Belleudy, P. 2009. An experimental investigation of mechanisms involved in bed load sheet production and migration. Journal of Geophysical Research, 114, F03010. [4] Seminara, G., Colombini, M. and Parker, G. 1996. Nearly pure sorting waves and formation of bedload sheets. Journal of Fluid Mechanics. 312, (1996), 253-278. [5] Seminara, G., Solari, L. and Tubino, M. 1997. Finite amplitude scour and grain sorting in wide channel bends. XXVII IAHR Congress, San Francisco, 1445-1450. [6] Stecca, G., Siviglia, A. and Blom, A. 2014. Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resources Research, 50, 7563-7589. [7] Whiting, P.J., Dietrich, W.E., Leopold, L. B., Drake, T. G. and Shreve, R.L. 1988. Bedload sheets in heterogeneous sediment. Geology, 16, 105-108.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29150628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29150628"><span>Artificial topography changes the growth strategy of Spartina alterniflora, case study with wave exposure as a comparison.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Chen, Chaoqi; Xia, Kang; Yan, Chongling</p> <p>2017-11-17</p> <p>This paper reports findings about the growth of Spartina alterniflora (Loisel.) near an engineered coastal protection defences to discover the potential influences on vegetation growth from the artificial topography. Impacts of the artificial topography on the sediment element composition were detected by comparing the fixed effects caused by artificial topography and wave exposure using linear mixed models. Surficial sediments under the impacts of artificial topography contain elevated levels of biogenic elements and heavy metals, including C (and organic carbon), N, S, Al, Fe, Mn, Cu, Zn, As, Cd, Cr, Ni, and Pb. The results showed that element enrichment caused by artificial topography reduced the vegetation sexual reproduction. Contrary to the potential inhibition caused by direct wave exposure, which was due to the biomass accumulation limit, the inhibition caused by artificial topography was related to the transition of growth strategy. The contents of Cu, Mn, N, Ni, S and As in the sediments were critical in considering the relationship between the change in the sediment element composition and the alteration in the plant growth. Our study emphasizes the importance of rethinking the impacts of coastal development projects, especially regarding the heterogeneity of sediment element composition and its ecological consequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0742928','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0742928"><span>Compressional Wave Speed and Absorption Measurements in a Saturated Kaolinite-Water Artificial Sediment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>OCEAN BOTTOM, ULTRASONIC PROPERTIES), (*UNDERWATER SOUND, SOUND TRANSMISSION), KAOLINITE , ABSORPTION, COMPRESSIVE PROPERTIES, POROSITY, VELOCITY, VISCOELASTICITY, MATHEMATICAL MODELS, THESES, SEDIMENTATION</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..442W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..442W"><span>Wind influence on the course of sedimentation processes of the laminated lacustrine sediments of Lake Czechowskie</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiśniewska, Daria; Kramkowski, Mateusz; Tyszkowski, Sebastian</p> <p>2016-04-01</p> <p>The studies of the laminated lacustrine sediments play a very important role in the analysis of climate change. They provide valuable information related to the response of the ecosystem to changes in the environment. The condition for the development of the annual lamination is calm sedimentation, which can be compromised by the movement of water caused by waving. The depth to which this movement affects depends on the shape of the lake basin as well as the velocity and direction of the wind. During the study of sedimentary processes of laminated deposits in Lake Czechowskie (Tuchola Forest, North Poland, 53°52'N, 18°14' E, 108 m asl), the following question arose: How strong was the influence of the wind on the processes of lacustrine sedimentation? The key in getting the answers was the use of GIS techniques. Lake Czechowskie has an area of 76.6 hectares; it has two deeps separated by a threshold: a deeper one of 33 m (maximum depth of the basin) in the central-eastern part, and a shallower of 13 m in the western part. The speed of movement of water that is able to move sediment from the bottom of the lake, called the orbital wave velocity, is the basis for the designation of areas where re-suspension takes place. To calculate the wave parameters, the process of mixing, as well as the designation of re-suspension zones, the tool-script Wave Model (Rohweder et al. 2008) in the program ArsGIS 10.1 was used. The input data were wind direction and velocity from the meteorological station of Wirty about 15 km away, bathymetric data from acoustic profiling, and the Maximum Orbital Wave Velocity. The elements taken into account include maximum wind velocity of the multi-year 1996-2013, with particular emphasis on hurricanes Ksawery (December 2013) and Yoda (November 2011), during which wind velocity exceeded 120 km/h. In addition, maximum wind velocity ever recorded in the Polish Lowlands was considered. On the basis of the modelling, the authors delimited the areas where re-suspension takes place in medium and extreme conditions, and those in which wind waving does not affect the mixing of the sediment. The areas particularly predisposed to accumulation and preservation of laminated sediments have been identified. The analysis results allow a better understanding of the re-suspension processes, especially in the littoral zone of the lake. This analysis is also helpful in research of the laminated sediments, and is essential for determining locations for their sampling. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoJI.166..543C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoJI.166..543C"><span>An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.</p> <p>2006-08-01</p> <p>The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028157','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028157"><span>An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.</p> <p>2006-01-01</p> <p>The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMNS13A1085P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMNS13A1085P"><span>Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirrung, M.; Polom, U.; Krawczyk, C. M.</p> <p>2008-12-01</p> <p>The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983STIN...8413394M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983STIN...8413394M"><span>Stream-water storage in the ocean using an impermeable membrane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murabayashi, E. T.; Asuka, M.; Yamada, R.; Fok, Y. S.; Gee, H. K.</p> <p>1983-05-01</p> <p>The conceptual feasibility of storing fresh water in the ocean was investigated using a plastic membrane as the reservoir liner. In the initial phase, two physical hydraulic models were constructed to test the concept. The first was a water-filled, glass-sided box to observe the movement and reaction of the membrane to various simulated effects of currents, waves, and sediment deposition. The second was a 1:400-scale model (6.7 x 6.1 m) of West Loch, Pearl Harbor (a potential field application site), with 1:24 vertical exaggeration for similitude. The curtain method was used because it can enclose a large water body. The effect of wind, waves, tides, and currents on the curtain were simulated and the reactions observed. Although modeling is a useful tool for investigating initial concepts, its direct field application is limited because of scaling. Curtains, floating reservoirs, and bags were constructed of polyethylene sheets and deployed. All worked well after modifications were made following initial testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JAESc..29..508V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JAESc..29..508V"><span>Water and sediment dynamics in the Red River mouth and adjacent coastal zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Maren, D. S.</p> <p>2007-02-01</p> <p>The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032322"><span>Wave-current interaction in Willapa Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh</p> <p>2011-01-01</p> <p>This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014072','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014072"><span>Shoreface translation and the Holocene stratigraphic record: Examples from Nova Scotia, the Mississippi Delta and eastern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boyd, Ron; Penland, S.</p> <p>1984-01-01</p> <p>Classic descriptive models of barrier sedimentation have been developed with data from the Atlantic and Gulf coasts of the United States. These models are dominated by low to moderate rates of relative sea level (RSL) rise and wave energy. Barriers respond by landward recycling of sediment through the mechanism of shoreface retreat. Sedimentation processes on the central coast of New South Wales (N.S.W.), Australia, consist of rapid RSL rise in early Holocene times followed by a stillstand since 6500 B.P. Wave energy is relatively high year-round and sand sources for barrier formation are only found on the inner shelf. Barrier sedimentation on the central coast of N.S.W. exhibits a thick, composite sequence composed of a basal marine transgressive sand overlain by regressive beach and dune facies. The Louisiana coast surrounding the Mississippi delta is underlain by compacting deltaic muds which generate very rapid rates of RSL rise. The Louisiana coast experiences low wave energy punctuated by high-energy tropical and extra-tropical storm events. Barrier sediments accumulate from the erosion of deltaic headlands and undergo a transformation from subaerial barrier island systems to subaqueous shoals located on the inner shelf. Drumlins experience coastal erosion on the Eastern Shore of Nova Scotia and provide a sediment source for compartmented estuary mouth barriers. An ongoing, moderate rise of RSL results from the passage of a glacial forebulge. Wave energy is intermediate between Louisiana and N.S.W. and displays a seasonal pattern dominated by frequent winter storms. Coastal barrier sedimentation is episodic, consisting of a period of beach ridge progradation followed by barrier destruction and re-establishment further landward. The three contrasting sedimentary sequences found in examples from Louisiana, N.S.W. and Nova Scotia indicate that presently available sedimentation models from locations such as the middle Atlantic or Texas coasts of the United States may only represent well-documented regional case studies. A true generalised coastal sedimentation model is required which can identify the parameters controlling vertical and horizontal translation of the depositional surface and provide relationships between these parameters which quantitatively predict the genesis, distribution and geometry of coastal sedimentary facies. ?? 1984.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.restorethegulf.gov/release/2015/07/01/operational-science-advisory-team-report-iii','USGSPUBS'); return false;" href="https://www.restorethegulf.gov/release/2015/07/01/operational-science-advisory-team-report-iii"><span>Appendix D: Use of wave scenarios to assess potential submerged oil mat (SOM) formation along the coast of Florida and Alabama</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.</p> <p>2013-01-01</p> <p>During the Deepwater Horizon oil spill, oil in the surf zone mixed with sediment in the surf zone to form heavier-than-water sediment oil agglomerates of various size, ranging from small (cm-scale) pieces (surface residual balls, SRBs) to large mats (100-m scale, surface residue mats, SR mats). Once SR mats formed in the nearshore or in the intertidal zone, they may have become buried by sand moving onshore or alongshore. To assist in locating possible sites of buried oil, wave scenarios previously developed by the U.S. Geological Survey (USGS) were used to determine the depths at which surface oil had the potential to mix with suspended sediment. For sediment to mix with floating oil and form an agglomerate of sufficient density to sink to the seafloor, either the water must be very shallow (e.g., within the swash zone) or sediment must be suspended to the water surface in sufficient concentrations to create a denser-than-sea water agglomerate. The focus of this study is to analyze suspended sediment mixing with surface oil in depths beyond the swash zone, in order to define the seaward limit of mat formation. A theoretical investigation of sediment dynamics in the nearshore zone revealed that non-breaking waves do not suspend enough sediment to the surface to form sinking sand/oil agglomerates. For this study, it was assumed that the cross-shore distribution of potential agglomerate formation is associated with the primary breaker line, and the presence of plunging breakers, over the time frame of oiling. The potential locations of submerged oil mats (SOMs) are sites where (1) possible agglomerate formation occurred, where (2) sediment accreted post-oiling and buried the SOM, and where (3) the bathymetry has not subsequently eroded to re-expose any mat that may have formed at that site. To facilitate identification of these locations, the range of water level variation over the time frame of oiling was also prescribed, which combined with the wave-breaking depth analysis and pre-oiling bathymetry would identify the potential geographic locations of SOMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........87B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........87B"><span>High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bailey, Bevin L.</p> <p></p> <p>S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035146','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035146"><span>Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, M.W.; Waite, W.F.</p> <p>2011-01-01</p> <p>Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. ?? 2011 Acoustical Society of America.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....47.3508L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....47.3508L"><span>Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shuangcai; Duffy, Christopher J.</p> <p>2011-03-01</p> <p>Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP32A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP32A..05M"><span>Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.</p> <p>2015-12-01</p> <p>The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP23A0950A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP23A0950A"><span>Tilt Current Meter Field Validation in the Surf Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anarde, K.; Myres, H.; Figlus, J.</p> <p>2016-12-01</p> <p>Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021432','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021432"><span>Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.</p> <p>1999-01-01</p> <p>We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG34A1934L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG34A1934L"><span>Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.</p> <p>2016-02-01</p> <p>Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMNS51B..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMNS51B..04B"><span>Effects of Attenuation of Gas Hydrate-bearing Sediments on Seismic Data: Example from Mallik, Northwest Territories, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellefleur, G.; Riedel, M.; Brent, T.</p> <p>2007-05-01</p> <p>Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate- bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors (Q) are estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada. During the last 10 years, two internationally-partnered research drilling programs have intersected three major intervals of sub-permafrost gas hydrates at Mallik, and have successfully extracted core samples containing significant amount of gas hydrates. Individual gas hydrate intervals are up to 40m in thickness and are characterized by high in situ gas hydrate saturation, sometimes exceeding 80% of pore volume of unconsolidated clastic sediments having average porosities ranging from 25% to 40%. The Q-factors obtained from the VSP data demonstrate significant wave attenuation for permafrost and hydrate- bearing sediments. These results are in agreement with previous attenuation estimates from sonic logs and crosshole data at different frequency intervals. The Q-factors obtained from VSP data were used to compensate attenuation effects on surface 3D seismic data acquired over the Mallik gas hydrate research wells. Intervals of gas hydrate on surface seismic data are characterized by strong reflectivity and effects from attenuation are not perceptible from a simple visual inspection of the data. However, the application of an inverse Q-filter increases the resolution of the data and improves correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157102','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157102"><span>The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jaffe, Bruce E.</p> <p>2015-01-01</p> <p>Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA243532','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA243532"><span>Acoustical and Other Physical Properties of Marine Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-01-01</p> <p>Granular Structure of Rocks 4. Anisotropic Poroelasticity and Biot’s Parameters PART 1 A simple analytical model has been developed to describe the...mentioned properties. PART 4 Prediction of wave propagation in a submarine environment re- quires modeling the acoustic response of ocean bottom...Biot’s theory is a promising approach for modelling acoustic wave propa- gation in ocean sediments which generally consist of elastic or viscoelastic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7507S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7507S"><span>Terrestrial Laser Scanner (TLS) as a tool for the reconstruction of extreme wave event characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Bastian; Hoffmann, Gösta</p> <p>2017-04-01</p> <p>The shores of the Northern Indian Ocean were exposed to extreme wave inundation in the past. Two relevant hazards, storm surges triggered by tropical cyclones and tsunamis, are known to occur in the region but are rarely instrumentally recorded. Various sediment deposits along the coast are the only remnants of those past events. A profound understanding of return periods and magnitudes of past events is essential for developing land-use planning and risk mitigation measures in Oman and neighboring countries. A detailed investigation of these deposits, in this case primarily blocks and boulder trains but also fine grained sediments, provides insight on parameters such as wave height and inundation distance. These parameters can then be used for modeling inundation scenarios superimposed on modern infrastructure. We are investigating the spatial 3D-distribution of the extreme wave event sediments along the coastline through a high-precision survey of the event deposits using a Faro Focus 3D X330 TLS. A TLS is capable of recording high-detail and colored point clouds, which allows detailed measurements and has proved to be a powerful tool in geosciences. These multi-parameter point clouds in combination with dating results serve as a base for extreme wave event return period and magnitude estimations. Relevant parameters on large sediments are size, shape, volume, mass as well as relative arrangement, sorting and orientation. Furthermore, the TLS data is used to distinguish between the various boulder lithologies using a multi-scale supervised classification. Surface roughness as a result of weathering can serve as an indicator for exposure time of boulders and hint on various generations of extreme wave events. The distribution of the boulders relative to the site they were quarried from indicates on the flow direction of the waves and consequently might help to distinguish between storm and tsunami waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034812','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034812"><span>Coherence of river and ocean conditions along the US West Coast during storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.</p> <p>2011-01-01</p> <p>The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53D1009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53D1009M"><span>Modification of the Undertow and Turbulence by Submerged Vegetation in a Laboratory Surf Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandel, T.; Suckale, J.; Marras, S.; Maldonado, S.; Koseff, J. R.</p> <p>2016-12-01</p> <p>Breaking waves in the surf zone are a dominant factor shaping the evolution of our coastlines. The turbulence generated by wave breaking causes sediment resuspension, while wave runup, rundown, and the undertow transport this sediment along and across the shore (Longo et al., 2002). Coastal hazard models must now address the added complications of climate change, including sea level rise, stronger storm events, and ecosystem degradation (Arkema et al., 2013). A robust theoretical understanding of surf zone dynamics is therefore imperative to considering the magnitude and implications of these potential changes. However, little work has been done to extend our current theoretical understanding to realistic beach faces, with aquatic vegetation, reefs, and other roughness elements that might mitigate scour and sedimentation. Clarifying these relationships will help scientists and policy-makers decide where to focus ecosystem restoration and preservation efforts, in order to maximize their protective benefits to infrastructure and economic activity on the coast. In order to evaluate the role of vegetation in coastal protection, we conducted a series of experiments in an idealized laboratory surf zone. We examine the impact of submerged model vegetation on the undertow profile, wave orbital velocities, turbulent kinetic energy, and wave-induced stresses, and compare these results to theoretical formulations that model these quantities. We find that vegetation reduces the wave energy available to be converted to turbulent kinetic energy during breaking, indicating a mechanism to mitigate suspension of sediment. Vegetation also reduces the magnitude of the undertow, likely reducing transport of sediment offshore. These results suggest that vegetation provides significant protective benefits for coastal communities at risk from erosion beyond its well-characterized ability to attenuate wave height, and motivate further work to incorporate these effects into models of near-shore hydrodynamics. Longo S, Petti M, Losada IJ. 2002. Turbulence in the swash and surf zones: a review. Coast Eng 45:129-147. Arkema KK, Guannel G, Verutes G, Wood SA, Guerry A, Ruckelshaus M, Kareiva P, Lacayo M, Silver JM. Coastal habitats shield people and property from sea-level rise and storms. Nat Clim Change 3:913-918.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGeo..113...32K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGeo..113...32K"><span>Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.</p> <p>2018-01-01</p> <p>Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62827&Lab=NHEERL&keyword=biology+AND+physical&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62827&Lab=NHEERL&keyword=biology+AND+physical&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THR ROLE OF SEABED DYNAMICS IN STRUCTURING A MESOHALINE MACROBENTIC INFAUNAL COMMUNITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Estuaries are dynamic physical environments. The stability of the sediment-water interface is influenced by sources and rates of sediment delivery and reworking of sediments by currents, tides, waves and biology, but effects of disruption of this interface on benthic biology are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=249749','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=249749"><span>Formation and mechanics of granular waves in gravity and shallow overland flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of s...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..12210225D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..12210225D"><span>Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufois, François; Lowe, Ryan J.; Branson, Paul; Fearns, Peter</p> <p>2017-12-01</p> <p>Owing to their strong forcing at the air-sea interface, tropical cyclones are a major driver of hydrodynamics and sediment dynamics of continental shelves, strongly impacting marine habitats and offshore industries. Despite the North West Shelf of Australia being one of the most frequently impacted tropical cyclone regions worldwide, there is limited knowledge of how tropical cyclones influence the sediment dynamics of this shelf region, including the significance of these episodic extreme events to the normal background conditions that occur. Using an extensive 2 year data set of the in situ sediment dynamics and 14 yearlong calibrated satellite ocean-color data set, we demonstrate that alongshore propagating cyclones are responsible for simultaneously generating both strong wave-induced sediment resuspension events and significant southwestward subtidal currents. Over the 2 year study period, two particular cyclones (Iggy and Narelle) dominated the sediment fluxes resulting in a residual southwestward sediment transport over the southern part of the shelf. By analyzing results from a long-term (37 year) wind and wave hindcast, our results suggest that at least 16 tropical cyclones had a strong potential to contribute to that southwestward sediment pathway in a similar way to Iggy and Narelle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54.2731N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54.2731N"><span>Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan</p> <p>2018-04-01</p> <p>Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29107874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29107874"><span>Migration of two antibiotics during resuspension under simulated wind-wave disturbances in a water-sediment system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shu; Huang, Zheng; Wang, Yi; Liu, Yu-Qing; Luo, Ran; Shang, Jing-Ge; Liao, Qian-Jia-Hua</p> <p>2018-02-01</p> <p>In this study, the migration of antibiotics (norfloxacin, NOR; and sulfamethoxazole, SMX) under simulated resuspension conditions across the sediment-water interface were quantified for two locations in China: point A, located in Meiliang Bay of Lake Taihu, and point B, located in Dapukou of Lake Taihu. The concentrations of suspended solids (SS) in the overlying water amounted to 100, 500, and 1000 mg/L during background, moderate, and strong simulated wind-wave disturbances, respectively. At each SS level, the initial concentrations of the two antibiotics were set to 1, 5, and 10 mg/L. The results showed that both resuspended SS and the initial concentration of antibiotics could influence the migration of NOR in the water-sediment system. Specifically, both higher SS and initial antibiotic concentrations were associated with higher rates of migration and accumulation of NOR from water to sediment. In contrast, the migration of SMX in the water-sediment system was not impacted by SS or initial antibiotic concentration. The adsorption capacities of sediments for NOR and SMX were significantly different at both locations, possibly reflecting differences in cation exchange capacity (CEC) and organic material (OM) contents. In general, higher CEC and OM values were found in sediments with a higher adsorption capacity for the antibiotics. When CEC and OM values of sediments were higher, the adsorption capacity reached up to 51.73 mg/kg. Large differences in the migration from water to sediment were observed for the two antibiotics, with NOR migration rates higher than those of SMX. The accumulation of NOR in surface sediment during resuspension was about 14 times higher than that of SMX. The main reason for this is that the chemical adsorption of NOR is seldom reversible. Overall, this study demonstrates that resuspension of NOR and SMX attached to sediments under simulated wind-wave disturbances can promote the migration of the antibiotics from water to sediment; these results could be useful for assessing the migration and fate of commonly used antibiotics in water-sediment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..156C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..156C"><span>Experimental modelling of outburst flood - bed interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..158C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..158C"><span>Experimental modelling of flow - bed interactions in Jökulhlaups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Jökulhlaups (glacial outburst floods) are a sudden release and advancing wave of water and sediment from a glacier, with a peak discharge that is often several orders of magnitude greater than perennial flows. Jökulhlaup hazards are regularly incorporated into risk assessments for glaciated areas because the associated flood hazards are numerous. Jökulhlaup hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to jökulhlaups. However, direct measurement of such phenomena is virtually impossible. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental jökulhlaups. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51E0535Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51E0535Z"><span>Vp/Vs Ratio of Juan de Fuca Plate Sediments Along the Cascadia Deformation Front From Analysis of Controlled-Source Multi-Component OBS Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, J.; Canales, J. P.; Han, S.; Carbotte, S. M.; Arnulf, A. F.; Nedimovic, M. R.</p> <p>2017-12-01</p> <p>The seismic characteristics (Vp, Vs, Vp/Vs, anisotropy) and derived physical properties (porosity, effective stress, pore fluid pressure, and crack density/orientation) of sediments entering a subduction zone are key parameters to understand subduction plate interface properties and seismogenic behavior. Here we present preliminary results of the average Vp/Vs within the 2-3-km-thick sediment section along the Cascadia deformation front between 44°-48°N offshore Oregon and Washington. We use data acquired in 2012 during the Juan de Fuca Ridge to Trench (R2T) controlled-source seismic experiment. We use P-waves and PPS converted-wave modes (i.e., P-to-S conversions of up-going waves at the crust-sediment interface) observed in 25 multi-component, short-period ocean bottom seismometers (OBS) deployed along an 400-km-long profile located 10-15 km seaward from the trench. The Vp/Vs was calculated following the method of Tsuji et al. (2011), which uses the seafloor-to-basement two-way traveltime determined from a coincident multichannel seismic reflection profile, and the time lag DT between the crustal P-refracted and PPS-converted waves. Processing of the OBS data included rotation into radial and traverse components, bandpass filtering, and predictive deconvolution. Our preliminary results show that the average sediment Vp/Vs along the profile varies from 2.8 to 3.35. Along the central-northern Oregon margin, Vp/Vs ranges between 2.8 and 2.95, while along the northern Washington margin Vp/Vs are slightly higher (2.95-3.05). We find the largest Vp/Vs values (≥3.1) offshore southern WA (between 46°-46.7°N). These preliminary results imply along-margin variations in subducting sediments along Cascadia. Implications for the physical properties of the sediments entering Cascadia are currently being explored and will be presented at the meeting.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020952"><span>Amount of gas hydrate estimated from compressional- and shear-wave velocities at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, M.W.</p> <p>1999-01-01</p> <p>The amount of in situ gas hydrate concentrated in the sediment pore space at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well was estimated by using compressional-wave (P-wave) and shear-wave (S-wave) downhole log measurements. A weighted equation developed for relating the amount of gas hydrate concentrated in the pore space of unconsolidated sediments to the increase of seismic velocities was applied to the acoustic logs with porosities derived from the formation density log. A weight of 1.56 (W=1.56) and the exponent of 1 (n=1) provided consistent estimates of gas hydrate concentration from the S-wave and the P-wave logs. Gas hydrate concentration is as much as 80% in the pore spaces, and the average gas hydrate concentration within the gas-hydrate-bearing section from 897 m to 1110 m (excluding zones where there is no gas hydrate) was calculated at 39.0% when using P-wave data and 37.8% when using S-wave data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028572','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028572"><span>A simple method of predicting S-wave velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, M.W.</p> <p>2006-01-01</p> <p>Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022640','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022640"><span>Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sherwood, C.R.</p> <p>2000-01-01</p> <p>A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA517088','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA517088"><span>Sand Waves in Tidal Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-01-01</p> <p>sincerely thank Steven Borgeld, from Humboldt State University, for providing the grain size data for the Humboldt Entrance Channel. iv SAND...Wave Characteristics at Moriches Inlet... 182 APPENDIX VII – Sediment Data , Humboldt Entrance Channel, CA ........................... 186 References...waves may be limited by wave action, sand supply, and dredging activity. Bathymetric data collected at Humboldt Inlet, California, show sand waves</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GML....30..549L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GML....30..549L"><span>WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.</p> <p>2010-10-01</p> <p>The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH11A1343I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH11A1343I"><span>Great East Japan Earthquake Tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.</p> <p>2011-12-01</p> <p>The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by supercritical flows, resulting in the loss of landward seawall slopes. Such erosion was also observed at landward side of footpath between rice fields. The Sendai plain was subjected just after the main shock of the earthquake. Seawater inundation resulting from tsunami run-up lasted two months. The historical document Sandai-jitsuroku, which gives a detailed history of all of Japan, describes the Jogan earthquake and subsequent tsunami which have attacked Sendai plain in AD 869. The document describes the prolonged period of flooding, and it is suggested that co-seismic subsidence of the plain took place. The inundation area of the Jogan tsunami estimated by the distribution of tsunami deposit mostly overlaps with that of the 3.11 tsunami. Considering the very similarity of seismic shocks between the both, we interpreted the Great East Japan Earthquake Tsunami is the second coming of the Jogan Earthquake Tsunami.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033963','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033963"><span>Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.</p> <p>2011-01-01</p> <p>Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA614136','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA614136"><span>Modeling of Waves, Hydrodynamics and Sediment Transport for Protection of Wetlands at Braddock Bay, New York</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-03-01</p> <p>entrance were evaluated on their ability to reduce potential impacts of waves and currents on wet- lands. Study results indicated all three proposed...transport de- veloped were used in the evaluation of proposed solutions. The prelimi- nary modeling results helped to assess general sediment pattern...Corps of Engineers (USACE), Buffalo Dis- trict, is conducting a study to evaluate shoreline protection measures for coastal wetlands at Braddock Bay</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA630105','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA630105"><span>Particle Size, Bed Properties, and Transport of Sediment on European Epicontinental Shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2004-09-30</p> <p>hundreds of kilometers to depocenters north of the Gargano promontory. The western Adriatic coastal current ( WACC ) is partially buoyancy driven, a forcing...western Adriatic and enhance flow in the WACC , so it is reasonable to expect that correlated wave resuspension and stronger-than-average southward...flow in the WACC combine to generate southward sediment flux. However, our data and model results show only a weak correlation between wave height</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41D..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41D..01K"><span>Flow-sediment-oyster interaction around degraded, restored, and reference oyster reefs in Florida's Indian River Lagoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitsikoudis, V.; Kibler, K. M.; Spiering, D. W.</p> <p>2017-12-01</p> <p>This study analyzes flow patterns and sediment distributions around three oyster reefs in a bar-built estuarine lagoon. We studied a degraded reef, a recently restored reef, and a reference condition reef with a healthy live oyster community. The restored reef had been regraded and restored with oyster shell mats to aid in recruitment of oyster spat, with the goal of reestablishing a healthy oyster community. Despite the fact that flow-biota-sediment interaction constitutes a blossoming research field, actual field data are sparse and current knowledge emanates from flume studies and numerical modeling. Moreover, the hydraulic effect of restored oyster reefs has not been thoroughly investigated and it is not clear if the flow field and sediment erosion/deposition are similar or diverge from natural reefs. Instantaneous three-dimensional flow velocities were collected on reefs using a Nortek Vectrino Profiler and an acoustic Doppler current profiler (Nortek Aquadopp). The former measured a 2 - 3 cm velocity profile above the oyster bed, while the latter quantified incoming velocities across the flow profile approximately 10 m from the edge of the reef. Flow measurements were conducted during rising tides and are coupled with simultaneous wind speed and direction data. In addition, 20 cm deep sediment cores were retrieved on and off the investigated reefs. Sediment grain size distributions were determined after individual cores were processed for loss on ignition. Incoming flow velocities were as high as 10 cm/s, relatively higher than those recorded close to reefs. Mean and turbulent flow velocities close to the reefs, varied among the investigated sites, despite the similar wind flow conditions offshore. For instance, the measurements at the degraded reef showed decreased wave attenuation and augmented flow velocities compared to the other sites. Boat wakes exhibited a very distinct signal in the flow velocity time-series and significantly increased the approaching flow velocity at the reefs. The oyster roughness height at the restored reef (68 mm) was higher than the roughness at the reference reef (45 mm); however, the variance was higher at the latter. Sediments from degraded reef and the recently restored reef were coarser and contained less organic matter compared to the reference condition reef.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4662C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4662C"><span>Evaluation of sediment transport at a fetch-limited beach from spring to neap tide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrasco, Ana Rita; Ferreira, Óscar; Matias, Ana; Freire, Paula; Alveirinho Dias, João.</p> <p>2010-05-01</p> <p>Sediment transport studies are useful tools for the determination of sediment budgets, important in the definition of management policies, in particular in environments not fully understood like fetch-limited beaches. Only a few studies have been made with respect to these beaches, and research efforts need to be continued to correctly quantify the main factors governing morphological changes. The present study provides new insights on sediment transport at a fetch-limited backbarrier beach located at the Peninsula do Ancão (Ria Formosa, South of Portugal). The field site extends over ~150 m and includes a sandy beach with a low and narrow reflective morphology, and an external sand bank at the seaward edge of the sub-aerial beach profile. Fluorescent tracers were used to measure the short-term sediment transport (rates and directions) from spring to neap tides, for fair-weather conditions. The experiment was set at two beach morphologies: beach face and sand bank. Tracer was released on 20th March 2008 at both sites, and sampling was conducted at low tide, each 24h, during 7 days. In situ fluorescent tracer detection was performed with UV light. Currents were obtained with a portable single-axis electromagnetic current meter located at the beach face, and an Aquadopp Profiler located at the sand bank. Local waves were obtained by numerical modelling for the study area, based on prevailing winds (measured by a nearby meteorological station), and using available bathymetric surveys. Tracer trends, tidal currents, wind conditions and waves were integrative in order to determine to which forcing mechanism the beach morphology was more responsive. Daily wind intensities were, in average, close to 5 m/s, and maximum estimated significant wave height (Hs) did not exceed 0.045 m. Daily mean wave period ranged from 0.5 s to 0.7 s. The maximum tidal range was 2.8 m. Currents were of higher magnitude at the sand bank than at the beach face, with the maximum during ebb tide (0.50 m/s). At the beach face, maximum velocities are very similar for both ebb and flood tide, with a maximum of 0.26 m/s. Tracer displacement was greater at the beach face, indicating that this is the most active part of the profile during the experiment. At the sand bank, tracer dispersion was greater, but tracer advection was shorter. Tracer isopachs illustrate a relatively independency of both analysed morphologies, without significant exchange across the profile. At both morphologies, the residual transport is dominated by the longshore component, and mostly directed towards the ebb. Ebb directed transport agrees with ebb dominance on tidal currents at this location. Results suggest a tidal and current dominance. Tidal range assumes particular importance at beach face.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70112522','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70112522"><span>Changes in surfzone morphodynamics driven by multi-decadel contraction of a large ebb-tidal delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hansen, Jeff E.; Elias, Edwin; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.</p> <p>2013-01-01</p> <p>The impact of multi-decadal, large-scale deflation (76 million m3 of sediment loss) and contraction (~ 1 km) of a 150 km2 ebb-tidal delta on hydrodynamics and sediment transport at adjacent Ocean Beach in San Francisco, CA (USA), is examined using a coupled wave and circulation model. The model is forced with representative wave and tidal conditions using recent (2005) and historic (1956) ebb-tidal delta bathymetry data sets. Comparison of the simulations indicates that along north/south trending Ocean Beach the contraction and deflation of the ebb-tidal delta have resulted in significant differences in the flow and sediment dynamics. Between 1956 and 2005 the transverse bar (the shallow attachment point of the ebb-tidal delta to the shoreline) migrated northward ~ 1 km toward the inlet while a persistent alongshore flow and transport divergence point migrated south by ~ 500 m such that these features now overlap. A reduction in tidal prism and sediment supply over the last century has resulted in a net decrease in offshore tidal current-generated sediment transport at the mouth of San Francisco Bay, and a relative increase in onshore-directed wave-driven transport toward the inlet, accounting for the observed contraction of the ebb-tidal delta. Alongshore migration of the transverse bar and alongshore flow divergence have resulted in an increasing proportion of onshore migrating sediment from the ebb-tidal delta to be transported north along the beach in 2005 versus south in 1956. The northerly migrating sediment is then trapped by Pt. Lobos, a rocky headland at the northern extreme of the beach, consistent with the observed shoreline accretion in this area. Conversely, alongshore migration of the transverse bar and divergence point has decreased the sediment supply to southern Ocean Beach, consistent with the observed erosion of the shoreline in this area. This study illustrates the utility of applying a high-resolution coupled circulation-wave model for understanding coastal response to large-scale bathymetric changes over multi-decadal timescales, common to many coastal systems adjacent to urbanized estuaries and watersheds worldwide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021731','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021731"><span>Estimates of suspended-sediment flux and bedform activity on the inner portion of the Eel continental shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.</p> <p>1999-01-01</p> <p>Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long-wavelength sand waves into the measurement area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC12A..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC12A..02W"><span>A new momentum integral method for approximating bed shear stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wengrove, M. E.; Foster, D. L.</p> <p>2016-02-01</p> <p>In nearshore environments, accurate estimation of bed stress is critical to estimate morphologic evolution, and benthic mass transfer fluxes. However, bed shear stress over mobile boundaries in wave environments is notoriously difficult to estimate due to the non-equilibrium boundary layer. Approximating the friction velocity with a traditional logarithmic velocity profile model is common, but an unsteady non-uniform flow field violates critical assumptions in equilibrium boundary layer theory. There have been several recent developments involving stress partitioning through an examination of the momentum transfer contributions that lead to improved estimates of the bed stress. For the case of single vertical profile observations, Mehdi et al. (2014) developed a full momentum integral-based method for steady-unidirectional flow that integrates the streamwise Navier-Stokes equation three times to an arbitrary position within the boundary layer. For the case of two-dimensional velocity observations, Rodriguez-Abudo and Foster (2014) were able to examine the momentum contributions from waves, turbulence and the bedform in a spatial and temporal averaging approach to the Navier-Stokes equations. In this effort, the above methods are combined to resolve the bed shear stress in both short and long wave dominated environments with a highly mobile bed. The confluence is an integral based approach for determining bed shear stress that makes no a-priori assumptions of boundary layer shape and uses just a single velocity profile time series for both the phase dependent case (under waves) and the unsteady case (under solitary waves). The developed method is applied to experimental observations obtained in a full scale laboratory investigation (Oregon State's Large Wave Flume) of the nearbed velocity field over a rippled sediment bed in oscillatory flow using both particle image velocimetry and a profiling acoustic Doppler velocimeter. This method is particularly relevant for small scale field observations and laboratory observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP13A0817L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP13A0817L"><span>Impact Of Coral Structures On Wave Directional Spreading Across A Shallow Reef Flat - Lizard Island, Northern Great Barrier Reef</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.</p> <p>2013-12-01</p> <p>Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/j.coastaleng.2010.02.006','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/j.coastaleng.2010.02.006"><span>Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCall, R.T.; Van Theil de Vries, J. S. M.; Plant, N.G.; Van Dongeren, A. R.; Roelvink, J.A.; Thompson, D.M.; Reniers, A.J.H.M.</p> <p>2010-01-01</p> <p>A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias - 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG51A..04V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG51A..04V"><span>Hydrodynamic Impacts on Coastal Erosion and Deposition Processes in Cu Lao Dung (Soc Trang) and Rach Goc (Ca Mau)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vo-Luong, H. P.; Phong, N. H.; Tran, D. X.; Ogston, A. S.</p> <p>2016-02-01</p> <p>Coastal mangrove forests are special and unique vegetation found in the tropics. They are classified as the most vulnerable ecosystem in coastal ecosystems. Moreover, mangrove forests are dynamic systems that directly influence coastal erosion and deposition processes. Cu Lao Dung (Soc Trang province) and Rach Goc (Ca Mau province) are chosen as studied sites. Although they both belong to the Mekong Delta on the eastern coast of Viet Nam, coastal erosion and deposition processes are different: Cu Lao Dung tends to be aggradational while the Rach Goc area is seriously erosional. This study aims to focus on the impact of hydrodynamics in the coastal processes at the Cu Lao Dung and Rach Goc sites. As part of field measurements in NE and SW monsoons (2014-2015), wave, current, river discharge, suspended sediment concentration, and bathymetry were measured. These data were collected in shallow sub-tidal water, on the muddy flat and within the mangrove forest. The observed data show that waves and current are dissipated quickly from shallow coastal water into the mangroves. They also depend on topography changes, characteristic in mangroves. Suspended sediment concentration increases from shallow water into the mangroves, and fluctuates according to tides, waves and currents. The analyzed data in Cu Lao Dung and Rach Goc are compared and from that, the main factors causing the erosion and deposition in these studied sites are explained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016291','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016291"><span>Effects of elevated temperatures and rising sea level on Arctic Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnes, Peter W.</p> <p>1990-01-01</p> <p>Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H51B0481L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H51B0481L"><span>Numerical Model of Channel and Aquatic Habitat Response to Sediment Pulses in Mountain Rivers of Central Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.</p> <p>2006-12-01</p> <p>Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural fining on spawning habitat depend on the size of sediment in the wave relative to that of the downstream channel; fining can improve spawning habitat availability in channels that are otherwise too coarse, or degrade habitat availability in finer-grained channels. Despite the perceived negative effects of sediment pulses, they can be important sources of gravel and wood debris, creating downstream spawning sites and productive wood-forced habitats. Field observations illustrate that opportunistic salmonids will spawn along the margins of recently deposited debris fans, emphasizing the biological value of such disturbances and the plasticity of salmonids to natural disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS44B..08O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS44B..08O"><span>Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogston, A. S.; Walsh, J. P.; Hale, R. P.</p> <p>2011-12-01</p> <p>The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly, these flows play a significant role in the morpholigcal development of the continental margin. These sites, synthesized with examples from multiple other environments, provide a basis for understanding the interactions between physical processes responsible for the transport of sediment from river mouths to the sites of ultimate deposition.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21B1844M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21B1844M"><span>New Insights About Large-Scale Delta Morphodynamics from a Coupled Model of Fluvial-Coastal Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, A. B.; Ratliff, K. M.; Hutton, E.</p> <p>2017-12-01</p> <p>We use a newly developed delta model to explore the combined effects of sea-level rise (SLR) and variable wave influence on delta morphology, avulsion behavior, and autogenic sediment flux variability. Using the Community Surface Dynamics Modeling System framework and tools, we couple the River Avulsion and Floodplain Evolution Model (RAFEM) to the Coastline Evolution Model (CEM). RAFEM models the fluvial processes, including river profile evolution, floodplain deposition, and avulsions. CEM uses gradients in alongshore sediment transport to distribute the fluvial sediment along the coastline. A suite of recent experiments using the coupled model and the Dakota software toolkit lead to several new insights: 1) A preferential avulsion location (which scales with the backwater length) can arise for geometric reasons that are independent of the recently suggested importance of alternation between flood and inter-flood periods. 2) The angular distribution of waves, as well as the wave height, affect the avulsion timescale. Previous work suggested that the time between avulsions will increase with greater wave influence, and we find that this is true for an angular mix of waves that tends to smooth a fairly straight coastline (coastline diffusion), where river mouth progradation is slowed and avulsions are delayed. However, if the angular distribution of waves leads to locally smooth shorelines but large amplitude coastline features (anti-diffusive coastline evolution), then avulsion timescales are barely affected, even when wave influence is high. 3) Increasing SLR rates are expected to cause more frequent avulsions, and it does in laboratory deltas. Unexpectedly, we find that this is not the case for the river-dominated deltas in our coupled model, in which SLR-related transgression effectively decreases progradation, offsetting base-level-rise effects. This finding raises potentially important questions about the geometric differences between prototypical and laboratory deltas that have not previously been addressed. 4) The magnitude and timescale of autogenic variability in the sediment flux at the river mouth depends on the SLR rate (for some wave climates), wave characteristics, and the how high the river channel must be super-elevated relative to the floodplain in order to trigger an avulsion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28769085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28769085"><span>Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J</p> <p>2017-08-02</p> <p>Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..206....2X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..206....2X"><span>Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong</p> <p>2018-06-01</p> <p>An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..191..221X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..191..221X"><span>Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong</p> <p>2017-05-01</p> <p>An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1061/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1061/"><span>Hurricane Ike: Observations and Analysis of Coastal Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.</p> <p>2009-01-01</p> <p>Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline, beaches, dunes, and infrastructure in the region that was heavily impacted by Hurricane Ike.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032604','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032604"><span>Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying</p> <p>2012-01-01</p> <p>The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC21D0585V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC21D0585V"><span>The Impact of Hydrodynamics in Erosion - Deposition Process in Can Gio Mangrove Biosphere Reserve, South Viet Nam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vo-Luong, H. P.</p> <p>2014-12-01</p> <p>Can Gio Mangrove Biosphere Reserve is always considered as a friendly green belt to protect and bring up the habitants. However, recently some mangrove areas in the Dong Tranh estuary are being eroded seriously. Based on the field measurements in SW and NE monsoons as well as data of topography changes in 10 years, it is proved that hydrodynamics of waves, tidal currents and riverine currents are the main reasons for erosion-deposition processes at the studied site. The erosion-deposition process changes due to monsoon. The analysed results show that high waves and tidal oscillation cause the increase of the erosion rate in NE monsoon. However, high sediment deposition occurs in SW monsoon due to weak waves and more alluvium from upstream. Many young mangrove trees grow up and develop in the SW monsoon. From the research, it is strongly emphasized the role of mangrove forests in soil retention and energy dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S32A..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S32A..06T"><span>Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.</p> <p>2017-12-01</p> <p>By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190046','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190046"><span>Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.</p> <p>2016-01-01</p> <p>Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (< 10 m) channel, up-slope migrating sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.143...67A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.143...67A"><span>Coupled geophysical characterization of shallow fluvio-clastic sediments in Agwagune, southeastern Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akpan, Anthony E.; Ekwok, Stephen E.; Ebong, Ebong D.; George, Anthony M.; Okwueze, Emeka E.</p> <p>2018-07-01</p> <p>Geophysical investigation performed using electrical resistivity tomography (ERT), vertical electrical sounding (VES), seismic refraction (SRF) and ground penetrating radar (GPR) techniques were used to constrain and characterize shallow lithologic units in the Cross River bank (CRB) in southeastern Nigeria. Results show that the upper layer sediments comprise a 3-5-layered lithostratigraphic sequence with high clayey content. Around the Cross River bank (CRB), the top sediments consist of loose, silty and clayey sands with low resistivities (<150 Ωm) and low P-wave velocities (300-1000 m/s). These attenuating sediments have no reasonable continuity beyond the vicinity of the CRB. The low attenuating indurated silts/sands characterized by low resistivities (<25 Ωm) and high P-wave velocities (1000-2400 m/s) underlie the first layer around in the CRB. Localized microstructures (e.g., fractures) trending east-west, and saturated sand-filled channels truncate their lateral continuities. The lacustrine clays characterized by low resistivities (<15 Ωm) and high P-wave velocities (>2400 m/s) make up the third layer. The clayey sediments impede vertical percolation of groundwater forcing it to accumulate at the bottom of the second layer resulting in high static water levels of <3 m within the CRB and >5 m elsewhere. Hydraulic gradient in the Cross River bed (CRBD) and in the coastal groundwater drives groundwater flow into the CRBD through macropores. The sediments become unstable when these macropores become enlarged as more materials are continuously transmitted through them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bioone.org/doi/abs/10.3955/046.090.0107','USGSPUBS'); return false;" href="http://www.bioone.org/doi/abs/10.3955/046.090.0107"><span>Assessing tidal marsh vulnerability to sea-level rise in the Skagit Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hood, W. Gregory; Grossman, Eric E.; Curt Veldhuisen,</p> <p>2016-01-01</p> <p>Historical aerial photographs, from 1937 to the present, show Skagit Delta tidal marshes prograding into Skagit Bay for most of the record, but the progradation rates have been steadily declining and the marshes have begun to erode in recent decades despite the large suspended sediment load provided by the Skagit River. In an area of the delta isolated from direct riverine sediment supply by anthropogenic blockage of historical distributaries, 0.5-m tall marsh cliffs along with concave marsh profiles indicate wave erosion is contributing to marsh retreat. This is further supported by a “natural experiment” provided by rocky outcrops that shelter high marsh in their lee, while being bounded by 0.5-m lower eroded marsh to windward and on either side. Coastal wetlands with high sediment supply are thought to be resilient to sea level rise, but the case of the Skagit Delta shows this is not necessarily true. A combination of sea level rise and wave-generated erosion may overwhelm sediment supply. Additionally, anthropogenic obstruction of historical distributaries and levee construction along the remaining distributaries likely increase the jet momentum of river discharge, forcing much suspended sediment to bypass the tidal marshes and be exported from Skagit Bay. Adaptive response to the threat of climate change related sea level rise and increased wave frequency or intensity should consider the efficacy of restoring historical distributaries and managed retreat of constrictive river levees to maximize sediment delivery to delta marshes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...153...30Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...153...30Z"><span>The influence of seasonal climate on the morphology of the mouth-bar in the Yangtze Estuary, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Min; Townend, Ian; Cai, Huayang; He, Jiawei; Mei, Xuefei</p> <p>2018-02-01</p> <p>The geomorphology of the Yangtze Estuary in the Changjiang River Delta in Eastern China has been the subject of extensive research. This study extends previous work to examine the influence of wind-waves on the mouth-bar, where about half of the river-borne material settles to the bed. The site is located just outside of Changjiang River mouth, which is meso-tidal and subject to seasonally varying river flows and wind-wave conditions. Modeling was performed with a coupled wave-current hydrodynamic model using TELEMAC and TOMAWAC and validated against observed data. Bottom Shear Stress (BSS) from river, tide and waves based on the numerical model output was used to infer the respective contribution to the evolution of the subaqueous delta. Our examination did not however extend to modeling the sediment transport or the morphological bed changes. The results suggest that (i) the dominance of river discharge is limited to an area inside the mouth, while outside, the mouth-bar is tide-wave dominant; (ii) considering just the tide, the currents on the shallow shoals are flood dominant and deep channels are ebb dominant, which induces continued accretion over the shallows and erodes the deeper parts of the mouth-bar until the tidal currents become too weak to transport sediment; (iii) whereas waves are very efficient at reshaping the shallow shoals, with the effect being subtly dependent on the depth distribution over the mouth-bar; (iv) the stability of shallow shoal morphology is highly dependent on the presence of seasonal wind-waves and characterized as "summer storing and winter erosion", while deep channels perform like corridors of water and sediment, exporting sediment all year round. The nature of the mouth-bar response has important implications for coastal management, such as the ongoing deep water channel maintenance, reclamations and coastal defense measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3397S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3397S"><span>Post-tsunami beach recovery in Thailand: A case for punctuated equilibrium in coastal dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Switzer, Adam D.; Gouramanis, Chris; Bristow, Charles; Yeo, Jeffrey; Kruawun, Jankaew; Rubin, Charles; Sin Lee, Ying; Tien Dat, Pham</p> <p>2017-04-01</p> <p>A morpho-geophysical investigation of two beaches in Thailand over the last decade shows that they have completely recovered from the 2004 Indian Ocean tsunami (IOT) without any human intervention. Although the beach systems show contrasting styles of recovery in both cases natural processes have reconstructed the beaches to comparable pre-tsunami morphologies in under a decade, demonstrating the existence of punctuated equilibrium in coastal systems and the resilience of natural systems to catastrophic events. Through a combination of remote sensing, field surveys and shallow geophysics we reconstruct the post-event recovery of beaches at Phra Thong Island, a remote, near pristine site that was severely impacted by the IOT. We identify periods of aggradation, progradation and washover sedimentation that match with local events including a storm in November 2007. The rapid recovery of these systems implies that majority of sediment scoured by the tsunami was not transported far offshore but remained in the littoral zone within reach of fair-weather waves that returned it (the sediment) to the beach naturally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3436R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3436R"><span>Geoacoustic models of Coastal Bottom Strata at Jeongdongjin in the Korean continental margin of the East Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryang, Woo Hun; Han, Jooyoung</p> <p>2017-04-01</p> <p>Geoacoustic models provide submarine environmental data to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on about 1100 line-km data of the high-resolution air-gun seismic and subbottom profiles (SBP) with sediment cores. The 4 piston cores were analyzed for reconstruction of the bottom and geoacoustic models in the study area, together with 2 long cores in the adjacent area. P-wave speed in the core sediment was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1 MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea. Keywords: geoacosutic model, bottom model, P-wave speed, Jeongdongjin, East Sea Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GML....37..475A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GML....37..475A"><span>Sedimentary constraints on the development of a narrow deep strait (São Sebastião Channel, SE Brazil)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alcántara-Carrió, Javier; Sasaki, Dalton Kei; Mahiques, Michel Michaelovitch de; Taborda, Rui; de Souza, Luiz Antonio Pereira</p> <p>2017-10-01</p> <p>The São Sebastião Channel (SSC), which separates São Sebastião Island from the continent, is a deep elongated strait on the inner shelf of the São Paulo Bight (SE Brazil). The aim of this study is to explain why it is presently sediment starved, instead of forming a tombolo. Wave data were obtained from both a WW3 model database and buoy records, and wave propagation patterns from the SWAN numerical model. Grain size trend analysis of 579 surficial sediment samples from the strait and the surrounding region served to estimate the residual transport directions. Bedload sediment transport was computed considering in situ currents and bottom sediment grain size. Moreover, six seismic profiles and one gravity core were obtained in the strait in order to evaluate the hickness of the sedimentary deposits. The geometry of the SSC (X/B=0.3, where B is the breakwater or island diameter and X is its cross-shore distance to the mainland) predicts that a tombolo should be formed, and wave patterns confirm that it is a zone sheltered from both S and NE waves. Previous studies have shown that the hydrodynamics of the SSC is controlled by wind-driven currents, which are more intense in the eastern and central sectors of the strait. The western sector is currently covered by sandy mud, whereas very coarse to fine sand prevails in the deeper eastern sector. Sediment patterns show a trend to deposition of fine sediment in the western sector of the SSC and two main depocentres located at the northern limit of the study area and at the southern mouth of the strait. Sandy mud in the western sector forms a 40-m-thick deposit close to the outer limit of Araçá Bay, whereas the remainder of the SSC is covered by a very thin layer of sandy sediments. Dominance of mud in the depositional western sector suggests low availability of sand in the area. Therefore, despite the geometry and wave patterns of the SSC favouring the formation of a tombolo, the dominance of wind-driven currents and the low availability of sand determine that such a sedimentary feature cannot be formed, resulting in a deep strait.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018402','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018402"><span>Sedimentary environments within a glaciated estuarine-inner shelf system: Boston Harbor and Massachusetts Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knebel, H.J.</p> <p>1993-01-01</p> <p>Three modern sedimentary environments have been identified and mapped across the glaciated Boston Harbor estuary and adjacent inner shelf of Massachusetts Bay by means of an extensive set of sidescan sonar records and supplemental bathymetric, sedimentary, subbottom and bottom-current data. 1. (1) Environments of erosion and nondeposition appear on the sonographs either as patterns with isolated reflections (caused by outcrops of bedrock, glacial drift, and coastal plain rocks) or as patterns of strong backscatter (caused by coarse-grained lag deposits). Sediments in these environments range from boulder fields to gravelly sands with megaripples. Inside the harbor, areas of erosion or nondeposition are found primarily near mainland and insular shores and within constricted tidal channels, whereas, on the shelf, they are present over extensive areas of hummocky topography near the coast and atop local bathymetric highs offshore. 2. (2) Environments of sediment reworking are characterized on the sonographs by patterns with patches of strong to weak backscatter caused by a combination of erosional and depositional processes. These environments have diverse grain sizes that range from sandy gravels to muds. Within the harbor, the locations of reworked sediments are uncorrelated with the bottom topography, but, on the shelf, they are found on the lower flanks of bathymetric highs, within broad lows and in relatively deep water (30-50 m). 3. (3) Environments of deposition are depicted on the sonographs as uniform patterns of weak backscatter. These areas contain relatively fine-grained muddy sands and muds. Inside the harbor, depositional environments are found over extensive subtidal flats and within sheltered depressions, whereas, on the shelf, they are restricted to broad lows mainly in deep water. The extreme patchiness of modern sedimentary environments within the Boston Harbor-Massachusetts Bay system reflects the interaction between the irregular bottom topography and both geologic and oceanographic processes. The estuarine part of the system is an effective trap for fine-grained detritus because of its protected nature, low wave climate, and large supply of sediments. The open shelf, however, is largely mantled by winnowed and sorted sediments as a result of erosion during past sea-level fluctuations, sediment resuspension and transport by modern waves and currents, and a spatially variable supply of fine-grained sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SGeo...29....1D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SGeo...29....1D"><span>Advances in the Study of Moving Sediments and Evolving Seabeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, Alan G.; Thorne, Peter D.</p> <p>2008-01-01</p> <p>Sands and mud are continually being transported around the world’s coastal seas due to the action of tides, wind and waves. The transport of these sediments modifies the boundary between the land and the sea, changing and reshaping its form. Sometimes the nearshore bathymetry evolves slowly over long time periods, at other times more rapidly due to natural episodic events or the introduction of manmade structures at the shoreline. For over half a century we have been trying to understand the physics of sediment transport processes and formulate predictive models. Although significant progress has been made, our capability to forecast the future behaviour of the coastal zone from basic principles is still relatively poor. However, innovative acoustic techniques for studying the fundamentals of sediment movement experimentally are now providing new insights, and it is expected that such observations, coupled with developing theoretical works, will allow us to take further steps towards the goal of predicting the evolution of coastlines and coastal bathymetry. This paper presents an overview of our existing predictive capabilities, primarily in the field of non-cohesive sediment transport, and highlights how new acoustic techniques are enabling our modelling efforts to achieve greater sophistication and accuracy. The paper is aimed at coastal scientists and managers seeking to understand how detailed physical studies can contribute to the improvement of coastal area models and, hence, inform coastal zone management strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CSR....84...93M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CSR....84...93M"><span>Dynamics of the benthic boundary layer and seafloor contributions to oxygen depletion on the Oregon inner shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCann-Grosvenor, Kristina; Reimers, Clare E.; Sanders, Rhea D.</p> <p>2014-08-01</p> <p>Measurement of in situ O2 consumption and production within permeable sediments, such as those found over the Oregon-Washington inner shelf, has traditionally been done using methods that isolate the sediments from the dynamic influences of currents and wave motions. Modified from atmospheric research, the non-invasive eddy correlation technique can be used to characterize benthic boundary layer dynamics and measure O2 flux across the sediment-water interface without excluding the natural hydrodynamic flow. In 2009, eddy correlation measurements were made in 5 discrete months with varying conditions at a 30 m site off Yaquina Head, Newport, OR. The O2 flux was found to be primarily into the bed (-18±3 mmol m-2 d-1; mean±SE, n=137 15-min bursts) but was sensitive to non-steady state changes in O2 concentrations caused by the differential advection of water masses with variable mean O2 concentrations. Important contributions to O2 eddy fluxes at surface wave frequencies were seen in eddy correlation cospectra and these are interpreted as being indicative of consumption enhanced by advective transport of O2 into the bed. The sediments were deposits of fine sand with permeabilities of 1.3-4.7×10-11 m2 and wave-generated ripples. Sediment pigment and organic carbon concentrations were low (chlorophyll-α: 0.02-0.45 μg g-1, phaeophytin-α: 0.38-1.38 μg g-1 and organic carbon: 0.05-0.39% dry wt in discrete depth intervals from cores collected between March and October), but it was evident that during the summer fresh pigments were trapped in the sand and rapidly mixed over the uppermost 0-13 cm. From these results it is inferred that physical forcing associated largely with waves and currents may accentuate the role of sediment-covered inner shelf habitats as a regional O2 sink compared to the middle shelf. In effect, the action of waves and currents in the benthic boundary layer enables aerobic respiration that counterbalances the oxygenation of the water column by primary production and mixing in the surface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178479','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178479"><span>Suspended-sediment flux and retention in a backwater tidal slough complex near the landward boundary of an estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morgan-King, Tara L.; Schoellhamer, David H.</p> <p>2013-01-01</p> <p>Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033559','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033559"><span>Growth and mortality of coral transplants (Pocillopora damicornis) along a range of sediment influence in Maui, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Piniak, G.A.; Brown, E.K.</p> <p>2008-01-01</p> <p>Fragments of the lace coral Pocillopora damicornis (Linnaeus, 1758) were transplanted to four sites on the south-central coast of Maui, Hawai'i, to examine coral growth over a range of expected sediment influence. Corals remained in situ for 11 months and were recovered seasonally for growth measurements using the buoyant weight technique. Average sediment trap accumulation rates ranged from 11 to 490 mg cm-2 day-1 and were greater at the wave-exposed reef site than at the protected harbor sites. Coral growth was highest at the donor site and was higher in the summer than in the winter. A stepwise linear regression found significant effects of sediment trap accumulation and light on growth rates, but the partial correlation coefficients suggest that these factors may be only secondary controls on growth. This study did not show a clear link between coral growth and sediment load. This result may be due, in part, to covariation of sediment load with wave exposure and the inability of trap accumulation rates to integrate all sediment effects (e.g., turbidity) that can affect coral growth. ?? 2008 by University of Hawai'i Press. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919357R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919357R"><span>Wave-flume experiments of soft-rock cliff erosion under monochromatic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Regard, Vincent; Astruc, Dominique; Caplain, Bastien</p> <p>2017-04-01</p> <p>We investigate how cliffs erode under wave attack. Rocky coast erosion works through cycles, each one corresponding to three successive phases: (i) notch creation at cliff toe by mechanical action of waves, (ii) cliff fracturation leading to collapse, and (iii) evacuation of scree aprons by waves and currents. We performed experiments in a 5m x 14cm x 25cm wave flume (15 cm water depth) to investigate how waves are eroding a rocky coast. The cliff is made of wet sand and models a relatively soft rock. We used 3 different grain size (D50 = 0.28-0.41-0.48 mm), changing the cliff rheology. Waves are monochromatic; their height and period differ for the various experiments. Actual wave parameters are estimated by capacitive probes located offshore. The experiments are monitored by two video cameras both on the side and above the flume. Pictures are taken at a rate of 1Hz during the first 4h and then the rate is decreased to 0.1Hz till the end of experiment (about 1 day). The monitoring ensure a confident characterization of experiments in terms of waves (surf similarity parameter ξ and the incident wave energy flux F) and in terms of sediment (Dean number Ω and Shields number θb at breakers). Experiments begin by an initial phase of quick cliff retreat. Then the system evolves with slower cliff retreat. We focus on bottom morphology which we characterize in function of wave forcing (ξ, F). We show that the bottom morphology mainly depends on ξ. For our reference sediment (Dm = 0.41 mm), we observed: (i) surging breakers on a steep terrace (type T1) for ξ > 0.65; (ii)collapsing breakers on a bared profile attached to the inner platform (type T2) for 0.55< ξ <0.6; (iii) spilling breakers on gentle terrace (type T3) for F < 1.3 W/m and 0.55< ξ <0.6. Another bottom morphology, type T4, displays two sub-systems, an outer system with a double-bar profile where breaking waves are plunging, and an inner system with a T1, T2 or T3 profile. Some of these bottom morphologies are unsteady with sandbar oscillation. When changing sediment grain size, we observed that the bottom typology is similar but evolves in function of the Ω value. Finally, we observed that the cliff recession is proportional to F, is not monotonic with ξ and decreases with the sediment grain diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OcMod..47...65K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OcMod..47...65K"><span>Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane</p> <p></p> <p>The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/j.ocemod.2011.12.008','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/j.ocemod.2011.12.008"><span>Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying</p> <p>2012-01-01</p> <p>The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012547','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012547"><span>A new instrument system to investigate sediment dynamics on continental shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cacchione, D.A.; Drake, D.E.</p> <p>1979-01-01</p> <p>A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development. Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 - October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves. ?? 1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMDI14A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMDI14A..08H"><span>Velocities of Subducted Sediments and Continents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.</p> <p>2009-12-01</p> <p>The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at shallow depths through trench-parallel at moderate depths to down-dip approaching sub-arc depths. Vertically incident waves have VP/ VS of 1.7-1.3 over the same range of depths, waves propagating up dip have VP/ VS of 1.7-1.3, and waves propagating along the slab at constant depth have VP/ VS of 1.7-1.45. These remarkably low VP/ VS ratios are due to the anomalous elastic behavior of quartz. More aluminous lithologies have elevated VP/ VS ratios: 1.85 for slab-normal waves, 1.75 for trench-parallel waves, and 1.65 for down-dip waves. Subducted continental crust that is too dry to transform to high-pressure minerals has relatively ordinary VP/ VS ratio of 1.71-1.75 for vertically incident waves, 1.6-1.7 for waves propagating up dip, and 1.65-1.75 for waves propagating along the slab. Thus, subducted mica-rich sediments can have high VP/ VS ratios, whereas quartzose lithologies generate low VP/ VS ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP31B3530C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP31B3530C"><span>Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carniello, L.; D'Alpaos, A.</p> <p>2014-12-01</p> <p>A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically equivalent to real sequences through which MonteCarlo realizations of relevant morphological evolutions can be computed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14C1023C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14C1023C"><span>On modeling heterogeneous coastal sediment transport - A numerical study using multiphase Eulerian and Euler-Lagrangian approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Z.; Yu, X.; Hsu, T. J.; Calantoni, J.; Chauchat, J.</p> <p>2016-02-01</p> <p>Regional scale coastal evolution models do not explicitly resolve wave-driven sediment transport and must rely on bedload/suspended modules that utilize empirical assumptions. Under extreme wave events or in regions of high sediment heterogeneity, these empirical bedload/suspended load modules may need to be reevaluated with detailed observation and more sophisticated small-scale models. In the past decade, significant research efforts have been devoted to modeling sediment transport using multiphase Eulerian or Euler-Lagrangian approaches. Recently, an open-source multi-dimensional Reynolds-averaged two-phase sediment transport model, SedFOAM is developed by the authors and it has been adopted by many researchers to study momentary bed failure, granular rheology in sheet flow and scour around structures. In this abstract, we further report our recent progress made in extending the model with 3D turbulence-resolving capability and to model the sediment phase with the Discrete Element method (DEM). Adopting the large-eddy simulation methodology, we validate the 3D model with measured fine sediment transport is oscillatory sheet flow and demonstrate that the model is able to resolve sediment burst events during flow reversals. To better resolve the intergranular interactions and to model heterogeneous properties of sediment (e.g., mixed grain sizes and grain shape), we use an Euler-Lagrangian solver called CFDEM, which couples OpenFOAM for the fluid phase and LIGGGHTS for the particle phase. We improve the model by better enforcing conservation of mass in the pressure solver. The modified CFDEM solver is validated with measured oscillatory sheet flow data for coarse sand and we demonstrated that the model can reproduce the well-known armoring effects. We show that under Stokes second-order wave forcing, the armoring effect is more significant during the energetic positive peak, and hence the net onshore transport is reduced. Preliminary results modeling the shape effects using composite particles will be presented. This research is supported by Office of Naval Research and National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23D1255B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23D1255B"><span>The wave-tide-river delta classification revisited: Introducing the effects of Humans on delta equilibriu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Besset, M.; Anthony, E.; Sabatier, F.</p> <p>2016-12-01</p> <p>The influence of physical processes on river deltas has long been identified, mainly on the basis of delta morphology. A cuspate delta is considered as wave-dominated, a delta with finger-like extensions is characterized as river-dominated, and a delta with estuarine re-entrants is considered tide-dominated (Galloway, 1975). The need for a more quantitative classification is increasingly recognized, and is achievable through quantified combinations, a good example being Syvitski and Saito (2007) wherein the joint influence of marine power - wave and tides - is compared to that of river influence. This need is further justified as deltas become more and more vulnerable. Going forward from the Syvitski and Saito (2007) approach, we confront, from a large database on 60 river deltas, the maximum potential power of waves and the tidal range (both representing marine power), and the specific stream power and river sediment supply reflecting an increasingly human-impacted river influence. The results show that 45 deltas (75%) have levels of marine power that are significantly higher than those of specific stream power. Five deltas have sufficient stream power to counterbalance marine power but a present sediment supply inadequate for them to be statistically considered as river-dominated. Six others have a sufficient sediment supply but a specific stream power that is not high enough for them to be statistically river-dominated. A major manifestation of the interplay of these parameters is accelerated delta erosion worldwide, shifting the balance towards marine power domination. Deltas currently eroding are mainly influenced by marine power (93%), and small deltas (< 300 km2 of deltaic protuberance) are the most vulnerable (82%). These high levels of erosion domination, compounded by accelerated subsidence, are related to human-induced sediment supply depletion and changes in water discharge in the face of the sediment-dispersive capacity of waves and currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM..OS51A08T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM..OS51A08T"><span>Sediment Facies on a Steep Shoreface, Tairua/Pauanui Embayment, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trembanis, A. C.; Hume, T. M.; Gammisch, R. A.; Wright, L. D.; Green, M. O.</p> <p>2001-05-01</p> <p>Tairua/Pauanui embayment is a small headland-bound system on the Coromandel Peninsula on the east coast of the North Island of New Zealand. The shoreface in this area is steep ( ~0.85) and concave; however, where the profile is steepest, between 10-15-m water depth, the profile is slightly convex. A sedimentological study of the shoreface was conducted to provide baseline information for a sediment-dynamics study. Detailed swath mapping of the seabed sediment from the beach out to a water depth of ~50 m was conducted using side-scan sonar. Over 200 km of side-scan sonar data were collected by separate surveys in September 2000 and again in February 2001. Ground-truthing of side-scan sonar data was carried out by SCUBA, grab sampling ( ~100 samples) and drop-camera video. A digital terrain model (DTM) of the area was constructed using newly collected bathymetric data along with data from digitized nautical charts. The DTM exposes changes in bathymetry and variation in slope throughout the study area. The acoustic and sedimentologic data were used to identify and map 8 individual facies units. Shoreface facies distribution was found to be patchy and complex. Large-scale ( ~200-m wide x 1600-m long), slightly depressed, mega-rippled coarse-sand/shell-hash units were abruptly truncated by contacts with fine, featureless, continuous sand-cover units. The repeat survey in February indicated stability of the overall shape and location of large-scale facies units, while diver observations indicated that bedforms within units actively migrate. Bedform roughness is highly variable, including patchy reefs/rubble, sand-dollar fields mega-rippled coarse-gravel/sands, ripple scour depressions, and fields of dense tubeworms. The distribution of coarse shell-hash units is consistent with diabathic sediment transport. Three tripods supporting a range of instruments for measuring waves, currents, boundary-layer flows and sediment resuspension and settling were deployed on the shoreface during February 2001, for up to 3 months. Each tripod was situated on a different facies with a view to resolving spatial variability in sediment dynamics and establishing a link between spatially variable bed roughness, sediment mobility and sedimentation patterns. Our ultimate goal is to understand the interactions between substrate and driving flows in this spatially complex setting and how these interactions sculpt the shoreface and possibly control sediment transfers between the inner shelf and beach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1347/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1347/"><span>The Performance of Nearshore Dredge Disposal at Ocean Beach, San Francisco, California, 2005-2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnard, Patrick L.; Erikson, Li H.; Hansen, Jeff E.; Elias, Edwin</p> <p>2009-01-01</p> <p>Ocean Beach, California, contains an erosion hot spot in the shadow of the San Francisco ebb tidal delta that threatens valuable public infrastructure as well as the safe recreational use of the beach. In an effort to reduce the erosion at this location a new plan for the management of sediment dredged annually from the main shipping channel at the mouth of San Francisco Bay was implemented in May 2005 by the United States Army Corps of Engineers, San Francisco District (USACE). The USACE designated a temporary nearshore dredge disposal site for the annual disposal of about 230,000 m3 (300,000 yd3) of sand about 750 m offshore and slightly south of the erosion hot spot, in depths between approximately 9 and 14 m. The site has now been used three times for a total sediment disposal of about 690,000 m3 (about 900,000 yds3). The disposal site was chosen because it is in a location where strong tidal currents and open-ocean waves can potentially feed sediment toward the littoral zone in the reach of the beach that is experiencing critical erosion, as well as prevent further scour on an exposed outfall pipe. The onshore migration of sediment from the target disposal location might feed the primary longshore bar or the nearshore zone, and provide a buffer to erosion that peaks during winter months when large waves impact the region. The United States Geological Survey (USGS) has been monitoring and modeling the bathymetric evolution of the test dredge disposal site and the adjacent coastal region since inception in May 2005. This paper reports on the first 2.5 years of this monitoring program effort (May 2005 to December 2007) and assesses the short-term coastal response. Here are the key findings of this report: *Approximately half of the sediment that has been placed in the nearshore dredge-disposal site during the 2.5 years of this study remains within the dredge focus area. *In the winter of 2006-7, large waves transported the dredge-mound material onshore. *High rates of seasonal cross-shore sediment transport mask any potential profile change in the Coastal Profiling System data due to dredge placement. *Pockets of accretion have been recorded by topographic surveying adjacent to the dredge site, but it is unclear if the accretion is linked to the nourishment. *Cross-shore profile modeling suggests that dredge material must be placed in water depths no greater than 5 m to drive a positive shoreline response. *Area modeling demonstrates that the new dredge site increases wave dissipation and modifies local sediment-transport patterns, although the effect on the nearshore morphology is largely negligible. *Any increase in beach width or wave energy-dissipation related to the nourishment is likely to be realized only in the vicinity directly onshore of the nourishment site, which is several hundred meters south of the area of critical erosion. *Larger waves from the northwest and smaller waves from the west or southwest contribute most to the sediment transport from the dredge mound onshore.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SolE....7..685B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SolE....7..685B"><span>Characterization of a complex near-surface structure using well logging and passive seismic measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara</p> <p>2016-04-01</p> <p>We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176469','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176469"><span>Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.</p> <p>2012-01-01</p> <p>Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578425','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578425"><span>Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-07-01</p> <p>hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1024423','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1024423"><span>Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions Under Waves, Currents, and Combined Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-12-01</p> <p>little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct observations made under...where there is little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct...INTERIM REPORT Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions under Waves , Currents, and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...129....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...129....1S"><span>Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.</p> <p>2016-10-01</p> <p>Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG54B2042E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG54B2042E"><span>Growth of the shallow Mekong clinoform and the impact of seasonal variability in fluvial and shelf processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eidam, E.; Nittrouer, C.; Ogston, A. S.; Liu, P.; DeMaster, D. J.; Nguyen, T. T.</p> <p>2016-02-01</p> <p>Like many large rivers, the Mekong River has built a compound delta (with subaqueous and subaerial segments) during Holocene sea-level transgression. Unlike many other deltas, the subaqueous part of the Mekong Delta (the clinoform) builds into shallow water in an epicontinental sea. The shallow depths of the Mekong clinoform (rollover at 5 m) may provide additional controls on sediment convergence and deposition through wave and current effects. Knowledge of the shelf dynamics is a key to understanding the total evolution of the Mekong, given that subaqueous and subaerial deltaic growth/erosion are intimately linked. To understand sediment transfer patterns and hydrodynamic controls better, we deployed boundary-layer sensor systems and collected kasten cores offshore of the southernmost Mekong distributary in Sep 2014 and Mar 2015 (high and low river discharge/low and high wave climate, respectively). Sediment accumulates rapidly on the foreset at rates of cm/yr, and sediment fines downslope until merging with relict transgressive sands on the bottomset - as expected for a clinoform system. However, tidal currents are competent to transport silt at all depths on the foreset, and added wave energy during seasonal monsoons creates the capacity to mobilize sand at most (or all) depths on the foreset. During high-flow periods, intense sediment delivery and dominantly shore-perpendicular currents likely drive cross-shelf sediment transfer. During low-flow periods, shoreward- and southwestward-dominant currents compress the sediment-dispersal system against the coast, maintaining a shallow topset while elongating the feature southwestward. These results suggest that for the Mekong, clinoform growth is linked to seasonal changes in shelf currents and in river discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sciencedirect.com/science/article/pii/S030917081500202X','USGSPUBS'); return false;" href="http://www.sciencedirect.com/science/article/pii/S030917081500202X"><span>Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.</p> <p>2016-01-01</p> <p>In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19945138','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19945138"><span>Modelling coupled turbulence - dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chatelain, Mathieu; Guizien, Katell</p> <p>2010-03-01</p> <p>A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (<or=1mm for mu=2000gm(-3)d(-1)) and decrease when the flow period increases. In the turbulent regime, the oxygen penetration depth reaches values up to five times larger than those in the laminar regime, becoming asymptotic as the maximum shear velocity increases. Copyright 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7837','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7837"><span>Understanding the role of sediment waves and channel conditions over time and space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle</p> <p>1997-01-01</p> <p>Abstract - Dynamic equilibrium in stream channels has traditionally been applied on the reach scale, where fluxes of water and sediment into a reach result in rapid but minor adjustments of channel dimensions, hydraulics or roughness (equilibrium), or aggradation and degradation (disequilibrium). Such an essentially one-dimensional spatial approach to sediment-channel...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4294732','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4294732"><span>Predicting morphological changes DS New Naga-Hammadi Barrage for extreme Nile flood flows: A Monte Carlo analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sattar, Ahmed M.A.; Raslan, Yasser M.</p> <p>2013-01-01</p> <p>While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude. PMID:25685476</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25685476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25685476"><span>Predicting morphological changes DS New Naga-Hammadi Barrage for extreme Nile flood flows: A Monte Carlo analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sattar, Ahmed M A; Raslan, Yasser M</p> <p>2014-01-01</p> <p>While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13C1651D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13C1651D"><span>Influence of Waves and Tides on Upper Slope Turbidity Currents and their Deposits: An Outcrop and Laboratory Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daniller-Varghese, M. S.; Smith, E.; Mohrig, D. C.; Goudge, T. A.; Hassenruck-Gudipati, H. J.; Koo, W. M.; Mason, J.; Swartz, J. M.; Kim, J.</p> <p>2017-12-01</p> <p>Research on interactions of turbidity currents with waves and tides highlight both their importance and complexity. The Elkton Siltstone at Cape Arago, Oregon, USA, preserves rhythmically bedded deposits that we interpret as the product of tidally modified hyperpycnal flows under the influence of water-surface waves. Evidence for the interpretation of tidal influence is taken from couplet thickness measurements consistent with semidiurnal tides arranged into monthly cycles. These deposits were likely sourced from suspended-sediment laden river plumes; thinner, finer-grained beds represent deposition during flood tide, and thicker, coarser-grained beds represent deposition during ebb tide. Sedimentary structures within the rhythmites change from proximal to distal sections, but both sections preserve combined-flow bedforms within the beds, implying wave influence. Our paleo-topographic reconstruction has the proximal section located immediately down-dip of the shelf slope-break and the distal section located 1.5km further offshore in 125m greater water depth. We present experimental results from wave-influenced turbidity currents calling into question the interpretation that combined-flow bedforms necessarily require deposition at or above paleo-wave base. Turbidity currents composed of quartz silt and very fine sand were released into a 10m long, 1.2m deep tank. Currents ran down a 9-degree ramp with a motor driven wave-maker positioned at the distal end of the tank. The currents interacted with the wave field as they travelled downslope into deeper water. While oscillatory velocities measured within the wave-influenced turbidity currents decreased with distance downslope, the maximum oscillatory velocities measured in the combined-flow currents at depth were five to six times larger than those measured under a wave field without turbidity currents. These results suggest that combined-flow turbidity currents can transmit oscillating-flow signals beneath the effective wave base. Bed thicknesses, grain-size data, sedimentary structures and fabrics measured in the rhythmically bedded, combined-flow turbidites of the Elkton Siltstone will be interpreted in the context of these experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993MarGR..15..297B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993MarGR..15..297B"><span>An automated full waveform logging system for high-resolution P-wave profiles in marine sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breitzke, Monika; Spieβ, Volkhard</p> <p>1993-11-01</p> <p>An automated, PC-based logging system has been developed to investigate marine sediment cores by full waveform transmission seismograms. High-resolution P-wave velocity and amplitude attenuation profiles are simultaneously derived from the transmission data to characterize the acoustic properties of the sediment column. A pair of ultrasonic, piezoelectric wheel probes is used to generate and record the transmission signals travelling radially through the sediment core. Both unsplit and split cores are allowed. Mounted in a carriage driven by a stepping motor via a shaft the probes automatically move along the core liner, stopping at equidistant spacings to provide a quasi-continuous inspection of the core by the transmission data. The axial travel distance and the core diameter are determined by digital measuring tools. First arrivals are picked automatically from the transmission seismograms using either a threshold in the seismogram's envelope or a cross-correlation algorithm taking the ‘zero-offset’ signal of both wheel probes into account. Combined with the core diameter these first arrivals lead to a P-wave velocity profile with a relative precision of 1 to 2 m s-1. Simultaneously, the maximum peak-to-peak amplitudes of the transmission seismograms are evaluated to get a first idea on the amplitude attenuation along the sediment core. Two examples of gravity cores taken during a recent cruise of R.V. METEOR in the Western Equatorial Atlantic are presented. They yield that the P-wave profiles can be used for locating strong and fine-scale lithological changes, e.g. turbidite layers and slight variations in the sand, silt or clay content. In addition, the transmission seismograms and their amplitude spectra obviously seem to reveal a correlation between the relative amount of low-frequency spectral components and the sediment grain size, and thus provide a tool for the determination of additional, related physical or sedimentological parameters in future investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESuD....6..187C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESuD....6..187C"><span>Establishing a sediment budget in the newly created "Kleine Noordwaard" wetland area in the Rhine-Meuse delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christien van der Deijl, Eveline; van der Perk, Marcel; Middelkoop, Hans</p> <p>2018-03-01</p> <p>Many deltas are threatened by accelerated soil subsidence, sea-level rise, increasing river discharge, and sediment starvation. Effective delta restoration and effective river management require a thorough understanding of the mechanisms of sediment deposition, erosion, and their controls. Sediment dynamics has been studied at floodplains and marshes, but little is known about the sediment dynamics and budget of newly created wetlands. Here we take advantage of a recently opened tidal freshwater system to study both the mechanisms and controls of sediment deposition and erosion in newly created wetlands. We quantified both the magnitude and spatial patterns of sedimentation and erosion in a former polder area in which water and sediment have been reintroduced since 2008. Based on terrestrial and bathymetric elevation data, supplemented with field observations of the location and height of cut banks and the thickness of the newly deposited layer of sediment, we determined the sediment budget of the study area for the period 2008-2015. Deposition primarily took place in channels in the central part of the former polder area, whereas channels near the inlet and outlet of the area experienced considerable erosion. In the intertidal area, sand deposition especially takes place at low-lying locations close to the channels. Mud deposition typically occurs further away from the channels, but sediment is in general uniformly distributed over the intertidal area, due to the presence of topographic irregularities and micro-topographic flow paths. Marsh erosion does not significantly contribute to the total sediment budget, because wind wave formation is limited by the length of the fetch. Consecutive measurements of channel bathymetry show a decrease in erosion and deposition rates over time, but the overall results of this study indicate that the area functions as a sediment trap. The total contemporary sediment budget of the study area amounts to 35.7×103 m3 year-1, which corresponds to a net area-averaged deposition rate of 6.1 mm year-1. This is enough to compensate for the actual rates of sea-level rise and soil subsidence in the Netherlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5077B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5077B"><span>Assessment of current effect on waves in a semi-enclosed basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.</p> <p>2012-04-01</p> <p>The wave-current interaction process in the semi-enclosed Adriatic Sea is studied using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, which is used to exchange data fields between the ocean model ROMS (Regional Ocean Modeling System) and the wave model SWAN (Simulating WAves Nearshore). The 2-way data transfer between circulation and wave models is synchronous with ROMS providing current fields, free surface elevation, and bathymetry to SWAN. In particular, the 3-D current profiles are averaged using a formulation that integrates the near-surface velocity over a depth controlled by the spectral mean wave number. This coupling procedure is carried out up to coastal areas by means of an offline grid nesting. The parent grid covers the whole Adriatic Sea and has a horizontal resolution of 2.0 km, whereas the child grid resolution increases to 0.5 km but it is limited to the northern Adriatic Sea (Gulf of Venice), where the current effect on waves is investigated. The most frequent winds blowing on the Adriatic Sea are the so-called Bora and Sirocco which cause high waves in the Adriatic Sea, although Bora waves are generally fetch-limited. In fact, Bora winds blow orthogonal to the main basin axis (approximately aligned with the NW-SE direction), while Sirocco has large spatial scale being a southeasterly wind. For the numerical simulations, the meteorological forcings are provided by the operational meteorological model COSMO-I7, which is the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium. During the analysis period, the simulated wind, current and wave are compared with observations at the ISMAR oceanographic tower located off the Venice littoral. Wave heights and sea surface winds are also compared with satellite-derived data. To account for the variability of sea states during a storm, the expected maximum individual wave height in a sea storm with a given history is also considered. During intense storms, the effect of coupling on wave heights is resulting in variations of the wave heights up to 15%, with some areas experiencing increase or decrease of wave spectral energy for opposite and following currents respectively. The study is part of the activities developed in the European Union (EU) funded FIELD_AC project (Fluxes, Interactions and Environment at the Land-ocean boundary. Downscaling, Assimilation and Coupling), which is conceived with the goal to better identify the most significant natural processes in coastal areas, and to address their impact on the coastal and nearshore dynamics by including them in a complete numerical prediction suite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA508897','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA508897"><span>Supplemental Student Support: Detection and Identification of Buried Targets using Time Reversal Acoustics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-11-04</p> <p>simulated result generated from the partial wave series model described in Chapter 2. Finally, the acoustic properties of the sediment phantom...the appropriate acoustic properties and propagation models for the sediment medium, that is, whether to assume the sediment is a fluid, an elastic...viscoelastic medium, or a poroelastic medium. 141 In this study, the sediment phantom employed is treated as a fluid. Its acoustic properties are</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028499','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028499"><span>Storm-induced redistribution of deepwater sediments in Lake Ontario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.</p> <p>2006-01-01</p> <p>High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP23A..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP23A..08C"><span>How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.</p> <p>2013-12-01</p> <p>Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and an eventual lateral equilibrium are possible only with large allochthonous sediment supply. Once marshes expanded, marsh retreat can be prevented by a sediment supply smaller than the one that filled the basin. At the GCE, the Altamaha River allows for enhanced allochthonous supply directly to the salt marsh platform, reducing the importance of waves on the tidal flat. As a result, infilling or retreat become the prevalent behaviors. For the VCR, the presence of seagrass decreases near bed shear stresses and sediment flux to the salt marsh platform, however, seagrass also reduces the wave energy acting on the boundary of the marsh reducing boundary erosion. Results indicate that the reduction in wave power allows for seagrass to provide a strong stabilizing affect on the coupled salt marsh tidal flat system, but as external sediment supply increases and light conditions decline the system reverts to that of a bare tidal flat. Across all systems and with current rates of sea level rise, retreat is a more likely marsh loss modality than drowning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031747','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031747"><span>Hydrography and bottom boundary layer dynamics: Influence on inner shelf sediment mobility, Long Bay, North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davis, L.A.; Leonard, L.A.; Snedden, G.A.</p> <p>2008-01-01</p> <p>This study examined the hydrography and bottom boundary-layer dynamics of two typical storm events affecting coastal North Carolina (NC); a hurricane and the passages of two small consecutive extratropical storms during November 2005. Two upward-looking 1200-kHz Acoustic Doppler Current Profilers (ADCP) were deployed on the inner shelf in northern Long Bay, NC at water depths of less than 15 m. Both instruments profiled the overlying water column in 0.35 in bins beginning at a height of 1.35 in above the bottom (mab). Simultaneous measurements of wind speed and direction, wave and current parameters, and acoustic backscatter were coupled with output from a bottom boundary layer (bbl) model to describe the hydrography and boundary layer conditions during each event. The bbl model also was used to quantify sediment transport in the boundary layer during each storm. Both study sites exhibited similar temporal variations in wave and current magnitude, however, wave heights during the November event were higher than waves associated with the hurricane. Near-bottom mean and subtidal currents, however, were of greater magnitude during the hurricane. Peak depth-integrated suspended sediment transport during the November event exceeded transport associated with the hurricane by 25-70%. Substantial spatial variations in sediment transport existed throughout both events. During both events, along-shelf sediment transport exceeded across-shelf transport and was related to the magnitude and direction of subtidal currents. Given the variations in sediment type across the bay, complex shoreline configuration, and local bathymetry, the sediment transport rates reported here are very site specific. However, the general hydrography associated with the two storms is representative of conditions across northern Long Bay. Since the beaches in the study area undergo frequent renourishment to counter the effects of beach erosion, the results of this study also are relevant to coastal management decision-making. Specifically, these issues include 1) identification of municipalities that should share the cost for renourishment given the likelihood for significant along-shelf sand movement and 2) appropriate timing of sand placement with respect to local climatology and sea-turtle nesting restrictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7362T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7362T"><span>Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele</p> <p>2015-04-01</p> <p>Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034071','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034071"><span>Near-surface shear-wave velocity measurements in unlithified sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Richards, B.T.; Steeples, D.; Miller, R.; Ivanov, J.; Peterie, S.; Sloan, S.D.; McKenna, J.R.</p> <p>2011-01-01</p> <p>S-wave velocity can be directly correlated to material stiffness and lithology making it a valuable physical property that has found uses in construction, engineering, and environmental projects. This study compares different methods for measuring S-wave velocities, investigating and identifying the differences among the methods' results, and prioritizing the different methods for optimal S-wave use at the U. S. Army's Yuma Proving Grounds YPG. Multichannel Analysis of Surface Waves MASW and S-wave tomography were used to generate S-wave velocity profiles. Each method has advantages and disadvantages. A strong signal-to-noise ratio at the study site gives the MASW method promising resolution. S-wave first arrivals are picked on impulsive sledgehammer data which were then used for the tomography process. Three-component downhole seismic data were collected in-line with a locking geophone, providing ground truth to compare the data and to draw conclusions about the validity of each data set. Results from these S-wave measurement techniques are compared with borehole seismic data and with lithology data from continuous samples to help ascertain the accuracy, and therefore applicability, of each method. This study helps to select the best methods for obtaining S-wave velocities for media much like those found in unconsolidated sediments at YPG. ?? 2011 Society of Exploration Geophysicists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EOSTr..90..293E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EOSTr..90..293E"><span>Comment on “On AGU's Position Statement, ‘Human Impacts on Climate’”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, Rob</p> <p>2009-08-01</p> <p>Regarding the Forum by Cyril Galvin (Eos, 89(46), 459, 2008), while I understand AGU's willingness to present both sides of the coin, as it were, I am disappointed that this Forum appeared in Eos. One major point in question is the assertion by Galvin that “nowhere on the sandy ocean shores of the world is there a beach whose erosion has been documented to be caused by sea level rise.” This point disregards the fact that coastal barrier systems have been moving landward for the last several thousand years, driven by rising sea level. Yes, the picture is complex, and yes, wave action and storms, in addition to constraints on sediment supply—many of them heavily influenced in the present day by societal actions—are also important: Some beaches will erode without rising sea level if they are starved of new sediment to replace that removed by wave-driven, alongshore currents, and it is of course the waves that move the sediment around.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC34C1205H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC34C1205H"><span>Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, C. K.; Kniskern, T. A.; Arango, H.</p> <p>2016-02-01</p> <p>The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...147..165E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...147..165E"><span>Dynamic controls on shallow clinoform geometry: Mekong Delta, Vietnam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eidam, E. F.; Nittrouer, C. A.; Ogston, A. S.; DeMaster, D. J.; Liu, J. P.; Nguyen, T. T.; Nguyen, T. N.</p> <p>2017-09-01</p> <p>Compound deltas, composed of a subaerial delta plain and subaqueous clinoform, are common termini of large rivers. The transition between clinoform topset and foreset, or subaqueous rollover point, is located at 25-40-m water depth for many large tide-dominated deltas; this depth is controlled by removal of sediment from the topset by waves, currents, and gravity flows. However, the Mekong Delta, which has been classified as a mixed-energy system, has a relatively shallow subaqueous rollover at 4-6-m depth. This study evaluates dynamical measurements and seabed cores collected in Sep 2014 and Mar 2015 to understand processes of sediment transfer across the subaqueous delta, and evaluate possible linkages to geometry. During the southwest rainy monsoon (Sep 2014), high river discharge, landward return flow under the river plume, and regional circulation patterns facilitated limited sediment flux to the topset and foreset, and promoted alongshore flux to the northeast. Net observed sediment fluxes in Sep 2014 were landward, however, consistent with hypotheses about seasonal storage on the topset. During the northeast rainy monsoon, low river discharge and wind-driven currents facilitated intense landward and southwestward fluxes of sediment. In both seasons, bed shear velocities frequently exceeded the 0.01-0.02 m/s threshold of motion for sand, even in the absence of strong wave energy. Most sediment transport occurred at water depths <14 m, as expected from observed cross-shelf gradients of sedimentation. Sediment accumulation rates were highest on the upper and lower foreset beds (>4 cm/yr at <10 m depth, and 3-8 cm/yr at 10-20 m depth) and lowest on the bottomset beds. Physically laminated sediments transitioned into mottled sediments between the upper foreset and bottomset regions. Application of a simple wave-stress model to the Mekong and several other clinoforms illustrates that shallow systems are not necessarily energy-limited, and thus rollover depths cannot be predicted solely by bed-stress distributions. In systems like the subaqueous Mekong Delta, direction of transport may have a key impact on morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23233961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23233961"><span>[Influence of dredging on sediment resuspension and phosphorus transfer in lake: a simulation study].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Ju-Hua; Zhong, Ji-Cheng; Zhang, Yin-Long; Fan, Cheng-Xin; He, Wei; Zhang, Lei; Tang, Zhen-Wu</p> <p>2012-10-01</p> <p>A simulated experiment was conducted to investigate the impacts of sediment dredging on sediment resuspension and phosphorus transfer in the summer and winter seasons under the common wind-wave disturbance, and the contaminated sediment used in this study was from Meiliang Bay, Taihu lake. The result showed that 20 cm dredging could effectively inhibit the sediment resuspension in study area, dredging in winter has a better effect than that in summer, and the higher values of the total suspended solid (TSS) in undredged and dredged water column during the process of wind wave disturbance were 7.0 and 2.2, 24.3 and 6.4 times higher than the initial value in summer and winter simulation respectively. The paired-samples t-test result demonstrated that total phosphorus (TP) and phosphate (PO4(3-)-P) loading positively correlated to TSS content in dredged (P<0.01) and undredged water column (P<0.05), which proved that internal phosphorus fulminating release induced by wind-wave disturbance would significantly increase the TP and PO4(3-)-P loading in the water column. The effect of dredging conducted in summer on the TP and PO4(3)-P loading in the water column was negative, but not for winter dredging (P<0.01). The pore water dissolved reactive phosphorus (DRP) profile at water-sediment interface in summer simulation was also investigated by diffusive gradients in thin films (DGT) technique. Diffusion layer of the DRP profile in undredged sediment was wider than that in dredged sediment. However, the DRP diffusion potential in dredged sediment was greater than that in undredged sediment, showing that dredging can effectively reduce the risk of the DRP potential release in dredged pore water, but also would induce the DRP fulminating release in the short time under hydrodynamic action. Generally, dredging was usually deployed during the summer and the autumn. Considering Taihu Lake is a large, shallow, eutrophic lake and the contaminant distribution is spatially heterogeneous, it is vital to determine the optimal time, depth and scope of dredging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.F2016M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.F2016M"><span>Stereo Refractive Imaging of Breaking Free-Surface Waves in the Surf Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandel, Tracy; Weitzman, Joel; Koseff, Jeffrey; Environmental Fluid Mechanics Laboratory Team</p> <p>2014-11-01</p> <p>Ocean waves drive the evolution of coastlines across the globe. Wave breaking suspends sediments, while wave run-up, run-down, and the undertow transport this sediment across the shore. Complex bathymetric features and natural biotic communities can influence all of these dynamics, and provide protection against erosion and flooding. However, our knowledge of the exact mechanisms by which this occurs, and how they can be modeled and parameterized, is limited. We have conducted a series of controlled laboratory experiments with the goal of elucidating these details. These have focused on quantifying the spatially-varying characteristics of breaking waves and developing more accurate techniques for measuring and predicting wave setup, setdown, and run-up. Using dynamic refraction stereo imaging, data on free-surface slope and height can be obtained over an entire plane. Wave evolution is thus obtained with high spatial precision. These surface features are compared with measures of instantaneous turbulence and mean currents within the water column. We then use this newly-developed ability to resolve three-dimensional surface features over a canopy of seagrass mimics, in order to validate theoretical formulations of wave-vegetation interactions in the surf zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1215720J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1215720J"><span>3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring</p> <p>2010-05-01</p> <p>A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling across a high resolution LIDAR surface of the dunes and beach we have isolated key areas of wind direction and velocity patterns which are important in aeolian transport budgets. Results are particularly important in post-storm recovery of foredunes damaged under wave action as offshore winds can initiate significant onshore transport, re-supplying the backbeach and foredune zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5022M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5022M"><span>Large-scale experimental observations of sheet flow on a sandbar under skewed-asymmetric waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mieras, Ryan S.; Puleo, Jack A.; Anderson, Dylan; Cox, Daniel T.; Hsu, Tian-Jian</p> <p>2017-06-01</p> <p>A novel large wave flume experiment was conducted on a fixed, barred beach with a sediment pit on the sandbar, allowing for the isolation of small-scale bed response to large-scale forcing. Concurrent measurements of instantaneous sheet layer sediment concentration profiles and near-bed velocity profiles were obtained on a sandbar for the first time. Two sediment distributions were used with median grain diameters, d50, of 0.17 and 0.27 mm. Sheet flow occurred primarily under wave crests, where sheet thickness increased with increasing wave height. A proportionality constant, Λ, was used to relate maximum Shields parameter to maximum sheet thickness (normalized by d50), with bed shear stress computed using the quadratic drag law. An enhanced sheet layer thickness was apparent for the smaller sediment experiments (Λ = 18.7), when directly compared to closed-conduit oscillatory flow tunnel data (Λ = 10.6). However, Λ varied significantly (5 < Λ < 31) depending on the procedure used to estimate grain roughness, ks, and wave friction factor, fw. Three models for ks were compared (keeping the model for fw fixed): constant ks = 2.5d50, and two expressions dependent on flow intensity, derived from steady and oscillatory sheet flow experiments. Values of ks/d50 varied by two orders of magnitude and exhibited an inverse relationship with Λ, where Λ ˜ 30 for ks/d50 of O(1) while Λ ˜ 5 for ks/d50 of O(100). Two expressions for fw were also tested (with the steady flow-based model for ks), yielding a difference of 69% (Λ ˜ 13 versus Λ ˜ 22).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS13D1226C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS13D1226C"><span>Infragravity wave generation and dynamics over a mild slope beach : Experiments and numerical computations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cienfuegos, R.; Duarte, L.; Hernandez, E.</p> <p>2008-12-01</p> <p>Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are clearly present in this experiment while spectral analysis evidences the reorganization of energy density from the original narrow spectrum into the infragravity band. This experiment provides an opportunity to test numerical models that would in principle be able to reproduce infragravity wave generation and dynamics. We compare numerical results (free surface and velocities) produced by a fully nonlinear Boussinesq model including breaking and runup to the experimental data and show that the complex infragravity wave dynamics is adequately reproduced by the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033179','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033179"><span>Sediment dispersal in the northwestern Adriatic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harris, C.K.; Sherwood, C.R.; Signell, R.P.; Bever, A.J.; Warner, J.C.</p> <p>2008-01-01</p> <p>Sediment dispersal in the Adriatic Sea was evaluated using coupled three-dimensional circulation and sediment transport models, representing conditions from autumn 2002 through spring 2003. The calculations accounted for fluvial sources, resuspension by waves and currents, and suspended transport. Sediment fluxes peaked during southwestward Bora wind conditions that produced energetic waves and strengthened the Western Adriatic Coastal Current. Transport along the western Adriatic continental shelf was nearly always to the south, except during brief periods when northward Sirocco winds reduced the coastal current. Much of the modeled fluvial sediment deposition was near river mouths, such as the Po subaqueous delta. Nearly all Po sediment remained in the northern Adriatic. Material from rivers that drain the Apennine Mountains traveled farther before deposition than Po sediment, because it was modeled with a lower settling velocity. Fluvial sediment delivered to areas with high average bed shear stress was more highly dispersed than material delivered to more quiescent areas. Modeled depositional patterns were similar to observed patterns that have developed over longer timescales. Specifically, modeled Po sediment accumulation was thickest near the river mouth with a very thin deposit extending to the northeast, consistent with patterns of modern sediment texture in the northern Adriatic. Sediment resuspended from the bed and delivered by Apennine Rivers was preferentially deposited on the northern side of the Gargano Peninsula, in the location of thick Holocene accumulation. Deposition here was highest during Bora winds when convergences in current velocities and off-shelf flux enhanced delivery of material to the midshelf. Copyright 2008 by the American Geophysical Union.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>