Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites
Allen, Craig D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.
2008-01-01
Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.
NASA Astrophysics Data System (ADS)
Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.
2017-12-01
New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and carbon-isotope data confirm that there was a peak in wildfire activity in the Polish Basin in the earliest Jurassic, and support previous suggestions of widespread increased wildfire activity at the Triassic-Jurassic Boundary.
Charcoal deposition and redeposition in Elk Lake, Minnesota, USA
Platt, Bradbury J.
1996-01-01
Sedimentary charcoal, diatom and phytolith records of the past 1500 years at Elk Lake, Minnesota, in combination with sediment trap studies and a transect of surface sediment samples, document the mechanisms by which previously deposited charcoal is redeposited and finally buried in this lake. The frequent correspondence of high diatom concentrations and peaks of phytolith and charcoal fragments suggest that currents and turbulence related to lake circulation are responsible for winnowing charcoal and phytoliths from shallow water depositional sites to deeper areas of the lake. High diatom concentrations in the record relate to increased nutrient fluxes also supplied by circulation. Despite the fact that the watershed and area around Elk Lake has not been burned since AD 1922, charcoal continues to reach the profundal zone from littoral source areas in Elk Lake. The variable redeposition of within-lake charcoal requires evaluation before fire-history records can be related to global, regional or even local fire events.
What can we tell from particle morphology in Mesozoic charcoal assemblages?
NASA Astrophysics Data System (ADS)
Crawford, Alastair; Belcher, Claire
2015-04-01
Sedimentary charcoal particles provide a valuable record of palaeofire activity on both human and geological timescales. Charcoal is both an unambiguous indicator of wildfire, and a means of preservation of plant material in an inert form; thus it records not only the occurrence and extent of wildfire, but also the species affected. While scanning electron microscopy can be usefully employed for precise taxonomic identification of charcoals, the time and cost associated with this limit the extent to which the technique is employed. Morphometric analysis of mesocharcoal particles (c. 125-1000 µm) potentially provides a simple method for obtaining useful information from optical microscopy images. Grass fires have been shown to produce mesocharcoal particles with a higher length-to-width ratio than woodland fuel sources. In Holocene archives, aspect ratio measurements are thus used to infer the broad taxonomic affinity of the burned vegetation. Since Mesozoic charcoals display similarly heterogeneous morphologies, we investigate whether there is a similar potential to infer the broad botanical affinities of Mesozoic charcoal assemblages from simple morphological metrics. We have used image analysis to analyse a range of Jurassic and Cretaceous sedimentary rocks representing different vegetation communities and depositional environments, and also to determine the range of charcoal particle morphologies which can be produced from different modern taxa under laboratory conditions. We find that modern charcoals break down into mesocharcoal particles of very variable aspect ratio, and this appears to be dependent on taxonomic position. Our analysis of fragmented laboratory-produced charcoals indicates that pteridophytes produce much more elongate particles than either conifers or non-grass angiosperms. We suggest that for charcoal assemblages that predate the evolution of grasses, high average aspect ratios may be a useful indicator of the burning of a pteridophyte-dominated flora.
Mediterranean fire histories since the Last Glacial Maximum from lake sedimentary micro- charcoals
NASA Astrophysics Data System (ADS)
Roberts, C.; Turner, R.
2006-12-01
Microscopic charcoal analysis has been used to reconstruct past fire activity over a range of spatial and temporal scales in Europe, the Americas and Australasia. By contrast, and despite the importance of fire in its modern landscape ecology, few systematic attempts have been made in the circum-Mediterranean region to reconstruct long-term fire histories using micro-charcoals or other methods of analysis. This study has used non-destructive methods of charcoal extraction based on sieving plus heavy-liquid separation (Turner et al in press In: Charcoal from the past: cultural and palaeoenvironmental implications. BAR International Series, Archaeopress, Oxford) along with contiguous core sampling of sedimentary core sequences from a number of East Mediterranean lakes that span the last glacial-interglacial climatic transition. At Eski Acýgöl, central Turkey (Roberts et al. Holocene, 2001, 11, 719-734), then a deepwater crater lake, overall micro-charcoal concentrations in sediments are low and were dominated by influx from regional-landscape rather than local- scale fire events. This record therefore provides a good proxy for overall fire frequency/intensity across the central Anatolia plateau, whose (hypothetical) modern "natural" vegetation is predominantly open oak-grass- Artemisia parkland. Shallow water sites such as Akgöl typically record much higher overall micro-charcoal abundance as a result of local-scale burning of the marsh surface at times of lowered water table, and thus received episodic local charcoal influx superimposed on background regional airborne sources. These results indicate that site type / catchment area and sampling / analytic methodology can critically influence reconstructed fire histories. We have correlated our charcoal records with existing multi-proxy data from the same cores (stable isotopes and pollen). This shows that climatic variations and biomass availability were the main factors controlling the timing of regional fire activity from the Last Glacial Maximum through to the Early Holocene. The Holocene portion of the Eski Acýgöl record contains a significant cyclicity with a periodicity of 1400 to 1500 years which may be linked with external (e.g. solar) forcing.
NASA Astrophysics Data System (ADS)
Leys, Bérangère; Carcaillet, Christopher; Dezileau, Laurent; Ali, Adam A.; Bradshaw, Richard H. W.
2013-05-01
Fire-history reconstructions inferred from sedimentary charcoal records are based on measuring sieved charcoal fragment area, estimating fragment volume, or counting fragments. Similar fire histories are reconstructed from these three approaches for boreal lake sediment cores, using locally defined thresholds. Here, we test the same approach for a montane Mediterranean lake in which taphonomical processes might differ from boreal lakes through fragmentation of charcoal particles. The Mediterranean charcoal series are characterized by highly variable charcoal accumulation rates. Results there indicate that the three proxies do not provide comparable fire histories. The differences are attributable to charcoal fragmentation. This could be linked to fire type (crown or surface fires) or taphonomical processes, including charcoal transportation in the catchment area or in the sediment. The lack of correlation between the concentration of charcoal and of mineral matter suggests that fragmentation is not linked to erosion. Reconstructions based on charcoal area are more robust and stable than those based on fragment counts. Area-based reconstructions should therefore be used instead of the particle-counting method when fragmentation may influence the fragment abundance.
NASA Astrophysics Data System (ADS)
Vachula, R. S.; Huang, Y.; Russell, J. M.
2017-12-01
Lake sediment-based fire reconstructions offer paleoenvironmental context in which to assess modern fires and predict future burning. However, despite the ubiquity, many uncertainties remain regarding the taphonomy of paleofire proxies and the spatial scales for which they record variations in fire history. Here we present down-core proxy analyses of polycyclic aromatic hydrocarbons (PAHs) and three size-fractions of charcoal (63-150, >150 and >250 μm) from Swamp Lake, California, an annually laminated lacustrine archive. Using a statewide historical GIS dataset of area burned, we assess the spatial scales for which these proxies are reliable recorders of fire history. We find that the coherence of observed and proxy-recorded fire history inherently depends upon spatial scale. Contrary to conventional thinking that charcoal mainly records local fires, our results indicate that macroscopic charcoal (>150 μm) may record spatially broader (<25 km) changes in fire history, and as such, the coarsest charcoal particles (>250 μm) may be a more conservative proxy for local burning. We find that sub-macroscopic charcoal particles (63-150 μm) reliably record regional (up to 150 km) changes in fire history. These results indicate that charcoal-based fire reconstructions may represent spatially broader fire history than previously thought, which has major implications for our understanding of spatiotemporal paleofire variations. Our analyses of PAHs show that dispersal mobility is heterogeneous between compounds, but that PAH fluxes are reliable proxies of fire history within 25-50 km, which suggests PAHs may be a better spatially constrained paleofire proxy than sedimentary charcoal. Further, using a linear discriminant analysis model informed by modern emissions analyses, we show that PAH assemblages preserved in lake sediments can differentiate vegetation type burned, and are thus promising paleoecological biomarkers warranting further research and implementation. In sum, our analyses offer new insight into the spatial dimensions of paleofire proxies and constitute a methodology that can be applied to other locations and proxies to better inform site-specific reconstructions.
NASA Astrophysics Data System (ADS)
Ejarque, A.; Anderson, R. S.; Reynolds, L.; Simms, A.
2016-12-01
Paleoecological study of the historical period in coastal areas is often hampered by the limitation of constructing reliable chronologies in recent sedimentary records. The coupling of radionuclide dating (210Pb, 239+240Pu) with stratigraphic changes of paleoecological markers indicative of land-usage can be an effective alternative to radiocarbon dating to build historic chronologies. This approach has been especially useful in North American coastal areas, which have been heavily impacted by historical human activities. We present results drawn from four sedimentary records studied along the California coast in the Point Reyes Peninsula north of San Francisco and from Santa Barbara County. We employed a varied suite of independent paleoecological proxies including pollen, non-pollen palynomorphs (NPP), sedimentary charcoal analyses, and spheroidal carbonaceous particles (SCP) to identify historically documented land-use events spanning the last 250 yr. Coupling this novel combination of proxies with 239+240Pu dating and historical accounts we generated robust chronologies which included distinct dating horizons such as: 1) the introduction of agriculture following the Spanish settlement along the coast in the late 18th century, identified by means of pollen and NPP markers of exotic plants, crops and grazing; 2) the 1793 Spanish fire suppression banning traditional Indian burning in Alta California, evidenced in the decline in sedimentary charcoal; and 3) the post-1850 introduction of distinct exotic plants -i.e. blue gum (Eucalyptus) trees- and of new land-uses following the American settlement. Following this we could track the development and expansion of the oil industry in southern California by coupling SCPs profiles with regional and local data-sets of oil production. This combination of proxies has been particularly useful in coastal California, while other suites of proxies might be employed in other areas as well.
NASA Astrophysics Data System (ADS)
Thevenon, Florian; Williamson, David; Bard, Edouard; Anselmetti, Flavio S.; Beaufort, Luc; Cachier, Hélène
2010-07-01
This paper addresses the quantification of combustion-derived products in oceanic and continental sediments by optical and chemical approaches, and the interest of combining such methods for reconstructing past biomass burning activity and the pyrogenic carbon cycle. In such context, the dark particles > 0.2 µm 2 remaining after the partial digestion of organic matter are optically counted by automated image analysis and defined as charcoal, while the elemental carbon remaining after thermal and chemical oxidative treatments is quantified as black carbon (BC). The obtained pyrogenic carbon records from three sediment core-based case studies, (i) the Late Pleistocene equatorial Pacific Ocean, (ii) the mid-Holocene European Lake Lucerne, and (iii) the Late Holocene African Lake Masoko, are interpreted as proxy records of regional transportation mechanisms and biomass burning activities. The results show that the burial of dark carbon-rich particles in the 360 kyr-long record from the west equatorial Pacific is controlled by the combination of sea-level changes and low-latitude atmospheric circulation patterns (summer monsoon dynamics). However, the three fold increases in charcoal and BC sediment influxes between 53-43 and 12-10 kyr BP suggest that major shifts in fire activity occur synchronously with human colonization in the Indo/Pacific region. The coarse charcoal distribution from a 7.2 kyr record from Lake Lucerne in Switzerland closely matches the regional timing of major technical, land-use, and socio-economic changes during the Neolithic (between ca. 5.7 and 5.2 kyr BP and 4.9-4.5 kyr BP), the Bronze and Iron Ages (at ca. 3.3 and 2.4 kyr BP, respectively), and the industrialization (after AD 1838), pointing to the key impact of human activities on the sources, transportation processes and reservoirs of refractory carbon during the Holocene. In the tropical Masoko maar lake in Tanzania, where charcoal and BC records are highly sensitive to the local climate and environment, surface runoffs from forested areas and/or aerial transportation over short distances are also important sources for detrital charred particles. However, this 4.3 kyr-long record exhibits a major increase in charcoal and BC sediment influxes between 1.8 and 0.6 kyr BP, synchronously with the regional extent of Late Iron Age and agricultural innovations. Therefore, in both marine and terrestrial depositional environments, the climate- and vegetation-controlled fire regimes appear to be strongly associated to societal changes, or directly affected by human practices. In fact, the anthropogenic effect associated to past human activities (e.g. settlement, agriculture, and metallurgy) has temporarily at least tripled the emissions of pyrogenic carbon in the environment. However, the data from the three Late Pleistocene to Holocene sequences also show that the redistribution of fossil particles by runoff and erosion processes is a significant source of pyrogenic carbon that should be understood as a prerequisite for interpreting sedimentary records of biomass burning.
Zhu, Xiao Hong; Li, Bing; Ma, Chun Mei; Zhu, Cheng; Wu, Li; Liu, Hui
2017-01-01
There is significant archaeological evidence marking the collapse of the Shijiahe culture in the middle reaches of the Yangtze River in China during the late Neolithic Period. However, the causes for this cultural collapse remain unclear. Our sedimentary records from a 3.3 m long profile and 76 phytolith and charcoal samples from the Tanjialing archaeological sites provide records of interactions between an ancient culture and vegetation change. During the early Shijiahe culture (c, 4850–4400 cal BP), the climate was warm and humid. Fire was intensively used to clear the vegetation. In the mid-period of the Shijiahe culture (c, 4400–4200 cal BP), the climate became slightly dry-cold and this was accompanied by decreasing water, leading to settlements. From c, 4200 cal BP, severe drought eroded the economic foundation of rice-cultivation. These conditions forced people to abandon the Shijiahe ancient city to find water in other regions, leading to the collapse of the Shijiahe culture. PMID:28542219
Zhu, Xiao Hong; Li, Bing; Ma, Chun Mei; Zhu, Cheng; Wu, Li; Liu, Hui
2017-01-01
There is significant archaeological evidence marking the collapse of the Shijiahe culture in the middle reaches of the Yangtze River in China during the late Neolithic Period. However, the causes for this cultural collapse remain unclear. Our sedimentary records from a 3.3 m long profile and 76 phytolith and charcoal samples from the Tanjialing archaeological sites provide records of interactions between an ancient culture and vegetation change. During the early Shijiahe culture (c, 4850-4400 cal BP), the climate was warm and humid. Fire was intensively used to clear the vegetation. In the mid-period of the Shijiahe culture (c, 4400-4200 cal BP), the climate became slightly dry-cold and this was accompanied by decreasing water, leading to settlements. From c, 4200 cal BP, severe drought eroded the economic foundation of rice-cultivation. These conditions forced people to abandon the Shijiahe ancient city to find water in other regions, leading to the collapse of the Shijiahe culture.
NASA Astrophysics Data System (ADS)
Vannière, Boris; Power, Mitch J.; Roberts, Neil; Tinner, Willy; Carrión, José; Magny, Michel; Bartlein, Patrick
2010-05-01
In this contribution I will present a synthesis of mid- to late-Holocene fire activity from the Mediterranean basin and explore the linkages among fire, climate variability and seasonality, and people through several climatic and ecological transitions. Regional fire histories were created from 36 radiocarbon-dated sedimentary charcoal records, available from the Global Charcoal Database. During the mid-Holocene "Thermal Maximum", charcoal records from the northern Mediterranean suggest the region was more fire prone while records from the southern Mediterranean indicate a decrease in fire activity associated with wetter-than-present summers. A North-South partition at 40-43°N is apparent in the central and western Mediterranean. In the context of orbitally-induced summer insolation decrease, South Mediterranean wet conditions could be linked to the Afro-Asian summer monsoon which weakened after ca. 8000-6000 cal yr BP. Relatively abrupt changes in fire regime observed at ca. 5500-5000 cal yr BP may be associated to a threshold in this weakening influence of the orbitally-driven Afro-Asian monsoon strength. Charcoal records of past fire activity appear sensitive to both orbitally-forced climate changes and shorter lived excursions which may be related to cold events apparent in the North Atlantic record of ice-rafted debris. These results contradict former notions of gradual aridification of the entire region due to climatic forcing and/or human activities. In contrast, they suggest: 1) Teleconnections between the Mediterranean area and other climatic regions, in particular the North Atlantic and the low-latitude monsoon areas, influenced past fire regimes; 2) Gradual forcing, such as changes in orbital parameters, may have triggered more abrupt shifts in fire regime, either directly or indirectly through these teleconnections.
Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape.
Leys, Berangere A; Commerford, Julie L; McLauchlan, Kendra K
2017-01-01
Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records.
Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape
Leys, Berangere A.; Commerford, Julie L.; McLauchlan, Kendra K.
2017-01-01
Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records. PMID:28448597
Modelled vs. reconstructed past fire dynamics - how can we compare?
NASA Astrophysics Data System (ADS)
Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer R.; Power, Mitch J.
2015-04-01
Fire is an important process that affects climate through changes in CO2 emissions, albedo, and aerosols (Ward et al. 2012). Fire-history reconstructions from charcoal accumulations in sediment indicate that biomass burning has increased since the Last Glacial Maximum (Power et al. 2008; Marlon et al. 2013). Recent comparisons with transient climate model output suggest that this increase in global ?re activity is linked primarily to variations in temperature and secondarily to variations in precipitation (Daniau et al. 2012). In this study, we discuss the best way to compare global ?re model output with charcoal records. Fire models generate quantitative output for burned area and fire-related emissions of CO2, whereas charcoal data indicate relative changes in biomass burning for specific regions and time periods only. However, models can be used to relate trends in charcoal data to trends in quantitative changes in burned area or fire carbon emissions. Charcoal records are often reported as Z-scores (Power et al. 2008). Since Z-scores are non-linear power transformations of charcoal influxes, we must evaluate if, for example, a two-fold increase in the standardized charcoal reconstruction corresponds to a 2- or 200-fold increase in the area burned. In our study we apply the Z-score metric to the model output. This allows us to test how well the model can quantitatively reproduce the charcoal-based reconstructions and how Z-score metrics affect the statistics of model output. The Global Charcoal Database (GCD version 2.5; www.gpwg.org/gpwgdb.html) is used to determine regional and global paleofire trends from 218 sedimentary charcoal records covering part or all of the last 8 ka BP. To retrieve regional and global composites of changes in fire activity over the Holocene the time series of Z-scores are linearly averaged to achieve regional composites. A coupled climate-carbon cycle model, CLIMBA (Brücher et al. 2014), is used for this study. It consists of the CLIMBER-2 Earth system model of intermediate complexity and the JSBACH land component of the Max Planck Institute Earth System Model. The fire algorithm in JSBACH assumes a constant annual lightning cycle as the sole fire ignition mechanism (Arora and Boer 2005). To eliminate data processing differences as a source for potential discrepancies, the processing of both reconstructed and modeled data, including e.g. normalisation with respect to a given base period and aggregation of time series was done in exactly the same way. Here, we compare the aggregated time series on a hemispheric and regional scale.
Fire history on the California Channel Islands spanning human arrival in the Americas.
Hardiman, Mark; Scott, Andrew C; Pinter, Nicholas; Anderson, R Scott; Ejarque, Ana; Carter-Champion, Alice; Staff, Richard A
2016-06-05
Recent studies have suggested that the first arrival of humans in the Americas during the end of the last Ice Age is associated with marked anthropogenic influences on landscape; in particular, with the use of fire which, would have given even small populations the ability to have broad impacts on the landscape. Understanding the impact of these early people is complicated by the dramatic changes in climate occurring with the shift from glacial to interglacial conditions. Despite these difficulties, we here attempt to test the extent of anthropogenic influence using the California Channel Islands as a smaller, landscape-scale test bed. These islands are famous for the discovery of the 'Arlington Springs Man', which are some of the earliest human remains in the Americas. A unifying sedimentary charcoal record is presented from Arlington Canyon, Santa Rosa Island, based on over 20 detailed sedimentary sections from eight key localities. Radiocarbon dating was based on thin, fragile, long fragments of charcoal in order to avoid the 'inbuilt' age problem. Radiocarbon dating of 49 such fragments has allowed inferences regarding the fire and landscape history of the Canyon ca 19-11 ka BP. A significant period of charcoal deposition is identified approximately 14-12.5 ka BP and bears remarkable closeness to an estimated age range of the first human arrival on the islands.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Fire history on the California Channel Islands spanning human arrival in the Americas
Hardiman, Mark; Scott, Andrew C.; Pinter, Nicholas; Anderson, R. Scott; Ejarque, Ana; Carter-Champion, Alice; Staff, Richard A.
2016-01-01
Recent studies have suggested that the first arrival of humans in the Americas during the end of the last Ice Age is associated with marked anthropogenic influences on landscape; in particular, with the use of fire which, would have given even small populations the ability to have broad impacts on the landscape. Understanding the impact of these early people is complicated by the dramatic changes in climate occurring with the shift from glacial to interglacial conditions. Despite these difficulties, we here attempt to test the extent of anthropogenic influence using the California Channel Islands as a smaller, landscape-scale test bed. These islands are famous for the discovery of the ‘Arlington Springs Man’, which are some of the earliest human remains in the Americas. A unifying sedimentary charcoal record is presented from Arlington Canyon, Santa Rosa Island, based on over 20 detailed sedimentary sections from eight key localities. Radiocarbon dating was based on thin, fragile, long fragments of charcoal in order to avoid the ‘inbuilt’ age problem. Radiocarbon dating of 49 such fragments has allowed inferences regarding the fire and landscape history of the Canyon ca 19–11 ka BP. A significant period of charcoal deposition is identified approximately 14–12.5 ka BP and bears remarkable closeness to an estimated age range of the first human arrival on the islands. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216524
NASA Astrophysics Data System (ADS)
Axford, Y.; Isaacson, M.; Matthews-Bird, F.; Schellinger, G. C.; Carrio, C. L.; Kelly, M. A.; Lowell, T. V.; Beal, S. A., Jr.; Stroup, J. S.; Tapia, P. M.
2016-12-01
We present a 12,000-year long paleoenvironmental reconstruction from a small high-elevation lake in southeastern Peru. Climate and environmental change are inferred from chironomid species assemblages, charcoal abundance, size and morphology, and the abundance of some important pollen and spore types (Poaceae, Asteraceae, Isoetes). We employ a new chironomid training set developed for tropical South America (Matthews-Bird et al. 2016) to interpret shifts in chironomid assemblages. The sedimentary record from Yanacocha was first discussed by Beal et al. (2014), who reconstructed Hg deposition and measured metals, biogenic silica and loss-on-ignition through the Holocene. Additional downcore proxies are presented by Stroup et al. (this meeting). Yanacocha sits at 4910 m asl and less than 2 km from Quelccaya Ice Cap (QIC), but the lake's watershed has been topographically isolated from glacier meltwater since 12.3 ka. We compare our inferences from biological proxies with independent constraints on paleoclimate derived from published reconstructions of QIC fluctuations. Previous studies found that temperature was the primary driver of late Holocene fluctuations of QIC (e.g., Stroup et al. 2014), but records from the broader region indicate the Holocene also saw major changes in hydroclimate. Most modern precipitation at Yanacocha derives from the Amazon Basin to the east, and El Niño years are associated with drier conditions. Holocene sediments at Yanacocha likely thus record both changes in temperature and hydroclimate. Vegetation was sparse and no charcoal was preserved prior to 11.7 ka, whereas the early Holocene saw the highest overall pollen concentrations of the entire record and the onset of charcoal preservation. An increase in charcoal abundance, decrease in pollen concentrations, and shifts in vegetation and chironomid assemblages at Yanacocha suggest drier conditions from 9 to 3.5 ka, consistent with widespread regional evidence for early to middle Holocene aridity. One sample at 8.4 ka contains uniquely abundant charcoal, Poaceae and Asteraceae, possibly recording a brief (<500 yr) and uniquely dramatic dry event at that time. Shifts in chironomid assemblages, including a major shift centered on 1000 AD, indicate a variable climate through the late Holocene.
Late Holocene records of fire and human presence in New Zealand
NASA Astrophysics Data System (ADS)
Argiriadis, Elena; Vecchiato, Marco; Kirchgeorg, Torben; Battistel, Dario; McWethy, Dave B.; Whitlock, Cathy L.; Kehrwald, Natalie M.; Barbante, Carlo
2016-04-01
New Zealand, and the South Island in particular, can be considered an excellent test site for the study of the early impact of humans on the environment for two main reasons: the Polynesian settlement occurred only about 700-800 y BP and resulted in abrupt and huge landscape modifications. Burning forest for land clearance impacted dramatically on an ecosystem that was not adapted to fire, changing the composition of the vegetation as documented by sedimentary charcoal and pollen records [1]. Although charcoal data give incontrovertible evidence of some unprecedented fire events right after the arrival of the Māori, its significance as a tracer for local and anthropogenic fire events has been questioned, stressing the need for new markers to confirm and complete the information about human presence and its effective impact [2]. In the present work, faecal sterols and polycyclic aromatic hydrocarbons (PAHs) were individuated as suitable molecular markers and analyzed by GC-MS in a sediment core from Lake Kirkpatrick, located in the Lake Wakatipu catchment at 570 m a.s.l. in the South Island of New Zealand. Coprostanol accounts for about 60% of total sterol content in human faeces, being much less relevant in animal dejections [3]. Together with its degradation product epi-coprostanol, it is well conserved in sedimentary archives and can be highly useful in paleoenvironmental reconstructions of human settlements. PAHs are produced in relevant amounts by combustion in conditions of oxygen depletion, and diagnostic ratios (DR) between specific molecules can be used for inferring fuel and sources [4]. The charcoal record for Lake Kirkpatrick shows major fire episodes around AD 1350, confirmed by corresponding high levels of PAHs ascribable to biomass burning (as further evidenced by DR) at c. AD 1350. Moreover, the same trend is observed also in the fluxes of coprostanol and epi-coprostanol, whose sum results in two peaks at c. AD 1346 and 1351. This finding confirms not only the massive presence of humans in the area and the large use of fire at the time, but also complements and refines the reconstructions enabled by charcoal analysis. 1. McWethy DB, Wilmshurst JM, Whitlock C, Wood JR, McGlone MS (2014) A High-Resolution Chronology of Rapid Forest Transitions following Polynesian Arrival in New Zealand. PLoS One 9:e111328. doi: 10.1371/journal.pone.0111328 2. Butler K (2008) Interpreting charcoal in New Zealand's palaeoenvironment - What do those charcoal fragments really tell us? Quat Int 184:122-128. doi: 10.1016/j.quaint.2007.09.026 3. Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) The origin of faeces by means of biomarker detection. Environ Int 27:647-654. doi: 10.1016/S0160-4120(01)00124-6 4. Ravindra K, Sokhi R, Vangrieken R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895-2921. doi: 10.1016/j.atmosenv.2007.12.010
Anderson, R. Scott; Allen, Craig D.; Toney, J.L.; Jass, R.B.; Bair, A.N.
2008-01-01
Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ???2600 to 3500-m elevation, including sites presently at the alpine?subalpine boundary, within the Picea engelmannii?Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ???11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ???8600 to 4700 cal yr BP; and Pinus edulis expanded after ???4700 cal yr BP. Sediments from lake sites near the alpine?subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ???12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ???2000?1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine?alpine transition and subalpine sites were on average 5 to 10 fire events/1000 years over the Holocene, corresponding to one fire event every ???100 to 200 years. (5) Our Holocene-length sedimentary charcoal records provide additional evidence for the anomalous nature of the 20th-century fire regime, where fires were largely suppressed as a national policy. ?? IAWF 2008.
Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.
2016-01-01
Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18 years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years
Kelly, Ryan; Chipman, Melissa L.; Higuera, Philip E.; Stefanova, Ivanka; Brubaker, Linda B.; Hu, Feng Sheng
2013-01-01
Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000–3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000–500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate–fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming. PMID:23878258
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.
Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng
2013-08-06
Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.
The role of fire in the Central European lowlands during the Holocene: what we know so far
NASA Astrophysics Data System (ADS)
Dietze, Elisabeth; Theuerkauf, Martin; Słowiński, Michał; Brauer, Achim
2017-04-01
The modern landscape of the Central European lowlands results from the complex interaction between its geological and geomorphological configuration that developed during and after the last glaciation as well as its Holocene vegetation history, climate evolution and human activity. Although also fire is known to play a fundamental role in many ecosystems of the world and to be one of the major tools for anthropogenic land cover change, Holocene paleofire history has only marginally been studied in the area of the Central European lowlands so far. Here, we will present the first attempt to establish a Holocene fire synthesis for the Central European lowlands. In a first step, we aim to reconstruct the regional Holocene fire history by comparing available sedimentary charcoal records from lakes and peatlands of northern Germany, northern Poland and the Baltic countries. We will present the current knowledge on the role of fire during different time windows such as the Neolithic period, the Medieval time and the onset of industrialization. In addition, we will discuss the interaction between fire, human activity, vegetation and climate change during the last 250 years in more detail using high-resolution records of sedimentary charcoal and the fire biomarkers levoglucosan, mannosan and galactosan from the annually laminated lake sediments of Lake Czechowskie, northern Poland. Teams: CEL synthesis - A. Feurdean, M. Obremska, M. Lamentowicz, K. Marcisz, W. Dörfler, I. Feeser, N. Dräger, F. Ott, T. Giesecke, S. Jahns, L. Shumilovskikh, S. Veski, M. Wieckowska-Lüth, J. Wiethold; Czechowskie fire biomarkers - E.C. Hopmans, L.T. Schreuder, M. Obremska, A. Pieńczewska, O. Blarquez, F. Ott, D. Brykala, S. Schouten
NASA Astrophysics Data System (ADS)
Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.
2017-08-01
The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.
A model-based approach to wildland fire reconstruction using sediment charcoal records
Itter, Malcolm S.; Finley, Andrew O.; Hooten, Mevin B.; Higuera, Philip E.; Marlon, Jennifer R.; Kelly, Ryan; McLachlan, Jason S.
2017-01-01
Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history, including the identification of past wildland fires. One challenge of applying sediment charcoal records to infer fire history is the separation of charcoal associated with local fire occurrence and charcoal originating from regional fire activity. Despite a variety of methods to identify local fires from sediment charcoal records, an integrated statistical framework for fire reconstruction is lacking. We develop a Bayesian point process model to estimate the probability of fire associated with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A multivariate extension of the model combines records from multiple lakes to reduce uncertainty in local fire identification and estimate a regional mean fire return interval. The univariate and multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean fire return intervals (100–350 years) with reduced uncertainty under the multivariate model due to improved estimation of regional charcoal deposition. The point process model offers an integrated statistical framework for paleofire reconstruction and extends existing methods to infer regional fire history from multiple lake records with uncertainty following directly from posterior distributions.
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Bird, D. K.
2007-12-01
A new reconstruction of the biomass burning history of the tropical Americas is consistent with expanding fire use by Mesoamerican and Amazonian agriculturalists from 2000 to 500 years BP and a subsequent period of fire reduction due to indigenous demographic collapse. Our reconstruction synthesizes published data from stratigraphic charcoal accumulation records from lake and bog sediments and soil charcoal records, including soil charcoal obtained from archeological Amazonian Dark Earth sites. The charcoal data provide fire histories from over 40 localities and enable reconstruction of the Late Holocene regional biomass burning history of the tropical Americas. Synthesis of the stratigraphic charcoal records yields indexes of 1) the inter-site variability in charcoal accumulation; and 2) the mean rate of regional charcoal accumulation during 500-year increments since 3500 years BP. The age distribution of dated soil charcoal particles from non-archeological sites provides an independent measure of variation in regional charcoal accumulation; whereas the age distribution of soil charcoal dates from archeological sites records variation in charcoal accumulation related to anthropogenic biomass burning. The charcoal accumulation indexes derived from stratigraphic records begin to increase at ~2000 years BP, obtain maxima during the 500-year period just prior to European arrival, then decline to near-minimum values during the 500-year period subsequent to contact. Similarly, the age distribution of soil charcoal dated from non-archeological and archeological sites both indicate increases in charcoal accumulation from 2000 to 500 years BP followed by decline. We interpret the covariation between measures of charcoal accumulation derived from archeological and non-archeological sites as a consequence of the expansive influence of anthropogenic activity on the regional fire regime. The increase in regional charcoal accumulation apparent in the stratigraphic and soil charcoal records beginning at 2000 years BP correlates with expanding indigenous population, agriculture, and fire use in the tropical Americas. The rise in inter-site variability in charcoal accumulation after 2000 years BP is consistent with a demographic shift toward sedentary agrarian communities and localized increases in charcoal accumulation in densely populated centers. The declines in regional charcoal accumulation and inter-site variability after 500 years BP suggest a correlative cause related to reduction in anthropogenic biomass burning resulting from pandemic-driven population collapse. Published reconstructions of Pre-Columbian demography indicate that during European conquest, pandemics killed ~90% of the indigenous American population (~60 million), estimated to represent ~20% of the 16th century global population. Our predictive calculations suggest that fire reduction in the tropical Americas indicated in the charcoal record is associated with massive forest regeneration on ~1 x 106 km2 of land and sequestration of >10 Gt C into the terrestrial biosphere, which contributed to the ~2% global reduction in atmospheric CO2 levels and the 0.1‰ increase in δ13C of atmospheric CO2 from 1500 to 1700 A.D. recorded in Antarctic ice cores and tropical sponges.
NASA Astrophysics Data System (ADS)
Itter, M.; Finley, A. O.; Hooten, M.; Higuera, P. E.; Marlon, J. R.; McLachlan, J. S.; Kelly, R.
2016-12-01
Sediment charcoal records are used in paleoecological analyses to identify individual local fire events and to estimate fire frequency and regional biomass burned at centennial to millenial time scales. Methods to identify local fire events based on sediment charcoal records have been well developed over the past 30 years, however, an integrated statistical framework for fire identification is still lacking. We build upon existing paleoecological methods to develop a hierarchical Bayesian point process model for local fire identification and estimation of fire return intervals. The model is unique in that it combines sediment charcoal records from multiple lakes across a region in a spatially-explicit fashion leading to estimation of a joint, regional fire return interval in addition to lake-specific local fire frequencies. Further, the model estimates a joint regional charcoal deposition rate free from the effects of local fires that can be used as a measure of regional biomass burned over time. Finally, the hierarchical Bayesian approach allows for tractable error propagation such that estimates of fire return intervals reflect the full range of uncertainty in sediment charcoal records. Specific sources of uncertainty addressed include sediment age models, the separation of local versus regional charcoal sources, and generation of a composite charcoal record The model is applied to sediment charcoal records from a dense network of lakes in the Yukon Flats region of Alaska. The multivariate joint modeling approach results in improved estimates of regional charcoal deposition with reduced uncertainty in the identification of individual fire events and local fire return intervals compared to individual lake approaches. Modeled individual-lake fire return intervals range from 100 to 500 years with a regional interval of roughly 200 years. Regional charcoal deposition to the network of lakes is correlated up to 50 kilometers. Finally, the joint regional charcoal deposition rate exhibits changes over time coincident with major climatic and vegetation shifts over the past 10,000 years. Ongoing work will use the regional charcoal deposition rate to estimate changes in biomass burned as a function of climate variability and regional vegetation pattern.
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Bird, D. K.
2008-12-01
A new reconstruction of the Late Holocene biomass burning history of the tropical Americas is consistent with expanding fire use by Mesoamerican and Amazonian agriculturalists from 2000-500 BP and a subsequent period of fire reduction due to indigenous demographic collapse. Our reconstruction synthesizes published data from 50 charcoal accumulation records obtained from stratified lacustrine sediments and from soils, including soil charcoal records recovered from archeological sites. Synthesis of stratigraphic charcoal records yields indexes of the mean rate of regional charcoal accumulation and of variability in charcoal accumulation among sites during 500-year increments since 3500 BP. The age distribution of dated soil charcoal particles from non-archeological sites provides an independent measure of variation in regional charcoal accumulation; whereas age distribution of soil charcoal dates from archeological sites records variation in charcoal accumulation related to anthropogenic biomass burning. We observe that the charcoal accumulation indexes derived from stratigraphic records begin to increase at 2000 BP, remain high until 500 BP, and then decline to near-minimum values during the 500-year period subsequent to European contact. Similarly, the age distributions of soil charcoal dated from both non-archeological and archeological sites indicate increases in charcoal accumulation from 2000 to 500 BP followed by decline. An index of the inter- site variability in charcoal accumulation obtained from the stratigraphic records attains a maximum during the time period between 1000 and 500 BP and a near-minimum value afterward. We interpret the covariation between measures of charcoal accumulation derived from archeological and non-archeological sites as a consequence of the expansive influence of anthropogenic activity on the regional fire regime. Increases in regional charcoal accumulation apparent in both the stratigraphic and soil charcoal records beginning at 2000 BP correlate with expanding indigenous population, agriculture, and fire use in the tropical Americas. The rise in inter-site variability in charcoal accumulation after 2000 BP is consistent with a demographic shift toward sedentary agrarian communities and localized increases in charcoal accumulation in densely populated centers. Declines in regional charcoal accumulation and inter-site variability after 500 BP suggest a correlative cause related to reduction in anthropogenic biomass burning resulting from pandemic-driven population collapse. Published reconstructions of Pre-Columbian demography indicate that during European conquest, pandemics killed ~90% of the indigenous American population (~60 million), estimated to represent ~20% of the 16th century global population. Our predictive calculations suggest that fire reduction in the tropical Americas is associated with massive forest regeneration on ~5 x 105 km2 of land and sequestration of 5-10 Gt C into the terrestrial biosphere, which can account for 13- 50% of the ~2% global reduction in atmospheric CO2 levels and the 0.1‰ increase in δ13C of atmospheric CO2 from 1500 to 1700 CE recorded in Antarctic ice cores and tropical sponges. New archeological discoveries revealing extensive networks of geoglyphs and urban polities in Pre-Columbian Amazonia suggest that our estimates of reforestation, and consequent effects on atmospheric CO2, may be conservative.
A role for charcoal's physical properties in its carbon cycle fluxes
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Dugan, B.; Gao, X.; Pyle, L.; Sorrenti, G.; LaMere, L.; Liu, Z.; Zygourakis, K.
2016-12-01
The production of charcoal by fire generates a pool of soil carbon that is more biologically resistant to decomposition than many other forms of soil organic matter, and in some cases charcoal accumulates on the landscape. In other situations, however, charcoal does not accumulate, and is rapidly lost to rivers and eventually delivered to the ocean, where it can form a significant component of sedimentary organic carbon. The physical properties of charcoal form one basic dimension controlling whether charcoal is stored on the landscape or whether it moves to rivers and eventually marine sediments. It is simple to understand how charcoal density and porosity can play a crucial role in its mobility on the landscape: when charcoal pores are filled with air, the bulk density of charcoal can be as low as 0.25 g/cm3, and it will float and thus is easily transported with water runoff. As pores fill with water or soil minerals, the bulk density increases and can exceed 1 g/cm3, which will promote sinking and decrease mobility. For example, a charcoal with an internal porosity of 30% must have 90% of the pores saturated with water to achieve a bulk density greater than 1 g/cm3. Alternately for that same charcoal 20% of charcoal pores would need to infill with soil minerals (mineral density = 3.8 g/cm3) to achieve a density greater than 1 g/cm3. This mineral-infilling process has not been widely observed. Instead, early laboratory and field data suggest that the soil minerals partially block pores in charcoal and this process slows the rate of water transport into charcoal pores. If widespread, this process of partial pore throat occlusion may limit the rate of biochar saturation and thus help control the long-term landscape fate of charcoal.
NASA Astrophysics Data System (ADS)
Whitlock, C.; Marlon, J.; Bartlein, P.
2006-12-01
Particulate charcoal preserved in lake sediments has become an important tool for examining the long-term role of fire as an ecosystem process. The record of microscopic charcoal (100 micron diameter or less) offers information on regional burning patterns, whereas macroscopic particles travel less far and are used to infer local fire history. Reconstruction of past fire activity is based on observations of modern charcoal production, transport, and deposition; modeling; and information on current fire regimes. Approaches and statistics used to interpret charcoal records generally focus on (1) quantifying charcoal content in contiguous samples, (2) determining an appropriate age model, (3) converting raw data to charcoal accumulation rates, and (4) extracting fire signal from noise. Detection of signal in charcoal time series is based on knowledge of recent fires provided by dendrochronological and documentary data. Additional paleofire information is obtained from stratigraphic changes in charcoal composition, pollen assemblages adapted to fire, and other paleoenvironmental proxy. Fire-history studies from western North and South America provide examples of Holocene fire-history reconstructions at spatial scales ranging from watershed to regional. Individual sites show dramatic shifts from crown to surface fire regimes associated with major changes in vegetation. Networks of records reveal regional variations in fire activity and vegetation that are attributed to insolation- driven shifts in atmospheric circulation and changes in short-term climate variability. A global database of paleofire records under development offers an opportunity to consider continental-scale fire patterns and their broad consequences for vegetation dynamics, biogeochemical cycling, and atmospheric chemistry.
Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.
2017-01-01
The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.
NASA Astrophysics Data System (ADS)
Zhao, Wenwei; Zhao, Yan; Qin, Feng
2017-10-01
Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.
The biomass burning contribution to climate-carbon-cycle feedback
NASA Astrophysics Data System (ADS)
Harrison, Sandy P.; Bartlein, Patrick J.; Brovkin, Victor; Houweling, Sander; Kloster, Silvia; Prentice, I. Colin
2018-05-01
Temperature exerts strong controls on the incidence and severity of fire. All else equal, warming is expected to increase fire-related carbon emissions, and thereby atmospheric CO2. But the magnitude of this feedback is very poorly known. We use a single-box model of the land biosphere to quantify this positive feedback from satellite-based estimates of biomass burning emissions for 2000-2014 CE and from sedimentary charcoal records for the millennium before the industrial period. We derive an estimate of the centennial-scale feedback strength of 6.5 ± 3.4 ppm CO2 per degree of land temperature increase, based on the satellite data. However, this estimate is poorly constrained, and is largely driven by the well-documented dependence of tropical deforestation and peat fires (primarily anthropogenic) on climate variability patterns linked to the El Niño-Southern Oscillation. Palaeo-data from pre-industrial times provide the opportunity to assess the fire-related climate-carbon-cycle feedback over a longer period, with less pervasive human impacts. Past biomass burning can be quantified based on variations in either the concentration and isotopic composition of methane in ice cores (with assumptions about the isotopic signatures of different methane sources) or the abundances of charcoal preserved in sediments, which reflect landscape-scale changes in burnt biomass. These two data sources are shown here to be coherent with one another. The more numerous data from sedimentary charcoal, expressed as normalized anomalies (fractional deviations from the long-term mean), are then used - together with an estimate of mean biomass burning derived from methane isotope data - to infer a feedback strength of 5.6 ± 3.2 ppm CO2 per degree of land temperature and (for a climate sensitivity of 2.8 K) a gain of 0.09 ± 0.05. This finding indicates that the positive carbon cycle feedback from increased fire provides a substantial contribution to the overall climate-carbon-cycle feedback on centennial timescales. Although the feedback estimates from palaeo- and satellite-era data are in agreement, this is likely fortuitous because of the pervasive influence of human activities on fire regimes during recent decades.
NASA Astrophysics Data System (ADS)
Hawthorne, Donna; Mitchell, Fraser J. G.
2016-04-01
Globally, in recent years there has been an increase in the scale, intensity and level of destruction caused by wildfires. This can be seen in Ireland where significant changes in vegetation, land use, agriculture and policy, have promoted an increase in fires in the Irish landscape. This study looks at wildfire throughout the Holocene and draws on lacustrine charcoal records from seven study sites spread across Ireland, to reconstruct the past fire regimes recorded at each site. This work utilises new and accepted methods of fire history reconstruction to provide a recommended analytical procedure for statistical charcoal analysis. Digital charcoal counting was used and fire regime reconstructions carried out via the CharAnalysis programme. To verify this record new techniques are employed; an Ensemble-Member strategy to remove the objectivity associated with parameter selection, a Signal to Noise Index to determine if the charcoal record is appropriate for peak detection, and a charcoal peak screening procedure to validate the identified fire events based on bootstrapped samples. This analysis represents the first study of its kind in Ireland, examining the past record of fire on a multi-site and paleoecological timescale, and will provide a baseline level of data which can be built on in the future when the frequency and intensity of fire is predicted to increase.
NASA Astrophysics Data System (ADS)
Hubau, Wannes; Van den Bulcke, Jan; Kitin, Peter; Mees, Florias; Baert, Geert; Verschuren, Dirk; Nsenga, Laurent; Van Acker, Joris; Beeckman, Hans
2013-09-01
Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the 'Medieval Climate Anomaly', mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.
NASA Astrophysics Data System (ADS)
Rull, Valentí; Cañellas-Boltà, Núria; Margalef, Olga; Sáez, Alberto; Pla-Rabes, Sergi; Giralt, Santiago
2015-10-01
Easter Island (Rapa Nui) has been considered an example of how societies can cause their own destruction through the overexploitation of natural resources. The flagship of this ecocidal paradigm is the supposed abrupt, island-wide deforestation that occurred about one millennium ago, a few centuries after the arrival of Polynesian settlers to the island. Other hypotheses attribute the forest demise to different causes such as fruit consumption by rats or aridity but the occurrence of an abrupt, island-wide deforestation during the last millennium has become paradigmatic in Rapa Nui. We argue that such a view can be questioned, as it is based on the palynological study of incomplete records, owing to the existence of major sedimentary gaps. Here, we present a multiproxy (pollen, charcoal and geochemistry) study of the Aroi core, the first gap-free sedimentary sequence of the last millennia obtained to date in the island. Our results show changing vegetation patterns under the action of either climatic or anthropogenic drivers, or both, depending on the time interval considered. Palm forests were present in Aroi until the 16th century, when deforestation started, coinciding with fire exacerbation -likely of human origin- and a dry climate. This is the latest deforestation event recorded so far in the island and took place roughly a century before European contact. In comparison to other Easter Island records, this record shows that deforestation was neither simultaneous nor proceeded at the same pace over the whole island. These findings suggest that Easter Island's deforestation was a heterogeneous process in space and time, and highlights the relevance of local catchment traits in the island's environmental and land management history.
Forest fire and climate change in western North America: insights from sediment charcoal records.
Daniel G Gavin; Douglas J Hallett; Feng Sheng Hu; Kenneth P Lertzman; Susan J Prichard; Kendrick J Brown; Jason A Lynch; Patrick Bartlein; David L. Peterson
2007-01-01
Millennial-scale records of forest fire provide important baseline information for ecosystem management, especially in regions with too few recent fires to describe the historical range of variability. Charcoal records from lake sediments and soil profiles are well suited for reconstructing the incidence of past fire and its relationship to changing climate and...
Grocke, D.R.; Ludvigson, Greg A.; Witzke, B.L.; Robinson, S.A.; Joeckel, R.M.; Ufnar, David F.; Ravn, R.L.
2006-01-01
Analysis of bulk sedimentary organic matter and charcoal from an Albian-Cenomanian fluvial-estuarine succession (Dakota Formation) at Rose Creek Pit (RCP), Nebraska, reveals a negative excursion of ???3???, in late Albian strata. Overlying Cenomanian strata have ??13C values of -24???, to -23???, that are similar to pre-excursion values. The absence of an intervening positive excursion (as exists in marine records of the Albian-Cenomanian boundary) likely results from a depositional hiatus. The corresponding positive ??13C event and proposed depositional hiatus are concordant with a regionally identified sequence boundary in the Dakota Formation (D2), as well as a major regressive phase throughout the globe at the Albian-Cenomanian boundary. Data from RCP confirm suggestions that some positive carbon-isotope excursions in the geologic record are coincident with regressive sea-level phases. We estimate using isotopic correlation that the D2 sequence boundary at RCP was on the order of 0.5 m.y. in duration. Therefore, interpretations of isotopic events and associated environmental phenomena, such as oceanic anoxic events, in the shallow-marine and terrestrial record may be influenced by stratigraphic incompleteness. Further investigation of terrestrial ??13C records may be useful in recognizing and constraining sea-level changes in the geologic record. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Talon, Brigitte; Payette, Serge; Filion, Louise; Delwaide, Ann
2005-07-01
Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce ( Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple ( Acer saccharum) and birch ( Betula spp.), and rare fragments of pine ( Pinus cf. strobus) and white cedar ( Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.
NASA Astrophysics Data System (ADS)
Maezumi, S. Y.; Power, M. J.; Mayle, F.; Iriarte, J. L.
2014-12-01
Mauritia flexuosa is one of the most widely distributed palms in the Neotropics. They are found in in warm, wet lowland environments ranging from dense tropical rainforests to monospecific communities restricted to flooded drainage basins. The monospecific stands of M. flexuosa communities provide structural complexity and habitat diversity for unique terrestrial and aquatic flora and fauna. These communities contribute to enhanced Neotropical diversity from both a taxonomic (α- diversity) and landscape (β-diversity) perspective. Conservation plans have begun to target M. flexuosa palm wetlands as potential refugia and their role in protection of watersheds. However, the long-term development and evolution of these systems is poorly understood. Numerous paleoecological studies from Amazonia suggest that the present day species distribution of M. flexuosa underwent a dramatic increase during the Late Holocene (after ca. 3000 cal yr. BP) that is often coupled with an increased in charcoal accumulation. Some researchers have interpreted these data as evidence for extensive human landscape modification. However, archaeological evidence supporting human landscape modification of M. flexuosa habitats is lacking. To investigate the long-term development of M. flexuosa, a 15,000-year high-resolution sedimentary record was analyzed for charcoal, phytolith and isotope data from Huanchaca Mesetta, Bolivia. To date, there is no evidence for human modification on the plateau, thus this records provides a control study to investigate the role of natural climate variability in the evolution of M. flexuosa communities. Increased insolation driven by Milankovitch precessional forcing resulted in an expansion of the South American Summer Monsoon, increased precipitation and a lengthening of the wet season, supporting the establishment of the modern palm swamp vegetation after 5,000 cal yr BP. Increased charcoal accumulation is likely associated with increased lightning ignitions that accompanied the expanded SASM. The paleofire and vegetation history from Huanchaca Mesetta provides conservationists, land-managers, and policy makers a context for understanding ecological response of M. flexuosa communities to increased warmth and drought stress expected for the 21st century.
NASA Astrophysics Data System (ADS)
Vachula, R. S.; Longo, W. M.; Reinert, S. T.; Russell, J. M.; Huang, Y.
2016-12-01
The frequency and spatial extent of tundra fires have increased contemporaneously with anthropogenic climate change in the Arctic. These fires threaten the stability of permafrost carbon stores, subsistence resources, and ecosystem nutrient cycling and are thus important components of rapidly changing Arctic systems. Future projections of tundra fire rely upon reconstructions of fire regime and ecosystem response to climatic variations of the past. High resolution lake sediment records from Northern Alaska have facilitated important insights into the dynamic relationships between fire, climate, and vegetation throughout the Holocene. However, our understanding of how fire regimes in this region have responded to climate on glacial-interglacial timescales remains speculative. We present a 30,000 year fire history reconstruction from Lake E5, a small lake in the northern foothills of the Brooks Range. Our reconstruction, inferred from sedimentary charcoal particles, polycyclic aromatic hydrocarbons (PAHs), and bulk sediment Black Carbon (BC) content, offers unique insights into how Arctic terrestrial ecosystems of the past and present have interacted with climate on glacial-interglacial time scales via the mechanism of fire. This unique approach pairs traditional (charcoal) and novel (PAHs and BC) proxies and thereby (1) allows for a simultaneous interpretation of local and regional fire history (2) quantifies the abundance of all sizes of all byproducts of incomplete combustion and (3) gains insights into relative changes in combustion temperature, fire severity, and fuel type. While traditional methods would focus on a narrow range of the size spectrum of the physical and chemical byproducts of fire (charcoal particles >0.15 mm), the suite of methods used in this study facilitates a more holistic and comprehensive fire history reconstruction from the E5 sediment record. Results indicate that moisture and vegetation variations were likely the primary drivers of fire in this region over the last 30,000 years. Furthermore, sea level changes and related shifts in atmospheric circulation likely influenced fire regimes in this area prior to the Holocene.
Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy
2014-01-01
Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.
Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling
Iglesias, Virginia; Yospin, Gabriel I.; Whitlock, Cathy
2015-01-01
Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity. PMID:25657652
Late Holocene influence of societies on the fire regime in southern Québec temperate forests
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Talbot, Julie; Paillard, Jordan; Lapointe-Elmrabti, Lyna; Pelletier, Nicolas; Gates St-Pierre, Christian
2018-01-01
Climatic change that occurred during the Holocene is often recognized as the main factor for explaining fire dynamics, while the influence of human societies is less apparent. In eastern North America, human influence on fire regime before European settlement has been debated, mainly because of a paucity of sites and paleoecological techniques that can distinguish human influences unequivocally from climate. We applied a multiproxy analysis to a 12 000-year-old paleoecological sequence from a site in the vicinity of known settlement areas that were occupied over more than 7000 years. From this analysis, we were able detect the human influence on the fire regime before and after European colonization. Fire occurrence and fire return intervals (FRI) were based on analysis of sedimentary charcoals at a high temporal and spatial resolution. Fire occurrence was then compared to vegetation that was reconstructed from pollen analysis, from population densities deduced from archeological site dating, from demographic and technological models, and from climate reconstructed using general circulation models and ice-core isotopes. Holocene mean FRI was short (164 ± 134 years) and associated with small charcoal peaks that were likely indicative of surface fires affecting small areas. After 1500 BP, large vegetation changes and human demographic growth that was demonstrated through increased settlement evidence likely caused the observed FRI lengthening (301 ± 201 years), which occurred without significant changes in climate. Permanent settlement by Europeans in the area around 1800 AD was followed by a substantial demographic increase, leading to the establishment of Gatineau, Hull and Ottawa. This trend was accompanied by a shift in the charcoal record toward anthropogenic particles that were reflective of fossil fuel burning and an apparent absence of wood charcoal that would be indicative of complete fire suppression. An anthropogenic fire regime that was characterized by severe and large fires and long fire-return intervals occurred more than 1000 years ago, concomitant with the spread of native agriculture, which intensified with European colonization over the past two centuries.
New emission controls for Missouri batch-type charcoal kilns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yronwode, P.; Graf, W.J.
1999-07-01
Charcoal kilns have been exempted from air emission regulation in the state of Missouri. Today, 80% of US charcoal production takes place in Missouri. As a result of a petition filed by people in the area around an installation in southern Missouri, the US Environmental Protection Agency (EPA) set up air monitors and measured ambient air levels at that charcoal manufacturing installation. These monitors yielded the highest particulate matter less than 10 micron (PM{sub 10}) levels ever recorded in the state. Earlier stack testing at another charcoal manufacturing installation indicated that toxics and carcinogens are present in charcoal kiln airmore » emissions. A Charcoal Kiln Workgroup was formed to determine the Best Available Control Technology (BACT) for charcoal kilns and to draft a charcoal kiln rule that requires BACT. The BACT report determined that afterburners were suitable for controlling emissions from batch-type charcoal kilns. In addition, the charcoal industry supported incorporating the BACT limits and requirements into an enforceable state rule and submitting this rule to the EPA for federal approval. A consent agreement between the EPA and three major charcoal companies was signed with provisions to install, operate, and maintain emission control devices on charcoal kilns. This agreement was to settle complaints alleging that the three major charcoal producers had failed to report toxic air emissions to federal and state regulators. The agreement provided that industry would install control devices on a set schedule with some charcoal kilns being shut down.« less
Mid-Holocene Drought in the Andes and Associated Impacts on Hydrology of the Amazon River
NASA Astrophysics Data System (ADS)
de Toledo, M. B.; Bush, M. B.; Figueiredo, A. G.
2007-05-01
Pollen, charcoal, and radiocarbon analyses were performed on a 2m-long sediment core obtained from Lake Tapera (coastal Amapa) to provide the paleoenvironmental history of this part of Amazonia. Detrended Correspondence Analysis was applied to the pollen data to improve visualization of sample distribution and similarity. The chronology was based on seven AMS radiocarbon dates, which allowed the establishment of a basal age (8,060 yrs BP) and identification of a sedimentary hiatus lasting 5,500 years (c. 7,100-1600 yrs BP) in Lake Tapera. Because the timing of the hiatus overlapped with the highest Holocene sea-level (5,000 yrs BP), which would have increased the local water table preventing the lake from drying out, it is clear that sea-level was not important in maintaining the lake level. As Lake Tapera apparently depended on riverine flood waters, the sedimentary gap was probably caused by reduced Amazon River discharge, due to an extremely dry period in the Andes (8,000-5,000 years BP), when precipitation levels markedly decreased. One of the impacts of this drought in the Andes was a c. 100m drop in Lake Titicaca water depth. The contrasting presence before and after the hiatus of Andean pollen (river transported) in the record of Lake Tapera supports this interpretation. The pollen analysis also shows that when sedimentation resumed in 1,620 cal. years BP, vegetation around the lake was changed from forest into savanna. This record demonstrates the need to improve our understanding of climate changes and the extent of their associated impacts on the environment.
NASA Astrophysics Data System (ADS)
Ascough, Philippa; Bird, Michael; Meredith, Will; Large, David; Snape, Colin; Manion, Corinne
2014-05-01
Natural and anthropogenic burning events are a key link in the global carbon cycle, substantially influencing atmospheric CO2 levels, and consuming c.8700 teragrams yr-1 of dry biomass [1,2,3]. An important result of this process is charcoal, when lignocellulosic structures in biomass (e.g. wood) are converted to aromatic domains with high chemical stability. Charcoal is therefore not readily re-oxidized to CO2, with estimates of 5-7 ky for the half-life of charcoal carbon in soils [3,4]. Charcoal's high carbon content coupled with high environmental resistance has led to the concept of biochar as a valuable means of global carbon sequestration, capable of carbon offsets comparable to annual anthropogenic fuel emissions [5,6,7]. Charcoal is not, however, an environmentally inert substance, and at least some components of charcoal are susceptible to alteration in depositional environments. Despite the importance of charcoal in global carbon cycling, the mechanisms by which charcoal is altered in the environment remain, as yet, poorly understood. This fact limits our ability to properly incorporate both natural environmental charcoal and biochar into global carbon budgets. This study aimed to improve understanding of charcoal alteration in the environment by examining the influence of production conditions, starting material and deposition environment on the physical and chemical characteristics of charcoal at a field site in the Daintree rainforest. These factors have been identified as critical in determining the dynamics of charcoal in depositional environments [8,9] and climatic conditions at the field site (in Tropical Queensland, Australia) are likely to result in extensive alteration of charcoal. Charcoal from wood (Nothofagus spp.), algae (Enteromorpha spp.), and sugarcane (Saccharum spp.) biomass was produced at temperatures over 300-500°C and exposed to conditions of varying pH and vegetation cover. The effect of these variables on charcoal chemistry, molecular structure, resistant carbon content, microbial interactions and physical characteristics were investigated using a suite of techniques including 13C-MAS-NMR, scanning electron microscopy, stable isotope ratio mass spectrometery, elemental analysis, Raman spectroscopy and hydropyrolysis. The study results have important implications for: i.) the use of quantitative charcoal measurements within global carbon budgets and fire history reconstruction; ii.) understanding of the dynamic role of charcoal within soil and sedimentary systems. References: [1] Langenfelds RL, Francey RJ, Pak BC, Steele LP, Lloyd J, Trudinger CM, Allison CE. 2002. Global Biogeochem. Cycles, 16, doi:10.1029/2001GB001466. [2] Schimel D, Baker D. 2002. Nature 420, 29-30. [3] Levine JS, 1991. The MIT Press, Cambridge, Massachusetts. [4] Preston CM, Schmidt MWI. 2006. Biogeoscience 3, 397-420. [5] Lehmann J, Gaunt J, Rondon M. 2006. Mitigation and Adaptation Strategies for Global Change 11, 395-419. [6] Sohi SP, Krull E, Lopez-Capel E, Bol R. 2010. Advances in Agronomy, Academic Press, 105, 47-82 [7] Woolf D, Amonette J.E, Street-Perrott F.A, Lehmann J, Joseph S. 2010. Nature Communications, 1, 56. [8] Ascough PL, Bird M I, Francis SM, Thornton B, Midwood A, Scott AC, 10 Apperley D. 2011. Geochimica et Cosmochimica Acta. 75 (9), 2361-2378. [9] Zimmermann M et al. 2012. Global Change Biology. doi: 10.1111/j.1365- 2486.2012.02796.x
Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu
2009-01-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...
Cathy Whitlock; Carl N. Skinner; Patrick J. Bartlein; Thomas Minckley; Jerry A. Mohr
2004-01-01
Fire-history reconstructions are based on tree-ring records that span the last few centuries and charcoal data from lake-sediment cores that extend back several thousand years. The two approaches have unique strengths and weaknesses in their ability to depict past fire events and fire regimes, and most comparisons of these datasets in western conifer forests have...
NASA Astrophysics Data System (ADS)
Tshibamba Mukendi, John; Hubau, Wannes; Ntahobavuka, Honorine; Boyemba Bosela, Faustin; De Cannière, Charles; Beeckman, Hans
2014-05-01
Past disturbances have modified local density, structure and floristic composition of Central African rainforests. As such, these perturbations represent a driving force for forest dynamics and they were presumably at the origin of present-day forest mosaics. One of the most prominent disturbances within the forest is fire, leaving behind charcoal as a witness of past forest dynamics. Quantification and identification of ancient charcoal fragments found in soil layers (= pedoanthracology) allows a detailed reconstruction of forest history, including the possible occurrence of past perturbations. The primary objective of this study is to present palaeoenvironmental evidence for the existence of past disturbances in the forests of the Kisangani region (Democratic Republic of the Congo) using a pedoanthracological approach. We quantified and identified charcoal fragments from pedoanthracological excavations in the Yangambi, Yoko, Masako and Kole forest regions. Charcoal sampling was conducted in pit intervals of 10 cm, whereby pottery fragments were also registered and quantified. Floristic identifications were conducted using former protocols based on wood anatomy, which is largely preserved after charcoalification. 14 excavations were conducted and charcoal was found in most pit intervals. Specifically, 52 out of 56 sampled intervals from the Yangambi forest contained charcoal, along with 47 pit intervals from the Yoko forest reserve, 34 pit intervals from the Masako forest and 16 from the Kole forest. Highest specific anthracomasses were recorded in Yoko (167 mg charcoal per kg soil), followed by Yangambi (133 mg/kg), Masako (71,89 mg/kg) and finally Kole (42,4 mg/kg). Charcoal identifications point at a manifest presence of the family of Fabaceae (Caesalpinioideae). This family is characteristic for the tropical humid rainforest. The presence of charcoal fragments from these taxa, associated with pottery sherds on different depths within the profiles, suggests past occurrences of anthropogenic perturbations in these forests. Insights in past forest dynamics and the relative roles of climatic and anthropogenic disturbances enhance our overall understanding of present and future forest dynamics.
Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned
NASA Astrophysics Data System (ADS)
Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.
2015-11-01
Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.
Implementing microscopic charcoal in a global climate-aerosol model
NASA Astrophysics Data System (ADS)
Gilgen, Anina; Lohmann, Ulrike; Brügger, Sandra; Adolf, Carole; Ickes, Luisa
2017-04-01
Information about past fire activity is crucial to validate fire models and to better understand their deficiencies. Several paleofire records exist, among them ice cores and sediments, which preserve fire tracers like levoglucosan, vanillic acid, or charcoal particles. In this work, we implement microscopic charcoal particles (maximum dimension 10-100 μm) into the global climate-aerosol model ECHAM6.3HAM2.3. Since we are not aware of any reliable estimates of microscopic charcoal emissions, we scaled black carbon emissions from GFAS to capture the charcoal fluxes from a calibration dataset. After that, model results were compared with a validation dataset. The coarse model resolution (T63L31; 1.9°x1.9°) impedes the model to capture local variability of charcoal fluxes. However, variability on the global scale is pronounced due to highly-variable fire emissions. In future, we plan to model charcoal fluxes in the past 1-2 centuries using fire emissions provided from fire models. Furthermore, we intend to compare modelled charcoal fluxes from prescribed fire emissions with those calculated by an interactive fire model.
Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.
2015-01-01
Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.
Synchronous environmental and cultural change in the prehistory of the northeastern United States.
Munoz, Samuel E; Gajewski, Konrad; Peros, Matthew C
2010-12-21
Climatic changes during the late Quaternary have resulted in substantial, often abrupt, rearrangements of terrestrial ecosystems, but the relationship between these environmental changes and prehistoric human culture and population size remains unclear. Using a database of archaeological radiocarbon dates alongside a network of paleoecological records (sedimentary pollen and charcoal) and paleoclimatic reconstructions, we show that periods of cultural and demographic change in the northeastern United States occurred at the same times as the major environmental-climatic transitions of that region. At 11.6, 8.2, 5.4, and 3.0 kyr BP (10(3) calendar years before present), changes in forest composition altered the distribution, availability, and predictability of food resources which triggered technological adjustments manifested in the archaeological record. Human population level has varied in response to these external changes in ecosystems, but the adoption of maize agriculture during the late Holocene also resulted in a substantial population increase. This study demonstrates the long-term interconnectedness of prehistoric human cultures and the ecosystems they inhabited, and provides a consolidated environmental-cultural framework from which more interdisciplinary research and discussion can develop. Moreover, it emphasizes the complex nature of human responses to environmental change in a temperate region.
NASA Astrophysics Data System (ADS)
Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad
2015-04-01
Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.
NASA Astrophysics Data System (ADS)
López-Pérez, M.; Correa-Metrio, A.
2013-05-01
Analysis of charcoal particles from lacustrine sediments is a useful tool to understand fire regimes through time, and their relationships with climate and vegetation. However, the extent of the relationship between charcoal particles and their origin in terms of the spatial and temporal extent of the fire events is poorly known in the tropics. Modern sediments were collected from lakes in the Yucatan Peninsula and Central Mexico, 51 and 22 lakes respectively, to analyze their charcoal concentration and its relationships with modern fire events. Number of modern fire events was derived from the public source Fire Information for Resource Management System (FIRMS) for concentric spatial rings that ranged from 1 to 30 km of radius. The association between charcoal and fires was evaluated through the construction of linear models to explain charcoal concentration as a function of the number of fires recorded. Additionally, charcoal particles were stratified according to size to determine the association between fire distance and charcoal size classes. The relationship between total charcoal concentration and fire events was stronger for central Mexico than for the Yucatan Peninsula, which is probably the result of differences in vegetation cover. The highest determination coefficients were obtained for charcoal particle sizes ranging between 0.2 and 0.8 mm2, and for fire event distances of between 0 and 15 km from the lake. Overall, the analyses presented here offer useful tools to quantitatively and spatially reconstruct past regional fire dynamics in Central Mexico and the Yucatan Peninsula.
Belcher, Claire M.; Punyasena, Surangi W.; Sivaguru, Mayandi
2013-01-01
Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth’s past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals. PMID:23977267
Determinants of fire activity during the last 3500 yr at a wildland-urban interface, Alberta, Canada
NASA Astrophysics Data System (ADS)
Davis, Emma L.; Courtney Mustaphi, Colin J.; Gall, Amber; Pisaric, Michael F. J.; Vermaire, Jesse C.; Moser, Katrina A.
2016-11-01
Long-term records of wildfires and their controlling factors are important sources of information for informing land management practices. Here, dendrochronology and lake sediment analyses are used to develop a 3500-yr fire and vegetation history for a montane forest in Jasper National Park, Alberta, Canada. The tree-ring record (AD 1771-2012) indicates that this region historically experienced a mixed-severity fire regime, and that effective fire suppression excluded widespread fire events from the study area during the 20th century. A sediment core collected from Little Trefoil Lake, located near the Jasper townsite, is analyzed for subfossil pollen and macroscopic charcoal (>150 μm). When comparing the tree-ring record to the 3500-yr record of sediment-derived fire events, only high-severity fires are represented in the charcoal record. Comparisons between the charcoal record and historical climate and pollen data indicate that climate and vegetation composition have been important controls on the fire regime for most of the last 3500 yr. Although fire frequency is presently within the historical range of variability, the fire return interval of the last 150 yr is longer than expected given modern climate and vegetation conditions, indicating that humans have become the main control on fire activity around Little Trefoil Lake.
Exploring Geochemical Markers of the Anthropocene in River Sediments: Southern New England
NASA Astrophysics Data System (ADS)
Tran, J.
2015-12-01
The sedimentary record of New England is complex. From glacial till to colonial land use to the industrial revolution, any sediment preserved is intertwined and muddled by humans. Recent studies support the idea that any anthropogenic markers in the sediment record are site specific. Southern New England is marked by a myriad of practices including farming, charcoal kilns, hatting, mill dams, and iron furnaces. While specific markers of the anthropocene have been identified, little work has been done to correlate and quantify these noted markers across multiple basins. Specifically, a combination of x-ray fluorescence (XRF), x-ray diffraction (XRD), and grain size analysis were done on sediment cores taken within Southern New England across various watersheds. We present a combination of geochemical analysis and detrital zircon geochronology in order identify and account for basin differences. This in turn results in a more comprehensive trans-basin understanding of the anthropocene in this region. We observe strong evidence that supports the idea of geochemical markers anthropocene which include an increase in Mercury and Lead content in the sediments. Additionally, in basins where mill dams are present we observe sediment records consistent with flood events and dam degradation. While still fairly novel and understudied, our results provide insight to the much often question topic of the anthropocene in relation to this particular region and the potential pitfalls of doing large scale anthropogenic dating.
NASA Astrophysics Data System (ADS)
Lancaster, S. T.; Frueh, W. T.
2011-12-01
A large number (N = 351) of radiocarbon dates of charcoal from valley-bottom sediments in headwater valleys of the southern Oregon Coast Range provides the basis for a new index of fire frequency during the past 17,000 years in this steep landscape covered by dense coniferous forest. Study areas were chosen for their relative lack of recent forest disturbance by harvest or fire, and sampling of stream banks and terrace risers was random, weighted by deposit volume and bank or riser area. This sampling methodology was designed to characterize sediment residence times within valley-bottom storage, and the overall shape of the calibrated age distribution is therefore assumed representative of the dependence of charcoal preservation probability on calibrated age. A proxy record of fire history in the study areas is obtained by fitting a gamma distribution to the weighted mean calibrated charcoal ages by the method of moments; calculating the relative difference between the fit and the normalized histogram, with 50-year bin-widths, of charcoal ages; and smoothing that relative difference with a gaussian distribution, the standard deviation of which is at least two bin-widths and inversely proportional to the value of the fit distribution at larger ages. The calibrated charcoal age mean and variance of 1900 yrs BP and 7.39 x 106 yr2, respectively, yield shape and scale parameters of the fit gamma distribution of 0.490 and 3880 yrs, respectively. This heavy-tailed distribution indicates that probabilities of charcoal evacuation are not simply proportional to relative volume of encasing sediment deposits but, rather, decrease with deposit age. The smoothed proxy record of relative fire frequency has a global maximum at 7700 BP and prominent local maxima at 600 BP and 5700 BP, in order of decreasing magnitude; a global minimum at 4500 BP and local minimum at 1800 BP roughly bracket a period of fluctuating but relatively low fire frequency during the period 5000-1500 BP. Although resolution in the late glacial to early Holocene is limited, the record shows a high relative fire frequency during the late glacial before dipping 10,000-9000 BP. The 7700 BP maximum and 1800 BP minimum are consistent with another fire history from lake sediments northeast of our sites in the Oregon Coast Range. Other features appear to contradict that record but to support of climate change inferences based on other climate proxies.
Stanley, J.-D.; Bernhardt, C.E.
2010-01-01
Pollen and microscopic charcoal examined in Holocene sediment core samples record major environmental modifications affecting Alexandria's Eastern Harbor through time. We assess whether such changes on Egypt's coastal margin were influenced primarily by natural, or natural plus human, or primarily human factors. We focus on (1) the times when pollen assemblages and microscopic charcoal content changed in the core, (2) how they changed, and (3) why this occurred. The analysis takes into account the core's stratigraphy, regional climate variability, human history, and local archaeological record. Four pollenmicroscopic charcoal zones are identified. The earliest change occurred at ca. 6000 YBP, during Egypt's earlier Predynastic (Neolithic) period, coinciding with a lithologic break from sand to muddy sand. Pollen during this time indicates a transition to a much drier climate rather than effects of human activity. The second change in pollen occurred 3600-2900 YBP, during a period of continued aridity with no lithologic variation in this core interval. Pollen (cereal taxa, agricultural weeds, grape) and a sharp increase in microscopic charcoal indicate that human activity became prevalent at least 700 y before Alexander the Great's arrival in this region, and these results highlight the transition from a largely natural climatecontrolled environment to one influenced by both climate and anthropogenic activity. The third shift up-core in pollen assemblages is dated at ca. 2300 YBP, at the boundary between a sand and mud unit. It coincides with construction by the Ptolemies of the Heptastadion between Alexandria and Pharos Island. From this time onward, harbor sediment in the nearly enclosed catchment basin indicates a near-continuous record of dominant proximal human activity. ?? 2010 Coastal Education and Research Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjellmark, E.W.
Pollen and charcoal data from a transect of three sediment cores taken from deep, water-filled karst sinkholes on Andros Island, Bahamas have yielded a detailed record of late Holocene climate change and human disturbance. The pollen record reveals that a long-term, late Holocene dry period in the Caribbean, which extended from 3000 to 1500 years bp had a variable effect on the vegetation of Andros depending on its proximity to the water table. A site at 10 m elevation above the water table shows evidence of major changes in vegetation, while a low-lying site shows little effect. Both the charcoalmore » and pollen records reveal possible evidence of human disturbance beginning after the dry period ends. A site 1 km from the east coast of Andros shows a peak in charcoal content in sediments that are 900-1000 years old. This post-dates human colonization of the Bahamas, which occurred 1000-1200 years bp and may be evidence of increased burning brought about by humans. A site 7 km inland shows a large peak in charcoal content and a distinct shift in the pollen spectrum from tropical hardwoods pollen to pinewoods pollen in sediments that are 700-800 years old. Charcoal content is low at this site in 450-500 year old sediments, then peaks again in 200-250 year old sediments. This may reflect the removal of humans from the Bahamas shortly after the arrival of Columbus, followed by re-colonization 250 years later. Although the changes in charcoal and pollen over the past 1000 years could have been climatically induced, the timing of the changes correlates closely with known events in the human history of the Bahamas.« less
The stratigraphic record of recent climate change in mid-Atlantic USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brush, G.S.; Hilgartner, W.B.; Khan, H.
1994-06-01
The Medieval Warm Period and Little Ice Age recorded in sediments deposited in tributaries and marshes surrounding the Chesapeake and Delaware Bays in the mid-Atlantic region of USA, by changes in pollen and seeds of terrestrial and aquatic plants, and changes in influxes of charcoal, sediment, metals and nutrients. Fossil pollen and seeds portray a regional landscape characterized by conditions drier that present from about 1000 to 1200 AD. During the same period, high charcoal and sediment influxes indicate high fire frequency. This short dry interval was followed by an expansion of submerged aquatic plants, low marsh plants, and terrestrialmore » plants that occupy wet habitats. Charcoal influxes are extremely low during the latter interval, which extended from about 1200 AD to 1500 AD. Plant macrofossil and pollen distributions indicate a second dry period extending from 1550 to 1650 AD, which appears similar to the earlier Medieval Warm interval.« less
Understanding the NAO from Iberian and UK paleoclimate records. The NAOSIPUK project
NASA Astrophysics Data System (ADS)
Garcia-Alix, Antonio; Toney, Jaime L.; Jiménez-Moreno, Gonzalo; Slaymark, Charlotte; José Ramos-Román, Maria; Camuera, Jon; Jiménez-Espejo, Francisco J.; Anderson, R. Scott
2017-04-01
The main goal of the NAOSIPUK project was to understand the North Atlantic Oscillation (NAO) during the Holocene, because the NAO is one major climate mode influencing climate patterns across Europe, and therefore, economy and society (Hurrell, 1995). We analysed several sedimentary records in two regions with opposing NAO responses. Our sedimentary surface survey from numerous lakes and bogs, led to further investigation of four records in the southern Iberian Peninsula and three in the central/northern UK. Past environments of the different sites were analysed using pollen and charcoal analysis, organic and inorganic geochemistry analyses, and sedimentary and geophysical surveys were performed. This work compares general environmental trends in both regions as deduced from the organic matter from bulk sediment to get an idea of the organic matter source, as well as specific organic compounds extracted from the sediment, such as leaf waxes (n-alkanes), algae-related compounds (diols and alkenones), and bacteria-related compounds (hopanes), to specify the sources of the organic matter, environmental temperature ranges, as well as hydrological changes. Our preliminary results show that the palaeoenvironmental indices developed from n-alkanes agree with the variations deduced from the carbon and nitrogen atomic ratios, as well as the carbon isotopic composition from bulk sediments in southern Iberia records. Interestingly, these indices show that some locations display opposite trends from one another, and are used to distinguish regional versus local effects of climate change, human impacts, and aeolian dust inputs. During the late Holocene solar forcing and NAO fluctuations are the main drivers of the environmental evolution in most of the Iberian and UK sites. However, we do detect the influence of the NAO in the temperatures oscillations of the studied sites in southern Iberia. This influence is much more important in the north/central UK sites. The regional comparison between north/central UK and southern Iberia shows a more stable middle Holocene (from ˜7.0 to ˜5.0 cal ky BP) at higher latitudes. On the other hand, the environmental and climatic changes in southern Spain are abrupt during this period. This might be related to the beginning or increasing influence of the NAO during the middle Holocene, which is coeval with a change in the precipitation source in this area. The UK records mainly show abrupt environmental changes between 4.5 and 4.0 cal ky BP and during the last millennia. These environmental changes are especially abrupt in both areas during the last one-hundred years, agreeing with the regional and global industrial development. References Hurrell, J.W., 1995. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 269, 676-679. NAOSIPUK. http://www.naosipuk.org. Last access: 9th January 2017.
NASA Astrophysics Data System (ADS)
Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.
2015-12-01
The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.
The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years
NASA Astrophysics Data System (ADS)
Fletcher, M.-S.; Bowman, D. M. J. S.; Whitlock, C.; Mariani, M.; Stahle, L.
2018-02-01
Climate, fire and vegetation dynamics are often tightly coupled through time. Here, we use a 14 kyr sedimentary charcoal and pollen record from Lake Osborne, Tasmania, Australia, to explore how this relationship changes under varying climatic regimes within a temperate rainforest ecosystem. Superposed epoch analysis reveals a significant relationship between fire and vegetation change throughout the Holocene at our site. Our data indicates an initial resilience of the rainforest system to fire under a stable cool and humid climate regime between ca. 12-6 ka. In contrast, fires that occurred after 6 ka, under an increasingly variable climate regime wrought by the onset of the El Niño-Southern Oscillation (ENSO), resulted in a series of changes within the local rainforest vegetation that culminated in the replacement of rainforest by fire-promoted Eucalypt forest. We suggest that an increasingly variable ENSO-influenced climate regime inhibited rainforest recovery from fire because of slower growth, reduced fecundity and increased fire frequency, thus contributing to the eventual collapse of the rainforest system.
The 3000-4000 cal. BP anthropogenic shift in fire regime in the French Pyrenees.
NASA Astrophysics Data System (ADS)
Rius, D.; Vannière, B.; Galop, D.; Richard, H.
2009-04-01
Fire is a key disturbing agent in a wide range of ecosystems: boreal biome (Pitkanen, 2000), Mediterranean area (Colombaroli et al., 2008) as well as temperate European mountain zones (Tinner et al., 1999). During the Holocene, climate may control fire regime by both ignition and fire spread-favouring conditions (i.e. composition, structure and moisture of biomass) whereas man may change charcoal accumulation patterns through type and intensity of agro-pastoral activities. In western and Mediterranean Europe, single sites charcoal analysis recorded the anthropogenic forcing over fire regime broadly between the mid and the late-Holocene. Turner et al (2008) showed that climate and fire had been disconnected since 1700 cal. BP in Turkey. In central Swiss, Mean Fire Interval decreased by two times 2000 years ago due to increasing human impact (Stahli et al., 2006). In Italy, climate and man have had a combined influence on fire-hazard since ca 4000 cal. BP (Vannière et al., 2008). In the Pyrenees Mountains, the linkage between agro-pastoral practices and fire could be dated back to ca 4000-3000 cal. BP with a clear succession of a clearance phase (high fire frequency) followed by a quite linear trend throughout Middle Ages and Modern times corresponding to a change in fire use (Vanniere et al., 2001; Galop et al., 2002, Rius et al., in press). The quantification of fire regimes parameters such as frequency with robust methodological tools (Inferred Fire Frequency, Mean Fire Interval) is needed to understand and characterise such shifts. Here we present two sequences from the Lourdes basin (col d'Ech peat bog) and from the occidental Pyrenees (Gabarn peat bog), which cover the last 9000 years with high temporal resolution. The main goals of this study were to (1) assess control factors of fire regime throughout the lateglacial and Holocene (climate and/or man) on the local scale, (2) evidence the local/regional significance of these control factors , (3) discuss the role of fire in landscape management during the last 3000 years. These fire records emphasizes a shift in fire regime between ca 4000 and 3000 cal BP with similar trends during the last 3000 years (i.e. Mean Fire Interval = 150 years), which appear to be human-driven. However, both Neolithic and Bronze Age periods have different charcoal accumulation patterns suggesting discrepancies between local fire histories and thus different land-use trends and intensity. References Colombaroli D., Vannière B., Chapron E., Magny M. & Tinner W., 2008. Fire-vegetation interactions during the Mesolithic-Neolithic at Lago dell'Accesa, Italy. The Holocene 18: 679-692. Galop, D., Vanniere, B., Fontugne, M., 2002. Human activities and fire history since 4500 BC on the northern slope of the Pyrenees: a record from Cuguron (Central Pyrenees, France). Proceedings of the Second International Meeting of Anthracology, Paris, September 2000, BAR International Series, 43-51. Pitkanen A., 2000. Fire frequency and forest structure at a dry site between Ad 400 and 1110 based on charcoal and pollen records from a laminated lake sediment in eastern Finland. The Holocene 10,2: 221-228. Rius D., Vanniere B. & Galop D., in press. Fire frequency and landscape management in the north-western Pyrenean piedmont (France) since early Neolithic (8000 cal. BP). The Holocene. Stähli, M., Finsinger, W., Tinner, W., Allgower, B., 2006. Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. The Holocene 16, 805-817. Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., Conedera, M., 1999. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273-289. Turner R., Roberts N. & Jones M. D., 2008. Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Global and Planetary Change 63: 317-324. Vanniere, B., Galop, D., Rendu, C., Davasse, B., 2001. Feu et pratiques agro-pastorales dans les Pyrénées-Orientales : le cas de la montagne d'Enveitg (Cerdagne, Pyrénées-Orientales, France). R.G.P.S.O.,11, 29-42. Vanniere, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., 2008. Climate versus human-driven fire regimes in Mediterranean landscapes : the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, 1181- 1196.
Oso, A O; Akapo, O; Sanwo, K A; Bamgbose, A M
2014-06-01
A 42-day feeding trial was conducted using 480-day-old, male Marshall broilers to study the utilization of unpeeled cassava root meal (UCRM) supplemented with or without 6 g/kg charcoal. The experimental design was laid out in a 3 × 2 factorial arrangement of treatments having three inclusion levels of UCRM (0, 100 and 200 g/kg) with or without 6 g/kg charcoal supplementation. Each treatment consisted of 80 birds replicated eight times with 10 birds per replicate. Main effect of inclusion level of UCRM and supplementation of charcoal showed reduced (p < 0.05) final live weight, weight gain, feed intake and apparent crude protein digestibility of the birds with increasing inclusion levels of UCRM. Birds fed diets supplemented with charcoal showed higher (p < 0.05) final live weight, weight gain and feed intake than birds fed diets without charcoal. Supplementation of charcoal in diet containing 100 g/kg UCRM resulted in improved (p < 0.05) weight gain when compared with birds fed similar diet but not supplemented with charcoal. Broilers fed diet containing no UCRM but supplemented with charcoal had the highest overall (p < 0.05) final live weight and weight gain, while birds fed diet containing 200 g/kg UCRM supplemented with charcoal recorded the poorest (p < 0.05) final live weight and weight gain. Serum glutamate oxaloacetate transaminase (SGOT) and serum thiocyanate concentration increased (p < 0.05) with increasing dietary inclusion levels of UCRM. Dietary supplementation of charcoal resulted in increased (p < 0.05) concentration of serum glucose and cholesterol and reduced (p < 0.05) SGOT concentration. Birds fed diets containing UCRM had high (p < 0.05) serum thiocyanate concentration irrespective of dietary supplementation or not with 6 g/kg charcoal. In conclusion, supplementation of diet containing up to 100 g/kg UCRM with 6 g/kg charcoal showed improved weight gain without any deleterious effect on serum metabolites. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Syn-pandemic Fire Suppression in the Tropical Americas During European Conquest
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Bird, D. K.
2006-12-01
A new reconstruction of the biomass burning history of the tropical Americas during the past 5 millennia documents the expansion of fire use by Mesoamerican and Amazonian agriculturalists and a subsequent period of fire suppression beginning ~500 years BP. Fire suppression is synchronous with the collapse of the American indigenous population during European conquest. The present work synthesizes microscopic charcoal accumulation records preserved in lake, bog, and basin sediments from 14 sites in Central America and equatorial South America to reconstruct regional variation in charcoal accumulation rates, averaged over 200-year increments, relative to the mean rate of regional charcoal accumulation during the past 5 millennia. This study builds upon prior fire history reconstructions by synthesizing a substantially greater number of stratigraphic charcoal accumulation sequences to resolve features of the Late Holocene biomass burning record in the tropical Americas. We find that between ~5000 and ~4000 years BP, charcoal accumulation generally persisted at rates >1 standard deviation (s.d.) below the 5-millennium mean. Subsequently charcoal accumulation rates fluctuated until ~3000 years BP and then increased, maintaining an average level >0.5 s.d. above the 5-millenium mean until ~500 years BP. After ~500 years BP, charcoal accumulation rates dropped to values below the 5000-year mean and remained suppressed for the next several centuries. The variation in charcoal accumulation rates over the past 5000 years reflects both climatic and anthropogenic factors affecting the regional fire history of the tropical Americas. The transition to above-average charcoal accumulation rates after 3000 years BP is synchronous with a trend toward a drier climate in the circum-Caribbean region and expanding forest clearance and cultivation by Mesoamerican and Amazonian societies. The subsequent, prolonged period of enhanced biomass burning between ~3000 and ~500 years BP is punctuated by three intervals of low charcoal accumulation, reflecting intermittent episodes of fire-suppression lasting <200 years. The latest and most pronounced of these low-fire intervals occurs at ~1100 years BP and corresponds to the Classic Maya collapse. The persistence of low charcoal accumulation rates for several centuries after ~500 years BP is parsimoniously explained by a reduction of agriculture-related biomass burning due to syn-pandemic population collapse. During European conquest, pandemics killed ~90% of the indigenous American population, estimated to represent ~20% of the 16^{th} century global population. The suppression of biomass burning after ~500 years BP is a unique feature of the fire history of Central and equatorial South America relative to other regions of the globe, where rates of charcoal accumulation are typically >0.2 s.d. above their Holocene mean values. Syn-pandemic fire suppression in the tropical Americas is associated with massive regional reforestation and sequestration of carbon into the terrestrial biosphere, which contributed to the ~2% global reduction in atmospheric CO2 levels and the 0.1 per mil increase in δ13C of atmospheric CO2 from 1500 to 1700 A.D.
NASA Astrophysics Data System (ADS)
Colombo, Ferran; Busquets, Pere; Sole de Porta, Nuria; Limarino, Carlos Oscar; Heredia, Nemesio; Rodriguez-Fernandez, Luis Roberto; Alvarez-Marron, Joaquina
2009-10-01
The Jáchal River Valley displays a number of significant Holocene sedimentary accumulations made up of fine-grained materials. These deposits are interpreted as the sedimentary infill of shallow temporary lakes that were generated by slow growing episodes of alluvial fans that obstructed the Jáchal River Valley. The association of fossil remains through the Holocene sedimentary sequence suggests that the accumulation of lacustrine sediments was affected by climate variations. The predominant aridity was punctuated by very few humid episodes characterised by fresh-water gastropoda and the intercalations of muddy sediments. The high proportion of charcoal particles in some samples indicates periodic forest fires. Abundant non-pollen forest remains suggest that an open zone dominated by several types of grasses underwent a dry season during part of the year. The palynomorph associations found in the Jáchal River Valley Holocene lacustrine sediments suggest that the humid conditions were less intense than those in the San Juan River Valley located more than one hundred kilometres southwards. Our study suggests that lake formation could have been controlled by climate oscillation probably related to the ENSO variation at 30° south latitude.
NASA Astrophysics Data System (ADS)
Holz, A.; Wood, S.; Fletcher, M. S.; Ward, C.; Hopf, F.; Veblen, T. T.; Bowman, D. M. J. S.
2016-12-01
Recurrent landscape fires present a powerful selective force on plant regeneration strategies that form a continuum between vegetative resprouters and obligate seeders. In the latter case, reduction of the interval between fires, combined with factors that affect plant traits and regeneration dynamics can drive plant population to local extinction. Here we use Athrotaxis selaginoides, a relict fire-sensitive Gondwanan tree species that occurs in western Tasmania, as model system to investigate the putative impacts of climate change and variability and human management of fire. We integrate landscape ecology (island-wide scale), with field survey and dendrochronology (stand-scale) and sedimentary records (watershed and landscape-scales) to garner a better understanding of the timing and impact of landscape fire on the vegetation dynamics of Athrotaxis at multiple scales. Across the species range sedimentary charcoal and pollen concentrations indicate that the recovery time since the last fire has consistently lengthened over the last 10,000 yrs. Stand-scale tree-age and fire-scar reconstructions suggest that populations of the Athrotxis have survive very infrequent landscape fires over the last 4-6 centuries, but that fire severity has increased following European colonization causing population collapse of Athrotaxis and an associate shift in stand structure and composition that favor resprouter species over obligate seeders. Overall our findings suggest that the resistance to fires and postfire recovery of populations of A. selaginoides have gradually declined throughout the Holocene and rapidly declined after Europeans altered fire regimes, a trend that matches the fate other Gondwanan conifers in temperate rainforests elsewhere in the southern Hemisphere.
A 6900-year history of landscape modification by humans in lowland Amazonia
NASA Astrophysics Data System (ADS)
Bush, M. B.; Correa-Metrio, A.; McMichael, C. H.; Sully, S.; Shadik, C. R.; Valencia, B. G.; Guilderson, T.; Steinitz-Kannan, M.; Overpeck, J. T.
2016-06-01
A sedimentary record from the Peruvian Amazon provided evidence of climate and vegetation change for the last 6900 years. Piston cores collected from the center of Lake Sauce, a 20 m deep lake at 600 m elevation, were 19.7 m in length. The fossil pollen record showed a continuously forested catchment within the period of the record, although substantial changes in forest composition were apparent. Fossil charcoal, found throughout the record, was probably associated with humans setting fires. Two fires, at c. 6700 cal BP and 4270 cal BP, appear to have been stand-replacing events possibly associated with megadroughts. The fire event at 4270 cal BP followed a drought that caused lowered lake levels for several centuries. The successional trajectories of forest recovery following these large fires were prolonged by smaller fire events. Fossil pollen of Zea mays (cultivated maize) provided evidence of agricultural activity at the site since c. 6320 cal BP. About 5150 years ago, the lake deepened and started to deposit laminated sediments. Maize agriculture reached a peak of intensity between c. 3380 and 700 cal BP. Fossil diatom data provided a proxy for lake nutrient status and productivity, both of which peaked during the period of maize cultivation. A marked change in land use was evident after c. 700 cal BP when maize agriculture was apparently abandoned at this site. Iriartea, a hyperdominant of riparian settings in western Amazonia, increased in abundance within the last 1100 years, but declined markedly at c. 1070 cal BP and again between c. 80 and -10 cal BP.
NASA Astrophysics Data System (ADS)
Clear, J.; Chiverrell, R. C.; Kunes, P.; Boyle, J.; Kuosmanen, N.; Carter, V.
2016-12-01
The montane Norway spruce (Picea abies) dominated forests of Central Europe are a niche environment; situated outside their natural boreal distribution they are vulnerable to both short term disturbances (e.g. floods, avalanches, fire, windstorm and pathogens) and longer-term environmental change (e.g. climate induced stress, snow regimes). Holocene sediment records from lakes in the High Tatra (Slovakia) and Bohemian (Czech) Mountains show repeated disturbances of the pristine Picea abies-dominated forests as sharp well defined minerogenic in-wash horizons that punctuate the accumulation of organic gyttja. These event horizons span a process continuum from lakes with restricted catchments and limited inflow (e.g. Prazilske Lake, Czech) to more catchment-process dominated lakes with large catchments (e.g. Popradske Lake, Slovakia). The events include complex responses to a global climatic downturn at 8.2ka, other cooler episodes 3.5, 1.6 and 0.5 ka, and to recent discrete wind-storms and pathogen outbreaks. We develop a typology for disturbance events using sediment geochemistry, particle size, mineral magnetism, charcoal and palaeoecology to assess likely drivers of disturbance. For the recent past integrating data from dendroecology and sediments is used to calibrate our longer-term perspective on forest dynamics. Tree-ring series from plots or forest stands are used alongside lake and forest hollow sediments to explore the local, regional and biogeographical scale of forest disturbances. Dendroecological data showing tree-ring gap recruitment and post-suppression growth release highlight frequent disturbance events focused on tree or forest stand spatial scales, but are patchy in terms of their reoccurrence. However they highlight levels of disturbance in the late 19th Century and parallel lake and forest hollow sediments record variable pollen influx (beetle host / non-host ratios) and stratigraphies that include mineral in-wash events. The identified recent and ongoing forest disturbances coupled with well-evidenced events in the 19th century highlight the need for the longer sedimentary perspective to assess whether contemporary climate warming has and continues to stretch the resilience of these fragile ecosystems.
The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration
Scott, Andrew C.; Glasspool, Ian J.
2006-01-01
By comparing Silurian through end Permian [≈250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (≈420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the “fire window”). Herein, we observe that, as predicted, atmospheric oxygen levels rise from ≈13% in the Late Devonian to ≈30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence. PMID:16832054
NASA Astrophysics Data System (ADS)
Wang, Liang-Chi
2017-04-01
The Hualien Plain is one of the richest prehistoric sites in eastern Taiwan, and the reconstruction of late Holocene environment on the basis of the lacustrine sediments near Hualien Plain can benefit to the understandings of human-climate-environment interactions in past. The multi-decadal records of vegetation history, agriculture evidences and fire events in Liyu Lake of eastern Taiwan were reconstructed by using palynological and charcoal analysis of lake sediments. A 2.8 m sediment core covering a time period from 2,680 cal BP to the present was used to investigate the alterations in the landscape with respect to human activities and climate change. During 2680-2410 cal yr BP, frequent burning and high preservation of cultivated Poaceae pollen indicated the early cultivation during the late Neolithic period. There followed a warm climate during 2,410-1,510 cal yr BP, and the increase of lowland forest pollen showed a period of forest recovery as a consequence of reducing human activity. Following a phase of recolonization of prehistory human during 1510-560 cal yr BP, a slightly increasing trend of cultivated Poacease indicated the human activities, but the human population was low. The last 560 years record showed an intense trend of deforestation and cultivation which may correlate to a rapid increase in the human population in this area.
NASA Astrophysics Data System (ADS)
Mugford, Ian; Street-Perrot, Alayne; Santín, Cristina; Denman, Huw
2014-05-01
Anthropogenic charcoal deposits, characterised by thick charcoal-rich soil horizons, offer an invaluable Late Quaternary record of pyrogenic carbon (PyC) additions to soils. A traditional source of archaeological, anthracological and palaeoecological data, the potential contribution of anthropogenic charcoal deposits to soil science and assessment of carbon (C) sequestration is often overlooked. If addition of biochar to soils is to form a key component of a low-C economy, crucial questions must be addressed relating to its longevity and behaviour in the soil environment. With rare exceptions, previous studies have focussed on short-term incubation experiments and field or pot trials, often neglecting important natural soil and environmental processes. This study addresses these issues by comparing the physicochemical properties of European anthropogenic charcoal-rich deposits, with 14C ages ranging from > 43 ka to Modern, to native soils (nearby control sites). We will present results from a study of 23 charcoal-rich soil cores, collected from a 'Pre-historic' ditch mound, a Bronze Age burnt mound, a Roman furnace, and post-mediaeval and Modern Meilers, situated along a climatic gradient from Mediterranean (Southern Italy) to Humid Temperate (South Wales). The ability of charcoal to alter fertility and retain plant-available nutrients was assessed by measuring soil cation- exchange capacity. Retention of refractory C by the charcoal deposits was evaluated from their total organic C (TOC) contents, atomic H:C and O:C ratios, and residues after acid- dichromate oxidation. Picked charcoal fragments were also compared with modern biochars and biomass using: 1) their thermogravimetric recalcitrance (R50) indices (Harvey et al. 2012); and 2) attenuated total reflectance (ATR) FT-IR data, to gauge the development of functional groups linked to the long-term oxidation of the particle surfaces. Radiocarbon dating was used to assess the ages of the deposits. Our study attests to the considerable potential of anthropogenic charcoal deposits as a tool to predict the fate, functioning and C-sequestration potential of PyC in soils on long (102 - 103yr) time scales, which are inaccessible to field and laboratory experiments. Centuries to millennia after charcoal addition, these charcoal-rich soils have undergone limited environmental degradation and still display significant recalcitrance and C-sequestration potential.
NASA Astrophysics Data System (ADS)
Magi, B. I.; Marlon, J. R.; Mouillot, F.; Daniau, A. L.; Bartlein, P. J.; Schaefer, A.
2017-12-01
Fire is intertwined with climate variability and human activities in terms of both its causes and consequences, and the most complete understanding will require a multidisciplinary approach. The focus in this study is to compare data-based records of variability in climate and human activities, with fire and land cover change records over the past 250 years in North America and Europe. The past 250 years is a critical period for contextualizing the present-day impact of human activities on climate. Data are from the Global Charcoal Database and from historical reconstructions of past burning. The GCD is comprised of sediment records of charcoal accumulation rates collected around the world by dozens of researchers, and facilitated by the PAGES Global Paleofire Working Group. The historical reconstruction extends back to 1750 CE is based on literature and government records when available, and completed with non-charcoal proxies including tree ring scars or storylines when data are missing. The key data sets are independent records, and the methods and results are independent of any climate or fire-model simulations. Results are presented for Europe, and subsets of North America. Analysis of fire trends from GCD and the historical reconstruction shows broad agreement, with some regional variations as expected. Western USA and North America in general show the best agreement, with departures in the GCD and historical reconstruction fire trends in the present day that may reflect limits in the data itself. Eastern North America shows agreement with an increase in fire from 1750 to 1900, and a strong decreasing trend thereafter. We present ideas for why the trends agree and disagree relative to historical events, and to the sequence of land-cover change in the regions of interest. Together with careful consideration of uncertainties in the data, these results can be used to constrain Earth System Model simulations of both past fire, which explicitly incorporate historical fire emissions, and the pathways of future fire on a warmer planet.
Evidence of repeated wildfires prior to human occupation on San Nicolas Island, California
Pigati, Jeffrey S.; McGeehin, John P.; Skipp, Gary L.; Muhs, Daniel R.
2014-01-01
Understanding how early humans on the California Channel Islands might have changed local fire regimes requires a baseline knowledge of the frequency of natural wildfires on the islands prior to human occupation. A sedimentary sequence that was recently discovered in a small canyon on San Nicolas Island contains evidence of at least 24 burn events that date to between ~37 and 25 ka (thousands of calibrated 14C years before present), well before humans entered North America. The evidence includes abundant macroscopic charcoal, blackened sediments, and discrete packages of oxidized, reddish-brown sediments that are similar in appearance to sedimentary features called “fire areas” on Santa Rosa Island and elsewhere. Massive fine-grained sediments that contain the burn evidence are interpreted as sheetwash deposits and are interbedded with coarse-grained, clast-supported alluvial sediments and matrix supported sands, pebbles, and cobbles that represent localized debris flows. These sedimentary sequences suggest that the catchment area above our study site underwent multiple cycles of relative quiescence that were interrupted by fire and followed by slope instability and mass wasting events. Our 14C-based chronology dates these cycles to well before the arrival of humans on the Channel Islands and shows that natural wildfires occurred here, at a minimum, every 300–500 years prior to human occupation.
Holocene disturbance dynamics from a pine-dominated forest in central British Columbia, Canada
NASA Astrophysics Data System (ADS)
Brown, K. J.; Hebda, N.; Condor, N.; Hebda, R.; Hawkes, B.
2013-12-01
A lake sediment record was retrieved from the Sub-Boreal Pine-Spruce biogeoclimatic zone on the Chilcotin Plateau in central British Columbia, Canada. The record is being analyzed for charcoal, pollen, and magnetic susceptibility, as well as insect and mollusc content. The oldest radiocarbon age is 9.2 cal BP, illustrating that the record spans most of the Holocene. Regarding fire disturbance, charcoal fragments are persistent throughout the core, revealing that fire disturbance has characterized the site for millennia. In total, 74 fire events were recognized. During the warm dry early Holocene, fire frequency was 12-15 fires 2000 yr-1 and peak magnitudes were low, possibly in response to a more open landscape. A change in fire regime occurred at ca. 5000 cal BP, as fire frequency increased, peaking at ca. 20 fires 2000 yr-1 by 3000 cal BP. Peak magnitude likewise increased notably, possibly in response to the development of denser forest cover. On-going analysis of pollen will better constrain the vegetation history in this poorly sampled region. In contrast to charcoal, which was pervasive, Dendroctonus ponderosae (mountain pine beetle) remains were absent in both modern and paleo samples. Given that several insect outbreaks have occurred in the region in the last 100 years, the scarcity of remains is likely related to taphonomic issues.
Chemical recalcitrance of biochar and wildfire charcoal: how similar are they?
NASA Astrophysics Data System (ADS)
Santin, Cristina; Doerr, Stefan H.; Merino, Agustin
2016-04-01
The enhanced chemical resistance to biological degradation of pyrogenic materials, either produced during wildfires (charcoal) or by man (biochar), makes them long-term carbon sinks once incorporated in soils. In spite of their fundamental similarities, studies comparing the chemical recalcitrance of biochar and wildfire charcoal are scarce because analogous materials for accurate comparison are not easily available. Using solid-state 13C cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy we characterized the chemical recalcitrance of pyrogenic materials generated from the same unburnt feedstooks (litter and dead wood from Pinus banksiana): (a) charcoal from a high-intensity wildfire and (b) biochar obtained by slow pyrolysis [3 treatments: 2 h at 350, 500 and 650°C]. For quantification, the spectra were divided into four regions representing different chemical environments of the 13C nucleus: alkyl C (0-45 ppm), O-alkyl C (45-110 ppm), olefinic and aromatic C(110-160 ppm), and carbonyl C (160-210 ppm). As an indicator of chemical recalcitrance, the degree of aromaticity (%) was calculated as follow: aromatic-C ∗ 100 / (alkyl C+ O alkyl-C + aromatic-C). The pyrogenic materials derived from wood show higher degrees of aromaticity (68 to 88%) than pyrogenic material derived from litter (40 to 88%). When comparing biochar and wildfire charcoal, biochars produced at 500 and 650°C always have higher degrees of aromaticity than wildfire charcoals, irrespective of the original feedstock. Wildfire charcoals always show a more heterogeneous chemical composition, with alkyl and O-alkyl compounds present even in charcoal generated at very high temperatures (temperatures up to 950 °C were recorded on the litter surface during the wildfire). However, biochars produced at 500 and 650 °C are mostly aromatic, and only the biochars produced at 350 °C show partial contribution of alkyl-C compounds. Our results suggest that biochar-type pyrogenic materials have in general a higher chemical recalcitrance than wildfire charcoal and, thus, we advice caution when transfer knowledge between the biochar and the wildfire charcoal research communities.
Hudson River Paleoclimate, Sea Level, and Human Impact: A Record From Piermont Marsh, NY
NASA Technical Reports Server (NTRS)
Kurdyla; Peteet, Dorothy; Liberman, Louisa; Sugar; Wong; Hansen, James E. (Technical Monitor)
2001-01-01
A 13.77 meter sediment core from Piermont Marsh, NY (40 00 N, 73 55W) records the local and regional vegetational and foraminiferal history of the Hudson Estuary. The sediments were sampled every 4 cm, which represents a decadal to centuryscale resolution. Basal sediment dating is in progress, and the 11-m depth represents about 4000 years. Changes in plant macrofossils and charcoal appear to indicate differences in salinIty and drought, suggesting changes in climate. Scirpus, Salicornia, and high levels of charcoal seem to indicate drier/more saline conditions, while lack of these macrofossils and increases in Chara/Nitella, aquatic leaves, and very little charcoal suggests wetter conditions. Other macrofossils include Carex, Juncus, Polygonum, Zanichellia, Ruppia. High resolution AMS dating of plant macrofossils is in progress, and will be compared with changes in Hudson River sediment cores offshore. Foraminiferal assemblages from key intervals of the core will be presented. Human impact in the upper sediments is visible from the influx of grass seeds, primarily Phragmites, and the ragweed pollen rise.
Geologic constraints on the macroevolutionary history of marine animals
Peters, Shanan E.
2005-01-01
The causes of mass extinctions and the nature of taxonomic radiations are central questions in paleobiology. Several episodes of taxonomic turnover in the fossil record, particularly the major mass extinctions, are generally thought to transcend known biases in the geologic record and are widely interpreted as distinct macroevolutionary phenomena that require unique forcing mechanisms. Here, by using a previously undescribed compilation of the durations of sedimentary rock sequences, I compare the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera. Many features of the highly variable record of taxonomic first and last occurrences in the marine animal fossil record, including the major mass extinctions, the frequency distribution of genus longevities, and short- and long-term patterns of genus diversity, can be predicted on the basis of the temporal continuity and quantity of preserved sedimentary rock. Although these results suggest that geologically mediated sampling biases have distorted macroevolutionary patterns in the fossil record, preservation biases alone cannot easily explain the extent to which the sedimentary record duplicates paleobiological patterns. Instead, these results suggest that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanerozoic. PMID:16105949
NASA Astrophysics Data System (ADS)
Ruiz-Fernández, Jesús; Nieuwendam, Alexandre; Oliva, Marc; Lopes, Vera; Cruces, Anabela; Conceição Freitas, Maria; Janeiro, Ana; López-Sáez, José Antonio; García-Hernández, Cristina
2017-04-01
The environmental changes during the last millennia in the Mediterranian Region (including the Cantabrian Mountains in the NW part of the Iberian Peninsula) are partially related to fire activity, generated by early human societies for grazing purposes. Fire activity has mostly been reconstructed based on the analysis of pollen, spores and other macro- and microscopic organic remains, such as charcoal particles. However, new techniques (as the analysis of micro-scale frost weathering of quartz grains), can provide further information about the magnitude and intensity of fire as a landscape modeler. The purpose of this work was to analyze a sedimentary sequence collected from Belbín depression in the Western Massif of the Picos de Europa (Cantabrian Mountains, NW Spain) by using an innovative multi-proxy approach, in order to reconstruct the fire history in this area. The Picos de Europa Mountains constitute the highest and most extensive massif in the Cantabrian Mountains. This area encloses three different massifs separated by deep gorges carved by four rivers (Dobra, Cares, Duje and Deva). The Western Massif is the largest of the three units (137 km2). The Picos de Europa are essentially composed by Carboniferous limestones. This mountain area was heavily glaciated during the Last Glaciation, though the post-glacial environmental evolution is still poorly understood. Within the Western Massif, the mid-altitude area of Belbín is a karstic depression dammed by a lateral moraine generated by Enol Glacier during the Last Glaciation. Between 23 and 8 ky cal BP this depression was a lake that became progressively infilled with sediments, and nowadays it is occupied by grasslands (Ruiz-Fernández et al., 2016). In order to study the environmental changes during the Mid-Late Holocene in this massif, a 182 cm-long sequence was retrieved in the Belbín area. The core was subsampled every centimeter in the top most superficial 60 cm. The laboratory analyses were: 1) texture and organic matter (OM) content, including labile and refractory OM, Rp index and C/N relation; 2) quartz grains microstructures; 3) Charcoal accumulation rate: macroscopic charcoal (>125 µm) was identified and counted from subsamples of 1 cm3 at every 1 cm depth by sediment sieving; 4) the geochronological framework was established with three samples selected for 14C accelerator mass spectrometry (AMS)-dating (Laval University, Canada). Oscillating warm and cold stages corresponding to the Mid-Late Holocene were identified in the study area. Warmer temperatures were recorded between 6.67-4.95 ky cal BP, 3.66-3.01, 2.58-1.06, 0.86-0.51, and 0.13 ky cal BP until nowadays, and colder regimes occurred between 4.95-3.66 ky cal BP, 3.01-2.58, 1.06-0.86 and 0.51-0.13. The warmer stages were defined by the dominance of chemical weathering of the quartz grains and relative increases of the C/N ratio, while colder stages corresponded to intense physical weathering of the quartz grains and lower C/N values. With exceptions, the organic content increased from bottom to top of the core. The charcoal particles didn't show a different concentration in colder or warmer conditions, which may be linked to human-induced fire management of the landscape. The most significant period of fire activity occurred between 3.5 and 3 ky cal BP, during the Bronce Age (other significant periods occurred at 2.6, 0.71 and 0.36 ky cal BP). References Ruiz-Fernández, J., Oliva, M., Cruces, A., Lopes, V., Freitas, M.C., Andrade, C., García-Hernández, C., López-Sáez, J.A., Geraldes, M. (2016). Environmental evolution in the Picos de Europa (Cantabrian Mountains, SW Europe) since the Last Glaciation. Quaternary Science Reviews, 138: 87-104.
Scheel-Ybert
2000-06-01
Charcoal analysis of six shell mounds showed that no major changes of the mainland vegetation ecosystem have taken place along the southeastern Brazilian coast (22 degrees 53'-22 degrees 57'S, 42 degrees 03'-42 degrees 33'W) from 5500 to 1400 14C yr BP. These shell mounds have been occupied by sedentary fisher-gatherer-hunters. Charcoal fragments retrieved from vertical profiles in the archaeological sites were examined; taxonomic determinations were based on a reference collection of charred woods and a program for computer-aided identification. Charcoal assemblages of all the studied sites present taxa from various restinga vegetation types, mangroves, xeromorphic coastal forest, and inland Atlantic Forest. The restinga ecosystem, characteristic of the Brazilian coast, is associated with sandy beach ridges; the restinga forest was much more abundant during the studied period than nowadays. The charcoal assemblages represent mainly the local vegetation; a regional reconstruction depends on the study of numerous sites. In the Cabo Frio region, open restinga taxa are more abundant in the Sambaqui do Forte, while forest elements are more important in the Sambaquis Salinas Peroano and Boca da Barra. The sites studied in the Arraial do Cabo (Sambaqui da Ponta da Cabeça) and in the Saquarema regions (Sambaquis da Pontinha and da Beirada) show that open restinga formations were locally predominant. A comparison of multivariate analysis applied to both charcoal assemblages and to phytosociological data of the extant vegetation showed a good correspondence between the charcoal spectra and the present vegetation. The high taxonomic diversity of archaeological charcoal samples and numerous fragments showing traces of decay before charring suggests that aleatory gathering of dead wood constituted the main source of firewood for fisher-gatherer-hunters populations. Condalia sp. was probably selected for cultural reasons.The only significant fluctuations on the charcoal spectra relate to the mangrove vegetation. Two relatively humid episodes (recorded from ca. 5500 to 4900/4500 and from ca. 2300 to 2000 14C yr BP), intercalated by two episodes of increased dryness with increased lagoon salinity (from ca. 4900/4500 to 2300 and from ca. 2000 to 1400 14C yr BP) were recorded in the Cabo Frio region. The changes in mangrove vegetation cannot be attributed to sea-level variations, for the three regressive and the two transgressive episodes identified for the Brazilian coast during this period are not in phase with the development of mangroves. The stability of the mainland vegetation ecosystem is probably due to the edaphic character of the coastal environments, which makes coastal formations much more resistant to climatic variations and less sensitive to climatic change. We propose that this environmental stability was a decisive factor in the maintenance of the fisher-gatherer-hunter sociocultural system.
NASA Astrophysics Data System (ADS)
Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu
2017-09-01
Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.
NASA Astrophysics Data System (ADS)
Saiz, Gustavo; Goodrick, Iain; Wurster, Christopher; Nelson, Paul N.; Wynn, Jonathan; Bird, Michael
2017-12-01
Understanding the main factors driving fire regimes in grasslands and savannas is critical to better manage their biodiversity and functions. Moreover, improving our knowledge on pyrogenic carbon (PyC) dynamics, including formation, transport and deposition, is fundamental to better understand a significant slow-cycling component of the global carbon cycle, particularly as these ecosystems account for a substantial proportion of the area globally burnt. However, a thorough assessment of past fire regimes in grass-dominated ecosystems is problematic due to challenges in interpreting the charcoal record of sediments. It is therefore critical to adopt appropriate sampling and analytical methods to allow the acquisition of reliable data and information on savanna fire dynamics. This study uses hydrogen pyrolysis (HyPy) to quantify PyC abundance and stable isotope composition (δ13C) in recent sediments across 38 micro-catchments covering a wide range of mixed C3/C4 vegetation in north Queensland, Australia. We exploited the contrasting δ13C values of grasses (i.e. C4; δ13C >-15‰) and woody vegetation (i.e. C3; δ13C <-24‰) to assess the preferential production and transport of grass-derived PyC in savanna ecosystems. Analyses were conducted on bulk and size-fractionated samples to determine the fractions into which PyC preferentially accumulates. Our data show that the δ13C value of PyC in the sediments is decoupled from the δ13C value of total organic carbon, which suggests that a significant component of PyC may be derived from incomplete grass combustion, even when the proportion of C4 grass biomass in the catchment was relatively small. Furthermore, we conducted 16 experimental burns that indicate that there is a comminution of PyC produced in-situ to smaller particles, which facilitates the transport of this material, potentially affecting its preservation potential. Savanna fires preferentially burn the grass understory rather than large trees, leading to a bias toward the finer C4–derived PyC in the sedimentary record. This in turn, provides further evidence for the preferential production and transport of C4-derived PyC in mixed ecosystems where grass and woody vegetation coexist. Moreover, our isotopic approach provides independent validation of findings derived from conventional charcoal counting techniques concerning the appropriateness of adopting a relatively small particle size threshold.
NASA Astrophysics Data System (ADS)
Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.
2008-06-01
A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered significant changes in vegetational communities (e.g. temporal declines of Quercus ilex forests and expansion of shrublands and macchia). The link between fire and climate persisted during the mid- and late Holocene, when human impact on vegetation and the fire regime was high. This finding suggests that climatic conditions were important for fire occurrence even under strongly humanised ecosystem conditions.
The Little Ice Age and its Spatial Variability across the Balkans
NASA Astrophysics Data System (ADS)
Kulkarni, C.; Peteet, D. M.; Boger, R. A.
2015-12-01
Using biological proxies (pollen, spores, and charcoal), geochemical signals through X-ray fluorescence, and AMS 14C based chronology, we present a correlation between two new high resolution Little Ice Age (LIA) records from the Central Balkans that are part of one of the least studied regions of Europe. The sediments extracted from a western sinkhole and central Serbian oxbow lake are analyzed at 8-10-cm intervals to capture the nature and magnitude of the LIA at a resolution of 20 years. During the 15th-19th CE, indigenous tree (e.g. Quercus, Acer, Pinus) and herbaceous (e.g. Poaceae, Chenopodiaceae, Artemisia) pollen from these records demonstrate fluctuations in woodland-grassland dynamics. While tree populations from Central Serbia remain comparatively stable (40-60%), the trees of western Serbia vacillate drastically between 15% and 50%. Similarly, central Serbian grasses show variations of ~18-36% whereas the western Serbian grass populations exhibit abrupt oscillations between high (55%) and low (19%) percentages. As a proxy for surface erosion and clastic input into the lakes, the 1-cm resolution potassium and titanium counts are in strong agreement with varying herbaceous taxa. These variations in ecological signals across the cores can account for local factors including altitude, terrain exposure, soils etc., however, the dynamic human component of the landscape is evident through crop pollen (e.g. Cerealia, Juglans) and microscopic charcoal highlighting the dominant role of people in ecological changes. Although the two sites show certain differences in charcoal concentration, extremely high charcoal indicates accelerated land clearance between the 15th and 17th CE. Until the beginning of 18th CE, the cultivars (e.g. Secale, Triticum) occur with very low percentages and then peak to suggest improved agriculture in the region. In the post-LIA era, the 20th CE exhibits increased arboreal percentages and declining grasslands in both the two Central Balkan records.
NASA Astrophysics Data System (ADS)
Carcaillet, Christopher; Hörnberg, Greger; Zackrisson, Olle
2012-11-01
New studies indicate the presence of early Holocene ice-free areas far north in Scandinavia. Post-glacial fire and vegetation were investigated based on sedimentary charcoal and pollen from two small lakes in northern Sweden. Accumulation of organic sediment started around 10,900 and 9200 cal yr BP, showing that both lake valleys were ice-free extremely early given their northerly location. Fire events started after 9600 cal yr BP and became less common around the '8.2-ka event'. Woody vegetation provided fuel that contributed to fires. The first vegetation in our pollen record consisted of Hippophae, Dryas, grasses and sedges. Subsequently broadleaved trees (Betula, Salix) increased in abundance and later Pinus, Alnus, ferns and Lycopodium characterized the vegetation. Pollen from Larix, Picea and Malus were also found. The change in vegetation composition was synchronous with the decrease in lake-water pH in the region, indicating ecosystem-scale processes; this occurred during a period of net global and regional warming. The changes in fire frequency and vegetation appear independent of regional trends in precipitation. The reconstructed fire history and vegetation support the scenario of early ice-free areas far north in Scandinavia during early Holocene warming, creating favorable conditions for woody plants and wildfires.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.
2017-12-01
Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as mass extinctions.
NASA Astrophysics Data System (ADS)
Cui, Q.
2015-12-01
It is well recognised that studies of past fire regimes and their causes (human and/or climatic) are useful to understand the long-term ecological effects of fire on vegetation communities. Further, information on the long-term fire history and its effect on vegetation dynamics may provide useful insights for vegetation management in fragile eco-environment of Western China. The main aim of this study is to quantitatively reconstruct high-resolution fire history in West China based on charcoal records from peatlands in Zoige basin (Tibet) and Altai Mountains (Xinjiang). We investigate the long-term relationships between fire, climate, human-impact and the history of biodiversity based on four Holocene macro- and micro- charcoal records and a synthesis on previously published pollen data and geochemistry data. Three hypotheses based on global charcoal records and former studies on palaeofire carried out in China need to be test by this study: 1) during early-mid Holocene period, fire frequency in the study area is relative low and best explained by the changes of regional climate; 2) during the late Holocene, fire activities in the study area increased might due to impacts of the human activities over the climate changes, and human activities is responsible for the temporal and spatial variations in fire regime; 3) the difference of fire histories can be explained by the difference of vegetation composition at site.
Chang, Shu-Sen; Cheng, Qijin; Lee, Esther S T; Yip, Paul S F
2016-03-01
Increased use of lethal suicide methods can have a profound impact on overall suicide incidence; the epidemic of suicide by barbecue charcoal gas poisoning in some East Asian countries is a recent example. There have been concerns about recent rises in suicide using gases in some Western countries. We investigated suicide by gassing in Hong Kong (2005-2013) using Coroner's files data. The characteristics were compared between suicide by helium inhalation, charcoal gas poisoning, and other methods. About one sixth (1407/8445, 16.7%) of all suicides used gases. Charcoal-burning suicides constituted the majority (97.5%) of them but showed a reduction over the 9-year period (-33%). Helium suicide was not recorded in 2005-2010 but increased from one in 2011 to three in 2012 and 11 in 2013, accounting for 1.2% of all suicides in 2013. Similar to the profile of charcoal-burning suicides, helium suicides were younger and more likely to have debt problem and less likely to receive psychiatric treatment than other suicides. Internet involvement related to the method was found in one third of cases of helium suicide. The small number of helium suicides (n=15) limits the power to examine their characteristics. Suicide by charcoal burning showed a downward trend whilst there was an alarming increase in helium suicide in Hong Kong. Public health measures to prevent an epidemic of helium suicide similar to that of charcoal-burning suicide may include close monitoring of trend, responsible media reporting, and restricting online information about and access to this method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Allue, Ethel; Bennàssar, Maria; Biltekin, Demet; Blain, Hugues-Alexandre; Burjachs, Francesc; Euba, Itxaso; Expósito, Isabel; Fernández-García, Mónica; López-García, Juan Manuel
2014-05-01
The aim of this work is to analyze the environmental changes during the Late Pleistocene on the basis of a multi-approach study based on natural and archaeological deposits from NE Iberian Peninsula. The focussed area, although having a small extension (some 32.000 square kilometres), covers a large range of ecosystems and bioclimatic conditions from the Mediterranean seashore to the summit of the Pyrenean mountain ranges (up to 2000 masl). This synthetical approach includes materials from various contexts including 10 archaeological deposits and a single natural deposit. In this work, plant (pollen and charcoals) and animal (small mammals, amphibians and reptiles) records are being analysed and compared in order to present an overview of the environmental changes occurred from the MIS5 to MIS3. On the first hand, we are using the small-vertebrate records recovered from archaeological deposits. These proxies are mainly the product of pellets from birds of prey and are key ecological markers. On the second hand, palaeobotanical evidences, pollen and charcoal, have different formation processes. Charcoal remains are mostly from archaeological deposits and are due to human activities related to fire showing evidences of the local vegetation. Pollen evidences from archaeological and natural contexts are deposited through natural processes (wind, insects, etc.) and show regional scale vegetation record. Results indicate the presence of temperate elements during all these periods (especially at the seashore area), with a more important representation and extension southwards or changes in altitude from taxa with eurosiberian affinities during coldest periods. Forest coverage, plant and vertebrate distribution along the territory point out a mosaic landscape formed by open areas and forests. These landscapes have probably a more or less Mediterranean or Eurosiberian character depending on the climatic moment and their location with variations along the sequence.
Megan K. Walsh; Christopher A. Pearl; Cathy Whitlock; Patrick J. Bartlein; Marc A. Worona
2010-01-01
High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at...
NASA Astrophysics Data System (ADS)
Sorrel, Philippe; Tessier, Bernadette; Demory, François; Baltzer, Agnès; Bouaouina, Firas; Proust, Jean-Noël; Menier, David; Traini, Camille
2010-06-01
The late Holocene is of particular interest to our understanding of the evolution of coastal sedimentary systems because this period encompasses warmer and cooler periods, and rising sea level in northern Europe. Based on an approach combining AMS 14C, sedimentological and rock magnetic analyses on sediment cores complemented with seismic data collected in the macrotidal Bay of Vilaine (south Brittany), we document the depositional history of the inner bay coeval to the mid- to late-Holocene transgression in south Brittany. Correlation between sedimentary archives revealed the main sedimentary infilling phases during the last 6000 years. Four units (U1-U4) are recognized in the coastal sediment wedge of the system, corresponding to the stepwise marine invasion of the bay. We show that (1) marine inundation, due to the steep morphology of the bedrock, is diachronous between distal and proximal records. A time lag of ˜1000 years is inferred over a distance of less than 5 km; (2) in the outer areas, the sedimentation has been condensed since 3000 years; (3) proximal estuarine archives offer the best record of sedimentary processes covering the last 2000 years, including the Medieval Warm Period (MWP). Correlations in proximal records in the Bay of Vilaine assess the connection between coastal sedimentary dynamics, climatic conditions and anthropogenic activities during the MWP. We match the preservation of clay deposits to increased river-borne suspended matter transported to the estuary probably as a result of accelerated land-use development (higher soil erosion) in the catchment area between ca. 880 and 1050 AD. Because the preservation of estuarine sedimentary successions is favoured when coastal wave sediment reworking is minimal, it is proposed that the prevailing climatic regime in south Brittany during the MWP likely resembled to that of the preferred negative phase of the North Atlantic Oscillation (NAO). Our data are fairly consistent with other late Holocene records from northern Europe including the Atlantic seaboard. However, they outline the difficulty in interpreting climatic and anthropogenic signatures in coastal sedimentary records where high-resolution chronologies required to unravel their respective influences are still missing.
Building a Bridge to Deep Time: Sedimentary Systems Across Timescales
NASA Astrophysics Data System (ADS)
Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.
2013-12-01
It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded orogenic belts. Moreover, as the timescale of the duration of the process-response behavior and/or system age increase, additional aspects must be considered (e.g., significant tectonic regime change, rare but significant events, non-periodic global change, etc.). In this presentation we discuss several examples of sedimentary system analysis at different timescales with the goal of highlighting various approaches at one timescale and how they can (or cannot) be applied for questions at different timescales. Examples include: (1) brief review of decadal to centennial sediment budgets; (2) land-to-sea sediment budget reconstructions from southern California at millennial to multi-millennial timescales, and (3) sedimentary system response to climatic and tectonic forcings at ≥105 yr timescales.
Magnetic resonance imaging analyses of varved marine sedimentary records of the Gulf of California
NASA Astrophysics Data System (ADS)
Briskin, Madeleine; Robins, Jon; Riedel, William R.; Booker, Ron
1986-08-01
Nuclear Magnetic Resonance Imaging used for the first time to analyze marine sedimentary records of the Gulf of California is a remarkable improvement over the more conventional X-ray technique in the identification of organic rich layers. Analytical results indicate that NMRI differentiates clearly between organic rich (light) and organic poor (dark) deposits. It also provides a fine resolution of sedimentary structures, laminae and stratigraphic subtleties. It may be made to yield a three-dimensional stratigraphy; the procedure is nondestructive. The organic vs. inorganic resolution provided by NMRI technology complemented by X-ray when needed should facilitate future studies of paleoceanographic, paleoclimatic and biogeochemical cycles recorded in the vast deposits of marine clays.
NASA Astrophysics Data System (ADS)
Kirchgeorg, Torben; Schüpbach, Simon; Colombaroli, Daniele; Beffa, Giorgia; Radaelli, Marta; Kehrwald, Natalie; Barbante, Carlo
2015-04-01
Holocene vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining different proxies. We distinguished between three different morphotypes (grass, wood and leaves) in macroscopic charcoal. We also determined the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. Comparing the two biomass burning proxies may help increase our understanding about advantages and limitations of molecular markers as proxies for past fire reconstruction in lake sediments. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Petén Itzá, Guatemala (17°00'N, 89°50'W, 110 m above sea level), and compared our results with millennial-scale vegetation and climate change data available in this area. Some differences were observed between the two records and we assumed that while macroscopic charcoal represents a local fire signal, the molecular fire proxies records seem to be influenced by regional to supra-regional fire or low temperature fires. During the Holocene we detected three periods of high fire activity: 9500-6000 cal yr BP, 3800 cal yr BP and 2700 cal yr BP. We attributed the first maximum (9500-6000 cal yr BP) to only climate conditions, which corresponds with observations from previous studies in this region. The fast decrease in the relative abundance of woody charcoal to grass charcoal at the 3800 cal yr BP fire maximum may result from human activity, but we cannot exclude that this shift was related to climate conditions during this period. The last maximum (2700 cal yr BP) we attribute to the agricultural activity of the Maya at Lake Petén Itzá.
A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.).
Armas, Isabel; Pogrebnyak, Natalia; Raskin, Ilya
2017-01-01
Successful biotechnological improvement of crop plants requires a reliable and efficient in vitro regeneration system. Lettuce ( Lactuca sativa L.), one the most important vegetable crops worldwide, is strongly genotype-dependent in terms of regeneration capacity, limiting the potential for biotechnological improvement of cultivars which show recalcitrance under currently available protocols. The effect of different nutrient sources, plant hormone combinations and activated charcoal supplementation on shoot induction efficiency was evaluated on the cultivar 'RSL NFR', which had previously shown poor regeneration efficiency. Multiple shoot organogenesis from cotyledon explants was recorded at the highest frequency and speed on Murashige and Skoog regeneration medium supplemented with 200 mg/l of activated charcoal, 3% sucrose, 10 mg/l benzylaminopurine and 0.5 mg/l naphthaleneacetic acid, which induced shoots through direct regeneration in 90.8 ± 7.9% of explants. High shoot induction efficiency was also observed, albeit not quantified, when using this medium on some other cultivars. This activated charcoal-containing regeneration medium might offer a rapid and efficient option for direct shoot induction in some lettuce genotypes that do not respond well to common lettuce regeneration protocols. This is also the first report of the effect of activated charcoal in lettuce tissue culture.
NASA Astrophysics Data System (ADS)
Cordeiro, R. C.; Turcq, B.; Sifeddine, A.
2009-12-01
Soil samples were collected at 9 different depths, from zero to 100 cm at six points distributed along a transect of 1700 m in upland and lowland areas of the Km 41 reserve near Manaus in Central Brazilian Amazonia, in order to compare the frequency, dimension and extension of past fires in different topographic environmental situations. The average charcoal mass distribution is higher in uplands than in lowlands. This distribution shows a gradient with a high correlation between the two topographic levels, demonstrating a characteristic depth distribution pattern. The highest charcoal concentrations were found at a depth of 20-50 cm in all the six profiles. These fires have affected the upland areas more severely than the lowlands, probably allowing the survival of the vegetation along the small streams.. Two periods of intense fire activity were identified through the distribution of the biomass of charcoal: from around 1320 cal yr BP (ca 1400 14C yr BP) to 1050 cal yr BP (ca 1100 14C yr BP), and between 610 cal yr BP (ca 600 14C yr BP) to 330 cal yr BP (ca 300 yr 14C yr BP). These forest fire phases were probably favored by dry climate which is recorded in other regions of Amazonia and South America by archaeological and palaeoecological data.. Observe that the data found in this article related to the disturbances of fire events in the Central Amazon region appear to be synchronous with events of disruption of populations and vegetation changes and background to the development of indigenous people. Thus it seems plausible that these disturbance phenomena may have an origin presumably climatic than anthropogenic. This possible relationship between climate and forest, ecosystems of high productivity and biomass, and humans should be look carefully in relation to the carbon cycle dynamics demonstrated by the air bubbles extracted of the ice core records.. Increase is observed in the CO2 concentration of the Taylor Dome record just after the increase in frequency and biomass burning at 1350 cal yr BP. The maximum increase of CO2, during the Holocene, is higher at 1220 cal yr BP almost simultaneously with the highest frequency of occurrence of charcoal/biomass of charcoal between 1350 and 1100 cal yr BP. Based on the present-day and future trend of drier climate and more irregular precipitation in this region, the frequency of Amazonian rainforest fires tend to increase and to may have an impact on the CO2 future global cycle.
NASA Astrophysics Data System (ADS)
Sottile, G. D.; Echeverria, M. E.; Mancini, M. V.; Bianchi, M. M.; Marcos, M. A.; Bamonte, F. P.
2015-06-01
The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation system that dominates the dynamics of Southern Hemisphere mid-latitude climate. Little is known about climatic changes in the Southern South America in comparison to the Northern Hemisphere due to the low density of proxy records, and adequate chronology and sampling resolution to address environmental changes of the last 2000 years. Since 2009, new pollen and charcoal records from bog and lakes in northern and southern Patagonia at the east side of the Andes have been published with an adequate calibration of pollen assemblages related to modern vegetation and ecological behaviour. In this work we improve the chronological control of some eastern Andean previously published sequences and integrate pollen and charcoal dataset available east of the Andes to interpret possible environmental and SWW variability at centennial time scales. Through the analysis of modern and past hydric balance dynamics we compare these scenarios with other western Andean SWW sensitive proxy records for the last 2000 years. Due to the distinct precipitation regimes that exist between Northern (40-45° S) and Southern Patagonia (48-52° S) pollen sites locations, shifts on latitudinal and strength of the SWW results in large changes on hydric availability on forest and steppe communities. Therefore, we can interpret fossil pollen dataset as changes on paleohydric balance at every single site by the construction of paleohydric indices and comparison to charcoal records during the last 2000 cal yrs BP. Our composite pollen-based Northern and Southern Patagonia indices can be interpreted as changes in latitudinal variation and intensity of the SWW respectively. Dataset integration suggest poleward SWW between 2000 and 750 cal yrs BP and northward-weaker SWW during the Little Ice Age (750-200 cal yrs BP). These SWW variations are synchronous to Patagonian fire activity major shifts. We found an in phase fire regime (in terms of timing of biomass burning) between northern Patagonia Monte shrubland and Southern Patagonia steppe environments. Conversely, there is an antiphase fire regime between Northern and Southern Patagonia forest and forest-steppe ecotone environments. SWW variability may be associated to ENSO variability especially during the last millennia. For the last 200 cal yrs BP we can concluded that the SWW belt were more intense and poleward than the previous interval. Our composite pollen-based SWW indices show the potential of pollen dataset integration to improve the understanding of paleohydric variability especially for the last 2000 millennial in Patagonia.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Are deep-sea ecosystems surrounding Madagascar threatened by land-use or climate change?
NASA Astrophysics Data System (ADS)
Fontanier, Christophe; Mamo, Briony; Toucanne, Samuel; Bayon, Germain; Schmidt, Sabine; Deflandre, Bruno; Dennielou, Bernard; Jouet, Gwenael; Garnier, Eline; Sakai, Saburo; Lamas, Ruth Martinez; Duros, Pauline; Toyofuku, Takashi; Salé, Aurélien; Belleney, Déborah; Bichon, Sabrina; Boissier, Audrey; Chéron, Sandrine; Pitel, Mathilde; Roubi, Angélique; Rovere, Mickaël; Grémare, Antoine; Dupré, Stéphanie; Jorry, Stéphan J.
2018-01-01
In this short communication, we present a multidisciplinary study of sedimentary records collected from a deep-sea interfluve proximal to the mouths of major northwestern Madagascan rivers. For the last 60 years, the seafloor has been repeatedly disturbed by the deposition of organic rich, tropical, terrestrial sediments causing marked reductions in benthic biodiversity. Increased soil erosion due to local land-use, deforestation and intensifying tropical cyclones are potential causes for this sedimentary budget and biodiversity shift. Our marine sedimentary records indicate that until now, these conditions have not occurred within the region for at least 20,000 years.
NASA Astrophysics Data System (ADS)
Hollander, David J.; Smith, Michael A.
2001-12-01
An isotopic study of various carbon phases in eutrophic Lake Mendota (Wisconsin, USA) indicates that the δ13C composition of sedimentary organic and inorganic carbon has become more negative in response to increasing microbially mediated carbon cycling and processes associated with the intensification of seasonal and long-term eutrophication. Progressive increases in the contributions of isotopically depleted chemoautotrophic and methanotrophic biomass (reflected in the -40 to -90‰ values of hopanols and FAMES), attributed to seasonal and long-term increases in production and expansion of the anaerobic water mass, accounts for carbon isotopic trends towards depleted δ13C values observed in both seasonal varves and over the past 100 years. Changes in the intensities of certain microbial processes are also evident in the sedimentary geochemical record. During the period of most intense cultural eutrophication, when the oxic-anoxic interface was located close to the surface, methanogenesis/methanotrophy and the oxidation of biogenic methane increased to the extent that significant quantities of 13C-depleted CO2 were added into the epilimnion. This depleted CO2 was subsequently utilized by phytoplankton and incorporated into CaCO3 during biogenically induced calcite precipitation. A comparative study between eutrophic Lakes Mendota and Greifen, further indicate that the extent of nutrient loading in the epilimnion determines whether the δ13C record of sedimentary organic carbon reflects intensification of microbial processes in the hypolimnion and sediments, or changes in the primary productivity in the photic zone. From this comparison, a series of eutrophication models are developed to describe progressive transitions through thresholds of microbial and eukaryotic productivity and their influence on the δ13C record of sedimentary carbon. With increasing eutrophication, the models initially predict a negative and then a subsequent positive carbon isotopic excursion reflecting the changing influence of 13C-deleted microbial biomass relative to 13C-enriched photoautrophic biomass. These eutrophication models provide a framework to evaluate carbon cycling processes in modern environments and have significant implications for interpreting carbon isotopic excursions in the sedimentary record.
Charcoal and charcoal-based dentifrices: A literature review.
Brooks, John K; Bashirelahi, Nasir; Reynolds, Mark A
2017-09-01
Sales of charcoal dentifrices and powders have rapidly emerged into the Internet marketplace. The authors conducted a literature review to examine the efficacy and safety of charcoal and charcoal-based dentifrices. The authors searched the MEDLINE and Scopus databases for clinical studies on the use of charcoal and charcoal-based dentifrices and laboratory investigations on the bioactivity or toxicity of charcoal and charcoal-based dentifrices, published through February 2017. The authors used a defined search strategy to identify randomized, controlled clinical trials with a follow-up duration of 3 months or longer. In addition, the authors selected the first 50 consecutive charcoal dentifrices from Google.com and Amazon.com for ascertainment of product assortment and advertising promotions. The authors' literature search identified 118 potentially eligible articles. Thirteen studies reported brushing the teeth with raw charcoal or soot; however, none of these studies met the inclusion criteria. Two studies offered nonspecific caries reductions, 3 studies reported deleterious outcomes (increased caries, enamel abrasion, nonquantified negative impact), and 1 study indicated only that brushing with raw charcoal had no adverse effects on oral hygiene. Seven other studies reported only on the use of charcoal for oral hygiene. Internet advertisements included unsubstantiated therapeutic claims-such as antibacterial, antifungal, antiviral, and oral detoxification, as well as potentially misleading product assertions. One-third of the charcoal dentifrices contained bentonite clay, and 1 contained betel leaves. The results of this literature review showed insufficient clinical and laboratory data to substantiate the safety and efficacy claims of charcoal and charcoal-based dentifrices. Larger-scale and well-designed studies are needed to establish conclusive evidence. Dental clinicians should advise their patients to be cautious when using charcoal and charcoal-based dentifrices with unproven claims of efficacy and safety. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.
Riverine Carbon and the Sedimentary Record on the Continental Shelves
2004-09-30
Riverine Carbon and the Sedimentary Record on the Continental Shelves Stefano Miserocchi Istituto Scienze Marine, Sezione Geologia Marina...formerly Istituto di Geologia Marina) Consiglio Nazionale delle Ricerche Via Gobetti, 101 40129 Bologna, Italy phone: +39 (051) 6398880 Fax. +39 (051... Geologia Marina,,(formerly Istituto di Geologia Marina),Consiglio Nazionale delle Ricerche,,Via Gobetti, 101,40129 Bologna, Italy, , 8. PERFORMING
Nelson, Alan R.; Personius, Stephen F.; Sherrod, Brian L.; Buck, Jason; Bradley, Lee-Ann; Henley, Gary; Liberty, Lee M.; Kelsey, Harvey M.; Witter, Robert C.; Koehler, R.D.; Schermer, Elizabeth R.; Nemser, Eliza S.; Cladouhos, Trenton T.
2008-01-01
As part of the effort to assess seismic hazard in the Puget Sound region, we map fault scarps on Airborne Laser Swath Mapping (ALSM, an application of LiDAR) imagery (with 2.5-m elevation contours on 1:4,000-scale maps) and show field and laboratory data from backhoe trenches across the scarps that are being used to develop a latest Pleistocene and Holocene history of large earthquakes on the Tacoma fault. We supplement previous Tacoma fault paleoseismic studies with data from five trenches on the hanging wall of the fault. In a new trench across the Catfish Lake scarp, broad folding of more tightly folded glacial sediment does not predate 4.3 ka because detrital charcoal of this age was found in stream-channel sand in the trench beneath the crest of the scarp. A post-4.3-ka age for scarp folding is consistent with previously identified uplift across the fault during AD 770-1160. In the trench across the younger of the two Stansberry Lake scarps, six maximum 14C ages on detrital charcoal in pre-faulting B and C soil horizons and three minimum ages on a tree root in post-faulting colluvium, limit a single oblique-slip (right-lateral) surface faulting event to AD 410-990. Stratigraphy and sedimentary structures in the trench across the older scarp at the same site show eroded glacial sediments, probably cut by a meltwater channel, with no evidence of post-glacial deformation. At the northeast end of the Sunset Beach scarps, charcoal ages in two trenches across graben-forming scarps give a close maximum age of 1.3 ka for graben formation. The ages that best limit the time of faulting and folding in each of the trenches are consistent with the time of the large regional earthquake in southern Puget Sound about AD 900-930.
Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge
NASA Astrophysics Data System (ADS)
Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang
2017-06-01
The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.
Research report: Charcoal type used for hookah smoking influences CO production.
Medford, Marlon A; Gasier, Heath G; Hexdall, Eric; Moffat, Andrew D; Freiberger, John J; Moon, Richard E
2015-01-01
A hookah smoker who was treated for severe carbon monoxide poisoning with hyperbaric oxygen reported using a different type of charcoal prior to hospital admission, i.e., quick-light charcoal. This finding led to a study aimed at determining whether CO production differs between charcoals commonly used for hookah smoking, natural and quick-light. Our hypothesis was that quick-light charcoal produces significantly more CO than natural charcoal. A medium-sized hookah, activated charcoal filter, calibrated syringe, CO gas analyzer and infrared thermometer were assembled in series. A single 9-10 g briquette of either natural or quick-light charcoal was placed atop the hookah bowl and ignited. CO output (ppm) and temperature (degrees C) were measured in three-minute intervals over 90 minutes. The mean CO levels produced by quick-light charcoal over 90 minutes was significantly higher (3728 ± 2028) compared to natural charcoal (1730 ± 501 ppm, p = 0.016). However, the temperature was significantly greater when burning natural charcoal (292 ± 87) compared to quick-light charcoal (247 ± 92 degrees C, p = 0.013). The high levels of CO produced when using quick-light charcoals may be contributing to the increase in reported hospital admissions for severe CO poisoning.
NASA Astrophysics Data System (ADS)
Spencer, Jessica; Jones, Kaylee B.; Gamble, Douglas W.; Benedetti, Michael M.; Taylor, Audrey K.; Lane, Chad S.
2017-10-01
We conducted fossil pollen, charcoal, and geochemical analyses of sediment cores from Jones Lake and Singletary Lake spanning the last ∼50,000 cal yr B.P. to examine the linkages between climate, vegetation, and fire activity on the Atlantic Coastal Plain, and particularly emphasize changes since the Last Glacial Maximum. Application of the modern analog technique (MAT) to fossil pollen data allowed for quantitative estimates of Holocene climate, but Pleistocene assemblages had no modern analogues preempting their use for quantitative reconstructions. The MAT data indicate markedly lower mean annual precipitation and temperatures during the late Pleistocene relative to the Holocene. Increased charcoal accumulation during interstadials indicates increased fire activity during these warm intervals. Geochemical data (δ13C, δ15N, C:N) and pollen concentrations indicate a sparsely-vegetated Pleistocene landscape that produced few fires followed by an increase in biomass and fire activity around the lakes during the Holocene transition. A Quercus spp. maximum in the early Holocene is associated with low charcoal abundances, while increased dominance of Pinus spp. during the middle Holocene is associated with dramatic increases in charcoal. It is unclear if the Quercus-Pinus transition was the result of changing fire regimes or if the fire regime changed in response to vegetation. The regional asynchronicity of the Quercus-Pinus transition may indicate another forcing mechanism besides climate change, such as prehistoric human activity, is responsible for the ecological change. Macroscopic charcoal and C:N ratios reach unprecedented values during the late Holocene, possibly as a result of deforestation by both prehistoric Native Americans and later immigrant populations.
NASA Astrophysics Data System (ADS)
Israde-Alcantara, I.
2017-12-01
It is well known in the sedimentary record of several parts of the world that during the Younger Dryas interval (YD) ocurred an abrupt environmental change between 12,900 and 11,700 cal yr BP (10,900 to 10,000 14C BP). In the lacustrine basins this changes are often preserved and in some Mexican lakes this is a distinctive stratigraphic marker for the YD. We analized the proxies of this event in cores of two lakes (Chapala, Cuitzeo) and three trenches of ex-lakes (Acambay,Texcoco and El Cedral). Deposits consist of fine detrital material with often Pleistocene fossil vertebrate assemblages. At the Chapala, Cuitzeo, Acambay, and Tocuila lacustrine environments are found in association with a distinctive dark organic layer showing sharp changes in the diatom, pollen, mineralogical and geochemical record. Includes also microscopic magnetic, Fe-rich spherules, silica melted droplets with aerodynamic shapes (tektites), followed by large amounts of charcoal, and sometimes nanodiamonds (Cuitzeo), that were deposited at the onset of the YD or in the limit Pleistocene-Holocene. These unusual materials are buried more than 2.50 meters and were not observed above or below the Younger Dryas sediments at these sites. The geochemistry of the microspherules indicates that they are not volcanic, anthropogenic or authigenic origin. A very distinctive feature is the shape of the spherules, ovoid, polygonal, filigreed or dendritic indicating melting and quenching infering that are product of an impact event. Their morphologies includes hollow shells caused by de-gassing of elements at very high temperatures causing a flattened side with a "skirt" structure by a high-velocity collision.Our results are consistent with the Firestone hypothesis.
Continental Drilling to Explore Earth's Sedimentary, Paleobiological, and Biogeochemical Record
NASA Astrophysics Data System (ADS)
Cohen, Andrew; Soreghan, Gerilyn
2013-07-01
A workshop to promote research using continental scientific drilling to explore the Earth's sedimentary, paleobiological, and biogeochemical record was held in Norman, Okla. The workshop, funded by the U.S. National Science Foundation (NSF), was intended to encourage U.S.-based scientists to take advantage of the exceptional capacity of unweathered, continuous sediment cores to serve as archives of the Earth's history.
2012-01-01
Background Effect of indoor air pollution (IAP) on birth weight remains largely unexplored but yet purported as the most important environmental exposure for pregnant women in developing countries due to the effects of second-hand smoke. We investigated the associations between the determinants of indoor air quality in households and birth weight. Methods A cross-sectional study of 592 mothers and their newborns using postnatal services at the Korle Bu Teaching Hospital located in Accra, Ghana was conducted in 2010 to collect information on characteristics of indoor environment and other potential determinants of fetal growth. Birth weight was recorded from hospital records. Results Household cooking fuel choices and garbage burning practices were determinants of birth weight. Multivariate linear regression analysis adjusting for age, social class, marital status and gravidity of mothers, and sex of neonate resulted in a 243g (95% CI: 496, 11) and 178g (95% CI: 421, 65) reduction in birth weight for use of charcoal, and garbage burning respectively compared with use of LPG only. The estimated reductions in birth weight was not statistically significant. Applying the ordinal scale exposure parameter nonetheless revealed a significant exposure-response relationship between maternal exposures from charcoal use and garbage burning, and birth weight. Generalized linear models adjusting for confounders resulted in a 41% (risk ratio [RR] = 1.41; 95% CI: 0.62, 3.23) and 195% (RR=2.95; 95% CI: 1.10, 7.92) increase in the risk of low birth weight (LBW) for use of charcoal, and garbage burning respectively compared with use of LPG only. A combination of charcoal use and household garbage burning during pregnancy on fetal growth resulted in a 429g (95% CI: 259, 599) reduction in birth weight and 316% (RR=4.16; 95% CI: 2.02, 8.59) excess risk of LBW. Sensitivity analysis performed by restricting the analysis to term births produced similar results. Conclusions Maternal use of charcoal as a cooking fuel during pregnancy and burning of garbage at home are strong determinants of average fetal growth and risk of LBW. Efforts to reduce maternal exposures to IAP are thus important to improve birth outcomes. PMID:23075225
NASA Astrophysics Data System (ADS)
Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev
2016-04-01
Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.
NASA Astrophysics Data System (ADS)
Fontijn, Karen; Rawson, Harriet; Van Daele, Maarten; Moernaut, Jasper; Abarzúa, Ana M.; Heirman, Katrien; Bertrand, Sébastien; Pyle, David M.; Mather, Tamsin A.; De Batist, Marc; Naranjo, Jose-Antonio; Moreno, Hugo
2016-04-01
Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42°S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude ≥ 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordón Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaitén volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial.
NASA Astrophysics Data System (ADS)
Leithold, E. L.; Blair, N. E.; Childress, L. B.; Brulet, B.
2009-12-01
In the Waipaoa watershed on the North Island of New Zealand, as in many small mountainous watersheds around the world, high sediment yields are accommodated by the weathering and mass wasting of bedrock as well as of its mantle of soil and vegetation. Investigation of both the contemporary Waipaoa system and the sedimentary record preserved in adjacent marine depocenters reveals that these three sources of sediment have also been the primary sources of riverine POC throughout the watershed’s Holocene history, but that their relative roles have varied as a function of environmental perturbations. Mass balance calculations using stable and radiogenic carbon isotopic ratios of organic matter associated with both bulk sediments and clay-sized isolates point to a large and persistent contribution of kerogen to POC in the Waipaoa system. This material has accumulated on the continental margin along with terrestrial plant-derived OC, much of which apparently had a short residence time in the watershed. The accelerated contribution of OC-poor volcanic tephra to the Waipaoa sediment load beginning about 4000 years ago led to dilution of both the kerogen and plant fraction, and ultimately to enhanced marine OC burial on the shelf via production of new mineral surface area and sorption from porewaters. Beginning around 700 years BP, anthropogenic influences have left their mark on the watershed and offshore record, including the introduction of a pulse of fine-grained charcoal from biomass burning. Deforestation of the headwaters has led to more widespread shallow landsliding and to the development of large gully complexes incised into tectonically crushed mudstones. The increased kerogen flux due to chronic gully erosion is apparent in the offshore record, but its impact on the composition and age of OC buried on the continental shelf is muted compared to the increase in riverine sediment discharge and sediment accumulation observed on the margin.
NASA Astrophysics Data System (ADS)
White, Dustin; Preece, Richard C.; Shchetnikov, Alexander A.; Parfitt, Simon A.; Dlussky, Konstantin G.
2008-05-01
Floodplain sediments of the upper Lena River near Basovo in south-central Siberia have yielded the most detailed Holocene molluscan succession yet reported from the entire eastern Palaearctic. Over 72,500 shells from at least 28 species of terrestrial and 23 species of freshwater mollusc have been recovered, an abundance and diversity far higher than previously reported from the region. The molluscan assemblages are dominated by land snails, especially members of the genus Vallonia, represented by five species including Vallonia tenuilabris and two poorly known species Vallonia kamtschatica and Vallonia cf. chinensis. Other noteworthy species recovered include Gastrocopta theeli, Carychium pessimum, Vertigo extima (southernmost record), Vertigo microsphaera and the first Asian records of three other taxa ( Vertigo geyeri, Vertigo genesii and Vertigo parcedentata). Illustrations are provided for the critical species, since opinions differ about the status of various taxa and the correct names that should be used. The molluscan assemblages show clear successional trends during the early to mid-Holocene, reflecting episodes of dryness/wetness on the floodplain. Drier conditions at ca 6350 14C yr BP coincide with major changes in the archaeological record seen at other sites in the region but it remains unclear whether the two are linked. A prominent charcoal-rich horizon dated to ca 2800 14C yr BP marks a burning event in the catchment, which resulted in a two-fold increase in sediment accumulation rate. Remains of small mammals occurred throughout the sequence including a tooth of Microtus cf. maximowiczii, possibly the first occurrence of Ungar vole west of Lake Baikal. The faunal analyses have been integrated with a detailed pedological study of the sedimentary profile and a chronology was obtained by means of 12 AMS radiocarbon dates. This study provides the first detailed palaeoecological information relating to Holocene molluscan assemblages from the Cis-Baikal region and lays the foundation for future work in the eastern Palaearctic.
Effect of White Charcoal on COD Reduction in Wastewater Treatment
NASA Astrophysics Data System (ADS)
Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil
2017-06-01
The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.
NASA Astrophysics Data System (ADS)
Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.
2017-11-01
Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.
NASA Astrophysics Data System (ADS)
Clark, James S.
1988-07-01
Results of stratigraphic charcoal analysis from thin sections of varved lake sediments have been compared with fire scars on red pine trees in northwestern Minnesota to determine if charcoal data accurately reflect fire regimes. Pollen and opaque-spherule analyses were completed from a short core to confirm that laminations were annual over the last 350 yr. A good correspondence was found between fossil-charcoal and fire-scar data. Individual fires could be identified as specific peaks in the charcoal curves, and times of reduced fire frequency were reflected in the charcoal data. Charcoal was absent during the fire-suppression era from 1920 A.D. to the present. Distinct charcoal maxima from 1864 to 1920 occurred at times of fire within the lake catchment. Fire was less frequent during the 19th century, and charcoal was substantially less abundant. Fire was frequent from 1760 to 1815, and charcoal was abundant continuously. Fire scars and fossil charcoal indicate that fires did not occur during 1730-1750 and 1670-1700. Several fires occurred from 1640 to 1670 and 1700 to 1730. Charcoal counted from pollen preparations in the area generally do not show this changing fire regime. Simulated "sampling" of the thin-section data in a fashion comparable to pollen-slide methods suggests that sampling alone is not sufficient to account for differences between the two methods. Integrating annual charcoal values in this fashion still produced much higher resolution than the pollen-slide method, and the postfire suppression decline of charcoal characteristic of my method (but not of pollen slides) is still evident. Consideration of the differences in size of fragments counted by the two methods is necessary to explain charcoal representation in lake sediments.
The Impact of Media Reporting on the Emergence of Charcoal Burning Suicide in Taiwan
Chen, Ying-Yeh; Chen, Feng; Gunnell, David; Yip, Paul S. F.
2013-01-01
We investigated the association of the intensity of newspaper reporting of charcoal burning suicide with the incidence of such deaths in Taiwan during 1998–2002. A counting process approach was used to estimate the incidence of suicides and intensity of news reporting. Conditional Poisson generalized linear autoregressive models were performed to assess the association of the intensity of newspaper reporting of charcoal burning and non-charcoal burning suicides with the actual number of charcoal burning and non-charcoal burning suicides the following day. We found that increases in the reporting of charcoal burning suicide were associated with increases in the incidence of charcoal burning suicide on the following day, with each reported charcoal burning news item being associated with a 16% increase in next day charcoal burning suicide (p<.0001). However, the reporting of other methods of suicide was not related to their incidence. We conclude that extensive media reporting of charcoal burning suicides appears to have contributed to the rapid rise in the incidence of the novel method in Taiwan during the initial stage of the suicide epidemic. Regulating media reporting of novel suicide methods may prevent an epidemic spread of such new methods. PMID:23383027
Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management
NASA Astrophysics Data System (ADS)
Chan, M. A.; Budd, D. A.
2014-12-01
A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McParland, L.C.; Collinson, M.E.; Scott, A.C.
We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues aremore » indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.« less
Baumert, Sophia; Vollmer, Frank; Grundy, Isla; Fisher, Janet; Fernando, Jone; Luz, Ana; Lisboa, Sá N.
2016-01-01
African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502380
Improving the palatability of activated charcoal in pediatric patients.
Cheng, Adam; Ratnapalan, Savithiri
2007-06-01
To compare the taste preference and ease of swallowing of activated charcoal among healthy teenagers when mixed separately with 3 different additives: chocolate milk, Coca-Cola, and water. Healthy volunteers between 14 to 19 years of age were selected for the study. Five grams of activated charcoal (25 mL of 0.2 g/mL of Charcodote [Pharma Science, Montreal, Canada]) was mixed with 25 mL of chocolate milk, Coca-Cola, or water individually to make up 50 mL. The volunteers drank the 3 cups of the charcoal-additive mixture separately and then rated taste and ease of swallowing on a 10-cm visual analogue scale. The subjects then indicated their preferred charcoal-additive mixture if he/she had to drink 9 more portions of charcoal (this would estimate the dose of charcoal for a 50-kg child). A total of 44 subjects were recruited (25 boys and 19 girls). The mean scores for taste preference for chocolate milk, Coca-Cola, and water mixtures of charcoal were 5.5, 6.3, and 2.0, respectively, on a 10-cm visual analogue scale. Thus, subjects preferred the taste of charcoal mixed with chocolate milk or Coca-Cola over charcoal mixed with water (P = 0.0003 for both comparisons). The subjects did not show a statistically significant difference for ease of swallowing between the 3 charcoal-additive mixtures. Overall, 48% preferred the chocolate milk mixture, 45% preferred the Coca-Cola mixture, and 7% preferred charcoal mixed with water. Healthy teenaged subjects identified that activated charcoal (Charcodote) mixed with chocolate milk or Coca-Cola (in a 1:1 ratio) improved taste but had no significant effect on improving ease of swallowing. Overall, the addition of chocolate milk or coke improves the palatability of charcoal and is favored over charcoal mixed with water alone.
NASA Astrophysics Data System (ADS)
Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.
2013-12-01
The marine sedimentary record of Miocene to Pleistocene tectonics and glaciation is well preserved along the southern Alaska convergent margin. This margin is well suited for linking proximal to distal sediment transport processes because sediment is being generated by glacial erosion in the highest coastal mountain range on earth and subsequently being transported to the Aleutian subduction zone. We will discuss the sedimentary record from two end members of this system: (1) the proximal marine record now exposed onshore in the high peaks of the coastal ranges, and (2) the offshore distal record preserved in the Surveyor submarine fan system that was cored during the 2013 IODP Expedition 341. Onshore the Miocene non-glacial strata are represented by the Poul Creek Fm. This unit is 2000 m thick and in its upper part consists of mudstone, thin sandstone beds (10-30 cm thick), and thick bedded (1-2 m) highly bioturbated green sandstone beds that contain hummocky stratification. We interpret this unit as being deposited mainly in marine shelf environments. A gradational contact between the Poul Creek and the overlying upper Miocene-Pleistocene Yakataga Formation is marked by a transition to mudstone, thick bedded sandstone and glacial diamictite. This transition to glacial dominated deposition is interpreted to have occurred around 5 Ma based on previous studies. The onshore glacimarine strata are 5 km thick and grade up section from submarine fan to marine shelf strata. In the distal submarine fan record at IODP Site U1417, the upper Miocene strata in the lower part of the Site consist of 340 m of highly bioturbated gray to green mud interbedded with coarse sand and sandy diamict. These coarse-grained units are lithic rich with mainly sedimentary, volcanic, and coal clasts. We interpret these units as being derived from coal-bearing sedimentary strata exposed in the onshore thrust belt. These facies are interbedded with diatom ooze; we interpret this combination of facies as representing deposition of coarse-grained detritus originating from sedimentary gravity flows followed by longer periods of hemipelagic deposition. The first clear record of glacial sediment input in the distal submarine fan environment is late Pliocene - early Pleistocene muddy diamict beds that probably are the products of ice-rafting. This unit is about 30 m in thickness. The overlying 260 m of the core are mainly dark gray mud with thin beds of volcanic ash and sand/silt beds. Lonestones are common and are mainly argillite and metasiltstone clasts suggesting at least a component of sediment derivation from onshore metamorphosed parts of the Mesozoic accretionary prism. In general, the overall Neogene sedimentary record in both the proximal and distal marine settings appears to be similar but requires a sediment link between the proximal strata deposited on the Yakutat microplate and the Surveyor fan system deposited on the Pacific Plate.
Li, Song-Hao; He, Dong-Hua; Shen, Qiu-Lan; Xu, Qiu-Fang
2014-08-01
The effects of addition rates (0, 3% and 9%) and particle sizes (0.05, 0.05-1.0 and 1.0-2.0 mm) of bamboo charcoal on the growth of Trifolium repens and soil microbial community structure were investigated. The results showed that bamboo charcoal addition greatly promoted the early growth of T. repens, with the 9% charcoal addition rate being slightly better than the 3% charcoal addition rate. The effects of different particle sizes of bamboo charcoal on the growth of T. repens were not different significantly. Growth promotion declined with time during 120 days after sowing, and disappeared completely after 5 months. DGGE analysis of the bacterial 16S rDNA V3 fragment indicated that bamboo charcoal altered the soil bacterial community structure. The amount and Shannon diversity index of bacteria in the bamboo charcoal addition treatments increased compared with CK. The quantitative analysis showed that the amount of bacteria in the treatment with bamboo charcoal of fine particle (D < 0.05 mm) at the 9% addition rate was significantly higher than in the other treatments. The fine bamboo charcoal had a great effect on soil bacteria amount compared with the charcoal of other sizes at the same addition rate.
NASA Astrophysics Data System (ADS)
Pendea, Ionel Florin; Ponomareva, Vera; Bourgeois, Joanne; Zubrow, Ezra B. W.; Portnyagin, Maxim; Ponkratova, Irina; Harmsen, Hans; Korosec, Gregory
2017-02-01
We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) - Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
NASA Astrophysics Data System (ADS)
Marcisz, Katarzyna; Gałka, Mariusz; Pietrala, Patryk; Miotk-Szpiganowicz, Grażyna; Obremska, Milena; Tobolski, Kazimierz; Lamentowicz, Mariusz
2017-12-01
Fire is a critical component of many ecosystems and, as predicted by various climate models, fire activity may increase significantly in the following years due to climate change. Therefore, knowledge about the past fire activity of various ecosystems is highly important for future nature conservation purposes. We present results of high-resolution investigation of fire activity and hydrological changes in northern Poland. We analyzed microscopic charcoal from three Sphagnum-dominated peatlands located on the south of Baltic, on the oceanic-continental (west-east) climatic gradient, and reconstructed the history of fire in the last 5700 years. We hypothesize that air circulation patterns are highly important for local fire activity, and that fire activity is more intensive in peatlands influenced by continental air masses. We have found out that forest fires have been occurring regularly since the past millennia and were linked to climatic conditions. We show that fire activity (related to climate and fuel availability) was significantly higher in sites dominated by continental climate (northeastern Poland) than in the site located under oceanic conditions (northwestern Poland)-microscopic charcoal influx was 13.3 times higher in the eastern study site of the gradient, compared to the western study site. Recorded fire activity patterns were different between the sites in a long timescale. Moreover, most of the recorded charcoal peaks occurred during high water tables. Rising human pressure has caused droughts and water table instability, and substantial increase in fire activity in the last 400 years.
NASA Astrophysics Data System (ADS)
Araneda, A.; Muñoz, V.; Valenzuela, B.; Alvarez, D.; Torrejon, F.; Pedreros, P.; Urrutia, R.
2013-12-01
Traditionally Patagonia has been seen as a very pristine area, being an important reserve of wildlife and clean waters. Nonetheless it was dramatically affected by the first settlers at the beginning of the 20th century, that generated large fires for clearing the land originally covered by native forest. Those fires produced a dramatic impact left behind thousands of dead trees, increasing soil erosion, altering nutrient inputs in the aquatic ecosystems, which in turn affected the aquatic biota. However those impacts have been barely asses, then through the study of the sediment record of lake La Esponja (45°S) we want to evaluate the magnitude of the changes produced by the fires and to determine the resilience capacity of the lake. We analyzed magnetic susceptibility, organic content, charcoal, total phosphorous and a biological proxy (Chironomidae) in a sediment sequence of 60 cm long. Magnetic susceptibility shows a very variable behavior along the profile, being possible to identify a decreasing trend since the bottom, up to the most recent part of the record. An opposite behavior describes the organic content, showing a noticeable increase toward the surficial sediments. The number of charcoal particles -a direct indicator of fires occurrence, shows a peak of fires approximately at seven cm depth, diminishing toward the recent part. Total phosphorous also follow the trend recognized by charcoal, which allow inferring a probable trophic increase of the lake. This trend is partially recognized by chironomid assemblages through the increasing of some taxa typical of a higher nutrient status. Acknowledgements: Fondecyt projects 1120765 and 1120807.
NASA Astrophysics Data System (ADS)
Ducassou, E.; Capotondi, L.; Murat, A.; Bernasconi, S. M.; Mulder, T.; Gonthier, E.; Migeon, S.; Duprat, J.; Giraudeau, J.; Mascle, J.
2007-08-01
Understanding the recent formation of a sedimentary system such as a deep-sea turbidite system (DSTS) requires an accurate stratigraphic control on deposits. Due to the important terrigeneous input which disrupts the sedimentary record, DSTS is an environment where stratigraphic control is difficult to assess. Most of the time, traditional stratigraphic tools are not accurate enough. This has led to a rather limited number of studies concerning stratigraphy in DSTS. In this study, we examine several hemipelagic long piston cores collected from the Nile DSTS (eastern Mediterranean), in order to understand the recent evolution of the complex sedimentary system in this area. The first aim of this study is to show how to obtain a reliable timeframe in DSTS. Indeed, we provided a detailed ecostratigraphical scheme based on planktonic foraminiferal distribution, oxygen isotope records and lithostratigraphy (sapropels and tephra) of three cores where the sedimentation is least disturbed. We have identified 29 foraminiferal ecozones during the last 250,000 years BP, with an approximately 2000-year time resolution. The time span of each ecozone was constrained by the oxygen isotope record, 14C AMS radiometric data, tephrochronology and the sapropel chronology. These high-resolution ecostratigraphical time subdivisions have been applied in discontinuous mixed hemipelagic/turbiditic sequences of a levee record. This example shows how to date gravity events, formation and time periods of sedimentary accumulations.
NASA Astrophysics Data System (ADS)
Ruiz-Fernández, Jesus; Nieuwendam, Alexandre; Oliva, Marc; Lopes, Vera; Cruces, Anabela; Conceição Freitas, Maria; Janeiro, Ana; López-Sáez, José Antonio; Gallinar, David; García-Hernández, Cristina
2016-04-01
In this contribution we present data from a 182 cm-long sedimentary sequence collected in the mid-altitude area of Belbín, a depression dammed by a moraine during the Last Glaciation in the Western Massif of the Picos de Europa (Cantabrian Mountains, NW Spain), in order to reconstruct the environmental changes and the conditioning factors of these changes occurred during the Mid-Late Holocene in this mountain area. The uppermost 60 cm of the sediments have been studied using a multi-proxy analysis including the texture, the organic matter content, the micromorphology of the quartz grains, and the concentration of charcoal particles. The geochronological framework of the environmental and climatic events for the Mid-late Holocene was established with three AMS 14C dates. During the last 6.7 ky cal BP a sequence of environmental changes took place in Belbin area driven by both warmer (between 6.7-5, 3.7-3, 2.6-1.1, 0.87-0.51 and since 0.01 ky cal BP) and colder stages (between 5-3.7, 3-2.6, 1.1-0.87 and 0.51 to 0.01 ky cal BP). The warmer stages were defined by the prevalence of chemical weathering of the quartz grains and relative increases of the C/N ratio. Conversely, during colder stages physical weathering of the quartz grains particles prevailed and the C/N values were lower. During the Late Holocene the sequence shows a progressive increase in the organic matter content, which may be associated with higher temperatures. Higher or lower concentration of charcoal particles according to warmer or colder climatic conditions is not detected, so the fires that have occurred in the area were likely to be related to human-induced fire management for grazing purposes. The period with the most frequent fire events occurred between 3.5 and 3 ky cal BP during the Bronze Age. Other significant peaks of charcoal particles occurred at ca. 2.6, 0.71 and 0.36 ky cal BP. This study shows evidence that the environmental changes occurred during the Mid-Late Holocene in this area of the Cantabrian Mountains are both conditioned by climate variability and human activity. Also, it has been demonstrated the relationship between the type of quartz grains, the weathering intensity (chemical and physical) and the concentrations of charcoal particles. There is a clear relation between the samples that evidence high intensity of chemical and physical weathering with higher average of charcoal particles concentration. Climatic conditions have an important role in weathering intensity, through the combination of silt abundance and cryogenic weathering, but in our study this is not the case, therefore fire most possibly modified local environmental conditions making quartz grains more vulnerable to post-fire situations. This emphasizes the important role of the fires in the micromorphology of quartz grains.
Behling, Hermann; Pillar, Valério DePatta
2007-02-28
Palaeoecological background information is needed for management and conservation of the highly diverse mosaic of Araucaria forest and Campos (grassland) in southern Brazil. Questions on the origin of Araucaria forest and grasslands; its development, dynamic and stability; its response to environmental change such as climate; and the role of human impact are essential. Further questions on its natural stage of vegetation or its alteration by pre- and post-Columbian anthropogenic activity are also important. To answer these questions, palaeoecological and palaeoenvironmental data based on pollen, charcoal and multivariate data analysis of radiocarbon dated sedimentary archives from southern Brazil are used to provide an insight into past vegetation changes, which allows us to improve our understanding of the modern vegetation and to develop conservation and management strategies for the strongly affected ecosystems in southern Brazil.
Calibrating the end-Permian mass extinction.
Shen, Shu-zhong; Crowley, James L; Wang, Yue; Bowring, Samuel A; Erwin, Douglas H; Sadler, Peter M; Cao, Chang-qun; Rothman, Daniel H; Henderson, Charles M; Ramezani, Jahandar; Zhang, Hua; Shen, Yanan; Wang, Xiang-dong; Wang, Wei; Mu, Lin; Li, Wen-zhong; Tang, Yue-gang; Liu, Xiao-lei; Liu, Lu-jun; Zeng, Yong; Jiang, Yao-fa; Jin, Yu-gan
2011-12-09
The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.
Combustion inputs into a terrestrial archive over 265 years as evidenced by BPCA molecular markers
NASA Astrophysics Data System (ADS)
Hanke, Ulrich M.; Eglinton, Timothy I.; Wiedemeier, Daniel B.; Schmidt, Michael W. I.
2015-04-01
Pyrogenic organic matter (PyOM) such as char and soot is produced during the incomplete combustion of biomass and fossil fuel. It is composed of condensed aromatic structures and can resist degradation processes, maybe over long periods of time. Land-use changes, industrial activity and its transport by wind and water affect the fluxes of PyOM from the source to its sedimentary archive. Investigating environmental PyOM with the molecular marker benzene polycarboxylic acid (BPCA) method provides various information about quantity, quality (BPCA distribution pattern) and about its isotopic composition (13C and 14C). Assessing PyOM quality can indicate whether it is mostly combustion condensate (soot) or combustion residue (charcoal) and potentially allow source apportionment. Our study area is the Pettaquamscutt River catchment area (35 km2), Rhode Island, U.S.A. It is located down-wind of industrial areas recording deposition of long-distance atmospheric transport as well as local catchment inputs, both from natural and anthropogenic sources. We investigated 50 samples of a sediment record over a time span of 265 years (1733-1998 AD). Previous investigations provided information on the age of deposition, the content of polycyclic aromatic hydrocarbons (PAH) as well as of the radiocarbon contents of total organic carbon (TOC) and PAH (Lima, 2004). We used the BPCA molecular marker method to quantify and characterize PyOM in the same record. First results show that quantity and quality of PyOM change over 265 years. Our investigation aims at understanding how different sources of PyOM are reflected in terrestrial archives by comparing the results of BPCA with radiocarbon-dated TOC and PAH records. Among other aspects, the PAH record reflects the Great Depression and the 1970s oil embargo in North America. We interpret the BPCA distribution patterns regarding the simultaneous shift of dominant fuels including wood, coal, petroleum and gas. Future work will include compound-specific radiocarbon analysis of BPCA molecular markers to improve our understanding of the sources and residence time of PyOM. References Lima, A.L.C., 2004. Molecular and Isotopic Records of Combustion Inputs to the Environment Over the Last 250 Years, doctoral dissertation, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution (MIT/WHOI).
NASA Astrophysics Data System (ADS)
Kloos, Peter; Miller, Christopher E.; Kritikakis, Panagiotis; Wadley, Lyn
2016-04-01
Rose Cottage Cave (RCC), in South Africa, has been a key site for explaining the origins of modern human behaviour and movement of early modern humans out of Africa. Nine sediment peels were made previously from the profile sections, preserving original materials that provide a record of cultural and environmental change during the late Pleistocene and Holocene. Here, we present the preliminary results of the study of the RCC sediment peels which aims to investigate site formation processes and the implications for site interpretation. Methods used include micromorphology and Fourier Transform Infrared spectroscopy coupled with detailed observations of the peels. The predominance of geogenic processes is demonstrated by the abundance of silt- and sand-sized quartz grains, which entered the site primarily through a crevice at the back of the cave. RCC lacks rich anthropogenic deposits as noted at other Middle Stone Age sites in southern Africa, but anthropogenic input to the sediment is indicated by the presence of charcoal, burnt bone, lithic fragments, fat-derived char and ashes. Clay coating fragments and chaotic microstructures demonstrate that bioturbation and colluvial reworking homogenised much of the deposit and may explain the absence of preserved bedding and rarity of combustion features. Downward movement of water through the sequence, indicated by clay coatings, is the likely cause for poor bone preservation and near lack of ashes at the site, as well as fluctuations in dose rate that have complicated luminescence dating studies. Evidence for diagenesis at the site is in the form of secondary apatite and gypsum. Sedimentary structures such as channel lag deposits and (silt and sand) laminae observed in peels dating between 60 and 35 ka BP suggest a high-energy sedimentary environment, which experienced flooding events that eroded underlying deposits and deposited large volumes of sediment. This explains why some of the post-Howiesons Poort layers contain few artefacts and implies that there may have been more human activity at the site during this time than has previously been suggested.
Paleoenvironmental History of JoCo Marsh, Jamaica Bay, New York
NASA Technical Reports Server (NTRS)
Liberman, Louisa; Peteet, Dorothy; Hansen, James E. (Technical Monitor)
2001-01-01
Sediment cores from JoCo Marsh, located in Jamaica Bay, NY were analyzed for plant macrofossil and foraminifera records. These records reflect changes in vegetation, sea level, climate and human intervention. Better understanding of past environmental changes provides information for future preservation and protection of the estuary. A 2.81 m core was retrieved from JoCo, a high marsh area located on the eastern side of Jamaica Bay. The lithology of the core differs from high levels of sand, with small amounts of clay, in the bottom 0.8 meters, to salt marsh peat in the upper 2 meters of the core. Basal wood in the sand was dated to about 2060 yr BP. Elphidium foraminifera dominate the basal sands, along with Scirpus seeds, wood, and charcoal. These sands include fish scales which are tentatively identified as killifish, suggesting shallow pools. The transition to marsh peat is dominated by sedge seeds, and declines in charcoal. The peat appears to be dominated by salt marsh grasses. At 2 m the foraminifera change to include mainly Trochammina species and other undifferentiated agglutinates. The upper portion of the core is dominated by Salicornia seeds along with Trochammina and Miliammina or Quinqueloculia. The history of this marsh will be integrated with other records of marsh environmental change along the US eastern seaboard.
Sedimentary Processes on Earth, Mars, Titan, and Venus
NASA Astrophysics Data System (ADS)
Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.
The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.
NASA Astrophysics Data System (ADS)
Kaiser, Knut; Opgenoorth, Lars; Schoch, Werner H.; Miehe, Georg
2009-07-01
Charcoal and fossil wood taken from palaeosols, sediments and artificial structures were analysed in order to evaluate the regional pedoanthracological potential and to obtain information on Holocene environmental changes, particularly on possible past tree occurrences in southern Tibet. This research was initiated by the question to what extent this area is influenced by past human impact. Even recent evaluations have perceived the present treeless desertic environment of southern Tibet as natural, and the previous Holocene palaeoenvironmental changes detected were predominantly interpreted to be climate-determined. The material analysed - comprising a total of 53 botanical spectra and 55 radiocarbon datings from 46 sampling sites (c. 3500-4700 m a.s.l.) - represents the largest systematically obtained data set of charcoal available from Tibet so far. 27 taxa were determined comprising trees, (dwarf-) shrubs and herbs as well as grasses. The predominant tree taxa were Juniperus, Hippophae, Salix and Betula. According to their present-day occurrence in the region, the genera Juniperus and Hippophae can be explicitly attributed to tree species. Further, less frequently detected tree taxa were Populus, Pinus, Quercus, Taxus and Pseudotsuga. Charcoal of Juniperus mainly occurred on southern exposures, whereas Betula was associated with northern exposures. In contrast, the (partly) phreatophytic taxa Hippophae and Salix showed no prevalent orientation. The distribution of radiocarbon ages on charcoal revealed a discontinuous record of burning events cumulating in the Late Holocene (c. 5700-0 cal BP). For southern Tibet, these results indicated a Late Holocene vegetation change from woodlands to the present desertic pastures. As agrarian economies in southern and south-eastern Tibet date back to c. 3700 and 5700 cal BP, respectively, and the present-day climate is suitable for tree growth up to c. 4600 m a.s.l., we concluded that the Late Holocene loss or thinning out of woodlands had been primarily caused by humans.
Fire in the Pliocene: a Record from the Southwest Pacific Ocean
NASA Astrophysics Data System (ADS)
Rosell-Melé, A.; Moraleda, N.; Peterson, L.; Lawrence, K. T.
2015-12-01
There is a growing recognition of the importance of wildfires in the Earth system. The IPCC 5AR concluded that extensive areas of the world will increase substantially their probability to fire in the near future. This issue is of difficult evaluation given the multiplicity drivers of fire, including anthropogenic factors, and because fire was impossible to observe and analyse as a global phenomenon until well into the satellite era. The study of the Pliocene may however afford some glimpses to this issue as one of the best ancient-climate analogues of present-day and future greenhouse-warming conditions. The incidence of fire in the Pliocene has not been assessed in much detail. In fact, fossil evidence for fire activity over the last 50+ Ma from the Eocene through to the present day is scant, and is chiefly based on the presence of charred materials, or charcoal, which provides a partial perspective of fire occurrence, and the development of pyrophytic biomes such as savannahs and shrublands. Marine charcoal records, from widely separated geographic regions (North Pacific, Eastern south Atlantic, South China Sea), indicate low but significant fire activity throughout the Cenozoic until the late Miocene or Pliocene, when it increased, sometimes together with the rise of pyrophytic biomes. An alternative to the study of charcoal records is the analysis of polyaromatic hydrocarbons (PAHs), which are also generated in biomass combustion processes but are associated to soot and integrate the occurrence of fire over large regional provinces. One of the most abundant is retene, formed from the thermal degradation of resins. We have quantified PAHs in Site ODP 1125 which spans the Pliocene-Pleistocene, on the north slope of Chatham Rise, 600 km east of New Zealand's South Island. PAHs have been identified throughout the record, and namely during colder climatic episodes. Their abundance appears tightly linked to that of other terrigenous biomarkers like the n-alkanes, which are likely to result from changes in fluvial and aeolian inputs. Overall, they appear to increase from the Pliocene to present indicating a shift in fire regimes, although the role of transport processes in modulating fluxes of terrigenous biomarkers need to be investigated further.
NASA Astrophysics Data System (ADS)
Bhattacharya, Tripti; Byrne, Roger
2016-03-01
Scholars continue to debate the relative magnitude of pre- and post-Conquest anthropogenic landscape transformation in many regions of Mesoamerica. These debates have important implications for our understanding of the role of anthropogenic practices in the development, or at times degradation, of regional environments. Paleoecological records that provide long-term perspectives on climate change and human land-use patterns are critical to addressing these uncertainties. However, many regions of Mexico including the Cuenca Oriental, a semi-arid basin in the rain shadow of the Sierra Madre Oriental, remain poorly studied. We present a new paleoecological record from sediment cores recovered from Lake Aljojuca, located in the southern part of the basin. Stable isotope analyses of authigenic carbonates provide an independent record of past climate, while pollen and microscopic charcoal provide insights into past vegetation and fire history. The Aljojuca record is one of the only well-dated multi-proxy paleolimnological records from the Cuenca Oriental, and is one of few charcoal studies from highland Mexico. Zea mays pollen and increased fire activity at 2700 calendar years before present (cal yr. BP) suggest Formative period human settlement around the lake. Between 1700 and 800 cal yr BP, a drying climate combined with human uses of fire likely resulted in increases in the extent of xeric scrub vegetation. The Aljojuca record also documents important landscape changes during the historic period ( 430 cal yr. BP-present) likely related to the introduction of invasive species and agricultural intensification. The Aljojuca record provides a unique perspective on human-environment relationships and highlights differences between landscape transformations in the pre- and post-Conquest periods.
STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. Lounge records his height. The two crewmembers are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids.
Global charcoal mobilization from soils via dissolution and riverine transport to the oceans.
Jaffé, Rudolf; Ding, Yan; Niggemann, Jutta; Vähätalo, Anssi V; Stubbins, Aron; Spencer, Robert G M; Campbell, John; Dittmar, Thorsten
2013-04-19
Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.
Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad
Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel
2009-01-01
This publication makes available maps and trench logs associated with studies of the Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. Our studies were conducted in 2001 and 2002. We mapped geomorphic features indicative of active faulting along the right-lateral, Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. We excavated trenches at two sites, the Samlalsingh and Tabaquite sites. At the Samlalsingh site, sediments deposited after the most recent fault movement bury the fault, and the exact location of the fault was unknown until we exposed it in our excavations. At this site, we excavated a total of eleven trenches, six of which exposed the fault. The trenches exposed fluvial sediments deposited over a strath terrace developed on Miocene bedrock units. We cleaned the walls of the excavations, gridded the walls with either 1 m X 1 m or 1 m X 0.5 m nail and string grid, and logged the walls in detail at a scale of 1:20. Additionally, we described the different sedimentary units in the field, incorporating these descriptions into our trench logs. We mapped the locations of the trenches using a tape and compass. Our field logs were scanned, and unit contacts were traced in Adobe Illustrator. The final drafted logs of all the trenches are presented here, along with photographs showing important relations among faults and Holocene sedimentary deposits. Logs of south walls were reversed in Illustrator, so that all logs are drafted with the view direction to the north. We collected samples of various materials exposed in the trench walls, including charcoal samples for radiocarbon dating from both faulted and unfaulted deposits. The locations of all samples collected are shown on the logs. The ages of seventeen of the charcoal samples submitted for radiocarbon analysis at the University of Arizona Accelerator Mass Spectrometry Laboratory in Tucson, Ariz., are given in Table 1. Samples found in Table 1 are shown in red on the trench logs. All radiocarbon ages are calibrated and given with 2 standard deviation age ranges. Our studies suggest that the Central Range Fault is a Holocene fault capable of producing damaging earthquakes in Trinidad
Wiechmann, Morgan L; Hurteau, Matthew D; Kaye, Jason P; Miesel, Jessica R
2015-01-01
Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3-2.0 g m-2 of A-horizon and 0.0-1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2-1.7 g m-2 of A-horizon and 0.0-1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18-35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content.
Charcoal from the pyrolysis of rapeseed plant straw-stalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karaosmanoglu, F.; Tetik, E.
1999-07-01
Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.
McCoy, V E; Asael, D; Planavsky, N
2017-09-01
The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.
Zeng, Zhaoyan; Li, Xiangzhou; Zhang, Sheng; Huang, Dan
2017-01-01
Nano bamboo charcoal is being widely used as sustained release carrier for chemicals for its high specific surface area, sound biocompatibility, and nontoxicity; however, there have been no reports on nano bamboo charcoal as sustained release carrier for traditional Chinese medicine (TCM). To study the effect of nano bamboo charcoal in absorbing and sustained releasing Eucommia ulmoides extract (EUE) and to verify the in vitro anticancer effect of the sustained release liquid, so as to provide a theoretical basis for the development and utilization of nano bamboo charcoal as TCM sustained-release preparation. The adsorption capacity for the nano bamboo charcoal on EUE was measured by Langmuir model, and the release experiment was carried out under intestinal fluid condition. Characteristic changes for the nano bamboo charcoal nano-drug delivery system with and without adsorption of E. ulmoides were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and specific surface area. In addition, the anticancer effect from this novel bamboo charcoal E. ulmoides delivery system was evaluated against a human colon cancer cell line (HCT116). It was found that nano bamboo charcoal exhibits good adsorption capacity (up to 462.96 mg/g at 37°C). The cumulative release rate for EUE from this nano bamboo charcoal delivery system was 70.67%, and specific surface area for the nano bamboo charcoal decreased from 820.32 m 2 /g to 443.80 m 2 /g after EUE was loaded. An in vitro anticancer study showed that the inhibition rate for E. ulmoides against HCT116 cancer cells was 23.07%, for this novel bamboo charcoal nano-drug delivery system. This study provides a novel strategy for the delivery of traditional Chinese medicine using bamboo charcoal nano-drug delivery system. The adsorption equilibrium was reached after 30 min of ultrasonic treatmentThe saturated adsorption capacity of Eucommia ulmoides extract by nano bamboo charcoal under ultrosonic condition was 462. 96 mg/gThe cumulative release rate of E. ulmoides extract from the nano bamboo charcoal delivery system in artificial intestinal juice was 70.67%The inhibition ratio of HCT116 cancer cells by sustained release liquid was 23.07%. Abbreviation used: EUE: Eucommia ulmoides extract.
Charcoal as a capture material for silver nanoparticles in the aquatic environment
NASA Astrophysics Data System (ADS)
McGillicuddy, Eoin; Morrison, Liam; Cormican, Martin; Morris, Dearbháile
2017-04-01
Background: The reported antibacterial activity of silver nanoparticles (AgNPs) has led to their incorporation into numerous consumer products including; textiles, domestic appliances, food containers, cosmetics, paints, medical and medicinal products. The AgNPs incorporated into these products can be released into the environment and aquatic system during their production, use and end of life disposal. In the aquatic environment, uncertainties surround the concentration, fate and effects of AgNPs. The aim of this project is to examine charcoal as a potential material for capture of silver nanoparticles from the aquatic environment. Material/methods: Activated charcoal is a commonly used filter material and was selected for this project to determine its suitability as a capture material for AgNPs in water samples. Activated charcoal (Norit® CA1 (Sigma-Aldrich)) was exposed to 100 ppb, 25 nm PVP coated AgNPs (nanoComposix) prepared in Milli-Q water. These solutions were exposed to unaltered charcoal granules for 20 hours after which the decrease of silver in the solution was measured using ICP-MS. In order to improve the removal, the surface area of the charcoal was increased firstly by grinding with a pestle and mortar and secondly by milling the charcoal. The milled charcoal was prepared using an agate ball mill running at 500 rpm for 5 minutes. The activated charcoal was then exposed to samples containing 10 ppb AgNPs. Results: In the initial tests, approximately 10% of the silver was removed from the water samples using the unaltered activated charcoal granules. Further experiments were carried out to compare the unaltered granules with the ground and milled charcoal. These tests were carried out similarly to the previous test however lower concentration of 10 ppb was used. After 20 hours of exposure the granule samples, as previously, showed approximately a 10% reduction in silver content with the ground charcoal giving approximately 30% reduction in silver concentration and in the sample exposed to milled charcoal, approximately 60% reduction in silver concentration was observed. These tests found that increasing the surface area of the charcoal increased the silver reduction in the solution. Conclusions: Data suggest that charcoal may be a suitable material for use in the capture of AgNPs from water samples
Wang, Tiecheng; Qu, Guangzhou; Pei, Shuzhao; Liang, Dongli; Hu, Shibin
2016-07-01
Pulsed discharge plasma (PDP) combined with charcoal (PDP-charcoal) was employed to treat dye wastewater, with methyl orange (MO) as the model pollutant. The charcoal was prepared using spent tea leaves and was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and Boehm titration to investigate the adsorption and catalytic characteristics before and after adsorption and PDP treatment. The prepared charcoal exhibited a high MO adsorption capacity, and the adsorption process followed the pseudo-second-order kinetic model and the Freundlich model. The MO decoloration efficiency reached 69.8 % within 7.5 min of treatment in the PDP-charcoal system, whereas values of 29.2 and 25.9 % were achieved in individual PDP and charcoal systems, respectively. The addition of n-butanol and H2PO4 (-) presented inhibitive effects on MO decoloration in the PDP system. However, these effects were much weaker in the PDP-charcoal system. In addition, the effects of charcoal on O3 and H2O2 formation were evaluated, and the results showed that both the O3 and H2O2 concentrations decreased in the presence of charcoal. The MO decomposition intermediates were analyzed using UV-Vis spectrometry and GC-MS. 1,4-Benzoquinone, 4-nitrophenol, 4-hydroxyaniline, and N,N'-dimethylaniline were detected. A possible pathway for MO decomposition in this system was proposed.
Different carbonization process of bamboo charcoal using Gigantochloa Albociliata
NASA Astrophysics Data System (ADS)
Isa, S. S. M.; Ramli, M. M.; Halin, D. S. C.; Anhar, N. A. M.; Hambali, N. A. M. A.
2017-09-01
Bamboo charcoal has attracted a lot of interests due to their microporous structure, high surface area and great adsorption properties. Some of the applications utilizing this material focused on these advantages such as water purification, electromagnetic wave absorber and blood purification. However, these advantages really depend on the carbonization and activation process of bamboo charcoal. The production must be carried out in properly control environment with precise temperatures and timing. This paper report the production of bamboo charcoal using Gigantochloa Albociliata in controlled environment at 500 °C for 1 hour (lab-prepared). Then the material was characterized for their dispersibility and adsorption behaviour. Furthermore, the bamboo charcoal that was produced commercially, by company, was also characterized and compared. The results show, bamboo charcoal produced by lab-prepared has similar qualities with the commercial bamboo charcoal.
Influence of dietary charcoal on ochratoxin A toxicity in Leghorn chicks.
Rotter, R G; Frohlich, A A; Marquardt, R R
1989-01-01
The ability of activated charcoal to adsorb ochratoxin A (OA) in vitro and to reduce the toxic effects of OA in vivo when added to the diet of growing Leghorn chicks was studied. Activated charcoal (50 mg) was able to adsorb 90% of the OA (150 micrograms) contained in 10 mL of citrate-phosphate buffer (pH 7.0). When 2 g of a complete chick diet were mixed with OA in buffer, it adsorbed 66% of the OA, while addition of 50 mg of charcoal to this mixture further reduced the concentration of OA to 11.8% of the control, an additional 65% compared to the diet alone. In the first of two feeding studies, charcoal addition of up to 10,000 parts per million (ppm) to diets (6.7% tallow) containing 9.93 mumol (4 ppm) OA kg-1 diet had no effect on OA toxicity. Feed consumption and weight gain, however, were reduced 10 and 20%, respectively, in chicks fed diets which contained 10,000 ppm of charcoal compared to those fed no charcoal. In the second study, reducing dietary tallow to 2% did not alter the effects of OA or charcoal on weight gain and feed to gain ratio, but birds fed OA with 10,000 ppm charcoal had an 8.5% increase in feed consumption. An additional management problem was associated with the propensity of charcoal to blacken the feed, the birds and their environment. Addition of charcoal to OA contaminated diets appeared to be an ineffective method for reducing the toxic effects of OA in growing chicks. PMID:2590872
URINARY BIOMARKERS IN CHARCOAL WORKERS EXPOSED TO WOOD SMOKE IN BAHIA STATE, BRAZIL
Charcoal is an important source of energy for domestic and industrial use in many countries. In Brazil, the largest producer of charcoal in the world, approximately 350,000 workers are linked to the production and transportation of charcoal. In order to evaluate the occupationa...
EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER
The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...
NASA Astrophysics Data System (ADS)
Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.
2015-12-01
Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.
Recovery of datable charcoal beneath young lavas: lessons from Hawaii.
Lockwood, J.P.; Lipman, P.W.
1980-01-01
Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at a lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Practical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. -Authors
Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide
Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein
2014-01-01
This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639
[Adsorption mechanism of furfural onto modified rice husk charcoals].
Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping
2015-10-01
To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.
Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils
NASA Astrophysics Data System (ADS)
Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei
2011-04-01
The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r = 0.957 **, P < 0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation ( DT50) in soils greatly extended when the rate of added charcoal inceased from 0 to 50 g kg - 1 (for Paddy soil, DT50 values increased from 54.6 to 71.4 days; for Alfisol, DT50 from 16.0 to 136 days; and for Vertisol, DT50 from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.
The use of charcoal in modified cigarette filters for mainstream smoke carbonyl reduction
Holman, Matthew R.; Ding, Yan S.; Yan, Xizheng; Chan, Michele; Chafin, Dana; Perez, Jose; Mendez, Magaly I.; Cardenas, Roberto Bravo; Watson, Clifford
2017-01-01
Carbonyls are harmful and potentially harmful constituents (HPHCs) in mainstream cigarette smoke (MSS). Carbonyls, including formaldehyde and acrolein, are carcinogenic or mutagenic in a dose-dependent manner. Past studies demonstrate significant reduction of HPHCs by charcoal filtration. However, limits of charcoal filtration and cigarette design have not yet been investigated in a systematic manner. Objective data is needed concerning the feasibility of HPHC reduction in combustible filtered cigarettes. This systematic study evaluates the effect of charcoal filtration on carbonyl reduction in MSS. We modified filters of ten popular cigarette products with predetermined quantities (100–400 mg) of charcoal in a plug-space-plug configuration. MSS carbonyls, as well as total particulate matter, tar, nicotine, carbon monoxide (TNCO), and draw resistance were quantified. Significant carbonyl reductions were observed across all cigarette products as charcoal loading increased. At the highest charcoal loadings, carbonyls were reduced by nearly 99%. Tar and nicotine decreased modestly (<20%) compared to reductions in carbonyls. Increased draw resistance was significant at only the highest charcoal loadings. This work addresses information gaps in the science base that can inform the evaluation of charcoal filtration as an available technological adaptation to cigarette design which reduces levels of carbonyls in MSS. PMID:28238852
Using Aluminum Foil to Record Structures in Sedimentary Rock.
ERIC Educational Resources Information Center
Metz, Robert
1982-01-01
Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)
Sedimentary Rocks and Methane - Southwest Arabia Terra
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.
2006-01-01
We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.
Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari
2015-01-01
To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.
Kana, Jean Raphael; Teguia, Alexis; Mungfu, Berrian Musa; Tchoumboue, Joseph
2011-01-01
Growth performances and carcass characteristics of broiler chickens fed diets supplemented with graded levels of Canarium schweinfurthii Engl seed (charcoal A) or maize cob (charcoal B) were studied using a total of 110 3-week-old male chicks. 11 experimental diets including a control and other containing either 0.2, 0.4, 0.6, 0.8 or 1% charcoal from C. schweinfurthii Engl seed (A(0.2), A(0.4), A(0.6), A(0.8), and A(1%), respectively) or from maize cob (B(0.2), B(0.4), B(0.6), B(0.8), and B(1%), respectively) supplements were used. Each of the diets was fed to ten individually birds caged in a completely randomized design. Results indicated that birds fed 0.2, 0.4, and 0.6% of either charcoal A or B had significantly (P < 0.05) higher final body weights as compared to control birds, while, above 0.6% slightly depressed average final body weights and weight gain. The best growth performance was achieved with 0.2% inclusion of charcoals. There was no significant (P > 0.05) influence of charcoal B on the overall feed intake. Only the B(0.6) feed significantly (P < 0.05) improved feed conversion ratio as compared with the control. Dressing percentage, liver weight and abdominal fat were not significantly (P > 0.05) affected by charcoal. However, there was a significant (P < 0.05) reduction in gizzard weight with charcoal B. Charcoal had no significant (P > 0.05) influence on intestine length and weight. More than 0.6% of charcoal A significantly (P < 0.05) depressed intestine density. It was concluded that under the conditions of this study, charcoal from maize cob or Canarium seeds could be used to improve growth performances and some carcass traits in broiler chickens.
Wiechmann, Morgan L.; Hurteau, Matthew D.; Kaye, Jason P.; Miesel, Jessica R.
2015-01-01
Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3–2.0 g m-2 of A-horizon and 0.0–1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2–1.7 g m-2 of A-horizon and 0.0–1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18–35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content. PMID:26258533
The charcoal effect in Boreal forests: mechanisms and ecological consequences.
Wardle, D A; Zackrisson, O; Nilsson, M-C
1998-07-01
Wildfire is the principal disturbance regime in northern Boreal forests, where it has important rejuvenating effects on soil properties and encourages tree seedling regeneration and growth. One possible agent of this rejuvenation is fire-produced charcoal, which adsorbs secondary metabolites such as humus phenolics produced by ericaceous vegetation in the absence of fire, which retard nutrient cycling and tree seedling growth. We investigated short-term ecological effects of charcoal on the Boreal forest plant-soil system in a glasshouse experiment by planting seedlings of Betula pendula and Pinus sylvestris in each of three humus substrates with and without charcoal, and with and without phenol-rich Vaccinium myrtillus litter. These three substrates were from: (1) a high-productivity site with herbaceous ground vegetation; (2) a site of intermediate productivity dominated by ericaceous ground vegetation; and (3) an unproductive site dominated by Cladina spp. Growth of B. pendula was stimulated by charcoal addition and retarded by litter addition in the ericaceous substrate (but not in the other two), presumably because of the high levels of phenolics present in that substrate. Growth of P. sylvestris, which was less sensitive to substrate origin than was B. pendula, was unresponsive to charcoal. Charcoal addition enhanced seedling shoot to root ratios of both tree species, but again only for the ericaceous substrate. This response is indicative of greater N uptake and greater efficiency of nutrient uptake (and presumably less binding of nutrients by phenolics) in the presence of charcoal. These effects were especially pronounced for B. pendula, which took up 6.22 times more nitrogen when charcoal was added. Charcoal had no effect on the competitive balance between B. pendula and P. sylvestris, probably due to the low intensity of competition present. Juvenile mosses and ferns growing in the pots were extremely responsive to charcoal for all sites; fern prothalli were entirely absent in the ericaceous substrate unless charcoal was also present. Charcoal stimulated active soil microbial biomass in some instances, and also exerted significant although idiosyncratic effects on decomposition of the added litter. Our results provide clear evidence that immediately after wildfire fresh charcoal can have important effects in Boreal forest ecosystems dominated by ericaceous dwarf shrubs, and this is likely to provide a major contribution to the rejuvenating effects of wildfire on forest ecosystems.
Fire patterns of South Eastern Queensland in a global context: A review
Philip Le C. F. Stewart; Patrick T. Moss
2015-01-01
Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...
Holocene vegetation and fire history of the Coast Range, western Oregon, USA
Colin J. Long; Cathy Whitlock; Patrick J. Bartlein
2007-01-01
Pollen and high-resolution charcoal records from three lakes were examined to reconstruct the vegetation and fire history of the Oregon Coast Range for the last 9000 years. The sites are located along a north to- south effective precipitation gradient and changes in vegetation and fire activity provided information on the nature of this gradient in the past. The...
Jesse L. Morris; Andrea Brunelle; R. Justin DeRose; Heikki Seppa; Mitchell J. Power; Vachel Carter; Ryan Bares
2013-01-01
Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in...
Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa
NASA Astrophysics Data System (ADS)
Wright, C. I.; Mason, T. R.
The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.
Organic Carbon Analysis of Charcoal-Enriched Soils at Catoctin Mountain Park, MD
ERIC Educational Resources Information Center
Lindsay, Andrew
2017-01-01
The application of charcoal to soils to increase carbon stocks has been of great interest recently. To gain a better understanding of the long-term effects of charcoal presence in soils, historic charcoal production sites at Catoctin Mountain Park, Maryland were studied for organic carbon content and compared to nearby unaffected soils. Soil…
NASA Astrophysics Data System (ADS)
Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.
2015-12-01
This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.
Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, Maria C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.
2015-01-01
This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.
Paleoclimatic signature in terrestrial flood deposits.
Koltermann, C E; Gorelick, S M
1992-06-26
Large-scale process simulation was used to reconstruct the geologic evolution during the past 600,000 years of an alluvial fan in northern California. In order to reproduce the sedimentary record, the simulation accounted for the dynamics of river flooding, sedimentation, subsidence, land movement that resulted from faulting, and sea level changes. Paleoclimatic trends induced fluctuations in stream flows and dominated the development of the sedimentary deposits. The process simulation approach serves as a quantitative means to explore the genesis of sedimentary architecture and its link to past climatic conditions and fault motion.
NASA Astrophysics Data System (ADS)
Daura, J.; Sanz, M.; Allué, E.; Vaquero, M.; López-García, J. M.; Sánchez-Marco, A.; Domènech, R.; Martinell, J.; Carrión, J. S.; Ortiz, J. E.; Torres, T.; Arnold, L. J.; Benson, A.; Hoffmann, D. L.; Skinner, A. R.; Julià, R.
2017-12-01
Marine isotope stage 3 (MIS 3) was characterised by marked oscillations of extreme cold episodes with very short warm events during the stadial, and several regional differences have been recorded in the ice cores and marine deposits. The aim of this study is to reconstruct this period by evaluating both terrestrial and regional responses. Cova del Coll Verdaguer, a site located on the Iberian Peninsula, preserves a sedimentary deposit dated to between 34 and 56 ka BP and provides an opportunity for evaluating the impact of climate changes on the regional landmass during a period that coincided with the last Neanderthal population on the Iberian Peninsula. Several dating methods, including U-series, electron spin resonance, amino acid racemization and radiocarbon (14C), were applied to the site and the ages obtained show good agreement. The biotic evidence obtained is substantial, comprising floristic data from palynology and charcoal analysis, and faunal data from large and small mammals, birds and gastropods. Environmental reconstruction points to an initially open meadow landscape at the base of the sequence (∼56 ka) that progressively changes to a woodland environment dominated by conifers (∼34 ka). The presence of few thermophilous taxa, in contrast with lower latitudes of the Iberian Peninsula, is also detected. The environmental conditions of mid-altitude, Mediterranean, limestone mountains for the last Neanderthal populations appear to have been dominated by a forested landscape comprising boreal or mixed coniferous forest, characterised by a low usable biomass with poor comestible plant resources and dispersed herbivore populations.
Production of charcoal briquettes from biomass for community use
NASA Astrophysics Data System (ADS)
Suttibak, S.; Loengbudnark, W.
2018-01-01
This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.
Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils.
Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei
2011-04-01
The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r=0.957**, P<0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation (DT(50)) in soils greatly extended when the rate of added charcoal increased from 0 to 50 g kg(-1) (for Paddy soil, DT(50) values increased from 54.6 to 71.4 days; for Alfisol, DT(50) from 16.0 to 136 days; and for Vertisol, DT(50) from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils. Copyright © 2010 Elsevier B.V. All rights reserved.
Salami, Kabiru K; Brieger, William R
2010-01-01
Logging activities have long provided both wood fuel and charcoal for household and commercial use in rural and urban communities in developing countries. However, logging problems range from deforestation to threatened household air quality from burning wood and charcoal. This exploratory case study triangulated 15 in-depth interviews among charcoal bulk buyers and the workers, observations of workers at two èédú (charcoal) commercial depots in Igbo-Ora and of workers in the forest, and review of studies in academic database. Three categories of people are working in the business ranging from the producers in the forests (alaake) to the bulk buyers (olowo) in the middle and the wholesalers (ajagunta) in the city. A small team of 4-8 people can produce three pickup truck loads of charcoal in 2 weeks, and a large team between 7-8 loads. The olowo and the alaake have associations, membership cards, and meet to discuss business progress and regulate members' economic behavior. Close to 35,000 bags of charcoal of 450 pickup trucks may make the journey weekly from Ibarapa. Overall, the charcoal business is informal, and the local people also frown at cutting any useful indigenous trees ascertaining that an individual's actions may affect the whole community. The role of community health educators is important in the dissemination of effects of deforestation through charcoal production.
Effects of moisture controlled charcoal on indoor thermal and air environments
NASA Astrophysics Data System (ADS)
Matsumoto, Hiroshi; Yokogoshi, Midori; Nabeshima, Yuki
2017-10-01
It is crucial to remove and control indoor moisture in Japan, especially in hot and humid summers, in order to improve thermal comfort and save energy in buildings. Charcoal for moisture control made from the waste of wood material has attracted attention among many control strategies to control indoor moisture, and it is beginning to be used in houses. However, the basic characteristics of the charcoal to control moisture and remove chemical compounds in indoor air have not been investigated sufficiently. The objective of this study is to clarify the effect of moisture control charcoal on indoor thermal and air environments by a long-term field measurement using two housing scale models with/without charcoal in Toyohashi, Japan. The comparative experiments to investigate the effect of the charcoal on air temperature and humidity for two models with/without charcoal were conducted from 2015 to 2016. Also, the removal performance of volatile organic compound (VOCs) was investigated in the summer of 2015. Four bags of packed charcoal were set on the floor in the attic for one model during the experiment. As a result of the experiments, a significant effect of moisture control was observed in hot and humid season, and the efficient effect of moisture adsorption was obtained by the periodic humidification experiment using a humidifier. Furthermore, the charcoal showed a remarkable performance of VOC removal from indoor air by the injection experiment of formaldehyde.
Effect of charcoal doping on the superconducting properties of MgB 2 bulk
NASA Astrophysics Data System (ADS)
Kim, N. K.; Tan, K. S.; Jun, B.-H.; Park, H. W.; Joo, J.; Kim, C.-J.
2008-09-01
The effect of charcoal doping on the superconducting properties of in situ processed MgB 2 bulk samples was investigated. To understand the size effect of the dopant the charcoal powder was attrition milled for 1 h, 3 h and 6 h using ZrO 2 balls. The milled charcoal powders were mixed with magnesium and boron powders to a nominal composition of Mg(B 0.975C 0.025) 2. The Mg(B 0.975C 0.025) 2 compacts were heat-treated at 900 °C for 0.5 h in flowing Ar atmosphere. Magnetic susceptibility for the samples showed that the superconducting transition temperature ( Tc) decreased as the size of the charcoal powder decreased. The critical current density ( Jc) of Mg(B 0.975C 0.025) 2 prepared using large size charcoal powder was lower than that of the undoped MgB 2. However, a crossover of Jc value was observed at high magnetic fields of about 4 T in Mg(B 0.975C 0.025) 2 prepared using small size charcoal powder. Carbon diffusion into the boron site was easier and gave the Jc increase effect when the small size charcoal was used as a dopant.
Predicted sedimentary record of reflected bores
Higman, B.; Gelfenbaum, G.; Lynett, P.; Moore, A.; Jaffe, B.
2007-01-01
Where a steep slope blocks an inrushing tsunami, the tsunami commonly reverses direction as a reflected bore. A simple method for relating vertical and horizontal variation in sediment size to output from numerical models of depth-averaged tsunami flow yields predictions about the sedimentary record of reflected bores: 1. Near the reflector, a abrupt slowing of the flow as the reflected bore passes is recorded by a normally graded layer that drapes preexisting topography. 2. At intermediate distances from the reflector, the deposit consists of a single normally graded bed deposited preferentially in depressions, possibly including a sharp fine-over-coarse contact. This contact records a brief period of erosion as the front of the reflected bore passes. 3. Far seaward of the reflector, grading in the deposit includes two distinct normally graded beds deposited preferentially in depressions separated by an erosional unconformity. The second normally graded bed records the reflected bore.
NASA Astrophysics Data System (ADS)
Ding, Xuan; Wu, YingYing
2016-04-01
Sedimentary records in shallow-water environment provide unique opportunity to further our understanding on the regional relative sea level changes in relation to global climate change. Here we present a new 0.9 Ma oxygen isotope stratigraphy for a shallow-water sedimentary transect across three IODP 317 sites in the Canterbury Bight of southwest Pacific Ocean. The three sites are located on the eastern margin of the South Island of New Zealand, including a continental slope site, IODP317-U1352 and two continental shelf sites, IODP317-U1354 and IODP317-U1351. We first generated high resolution benthic foraminifers (Nonionella flemingi) δ18O records for the three sites and a planktonic (Globigerina bulloides) record for the U1352B. An initial chronological framework for the benthic δ18O record of the U1352B was constructed using 8 accelerator mass spectrometry (AMS) radiocarbon dates and 4 biostratigraphic events. Then a refined age model was established by correlating the U1352B benthic δ18O record with the EDC δD record on the AICC2012 time-scale, and the LR04 benthic δ18O stack. Although the U1354B and U1351B have lower sedimentation rates, their benthic δ18O records correlate well with that of U1352B. In order to ensure the accuracy of the chronostratigraphic framework established, we also analyzed the characteristics of sedimentary grain size and the planktonic and benthic δ18O values. In accord with the adjacent sites, the results show that the melt of Southern Alps glaciers due to the warming climate during MIS 11 and 5.5 led to the increased fresh water delivery, with massive terrigenous deposit; and the warm SST during the MIS7 is related with the STF migration, which led to strong current activity, with coarser grain size. Meanwhile, records of benthic δ18O, sedimentation rate and content of >63μm coarse fraction of site U1352 all indicate the MIS 20 was indeed a colder interval compared to subsequent glacial times.
NASA Astrophysics Data System (ADS)
van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R.
2017-09-01
Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr-1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and will be used in the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations.
NASA Astrophysics Data System (ADS)
Chua, Stephen; Gouramanis, Chris; Etchebes, Marie; Klinger, Yann; Gao, Mingxing; Switzer, Adam; Tapponnier, Paul
2016-04-01
High-resolution, late-Holocene climate patterns in arid central Asia, in particular the behaviour of the Asian Monsoon and occurrences of precipitation events, are not yet fully understood. In particular, few high-resolution palaeoenvironmental and palaeoclimate studies are available from the Junggar-Altay region in the Xinjiang Province, northwestern China. This area is tectonically active and the last large earthquake (Mw 7.9) occurred along the Fuyun strike-slip fault in 1931, resulting in ˜6m of right-lateral movement. South of the epicentre at Karaxingar, this earthquake resulted in the construction of large scarp-bounded ponds (46o43'N, 89o55'E) now filled with sediment. Sediment samples were collected every centimetre at a two-meter deep trench where the main pond was the deepest. The majority of the AMS 14C ages of charcoal and plant fibre samples are modern (56±34 to 171±34 yr BP) with the exception of a few much older carbon (842±26 to 2017±26 yr BP) at the base of the trench. The post-1931 age of the pond is validated by the 137Cs and 210Pb age-depth chronology. Each sediment sample was analysed for organic, carbonate and clastic contents and particle-size. This high-resolution analysis revealed eleven upward-fining sequences, with three prominent grain size peaks at depths of 1.7m, 0.95m and 0.6m below ground surface, suggesting three major modern precipitation events. The 11 grain-size peaks since 1931 in the pond coincide with 11 periods of increased precipitation measured in high-elevation tree-ring records ˜50 km north of the pond. Thus, low-altitude post-seismic sedimentary depocentres provide excellent high-resolution palaeoclimate archives that can fill a significant data gap where other proxy records are not available.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Fang, Xiaomin; Wang, Yadong; Song, Chunhui; Zhang, Weilin; Yan, Maodu; Han, Wenxia; Zhang, Dawen
2018-07-01
The Altyn Tagh range (ATR) is the northern geological boundary of the Tibetan Plateau and plays a key role in accommodating its Cenozoic lithospheric deformation. However, knowledge of the structural style and age of uplift of the ATR is limited and controversial. The Qaidam Basin, in the southeast side of the ATR, provides an outstanding field laboratory for understanding the history and mechanisms of ATR growth. This study presents a detailed sedimentological analysis of a 1040-m-thick late Cenozoic ( 17-5.0 Ma) sedimentary sequence from the western Qaidam Basin, together with the analysis of sedimentological data from nearby boreholes and sections. Our aims were to determine the spatiotemporal evolution of the sedimentary sequences in the study area and to explore their response to late Cenozoic tectonic activity in the ATR. The results show three major intervals of the sedimentary characteristics in the study area: >17-16 Ma, 10 Ma and <5 Ma, which are closely related to the development of unconformities and growth strata recorded by high-resolution seismic reflection profiles. Combining the results with a comprehensive provenance analysis and with published records of regional climate change and tectonic activity, we discuss the possible factors responsible for the variations in the sedimentary characteristics of the studied sections. We conclude that significant tectonic responses in the western Qaidam Basin during the late Cenozoic were caused by three stages of tectonic activity of the ATR, at >17-16 Ma, 16-10 Ma and 10 Ma, during which the ATR respectively experienced tectonic uplift, fast strike-slip motion and intense uplift.
Woodrow, Donald L.; Fregoso, Theresa A.; Wong, Florence L.; Jaffe, Bruce E.
2014-01-01
Data are reported here from 51 gravity cores collected from the southern part of San Francisco Bay by the U.S. Geological Survey in 1990. The sedimentary record in the cores demonstrates a stable geographic distribution of facies and spans a few thousand years. Carbon-14 dating of the sediments suggests that sedimentation rates average about 1 mm/yr. The geometry of the bay floor and the character of the sediment deposited have remained about the same in the time spanned by the cores. However, the sedimentary record over periods of centuries or decades is likely to be much more variable. Sediments containing a few bivalve shells and bivalve or oyster coquinas are most often found west of the main channel and near the San Mateo Bridge. Elsewhere in the south bay, shells are rare except in the southernmost reaches where scattered gastropod shells are found.
Soil charcoal from the plains to tundra in the Colorado Front Range
NASA Astrophysics Data System (ADS)
Sanford, R. L.; Licata, C.
2010-12-01
Throughout the forests of the central Rockies, soil charcoal from Holocene wildfires has been produced in response to wildland natural fire regimes. The extent and spatial distribution of soil charcoal production is poorly documented in this region, especially with regard to forests and shrublands at different elevations. Soil charcoal is a super-passive C pool derived from woody biomass that can be sequestered for millennia in forest soils. Recent research indicates that soil charcoal may promote enhanced soil fertility. Additionally, soil charcoal is an often overlooked component of soil C mass and flux. We hypothesize that differences in forest and shrubland fire regimes over the millennia have resulted in different soil charcoal amounts. Geospatial data were used to locate random sample plots in foothills shrublands (Cercocarpus montanus), and four forest types; ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta) and spruce-fir (Picea engelmannii - Abies lasiocarpa). Sample plots were stratified to occur with the mid 200 m elevation band of each vegetation type with east aspect, and 10-30% slope. Soils were sampled widely at 0-10 cm depth and analyzed for total soil C and soil charcoal C via chemical digestion and dry combustion techniques. Overall, soil charcoal is four times more abundant in spruce-fir forests than in foothills shrublands (1.9 +/- 0.92 Mg C/ha versus 0.54 +/- 0.44 Mg C/ha). Soil charcoal is also abundant in lodgepole pine and ponderosa pine soils (1.4 +/- 1.02 Mg C/ha and 1.4 +/- 0.54 Mg C/ha respectively) but is less plentiful in Douglas-fir soils (1.0 +/- 0.67). Spruce-fir forests have the most above ground biomass, slower decomposition rates and a less frequent mean fire return interval than the other four forests, hence it makes sense that high per-fire rates of charcoal production would occur in the spruce-fir zone, given large amounts of surface fuels at the time of fire. In contrast, low amounts of coarse woody debris in ponderosa, lodgepole, and shrub communities would cause less charcoal to form, despite higher fire frequencies. The Douglas-fir soil charcoal seems anomalously low, but it may reflect a combination of low forest floor woody debris and low fire frequency. Foothills shrublands have the least biomass, comparatively rapid decomposition rates and a more frequent mean fire return interval. We propose that high biomass and slow turnover rates in the spruce-fir forests creates conditions for relatively higher net soil charcoal accumulation.
NASA Astrophysics Data System (ADS)
Mastrolonardo, Giovanni; Francioso, Ornella; Carrari, Elisa; Brogi, Cristiana; Venturi, Martina; Certini, Giacomo
2017-04-01
Charcoal production in forests is one of the oldest human activities in Italy and the other European countries. Here, 3 thousand years ago civilizations were already used to convert wood into charcoal for energetic and metallurgic purposes. The technique for making charcoal remained substantially unchanged in time: wood piles covered with turf were built in appositely shaped emplacements, and then left to pyrolyse for days under controlled semi-anoxic conditions. This widespread activity lasted until a few decades ago, leaving as legacy a plethora of repeatedly used emplacements where soil shows a thick top layer very rich in charcoal. Despite the high frequency of relic charcoal kilns in the European forests, no studies aimed at accurately determining their C stock to assess their relevance as C sink in forest environment. In this work, we studied some relic charcoal kilns in a mixed oak forest at Marsiliana, Tuscany, central Italy, where charcoal production was enduring and massive at least since the Middle age. At Marsiliana, density of charcoal kiln sites was not uniform within the forest areas as it mostly depends on biomass availability. According to the aspect, northerly or southerly, we recognized two main forest areas where kiln sites density ranged between 2 and 3 sites per hectare. In general, the C content in the kiln soils was eight times the one in the surrounding soil, with just one third of the C in the form of pyrogenic C. Hence, natural organic carbon content was significantly higher in the kiln soils. Such a finding confirms that charcoal gives a substantial contribution to the C stock in the kilns but does not fully account for their particular richness in C. It has been thus hypothesized that charcoal is somehow able to stimulate the accumulation of native soil organic matter. At Marsiliana forest, relic charcoal kilns soils cover less than 0.5% of total surface. Nonetheless, their contribution to the total C stock in the top soil (30 cm) ranged between 2.5% and 15%, that is 1.2% to 4.2% of the C stored in the whole forest ecosystem, including litter, deadwood and above and below biomass. Taking into account the very long residence time of pyrogenic C in soil, charcoal kilns have great environmental significance in terms of climate change mitigation. The results of this study stress the importance of safeguarding relic charcoal kilns as a significant C reservoir, as well as a precious historical memory of the customs and traditions of past generations.
Sabouri, A Sassan; Lerman, Jerrold; Heard, Christopher
2014-10-01
We investigated the effects of tidal volume (VT), fresh gas flow (FGF), and a charcoal filter in the inspiratory limb on the washout of sevoflurane from the following Datex Ohmeda (GE) Anesthesia Workstations (AWSs): Aisys, Aestiva/5, and Excel 210SE. After equilibrating the AWSs with 2% sevoflurane, the anesthetic was discontinued, and the absorbent anesthesia breathing circuit (ABC), reservoir bag, and test lung were changed. The lung was ventilated with 350 or 200 mL·breath(-1), 15 breaths·min(-1), and a FGF of 10 L·min(-1) while the washout of sevoflurane was performed in triplicate using a calibrated Datex Ohmeda Capnomac Ultima™ and a calibrated MIRAN SapphIRe XL ambient air analyzer until the concentration was ≤ 10 parts per million (ppm). The effects of decreasing the FGF to 5 and 2 L·min(-1) after the initial washout and of a charcoal filter in the ABC were recorded separately. The median washout times with the Aisys AWS (14 min, P < 0.01) and the Aestiva/5 (17 min, P < 0.001) with VT 350 mL·breath(-1) were significantly less than that with the Excel 210SE (32 min). The mean (95% confidence interval) washout time with the Aisys increased to 23.5 (21.5 to 25.5) min with VT 200 mL·breath(-1) (P < 0.01). Decreasing the FGF from 10 to 5 and 2 L·min(-1) with the Aisys caused a rebound in sevoflurane concentration to ≥ 50 ppm. Placement of a charcoal filter in the inspiratory limb reduced the sevoflurane concentration to < 2 ppm in the Aisys and Aestiva/5 AWSs within two minutes. The GE AWSs should be purged with large FGFs and VTs ~350 mL·breath(-1) for ~25 min to achieve 10 ppm sevoflurane. The FGF should be maintained to avoid a rebound in anesthetic concentration. Charcoal filters rapidly decrease the anesthetic concentration to < 2 ppm.
Guides to manufacturing and marketing charcoal in the Northeastern States
Fred C. Simmons
1957-01-01
Charcoal manufacture has become the subject of a tremendous new interest in the Northeast in the past few years. In many communities, retailers have been unable to find enough charcoal to fill the demands - even though in the same localities there are large supplies of surplus wood that could be used in making charcoal. As a result of this unfilled demand, we have...
Comment on "Fire-derived charcoal causes loss of forest humus".
Lehmann, Johannes; Sohi, Saran
2008-09-05
Wardle et al. (Brevia, 2 May 2008, p. 629) reported that fire-derived charcoal can promote loss of forest humus and belowground carbon (C). However, C loss from charcoal-humus mixtures can be explained not only by accelerated loss of humus but also by loss of charcoal. It is also unclear whether such loss is related to mineralization to carbon dioxide or to physical export.
Global charcoal mobilization from soils via dissolution and riverine transport to the oceans
Rudolf Jaffe; Yan Ding; Jutta Niggemann; Anssi V. Vahatalo; Aron Stubbins; Robert G. M. Spencer; John Campbell; Thorsten Dittmar
2013-01-01
Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent...
Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.
1990-01-01
The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.
Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M
2013-12-01
Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago.
NASA Astrophysics Data System (ADS)
Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.
2016-12-01
Mercury concentrations in sediments have recently gained prominence as a potential tool for identifying large igneous province (LIP) volcanism in sedimentary records. LIP volcanism coincides with several mass extinctions during the Phanerozoic, but it is often difficult to directly tie LIP activity with the record of extinction in marine successions. Here, we build on mercury concentration data reported by Thibodeau et al. (Nature Communications, 7:11147, 2016) from the Late Triassic and Early Jurassic of New York Canyon, Nevada, USA. Increases in Hg concentrations in that record were attributed to Central Atlantic Magmatic Province (CAMP) activity in association with the end-Triassic mass extinction. We expand the measured section from New York Canyon and report new mercury concentrations from Levanto, Peru, where dated ash beds provide a discrete chronology, as well as St. Audrie's Bay, UK, a well-studied succession. We correlate these records using carbon isotopes and ammonites and find similarities in the onset of elevated Hg concentrations and Hg/TOC in association with changes in C isotopes. We also find second order patterns that differ between sections and may have depositional and diagenetic controls. We will discuss these changes within a sedimentological framework to further understand the controls on Hg concentrations in sedimentary records and their implications for past volcanism.
Roberts, Darren M; Southcott, Emma; Potter, Julia M; Roberts, Michael S; Eddleston, Michael; Buckley, Nick A
2008-01-01
Intentional self-poisonings with seeds from the yellow oleander tree (Thevetia peruviana) are widely reported. Activated charcoal has been suggested to benefit patients with yellow oleander poisoning by reducing absorption and/or facilitating elimination. Two recent randomised controlled trials (RCTs) assessing the efficacy of activated charcoal reported conflicting outcomes in terms of mortality. The effect of activated charcoal on the pharmacokinetics of Thevetia cardenolides has not been assessed. This information may be useful for determining whether further studies are necessary. Serial blood samples were obtained from patients enrolled in a RCT assessing the relative efficacy of single dose (SDAC) and multiple doses (MDAC) of activated charcoal compared to no activated charcoal (NoAC). The concentration of Thevetia cardenolides was estimated using a digoxin immunoassay. The effect of activated charcoal on cardenolide pharmacokinetics was compared between treatment groups using the AUC24, the 24h Mean Residence Time (MRT24), and regression lines obtained from serial concentration points adjusted for exposure. Erratic and prolonged absorption patterns were noted in each patient group. The apparent terminal half-life was highly variable, with a median time of 42.9h. There was a reduction in MRT24 and the apparent terminal half-life estimated from linear regression in patients administered activated charcoal compared to the control group (NoAC). This effect was approximately equal in patients administered MDAC or SDAC. Activated charcoal appears to favourably influence the pharmacokinetic profile of Thevetia cardenolides in patients with acute self-poisoning, which may have clinical benefits. Given the conflicting clinical outcomes noted in previous RCTs, this mechanistic data supports the need for further studies to determine whether a subgroup of patients (eg. those presenting soon after poisoning) will benefit from activated charcoal. PMID:17164695
Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits?
Bell, M J; Worrall, F
2011-04-01
Interest in the application of biochar (charcoal produced during the pyrolysis of biomass) to agricultural land is increasing across the world, recognised as a potential way to capture and store atmospheric carbon. Its interest is heightened by its potential co-benefits for soil quality and fertility. The majority of research has however been undertaken in tropical rather than temperate regions. This study assessed the potential for lump-wood charcoal addition (as a substitute for biochar) to soil types which are typically under arable and forest land-use in North East England. The study was undertaken over a 28 week period and found: i) No significant difference in net ecosystem respiration (NER) between soils containing charcoal and those without, other than in week 1 of the trial. ii) A significantly higher dissolved organic carbon (DOC) flux from soils containing large amounts of charcoal than from those untreated, when planted with ryegrass. iii) That when increased respiration or DOC loss did occur, neither was sufficiently large to alter the carbon sink benefits of charcoal application. iv) That charcoal incorporation resulted in a significantly lower nitrate flux in soil leachate from mineral soils. v) That charcoal incorporation caused significant increases in soil pH, from 6.98 to 7.22 on bare arable soils when 87,500 kg charcoal/ha was applied. Consideration of both the carbon sink and environmental benefits observed here suggests that charcoal application to temperate soils typical of North East England should be considered as a method of carbon sequestration. Before large scale land application is encouraged, further large scale trials should be undertaken to confirm the positive results of this research. Copyright © 2011 Elsevier B.V. All rights reserved.
Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil
Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco
2014-01-01
The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m−2) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m−2). After taking into account uncertainty associated with parameters’ estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study. PMID:24614647
Sara E. Jenkins; Carolyn Hull Sieg; Diana E. Anderson; Darrell S. Kaufman; Philip A. Pearthree
2011-01-01
Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area...
Frequency and clinical features of patients who attempted suicide by charcoal burning in Japan.
Kato, Koji; Akama, Fumiaki; Yamada, Keigo; Maehara, Mizuki; Kimoto, Keitaro; Kimoto, Kousuke; Takahashi, Yuki; Sato, Reiko; Onishi, Yuichi; Matsumoto, Hideo
2013-02-15
To date, the clinical features between patients in Japan who have attempted suicide by charcoal burning and those who have attempted suicide by other methods in the context of a mental disorder diagnosis as assessed by structured interviews have not been reported. We enrolled 647 consecutive patients who attempted suicide and were hospitalized for inpatient treatment. Psychiatric diagnoses, frequency of suicide attempts, and clinical features were compared between charcoal burning and other suicide methods. Twenty of the 647 patients (3.1%) had attempted suicide by charcoal burning. The ratio of men to women was significantly higher by this method compared with that of other methods. The proportion of patients with mood disorders was significantly higher in the charcoal burning group than that in the other methods group. The occurrence of a psychiatric history in patients in the charcoal burning group was significantly lower than that in the other methods group. The study sample was limited to a single hospital. The results demonstrate the clinical characteristics of patients who attempted suicide by charcoal burning. Therefore, it is necessary to identify the clinical features of patients who have attempted suicide by charcoal burning in Japan. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wallace, E. J.; Donnelly, J. P.; van Hengstum, P. J.; Wiman, C.; McKeon, K.; LaBella, A.; Sullivan, R.; Winkler, T. S.; Woodruff, J. D.; Hawkes, A.; Maio, C. V.
2017-12-01
Given the devastating socioeconomic impacts of tropical cyclones, it is of critical importance to quantify the risk of such storms to local human populations. However, this is difficult to accomplish given that historical tropical cyclone records are short and incomplete. A new array of sedimentary reconstructions from coastal basins record significant temporal variability in intense hurricane landfalls over the last several thousands of years. Unfortunately, these reconstructions are often limited to documenting changes in hurricane landfalls at one location. Here we present a larger spatial analysis of the changing frequency of hurricanes in the tropical Atlantic using near annually resolved records of intense hurricane events in blue holes from three islands in the Caribbean. The first record is a 1500-year record from South Andros Island on the Great Bahama Bank. This record is corroborated by cores collected from an adjacent blue hole. The second record is an 1100-year record from Long Island situated approximately 265 km southeast of South Andros. The final record is a 1000-year record from Caicos Island. All three carbonate islands are positioned in the western North Atlantic Ocean along the trackway of many storms originating in the Caribbean and Atlantic basins. All records contain coarse grained event deposits that correlate with known historical intense hurricane strikes in the Bahamas, within age uncertainties, including Hurricane Joaquin in 2015 at Long Island and the 1945 category 4 storm at South Andros. Over the past 1500 years, all three sedimentary archives show evidence of active and quiescent periods of hurricane activity. In particular, these records suggest that the Caribbean has experienced a higher frequency of hurricane events in intervals over of the past 1500 years than in the historical interval. However, the differences in hurricane frequency among the three records suggest regional controls on hurricane activity in the Atlantic.
NASA Astrophysics Data System (ADS)
Raab, Alexandra; Schneider, Anna; Bonhage, Alexander; Takla, Melanie; Hirsch, Florian; Müller, Frank; Rösler, Horst; Heußner, Karl-Uwe
2016-04-01
Archaeological excavations have revealed more than thousand charcoal kiln remains (CKRs) in the prefield of the active opencast lignite mine Jänschwalde, situated about 150 km SE of Berlin (SE Brandenburg, Germany). The charcoal was mainly produced for the ironwork Peitz nearby, which operated from the 16th to the mid-19th centuries. In a first approach, to estimate the dimension of the charcoal production, CKRs were mapped on shaded-relief maps (SRMs) derived from high-resolution LiDAR data (Raab et al. 2015). Subsequently, for a selected test area, identified CKRs on the SRMs were compared with archaeologically excavated CKRs in the field. This survey showed a considerably number of falsely detected sites. Therefore, the data was critically re-evaluated using additional relief visualisations. Further, we extended the CKR mapping to areas which are not archaeologically investigated. The study area, the former royal forest district Tauer, consists of two separate areas: the Tauersche Heide (c. 96 km2 area) N of Peitz and the area Jänschwalde (c. 32 km2 area) NE of Peitz. The study area is characterized by a flat topography. Different former and current anthropogenic uses (e.g., military training, solar power plant, forestry measures) have affected the study area, resulting in extensive disturbances of the terrain surface. The revised CKR abundance in the study area Jänschwalde was considerably smaller than the numbers produced by our first approach. Further, the CKR mapping revealed, that a total record of the CKRs is not possible for various reasons. Despite these limitations, a solid database can be provided for a much larger area than before. Basic statistic parameters of the CKR diameters and all comparative statistical tests were calculated using SPSS. To detect underlying spatial relationships in the CKR site distribution, we applied the Getis-Ord Gi* statistic, a method to test for local spatial autocorrelation between neighbouring sites. The test is available as part of the ArcGis 10.1 spatial statistics toolbox. The outcomes are discussed in consideration of our archaeological, archival and dendrochronological research results. Raab, A., Takla, M., Raab, T., Nicolay, A., Schneider, A., Rösler, H., et al. (2015). Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination. Quaternary International, doi:http://dx.doi.org/10.1016/j.quaint.2014.09.041.
Towards the development of a consensual chronostratigraphy for Arctic Ocean sedimentary records
NASA Astrophysics Data System (ADS)
Hillaire-Marcel, Claude; de Vernal, Anne; Polyak, Leonid; Stein, Rüdiger; Maccali, Jenny; Jacobel, Allison; Cuny, Kristan
2017-04-01
Deciphering Arctic paleoceanograpy and paleoclimate, and linking it to global marine and atmospheric records is much needed for comprehending the Earth's climate history. However, this task is hampered by multiple problems with dating Arctic Ocean sedimentary records related notably to low and highly variable sedimentation rates, scarce and discontinuous biogenic proxies due to low productivity and/or poor preservation, and difficulties correlating regional records to global stacks (e.g., paleomagnetic). Despite recent advances in developing an Arctic Ocean sedimentary stratigraphy, and attempts at setting radiometric benchmark ages of respectively 300 and 150 ka, based on the final decay of 230Th and 231Pa excesses (Thxs, Paxs) (Not et al., 2008), consensual age models are still missing, preventing reliable integration of Arctic records in a global paleoclimatic scheme. Here, we intend to illustrate these issues by comparing consistent Thxs-Paxs chronostratigraphic records from the Mendeleev-Alpha and Lomonosov ridges with the currently used age model based on climatostratigraphic interpretation of sedimentary records (e.g., Polyak et al., 2009; Stein et al., 2010). Data used were collected from the 2005 HOTRAX core MC-11 (northern Mendeleev Ridge) and the 2014 Polarstern core PS87-30 (Lomonosov Ridge). Total collapse depths of Thxs and Paxs are observed by a factor of 3 deeper in core PS87-30 vs core MC-11, indicating average sedimentation rates 3 times higher at the Lomonosov Ridge site. Litho-biostratigraphic markers, such as foraminiferal peaks and manganese-enriched layers, show a similar pattern, with their occurrence 3 times deeper in core PS87-30 than in core MC-11. These very consistent downcore features highlight a gaping difference between the benchmark ages assigned to the total decay of Paxs and Thxs and the current age model based on climatostratigraphic approach involving significantly higher sedimentation rates. This discrepancy begs for its in-depth investigation that would potentially result in a development of the consensual chronostratigraphy for Quaternary Arctic Ocean sediments, critical for integrating the Arctic into global paleoclimatic history.
2000 Years of Grazing History and the Making of the Cretan Mountain Landscape, Greece.
Jouffroy-Bapicot, Isabelle; Vannière, Boris; Iglesias, Virginia; Debret, Maxime; Delarras, Jean-François
2016-01-01
Understanding the processes that led to the recent evolution of Mediterranean landscapes is a challenging question that can be addressed with paleoecological data. Located in the White Mountains of Crete, Asi Gonia peat bog constitutes an exceptional 2000-years-long sedimentary archive of environmental change. In this study, we document the making of the White Mountains landscape and assess human impact on ecosystem trajectories. The paleoenvironmental reconstruction is based on high-resolution analyses of sediment, pollen, dung fungal spores and charcoal obtained from a 6-m core collected from the bog. Multiproxy analyses and a robust chronological control have shed light on anthropogenic and natural processes that have driven ecological changes, giving rise to the present-day Mediterranean ecosystem. Our results suggest that sediment accumulation began during the transition from the Hellenistic to the Roman period, likely due to watershed management. The evolution of the peat bog as well as vegetation dynamics in the surrounding area were linked to past climate changes but were driven by human activities, among which breeding was of great importance. Charcoal analysis reveals that fire was largely used for the construction and maintenance of sylvo-agropastoral areas. Pollen data allow the identification of three main vegetation assemblages: 1) evergreen oak forest (before ca. 850 AD), 2) heather maquis (ca. 850 to 1870 AD), 3) phrygana/steppe landscape. Rapid changes between phases in vegetation development are associated with tipping-points in ecosystem dynamics resulting from anthropogenic impact. The modern ecosystem did not get established until the 20th century, and it is characterized by biodiversity loss along with a dramatic drying of the peat bog.
2000 Years of Grazing History and the Making of the Cretan Mountain Landscape, Greece
Jouffroy-Bapicot, Isabelle; Vannière, Boris; Iglesias, Virginia; Debret, Maxime; Delarras, Jean-François
2016-01-01
Understanding the processes that led to the recent evolution of Mediterranean landscapes is a challenging question that can be addressed with paleoecological data. Located in the White Mountains of Crete, Asi Gonia peat bog constitutes an exceptional 2000-years-long sedimentary archive of environmental change. In this study, we document the making of the White Mountains landscape and assess human impact on ecosystem trajectories. The paleoenvironmental reconstruction is based on high-resolution analyses of sediment, pollen, dung fungal spores and charcoal obtained from a 6-m core collected from the bog. Multiproxy analyses and a robust chronological control have shed light on anthropogenic and natural processes that have driven ecological changes, giving rise to the present-day Mediterranean ecosystem. Our results suggest that sediment accumulation began during the transition from the Hellenistic to the Roman period, likely due to watershed management. The evolution of the peat bog as well as vegetation dynamics in the surrounding area were linked to past climate changes but were driven by human activities, among which breeding was of great importance. Charcoal analysis reveals that fire was largely used for the construction and maintenance of sylvo-agropastoral areas. Pollen data allow the identification of three main vegetation assemblages: 1) evergreen oak forest (before ca. 850 AD), 2) heather maquis (ca. 850 to 1870 AD), 3) phrygana/steppe landscape. Rapid changes between phases in vegetation development are associated with tipping-points in ecosystem dynamics resulting from anthropogenic impact. The modern ecosystem did not get established until the 20th century, and it is characterized by biodiversity loss along with a dramatic drying of the peat bog. PMID:27280287
Charcoal industry grows in the Midwest
Joe F. Christopher; D. R. Bower; J. L. Smith; R. C. Thatcher; B. E. Carpenter
1962-01-01
The Midsouth manufactured 95, 000 tons of wood charcoal in 1961. This represents a gain of 28 percent over output in 1956, when the industry was last surveyed. The number of charcoal plants has increased from 29 to 90.
Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.
Arnal, Pablo Maximiliano
2015-01-01
Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: •Place SFH in an airtight aluminum envelope.•Thermally treat SFH within the envelope in a common laboratory oven.•Open the envelope to obtain the carbonized sunflower hulls.
Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.
2008-03-01
Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at themore » pg g-1 level.« less
STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck
1990-12-10
STS035-19-021 (December 1990) --- STS-35 Mission Specialist Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. (Mike) Lounge records his height. The two crew members are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids. This image was selected by the Public Affairs Office (PAO) for public release.
The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique
NASA Technical Reports Server (NTRS)
Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.
2016-01-01
Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Stahle, Laura N.; Chin, Hahjung; Haberle, Simon; Whitlock, Cathy
2017-12-01
Fire activity was reconstructed at five sites and vegetation history at three sites in northwest Tasmania, Australia in order to examine the climate and human drivers of environmental change in the region. Watershed-scale reconstructions of fire were compared to regional vegetation history. Fire activity was very low until ca. 12,000 cal yr BP. An early-Holocene fire maximum, ca. 11,800-9800 cal yr BP, occurred during the warmest interval of the Holocene as recorded by regional paleoclimate proxy records. This period of elevated burning was also coincident with an increase in arboreal sclerophyll plant taxa. A maximum in rainforest taxa occurred at ca. 8500-5800 cal yr BP concurrent with sharply diminished biomass burning compared with the early Holocene. The increase in rainforest taxa is attributed to elevated effective moisture during this period. Conditions were drier and variable in the late Holocene as compared with earlier periods. A rise in fire activity at ca. 4800-3200 cal yr BP was accompanied by an increase in sclerophyll taxa and decline of rainforest and subalpine taxa. Elevated palynological richness during the late Holocene co-occurred with high levels of charcoal suggesting that fires promoted high floristic diversity. At Cradle Mountain, there is no clear evidence that fire regimes or vegetation were extensively modified by humans prior to European settlement. Climate was the primary driver of fire activity over millennial timescales as explained by the close relationship between charcoal and climate proxy data.
Anderson, Lysanna; Wahl, David B.
2016-01-01
Although fire was arguably the primary tool used by the Maya to alter the landscape and extract resources, little attention has been paid to biomass burning in paleoenvironmental reconstructions from the Maya lowlands. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of macroscopic fossil charcoal recovered from lacustrine sediment cores. The records extend from the early Holocene, through the full arc of Maya prehistory, the Colonial, and post-Colonial periods (~ 9000 cal yr BP to the present). (Hereafter BP) The study sites, Lago Paixban and Lago Puerto Arturo, are located in northern Peten, Guatemala. Results provide the first quantitative analysis from the region demonstrating that frequent fires have occurred in the closed canopy forests since at least the early Holocene (~ 9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of agriculture around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Earliest Preclassic period suggest that land use strategies may have included intensive agriculture much earlier than previously thought. Preliminary results showing concentrations of soot/black-carbon during the middle and late Preclassic periods are lower than modern background values, providing intriguing implications regarding the efficiency of Maya fuel consumption.
NASA Astrophysics Data System (ADS)
Anderson, Lysanna; Wahl, David
2016-03-01
Although fire was arguably the primary tool used by the Maya to alter the landscape and extract resources, little attention has been paid to biomass burning in paleoenvironmental reconstructions from the Maya lowlands. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of macroscopic fossil charcoal recovered from lacustrine sediment cores. The records extend from the early Holocene, through the full arc of Maya prehistory, the Colonial, and post-Colonial periods ( 9000 cal yr BP to the present). (Hereafter BP) The study sites, Lago Paixban and Lago Puerto Arturo, are located in northern Peten, Guatemala. Results provide the first quantitative analysis from the region demonstrating that frequent fires have occurred in the closed canopy forests since at least the early Holocene ( 9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of agriculture around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Earliest Preclassic period suggest that land use strategies may have included intensive agriculture much earlier than previously thought. Preliminary results showing concentrations of soot/black-carbon during the middle and late Preclassic periods are lower than modern background values, providing intriguing implications regarding the efficiency of Maya fuel consumption.
The hydrocarbon cycle and its role in hyperthermals, ocean anoxic events and mass extinctions
NASA Astrophysics Data System (ADS)
Dahlgren, Torbjørn
2016-04-01
Release of light isotopic carbon, ocean oxygen deficiency and extinction characterizes the Paleocene-Eocene Thermal Maximum (PETM). The PETM carbon isotope excursion (CIE) has been linked to gas hydrate decomposition and/or methane release due to igneous intrusions in sedimentary basins. In reviewing the published geological and geochemical data it became apparent that the majority of observations are in fact compatible with a different source(s) of the light isotopic carbon, namely, that of fluids trapped in sedimentary basins. Here I make a connection between the drilled paleo-accumulations of oil and gas in the Barents Sea, their burial and tectonic history, and published data of the PETM that may be reinterpreted as to reflect large scale leakage of oil and gas accumulations. I focus on oil, as leaked oil has a preservation potential in the sedimentary record. In contrast, gas from either leaked gas accumulations or exsolution from pore waters has little preservation potential other than contributing to the CIE. Sedimentary records compatible with leaked oil is present in the Arctic Ocean and Spitsbergen as fluorescent bitumen/amorphous organic matter (AOM) with carbon isotope ratios and biomarker signatures similar to those recorded in Barents Sea oil samples. Bitumen/AOM-rich immature sediments are also found in the North Sea and unresolved complex organic matter compatible with highly weathered oil has been found as far south as Walvis Ridge, offshore Namibia. Large scale fluid leakage from sedimentary basins can also explain the increase in radiogenic Osmium and Rhenium that mimic the CIE. Also biological evidence such as the extinction of North Atlantic benthic foraminifera lineages, the A. Augustum bloom and the occurrence of malformed micro/nanno-fossils may be linked to large scale leakage of oil and diagenetically altered porewaters. The leaked oil and gas was partially re-cycled into an organic rich shale (source rock) suggesting a 'hydrocarbon cycle' exists. Based on previously noted similarities between the PETM, the Toarcian OAE and the Triassic-Jurassic and Permian-Triassic events, it is inferred that also these may have been associated with catastrophic leakage of hydrocarbons trapped in sedimentary basins.
NASA Astrophysics Data System (ADS)
Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.
2014-12-01
Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.
NASA Astrophysics Data System (ADS)
Kodama, K. P.
2017-12-01
The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a primary depositional origin for the excursion, and strengthens the argument for oxidation of the world ocean in the Ediacaran. Future work must learn how global climate is encoded by rock magnetics, but our work to date suggests that variations in continental run-off are detected by rock magnetics.
The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire
2016-01-01
Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216520
The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire.
Belcher, Claire M
2016-06-05
Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Charcoal disrupts cell-cell communication through multiple mechanisms
NASA Astrophysics Data System (ADS)
Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.
2016-12-01
Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.
NASA Astrophysics Data System (ADS)
Wurster, K.
2008-12-01
In much of Sub-Saharan Africa, more than 75 percent of a rapidly growing urban population depends on charcoal as their primary source of energy for cooking. The high demand for charcoal has led many to believe that charcoal harvesting catalyzes widespread deforestation. The Senegalese government and international donors have initiated projects within protected areas to combat deforestation and created land management plans to sustainably harvest charcoal. To date, the effects of forest management techniques on forest sustainability are still in question. This research uses a multiphase approach integrating satellite analysis with field surveys to assess the effect of varying forest management strategies on forest regeneration and sustainability after charcoal harvesting. Phase I involved testing the Multiangle Imaging SpectroRadiometer (MISR) satellites capability in detecting structural changes in vegetative cover caused by charcoal harvesting and production. Analysis of the MISR derived k(red) parameter showed MISR can consistently differentiate between forest cover types and successfully differentiates between sites at pre- and post-charcoal harvest stages. Phase II conducted forestry and social surveys comparing and contrasting local effects of land management, land use, and charcoal production on forest regeneration. Phase III uses the local surveys to validate and train the regional remote sensing data to assess the effectiveness of land management in promoting forest regeneration and sustainability after charcoal harvesting. Combining detailed local knowledge with the regional capabilities of MISR provide valuable insight into the factors that control woodland regeneration and sustainability. Preliminary results from phases II and III indicate that both field and remotely sensed variations in forest cover, tree regeneration, and land use change does not vary when compared against land management type. Final results will provide managers with additional information to create more effective land management strategies that can be implemented across sub- Saharan Africa, ensuring the long-term sustainability of woodland ecosystems and local livelihoods.
Charcoal versus LPG grilling: A carbon-footprint comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Eric, E-mail: ejohnson@ecosite.co.u
2009-11-15
Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case,more » the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.« less
Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.
Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai
2017-09-01
To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.
Fields of Coal: An analysis of industry and sedimentology in Dolores, Texas
NASA Astrophysics Data System (ADS)
Oaden, A.; Besonen, M. R.
2013-12-01
Research was conducted on a historically significant pond located in the former mining town of Dolores, located north of Laredo, Texas. The intention of this work was, to determine the influence of local mining operations on the environment and determine the extent of coal production from the sedimentary record. The pond is located ~160 m downslope from a former coal mine and waste pile, and was therefore a likely site of coal accumulations, as well as other debris. Additionally, this pond was created only 130 years ago, in 1882, giving a distinct time frame for any sedimentary records. Field work was conducted to obtain sediment core samples from the pond, and corroborating evidence was gathered using historical documents from archives in Laredo, online resources, as well as library records and inter library loan. Sedimentary cores obtained were shorter than desired as a result of the densely packed clay, which reduceding the penetration of coring equipment, leaving the historical extent of the cores limited. The limited sedimentary record also gives little indication as to the extent of production in the nearby mine and how it may have varied over time. The split cores were scanned with a Minolta CM-2600d spectrophotometer, and the results were transformed into first derivative spectrum equivalent data to identify common sedimentary minerals according to their first derivative signatures. The spectral analysis on the cores determined a large amount of clay minerals, and also limonite/goethite according to prominent first derivative peaks centered on ~440 and 540 nm. This agrees with visual observations given the all minerals showing spectra most intense in the 625 -725 nm portion of the visible spectrum, giving the cores their largely yellowish-reddish/brown hue of the cores. Magnetic susceptibility analysis indicated great changes in mineral contentmagnetism, some possibly associated with ash from fires. Bulk density and loss-on-ignition analysis to further characterize the sediments is underway. Basic conclusions indicate the present environment to be minimally affected by the coal operations and resulting tipple pile, but with a large variance over time in mineralogy and composition of sediment, with further research necessary to determine the full effects of industry in the area.
NASA Astrophysics Data System (ADS)
Judge, S. A.; Wilson, T. J.
2005-12-01
The International Polar Year (IPY) provides an excellent opportunity for highlighting polar research in education. The ultimate goal of our outreach and education program is to develop a series of modules that are focused on societally-relevant topics being investigated in Antarctic earth science, while teaching basic geologic concepts that are standard elements of school curricula. For example, we envision a university-level, undergraduate, introductory earth science class with the entire semester/quarter laboratory program focused on polar earth science research during the period of the International Polar Year. To attain this goal, a series of modules will be developed, including inquiry-based exercises founded on imagery (video, digital photos, digital core scans), GIS data layers, maps, and data sets available from OSU research groups. Modules that highlight polar research are also suitable for the K-12 audience. Scaleable/grade appropriate modules that use some of the same data sets as the undergraduate modules can be outlined for elementary through high school earth science classes. An initial module is being developed that focuses on paleoclimate data. The module provides a hands-on investigation of the climate history archived in both ice cores and sedimentary rock cores in order to understand time scales, drivers, and processes of global climate change. The paleoclimate module also demonstrates the types of polar research that are ongoing at OSU, allowing students to observe what research the faculty are undertaking in their respective fields. This will link faculty research with student education in the classroom, enhancing learning outcomes. Finally, this module will provide a direct link to U.S. Antarctic Program research related to the International Polar Year, when new ice and sedimentary rock cores will be obtained and analyzed. As a result of this laboratory exercise, the students will be able to: (1) Define an ice core and a sedimentary rock core. (Knowledge) (2) Identify climate indicators in each type of core by using digital core images. These include layers of particulate material (such as volcanic tephra) in ice cores and layers of larger grains (such as ice-rafted debris) in sedimentary rock cores. (Knowledge) (3) Describe how cores are taken in extreme environments, such as Antarctica. (Comprehension) (4) Use actual data from proxies in the ice and sedimentary records to graph changes through time in the cores. (Application) (5) Recognize variances in data sets that might illustrate periods of climate change. (Analysis) (6) Integrate data results from several proxies in order to construct a climate record for both ice cores and sedimentary rock cores. (Synthesis) (7) Interpret both the ice core and sedimentary rock core records to ascertain the effectiveness of both of these tools in archiving climate records. (Evaluation)
EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN
The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In Addition, other pollu...
Christian, Daniel; Wacey, David; Hazen, Robert M.
2013-01-01
Abstract Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. Key Words: Archean—Biofilms—Microbial mats—Early Earth—Evolution. Astrobiology 13, 1103–1124. PMID:24205812
NASA Astrophysics Data System (ADS)
Saputro, S.; Masykuri, M.; Mahardiani, L.; Hidayah, AN
2018-03-01
This research are to find out the influence of adsorbent composition between rice husk and water hyacinth in decreasing of Pb2+ ion in simulation liquid waste; the optimumcomposition of combination adsorbent of rice husk and water hyacinth charcoal on Pb2+ ion adsorption; and theeffectivenessof SPS as a method to determine the decreasing level of Pb2+ ion in simulation liquid waste by combination adsorbent of rice husk and water hyacinth charcoal in µg/L level. Rice husk and water hyacinth carbonization using muffle furnace at 350°C for 1 hour. Rice husk charcoal activation in a 2 N NaOH solution and water hyacinth charcoal activated in a 5 M HCl solution. Contacting the combination adsorbent of rice husk and water hyacinth charcoal with a Pb2+ solution with variation of mass composition, 1:0 ; 0:1 ; 1:1 ; 1:2 and 2:1. Analysis of the Pb2+ ion level using SPS method. Characterization of rice husk and water hyacinth charcoal using the FTIR. The results showed that the combination adsorbent composition of rice husk and water hyacinth charcoal have an impact on decreasing Pb2+ ion level. The optimum composition of combination adsorbent of rice husk and water hyacinth charcoal on the adsorption Pb2+ ion is 1:2. SPS is an effective method to determine the decreasing Pb2+ ion in simulation liquid waste from the adsorption process by combination adsorbent of rice husk and water hyacinth in µg/L, with Limit of Detection (LOD) was 0,06 µg/L.
Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.
2013-01-01
Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm,more » as well as trace levels of copper and tungsten.« less
Measurement and calculation of the sound absorption coefficient of pine wood charcoal
NASA Astrophysics Data System (ADS)
Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo
2013-10-01
Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.
CHARCOAL-PRODUCING INDUSTRIES IN NORTHEASTERN BRAZIL
Charcoal workers in northeastern Brazil: Occupational risks and effects of exposure to wood smoke
ABSTRACT
Brazil has the largest production of charcoal in the world, which is used mostly in the iron and steel industries. In most of the production sites, the process is ba...
Charcoal as an alternative energy source. sub-project: briquetting of charcoal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enstad, G.G.
1982-02-02
Charcoal briquettes have been studied both theoretically and experimentally. It appears most realistic to use binders in solution. Binders of this kind have been examined and the briquettes' mechanical properties measured. Most promising are borresperse, gum arabic, dynolex, and wood tar.
Climatic and human controls on the late Holocene fire history of northern Israel
NASA Astrophysics Data System (ADS)
Quintana Krupinski, N. B.; Nishri, A.; Street, J. H.; Paytan, A.
2011-12-01
Long-term fire histories provide insight into the effects of climate, ecology and human influence on fire activity. Fire records can be expanded beyond the period of historical record using accumulation rates of large charcoal particles and soot black carbon (BC) in lacustrine sediments: charcoal accumulation peaks indicate local to regional fire events, while increased deposition of BC may document regional-scale burning. To determine which factors exert the greatest control over changes in fire frequency at different times, this study compares late Holocene fire records from Lake Kinneret (the Sea of Galilee), Israel to local and regional records of climate and human activity. We show that fire frequency decreased during the past 3010 years from 3-4 fire events per 400 years between 3010 - 2620 y.b.p. to 0-2 fire events per 400 years from 750 y.b.p. to present. Human modification of the landscape during periods of high population (e.g. forest clearing, agriculture, settlement expansion and industry) appears to have been the greatest contributor to increased fire activity in the semi-arid southern Levant region during the late Holocene, though aridity may also have contributed to higher fire activity. However, during much of the study period, climate and human activity were interrelated, so while human activity may have been the greater control on fire activity, the effect of climate may have been both direct and indirect (through climate-related changes in population), making it sometimes difficult to distinguish the two controls. Projections of increasing aridification of the region combined with a heavy impact on the landscape from a large modern population suggest that increased fire activity may occur in the region in the near future.
Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.
2010-01-01
High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.
Wilson, K M; Bourassa, D V; Davis, A J; Freeman, M E; Buhr, R J
2016-03-01
Two experiments evaluated prebiotics added to feed on the recovery of Salmonella in broilers during grow-out and processing. In Experiment 1, "seeder" chicks were inoculated with Salmonella Typhimurium and placed with penmates. Treatments were: basal control diet, added 0.3% bamboo charcoal, 0.6% bamboo charcoal, or 0.12% Aromabiotic (medium chain fatty acids). The ceca from seeders and penmates were sampled to confirm Salmonella colonization at 3, 4, and 6 wk, and pen litter was sampled weekly. At 3 wk, charcoal fed chicks had significantly lower cecal recovery (37% lower) of Salmonella via direct plating but no differences at wk 4 or 6. At 6 wk, broilers fed Aromabiotic had no recovery of Salmonella from ceca with direct plating and significantly, 18%, lower recovery with enrichment. In Experiment 2, the treatments were: basal control diet, added 0.3% bamboo charcoal, 0.3% activated bamboo charcoal, or 0.3% pine charcoal. At placement, 2 seeders were challenged with Salmonella and commingled with penmates and ceca sampled at 1 and 2 wk, and ceca from 5 penmates/pen at 3 to 6 wk. Weekly, the pH of the crop and duodenum was measured from 1 penmate/pen and the litter surface sampled. At the end of grow-out broilers were processed. Results showed that penmates had colonized at 1 and 2 wk. Cecal Salmonella showed no differences except at 4 wk, when activated bamboo charcoal had a 18% lower recovery of Salmonella (enrichment) compared to the control (88%). Similar to Experiment 1, the recovery of Salmonella from the litter was not significantly different among treatments, however an overall decrease in recovery by 4 wk with direct plating reoccurred. The pH of the duodenum and the crop were not different among treatments. Crop pH (6.0) for all treatments were significantly higher at wk 1 compared to wk 2 to 6. Charcoals had minimal effect on Salmonella recovery in the ceca, but following defeathering, broilers fed charcoals had significantly lower Salmonella recovery from breast skin (charcoals 5+/60 compared to control 8+/20). While the addition of charcoals to broilers feed did not significantly affect Salmonella recovery during production (from litter or ceca samples) there was a lower Salmonella recovery from breast skin following scalding and defeathering. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Tropical wetlands - problems and potentials as paleo-monsoon archives
NASA Astrophysics Data System (ADS)
Chabangborn, Akkaneewut; Chawchai, Sakonvan; Fritz, Sherilyn; Löwemark, Ludvig; Wohlfarth, Barbara
2014-05-01
Paleoclimatic and paleoenvironmental information is still scarce for Southeast Asia despite the fact that this large region is home to numerous natural lakes and wetlands that may contain long sedimentary archives. During the past years we have been surveying lakes and wetlands in different parts of Thailand to select the most promising and longest sedimentary sequences for paleoenvironmental studies. Our survey of more than 30 lakes shows that only very few lakes and wetlands still contain soft sediments. The sediments in the majority of the lakes and wetlands have been dredged and excavated during the past 10 years to provide open and clear water for fishing and recreation. Dredging and excavation using large caterpillars has disturbed and in some cases completely destroyed the sedimentary records. Stiff clays now drape most of the lake bottoms. Based on our extensive survey, we found five sites, from which we successfully obtained intact sediment sequences: Lakes Kumphawapi and Pa Kho in northeast Thailand, Nong Leng Sai in northern Thailand and Sam Roi Yod and Nong Thale Pron in southern Thailand. All of these sites contain a detailed sedimentary record covering the past 2000 years, two of the sites cover parts of or, the entire Holocene; and two sites have sediments covering the last Termination and MIS 3, respectively.
Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue
Rolison, John M.; Stirling, Claudine H.; Middag, Rob; ...
2018-02-19
We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise in atmospheric oxygen, contrary to other interpretations based on iron isotope systematics.« less
Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolison, John M.; Stirling, Claudine H.; Middag, Rob
We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise in atmospheric oxygen, contrary to other interpretations based on iron isotope systematics.« less
Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue
NASA Astrophysics Data System (ADS)
Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.
2018-04-01
The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise in atmospheric oxygen, contrary to other interpretations based on iron isotope systematics.
Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.
2017-12-01
The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were 29° where grainflows were present and 33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.
URINARY MUTAGENICITY IN CHARCOAL WORKERS: A CROSS-SECTIONAL STUDY IN NORTHEASTERN BRAZIL
Urinary Mutagenicity in charcoal workers: a cross-sectional study in northeastern Brazil
Charcoal production by wood carbonization is an ancient process that has changed little since the Bronze Age. Its production in large scale is necessary to sustain some steel and pig...
ESTIMATION OF EMISSIONS FROM CHARCOAL LIGHTER FLUID AND REVIEW OF ALTERNATIVES
The report gives results of an evaluation of emissions of volatile organic compounds (VOCs) from charcoal lighter fluid, a consumer product consisting entirely of volatile constituents. An estimated 46,250 tons (42,000 Mg) of charcoal lighter fluid is used in the U.S. each year. ...
Gonçalves, Thaís A P; Nisgoski, Silvana; Oliveira, Julia S; Marcati, Carmen R; Ballarin, Adriano W; Muñiz, Graciela I B
2016-05-13
The Brazilian Cerrado is the richest savanna in the world. It is also one of the biomes more threatened in the country and a hotspot for conservation priorities. The main causes of deforestation in Cerrado are agricultural practices, livestock and charcoal production. Although charcoal has a minor impact, its consumption represents the deforestation of 16.000 Km² of the Cerrado. To contribute for the biomes's conservation it is very important to improve forestry supervision. Thus, in this work we present the macroscopic characterization of charcoal from 25 Cerrado's species. We simulate the real conditions of forest controllers by using the magnifications of 10x, 25x and 65x. Likewise, the charcoals micrographs are all of transverse sections due to the larger amount of anatomical information. We also analyzed texture, brightness, vitrification, ruptures and some special features. The species present several differences in their anatomical structure. Although some of them are very unique, this work does not intent to identify charcoals only by macroscopic analyses. But it might give directions to future identification of genera or species. It also provides knowledge for government agents to verify the documents of forestry origin by fast analyzing a sample of charcoal itself.
Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A
2017-09-11
Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.
NASA Astrophysics Data System (ADS)
dos Anjos Leal, Otávio; Pinheiro Dick, Deborah; Cylene Lombardi, Kátia; Gonçalves Maciel, Vanessa
2014-05-01
In some regions in Brazil, charcoal is usually applied to the soil with the purpose to improve its fertility and its organic carbon (SOC) content. In Brazil, the use of charcoal waste from steel industry with agronomic purposes represents also an alternative and sustainable fate for this material. In this context, the objective of this work was to evaluate the impact of Eucalyptus charcoal waste application on the SOC content and on the soil organic matter (SOM) composition. Increasing doses of charcoal (0, 10, 20 and 40 Mg ha-1) were applied to an Haplic Cambisol, in Irati, South-Brazil. Charcoal was initially applied on the soil surface, and then it was incorporated at 10 cm with a harrow. Soil undisturbed and disturbed samples (four replicates) were collected in September 2011 (1 y and 9 months) after charcoal incorporation. Four soil depths were evaluated (0-5, 5-10, 10-20 and 20-30 cm) and each replicate was composed by three subsamples collected within each plot. The soil samples were air dried, passed through a 9.51 mm sieve and thereafter through a 2.00 mm sieve. The SOC content and total N were quantified by dry combustion. The SOM was concentrated with fluoridric acid 10% and then the SOM composition was evaluated by thermogravimetric analysis along the soil profile. The main impact of charcoal application occurred at the 0-5 cm layer of the area treated with the highest dose: SOC content increased in 15.5 g kg-1 in comparison to the soil without charcoal application. The intermediary doses also increased the SOC content, but the differences were not significant. No differences for N content were found in this soil depth. Further results were observed in the 10-20 cm soil depth, where the highest dose increased the SOC content and N content. Furthermore, this treatment increased the recalcitrance of the SOM, mainly at the 0-5 cm and 10-20 cm soil layers. No differences between doses of charcoal application were found in the 20-30 cm soil depth, suggesting that the charcoal has not migrated so deep in soil even after almost two years of its incorporation.
Chen, Ying-Yeh; Chen, Feng; Chang, Shu-Sen; Wong, Jacky; Yip, Paul S F
2015-01-01
Objective Charcoal-burning suicide has recently been spreading to many Asian countries. There have also been several cases involving this new method of suicide in Western countries. Restricting access to suicide means is one of the few suicide-prevention measures that have been supported by empirical evidence. The current study aims to assess the effectiveness of a community intervention program that restricts access to charcoal to prevent suicide in Taiwan. Methods and Findings A quasi-experimental design is used to compare method-specific (charcoal-burning suicide, non-charcoal-burning suicide) and overall suicide rates in New Taipei City (the intervention site, with a population of 3.9 million) with two other cities (Taipei City and Kaohsiung City, the control sites, each with 2.7 million residents) before (Jan 1st 2009- April 30th 2012) and after (May 1st 2012-Dec. 31st 2013) the initiation of a charcoal-restriction program on May 1st 2012. The program mandates the removal of barbecue charcoal from open shelves to locked storage in major retail stores in New Taipei City. No such restriction measure was implemented in the two control sites. Generalized linear regression models incorporating secular trends were used to compare the changes in method-specific and overall suicide rates before and after the initiation of the restriction measure. A simulation approach was used to estimate the number of lives saved by the intervention. Compared with the pre-intervention period, the estimated rate reduction of charcoal-burning suicide in New Taipei City was 37% (95% CI: 17%, 50%) after the intervention. Taking secular trends into account, the reduction was 30% (95% CI: 14%, 44%). No compensatory rise in non-charcoal-burning suicide was observed in New Taipei City. No significant reduction in charcoal-burning suicide was observed in the other two control sites. The simulation approach estimated that 91 (95%CI [55, 128]) lives in New Taipei City were saved during the 20 months of the intervention. Conclusion Our results demonstrate that the charcoal-restriction program reduced method-specific and overall suicides. This study provides strong empirical evidence that restricting the accessibility of common lethal methods of suicide can effectively reduce suicide rates. PMID:26305374
Predecessors of the 2004 Indian Ocean tsunami in a coastal cave, Aceh Province, Sumatra
NASA Astrophysics Data System (ADS)
Pilarczyk, J.; Rubin, C. M.; Sieh, K.; Horton, B.; Daly, P.; Majewski, J.; Ismail, N.
2013-12-01
Geological studies of coral reefs and coastal plains have uncovered short and incomplete records of predecessors for the 2004 Indian Ocean tsunami. Here we present a longer and more-complete mid- to late Holocene tsunami history from an extraordinary sedimentary deposit in northwestern Aceh Province, Sumatra. We exposed clastic sediment in six trenches up to 2 m deep within a sheltered limestone cave 200 m from the present coastline. The trim line of the 2004 tsunami is about 25 m above sea level and 15 m above the top of the 10-m high entrance to the cave. Within the cave, the deposits of 2004 comprise a 15 - 20 cm thick, laterally continuous sand sheet. Beneath this youngest tsunami sand is a <3-cm thick bed rich in guano dropped by insect feeding bats (Microchiroptera). Many similar couplets of sand and bat guano occur lower in the stratigraphic sequence. The sands have many diagnostic features of the 2004 deposit, namely a distinctly marine geochemical signature, high-diversity foraminiferal assemblages that include offshore species, normal grading, basal rip-up clasts, lenticular laminations, and articulated bivalves. Minor, local, non-tectonic normal and decollement faults that break the layers at several locations are likely due to strong ground shaking. Radiocarbon dating of charcoal and molluscs establish a mid- to late Holocene age range for the tsunami sands. Other than the 2004 deposit, layers younger than about 2,000 years are absent, because by about 2,000 years ago, accommodation space beneath the level of the rocky entrance to the cave had been filled. Pending analyses will reveal whether three clay layers within the sequence are of marine or of freshwater origin.
Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.
1999-01-01
OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle cabin air filters may result in further diminishing the biomedical effects of diesel exhaust in subjects exposed in traffic and workplaces. PMID:10450238
NASA Astrophysics Data System (ADS)
Peteet, D. M.; Guilderson, T.
2008-12-01
Sutherland Fen formed about 12,600 C-14 years ago (15,000 calendar years), the same time as adjacent Sutherland Pond and regional deglaciation. High-resolution (2 cm) analysis of the 3.2 m fen core indicates three major macrofossils zones indicative of climate shifts. These climate shifts were defined over fifty years ago through pollen stratigraphy of the regional northeastern US, but macrofossils provide new details concerning hydrological and ecological shifts. The lowest (SUB-1) dated to the late-glacial, is indicative of a shallow pond characterized by Najas, Nuphar, and Potamogeton seeds and containing Salix (willow) buds, a Rubus (berry) seed, and Picea glauca (white spruce) needles and sterigmata from the surrounding upland. Sedimention rates are highest in this boreal environmental zone. The overlying zone (SUB-2) beginning at 11,500 years ago (Holocene) indicates a continuing pond environment with aquatics such as Najas, Nuphar, and Brasenia, but Picea disappears and Pinus strobus (white pine) dominates the lower section of the zone. A warmer, drier climate produces sustained charcoal in the record at the Holocene boundary. Pinus strobus needles and seeds subsequently disappear and are replaced from 9000 to 7500 years ago by Pinus rigida (pitch pine), Betula populifolia/papyrifera (grey/paper birch), and emergent wetland plants such as Decodon, Cladium, and Cephalanthus, as well as Dulichium, Eleocharis, and Carex, suggesting a shallowing pond and a drier climate. Chara oospores indicate probably groundwater influx into the fen. About 4000 years ago, charcoal again is present. In the subsequent late Holocene a more acidic, moist, fen environment is characterized by Sphagnum, Rubus, Hypericum, Viola, Chamaedaphne, and Carex, though Brasenia and Potamogeton (pond indicators) are occasionally present. The continued presence of Sphagnum led to high carbon accumulation because of less decomposition. This increase in Sphagnum in recent millennia with aquatics suggest a cooler, wetter climate. Charcoal re-appears briefly in the uppermost sediment.
A synthesis of sedimentary records of Australian environmental change during the last 2000 years
NASA Astrophysics Data System (ADS)
Tyler, J. J.; Karoly, D. J.; Gell, P.; Goodwin, I. D.
2013-12-01
Our understanding of Southern Hemispheric climate variability on multidecadal to multicentennial timescales is limited by a scarcity of quantitative, highly resolved climate records, a problem which is particularly manifest in Australia. To date there are no quantitative, annually resolved records from within continental Australia which extend further back in time than the most recent c. 300 years [Neukom and Gergis, 2012; PAGES 2k Consortium, 2013]. By contrast, a number of marine, lake, peat and speleothem sedimentary records exist, some of which span multiple millennia at sub-decadal resolution. Here we report a database of existing sedimentary records of environmental change in Australia [Freeman et al., 2011], of which 25 have sample resolutions < 100 years/sample and which span > 500 years in duration. The majority of these records are located in southeastern Australia, providing an invaluable resource with which to examine regional scale climate and environmental change. Although most of the records can not be quantitatively related to climate variability, Empirical Orthogonal Functions coupled with Monte Carlo iterative age modelling, demonstrate coherent patterns of environmental and ecological change. This coherency, as well as comparisons with a limited number of quantitative records, suggests that regional hydroclimatic changes were responsible for the observed patterns. Here, we discuss the implications of these findings with respect to Southern Hemisphere climate during the last 2000 years. In addition, we review the progress and potential of ongoing research in the region. References: Freeman, R., I. D. Goodwin, and T. Donovan (2011), Paleoclimate data synthesis and data base for the reconstruction of climate variability and impacts in NSW over the past 2000 years., Climate Futures Technical Report, 1/2011, 50 pages. Neukom, R., and J. Gergis (2012), Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years, Holocene, 22(5), 501-524, doi:10.1177/0959683611427335. PAGES 2k Consortium (2013), Continental-scale temperature variability during the past two millennia, Nature Geoscience, 6, 339-346.
NASA Astrophysics Data System (ADS)
Kaltenrieder, Petra; Belis, Claudio A.; Hofstetter, Simone; Ammann, Brigitta; Ravazzi, Cesare; Tinner, Willy
2009-12-01
It has been hypothesized that refugia of thermophilous tree species were located in Northern Italy very close to the Alps, though, this hypothesis has yet to be tested thoroughly. In contrast to Central and Southern Italy with its relative wealth of data, only a few fragmentary records are currently available from Northern Italy for the last Glacial (Würm, Weichselian). Our new study site Lago della Costa lies adjacent to the catchment of the megafans of the Alpine forelands and the braided rivers of the Northeastern Po Plain that have so far inhibited the recovery of continuous Glacial and Late-Glacial records. We analyze pollen, plant macrofossils, charcoal and ostracods to reconstruct the vegetation, fire and lake history for the period 33,000-16,000 cal. BP. We compare our data with Glacial records from Southern Europe to discuss similarities and dissimilarities between these potential refugial areas. A comparison with independent paleoclimatic proxies allows to assess potential linkages between environmental and climatic variability. New macrofossil and pollen data at Lago della Costa unambiguously document the local persistence of boreal tree taxa such as Larix decidua and Betula tree species around the study site during the last Glacial. The regular occurrence of pollen of temperate trees in the organic lake sediments (fine-detritus calcareous gyttja) suggests that temperate taxa such as Corylus avellana, Quercus deciduous, Tilia, Ulmus, Fraxinus excelsior, Carpinus, Abies alba and Fagus sylvatica, most likely survived the Last Glacial Maximum (LGM) at favorable sites in the Euganean Hills. The percentage values of temperate trees are comparable with those from Southern Europe (e.g. Monticchio in Southern Italy). We conclude that the Euganean Hills were one of the northernmost refugial areas of temperate taxa in Europe. However, the relative and absolute abundances of pollen of temperate trees are highly variable. Pollen-inferred declines of temperate tree communities (e.g. Quercetum mixtum) and low ostracod-inferred water levels at Lago della Costa correspond to the cold Heinrich events H-2 (LGM; 23,000-19,000 cal. BP) and H-3 (around 28,000 cal. BP), as recorded in the marine sediments of the North Atlantic. Similar patterns of significant temperate tree population collapses during cold Heinrich events are recorded at southern Mediterranean sites (e.g. Monticchio and the Alboran Sea). These findings suggest close linkages between Northern Atlantic and South-Central European climates during the past Glacial.
Brubaker, Linda B; Higuera, Philip E; Rupp, T Scott; Olson, Mark A; Anderson, Patricia M; Hu, Feng Sheng
2009-07-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecologica model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a mid-Holocene fire-regime shift in boreal forests of the south-central Brooks Range, Alaska, U.S.A. Fire-return intervals (FRIs, number of years between fires) are estimated over the past 7000 calibrated 14C years (7-0 kyr BP [before present]) from short-term variations in charcoal accumulation rates (CHARs) at three lakes, and an index of area burned is inferred from long-term CHARs at these sites. ALFRESCO simulations of FRIs and annual area burned are based on prescribed vegetation and climate for 7-5 kyr BP and 5-0 kyr BP, inferred from pollen and stomata records and qualitative paleoclimate proxies. Two sets of experiments examine potential causes of increased burning between 7-5 and 5-0 kyr BP. (1) Static-vegetation scenarios: white spruce dominates with static mean temperature and total precipitation of the growing season for 7-0 kyr BP or with decreased temperature and/or increased precipitation for 5-0 kyr BP. (2) Changed-vegetation scenarios: black spruce dominates 5-0 kyr BP, with static temperature and precipitation or decreased temperature and/or increased precipitation. Median FRIs decreased between 7-5 and 5-0 kyr BP in empirical data and changed-vegetation scenarios but remained relatively constant in static-vegetation scenarios. Median empirical and simulated FRIs are not statistically different for 7-5 kyr BP and for two changed-vegetation scenarios (temperature decrease, precipitation increase) for 5-0 kyr BP. In these scenarios, cooler temperatures or increased precipitation dampened the effect of increased landscape flammability resulting from the increase in black spruce. CHAR records and all changed-vegetation scenarios indicate long-term increases in area burned between 7-5 and 5-0 kyr BP. The similarity of CHAR and ALFRESCO results demonstrates the compatibility of these independent data sets for investigating ecological mechanisms causing past fire-regime changes. The finding that vegetation flammability was a major driver of Holocene fire regimes is consistent with other investigations that suggest that landscape fuel characteristics will mediate the direct effects of future climate change on boreal fire regimes.
NASA Astrophysics Data System (ADS)
Rutkiewicz, Paweł; Malik, Ireneusz; Gawior, Daniel; Woskowicz-Ślezak, Beata; Kryszczuk, Paweł
2017-11-01
Ferrous metallurgy, through the centuries of its activity contributed the transformation of the natural landscape. We can find information on the time of functioning of iron works in historical sources. Among historians, there is an opinion that the traces of iron works activity are not visible in the field, but using GIS methods we can identify different types of objects related to ferrous metallurgy like dams, canals, smelter ponds and charcoal kilns. The aim of the study was to identify imprints of ferrous metallurgy in relief of two valleys in Southern Poland. The study was conducted in Mała Panew and Czarna River valleys where ferrous metallurgy, based on historical sources, has started in the 14th century and declined in the end of the 19th century. The tools used for identification objects related to ferrous metallurgy were standard shaded relief visualization techniques. We created models of terrain elevation with hillshading and spatial density of 0.2 m. During the analysis of DEM images we detected objects interpreted as traces of smelter ponds with accompanying dams and canals, and oval objects recognized as remnants of charcoal kilns. Large number and vast distribution of relief features related to ferrous metallurgy, charcoal kilns in particular, clearly indicate that the historical smelting and ironwork activity natural environment of studied areas was transformed. Relief of valley floors, in particular, was a subject of change.
We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...
Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis
Nicole Labbe; David Harper; Timothy Rials; Thomas Elder
2006-01-01
In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...
NASA Astrophysics Data System (ADS)
Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.
2018-03-01
Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.
Assessing the legacy effects of historic charcoal production in Brandenburg, Germany
NASA Astrophysics Data System (ADS)
Schneider, Anna; Hirsch, Florian; Raab, Alexandra; Bonhage, Alexander; Raab, Thomas
2017-04-01
Charcoal produced in kilns or hearths was an important source of energy in many regions of Europe and Northern America until the 19th century, and charcoal production in hearths is still common in many other regions of the world. The remains of charcoal hearths are therefore a widespread legacy of historic land use in forest areas. Soils on charcoal hearth sites are characterized by a technogenic layer rich in charcoal and ash on top of the soil profile, and by a pyrogenic modification of substrates below the former hearth. The aims of our study are to examine how these alterations to the natural soil profiles affect the soil water regime and other soil physical properties, and to assess the relevance of these effects on the landscape scale. We present first results of a mapping of hearth site occurrence in forest areas in the state of Brandenburg, Germany, and of a characterization of the infiltration behaviour on hearth sites as compared with undisturbed forest soils. Results of mapping small-scale relief features from LIDAR-based digital elevation models show that charcoal hearths occur in a high density in many large forest areas throughout Brandenburg. In the areas studied so far, up to almost 3% of the soil surface were found to be affected by the remains of historic hearths. First analyses of soil physical properties indicate differences in the infiltration characteristics of hearth site soils and undisturbed forest soils: Hood infiltrometer measurements show a very high spatial variability of hydraulic conductivity for hearth site soils, and water-drop-penetration-time tests reflect extremely high hydrophobicity of the technogenic layer on the sites. Results of dye tracer experiment show considerably strong preferential flow and therefore a higher spatial variability of soil wetness below the hearth remains. Overall, our first results therefore indicate that the legacy effects of historic charcoal production might significantly affect overall site conditions in forest areas with a high density of charcoal hearth remains.
Soil Charcoal to Assess the Impacts of Past Human Disturbances on Tropical Forests
Vleminckx, Jason; Morin-Rivat, Julie; Biwolé, Achille B.; Daïnou, Kasso; Gillet, Jean-François; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J.
2014-01-01
The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: “recent” charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while “ancient” charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental factors on species composition. PMID:25391134
Soil charcoal to assess the impacts of past human disturbances on tropical forests.
Vleminckx, Jason; Morin-Rivat, Julie; Biwolé, Achille B; Daïnou, Kasso; Gillet, Jean-François; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J
2014-01-01
The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: "recent" charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while "ancient" charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental factors on species composition.
Chen, Ying-Yeh; Tsai, Chi-Wei; Biddle, Lucy; Niederkrotenthaler, Thomas; Wu, Kevin Chien-Chang; Gunnell, David
2016-03-15
It has been suggested that extensive media reporting of charcoal burning suicide was a key factor in the rapid spread of this novel method in many East Asian countries. But very few empirical studies have explored the relationship between media reporting and the emergence of this new method of suicide. We investigated the changing pattern of media reporting of charcoal burning suicides in Taiwan during 1998-2002 when this method of suicide increased most rapidly, assessing whether the characteristics of media reporting were associated with the changing incidence of suicide using this method. A mixed method approach, combining quantitative and qualitative analysis of newspaper content during 1998-2002 was used. We compared differences in reporting characteristics before and after the rapid increase in charcoal burning suicide. Point-biserial and Pearson correlation coefficients were calculated to quantify the associations between the media item content and changes in suicide rates. During the period when charcoal burning suicide increased rapidly, the number of reports per suicide was considerably higher than during the early stage (0.31 vs. 0.10). Detailed reporting of this new method was associated with a post-reporting increase in suicides using the method. Qualitative analysis of news items revealed that the content of reports of suicide by charcoal burning changed gradually; in the early stages of the epidemic (1999-2000) there was convergence in the terminology used to report charcoal burning deaths, later reports gave detailed descriptions of the setting in which the death occurred (2001) and finally the method was glamourized and widely publicized (2001-2002). Our analysis was restricted to newspaper reports and did not include TV or the Internet. Newspaper reporting was associated with the evolution and establishment of charcoal burning suicide. Working with media and close monitoring of changes in the incidence of suicide using a new method might help prevent a suicide epidemic such as charcoal burning suicide seen in Taiwan. Copyright © 2016 Elsevier B.V. All rights reserved.
Biocidal quaternary ammonium resin
NASA Technical Reports Server (NTRS)
Janauer, G. E.
1983-01-01
Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.
NASA Technical Reports Server (NTRS)
Slivon, L. E.; Hernon-Kenny, L. A.; Katona, V. R.; Dejarme, L. E.
1995-01-01
This report describes analytical methods and results obtained from chemical analysis of 31 charcoal samples in five sets. Each set was obtained from a single scrubber used to filter ambient air on board a Spacelab mission. Analysis of the charcoal samples was conducted by thermal desorption followed by gas chromatography/mass spectrometry (GC/MS). All samples were analyzed using identical methods. The method used for these analyses was able to detect compounds independent of their polarity or volatility. In addition to the charcoal samples, analyses of three Environmental Control and Life Support System (ECLSS) water samples were conducted specifically for trimethylamine.
NASA Astrophysics Data System (ADS)
Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.
2017-12-01
An extensive three-dimensional seismic dataset is used to investigate the sedimentary processes and morphological evolution of the mid-Norwegian continental slope through the Quaternary. These data reveal hundreds of buried landforms, including channels and debris flows of variable morphology, as well as gullies, iceberg ploughmarks, slide scars and sediment waves. Slide scars, turbidity currents and debris flows comprise slope systems controlled by local slope morphology, showing the spatial variability of high-latitude sedimentation. Channels dominate the Early Pleistocene ( 2.7-0.8 Ma) morphological record of the mid-Norwegian slope. During Early Plesitocene, glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Glacigenic debris-flows appear within the Middle-Late Pleistocene ( 0.8-0 Ma) succession. Their abundance increases on Late Pleistocene palaeo-surfaces, marking a paleo-environmental change characterised by decreasing role for channelized turbidity currents and dense water flows. This transition coincides with the gradual shift to full-glacial ice-sheet conditions marked by the appearance of the first erosive fast-flowing ice streams and an associated increase in sediment flux to the shelf edge, emphasizing first-order climate control on the temporal variability of high-latitude sedimentary slope records.
Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.
2006-01-01
The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.
Wolansky, R.M.; Haeni, F.P.; Sylvester, R.E.
1983-01-01
A continuous marine seismic-reflection survey system was used to define the configuration of shallow sedimentary layers underlying the Charlotte Harbor and Venice areas, southwest Florida. Seismic profiling was conducted over a distance of about 57 miles of Charlotte Harbor, the Peace and Myakka Rivers, and the Intracoastal Waterway near Venice using a high resolution energy source capable of penetrating 200 feet of sediments with a resolution of 1 to 3 feet. Five stratigraphic units defined from the seismic records includes sediments to Holocene to early Miocene age. All seismic-profile records are presented, along with geologic sections constructed from the records. Seismic reflection amplitude, frequency, continuity, configuration, external form, and areal association were utilized to interpret facies and depositional environments of the stratigraphic units. The despositional framework of the units ranges from shallow shelf to prograded slope. The stratigraphic units are correlated with the surficial aquifer and intermediate artesian aquifers, and permeable zones of the aquifers are related to the seismic records. (USGS)
Holocene Biomass Burning, Environmental Change, and Human Land Use in the Southern Maya Lowlands
NASA Astrophysics Data System (ADS)
Anderson, L.; Wahl, D.
2013-12-01
For several decades scholars have studied the dynamic relationship between the prehispanic Maya and their environment in order to test hypotheses that environmental change played a role in the abandonment of the Maya lowlands. Fire was inherent in Maya land use practices, arguably the primary tool used to alter the landscape and extract resources. Opening of forest for agriculture, building, and extraction/production of construction material necessitated burning. The extensive production of lime plaster for architectural and domestic use demanded harvesting and burning of vast quantities of green wood. While we understand the fundamental role of fire in Maya land use, there are very few records of prehispanic biomass burning from the Maya lowlands. Consequently, only a limited understanding exists of both natural fire regimes and patterns of anthropogenic burning in the tropical dry forests of Central America. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of fossil charcoal recovered from lacustrine sediment cores, extending from the early Holocene to the present. The study sites, Lagos Paixban and Puerto Arturo are located in the southern Maya lowlands in modern northern Peten, Guatemala. Macroscopic charcoal data are presented along with previously published proxy data from the sites, and interpreted in the context of existing regional and local paleoenvironmental and archeological records. Results show that frequent fires occurred in the closed canopy forests of the region since at least the early mid-Holocene (~9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of sedentary agriculture at around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Preclassic period suggest that land use strategies may have included intensive agricultural much earlier than previously thought. Preliminary results showing concentrations of soot/black carbon during the middle and late Preclassic periods have intriguing implications regarding the efficiency of Maya fuel consumption. This period marks a time of peak lime production requiring very high rates of biomass harvest and burning, yet concentration levels of soot/black carbon are lower than modern global background values.
Draut, Amy E.; Clift, Peter D.
2006-01-01
Sediment deposited around oceanic volcanic ares potentially provides the most complete record of the tectonic and geochemical evolution of active margins. The use of such tectonic and geochemical records requires an accurate understanding of sedimentary dynamics in an arc setting: processes of deposition and reworking that affect the degree to which sediments represent the contemporaneous volcanism at the time of their deposition. We review evidence from the modern Mariana and Tonga arcs and the ancient arc crustal section in the Lower Jurassic Talkeetna Formation of south-central Alaska, and introduce new data from the Mariana Arc, to produce a conceptual model of volcaniclastic sedimentation processes in oceanic arc settings. All three arcs are interpreted to have formed in tectonically erosive margin settings, resulting in long-term extension and subsidence. Debris aprons composed of turbidites and debris flow deposits occur in the immediate vicinity of arc volcanoes, forming relatively continuous mass-wasted volcaniclastic records in abundant accommodation space. There is little erosion or reworking of old volcanic materials near the arc volcanic front. Tectonically generated topography in the forearc effectively blocks sediment flow from the volcanic front to the trench; although some canyons deliver sediment to the trench slope, most volcaniclastic sedimentation is limited to the area immediately around volcanic centers. Arc sedimentary sections in erosive plate margins can provide comprehensive records of volcanism and tectonism spanning < 10 My. The chemical evolution of a limited section of an oceanic arc may be best reconstructed from sediments of the debris aprons for intervals up to ~ 20 My but no longer, because subduction erosion causes migration of the forearc basin crust and its sedimentary cover toward the trench, where there is little volcaniclastic sedimentation and where older sediments are dissected and reworked along the trench slope.
NASA Astrophysics Data System (ADS)
Hubert-Ferrari, Aurélia; El-Ouahabi, Meriam; Garcia-Moreno, David; Avsar, Ulas; Altinok, Sevgi; Schmidt, Sabine; Cagatay, Namik
2016-04-01
Delta contains a sedimentary record primarily indicative of water level changes, but particularly sensitive to earthquake shaking, which results generally in soft-sediment-deformation structures. The Kürk Delta adjacent to a major strike-slip fault displays this type of deformation (Hempton and Dewey, 1983) as well as other types of earthquake fingerprints that are specifically investigated. This lacustrine delta stands at the south-western extremity of the Hazar Lake and is bound by the East Anatolian Fault (EAF), which generated earthquakes of magnitude 7 in eastern Turkey. Water level changes and earthquake shaking affecting the Kurk Delta have been reevaluated combining geophysical data (seismic-reflection profiles and side-scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water level changes provides a temporal framework regarding the sedimentological record. In addition to the commonly soft-sediment-deformation previously documented, the onland outcrops reveal a record of deformation (faults and clastic dykes) linked to large earthquake-induced liquefactions. The recurrent liquefaction structures can be used to obtain a paleoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the EAF. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake fingerprint. Based on radionuclide dating (137Cs and 210Pb), two major sedimentary events were attributed to the 1874-1875 earthquake sequence along the EAF. Their sedimentological characteristics were inferred based X-ray imagery, XRD, LOI, grain-size distribution, geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post-seismic sediment reworking of earthquake-triggered landslides. A time constraint regarding this sediment remobilization process could be achieved thanks to the fact that the two studied sedimentary events are separated by less than one year.
Potassium and Phosphorus effects on disease severity of charcoal rot of soybean
USDA-ARS?s Scientific Manuscript database
The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...
Evaluation of soybean genotypes for resistance to charcoal rot
USDA-ARS?s Scientific Manuscript database
Charcoal rot caused by Macrophomina phaseolina causes more yield loss in soybean than most other diseases in the southern U.S.A. There are no commercial genotypes marketed as resistant to charcoal rot of soybean. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V gen...
Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization
Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu
2015-01-01
The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...
Potassium and phosphorus have no effects on severity of charcoal rot of soybean
USDA-ARS?s Scientific Manuscript database
The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...
Respiratory health effects of occupational exposure to charcoal dust in Namibia
Kgabi, Nnenesi
2016-01-01
Background Charcoal processing activities can increase the risk of adverse respiratory outcomes. Objective To determine dose–response relationships between occupational exposure to charcoal dust, respiratory symptoms and lung function among charcoal-processing workers in Namibia. Methods A cross-sectional study was conducted with 307 workers from charcoal factories in Namibia. All respondents completed interviewer-administered questionnaires. Spirometry was performed, ambient and respirable dust levels were assessed in different work sections. Multiple logistic regression analysis estimated the overall effect of charcoal dust exposure on respiratory outcomes, while linear regression estimated the exposure-related effect on lung function. Workers were stratified according to cumulative dust exposure category. Results Exposure to respirable charcoal dust levels was above occupational exposure limits in most sectors, with packing and weighing having the highest dust exposure levels (median 27.7 mg/m3, range: 0.2–33.0 for the 8-h time-weighted average). The high cumulative dust exposure category was significantly associated with usual cough (OR: 2.1; 95% CI: 1.1–4.0), usual phlegm (OR: 2.1; 95% CI: 1.1–4.1), episodes of phlegm and cough (OR: 2.8; 95% CI: 1.1–6.1), and shortness of breath. A non-statistically significant lower adjusted mean-predicted % FEV1 was observed (98.1% for male and 95.5% for female) among workers with greater exposure. Conclusions Charcoal dust levels exceeded the US OSHA recommended limit of 3.5 mg/m3 for carbon-black-containing material and study participants presented with exposure-related adverse respiratory outcomes in a dose–response manner. Our findings suggest that the Namibian Ministry of Labour introduce stronger enforcement strategies of existing national health and safety regulations within the industry. PMID:27687528
Sedimentary Records of the Paleohurricane Activity in the Bahamas
NASA Astrophysics Data System (ADS)
Wallace, E. J.; Donnelly, J. P.; Wiman, C.; Cashman, M.
2015-12-01
Hurricanes pose a threat to human lives and can cause significant destruction of coastal areas. This threat has become more pronounced with recent rises in sea level and coastal populations. Currently, there is a large degree of uncertainty surrounding future changes in tropical cyclone activity. This is due to the limitations of climate models as well as the scarcity and unreliability of the current observational record. With so much uncertainty surrounding the current projections of hurricane activity, it is crucial to establish a longer and more accurate historical record. This study uses sediment cores extracted from blueholes in the Bahamas to develop a record of intense hurricane landfalls in the region dating back more than a millennia. The collected cores were sectioned, split, and scanned on an X-ray fluorescence scanner to obtain a high resolution core profile of the sediments' elemental composition and to identify potential sedimentary structures. Age control of the samples was determined using radiocarbon dating, coarse fraction was measured every centimeter, and hurricane event bed frequency was established for each core. We assess the statistical significance of the patterns observed in the sedimentary record using a coupled ocean-atmosphere hurricane model to simulate storms representative of modern climatology. Cores extracted from two blue holes near South Andros Island provide approximately a 1600 year and a 600 year record respectively, with sedimentation rates exceeding 1 cm/year. Both records contain coarse grained event deposits that correlate with known historical intense hurricane strikes in the Bahamas within age uncertainties. The 1600 year record confirms previous hurricane reconstructions from the Caribbean indicating higher tropical cyclone activity from 500 to 1400 CE. In addition, these new high-resolution records indicate elevated intense hurricane activity in the 17th and 18th centuries CE, when activity is also elevated in lower resolution records from Abaco, Bahamas and Vieques, Puerto Rico. However, records from the northeast United States and Gulf of Mexico are relatively inactive. This spatial variability in intense hurricane landfalls suggests significant regional controls on hurricane activity.
Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying
2011-01-01
A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.
Huang, Shunhong; Yang, Yi; Li, Qian; Su, Zhen; Yuan, Cuiyu; Ouyang, Kun
2017-03-01
The effects of amendments, such as lime, bassanite, sodium phosphate, steel slag and charcoal, and their compounds on the immobilization of cadmium (Cd) are investigated. The lime-bassanite-charcoal compound shows the best remediation performance compared to other agents in conducted experiments. The optimum condition for lime-bassanite-charcoal application in contaminated soil is lime-bassanite-charcoal with a mass ratio of 1:1/3:2/3, a dose of 2% of the soil weight, and a liquid-to-solid ratio of 35%-40%; additionally, the agents should be added before water addition. The highest Cd removal rate was 58.94% (±1.19%) with a ∆pH of 0.23, which is much higher than the rates reported in previous studies. The compound amendment was used in a field experiment, demonstrating a Cd removal efficiency of 48.78% (±4.23), further confirming its effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, P.W.; Cutter, B.E.; Kalliat, M.
1984-04-01
In order to learn about the effects of higher preparation temperatures, we recently examined a series of charcoals from black cherry (Prunus serotina Ehrh.) wood heated to temperatures from 600/sup 0/ to 2000/sup 0/C. The results are summarized in this report. In addition to obtaining some information about the pore structure of black cherry charcoal, we have developed a general picture of how the charcoal porosity depends on the temperature to which the wood was heated during pyrolysis. These results have led us to propose that the macropores in charcoals are similar to those in wood and that the mainmore » effect which pyrolysis at temperatures above 400/sup 0/C exerts on the pore structure is to cause the micropores and transitional pores to grow, while leaving the macropores almost unchanged.« less
1988-12-01
by light finger pressure; and surface shaded or rubbed by soft pencil, charcoal, or crayon. Anglers initiated this custom as a means of recording...related to the barium titanate or simple nects, and mixers. Some of these applica- perovskite unit cell (Figure 1). In this struc- tions can be...dispersive spectroscopy (EDS), Target-~ microprobe analysis, and x-ray diffraction R~orOC(XRD). MagnetsOptical microscopy with polarized light
NASA Astrophysics Data System (ADS)
Firtana Elcomert, K.; Kocaoglu, A. H.
2013-12-01
Sedimentary basins generally cause significant ground motion amplification during an earthquake. Along with the resonance controlled by the impedance contrast between the sedimentary cover and bedrock, surface waves generated within the basin make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D and/or 3-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be controlled by the northern branch of the North Anatolian Fault Zone. A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. This work presents some of the preliminary results obtained from 2-D and 3-D seismic wave propagation simulations using the spectral element method, which is based on high order polynomial approximation of the weak formulation of the wave equation. In this study, the numerical simulations were carried out with SPECFEM2D/3D program. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling clearly reveals that observed seismograms include surface waves whose excitation is clearly related with the basin geometry.
Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars.
Ewing, R C; Lapotre, M G A; Lewis, K W; Day, M; Stein, N; Rubin, D M; Sullivan, R; Banham, S; Lamb, M P; Bridges, N T; Gupta, S; Fischer, W W
2017-12-01
The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.
Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars
Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.
2017-01-01
Abstract The Mars Science Laboratory rover Curiosity visited two active wind‐blown sand dunes within Gale crater, Mars, which provided the first ground‐based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial‐like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large‐ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter‐scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune‐field pattern dynamics and basin‐scale boundary conditions will dictate the style and distribution of sedimentary processes. PMID:29497590
Impact of ancient charcoal kilns on chemical properties of several forest soils after 2 centuries
NASA Astrophysics Data System (ADS)
Dufey, Joseph; Hardy, Brieuc; Cornelis, Jean-Thomas
2014-05-01
Pyrogenic carbon plays a major role in soil biogeochemical processes and carbon budgets. Until the early 19th century, charcoal was the unique combustible used for iron metallurgy in Wallonia (Belgium). Traditional charcoal kilns were built directly in the forest: wood logs were piled into a mound and isolated from air oxygen with a covering of vegetation residues and soil before setting fire, inducing wood pyrolysis. Nowadays, ancient wood-charring platforms are still easy to identify on the forest floor as heightened domes of 10 meters in diameter characterized by a very dark topsoil horizon containing charcoal dust and fragments. Our goal is to assess the effects of wood charring at mound kiln sites on the properties of various forest soil types in Wallonia (Belgium), after two centuries. We sampled soil by horizon in 18 ancient kiln sites to 1.20 meter depth. The adjacent charcoal-unaffected soils were sampled the same way. We also collected recent charcoal fragments and topsoil samples from a still active charcoal kiln located close to Dole (France) to apprehend the evolution of soil properties over time. The pH, total carbon (C) and nitrogen (N) content, available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured on each soil sample. We separated the soil profiles in 5 groups based on the nature of soil substrate and pedogenesis for interpretation of the results. We show that the total carbon stock is significantly increased at kiln sites due to higher C concentrations and greater depth of the organo-mineral horizon. The C/N ratio in charcoal-enriched soil horizons is significantly higher than in the neighboring reference soils but clearly attenuated compared to pure wood-charcoal fragments. The CEC is higher in the charcoal-enriched soil horizons, not only due to higher C concentrations but also to increased CEC by carbon unit at kiln sites. The high negative charge of charcoal results from surface oxidation processes over time. This charge varies over quite a wide range of values according to soil type, which might be explained by the nature of the charred wood. The surface soil horizons at kiln site show a completely desaturated exchange complex, comparable to the reference soils. However, the raise of the base saturation in the underlying horizons reflects the past liming effect of ashes produced by wood charring that has been completely erased from the topsoil in 200 years. Exchangeable K+ in the topsoil layers of kiln sites is very low, which can be related to an enhanced selectivity for Mg++ and Ca++ on the exchange complex of old charred material. Similarly, very little Pav is extracted from charcoal-enriched horizons, suggesting that Pav is either reduced in quantity or in availability. Our data clearly highlight the long-term effect of the accumulation of charred material on the evolution of soil chemical properties due to charcoal ageing and nutrient leaching.
Earth's early fossil record: Why not look for similar fossils on Mars?
NASA Technical Reports Server (NTRS)
Awramik, Stanley M.
1989-01-01
The oldest evidence of life on Earth is discussed with attention being given to the structure and formation of stromatolites and microfossils. Fossilization of microbes in calcium carbonate or chert media is discussed. In searching for fossil remains on Mars, some lessons learned from the study of Earth's earliest fossil record can be applied. Certain sedimentary rock types and sedimentary rock configurations should be targeted for investigation and returned by the Martian rover and ultimately by human explorers. Domical, columnar to wavy laminated stratiform sedimentary rocks that resemble stromatolites should be actively sought. Limestone, other carbonates, and chert are the favored lithology. Being macroscopic, stromatolites might be recognized by an intelligent unmanned rover. In addition, black, waxy chert with conchoidal fracture should be sought. Chert is by far the preferred lithology for the preservation of microbes and chemical fossils. Even under optimal geological conditions (little or no metamorphism or tectonic alteration, excellent outcrops, and good black chert) and using experienced field biogeologists, the chances of finding well preserved microbial remains in chert are very low.
Hou, Weiguo; Dong, Hailiang; Li, Gaoyuan; Yang, Jian; Coolen, Marco J. L.; Liu, Xingqi; Wang, Shang; Jiang, Hongchen; Wu, Xia; Xiao, Haiyi; Lian, Bin; Wan, Yunyang
2014-01-01
Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake. PMID:25323386
ERIC Educational Resources Information Center
Chan, Sandra S. M.; Chiu, Helen F. K.; Chen, Eric Y. H.; Chan, Wincy S. C.; Wong, Paul W. C.; Chan, Cecilia L. W.; Law, Y. W.; Yip, Paul S. F.
2009-01-01
Charcoal burning suicides in Hong Kong between 2002-2004 in the 15 to 59-year-old age group were investigated using the psychological autopsy method. The psychopathological profiles of charcoal burning suicides (N = 53) were compared against "other suicides" (N = 97). The two groups did not differ significantly in the prevalence of…
Maximilian P. W. Schneider; Lacey A. Pyle; Kenneth L. Clark; William C. Hockaday; Caroline A. Masiello; Michael W.I. Schmidt
2013-01-01
The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to...
Ozone removal capability of a welding fume respirator containing activated charcoal.
Johnston, A R; Dyrud, J F; Shih, Y T
1989-09-01
Development of air purifying respirators for protection against ozone has been slowed by concerns about oxidation of charcoal and other available sorbents. The suitability of a charcoal sorbent for low concentrations of ozone was evaluated as a part of the development of a half-mask air purifying respirator designed for welding fumes and ozone. Testing of the respirator confirmed that charcoal can be a suitable sorbent for low levels of ozone. Where the respirator is properly selected, fit tested, and worn, respirator use against welding fumes and ozone at concentrations not exceeding 10 times the permissible exposure limit had been recommended.
García, M. T.; Pelaz, C.; Giménez, M. J.; Aguilar, L.
2000-01-01
The MICs at which 90% of isolates are inhibited for gemifloxacin, trovafloxacin, and grepafloxacin were low (≤0.01 μg/ml) for 271 Legionella isolates when they were determined by the broth microdilution method but increased (≥6 dilutions) when they were determined by the agar dilution method. This was due to the charcoal in the agar dilution medium, as shown by the progressive decrease in the MICs when the charcoal concentrations decreased. As free drug is the active fraction, charcoal binding should be considered. PMID:10898695
Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela
2018-01-01
The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from <0.002 μg/m 3 (gas grill) to 21.52 μg/m 3 (grill powered by briquettes). Daily exposure of a grill operator, while grilling meat, to PM 2.5 -bound PAHs, adjusted to benzo[a]pyrene toxicity equivalent (BaP eq ), was 326.9, 401.6, and 0.04 ng/d for lump charcoal, charcoal briquettes, and gas powered grill, respectively. Exposure to PAHs emitted from charcoal briquettes was four orders of magnitude greater than that for gas grill. The ILCR followed a log-normal distribution, with a geometric mean of 8.38 × 10 -5 for exposure to PM 2.5 -bound PAHs emitted from gas grills unloaded with food and as high as 8.68 × 10 -1 for the grills loaded with food over charcoal briquettes. The estimated cancer risk for people who would inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.
NASA Astrophysics Data System (ADS)
Gábor Hatvani, István; Kern, Zoltán; Leél-Őssy, Szabolcs; Demény, Attila
2018-01-01
Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties in the application of classical statistical and time series methods. Although special statistical tools do exist to assess unevenly spaced data directly, the transformation of such data into a temporally equidistant time series which may then be examined using commonly employed statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with the application of a spectral guidance to avoid the spectral bias caused by interpolation and retain the original spectral characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two stalagmites from the Baradla Cave (NE Hungary) dating back to the late 18th century. To show the benefit of the equally spaced records to climate studies, their coherence with climate parameters is explored using wavelet transform coherence and discussed. The obtained equally spaced time series are available at https://doi.org/10.1594/PANGAEA.875917.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nacapricha, D.; Taylor, C.
Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and poremore » measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.« less
Law, C K; Yip, Paul S F; Caine, Eric D
2011-09-01
There has been scant research exploring the relationship between choice of method (means) of self-inflicted death, and broader social or contextual factors. The recent emergence and growth of suicide using carbon monoxide poisoning resulting from burning charcoal in an enclosed space (hereafter, "charcoal burning") was related to an increase in the overall suicide rate in Hong Kong. The growth of this method coincided with changing economic conditions. This paper expands upon previous work to explore possible relationships further. This study aims to discern the role of charcoal burning in overall suicide rate transition during times of both economic recession and expansion, as captured in the unemployment rate of Hong Kong, and to examine whether there was evidence of an effect from means-substitution. Age and gender specific suicide rates in Hong Kong by suicide methods from 1997 to 2007 were calculated. To model the transition of suicide rate by different methods, Poisson regression analyses were employed. Charcoal burning constituted 18.3% of all suicides, 88% of which involved individuals drawn from the middle years (25-59) of life. During both periods of rising and declining unemployment, charcoal burning played an important role in the changing suicide rates, and this effect was most prominent among for those in their middle years. Means-substitution was found among the married women during the period of rate advancement (1997-2003). Compared to others, working-age adults preferentially selected carbon monoxide poisoning from charcoal burning.
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.
2017-12-01
Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.
NASA Astrophysics Data System (ADS)
Duros, P.; Silva Jacinto, R.; Dennielou, B.; Schmidt, S.; Martinez Lamas, R.; Gautier, E.; Roubi, A.; Gayet, N.
2017-02-01
Living (Rose Bengal stained) and dead benthic foraminifera were investigated at 6 deep-sea sites sampled in the Capbreton canyon area (Bay of Biscay, France). Three sites were located along the canyon axis at 301 m, 983 m and 1478 m and 3 stations were positioned on adjacent terraces at 251 m, 894 m and 1454 m. Sedimentary features indicate that frequent sedimentary disturbances of different magnitudes occur along the Capbreton canyon axis and adjacent terraces. Such environmental conditions cause the presence of very particular benthic environments. Along the 6 studied sites, different foraminiferal responses to various sedimentary patterns are observed revealing the complexity of this canyon environment. Some sites (Gitan 3 (canyon axis), Gitan 5 (canyon axis) and Gitan 6 (terrace)) are characterized by moderate to low standing stocks and low diversity and are mainly dominated by pioneer taxa such as Fursenkoina brady, Reophax dentaliniformis and Technitella melo suggesting a recent response to turbidite deposits recorded at these sites. Others sites (Gitan 1 and Gitan 2) show extremely high standing stocks and are mainly dominated by the opportunistic Bolivina subaenariensis and Bulimina marginata. Such faunal characteristics belonging to a more advanced stage of ecosystem colonization indicates strongly food-enriched sediment but extremely unstable conditions. Moderate standing stocks and diverse assemblage composed of species such as Uvigerina mediterranea and U. peregrina has only been observed at the terrace site Gitan 4. More stable sedimentary conditions recorded at this terrace seem to be suitable to the development of a dense and diverse foraminiferal community. Numerous neritic allochtonous species were observed in the dead foraminiferal fauna. These allochthonous species mainly originate from shelf areas (<60 m).
The transitional depositional environment and sequence stratigraphy of Chasma Boreale
NASA Astrophysics Data System (ADS)
Brothers, S. C.; Kocurek, G.
2018-07-01
The depositional system within Chasma Boreale is unique in that it contains active aeolian environments, expressed as dune fields, and active cryosphere environments, present as layered ice deposits, as well as environments that transition between these. This work presents a new analysis of the Chasma Boreale sediment system that creates an interpretative framework addressing: (a) controls on the balance between aeolian and cryospheric processes in the modern depositional system, (b) the stratigraphic architecture of related sedimentary deposits, and (c) processes of sediment accumulation and preservation. Images from Context Camera (CTX; 6 m/pixel) are used to classify and map sedimentary environments, surfaces, and deposits on the reentrant floor, to refine the established geologic map of the reentrant, and to infer the stratigraphic record of the accumulation from Chasma Boreale's depositional system. A spectrum of sedimentary environments occurring between those dominated by aeolian and by cryospheric processes are identified. Through time, the boundaries of these sedimentary environments have shifted, resulting in complex lateral changes in the configuration of sedimentary environments on the reentrant's floor. Vertically, the stratigraphic record is characterized by the punctuation of sandy aeolian deposits by icy surfaces that indicate episodes of ice growth that preserve underlying deposits, resulting in accumulation. Stabilized icy surfaces occur at multiple vertical (temporal) scales and lateral extents, suggesting the influence of both regional climate change due to allogenic forcing, as well as autogenic dynamics within the transitional system. These observations demonstrate that the Chasma Boreale accumulation can be interpreted in an aeolian sequence stratigraphic framework. This work contributes the first detailed description of the processes forming polar aeolian sequences, with an emphasis on the competing and complementary dynamics between aeolian and cryospheric systems.
USDA-ARS?s Scientific Manuscript database
The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...
USDA-ARS?s Scientific Manuscript database
Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...
Sturesson, Louise W; Frennström, Jan O; Ilardi, Marcella; Reinstrup, Peter
2015-08-01
A modified heat-moisture exchanger that incorporates a reflecting filter for use with partial rebreathing of exhaled volatile anaesthetics has been commercially available since the 1990 s. The main advantages of the device are efficient delivery of inhaled sedation to intensive care patients and reduced anaesthetic consumption during anaesthesia. However, elevated arterial CO2 values have been observed with an anaesthetic conserving device compared with a conventional heat and moisture exchanger, despite compensation for larger apparatus dead space. The objective of this study is to thoroughly explore the properties of two reflecting materials (charcoal and zeolites). A controlled, prospective, observational laboratory study. Lund University Hospital, Sweden, from December 2011 to December 2012. None. Three filters, with identical volumes, were compared using different volatile anaesthetics at different conditions of temperature and moisture. The filtering materials were charcoal or zeolite. Glass spheres were used as an inert control. Consumption of volatile anaesthetics using different reflecting materials in filters at different conditions regarding temperature and moisture. CO2 reflection by the filtering materials: glass spheres, charcoal or zeolite. Isoflurane consumption in an open system was 60.8 g h(-1). The isoflurane consumption in dry, warm air was 39.8 g h(-1) with glass spheres. Changing to charcoal and zeolite had a profound effect on isoflurane consumption, 11.8 and 10.7 g h(-1), respectively. Heating and humidifying the air as well as the addition of N2O created only minor changes in consumption. The percentage of isoflurane conserved by the charcoal filter was independent of the isoflurane concentration (0.5 to 4.5%). Reflection of sevoflurane, desflurane and halothane by the charcoal filter was similar to reflection of isoflurane. Both charcoal and zeolite filters had CO2 reflecting properties and end-tidal CO2 increased by 3 to 3.7% compared with glass spheres. This increase was attenuated to 1 to 1.4% when the air was heated and humidified, and isoflurane was added. Charcoal and zeolite possess gas-reflecting properties, which can be used to conserve volatile anaesthetics. They also reflect CO2. The degree of CO2 reflection was reduced by heating and humidifying the air.
NASA Astrophysics Data System (ADS)
Fike, D. A.; Jones, D. S.; Fischer, W. W.
2011-12-01
Sulfur isotope ratio data have been used to provide significant insights into global biogeochemical cycling over Earth history. In addition to providing a framework for the construction of global redox budgets, these observations also provide the primary constraints on the advent and environmental importance of particular microbial metabolisms. As the chemostratigraphic record has become better resolved in space and time, however, reports of coeval discordant data are increasingly common - both within and between individual sedimentary basins. If accurate, this variability challenges our understanding of the first order behavior of the 'global' sulfur biogeochemical cycle. Some of this discordance may be due to spatial gradients in important oceanographic parameters; however, we think that a more likely culprit is ongoing microbial metabolic activity (that impacts the isotopic composition recorded by geological samples) during both syndepositional sediment reworking and early diagenetic lithification. Modern studies have recently highlighted the efficacy with which microbial activity during sediment remobilization can dramatically alter isotopic profiles. Further, the magnitude of local, microbially driven variations in S isotopes in modern sediments is sufficiently large that uneven incorporation of these signatures during deposition and lithification can explain much of the observed discordance in chemostratigraphic reconstructions of sulfur cycling. Here we attempt to link spatial variability in the sedimentary rock record with understanding of modern microbial systems operating in marine sediments. To that end we examine chemostratigraphic records of sulfur isotope (δ34S) data spanning the terminal Neoproterozoic to early Paleozoic eras and assess their scales of spatial reproducibility. We can gain insight into interpreting the observed patterns in these records by examining modern (bio)sedimentary environments. This understanding also allows us to reflect on and refine time series isotope ratio data that constrain the behavior of the sulfur cycle over long timescales.
NASA Astrophysics Data System (ADS)
Lippert, P. C.; Reiners, P. W.
2014-12-01
Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These observations help us elucidate the processes and sources responsible for increases in magnetic susceptibility observed in natural burned soils, as well as identify a unique rock magnetic fingerprint for natural wildfire that has the potential to be preserved in sedimentary sequences in the geological record.
DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.
Paewpanchon, P; Chanyotha, S
2017-11-01
A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Investigation of growth responses in saprophytic fungi to charred biomass.
Ascough, Philippa L; Sturrock, Craig J; Bird, Michael I
2010-03-01
We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry ((13)C and (15)N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same species produced at 300 degrees C and 400 degrees C. Both species of fungi colonise the surface and interior of wood and charcoals over time periods of less than 70 days; however, distinctly different growth forms are evident between the exterior and interior of the charcoal substrate, with hyphal penetration concentrated along lines of structural weakness. Although the fungi were able to degrade and metabolise the pine wood, charcoal does not form a readily available source of fungal nutrients at least for these species under the conditions used in this study.
Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).
Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek
2012-01-01
Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.
Carbon Monoxide Epidemic Among Immigrant Populations: King County, Washington, 2006
Kwan-Gett, Tao; Hampson, Neil B.; Baer, Atar; Shusterman, Dennis; Shandro, Jamie R.; Duchin, Jeffrey S.
2009-01-01
Objectives. We investigated an outbreak of carbon monoxide (CO) poisoning after a power outage to determine its extent, identify risk factors, and develop prevention measures. Methods. We reviewed medical records and medical examiner reports of patients with CO poisoning or related symptoms during December 15 to 24, 2006. We grouped patients into households exposed concurrently to a single source of CO. Results. Among 259 patients with CO poisoning, 204 cases were laboratory confirmed, 37 were probable, 10 were suspected, and 8 were fatal. Of 86 households studied, 58% (n = 50) were immigrant households from Africa (n = 21), Asia (n = 15), Latin America (n = 10), and the Middle East (n = 4); 34% (n = 29) were US-born households. One percent of households was European (n = 1), and the origin for 7% (n = 6) was unknown. Charcoal was the most common fuel source used among immigrant households (82%), whereas liquid fuel was predominant among US-born households (34%). Conclusions. Educational campaigns to prevent CO poisoning should consider immigrants’ cultural practices and languages and specifically warn against burning charcoal indoors and incorrect ventilation of gasoline- or propane-powered electric generators. PMID:19608962
NASA Astrophysics Data System (ADS)
Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.
2015-08-01
Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. It is uncertain whether archaea may have contributed to sedimentary δ13CAA patterns we observe, and controlled culturing studies will be needed to investigate whether δ13CAA patterns can differentiate bacterial from archeal sources. Further research efforts are also needed to understand how closely δ13CAA patterns derived from hydrolyzable amino acids represent total sedimentary proteineincous material, and more broadly sedimentary organic nitrogen. Overall, however, both our culturing and sediment studies suggest that δ13CAA patterns in sediments will represent a novel proxy for understanding both primary production sources, and the direct bacterial role in the ultimate preservation of sedimentary organic matter.
Evaluation of spacecraft toxic gas removal agents
NASA Technical Reports Server (NTRS)
1972-01-01
A study of the decomposition of various compounds adsorbed on charcoal was made, with a view toward providing a critical appraisal of previous data from charcoal adsorption studies. It was found that thermal decomposition occurs at temperature lower than previously suspected during the charcoal stripping process. A discussion is presented dealing with the various types of reactions found. A rough, quantitative scheme for correcting previous analytical results is developed and presented.
Son, Seung Uk; Park, Kang Hyun; Chung, Young Keun
2002-10-31
[formula: see text] Dispersions of nanometer-sized cobalt particles with very high stability were prepared in charcoal and analyzed by electron microscopy and X-ray analysis. The resulting cobalt nanoparticles on charcoal (CNC) were successfully used as a catalyst for the carbonylative cycloaddition of alkyne, alkene, and carbon monoxide (Pauson-Khand reaction), hydrogenation, and the reductive Pauson-Khand reaction.
Calibrating a method for simulated long-term ageing of biochar
NASA Astrophysics Data System (ADS)
Sohi, Saran; Cross, Andrew
2013-04-01
We recently established a procedure that imposes oxidatiave ageing to biochar and charcoal samples over a short time-frame, that provided carbon mass loss in the range projected for wild-fire charcoal in soil over a period of approximately 100 years. The stability of biochar samples in soil (relative to charcoal) range from 45-98% could be determined repeatably with high precision. Initial tests to understand the kinetics of the accelerated ageing method showed progressive increase in surface O concentration when examined by X-ray photoelectron spectroscopy (XPS) that slowly reached equilibrium. These trends resembled patterns observed in climate-for-time studies elsewhere, on centennial time-frame. We have extended this work to a preliminary direct calibration by matching progressive oxidation achieved in the laboratory to the surface composition of charcoal fragments recovered from the environment after periods of hundred to thousands of years. We have also applied artificial ageing to the same sets of naturally pre-aged charcoal fragments, and to recreated fresh charcoal. In this presentation of the first approach to quantifiably relate a laboratory test for biochar carbon stability to field data covering multiple time scales, we report on both the process and the implications for the stability of carbon stored in biochar under different climates and diverse agro-ecosystems.
Emission of polycyclic aromatic hydrocarbons and lead during Chinese mid-autumn festival.
Kuo, Chung-Yih; Lee, Hong-Shen; Lai, Jeang-Hung
2006-07-31
The emission factors of total particulate polycyclic aromatic hydrocarbons (PAHs), Benzo(a)pyrene (BaP), BaP-equivalent doses (BaP(eq)) and Pb for burning three kinds of charcoal were investigated in this study: fast-lighting charcoal, Taiwanese, and Indonesian charcoal (the latter two of which are not fast-lighting). Compared to the burning of Taiwanese and Indonesian charcoal, the burning of fast-lighting charcoal can emit much larger amounts of total PAHs, BaP(eq) and Pb into the atmosphere. The emission factors of total PAHs, BaP and BaP(eq) for broiling meat were noticeably higher than those for broiling vegetables and non-fish seafood. When using Indonesian charcoal to broil meat, the total emission factors of particulate PAHs and BaP were about 15.7 and 0.39 mg/kg, respectively. The total amounts of particulate PAHs and Pb emitted from cookouts during Mid-Autumn Festival were 2881 and 120 g, respectively. Total PAHs and BaP(eq) in PM(10) aerosols on Mid-Autumn Festival nights increased about 1.6 and 1.5 times, respectively, higher than those on non-festival nights. The mean concentration of Pb on the nights of Mid-Autumn Festival increases to about 2.8 times that of non-festival nights.
Lapatto-reiniluoto, O; Kivistö, K T; Neuvonen, P J
2000-01-01
Aims The aim was to study the efficacy of gastric lavage and activated charcoal in preventing the absorption of temazepam, verapamil and moclobemide when gastric decontamination was performed immediately after ingestion of the drugs. Methods Nine healthy volunteers took part in a randomized cross-over study with three phases. The subjects were administered single oral doses of 10 mg temazepam, 80 mg verapamil and 150 mg moclobemide. Five minutes later, they were assigned to one of the following treatments: 200 ml water (control), 25 g activated charcoal as a suspension in 200 ml water or gastric lavage. Plasma concentrations and the cumulative excretion into urine of the three drugs were determined up to 24 h. Results The mean AUC(0,24 h) of temazepam, verapamil and moclobemide was reduced by 95.2% (P < 0.01), 92.8% (P < 0.01) and 99.7% (P < 0.01), respectively, by activated charcoal compared with control. Gastric lavage did not reduce significantly the AUC(0,24 h) of these drugs. The 24 h cumulative excretion of temazepam, verapamil and moclobemide into urine was reduced significantly (P < 0.05) by charcoal but not by gastric lavage. Charcoal reduced the AUC(0,24 h), Cmax and urinary excretion of all three drugs significantly more than lavage. Conclusions Activated charcoal is very effective and gastric lavage can be rather ineffective in preventing the absorption of temazepam, verapamil and moclobemide when the treatment is given very rapidly after ingestion of the drugs, before tablet disintegration has occurred. PMID:10718784
Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP).
Dutta, Susmita; Bhattacharyya, Aparupa; De, Parameswar; Ray, Parthasarathi; Basu, Srabanti
2009-12-30
In the present work mercury has been eradicated from its aqueous solution using papain, immobilized on activated charcoal by physical adsorption method. Operating parameters for adsorption of papain on activated charcoal like pH, amount of activated charcoal, initial concentration of papain in solution have been varied in a suitable manner for standardization of operating conditions for obtaining the best immobilized papain sample based on their specific enzymatic activity. The immobilized papain sample obtained at initial papain concentration 40.0 g/L, activated charcoal amount 0.5 g and pH 7 shows the best specific enzymatic activity. This sample has been designated as charcoal-immobilized papain (CIP) and used for further studies of mercury removal. Adsorption equilibrium data fit most satisfactorily with the Langmuir isotherm model for adsorption of papain on activated charcoal. Physicochemical characterization of CIP has been done. The removal of mercury from its simulated solution of mercuric chloride using CIP has been studied in a lab-scale batch contactor. The operating parameters viz., the initial concentration of mercury in solution, amount of CIP and pH have been varied in a prescribed manner. Maximum removal achieved in the batch study was about 99.4% at pH 7, when initial metal concentration and weight of CIP were 20.0mg/L and 0.03 g respectively. Finally, the study of desorption of mercury has been performed at different pH values for assessment of recovery process of mercury. The results thus obtained have been found to be satisfactory.
Karunakara, N; Sudeep Kumara, K; Yashodhara, I; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S
2015-04-01
Radon ((222)Rn), thoron ((220)Rn), and their decay products contribute a major fraction (more than 50%) of doses received from ionisation radiation in public domain indoor environments and occupation environments such as uranium mines, thorium plants, and underground facilities, and are recognised as important radiological hazardous materials, which need to be controlled. This paper presents studies on the removal of (222)Rn and (220)Rn from air using coconut shell-based granular activated charcoal cylindrical adsorber beds. Experiments were conducted to evaluate the (222)Rn and (220)Rn adsorption characteristics, and the mitigation efficiency of coconut-based activated charcoal available in India. The performance parameters evaluated include breakthrough time (τ) and adsorption coefficient (K), and degassing characteristics of the charcoal bed of varying dimensions at different flow rates. While the breakthrough for (222)Rn occurred depending on the dimension of the adsorber bed and flow rates, for (220)Rn, the breakthrough did not occur. The breakthrough curve exhibited a stretched S-shape response, instead of the theoretically predicted sharp step function. The experiments confirm that the breakthrough time individually satisfies the quadratic relationship with respect to the diameter of the bed, and the linear relationship with respect to the length, as predicted in the theory. The K value varied in the range of 2.3-4.12 m(3) kg(-1) with a mean value of 2.99 m(3) kg(-1). The K value was found to increase with the increase in flow rate. Heating the charcoal to ∼ 100 °C resulted in degassing of the adsorbed (222)Rn, and the K of the degassed charcoal and virgin charcoal were found to be similar with no deterioration in performance indicating the re-usability of the charcoal. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaefer, A.; Magi, B. I.; Marlon, J. R.; Bartlein, P. J.
2017-12-01
This study uses an offline fire model driven by output from the NCAR Community Earth System Model Last Millennium Ensemble (LME) to evaluate how climate, ecological, and human factors contributed to burned area over the past millennium, and uses the Global Charcoal Database (GCD) record of fire activity as a constraint. The offline fire model is similar to the fire module within the NCAR Community Land Model. The LME experiment includes 13 simulations of the Earth system from 850 CE through 2005 CE, and the fire model simulates burned area using LME climate and vegetation with imposed land use and land cover change. The fire model trends are compared to GCD records of charcoal accumulation rates derived from sediment cores. The comparisons are a way to assess the skill of the fire model, but also set up a methodology to directly test hypotheses of the main drivers of fire patterns over the past millennium. The focus is on regions selected from the GCD with high data density, and that have lake sediment cores that best capture the last millennium. Preliminary results are based on a fire model which excludes burning cropland and pasture land cover types, but this allows some assessment of how climate variability is captured by the fire model. Generally, there is good agreement between modeled burned area trends and fire trends from GCD for many regions of interest, suggesting the strength of climate variability as a control. At the global scale, trends and features are similar from 850 to 1700, which includes the Medieval Climate Anomaly and the Little Ice Age. After 1700, the trends significantly deviate, which may be due to non-cultivated land being converted to cultivated. In key regions of high data density in the GCD such as the Western USA, the trends agree from 850 to 1200 but diverge from 1200 to 1300. From 1300 to 1800, the trends show good agreement again. Implementing processes to include burning cultivated land within the fire model is anticipated to improve the agreement, but also to test the sensitivity of models to different drivers of fire.
Environmental History on a Central Mediterranean Island
NASA Astrophysics Data System (ADS)
Gambin, Belinda; Medail, Frederic; Andrieu-Ponel, Valerie; Djamali, Morteza; Marriner, Nick; Morhange, Christophe; Gambin, Timmy
2013-04-01
Through the PaleoMed project a number of cores have been taken from key locations on the Maltese Islands with the aim of establishing various aspects related to the archipelago's historical environment. A multi-disciplinary team have been investigating a number of bodies of evidence including sediments, charcoal and shells. Through this poster I will present the results from pollen samples extracted from a section of one of the cores. The core, taken from Burmarrad, has a section that has been carbon dated to 7200-3200BP. Preliminary results from this site, one of the largest flood plains on Malta, will provide an indication of the local vegetation during this chronological window. Pollen was extracted from sediment deposits following the classical treatment method (eg Moore et al., 1990). Furthermore, identification was undertaken through the use of pollen atlases of Europe and North Africa (Reille, 1992, 1995, 1998) and Beug (2004) along with IMBE's international pollen reference collection. Pollen percentages were calculated in TILIA and the pollen percentage diagram constructed using TGView software (Grimm 2004, 2005). Current results indicate that prior to 7000BP there was a high percentage of aquatic plants, while tree and shrub counts were low. At 6900BP a large increase in Pistacia pollen is recorded, with moderate increase in Plantago (especially lanceolata), Asphodelus, Dinaflagelates and Mirco Foraminifera. At this time there is also a reduction in Cichorioideae & Charcoal in the section. A similar increase in Pistacia at around this time has also been recorded from another core in Burmarrad (Djamali et al., 2012) and in southern Sicily (Tinner et al., 2009). The date of this increase corresponds to the first recorded settlement on the Maltese Islands (circa 5500BC) as well as the climatic optimum of forest cover in the Mediterranean region (Noti et al., 2009).
NASA Astrophysics Data System (ADS)
Hardy, Brieuc; Dufey, Joseph E.; Cornelis, Jean-Thomas
2014-05-01
The use of biochar as a soil amendment is being increasingly investigated as a win-win solution for mitigating the anthropic CO2 emissions and improving soil fertility. However, data on the long term impact of chars on soil properties are scarce, although they are crucial for better understanding the implications of large scale application of highly persistent biochars to soil. In Wallonia (Belgium), old charcoal kilns are found in most of the area that was forested in the late 18th century. Since then, a non-negligible part of the forest has been cleared for cultivation. Today, old charcoal-making platforms can be seen on bare soils as circular or elliptic black spots due to charcoal enrichment. In order to assess the long-term (>200 years) effects of biochar on soil chemical properties, seventeen kiln sites were chosen in several cropland areas of Wallonia on loessic luvisols (14) and loamy cambisols (3). Composite samples were taken in the ploughing layer (0 - 25 cm) and the underlying horizon (35 - 50 cm) in and out the kiln sites. The pH, total carbon (C) and nitrogen (N) contents, oxidizable carbon (CW&B), available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations content (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured. In order to assess the impact of cultivation on charcoal aging, we also sampled four kiln sites on loessic luvisols under forest. Here, we show that charcoal, diluted laterally by successive tillage, acts as a carbon surplus in the topsoil layer of the black spots. The charcoal-enriched horizon is characterized by higher CEC, C/N and C/LI550 ratio compared to the reference soil. Cultivation of former forest soils accelerates charcoal aging, likely due to a combined effect of mechanical (tillage splits charcoal fragments in smaller pieces and increases soil aeration) and biological actions (promoted by improved trophic conditions due to application of amendments and fertilizers over many decades). This is supported by (i) a decrease of charcoal C/N and C/LI550 ratios, (ii) a sharp increase in the CEC value per carbon unit (485 cmolc/kgC) and (iii) a greater ability to be oxidized by a K2Cr2O7 treatment as compared to forest sites. Additionally, we observe identical Pav contents in and out the charcoal kiln sites which may indicate that Pav is governed only by the native humic substance content. Exchangeable Ca++ and, to a lesser extent Mg++ are higher than in the reference soil, whereas the content of K+ is comparable. Considering the percentage of these cations on the CEC, we propose that the exchange complex of charcoal has a higher selectivity for Ca++ and Mg++, and a lower selectivity for K+ relative to that of native humic substances. Our results provide new insights into the long-term impact of biochar on soil properties in cropland subject to intense cultivation in temperate climate.
Velocity Models of the Sedimentary Cover and Acoustic Basement, Central Arctic
NASA Astrophysics Data System (ADS)
Bezumov, D. V.; Butsenko, V.
2017-12-01
As the part of the Russian Federation Application on the Extension of the outer limit of the continental shelf in the Arctic Ocean to the Commission for the limits of the continental shelf the regional 2D seismic reflection and sonobuoy data was obtained in 2011, 2012 and 2014 years. Structure and thickness of the sedimentary cover and acoustic basement of the Central Arctic ocean can be refined due to this data. "VNIIOkeangeologia" created a methodology for matching 2D velocity model of the sedimentary cover based on vertical velocity spectrum calculated from wide-angle reflection sonobuoy data and the results of ray tracing of reflected and refracted waves. Matched 2D velocity models of the sedimentary cover in the Russian part of the Arctic Ocean were computed along several seismic profiles (see Figure). Figure comments: a) vertical velocity spectrum calculated from wide-angle reflection sonobuoy data. RMS velocity curve was picked in accordance with interpreted MCS section. Interval velocities within sedimentary units are shown. Interval velocities from Seiswide model are shown in brackets.b) interpreted sonobuoy record with overlapping of time-distance curves calculated by ray-tracing modelling.c) final depth velocity model specified by means of Seiswide software.
NASA Astrophysics Data System (ADS)
Huebert, Jennifer M.; Allen, Melinda S.
2016-04-01
It is widely recognised that Polynesian settlers developed central Pacific islands into productive economic landscapes, but the character and tempo of these transformations are poorly understood. Archaeological wood charcoal assemblages are uniquely suited to inform on landscape change, especially when the principal food crops were arboreal. We use a large archaeological charcoal collection, drawn from numerous geographically and functionally varied contexts, to develop a multi-scalar vegetation history of Marquesas Islands' lowland forests. Our aims were to: 1) reveal historical patterns of plant biogeography, including introductions by Polynesian settlers; 2) detail the nature and timing of anthropogenic impacts on native Marquesan forests; and 3) track the emergence of economically productive arboreal landscapes. A collection of 6510 fragments identified to 59 taxa inform on a ∼600-year sequence of human activities. The earliest samples indicate rich forests were encountered by human colonists, comprised of a mix of dicotyledonous hardwood species and woody monocots. These included members of two now-extinct Sapotaceae genera, Planchonella and cf. Sideroxylon, along with Allophylus, a Sapindaceae apparently extirpated from Nuku Hiva. Two important coastal trees, Calophyllum inophyllum and Thespesia populnea, also appear to be indigenous. Polynesian impacts were rapid and widespread, irrevocably altering the indigenous vegetation and disrupting native ecosystems. Samples from later occupations document on-going modifications to lowland vegetation communities. This included inter-valley variability in the timing of transformations and the development of mosaic formations, comprised of native forest interspersed with areas of cultivation and habitation. By 1650 CE, low and mid-elevation vegetation was extensively remodelled, as anthropogenic forests of Artocarpus altilis (breadfruit), Inocarpus fagifer (Tahitian chestnut), and other economic species became widely established and cultivation intensified. Mimicking natural forests, these arboricultural systems helped protect the island's fragile soils and landscapes from recurring climate extremes. Intriguingly, some translocated taxa, including Tahitian chestnut, Casuarina equisetifolia (ironwood), and Morinda citrifolia (Indian mulberry), may have been post-settlement introductions. This analysis demonstrates the potential of archaeological wood charcoal assemblages to inform on Pacific Island vegetation histories, anthropogenic processes, and the evolution of arboricultural economies.
Sanford, R L; Saldarriaga, J; Clark, K E; Uhl, C; Herrera, R
1985-01-04
Charcoal is common in the soils of mature rain forests within 75 kilometers of San Carlos de Rio Negro in the north central Amazon Basin. Carbon-14 dates of soil charcoal from this region indicate that numerous fires have occurred since the mid-Holocene epoch. Charcoal is most common in tierra firme forest Oxisols and Ultisols and less common in caatinga and igapo forest soils. Climatic changes or human activities, or both, have caused rain-forest fires.
Deitz, Victor R.; Blachly, Charles H.
1977-04-05
Radioactive iodine and radioactive methyliodide can be more than 99.7 per cent removed from the air stream of a nuclear reactor by passing the air stream through a 2-inch thick filter which is made up of impregnated charcoal prepared by contacting the charcoal with a solution containing KOH, iodine or an iodide, and an oxyacid, followed by contacting with a solution containing a tertiary amine.
NASA Astrophysics Data System (ADS)
Li, H. C.; Yin, J.; Rao, Z.; Mii, H. S.; Shen, C. C.; Pillutla, R. K.; Li, Y. X.
2016-12-01
An 11.1-cm long stalagmite (ZZ12) collected from Zhenzhu cave (38°15'N, 113°42'E, 975m a.s.l.) located at Tiangui mountain of Hebei province, North China. The 230Th/U dates on 12 horizons exhibit large uncertainties with many reversed age sequences due to low U contents and low 230Th/232Th ratios. While the 230Th/U dating is not able to provide the chronology of this stalagmite, AMS 14C dating on 27 samples from various depths of the stalagmite yields a reliable age-depth relationship. Three AMS 14C dates from the top 5 mm appear nuclear bomb carbon indicating that this part was deposited after AD 1950. Seven samples for 210Pb dating were taken from the upper 14 mm with 2 mm intervals, showing exponential decay of excess 210Pb and supporting the AMS 14C dating results. At the base of the stalagmite, charcoal grains were included in the carbonate stalagmite. This charcoal sample has a Calibrated 14C age of 1865±20 a BP. The carbonates at adjacent depths show Calibrated 14C ages of 1900±15 and 2215±75 a BP respectively. The bomb carbon and similar ages between the charcoal and carbonates indicate that dead carbon influence on the 14C dates in some horizons may not be serious. From the 27 AMS 14C dates, we select 17 AMS 14C dates which have minimal influence of dead carbon fraction to construct the chronology. The established chronology shows that slow growth rates occurred prior to 1100 a BP and after 600 a BP. This time interval involves the Medieval Warm Period, while the fast growth rate during this interval may reflect warm and wet climatic conditions. A total of 835 samples were drilled from the stalagmite for δ18O and δ13C analyses. The current 900-year δ18O and δ13C records reveal climate and vegetation changes in the study area. Strong decadal oscillations in the δ18O record reflect variations of monsoonal rain, with relatively dry between AD 1350 and AD 1550 and after AD 1960. The δ13C record appears mainly multi-centennial variations with a 4‰ fluctuation range and an average value of -8‰ (VPDB). The δ13C values were lighter than the average during AD 1150 1480 and AD 1700 1920, whereas the δ13C values were heavier than the average during AD 1480 1700 and AD 1820 the present. The δ13C record mainly reflects the vegetation change above the cave, with lighter value indicating better vegetation coverage and vice versa.
NASA Astrophysics Data System (ADS)
Salama, Asem; Meghraoui, Mustapha; El Gabry, Mohamed; Maouche, Said; Hussein, Hesham; Korrat, Ibrahim
2017-04-01
Tsunami deposits are investigated along the Mediterranean coast of Egypt in the framework of the EC-Funded ASTARTE project (Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839) and the French-Egyptian IMHOTEP project. The study area located west of Alexandria is selected according to historical earthquakes and related inundation events as recorded in archives. Field investigations include: 1) Coastal geomorphology along estuaries, wedge-protected and dune-protected lagunas, and terrace-platforms as potential sites for paleotsunami and boulder records, and 2) Investigations of paleotsunamis deposits and their spatial distribution using trenching and coring. In addition of 10 trenches (1.5-m-depth) and 16 (1 to 2.5-m-depth) core descriptions with detailed logging and Xrays, data collection includes geochemical analysis, magnetic susceptibility and radiocarbon dating necessary for the identification of tsunamis records. In stratigraphic successions of low energy marine and alluvial deposits, mixed sand, gravel and broken shells are interpreted as catastrophic layers correlated with tsunami deposits. The two selected sites at Kefret Saber 32-km west of Marsa-Matruh city and 10 km northwest of El Alamein village are inner lagunas protected by 2 to 40-m-high dunes parallel to the shoreline. A total of 50 samples of organic deposits and charcoal fragments were collected from both sites, among which 20 samples have been dated. Dated charcoal in deposits above and below the catastrophic layers lead us to correlate them with the 24 June 1870 (Mw 7.5), 8 August 1303 (Mw 8) and 21 July 365 (Mw 8 - 8.5), major earthquakes that generated tsunamis with the inundation of Alexandria harbor. Major tsunamigenic seismic sources being along the Hellenic subduction zone and Cyprus arc, our study of paleotsunami deposits and their distribution along the Egyptian coast will help in a better constraint of the size and recurrence of tsunamis, and their propagation over the east Mediterranean regions.
Variety of Sedimentary Process and Distribution of Tsunami Deposits in Laboratory Experiments
NASA Astrophysics Data System (ADS)
Yamaguchi, N.; Sekiguchi, T.
2017-12-01
As an indicator of the history and magnitude of paleotsunami events, tsunami deposits have received considerable attention. To improve the identification and interpretation of paleotsunami deposits, an understanding of sedimentary process and distribution of tsunami deposits is crucial. Recent detailed surveys of onshore tsunami deposits including the 2004 Indian Ocean tsunami and the 2011 Tohoku-oki tsunami have revealed that terrestrial topography causes a variety of their features and distributions. Therefore, a better understanding of possible sedimentary process and distribution on such influential topographies is required. Flume experiments, in which sedimentary conditions can be easily controlled, can provide insights into the effects of terrestrial topography as well as tsunami magnitude on the feature of tsunami deposits. In this presentation, we report laboratory experiments that focused on terrestrial topography including a water body (e.g. coastal lake) on a coastal lowland and a cliff. In both cases, the results suggested relationship between the distribution of tsunami deposits and the hydraulic condition of the tsunami flow associated with the terrestrial topography. These experiments suggest that influential topography would enhance the variability in thickness of tsunami deposits, and thus, in reconstructions of paleotsunami events using sedimentary records, we should take into account such anomalous distribution of tsunami deposits. Further examination of the temporal sequence of sedimentary process in laboratory tsunamis may improve interpretation and estimation of paleotsunami events.
Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen
NASA Technical Reports Server (NTRS)
Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.
1983-01-01
In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.
A geologic approach to field methods in fluvial geomorphology
Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.
2014-01-01
A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.
Arsenic stress after the Proterozoic glaciations
NASA Astrophysics Data System (ADS)
Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin
2015-12-01
Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.
Arsenic stress after the Proterozoic glaciations.
Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin
2015-12-04
Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.
NASA Astrophysics Data System (ADS)
Louchouarn, P.; Kuo, L.; Brandenberger, J. M.; Andresen, C. S.; Kjaer, K. H.; Dalton, M.
2011-12-01
Plant-derived chars are the solid residues from incomplete combustion of plant materials. They are an important constituent in the black carbon (BC) continuum, an array of diverse pyrogenic organic materials ranging from slightly charred biomass (low temperature) to highly condensed refractory soot (high temperature). The characterization and quantification of plant-derived chars in environmental samples is a challenging process due to the heterogeneous nature of these substances. Most of the BC methods using oxidative approaches that seek to remove non-BC materials are limited in their potential to identify and quantify plant-derived chars because of their relative labilities compared to the condensed BC forms such as soot. Anhydrosugars, such as levoglucosan and its isomers (mannosan and galactosan), have generated considerable interest in recent years in BC research because they are exclusive thermal degradation products of cellulose/hemicellulose and are produced in different proportions in chars and smokes from low temperature combustion of different plant species permitting some source discrimination in environmental samples (e.g. softwoods vs. hardwoods; gymnosperms vs. angiosperms). We show here a synthesis of several years of work using levoglucosan in diverse environments to reconstruct local to large-scale environmental change from climate-driven wildfires to human and accidental fires. For example, in the Hood Canal (WA), the striking consistency between the fluxes of levoglucosan, the Pacific Decadal Oscillation (PDO) Index, and the Palmer Drought Severity Index (PDSI), suggests that climate oscillations may play a role in the historical wildfire activities and thus influence the inputs of char-BC to the Puget Sound. Similarly, peaks in anhydrosugars in a sediment core from Lake Copenhagen record large-scale accidental fires in the city of Copenhagen during the early and late 18th Century, and help constrain the geochronology of the core beyond the limit of the 210Pb dating potential (late 19th Century). Despite these "successes" in sedimentary systems, the application of anhydrosugars to reconstruct historical char-BC inputs to aquatic systems is fraught with both methodological and conceptual issues. For one, anhydrosugars analysis in sediments suffers from more interferences than similar analyses in atmospheric particles. Secondly, and most significantly, the rapid turnover of anhydrosugars in aquatic systems mean that only a small fraction of the original tracers encapsulated in the inner pores of char particles is preserved in sedimentary systems, thus complicating the potential for a direct transfer function between the presence of anhydrosugars and original fluxes of char-BC to aquatic environments.
Lake sedimentary DNA accurately records 20th Century introductions of exotic conifers in Scotland.
Sjögren, Per; Edwards, Mary E; Gielly, Ludovic; Langdon, Catherine T; Croudace, Ian W; Merkel, Marie Kristine Føreid; Fonville, Thierry; Alsos, Inger Greve
2017-01-01
Sedimentary DNA (sedDNA) has recently emerged as a new proxy for reconstructing past vegetation, but its taphonomy, source area and representation biases need better assessment. We investigated how sedDNA in recent sediments of two small Scottish lakes reflects a major vegetation change, using well-documented 20 th Century plantations of exotic conifers as an experimental system. We used next-generation sequencing to barcode sedDNA retrieved from subrecent lake sediments. For comparison, pollen was analysed from the same samples. The sedDNA record contains 73 taxa (mainly genus or species), all but one of which are present in the study area. Pollen and sedDNA shared 35% of taxa, which partly reflects a difference in source area. More aquatic taxa were recorded in sedDNA, whereas taxa assumed to be of regional rather than local origin were recorded only as pollen. The chronology of the sediments and planting records are well aligned, and sedDNA of exotic conifers appears in high quantities with the establishment of plantations around the lakes. SedDNA recorded other changes in local vegetation that accompanied afforestation. There were no signs of DNA leaching in the sediments or DNA originating from pollen. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Saputro, S.; Masykuri, M.; Mahardiani, L.; Kurniastuti, D.
2018-03-01
This research aim to examine the effect of the combination between corncobs and water hyacinth to adsorb lead (II), the most effective combination have determined by compared the ratio of corncobs adsorbent and water hyacinth to the increasing adsorption of the Pb(II), prove the effectiveness of the solid-phase spectrophotometry (sps) to determine the levels of Pb(II) as the result of the corncobs active charcoal adsorption and water hyacinth in the level of µg/L. The research method used is experimental method. The data collecting technique is carried out by several stages, which are carbonization using muffle furnace at a temperature of 350°C for 1.5 hours, activation of the corncobs charcoal and water hyacinth using HCl 1M and HCl 5M activator, contacting the adsorbent of corncobs active charcoal and water hyacinth with liquid waste simulation of Pb(II) using variation of corncobns and water hyacinth, 1:0; 0:1; 1:1; 2:1; 1:2, analysis of Pb(II) using an sps, characterization of corncobs active charcoal adsorbent and water hyacinth using FTIR. Research results show that the combined effect of activated charcoal corncobs and water hyacinth can increase the ability of the adsorbent to absorb Pb(II), the optimum adsorbent mass ratio of 1:1 with the absorption level of 90.33%, SPS is an effective method to analyze the decreasing level of Pb(II) as the adsorbtion result of the corncobs active charcoal and water hyacinth in the level of µg/L, with the limit of detection (LOD) of 0.06 µg/L.
The charcoal-degradation nexus: contested 'fuelscapes' in the sub-Saharan drylands of northern Kenya
NASA Astrophysics Data System (ADS)
Bergmann, Christoph; Petersen, Maike; Roden, Paul; Nüsser, Marcus
2017-04-01
Charcoal ranks amongst the most commercialized but least regulated commodities in sub-Saharan Africa. Despite its prevalence as an energy source for cooking and heating, localized environmental and livelihood impacts of charcoal production are poorly understood so far. The identified research deficit is amplified by widespread negative views of this activity as a poverty-driven cause of deforestation and land degradation. However, the charcoal-degradation nexus is apparently more complicated, not least because the extraction of biomass from already degraded woodlands can also be interpreted as an appropriate option under given management regimes. In order to better calibrate existing research agendas to site-specific geographies of charcoal production, we propose a re-conceptualization of such energy landscapes as 'fuelscapes' with complex material and social dimensions. The concept is tested with reference to a case study in Central Pokot, northern Kenya, where charcoal production only began in the early 1990's. Based on the assumption that the fine line between sustainable land management and degradation in dryland energy landscapes is not only highly variable but also increasingly contested, our study combines the knowledge input of different stakeholders with longitudinal time series of remote sensing data. Based on the results of our interdisciplinary analyses, we outline an integrated tool for the co-operative monitoring and management of prevailing degradation processes against the background of diversified livelihood activities in sub-Saharan drylands.
Effects of Cooking Fuels on Acute Respiratory Infections in Children in Tanzania
Kilabuko, James H.; Nakai, Satoshi
2007-01-01
Biomass fuels, charcoal and kerosene are the most used cooking fuels in Tanzania. Biomass fuel use has been linked to Acute Respiratory Infections (ARI) in children. It is not clear whether the use of charcoal and kerosene has health advantage over biomass fuels. In this study, the effects of biomass fuels, charcoal/kerosene on ARI in children under five years old in Tanzania are quantified and compared based on data from Tanzania Demographic and Health survey conducted between 2004 and 2005. Approximately 85% and 15% of children were from biomass fuels and charcoal/kerosene using homes respectively. Average ARI prevalence was about 11%. The prevalence of ARI across various fuel types used for cooking did not vary much from the national prevalence. Odds ratio for ARI, adjusting for child’s sex, age and place of residence; mother’s education, mother’s age at child birth and household living standard, indicated that the effect of biomass fuels on ARI is the same as the effect of charcoal/kerosene (OR 1.01; 95% CI: 0.78–1.42). The findings suggest that to achieve meaningful reduction of ARI prevalence in Tanzania, a shift from the use of biomass fuels, charcoal and kerosene for cooking to clean fuels such as gas and electricity may be essential. Further studies, however, are needed for concrete policy recommendation. PMID:18180538
NASA Astrophysics Data System (ADS)
Steiner, Zvi; Lazar, Boaz; Levi, Shani; Tsroya, Shimon; Pelled, Omer; Bookman, Revital; Erez, Jonathan
2016-12-01
Studies of recent environmental perturbations often rely on data derived from marine sedimentary records. These records are known to imperfectly inscribe the true sequence of events, yet there is large uncertainty regarding the corrections that should be employed to accurately describe the sedimentary history. Here we show in recent records from the Gulf of Aqaba, Red Sea, how events of the abrupt disappearance of the planktonic foraminifer Globigerinoides sacculifer, and episodic deposition of the artificial radionuclide 137Cs, are significantly altered in the sedimentary record compared to their known past timing. Instead of the abrupt disappearance of the foraminifera, we observe a prolonged decline beginning at core depth equivalent to ∼30 y prior to its actual disappearance and continuing for decades past the event. We further observe asymmetric smoothing of the radionuclide peak. Utilization of advection-diffusion-reaction models to reconstruct the original fluxes based on the known absolute timing of the events reveal that it is imperative to use a continuous function to describe bioturbation. Discretization of bioturbation into mixed and unmixed layers significantly shifts the location of the modeled event. When bioturbation is described as a continuously decreasing function of depth, the peak of a very short term event smears asymmetrically but remains in the right depth. When sudden events repeat while the first spike is still mixed with the upper sediment layer, bioturbation unifies adjacent peaks. The united peak appears at an intermediate depth that does not necessarily correlate with the timing of the individual events. In a third case, a long lasting sedimentary event affected by bioturbation, the resulting peak is rather weak compared to the actual event and appears deeper in the sediment column than expected based on the termination of the event. The model clearly shows that abrupt changes can only endure in the record if a thick sediment layer settled on the sediment-water interface at once or if bioturbation rates decreased to very low values for a prolonged period of time. In any other case smearing by bioturbation makes an abrupt event appear to have started shortly before the real timing and end long after its true termination.
Tectonic Impact on the Sedimentary Magnetic Record in Active Margin Settings
NASA Astrophysics Data System (ADS)
Riedinger, N.; Torres, M. E.; Solomon, E. A.
2017-12-01
Here we explore the impact of depositional and tectonic dynamics on sedimentary magnetic signals using samples collected during the Integrated Ocean Drilling Project (IODP) Expedition 334 off Costa Rica. This active margin system displays fast convergence rates, abundant seismicity, and subduction erosion, and thus allows us to study fluid flow responses to rapid episodes of uplift and subsidence in an erosional convergent margin - one of the main goals of the Costa Rica Seismogenesis Project (CRISP). The sediments at the middle slope site (Site U1378; 533 m water depth) vary strongly in their magnetic susceptibility and geochemical signals compared to the upper slope site (Site U1379; 139 m water depth). The more recent sediments at each site (upper 50 m) clearly show that Site U1378 experienced relative steady state conditions (with respect to pore water geochemistry), while at Site U1379 dynamic conditions lead to non-steady state geochemical profiles - and consequently to a differing magnetic susceptibility profile. These differences are most likely related to changes in methane flux and subsequent shifting of the sulfate-methane transition. Throughout the sediment column at Hole U1379C intervals showing a strong decrease in the magnetic susceptibility can be correlated with specific lithological horizons with abundant carbonate layers. Our data show that these layers are formed diagenetically, based on a depleted carbonate carbon isotope signal (up to -25‰) that is consistent with the pore water record. The carbonate layers not only caused a dilution in the magnetic mineral assemblages, but also point to a concurrent alteration process of iron oxides to iron sulfides. This is recorded in the sedimentary record as iron sulfide (pyrite) enrichments and their associated sulfur isotopic signature (δ34S; up to +6.3‰). These alterations can be tied to a location fluctuation of the sulfate-methane transition due to changes in the methane flux. The strong difference in the magnetic susceptibility records at the two sites can be linked to in situ diagenesis potentially caused by differences in their histories of subsidence and uplift. This highlights the importance of understanding both the tectonic and digenetic history of sedimentary settings prior the application of proxy tools such as magnetic susceptibility.
Wood charcoal and activated carbon dust pneumoconiosis in three workers.
De Capitani, Eduardo Mello; Algranti, Eduardo; Handar, Aantonieta M Z; Altemani, Albina M A; Ferreira, R G; Balthazar, Alipio Barbosa; Cerqueira, Elza Maria F P; Sanae Ota, Jaquelina
2007-03-01
Data on prevalence of lung diseases due to inhalation of carbonaceous materials other than mineral coal is very limited. We present three cases of wood charcoal pneumoconiosis, two due to activated carbon, and one from wood charcoal artisan handling. To our knowledge, no clinical cases of wood charcoal pneumoconiosis, from artisan handling has been published so far. The three cases had their X rays classified by two B-readers as p/q round opacities with profusion ranging from 2/2 to 3/3. HRCT of two of them showed a diffuse centrilobular ground glass nodular pattern with subpleural small areas of consolidations. Transbronchial biopsies showed deposition of black pigment in the bronchiolar interstice similar to the histological appearance of simple coal workers pneumoconiosis, with no signs of fibrosis. Spirometry showed no abnormalities in the three cases. The authors point out to a probably underestimated respiratory occupational risk related to wood charcoal manipulation, which must be addressed mostly in developing countries, where deficient workplace conditions can lead to exposure above limit levels. (c) 2007 Wiley-Liss, Inc.
Activated coconut shell charcoal carbon using chemical-physical activation
NASA Astrophysics Data System (ADS)
Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina
2016-02-01
The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.
NASA Astrophysics Data System (ADS)
Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel
2016-06-01
A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.
Records of human activity during the late-Holocene in the soils of the African dense humid forest
NASA Astrophysics Data System (ADS)
Morin-Rivat, Julie; Bentaleb, Ilham; Biwolé, Achille; Bourland, Nils; Bremond, Laurent; Daïnou, Kasso; Fayolle, Adeline; Gillet, Jean-François; Gorel, Anaïs; Gourlet-Fleury, Sylvie; Hardy, Olivier; Livingstone Smith, Alexandre; Oslisly, Richard; Vleminckx, Jason; Beeckman, Hans; Doucet, Jean-Louis
2014-05-01
Recently, several authors gathered data about the presence of past human populations in tropical regions covered by dense forest nowadays. In Central Africa, there is a growing body of evidence for past human settlements along the Atlantic coast, but very little information is available further inland. In the perspective, soil records seem to be the most appropriated so as to appraise the spatial and temporal extent of human activity in the African dense humid forest. In this paper, we thus aimed to present a synthesis of the archaeological and archaeobotanical data obtained during several fieldwork campaigns in an archaeologically unexplored area of 200,000 km² located in southern Cameroon and the northern Republic of Congo. A total of 275 test pits, among them 30 pedological pits up to 150 cm deep, were excavated in the study area. So as to get a long temporal scale as well as a fine resolution spatial scale, we quantified wood charcoal and charred endocarps in soil samples by layers of 10 cm taken for 100 pits located along transects of systematic sampling. Spatial projections were performed using statistics together with multivariate analyses. AMS radiocarbon dating allowed interpreting the temporal framework. Evidence of past human activities through either artifacts or charred botanical remains was observed in all pits, in particular with the ubiquitous presence of charcoal at each site. Main charcoal peaks were interpreted as fields (slash-and-burn agriculture) in the vicinity of ancient villages, the later marked by the presence of both potsherds and oil palm endocarps. The dichotomy of these kinds of activities may have impacted differentially the environment during the past. The set of 73 radiocarbon dates extending from 15,000 BP to the present time provided more dates in the late-Holocene showing a bimodal distribution which was interpreted as two phases of human expansion with an intermediate phase of population crash. The 2300-1300 BP phase is correlated with the migrations of supposed farming populations from northwestern Cameroon. Between 1300 and 670 BP, less material could be dated. Following that population collapse, the 670-20 BP phase corresponds to a new period of human expansion known as the Late Iron Age. The dates obtained support the established chronology reported for whole Central Africa. This study underlines the necessity of fieldwork efforts and of the usefulness of archives sealed in soil records so as to bring new, extensive and precise evidence of human activities in the Congo Basin.
... is used to treat poisonings, reduce intestinal gas (flatulence), lower cholesterol levels, prevent hangover, and treat bile ... lower cholesterol levels in the blood. Decreasing gas (flatulence). Some studies show that activated charcoal is effective ...
Surface changes of enamel after brushing with charcoal toothpaste
NASA Astrophysics Data System (ADS)
Pertiwi, U. I.; Eriwati, Y. K.; Irawan, B.
2017-08-01
The aim of this study was to determine the surface roughness changes of tooth enamel after brushing with charcoal toothpaste. Thirty specimens were brushed using distilled water (the first group), Strong® Formula toothpaste (the second group), and Charcoal® Formula toothpaste for four minutes and 40 seconds (equivalent to one month) and for 14 minutes (equivalent to three months) using a soft fleece toothbrush with a mass of 150 gr. The roughness was measured using a surface roughness tester, and the results were tested with repeated ANOVA test and one-way ANOVA. The value of the surface roughness of tooth enamel was significantly different (p<0.05) after brushing for an equivalent of one month and an equivalent of three months. Using toothpaste containing charcoal can increase the surface roughness of tooth enamel.
NASA Astrophysics Data System (ADS)
Kremer, Katrina; Reusch, Anna; Wirth, Stefanie B.; Anselmetti, Flavio S.; Girardclos, Stéphanie; Strasser, Michael
2016-04-01
Intraplate settings are characterized by low deformation rates and recurrence intervals of strong earthquakes that often exceed the time span covered by instrumental records. Switzerland, as an example for such settings, shows a low instrumentally recorded seismicity, in contrast to strong earthquakes (e.g. 1356 Basel earthquake, Mw=6.6 and 1601 Unterwalden earthquake, Mw=5.9) mentioned in the historical archives. As such long recurrence rates do not allow for instrumental identification of earthquake sources of these strong events, and as intense geomorphologic alterations prevent preservation of surface expressions of faults, the knowledge of active faults is very limited. Lake sediments are sensitive to seismic shaking and thus, can be used to extend the regional earthquake catalogue if the sedimentary deposits or deformation structures can be linked to an earthquake. Single lake records allow estimating local intensities of shaking while multiple lake records can furthermore be used to compare temporal and spatial distribution of earthquakes. In this study, we compile a large dataset of dated sedimentary event deposits recorded in Swiss lakes available from peer-reviewed publications and unpublished master theses. We combine these data in order to detect large prehistoric regional earthquake events or periods of intense shaking that might have affected multiple lake settings. In a second step, using empirical seismic attenuation equations, we test if lake records can be used to reconstruct magnitudes and epicentres of identified earthquakes.
NASA Astrophysics Data System (ADS)
Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Garrett, Ed; Shishikura, Masanobu; Schmidt, Sabine; Boes, Evelien; Obrochta, Stephen; Nakamura, Atsunori; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.
2017-04-01
The Fuji Fives Lakes are located at the foot of Mount Fuji volcano close to the triple junction, where the North American Plate, the Eurasian plate and the Philippine Sea Plate meet. These lakes are ideally situated to study Mount Fuji volcanism and the interaction between volcanism, changes in lake sedimentation rates and the ability of lakes to record paleoearthquakes. Here, we present newly acquired geological data of Lake Yamanaka and Lake Motosu, including seismic reflection profiles, gravity and piston cores. These two lakes and their respective watersheds were affected by several eruptions of Mount Fuji. Lake Yamanaka, a very shallow lake (max. depth 14 m), was heavily impacted by the scoria fall-out of the A.D. 1707 Hoei eruption of Mount Fuji. A detailed investigation of the effect of the Hoei eruption was conducted on short gravity cores, using high resolution XRD, C/N and 210Pb/137Cs analyses. The preliminary results suggest that the sedimentation rate of Lake Yamanaka drastically reduced after the Hoei eruption, followed by an increase until the present day. Similarly, lacustrine sedimentation in Lake Motosu (max. depth 122 m) was disturbed by Mount Fuji volcanism at a larger scale. The watershed of Lake Motosu was impacted by several lava flows and scoria cones. For example, the Omuro scoria cone reduced the catchment size of Lake Motosu and modified its physiography. The related scoria fall out covered an extensive part of the lake catchment and reduced terrigenous sedimentary influx to Lake Motosu. Within the deep basin of Lake Motosu, seismic reflection data shows two different periods that are distinguished by a major change in the dominant sedimentary processes. During the first period, sublacustrine landslides and turbidity currents were the dominant sedimentation processes. During the second one, the seismic stratigraphy evidences only deposition of numerous turbidites interrupting the hemipelagic sedimentation. Changes in sedimentary processes can be linked to the modification of the lake watershed by Mount Fuji volcanism, leading to a decrease in the sediment volume that can be remobilized, and therefore disappearance of large sublacustrine landslides. Turbidites are deposited due to surficial remobilization of lake slope sediments most probably as a result of earthquake shaking. When studying sedimentological records of lakes to define the paleoearthquake record, eruptions of nearby volcanoes should be taken into account. This study suggests that a large magnitude earthquake occurring few decades after a volcanic eruption (with large scale scoria fall-out), might not be recorded in a lake, or would only be fingerprinted in the sedimentary record by small turbiditic flows.
Recovery of Technetium Adsorbed on Charcoal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.
2006-05-01
Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance
Deitz, Victor R.; Blachly, Charles H.
1977-01-01
Gas adsorbent charcoals impregnated with an aqueous solution of the reaction product of a tertiary amine and elemental iodine or bromine are better than 99 per cent efficient in trapping methyl iodine.sup.131. The chemical addition of iodine or bromine to the tertiary amine molecule increases the efficiency of the impregnated charcoal as a trapping agent, and in conjunction with the high flash point of the tertiary amine raises the ignition temperature of the impregnated charcoal.
Sedimentary records of metal contamination and eutrophication in Jinhae-Masan Bay, Korea.
Lim, Dhong-il; Jung, Hoi Soo; Kim, Kyung Tae; Shin, Hyeon Ho; Jung, Seung Won
2012-11-01
Historical environmental pollution in a semi-enclosed coastal bay was investigated using high-resolution sedimentary records for C(org), N(tot), CaCO(3,) δ(13)C, and δ(15)N signatures, and trace metals. A temporal increase in organic matter might have been attributable to enhanced primary marine productivity, presumably caused by increased anthropogenic nutrient inputs in the semi-enclosed, eutrophic system. Metal accumulation occurred in three stages: a preindustrial stage before the 1930s with natural concentrations of metals, an industrialization stage (1940s-1970s) with the highest concentrations, and a postindustrial stage (post 1970s) with stable or decreasing concentrations. However, Hg exhibited a different accumulation history, with concentrations increasing in the early 1900s and accelerating after the 1920s, probably in response to coal burning. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol
2016-05-01
The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.
NASA Astrophysics Data System (ADS)
Villa, Valentina; Pereira, Alison; Chaussé, Christine; Nomade, Sébastien; Giaccio, Biagio; Limondin-Lozouet, Nicole; Fusco, Fabio; Regattieri, Eleonora; Degeai, Jean-Philippe; Robert, Vincent; Kuzucuoglu, Catherine; Boschian, Giovanni; Agostini, Silvano; Aureli, Daniele; Pagli, Marina; Bahain, Jean Jacques; Nicoud, Elisa
2016-11-01
An integrated geological study, including sedimentology, stable isotope analysis (δ18O, δ13C), geochemistry, micromorphology, biomarker analysis, 40Ar/39Ar geochronology and tephrochronology, was undertaken on the Quaternary infill of the Valle Giumentina basin in Central Italy, which also includes an outstanding archaeological succession, composed of nine human occupation levels ascribed to the Lower and Middle Palaeolithic. 40Ar/39Ar dating, and other palaeoenvironmental and tephrochronological data, constrain the sedimentary history of the whole succession to the MIS 15-MIS 12 interval, between 618 ± 13 ka and 456 ± 2 ka. Palaeoenvironmental proxies suggest that over this time interval of about 150 ka, sedimentary and pedogenic processes were mainly influenced by climatic changes, in particular by the pulsing of local mountain glaciers of the Majella massif. Specifically, the Valle Giumentina succession records glacio-fluvial and lacustrine sedimentation during the colder glacial periods and pedogenesis and/or alluvial sedimentation during the warmer interglacial and/or interstadial periods. During this interval, tectonics played a negligible role as a driving factor of local morphogenesis and sedimentation, whereas the general regional uplift experienced in the Middle Pleistocene led to capture of the basin and its definitive extinction after MIS 12. These data substantially improve previous knowledge of the chronology and sedimentary evolution of the succession, providing for the first time, a well constrained chronological and palaeoenvironmental framework for the archaeological and human palaeoecological record of Valle Giumentina.
NASA Astrophysics Data System (ADS)
Njenga, Mary; Mahmoud, Yahia; Mendum, Ruth; Iiyama, Muyiki; Jamnadass, Ramni; Roing de Nowina, Kristina; Sundberg, Cecilia
2016-09-01
Wood based energy is the main source of cooking and heating fuel in Sub-Saharan Africa. Its use rises as the population increases. Inefficient cook stoves result in fuel wastage and health issues associated with smoke in the kitchen. As users are poor women, they tend not to be consulted on cook stove development, hence the need for participatory development of efficient woodfuel cooking systems. This paper presents the findings of a study carried out in Embu, Kenya to assess energy use efficiency and concentrations of carbon monoxide and fine particulate matter from charcoal produced using gasifier cook stoves, compared to conventional wood charcoal. Charcoal made from Grevillea robusta prunings, Zea mays cob (maize cob) and Cocos nucifera (coconut shells) had calorific values of 26.5 kJ g-1, 28.7 kJ g-1 and 31.7 kJ g-1 respectively, which are comparable to conventional wood charcoal with calorific values of 33.1 kJ g-1. Cooking with firewood in a gasifier cook stove and use of the resultant charcoal as by-product to cook another meal in a conventional charcoal stove saved 41% of the amount of fuel compared to cooking with firewood in the traditional three stone open fire. Cooking with firewood based on G. robusta prunings in the traditional open fire resulted in a concentration of fine particulate matter of 2600 μg m-3, which is more than 100 times greater than from cooking with charcoal made from G. robusta prunings in a gasifier. Thirty five percent of households used the gasifier for cooking dinner and lunch, and cooks preferred using it for food that took a short time to prepare. Although the gasifier cook stove is energy and emission efficient there is a need for it to be developed further to better suit local cooking preferences. The energy transition in Africa will have to include cleaner and more sustainable wood based cooking systems.
Dermal exposure assessment to benzene and toluene using charcoal cloth pads.
van Wendel de Joode, Berna; Tielemans, Erik; Vermeulen, Roel; Wegh, Hillion; Kromhout, Hans
2005-01-01
Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and toluene in workers of a petrochemical plant. Inhalation and dermal exposure levels to benzene and toluene were assessed for workers of a petrochemical plant performing different jobs. Benzene uptake was assessed by determining S-phenylmercapturic acid in workers' urine samples. Dermal exposure levels on the charcoal pads were adjusted for ambient air levels of benzene and toluene by subtracting the amount of benzene or toluene measured in personal air from the amount of benzene or toluene measured on the charcoal pad. In general, measured external and internal exposure levels were low. The estimated contribution of the dermal route to internal benzene exposure levels was less than 0.06% for all jobs. Toluene personal air concentrations and benzene and toluene dermal exposure levels differed statistically significantly between job titles. For benzene, differences between jobs were larger for adjusted dermal exposures (maximum 17-fold, P = 0.02) than for inhalation exposures (maximum two-fold, P = 0.08). Also for toluene, although less clear, differences between jobs were larger for adjusted dermal exposures (maximum 23-fold, P = 0.01) as compared to inhalation exposures (maximum 10-fold, P = 0.01). Charcoal pads appeared to measure dermal exposures to benzene and toluene in addition to ambient air levels. Future studies applying charcoal cloth pads for the dermal exposure assessment at workplaces with higher dermal exposure to organic solvents may provide more insight into the biological relevance of dermal exposure levels measured by charcoal cloth pads. In addition, the design of the dermal sampler might be improved by configuring a dermal sampler, where part of the sampler is protected against direct contact and splashes, but still permeable for the gas phase. This design would most likely result in a better ability to correct for airborne concentrations at a given body location.
Role of CaCO3 and Charcoal Application on Organic Matter Retention in Silt-sized Aggregates
NASA Astrophysics Data System (ADS)
Berhe, A. A.; Kaiser, M.; Ghezzehei, T.; Myrold, D.; Kleber, M.
2011-12-01
The effectiveness of charcoal and calcium carbonate (CaCO3) applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition under differing soil mineralogical and microbiological conditions are still unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-50 μm) are of particularly large importance because they store up to 60% of soil organic carbon and with mean residence times between 70 and 400 years. The objectives of this study are i) to analyze the ability of soil amendments (CaCO3, charcoal and their combined application) to increase the amount of silt-sized aggregates and associated organic matter, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation process, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (clay: 40%, sand: 57%, SOM: 3%) and low reactive soils (clay: 10%, sand: 89%, SOM: 1%) and mixed them with charcoal (1%) and/or CaCO3 (0.2%). The samples were adjusted to a water potential of 0.3 bar using a nutrient solution and sub samples were incubated with microbial innoculum. After four months, silt-sized aggregates are separated by a combination of wet-sieving and sedimentation. We hypothesize that the relative increase in amount of silt-sized aggregates and associated OM is larger for less reactive soils than for high reactive soils because of a relative larger increase in binding agents by addition of charcoal and/or CaCO3 in less reactive soils. The effect of charcoal and/or CaCO3 application on the amount of silt-sized aggregates and associated OM is expected to increases with an increase in microbial activity. Between different treatments, we expect the incubated 'charcoal+CaCO3' combination to have the largest effect on silt-size scale aggregation processes because the amount of microbial derived cementing agents, charcoal derived functional groups containing OM, and Ca2+ ions are enhanced at the same time.
NASA Astrophysics Data System (ADS)
Hoffman, Kira; Smith, Dan; Lertzman, Ken; Starzomski, Brian
2015-04-01
The coastal temperate rainforests of British Columbia's Central Coast are comprised of old growth, mixed-age stands and a mosaic of non-forested bogs. This region receives approximately 4000 mm of annual rainfall, and fire disturbances caused by lightning are thought to be very rare. Because of the late successional characteristics of these forests and the presumed lack of visible fire evidence, fires have been estimated to occur at up to 6000-year return intervals. We attempt to distinguish the roles of natural and cultural (First Nations) fires using multiple lines of evidence from tree ring records, fire-scarred trees, soil charcoal and archaeological evidence from First Nations settlement areas. To reconstruct the Holocene fire history of the study area located on Hecate Island (N 51 38 W -128 05), thirty 400m2 forest mensuration plots were systematically established in a 287-hectare area burned in 1893. Analyses focused on the relationship between fire events and climate recorded in tree rings and instrumental records, as well as nutrient concentrations and pH of soils and plant community characteristics. Four fire events (1893, 1776, 1525, 1372) were recorded in forty-five living, fire-scarred western redcedar (Thuja plicata), yellow cedar (Xanthocyparis nootkatensis) and shore pine (Pinus contorta var. contorta) trees. Five additional fire events (1785 Cal BP, 2760 Cal BP, 3355 Cal BP, 4735 Cal BP, 7740 Cal BP) were dated with accelerated mass spectrometry radiocarbon dating of in situ macro charcoal (> 5mm) buried in stratigraphy in both organic and mineral soils. The short intervals between fire events, coupled with the long history of First Nations settlement and land use in the study area, suggest purposeful and repeated low-intensity ground fires. Our research demonstrates that fires are more widespread and common than previously recorded on the very wet Central Coast of British Columbia. It is important to incorporate cultural fires into fire history research to better understand the ecological legacies associated with repeat fire disturbances in coastal temperate rainforests.
Sañé, Elisabet; Isla, Enrique; Bárcena, María Ángeles; DeMaster, David J
2013-01-01
In 2002, section B of the Larsen ice shelf, off of the Eastern Antarctic Peninsula, collapsed and created the opportunity to study whether the changes at the sea surface left evidence in the sedimentary record. Biogenic silica is major constituent of Antarctic marine sediment, and its presence in the sediment column is associated with diatom production in the euphotic zone. The abundance of diatom valves and the number of sponge spicules in the biogenic silica was analyzed to determine how the origin of the biogenic silica in the upper layers of the sediment column responded to recent environmental changes. Diatom valves were present only in the upper 2 cm of sediment, which roughly corresponds to the period after the collapse of the ice shelf. In contrast, sponge spicules, a more robust form of biogenic silica, were also found below the upper 2 cm layer of the sediment column. Our results indicate that in this region most of the biogenic silica in the sedimentary record originated from sponge spicules rather than diatoms during the time when the sea surface was covered by the Larsen ice shelf. Since the collapse of the ice shelf, the development of phytoplankton blooms and the consequent influx of diatom debris to the seabed have shifted the biogenic silica record to one dominated by diatom debris, as occurs in most of the Antarctic marine sediment. This shift provides further evidence of the anthropogenic changes to the benthic habitats of the Antarctic and will improve the interpretation of the sedimentary record in Polar Regions where these events occur.
NASA Astrophysics Data System (ADS)
Fraser, Nicholas; Kuhnt, Wolfgang; Holbourn, Ann; Bolliet, Timothé; Andersen, Nils; Blanz, Thomas; Beaufort, Luc
2014-11-01
Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and suborbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea surface temperature, X-ray fluorescence (XRF) core scanning, and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29'N, 125°50'E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, while past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during marine isotope stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.
Sedimentary record of erg migration
NASA Astrophysics Data System (ADS)
Porter, M. L.
1986-06-01
The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.
Linking slope stability and climate change: the Nordfjord region, western Norway, case study
NASA Astrophysics Data System (ADS)
Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.
2009-12-01
Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.
Chad Basin: Paleoenvironments of the Sahara since the Late Miocene
NASA Astrophysics Data System (ADS)
Schuster, Mathieu; Duringer, Philippe; Ghienne, Jean-François; Roquin, Claude; Sepulchre, Pierre; Moussa, Abderamane; Lebatard, Anne-Elisabeth; Mackaye, Hassan Taisso; Likius, Andossa; Vignaud, Patrick; Brunet, Michel
2009-08-01
Since the mid 1990s, the Mission paléoanthropologique francotchadienne (MPFT) conducts yearly paleontological field investigations of the Miocene-Pliocene of the Chad Basin. This article synthesizes some of the results of the MPFT, with focus on the Chad Basin development during the Neogene. We propose an overview of the depositional paleoenvironments of this part of Africa at different scales of time and space, based on a multidisciplinary approach (sedimentary geology, geomorphology, geophysic, numerical simulations and geochronology). The Miocene-Pliocene paleoenvironments are examined through the sedimentary archives of the early hominids levels and the Holocene Lake Mega-Chad episode illustrates the last major paleoenvironmental change in this area. The sedimentary record of the Chad Basin since the Late Miocene can be schematized as the result of recurrent interactions from lake to desert environments.
Fire and vegetation history of the Jemez Mountains
Allen, Craig D.; Johnson, Peggy S.
2001-01-01
Historic patterns of fire occurrence and vegetation change in the Jemez Mountains of northern New Mexico have been described in detail by using multiple lines of evidence. Data sources include old aerial and ground-based photographs, historic records, charcoal deposits from bogs, fire-scarred trees (Figure 1), tree-ring reconstructions of precipitation, and field sampling of vegetation and soils. The forests and woodlands that cloak the Southwestern uplands provide the most extensive and detailed regional-scale network of fire history data available in the world (Swetnam and Baisan 1996, Swetnam et al. 1999, Allen 2002).
The late Quaternary decline and extinction of palms on oceanic Pacific islands
NASA Astrophysics Data System (ADS)
Prebble, M.; Dowe, J. L.
2008-12-01
Late Quaternary palaeoecological records of palm decline, extirpation and extinction are explored from the oceanic islands of the Pacific Ocean. Despite the severe reduction of faunal diversity coincidental with human colonisation of these previously uninhabited oceanic islands, relatively few plant extinctions have been recorded. At low taxonomic levels, recent faunal extinctions on oceanic islands are concentrated in larger bodied representatives of certain genera and families. Fossil and historic records of plant extinction show a similar trend with high representation of the palm family, Arecaceae. Late Holocene decline of palm pollen types is demonstrated from most islands where there are palaeoecological records including the Cook Islands, Fiji, French Polynesia, the Hawaiian Islands, the Juan Fernandez Islands and Rapanui. A strong correspondence between human impact and palm decline is measured from palynological proxies including increased concentrations of charcoal particles and pollen from cultivated plants and invasive weeds. Late Holocene extinctions or extirpations are recorded across all five of the Arecaceae subfamilies of the oceanic Pacific islands. These are most common for the genus Pritchardia but also many sedis fossil palm types were recorded representing groups lacking diagnostic morphological characters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, E.L.
Efforts at promoting more fuel-efficient charcoal stoves to replace traditional charcoal stoves in Kenya offer some lessons for the dissemination of appropriate technologies. This paper looks at the market-based approach which has made the Kenyan charcoal stoves project a success. Trends in woodfuels (wood and charcoal) consumption in Kenya are identified; the traditional technology for charcoal combustion and the upgraded traditional technologies are described; production achievement and the dissemination and promotion strategy used are examined; and a financial and economic analysis is performed with social, health and environmental effects assessed. Other ways to achieve a more favourable balance between woodfuelsmore » consumption and supply are then discussed looking at more efficient charcoal kilns and household woodstoves, improved institutional stoves and increased wood production. The replication potential of the Kenya experiment in other countries is also explored. The lessons learnt from the the Kenya experience concern the relationship between technology, choice and delivery systems as they interact with, economic, institutional, and policy factors. In this case, the design work accepted the traditional technology as a starting point which helped ensure widespread acceptance by households. The potential desirability of relying on local artisans to manufacture consumer durables using existing private sector channels to market these goods is also shown. It also highlights the importance of going beyond a laissez-faire approach and supporting training, demonstration, and publicity to faciliate the workings of the private sector. In the Kenyan case, technology choice was relatively unsubsidized and left ot the preferences of consumers.« less
[Effect of biochar addition on soil evaporation.
Xu, Jian; Niu, Wen Quan; Zhang, Ming Zhi; Li, Yuan; Lyu, Wang; Li, Kang-Yong; Zou, Xiao-Yang; Liang, Bo-Hui
2016-11-18
In order to determine the rational amount of biochar application and its effect on soil hydrological processes in arid area, soil column experiments were conducted in the laboratory using three biochar additions (5%, 10% and 15%) and four different biochar types (d<0.25 mm bamboo charcoal, 0.25 mm
Physiological and behavioral responses of an arboreal mammal to smoke and charcoal-ash substrate.
Nowack, Julia; Stawski, Clare; Körtner, Gerhard; Geiser, Fritz
2018-02-01
The recent observation that torpor plays a key role in post-fire survival has been mainly attributed to the reduced food resources after fires. However, some of these adjustments can be facilitated or amplified by environmental changes associated with fires, such as the presence of a charcoal-ash substrate. In a previous experiment on a small terrestrial mammal the presence of charcoal and ash linked to food restriction intensified torpor use. However, whether fire cues also act as a trigger of torpor use when food is available and whether they affect other species including arboreal mammals remains elusive. To evaluate whether smoke, charcoal and ash can act as proximate triggers for an impending period of food shortage requiring torpor for mammals, we conducted an experiment on captive sugar gliders (Petaurus breviceps), a small, arboreal marsupial, housed in outside aviaries under different food regimes and natural ambient conditions. When food was available, fire simulation via exposure to smoke and charcoal-ash substrate caused a significant earlier start of activity and a significant decrease in resting body temperature. In contrast, only when food was withheld, did smoke and charcoal-ash exposure significantly enhance torpor depth and duration. Thus, our study not only provides evidence that fire simulation does affect arboreal and terrestrial species similarly, but also suggests that smoke and ash were presumably selected as cues for torpor induction because they indicate an impending lack of food. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wassmer, Patrick; Gomez, Christopher; Iskandasyah, T. Yan W. M.; Lavigne, Franck; Sartohadi, Junun
2015-07-01
One of the main concerns of deciphering tsunami sedimentary records along seashore is to link the emplaced layers with marine high energy events. Based on a combination of morphologic features, sedimentary figures, grain size characteristics, fossils content, microfossils assemblages, geochemical elements, heavy minerals presence; it is, in principle, possible to relate the sedimentary record to a tsunami event. However, experience shows that sometimes, in reason of a lack of any visible sedimentary features, it is hard to decide between a storm and a tsunami origin. To solve this issue, the authors have used the Anisotropy of Magnetic Susceptibility (AMS) to evidence the sediment fabric. The validity of the method for reconstructing flow direction has been proved when applied on sediments in the aftermath of a tsunami event, for which the behaviour was well documented (2004 IOT). We present herein an application of this method for a 56 cm thick paleo-deposit dated 4220 BP laying under the soil covered by the 2004 IOT, SE of Banda Aceh, North Sumatra. We analysed this homogenous deposit, lacking of any visible structure, using methods of classic sedimentology to confirm the occurrence of a high energy event. We then applied AMS technique that allowed the reconstruction of flow characteristics during sediment emplacement. We show that all the sequence was emplaced by uprush phases and that the local topography played a role on the re-orientation of a part of the uprush flow, creating strong reverse current. This particular behaviour was reported by eyewitnesses during the 2004 IOT event.
Modern sedimentary environments in Boston Harbor, Massachusetts
Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.
1991-01-01
Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.
NASA Astrophysics Data System (ADS)
Minderhoud, Philip S. J.; Cohen, Kim M.; Toonen, Willem. H. J.; Erkens, Gilles; Hoek, Wim Z.
2017-04-01
Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation. The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from 4.7 to 2.9 ka cal BP and consists of 5.5 meters of laminated lacustrine, organo-clastic mud, covered by 1 meter of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in sedimentation rate. Especially the organo-clastic muddy facies subdivides in centennial intervals of relative faster and slower accumulation. For such intervals, sedimentation rates are produced that deviate 10 to 20% from that in simpler stepped linear age-models. For irregularly laminated muddy intervals of the oxbow fill - from which meaningful sampling for radiocarbon dating is more difficult than from peaty or slowly accumulating organic lake sediments - supplementing spotty radiocarbon sampling with continuous sedimentary proxy data creates more realistic age-depth modelling results.
Le Deit, L.; Mangold, N.; Forni, O.; ...
2016-05-13
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Deit, L.; Mangold, N.; Forni, O.
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less
NASA Astrophysics Data System (ADS)
Sincavage, R.; Goodbred, S. L., Jr.
2017-12-01
Most stratigraphic models are predicated on the presence of cyclicity or some form of order in vertical successions of strata. In spite of this a priori assumption of ordered stratigraphy, rarely are statistical metrics employed to quantify cyclicity in sedimentary packages. The presence or absence of preserved order in vertical sedimentary successions has important implications for the nature of environmental signals that are transmitted into the rock record. We interrogate the Holocene sedimentary archive of the Ganges-Brahmaputra-Meghna delta (GBMD) in an effort to explore to what extent fluvio-deltaic deposits exhibit recognizable order. Specifically, we focus on grain size data to evaluate 1.) if stratigraphic order in vertical sedimentary successions can be identified and quantified, and 2.) if there are spatial patterns of stratigraphic order across the GBMD. A runs order metric r is used to identify sequences of coarsening and fining within an extensive borehole network. Observed grain size data are shuffled enough times to generate synthetic "random" stratigraphy, and a Monte Carlo simulation generates 5000 realizations. The distribution of r values from the Monte Carlo are compared to the r metric calculated from observed data to determine how likely the observed metric could be generated by chance. The spatial distribution of order metrics indicates a relationship between areas of enhanced mass extraction and preservation of fluvial successions that scale with modern bar deposits on the Jamuna River. Similarly, probability metrics indicate that vertical successions of grain size data unlikely to have been generated by chance are more likely to be found on distal areas of the delta where 60% of the input mass has been extracted. Combining a mass balance framework with simple statistical metrics has the potential of improving predictions of the stratigraphic architecture and the preservation of ordered vs. disordered signals in the sedimentary record.
NASA Astrophysics Data System (ADS)
Awasthi, Neeraj
2017-12-01
In order to understand the provenance and tectono-sedimentary processes occurring in the Andaman Subduction Zone (ASZ), the Late Cretaceous to Oligocene sedimentary records from the Andaman Islands have been studied. These sedimentary records are considered to have preserved the history of the India-Asia collision, evolution of the Himalayas, climatic development and palaeo-drainage reorganizations on the Indian and Asian plates. About 47 sandstones and mudstones (shales and siltstones) samples were analyzed for whole rock major, trace, and rare earth element compositions. The geochemical results suggest mixing of sediments derived from the mafic igneous sources comprising local ophiolites and volcanic arc of the ASZ and an older Archean to Proterozoic age felsic cratonic source with compositions similar to average granodiorite or upper continental crustal sources. The compositions were dominated by sources of the mafic arc during deposition of the Mithakhari Group, whereas they were controlled by continental sources during deposition of the Andaman Flysch Group. The Hope Town Conglomerate unit of the Mithakhari Group was mainly derived from weathering and erosion of the subaerially exposed local ophiolite thrust sheets, whereas its Namunagarh unit contains significant detritus from volcanic arcs. The Andaman Flysch turbidites were deposited with a greater supply of sediments from first-cycle active continental margin sources probably located in the Tibetan and eastern Myanmar region and recycled quartzose sedimentary sources within the nascent Himalayas. The sediments supplied to both the Mithakhari and the Andaman Flysch Groups were characterized by varying values of CIA, PIA and W. These variable values were either due to non-steady state weathering conditions in the sources or the changing climatic conditions owing to the motion of Indian plate with reference to the equator. The uniformly high CIA and W values in the Andaman Flysch rocks can be related to high precipitation and strong chemical weathering associated with the initiation of the Indian monsoon.
NASA Astrophysics Data System (ADS)
Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.
2015-12-01
The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.
Thorium-derived dust fluxes to the tropical Pacific Ocean, 58 Ma
NASA Astrophysics Data System (ADS)
Woodard, Stella C.; Thomas, Deborah J.; Marcantonio, Franco
2012-06-01
Eolian dust in pelagic deep sea sediments can be used to reconstruct ancient wind patterns and paleoenvironmental response to climate change. Traditional methods to determine dust accumulation involve isolating the non-dissolvable aluminosilicate minerals from deep sea sediments through a series of chemical leaches, but cannot differentiate between minerals from eolian, authigenic and volcanogenic sources. Other geochemical proxies, such as sedimentary 232Th and crustal 4He content, have been used to construct high-resolution records of atmospheric dust fluxes to the deep sea during the Quaternary. Here we use sedimentary Th content as a proxy for terrigenous material (eolian dust) in ˜58 Myr-old sediments from the Shatsky Rise (ODP Site 1209) and compare our results with previous dust estimates generated using the traditional chemical extraction method and sedimentary 4Hecrustal concentrations. We find excellent agreement between Th-based dust estimates and those generated using the traditional method. In addition our results show a correlation between sedimentary Th and 4Hecrustal content, which suggests a source older than present day Asian loess supplied dust to the central subtropical Pacific Ocean during the early Paleogene.
Charcoal kiln relicts - a favorable site for tree growth?
NASA Astrophysics Data System (ADS)
Buras, Allan; Hirsch, Florian; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Wilmking, Martin
2015-04-01
Soils with incompletely combusted organic material (aka 'black carbon') are considered fertile for plant growth. Considerable enrichment of soils with black carbon is known from Chernozems, from anthropogenic induced altering of soils like the 'Terra Preta' in South America (e.g. Glaser, 2001), and from charcoal kiln relicts. Recent studies have reported a high spatial frequency of charcoal kiln relicts in the Northeastern German lowlands (Raab et al., 2015), which today are often overgrown by forest plantations. In this context the question arises whether these sites are favorable for tree growth. Here we compare the performance of 22 Pinus sylvestris individuals - a commonly used tree species in forestry - growing on charcoal kiln relicts with 22 control trees. Growth performance (height growth and diameter growth) of the trees was determined using dendrochronological techniques, i.e. standard ring-width measurements were undertaken on each two cores per tree and tree height was measured in the field. Several other wood properties such as annual wood density, average resin content, as well as wood chemistry were analyzed. Our results indicate that trees growing on charcoal kiln relicts grow significantly less and have a significantly lower wood density in comparison with control trees. Specific chemical components such as Manganese as well as resin contents were significantly higher in kiln trees. These results highlight that tree growth on charcoal kiln relicts is actually hampered instead of enhanced. Possibly this is a combined effect of differing physical soil properties which alter soil water accessibility for plants and differing chemical soil properties which may negatively affect tree growth either if toxic limits are surpassed or if soil nutrient availability is decreased. Additional soil analyses with respect to soil texture and soil chemistry shall reveal further insight into this hypothesis. Given the frequent distribution of charcoal kiln relicts in the German lowlands (e.g. Raab et al., 2015) and their potentially adverse effects on tree growth, these findings elucidate a yet unknown impact of past human activities on recent biological processes. Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W., 2001: The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37-41. Raab, A., Takla, M., Raab, T., Nicolay, A., Schneider, A., Rösler, H., Heußner, K.U., Bönisch, E., 2015. Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination. Quaternary International, doi: 10.1016/j.quaint.2014.09.041.
The charcoal trap: Miombo forests and the energy needs of people
2011-01-01
Background This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. Results The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. Conclusions We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply. PMID:21854587
Wildfires in the Triassic of Gondwana Paraná Basin
NASA Astrophysics Data System (ADS)
Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter
2018-03-01
This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.
Refinement of the charcoal meal study by reduction of the fasting period.
Prior, Helen; Ewart, Lorna; Bright, Jonathan; Valentin, Jean-Pierre
2012-05-01
The aim of this investigation was to determine whether a shorter fasting period than the one historically employed for the charcoal meal test, could be used when measuring gastric emptying and intestinal transit within the same animal, and to ascertain whether the scientific outcome would be affected by this benefit to animal welfare. Rats and mice were fasted for 0, 3, 6 or 18 hours before the oral administration of vehicle or atropine. One hour later, the animals were orally administered a charcoal meal, then 20 minutes later, they were killed and the stomach and small intestine were removed. Intestinal transit time (the position of the charcoal front as a percentage of the total length of the small intestine) and relative gastric emptying (weight of stomach contents) were measured. Rats and mice fasted for six hours showed results for gastric emptying and intestinal transit which were similar to those obtained in animals fasted for 18 hours. Reducing the fasting period reduced the body weight loss in both species, and mice on shorter fasts could be group-housed, as hunger-induced fighting was lessened. Therefore, a fasting period of six hours was subsequently adopted for charcoal meal studies at our institution. 2011 FRAME.
The role of activated charcoal in plant tissue culture.
Thomas, T Dennis
2008-01-01
Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.
NASA Astrophysics Data System (ADS)
Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.
2011-04-01
Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.
NASA Astrophysics Data System (ADS)
Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel
2018-04-01
Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.
NASA Astrophysics Data System (ADS)
Kurniawan, Edy Wibowo; Amirta, Rudianto; Budiarso, Edy; Arung, Enos Tangke
2017-06-01
Indonesia is greatly rich in biomass resources. Acacia bark waste utilization as a source of biomass is still very low, where as 10-20% of the potential of the wood. On the other hand waste palm shells have been partly utilized as boiler fuel oil plant as much as 62.4%, but the rest is still a waste pile or to the hardening of the estate path. This study aims to determine the effect of mixing an acacia bark with palm shells to increase the calorific value of palm shell white charcoal briquettes. The study was conducted by making white charcoal briquettes mixing 7% the acacia bark against of palm shells. As well as white charcoal briquettes control without any acacia bark. Then molds the briquettes in pyrolysis temperature at 600 ° C, 700 ° C and 800 ° C for pyrolysis time within 2 hours, 4 hours, and 6 hours. And the results of briquettes analysis in calorific value. The results showed that the caloric value of palm shell white charcoal briquettes increased from 29691.14 Kcal / kg to 31941.50 Kcal / kg.
A multi-proxy reconstruction of millennial scale drought history for Northern England
NASA Astrophysics Data System (ADS)
Macdonald, Dr; Chiverrell, Dr; Hind, Ms; Todd, Ms; Charman, Dr
2012-04-01
Drought is one of the major natural hazards experienced worldwide; they are complex with both causes and multifaceted impacts poorly understood. Few studies of drought events from a long-term perspective have been undertaken in the UK. This presents problems in determining important drought characteristics such as duration, frequency and severity. In order to undertake robust drought analyses reliable long-term data are required. Historical records have long been recognised as valuable data sources within historical climatology; however, the application of historical records in drought analysis is in its infancy, with few historical studies considering drought. This paper presents a reconstruction of drought events for NW England, from around AD 1000 to 2009, drawing upon instrumental, historical and sedimentary records. The drought record is extended to a millennial timescale by coupling the long, continuous instrumental meteorological records available for this area since the late 18th century, with descriptive historical accounts of droughts (since c.AD 1600) and a sedimentary peat sequences from an ombrotrophic mire (Butterburn Flow), where a water table variation history has been inferred from sub-fossil testate amoebae. The testate amoebae analyses were undertaken at 3mm sampling resolution, providing a sub-decadal (2-5 year) sample resolution. Calibration of the sedimentary sequences to the instrument series over the last c.250 years, coupled with chronological control provided by air fall pollutants (Pb and Zn) histories and radiocarbon dating, reveals a detailed millennial drought-dry phase history. The results identify a number of severe droughts - dry phases that have been of longer duration and of greater severity than the 1976 drought, the most memorable drought in living memory in the UK. The results of this work illustrate that current water resource management plans within the UK would struggle to maintain potable water supplies, indicating the need for greater resilience within current water management plans.
Camphor intoxication treated by charcoal haemoperfusion
Mascie-Taylor, Brian H.; Widdop, Brian; Davison, Alexander M.
1981-01-01
A case of camphor intoxication in which lipid haemodialysis and charcoal haemoperfusion were applied is described. Although the patient recovered rapidly with no resultant sequelae, the analytical data indicated that extra-corporeal therapy was ineffective. PMID:7339609
INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE ...
INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE DEPRESSIONS, WHICH WERE COVERED WITH IRON GRATES TO SUSPEND POTS OVER THE HEAT SOURCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
..., Reporter Brasil, the Citizens' Charcoal Institute (ICC), and the Pastoral Land Commission (CPT), indicate... Brasil, the Citizens' Charcoal Institute (ICC), and the Pastoral Land Commission (CPT), indicate that...
Gestational Exposure as Epigenetic Modifier of Breast Cancer Risk
2016-10-01
were cultured for 72 h in control phenol red-free media (DMEM for MCF-7; RPMI for UACC-31299) supplemented with 10 % charcoal-stripped FCS in the...phenol red-free media RPMI supplemented with 10 % charcoal-stripped FCS in the presence or absence of 10 nM E2, alone or in combination with 2 μM αNF. A...in control phenol red-free media RPMI supplemented with 10 % charcoal- stripped FCS in the presence or absence of 10 nM E2, alone or in
Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers
NASA Astrophysics Data System (ADS)
Goslin, Jérôme; Clemmensen, Lars B.
2017-10-01
Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.
NASA Astrophysics Data System (ADS)
Bergadà, M. Mercè; Cervelló, Josep M.; Edo, Manel; Cebrià, Artur; Oms, F. Xavier; Martínez, Pablo; Antolín, Ferran; Morales, Juan Ignacio; Pedro, Mireia
2018-03-01
The stratigraphic, sedimentary and palaeoenvironmental features reflected in cavities in the Catalan Coastal Ranges of NE Iberia (Can Sadurní and Guineu caves) characterize the periods of pronounced climatic and human complexity that occurred c. 13.0-6.0 cal ka BP. This includes the stages of the Younger Dryas and Mid/Early Holocene, the latter being one of the periods of so-called Rapid Climatic Changes (RCCs). These caves, like others in Mediterranean contexts, are the result of an old duct originating in the saturated zone of the karst system and open to the outside; recording a succession of different detrital and anthropic episodes of the Epipaleolithic, Mesolithic and Neolithic communities. From this study it can be seen that paleoclimatic events do not always present clear signals in the karst records, especially c. 12.7-7.4 cal ka BP, corresponding to the Epipaleolithic and Mesolithic. It is characterized by a stratigraphic discontinuity in which there are phases with predominantly detrital sedimentation alternating with hiatus intervals. Detrital sedimentation formed by fine material colluvium with gravitational movements or solifluction processes in fresh and humid conditions. It appears in the following chronological intervals: 12.7-12.2 cal ka BP, 11.5/11.1-10.7/10.4 cal ka BP and 8.2-8.0 cal ka BP (less humid). Hiatus phases are represented in the rest of the sequence up to c. 7.4 cal ka BP. From the sedimentary point of view these stages of hiatus are indicative of phases of stability or lack of episodes with seasonal contrasts; a fact that would cause interruptions to detrital deposition in the interior of the caves. In contrast, in the period c. 7.4 to 6.0 cal ka BP, attributed to the Middle and Early Neolithic, there is a certain stratigraphic continuity. From the sedimentary point of view it is distinguished by a variability of processes that responds to accumulative episodes of short duration characteristic of morphogenesis of the slopes in an arid Mediterranean environment, identified in our records as RCCs, (c. 7.4-7.2 cal ka BP- Cardial Neolithic; c. 6.8-6.3 cal ka BP-Early Postcardial Middle Neolithic and c. 6.2-5.7 cal ka BP- Late Postcardial Middle Neolithic) alternating with episodes of stability, more humid and coinciding with a better sedimentary record of the pastoral activity in the cavities during Epicardial and Late Cardial Neolithic (c. 7.1-6.7 cal ka BP) and Postcardial Middle Neolithic (c. 6.6-5.9 cal ka BP). It is during this period that Holocene climate variability has better resolution in caves in the Catalan Coastal Ranges of NE Iberia.
NASA Astrophysics Data System (ADS)
Dimaggio, E. N.; Campisano, C. J.; Arrowsmith, J. R.; Dupont-Nivet, G.; Johnson, R. A.; Warren, M. B.
2008-12-01
Sedimentary sequences preserved in East African rift basins record the long-term response of past depositional environments to climatic and tectonic forcing. Motivations for recent field investigations at the Ledi-Geraru site, part of the greater Hadar sedimentary basin in the Afar region of Ethiopia, stem from a need to characterize local basin structure and expand and refine interpretations of the complex mid-late Pliocene history of local and regional-scale landscape change during a time of critical importance for understanding hominin evolution. Detailed geologic mapping (1:7,000), measured stratigraphic sections, and seismic reflection surveys provide the datasets necessary for basin evaluation. The Ledi-Geraru sedimentary sequence (>250m thick) exposes nearly the entirety of the hominin-bearing Hadar Formation of west- central Afar. Both primary unmodified lake deposits and intervals modified by subsequent subaerial exposure and pedogenesis are well-exposed. The lacustrine-dominated signature is indicated by the prevalence of laminated silty clays that contain leaf impressions, fish scales, and gastropod shells, undisturbed laminated diatomite and clays, and pedogenically modified diatomaceous silts. The sequence is generally flat lying, with low bedding dips ranging from 0-2° NNW to <1° NNE and minor NNW trending faults with <5 m vertical offset. Whereas coeval fluvio-lacustrine sediments associated with hominin and archaeological sites west of Ledi-Geraru (e.g., Hadar and Gona) are marked by comparatively slow and episodic sedimentation, sedimentation rates in the Ledi-Geraru sequence are extremely high and consistent, on the order of ~0.9-1.0mm/yr. Laterally extensive tephra marker beds and paleomagnetic records provide excellent age control for sedimentation rate estimates and correlation to nearby fossil-rich sequences. As the Hadar basin sediments preserve a rich paleoanthropologic and archaeological record, this work provides the geologic framework necessary for a proposed (2011) continental drilling effort to obtain a near-continuous, ultra-high resolution terrestrial record of past climate variability from multiple paleo-lake basins in East Africa, including the Ledi-Geraru. A seismic reflection survey was completed there in spring 2008, below the planned drilling site. Gently east-dipping coherent reflections interpreted to be from the Ledi-Geraru sedimentary sequence are imaged in the seismic data to at least 0.2 to 0.3 s (two-way travel time). Preliminary average velocities of about 2000 m/s suggest a sequence thickness of 200-300 m. Furthermore, there is no indication of large-offset faults or of buried basalt ridges that would disrupt or reduce the stratigraphic column available for coring. The anticipated cores from Ledi-Geraru should yield a high-resolution chronostratigraphic framework and paleoenvironmental record from >3.5 to 2.9Ma. Combined geologic and seismic evaluations of depositional sequences are central for evaluating the geometry, tectonic evolution, and stratigraphic history of basins and facilitate interpretations of the space-time progression of evolving paleosurfaces.
Chang, Shu-Sen; Chen, Ying-Yeh; Yip, Paul S F; Lee, Won Jin; Hagihara, Akihito; Gunnell, David
2014-04-01
Suicides by carbon monoxide poisoning resulting from burning barbecue charcoal reached epidemic levels in Hong Kong and Taiwan within 5 y of the first reported cases in the early 2000s. The objectives of this analysis were to investigate (i) time trends and regional patterns of charcoal-burning suicide throughout East/Southeast Asia during the time period 1995-2011 and (ii) whether any rises in use of this method were associated with increases in overall suicide rates. Sex- and age-specific trends over time were also examined to identify the demographic groups showing the greatest increases in charcoal-burning suicide rates across different countries. We used data on suicides by gases other than domestic gas for Hong Kong, Japan, the Republic of Korea, Taiwan, and Singapore in the years 1995/1996-2011. Similar data for Malaysia, the Philippines, and Thailand were also extracted but were incomplete. Graphical and joinpoint regression analyses were used to examine time trends in suicide, and negative binomial regression analysis to study sex- and age-specific patterns. In 1995/1996, charcoal-burning suicides accounted for <1% of all suicides in all study countries, except in Japan (5%), but they increased to account for 13%, 24%, 10%, 7%, and 5% of all suicides in Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore, respectively, in 2011. Rises were first seen in Hong Kong after 1998 (95% CI 1997-1999), followed by Singapore in 1999 (95% CI 1998-2001), Taiwan in 2000 (95% CI 1999-2001), Japan in 2002 (95% CI 1999-2003), and the Republic of Korea in 2007 (95% CI 2006-2008). No marked increases were seen in Malaysia, the Philippines, or Thailand. There was some evidence that charcoal-burning suicides were associated with an increase in overall suicide rates in Hong Kong, Taiwan, and Japan (for females), but not in Japan (for males), the Republic of Korea, and Singapore. Rates of change in charcoal-burning suicide rate did not differ by sex/age group in Taiwan and Hong Kong but appeared to be greatest in people aged 15-24 y in Japan and people aged 25-64 y in the Republic of Korea. The lack of specific codes for charcoal-burning suicide in the International Classification of Diseases and variations in coding practice in different countries are potential limitations of this study. Charcoal-burning suicides increased markedly in some East/Southeast Asian countries (Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore) in the first decade of the 21st century, but such rises were not experienced by all countries in the region. In countries with a rise in charcoal-burning suicide rates, the timing, scale, and sex/age pattern of increases varied by country. Factors underlying these variations require further investigation, but may include differences in culture or in media portrayals of the method. Please see later in the article for the Editors' Summary.
2012-01-01
Background Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Methods Suicide data from 2001 to 2008 on victims of usual working age (20–59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Results Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. Conclusion The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific. PMID:22770504
Biochar affected by composting with farmyard manure.
Prost, Katharina; Borchard, Nils; Siemens, Jan; Kautz, Timo; Séquaris, Jean-Marie; Möller, Andreas; Amelung, Wulf
2013-01-01
Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Law, Chi-kin; Leung, Candi M C
2012-07-06
Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Suicide data from 2001 to 2008 on victims of usual working age (20-59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific.
Reassessment of the use of fire as a management tool in deciduous forests of eastern North America.
Matlack, Glenn R
2013-10-01
Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie-woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire-history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point-return times ranging from 5-10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke-cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine-grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie-woodland transition zone. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Ruiz-Fernández, Jesús; Oliva, Marc; Cruces, Anabela; Lopes, Vera; Freitas, Maria da Conceição; Andrade, César; García-Hernández, Cristina; López-Sáez, José Antonio; Geraldes, Miguel
2016-04-01
The Western Massif of the Picos de Europa (latitude 43° N, longitude 4-5° W) includes some of the highest peaks in the Cantabrian Mountains. This massif was heavily glaciated during the Last Glaciation, though the post-glacial environmental evolution is still poorly understood. Using a complementary geomorphological and sedimentological approach, we have reconstructed the environmental events occurred in this massif since the last Pleistocene glaciation. The geomorphological distribution of glacial landforms suggests the occurrence of four main glacial stages: maximum glacial advance, glacial expansion after the maximum advance, Late Glacial and Little Ice Age. Moreover, a 5.4-m long sedimentary sequence was retrieved from the karstic depression of Belbín providing a continuous record of the paleoenvironmental conditions in this area since the Last Glaciation until nowadays. This section suggests that the maximum glacial expansion occurred at a minimum age of 37.2 ka cal BP, significantly prior to the global Last Glacial Maximum. Subsequently, periglacial processes prevailed in the mid lands of the massif until glaciers expanded between 22.5 and 18.7 ka cal BP. Following the melting of the glaciers, a shallow lake appeared in the Belbín depression. Lake sediments do not show evidence of a cold stage during the Late Glacial, when moraine systems formed at higher locations. The terrestrification of this lake started at 8 ka cal BP and the area turned into grassland. At 4.9 ka cal BP the existence of charcoal particles in the sediments of Belbín sequence reveals the onset of human occupation in the massif through the use of fire activity for grazing purposes. Finally, the presence of moraines inside the highest northern cirques shows evidence of the last glacial phase that occurred during the Little Ice Age cold event. Since then, the warming climate has led to the melting of these glaciers and periglacial processes prevail in the high lands of the massif.
Chang, Shu-Sen; Kwok, Simon Sai Man; Cheng, Qijin; Yip, Paul S F; Chen, Ying-Yeh
2015-09-01
Some East/Southeast Asian countries have experienced a rapid increase in suicide by charcoal burning over the past decade. Media reporting and Internet use were thought to contribute to the epidemic. We investigated the association between method-specific suicide incidence and both Internet search volume and newspaper reporting in Taiwan. Weekly data for suicide, suicide-related Google search volume, and the number of articles reporting suicide in four major newspapers in Taiwan during 2008-2011 were obtained. Poisson autoregressive regression models were used to examine the associations between these variables. In the fully adjusted models, every 10 % increase in Google searches was associated with a 4.3 % [95 % confidence interval (CI) 1.1-7.6 %] increase in charcoal-burning suicide incidence in the same week, and a 3.8 % (95 % CI 0.4-7.2 %) increase in the following week. A one-article increase in the United Daily was associated with a 3.6 % (95 % CI 1.5-5.8 %) increase in charcoal-burning suicide in the same week. By contrast, non-charcoal-burning suicide was not associated with Google search volume, but was associated with the Apple Daily's reporting in the preceding week. We found that increased Internet searches for charcoal-burning suicide appeared to be associated with a subsequent increase in suicide by this method. The prevention of suicide using emerging methods may include monitoring and regulating online information that provides details of these methods as well as encouraging Internet service providers to provide help-seeking information.
de Oliveira, Ricardo Sonsim; Palácio, Soraya Moreno; da Silva, Edson Antonio; Mariani, Filipe Quadros; Reinehr, Thiago Olinek
2017-04-01
This study evaluated the feasibility of production of briquettes using fine charcoal, sewage sludge, and mixtures thereof for use in energy production. The briquettes of 7-8 cm diameter and 20 cm length were produced in the conical press extruder type, mixing sewage sludge to charcoal fines in different ratios: 0:100, 25:75, 50:50, 75:25, and 100:0, with the addition of a binder (glue flour) in a ratio of 8 mass% prepared for briquetting. After air drying (temperatures between 24 and 30°C) for 48 h, the mechanical, thermal, and morphological characterizations were performed. The morphological properties of the briquettes were evaluated by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The briquettes produced had mechanical strength, with values between 210 and 420 kgf, and densities between 0.75 and 0.91 g cm -3 . The calorific value of briquettes was in the range from 13.21 to 23.10 MJ kg -1 , in which there was an increase with the increase of concentration of charcoal fines in the mixture. Thermogravimetric analysis showed mass losses that occurred in the temperature range between 150 and 740 °C. The results of the mechanical and thermal properties showed the feasibility of using fine charcoal briquettes from sewage sludge as well as mixtures thereof, for the production of energy. The fine charcoal briquette was the one with the highest calorific value, but not showed the highest resistance to mechanical shock.
Rosenbaum, Joseph; Reynolds, Richard T.; Smoot, Joseph; Meyer, Robert
2000-01-01
At Owens Lake, California, paleomagnetic data document the Matuyama/Brunhes polarity boundary near the bottom of a 323-m core (OL-92) and display numerous directional fluctuations throughout the Brunhes chron. Many of the intervals of high directional dispersion were previously interpreted to record magnetic excursions. For the upper ~120 m, these interpretations were tested using the anisotropy of magnetic susceptibility (AMS), which typically defines a subhorizontal planar fabric for sediments deposited in quiet water. AMS data from intervals of deformed core, determined from detailed analysis of sedimentary structures, were compared to a reference AMS fabric derived from undisturbed sediment. This comparison shows that changes in the AMS fabric provide a means of screening core samples for deformation and the associated paleomagnetic record for the adverse effects of distortion. For that portion of core OL-92 studied here (about the upper 120 m), the combined analyses of sedimentary structures and AMS data demonstrate that most of the paleomagnetic features, previously interpreted as geomagnetic excursions, are likely the result of core deformation.
Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic margin
NASA Astrophysics Data System (ADS)
Loubere, Paul; Rayray, Shan
2016-09-01
We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.
Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic Margin
NASA Astrophysics Data System (ADS)
Loubere, Paul; Rayray, Shan
2016-07-01
We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.
NASA Astrophysics Data System (ADS)
Arai, Kohsaku; Sakai, Hideo; Konishi, Kenji
1997-05-01
An outer shelf deposit in central Japan centered on the Olduvai normal polarity event in the reversed Matuyama chron reveals a close correlation of both the magnetic susceptibility and remanent intensity with the sedimentary cyclicities apparent in lithologies and molluscan assemblages. Two sedimentary cycles are characterized by distinctly similar, but double-peaked magnetic cyclicities. The rock-magnetic variability is primarily attributed to the relative abundance of terrigenous magnetic minerals, and the double peak of the variability is characterized by the concentration of finer-grained magnetic minerals. The concentration is suspected to be controlled by both climatic change and shifting proximity of the shoreline as a function of rise and fall of the sea level due to glacio-eustasy. Rock-magnetic study reveals the record of a 21 ka period of orbital precession cycles within the sedimentary cyclicity attributable to a 41 ka period of orbital obliquity forcing.
Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil
NASA Astrophysics Data System (ADS)
Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco
2014-05-01
The addition of pyrogenic carbon (C) in the soil is considered a sustainable strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil chemico-physical properties by studying a series of abandoned charcoal hearths in the Eastern Alps established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of C present in the hearths with the estimated amount of charcoal that was left on the soil after the carbonization. Approximately 80% of the C originally added to the soil via charcoal can still be found today, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an improvement in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. Then, we focused on the morphological and physical characterization of several fragments, using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Such study enabled the identification of peculiar morphological features of tracheids, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignine and cellulose. In order to assess the effect of soil-aging we compared the old-biochar with a modern one obtained from the same feedstock and with similar carbonization process. XRD and XRF analysis were performed on both old and modern biochar, in order to study the multiphase crystalline structure and chemical elements found. We observed mineralization and a fossilization of old biochar samples respect to the modern ones, with accumulation of several mineral oxides and a substantial presence of quartz. A graphene structure was also found, indicating weak bonds in the carbon structures, explained by inter-molecular Van der Waals forces. Furthermore, we have detected a graphite oxide structure responsible of the bending effect in the tracheid, revealed in SEM images. We consider that those results may contribute to the ongoing debate on the best, most suitable geo-engineering strategies that can potentially enable effective and sustainable carbon sequestration in agricultural soils using biochar.
NASA Astrophysics Data System (ADS)
Rybalkin, Andrey
Numerical assessments of radon diffusion together with analytical estimates for short-time and long-time exposure were the first objective of this thesis with the goal to demonstrate how radon propagates in various media. Theoretical predictions were compared to numerical simulations, and obtained values of total radon activities inside each material match quite well with the analytical estimates. These estimates, for activated and nonactivated charcoal, were then used to evaluate the possibility of designing a charcoal system to be used as a radon detector. Another objective was to use nonactivated charcoal samples and measure the level of radon accumulation, and use these data to estimate radon diffusion and adsorption coefficients. The analytical approach was developed to estimate these values. Radon adsorption coefficient in nonactivated charcoal was found to be from 0.2 to 0.4 m3/kg. Radon diffusion coefficient for nonactivated charcoal is in the range of 1.2×10-11 to 5.1×10-10 m2/s in comparison to activated charcoal with adsorption coefficient of 4 m3/kg and diffusion coefficient of 1.43×10-9 m2/s. The third objective was to use GEANT4 numerical code to simulate decay of 238U series and 222Rn in an arbitrary soil sample. Based on that model, the goal was to provide a guideline for merging GEANT4 radioactive decay modeling with the diffusion of radon in a soil sample. It is known that radon can be used as an earthquake predictor by measuring its concentration in groundwater, or if possible, along the faults. Numerical simulations of radon migration by diffusion only were made to estimate how fast and how far radon can move along the fault strands. Among the known cases of successful correlations between radon concentration anomalies and earthquake are the 1966 Tashkent and 1976 Songpan-Pingwu earthquakes. Thus, an idea of radon monitoring along the Wasatch Fault, using system of activated/nonactivated charcoals together with solid state radon detectors is suggested in the thesis. Also, the use of neutron activation analysis for soil samples, collected along and away from Wasatch Fault, and looking for the trace elements can result in correlation with earthquakes, occurred in the past. This approach can be used for earthquake prediction in future.
Preliminary Report on the White Canyon Area, San Juan County, Utah
Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.
1952-01-01
The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly chrysocolla. The principal gangue minerals are quartz, clay minerals, chlorite, oxides of iron and manganese, alunite, calcite, gypsum, pyrite, allophane, gibbsite, opal, and chalcedony. The origin of the copper-uranium ores has not been determined, but the association of many deposits with fractures, the mineralogic assemblage, and a lead-uranium age determination of 50 to 60 million years for the pitchblende in the Happy Jack mine favor the hypothesis that the ores are of hydrothermal origin and were deposited in early Tertiary time. Criteria believed to be the most useful in prospecting for new deposits are (1) visible uranium minerals; (2) visible copper minerals; (3) alunite; (4) hydrocarbons; and (5) bleaching of the underlying Moenkopi formation.
NASA Astrophysics Data System (ADS)
Valero, Luis; Garcés, Miguel; Huerta, Pedro; Cabrera, Lluís
2016-04-01
Discerning the effects of climate in the stratigraphic record is crucial for the comprehension of past climate changes. The signature of climate in sedimentary sequences is often assessed by the identification of Milankovitch cycles, as they can be recognized due to their (quasi) periodic behaviour. The integration of diverse stratigraphic disciplines is required in order to understand the different processes involved in the expression of the orbital cycles in the sedimentary records. New advances in Stratigraphy disclose the different variables that affect the sedimentation along the sediment routing systems. These variables can be summarized as the relationship between accommodation and sediment supply (AS/SS), because they account for the shifts of the total mass balance of a basin. Based in these indicators we propose a synthetic model for the understanding of the expression of climate in continental basins. Sedimentation in internally drained lake basins is particularly sensitive to net precipitation/evaporation variations. Rapid base level oscillations modify the AS/SS ratio sufficiently as to mask possible sediment flux variations associated to the changing discharge. On the other hand, basins lacking a central lacustrine system do not experience climatically-driven accommodation changes, and thus are more sensitive to archive sediment pulses. Small basins lacking carbonate facies are the ideal candidates to archive the impact of orbital forcing in the landscapes, as their small-scale sediment transfer systems are unable to buffer the upstream signal. Sedimentation models that include the relationship between accommodation and sediment supply, the effects of density and type of vegetation, and its coupled response with climate are needed to enhance their reliability.
Polyak, L.; Curry, W.B.; Darby, D.A.; Bischof, J.; Cronin, T. M.
2004-01-01
Distinct cyclicity in lithology and microfaunal distribution in sediment cores from the Mendeleev Ridge in the western Arctic Ocean (water depths ca. 1. 5 km) reflects contrasting glacial/interglacial sedimentary patterns. We conclude that during major glaciations extremely thick pack ice or ice shelves covered the western Arctic Ocean and its circulation was restricted in comparison with interglacial, modern-type conditions. Glacier collapse events are marked in sediment cores by increased contents of ice-rafted debris, notably by spikes of detrital carbonates and iron oxide grains from the Canadian Arctic Archipelago. Composition of foraminiferal calcite ?? 18O and ??13C also shows strong cyclicity indicating changes in freshwater balance and/or ventilation rates of the Arctic Ocean. Light stable isotopic spikes characterize deglacial events such as the last deglaciation at ca. 12 14C kyr BP. The prolonged period with low ??18O and ??13C values and elevated contents of iron oxide grains from the Canadian Archipelago in the lower part of the Mendeleev Ridge record is interpreted to signify the pooling of freshwater in the Amerasia Basin, possibly in relation to an extended glaciation in arctic North America. Unique benthic foraminiferal events provide a means for an independent stratigraphic correlation of sedimentary records from the Mendeleev Ridge and other mid-depth locations throughout the Arctic Ocean such as the Northwind and Lomonosov Ridges. This correlation demonstrates the disparity of existing age models and underscores the need to establish a definitive chronostratigraphy for Arctic Ocean sediments. ?? 2003 Elsevier B.V. All rights reserved.
Tunnel Boring Machine Performance Study. Final Report
DOT National Transportation Integrated Search
1984-06-01
Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...
Radon free storage container and method
Langner, Jr., G. Harold; Rangel, Mark J.
1991-01-01
A radon free containment environment for either short or long term storage of radon gas detectors can be provided as active, passive, or combined active and passive embodiments. A passive embodiment includes a resealable vessel containing a basket capable of holding and storing detectors and an activated charcoal adsorbing liner between the basket and the containment vessel wall. An active embodiment includes the resealable vessel of the passive embodiment, and also includes an external activated charcoal filter that circulates the gas inside the vessel through the activated charcoal filter. An embodiment combining the active and passive embodiments is also provided.
Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal
Moreno, Juan Carlos; Gómez, Rigoberto; Giraldo, Liliana
2010-01-01
Cow bone charcoal (CBC) was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper) from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.
Fabrication and characterization of rice husk charcoal bio briquettes
NASA Astrophysics Data System (ADS)
Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Salsabila, E.
2018-02-01
Rice husk is the outermost part of the rice seed which is a hard layer and a waste material from rice milling. Rice husk includes biomass that can be exploited for various requirements such as industrial raw materials as well as energy sources or fuel but only a small group of people use it. This research is conducted utilizing the rice husk as an alternative fuel by making it as a charcoal briquette. To make the treatment easy, firstly the rice husk biomass was converted into charcoal powder by carbonization method using two kinds of furnace which have different heating behavior. The best carbonization results are obtained from the furnace, which has a constant temperature heating behavior. The process of making briquettes is prepared by adding tapioca starch of 6% concentration by weight as charcoal adhesive and then printed with the aid of pressing tools using loads at 1,000 kg/cm2. The resulting briquette has a calorific value about 3.126 cal/g, mass density is 0.86 g/cm3 and compressive strength is about 2.02 kg/cm2, so that the bio-briquette of charcoal produced can be used as alternative energy to replace the fossil fuel for domestic or household purposes.
[Response of Calliphora vicina larval hemocytes to abiotic and biotic foreign particles injection].
Kind, T V
2012-01-01
Human erythrocytes injection into the body cavity of Calliphora vicina postfeeding larvae results to their fast binding by thrombocytoidal fragments with agglutinates formation. There were almost none sites of lysis and degradation of erythrocytes in agglutinates even after shape modification and strands generation. Exceptions are zones of agglutinates with juvenile hemocytes, where destruction of erythrocytes is seen. The sequential injection of erythrocytes and charcoal particles leads to charcoal adhesion at first to agglutinates periphery and later to more deep stratum of cytoplasm between the erythrocytes. Under such conditions agglutinate formation period is accompanied with morphology variations which do not influence the intensity of agglutinating reaction. Juvenile plasmatocytes phagocytized the charcoal particles regardless of their concentration and duration of previous contact with erythrocytes. When mixture of abiotic and biotic particles was injected into post feeding larvae, crythrocytes and charcoal generate independent aggregations in the range of separate agglutinates. At the same time plasmatocytes form nodules consisting of temporary cell aggregations covered with cores of non phagocytized charcoal particles. These data testified that presumably lectin receptors responsible for foreign biotic and abiotic particles recognition are very near but not identical for different types of hemocytes. They may be specifical (for plasmatocytes) or integrated to different parts of cellular membrane (in thrombocytoids).
[Clinical manifestations related to kitchen biomass smoke in African women].
Kouassi, B; Horo, K; Ahui, B; Godé, C; N'Guessan, L; Anon, J-C; Koffi, N; Ngom, A; Aka-Danguy, E; Koffi, M O; Djè Bi, I H; Ano, A
2012-03-01
Fires of wood and charcoal play an essential part in the cooking of food in Africa. These fires emit thick smoke that has definite health consequences. To determine the clinical manifestations related to kitchen smoke and to identify the type of fire most often incriminated. It was a transverse study comparing the clinical features in women using three types of fire: wood, charcoal and gas. We questioned 200 women in each group who used one type of fire exclusively for five days a week for at least five years. Clinical manifestations associated with the smoke were reported in all the women using wood as opposed to 98.5% using charcoal and 45.5% using gas. More than 80% had physical signs. These comprised 89.1% upper respiratory and 77% pulmonary signs. Upper respiratory signs were the most common, mainly sneezing and nasal obstruction. At the pulmonary level, a predominance of signs was found in women using wood fires (47.3%) and charcoal (36.2%), the difference being statistically significant. The signs included chronic cough, chest pain and dyspnoea. Wheezes were found in 15% of the women. Cooking smoke exposes women to complications which are most frequently associated with the use of wood or charcoal. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Wounded zygotic embryos of cultivated carrot produce somatic proembryos on hormone-free nutrient medium containing 1 mM NH4+ as the sole nitrogen source. Continued maintenance of proembryos on this medium leads to a "pure" culture of preglobular stage proembryos (PGSPs). Ethylene had no effect on this process. Also, somatic embryo production was not affected by growing cultures on activated charcoal-impregnated filter papers. However, somatic proembyros initiated on activated charcoal papers were not maintainable as PGSPs and developed into later embryo stages. Normally, medium pH dropped from 5.7 to 4 during each subculture period, but when using activated charcoal papers the pH endpoint was around 6 - 7 due to a leachable substance(s) within the filter papers. When powdered, activated charcoal was used in the medium as an adsorbent of products potentially released after wounding, pH dropped at the normal rate and to the expected levels; proembryos did not mature into later embryo stages and were maintainable exclusively as PGSPs. Low pH (approximately 4) is detrimental to proembyro production, but is essential to maintaining PGSPs on hormone-free nutrient medium, whereas a sustained pH > or = 5.7 allows continued development of PGSPs into later embryo stages.
The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity
Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.
2016-01-01
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-02-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less
The Hydrological Evolution of Mars as Recorded at Gale Crater
NASA Astrophysics Data System (ADS)
Andrews-Hanna, J. C.; Horvath, D. G.
2017-12-01
The sedimentary deposits making up the Aeolis Mons sedimentary mound within Gale Crater preserve a record of the evolving hydrology and climate of Mars during the Late Noachian and Hesperian epochs. Aqueous sedimentary deposits including mudstones, deltaic deposits, and sulfate-cemented sediments indicate the past presence of liquid water on the surface. However, these observations alone do not strictly constrain the nature of the hydrology and climate at the time of deposition. We use models of the subsurface and surface hydrology to shed light on the conditions required to reproduce the observed deposits. Changes in the nature and composition of the deposits reflect changes in the balance between the surface and subsurface components of the hydrological cycle, driven by climate changes. Mudstones observed by the MSL rover at the base of the crater reflect lacustrine deposition under semi-arid conditions, with substantial fluid supply from both the surface (overland flow and direct precipitation) and subsurface. A transition at higher stratigraphic levels to sulfate-cemented sandstones required a change to a more arid climate, with the hydrology dominated by long-distance subsurface transport. Near the top of the mound, unaltered deposits indicate deposition under dry conditions, though this transition coincides with the natural limit on the rise of the water table imposed by the surrounding topography and does not require a change in climate. Erosion of the crater-filling sedimentary deposits to their present mound shape required a dramatic drop in the water table under hyper-arid conditions. Evidence for later lake stands in the Hesperian indicates transient returns to semi-arid conditions similar to those that prevailed during the Late Noachian. By coupling surface and orbital observations with hydrological modeling, we are able to make more specific constraints on the evolving climate and aridity of early Mars.
NASA Astrophysics Data System (ADS)
Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S. E.; Borówka, R. K.
2017-08-01
It is shown that coastal dunes bear a so far unread archive of annual wind intensity. Active dunes at the Polish coast near Łeba consist of two genetic units: primary dunes with up to 18 m high eastward-dipping foresets, temporarily superimposed by smaller secondary dunes. Ground-penetrating radar (GPR) data reveal that the foresets of the primary dunes are bundled into alternating packages imaged as either low- or high-amplitude reflections. High-amplitude packages are composed of quartz sand with intercalated heavy-minerals layers. Low-amplitude packages lack these heavy-mineral concentrations. Dune net-progradation is towards the east, reflecting the prevalence of westerly winds. Winds blowing parallel to the dune crest winnow the lee slope, leaving layers enriched in heavy minerals. Sediment transport to the slip face of the dunes is enhanced during the winter months, whereas winnowing predominantly takes place during the spring to autumn months, when the wind field is bi-directional. As a consequence of this seasonal shift, the sedimentary record of one year comprises one low- and one high-amplitude GPR reflection interval. This sedimentary pattern is a persistent feature of the Łeba dunes and recognized to resemble a sedimentary "bar code". To overcome hiatuses in the bar code of individual dunes and dune-to-dune variations in bar-code quality, dendrochronological methods were adopted to compile a composite bar code from several dunes. The resulting data series shows annual variations in west-wind intensity at the southern Baltic coast for the time period 1987 to 2012. Proxy-based wind data are validated against instrumental based weather observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.
The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previousmore » and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe 3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.« less
NASA Astrophysics Data System (ADS)
Kirana, Kartika Hajar; Bijaksana, Satria; King, John; Tamuntuan, Gerald Hendrik; Russell, James; Ngkoimani, La Ode; Dahrin, Darharta; Fajar, Silvia Jannatul
2018-02-01
Past changes in the Earth's magnetic field can be highlighted through reconstructions of magnetic paleointensity. Many magnetic field variation features are global, and can be used for the detailed correlation and dating of sedimentary records. On the other hand, sedimentary magnetic records also exhibit features on a regional, rather than a global scale. Therefore, the development of regional scale magnetic field reconstructions is necessary to optimize magnetic paleointensity dating. In this paper, a 60 thousand year (kyr) paleointensity record is presented, using the core TOW10-9B of Lake Towuti, located in the island of Sulawesi, Indonesia, as a part of the ongoing research towards understanding the Indonesian environmental history, and reconstructing a high-resolution regional magnetic record from dating the sediments. Located in the East Sulawesi Ophiolite Belt, the bedrock surrounding Lake Towuti consists of ultramafic rocks that render the lake sediments magnetically strong, creating challenges in the reconstruction of the paleointensity record. These sediment samples were subject to a series of magnetic measurements, followed by testing the obtained paleointensity records resulting from normalizing natural remanent magnetization (NRM) against different normalizing parameters. These paleointensity records were then compared to other regional, as well as global, records of magnetic paleointensity. The results show that for the magnetically strong Lake Towuti sediments, an anhysteretic remanent magnetization (ARM) is the best normalizer. A series of magnetic paleointensity excursions are observed during the last 60 kyr, including the Laschamp excursion at 40 kyr BP, that provide new information about the magnetic history and stratigraphy of the western tropical Pacific region. We conclude that the paleointensity record of Lake Towuti is reliable and in accordance with the high-quality regional and global trends.
Chang, Shu-Sen; Chen, Ying-Yeh; Yip, Paul S. F.; Lee, Won Jin; Hagihara, Akihito; Gunnell, David
2014-01-01
Background Suicides by carbon monoxide poisoning resulting from burning barbecue charcoal reached epidemic levels in Hong Kong and Taiwan within 5 y of the first reported cases in the early 2000s. The objectives of this analysis were to investigate (i) time trends and regional patterns of charcoal-burning suicide throughout East/Southeast Asia during the time period 1995–2011 and (ii) whether any rises in use of this method were associated with increases in overall suicide rates. Sex- and age-specific trends over time were also examined to identify the demographic groups showing the greatest increases in charcoal-burning suicide rates across different countries. Methods and Findings We used data on suicides by gases other than domestic gas for Hong Kong, Japan, the Republic of Korea, Taiwan, and Singapore in the years 1995/1996–2011. Similar data for Malaysia, the Philippines, and Thailand were also extracted but were incomplete. Graphical and joinpoint regression analyses were used to examine time trends in suicide, and negative binomial regression analysis to study sex- and age-specific patterns. In 1995/1996, charcoal-burning suicides accounted for <1% of all suicides in all study countries, except in Japan (5%), but they increased to account for 13%, 24%, 10%, 7%, and 5% of all suicides in Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore, respectively, in 2011. Rises were first seen in Hong Kong after 1998 (95% CI 1997–1999), followed by Singapore in 1999 (95% CI 1998–2001), Taiwan in 2000 (95% CI 1999–2001), Japan in 2002 (95% CI 1999–2003), and the Republic of Korea in 2007 (95% CI 2006–2008). No marked increases were seen in Malaysia, the Philippines, or Thailand. There was some evidence that charcoal-burning suicides were associated with an increase in overall suicide rates in Hong Kong, Taiwan, and Japan (for females), but not in Japan (for males), the Republic of Korea, and Singapore. Rates of change in charcoal-burning suicide rate did not differ by sex/age group in Taiwan and Hong Kong but appeared to be greatest in people aged 15–24 y in Japan and people aged 25–64 y in the Republic of Korea. The lack of specific codes for charcoal-burning suicide in the International Classification of Diseases and variations in coding practice in different countries are potential limitations of this study. Conclusions Charcoal-burning suicides increased markedly in some East/Southeast Asian countries (Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore) in the first decade of the 21st century, but such rises were not experienced by all countries in the region. In countries with a rise in charcoal-burning suicide rates, the timing, scale, and sex/age pattern of increases varied by country. Factors underlying these variations require further investigation, but may include differences in culture or in media portrayals of the method. Please see later in the article for the Editors' Summary PMID:24691071
Advancing our understanding of charcoal rot in soybeans
USDA-ARS?s Scientific Manuscript database
Charcoal rot (Macrophomina phaseolina (Tassi) Goid ) of soybean [Glycine max (L.) Merr.], is an important but commonly misidentified disease, and very few summary articles exist on this pathosystem. Research conducted over the last 10 years has improved our understanding of the environment conducive...
EMISSIONS FROM STREET VENDOR COOKING DEVICES (CHARCOAL GRILLING)
The report discusses a joint U.S./Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in t...
NASA Astrophysics Data System (ADS)
Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas
2017-08-01
Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.
The Charcoal Trap: Miombo woodlands versus the energy needs of people
NASA Astrophysics Data System (ADS)
Merbold, Lutz; Maurice, Muchinda; Mukufute M, Mukelabai; J, Scholes Robert; Waldemar, Ziegler; L, Kutsch Werner
2010-05-01
Miombo woodlands cover the transition zone between the dry open savannas and the moist forests in Southern Africa and occupy the vast area of 2.7 Mio km2. These ecosystems are highly disturbed by deforestation, mostly for charcoal production. Charcoal has become the largest source to satisfy urban energy demands. Even though when charcoal is a less energy-efficient fuel compared to firewood but by having higher energy densities and thus being cheaper to transport. Over the last decades, charcoal production has become a full-time employment for migrant workers, resulting in very different and no longer sustainable deforestation patterns. Strategies to reduce the pressure on the miombo woodlands have to take aspects of employment and energy demand into account. The objectives of the study were to examine above- and belowground carbon losses from an intact miombo woodland (protected forest reserve) in comparison to a highly disturbed surrounding area due to charcoal production. Detection of changes in carbon concentrations and stocks were made possible by applying biomass- and soil inventories as well as the eddy-covariance method. These local results were up-scaled to countrywide estimates of carbon lost to the atmosphere by deforestation in addition to carbon losses fossil fuel combustion. The results show, that in the worst case scenario which does not assume any regeneration, a developing country as Zambia, can easily emit as much carbon per capita as a developed Western world country such as France, when deforestation is included in the national inventory (up to 9.1 t of CO2 per capita). However, regeneration is very probably when post-harvest disturbance is low. Further studies on miombo regeneration are highly demanded.
Lamarre, Neil S; Ruggieri, Michael R; Braverman, Alan S; Gerstein, Matthew I; Mydlo, Jack H
2007-01-01
Several reports have demonstrated the effects of obesity on prostate cancer. Also several reports have linked expression of vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (FGF-2) to prostate cancer aggressiveness. The objective of this study was to determine whether a difference exists between lean and obese Zucker rat sera on proliferation prostate cancer cell lines, as well as to examine the differences in FGF-2 and VEGF concentrations. Ten-week-old female obese and lean Zucker rat sera were subjected to charcoal stripping and tested for the proliferation of human LNCaP and rat AT3B-1 prostate cancer cells. An acetonitrile extract of the charcoal used to strip the sera was also tested for mitogenicity. VEGF and FGF-2 concentrations were determined by enzyme-linked immunosorbent assay. Both unstripped and charcoal-stripped obese rat sera had a greater mitogenic effect than did the lean sera on the LNCaP cell line. Charcoal stripping of both obese and lean sera reduced the mitogenic effect on the AT3B-1 cell line. The acetonitrile extract of the charcoal used to strip the sera was unable to recover this proliferative effect. The concentration of VEGF was greater in the obese serum than in the lean serum, and charcoal stripping reduced the concentrations of both FGF-2 and VEGF. The finding of greater VEGF in obese rat sera, as well as greater mitogenic responses on human prostate cancer cells in vitro, suggests this as one of the many possible mechanisms involved in obesity-related prostate cancer biology.
da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I
2018-04-18
Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source (<3 km), occurring mainly in flood-free ombrophilous forests (3.46 ± 5.22 Mg PyC/ha). The vertical distribution of PyC in the deeper layers of the soil (> 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wiggins, Gavin Memminger
The compliance of coal-fired boilers with emissions regulations is a concern for many facilities. The introduction of biomass briquettes in industrial boilers can help to reduce greenhouse gas emissions and coal usage. In this research project, a thermodynamic chemical equilibrium model was derived and analytical simulations performed for a coal boiler system for several types of biomass fuels such as beech, hickory, maple, poplar, white oak, willow, sawdust, torrefied willow, and switchgrass. The biomass emissions were compared to coal and charcoal emissions. The chemical equilibrium analysis numerically estimated the emissions of CO, CO2, NO, NO2, N 2O, SO2, and SO3. When examining the computer results, coal and charcoal emitted the highest CO, CO2, and SO x levels while the lowest (especially for SOx) were reached by the biomass fuels. Similarly, NOx levels were highest for the biomass and lowest for coal and charcoal. To validate these analytical results, a custom traveling grate furnace was designed and fabricated to evaluate different types of biofuels in the laboratory for operation temperatures and emissions. The furnace fuels tested included coal, charcoal, torrefied wood chips, and wood briquettes. As expected, the coal reached the highest temperature while the torrefied wood chips offered the lowest temperature. For CO and NO x emissions, the charcoal emitted the highest levels while the wood briquettes emitted the lowest levels. The highest SO2 emissions were reached by the coal while the lowest were emitted by the wood briquettes. When compared to the coal fuel, charcoal emissions for CO increased by 103%, NO and NOx decreased by 21% and 20% respectively, and SO2 levels decreased by 92%. For torrefied wood, emissions for CO increased by 17%, NO and NOx decreased by 58% and 57% respectively, and SO 2 decreased by 90%. For wood briquettes, emissions for CO decreased by 27%, NO and NOx decreased by 66%, and SO2 levels decreased by 97%. General trends in emissions levels for CO, CO2, SO2, and SO3 among the various fuels were the same for the two methods. From the modeling and experimental results, it is clear that the opportunity exists to reduce boiler emissions using biomass materials. In computer controlled systems, electric motor and connector arcing can cause operational difficulties such as reduced motor life, connector/cable failure, and VFD tripping. To better understand the behavior of electric motors in diverse environments, experimental testing has been conducted on two different 230/460 V 3-phase AC brushless motors at unloaded and loaded conditions. The motors were driven with a 200 VAC or 400 VAC class Hitachi variable-frequency drive (VFD) and operated in air, argon, and helium environments for a duration of eight hours. Voltage transients and temperatures were monitored for these tests. The largest recorded voltage spike of 1,852 V occurred during 480 VAC start/stop tests. In addition, two different cable lengths between the VFD and motor terminals were tested. The experimental results demonstrated that the shorter cable produced smaller voltage spikes when compared to the longer electrical cable. For all tests, both motors operated coolest in the helium environment and warmest in the argon environment.
Fire in the Earth System: Bridging data and modeling research
Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.
2016-01-01
Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from the workshop participants via preworkshop surveys, focused on addressing the following questions: What are the climatic, ecological, and human drivers of fire regimes, both past and future? What is the role of humans in shaping historical fire regimes? How does fire ecology affect land cover changes, biodiversity, carbon storage, and human land uses? What are the historical fire trends and their impacts across biomes? Are their impacts local and/or regional? Are the fire trends in the last two decades unprecedented from a historical perspective? The workshop1 aimed to develop testable hypotheses about fire, climate, vegetation, and human interactions by leveraging the confluence of proxy, observational, and model data related to decadal- to millennial-scale fire activity on our planet. New research directions focused on broad interdisciplinary approaches to highlight how knowledge about past fire activity could provide a more complete understanding of the predictive capacity of fire models and inform fire policy in the face of our changing climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-01-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.« less
Erosion and sedimentation during the September 2015 flooding of the Kinu River, central Japan.
Dan Matsumoto; Sawai, Yuki; Yamada, Masaki; Namegaya, Yuichi; Shinozaki, Tetsuya; Takeda, Daisuke; Fujino, Shigehiro; Tanigawa, Koichiro; Nakamura, Atsunori; Pilarczyk, Jessica E
2016-09-28
Erosional and sedimentary features associated with flooding have been documented in both modern and past cases. However, only a few studies have demonstrated the relationship between these features and the corresponding hydraulic conditions that produced them, making it difficult to evaluate the magnitude of paleo-flooding. This study describes the characteristics associated with inundation depth and flow direction, as well as the erosional and sedimentary features resulting from the disastrous flooding of the Kinu River, central Japan, in September 2015. Water levels rose rapidly due to heavy rainfall that eventually overtopped, and subsequently breached, a levee in Joso City, causing destructive flooding on the surrounding floodplain. Distinctive erosional features are found next to the breached levee, while depositional features, such as a sandy crevasse-splay deposit are found further away from the breach. The deposit can be divided into three units based on sedimentary facies. The vertical and lateral changes of these sedimentary facies may be the result of temporal and spatial changes associated with flow during the single flooding event. These observations and quantitative data provide information that can be used to reveal the paleohydrology of flood deposits in the stratigraphic record, leading to improved mitigation of future flooding disasters.
Biochar production technology: An overview
USDA-ARS?s Scientific Manuscript database
Char(coal) and the broader term black carbon (that includes soot) has long been recognized as a normal environmental (including soil) constituent resulting from fire and industrial activities. Charcoal carbon can naturally make up as much as 35% of total organic carbon in U.S. agricultural soils. ...
Charcoal byproducts as potential styrene-butadiene rubber composte filler
USDA-ARS?s Scientific Manuscript database
Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, various renewable charcoals in the form of pyrolyzed agricultural byproducts were evaluted as potential carbon-based filler for rubber composites made with carboxylated s...
Evaluating Waste Charcoal as Potential Rubber Composite Filler
USDA-ARS?s Scientific Manuscript database
Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, charcoal in the form of pyrolyzed agricultural products was evaluated as potential carbon-based filler for rubber composites made with carboxylated styrene-butadiene lat...
Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress.
Mounissamy, Vassanda Coumar; Kundu, Samaresh; Selladurai, Rajendiran; Saha, Jayanta Kumar; Biswas, Ashish Kumar; Adhikari, Tapan; Patra, Ashok Kumar
2017-11-01
An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.
Boaretto, Elisabetta; Wu, Xiaohong; Yuan, Jiarong; Bar-Yosef, Ofer; Chu, Vikki; Pan, Yan; Liu, Kexin; Cohen, David; Jiao, Tianlong; Li, Shuicheng; Gu, Haibin; Goldberg, Paul; Weiner, Steve
2009-01-01
Yuchanyan Cave in Daoxian County, Hunan Province (People's Republic of China), yielded fragmentary remains of 2 or more ceramic vessels, in addition to large amounts of ash, a rich animal bone assemblage, cobble and flake artifacts, bone tools, and shell tools. The artifacts indicate that the cave was a Late Paleolithic foragers' camp. Here we report on the radiocarbon ages of the sediments based on analyses of charcoal and bone collagen. The best-preserved charcoal and bone samples were identified by prescreening in the field and laboratory. The dates range from around 21,000 to 13,800 cal BP. We show that the age of the ancient pottery ranges between 18,300 and 15,430 cal BP. Charcoal and bone collagen samples located above and below one of the fragments produced dates of around 18,000. These ceramic potsherds therefore provide some of the earliest evidence for pottery making in China. PMID:19487667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.Y.
1999-06-01
The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similarmore » to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions.« less
NASA Astrophysics Data System (ADS)
Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K.
2017-05-01
Rice husk and coconut shell have been disposed or burned as waste. As biomass, both of materials are the potential sources of carbon which can be utilized as alternative energy sources. The energy content can be exploited more intensively when packaged in a brief and convenient. In this work, the mixtures of rice husks and coconut shells charcoal were prepared as briquettes. After going through the carbonization process, several measurements have been taken to find out the factors that determine the value of heat energy contains by each component of the charcoals. The basic ingredients briquettes prepared from rice husk and coconut shell charcoal with varying composition and addition of tapioca starch gradually as adhesive material to obtain briquettes in solid with the maximum heat energy content. After going through pressing and drying process, the briquettes with 50:50 percent of composition and the 6% addition of adhesive was found has the highest heat energy content, equal to 4966 cal/g.
NASA Astrophysics Data System (ADS)
Moernaut, Jasper; Daele, Maarten Van; Heirman, Katrien; Fontijn, Karen; Strasser, Michael; Pino, Mario; Urrutia, Roberto; De Batist, Marc
2014-03-01
Understanding the long-term earthquake recurrence pattern at subduction zones requires continuous paleoseismic records with excellent temporal and spatial resolution and stable threshold conditions. South central Chilean lakes are typically characterized by laminated sediments providing a quasi-annual resolution. Our sedimentary data show that lacustrine turbidite sequences accurately reflect the historical record of large interplate earthquakes (among others the 2010 and 1960 events). Furthermore, we found that a turbidite's spatial extent and thickness are a function of the local seismic intensity and can be used for reconstructing paleo-intensities. Consequently, our multilake turbidite record aids in pinpointing magnitudes, rupture locations, and extent of past subduction earthquakes in south central Chile. Comparison of the lacustrine turbidite records with historical reports, a paleotsunami/subsidence record, and a marine megaturbidite record demonstrates that the Valdivia Segment is characterized by a variable rupture mode over the last 900 years including (i) full ruptures (Mw ~9.5: 1960, 1575, 1319 ± 9, 1127 ± 44), (ii) ruptures covering half of the Valdivia Segment (Mw ~9: 1837), and (iii) partial ruptures of much smaller coseismic slip and extent (Mw ~7.5-8: 1737, 1466 ± 4). Also, distant or smaller local earthquakes can leave a specific sedimentary imprint which may resolve subtle differences in seismic intensity values. For instance, the 2010 event at the Maule Segment produced higher seismic intensities toward southeastern localities compared to previous megathrust ruptures of similar size and extent near Concepción.
NASA Astrophysics Data System (ADS)
Poggi, Valerio; Ermert, Laura; Burjanek, Jan; Michel, Clotaire; Fäh, Donat
2015-01-01
Frequency domain decomposition (FDD) is a well-established spectral technique used in civil engineering to analyse and monitor the modal response of buildings and structures. The method is based on singular value decomposition of the cross-power spectral density matrix from simultaneous array recordings of ambient vibrations. This method is advantageous to retrieve not only the resonance frequencies of the investigated structure, but also the corresponding modal shapes without the need for an absolute reference. This is an important piece of information, which can be used to validate the consistency of numerical models and analytical solutions. We apply this approach using advanced signal processing to evaluate the resonance characteristics of 2-D Alpine sedimentary valleys. In this study, we present the results obtained at Martigny, in the Rhône valley (Switzerland). For the analysis, we use 2 hr of ambient vibration recordings from a linear seismic array deployed perpendicularly to the valley axis. Only the horizontal-axial direction (SH) of the ground motion is considered. Using the FDD method, six separate resonant frequencies are retrieved together with their corresponding modal shapes. We compare the mode shapes with results from classical standard spectral ratios and numerical simulations of ambient vibration recordings.
The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)
NASA Astrophysics Data System (ADS)
Corella, Juan Pablo; Brauer, Achim; Mangili, Clara; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Morellón, Mario; Valero-Garcés, Blas L.
2012-09-01
The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555-738, 825-875, 1010-1322 and 1874-present. Lower temperatures and prolonged winter conditions were recorded in AD 1446-1598, 1663-1711 and 1759-1819. Extreme and multiple precipitation events dominated in AD 571-593, 848-922, 987-1086, 1168-1196, 1217-1249, 1444-1457, 1728-1741 and 1840-1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio-economic factors.
Numerical Modeling of River Fluxes Under Changing Environmental Conditions (Invited)
NASA Astrophysics Data System (ADS)
Simpson, G.
2013-12-01
High frequency climate cycles have a major impact on landscapes, but it remains uncertain if alluvial rivers can transfer the resulting sediment pulses downstream to sedimentary basins. Stratigraphic records located near the mouth of rivers exhibit cyclicity consistent with orbital forcing. However, in some cases, the sediment supply from rivers appears to have remained remarkably constant despite changes in climate, which has been interpreted to indicate that rivers dampen rapid variability. Here, we employ a physically-based numerical model to resolve this outstanding problem. Our simulations show that rivers forced with water flux cycles exhibit highly pulsed sediment outflux records, even when the period of forcing is several orders of magnitude shorter than river response times. This non-linear amplified system response characterised by positive feedback is related to the strong negative correlation between water flux and the equilibrium slope of a river. We also show that the apparent stability of sediment fluxes based on time-averaged data is an artifact of integrating highly episodic records over multiple cycles rather than a signature of diffusive floodplain processes. We conclude that marine sedimentary basins may record sediment-flux cycles resulting from discharge (and ultimately climate) variability, whereas they may be relatively insensitive to pure sediment-flux perturbations (such as for example those induced by tectonics).
NASA Astrophysics Data System (ADS)
Feurdean, A.; Liakka, J.; Vannière, B.; Marinova, E.; Hutchinson, S. M.; Mosburgger, V.; Hickler, T.
2013-12-01
The usefulness of sedimentary charcoal records to document centennial to millennial scale trends in aspects of fire regimes (frequency, severity) is widely acknowledged, yet the long-term variability in these regimes is poorly understood. Here, we use a high-resolution, multi-proxy analysis of a lacustrine sequence located in the lowlands of Transylvania (NW Romania), alongside global climate simulations in order to disentangle the drivers of fire regimes in this dry climatic region of Central-Eastern Europe. Periods of greater fire activity and frequency occurred between 10,700 and 7100 cal yr BP (mean Fire Interval = mFI 112 yr), and between 3300 and 700 cal yr BP (mFI 150 yr), whereas intervals of lower fire activity were recorded between 12,000 and 10,700 cal yr BP (mFI 217 yr), 7100 and 3300 cal yr BP (mFI 317 yr), and over last 700 years (no fire events detected). We found good correlations between simulated early summer (June, July) soil moisture content and near-surface air temperature with fire activity, particularly for the early to mid Holocene. A climate-fire relationship is further supported by local hydrological changes, i.e., lake level and runoff fluctuations. Fuel limitation, as a result of arid and strongly seasonal climatic conditions, led to low fire activity before 10,700 cal yr BP. However, fires were most frequent during climatically drier phases for the remaining, fuel-sufficient, part of the Holocene. Our results also suggest that the occurrence of more frequent fires in the early Holocene has kept woodlands open, promoted grassland abundance and sustained a more flammable ecosystem (mFI < 150 years) whereas the decline in fire risk under cooler and wetter climate conditions (mFI = 317 years) favoured woodland development. From 3300 cal yr BP, human impacts clearly were partly responsible for changes in fire activity, first increasing fire frequency and severity in periods with fire-favourable climatic conditions (halving the mFI from 300 years to about 150 years), then effectively suppressing fires over the last several centuries. Given the projected future temperature increase and moisture decline and the biomass accumulation due to the agricultural land abandonment in the region, natural fire frequency would be expected to return to <150 years.
Soil-geomorphology and “wet” cycles in the Holocene record of North-Central Mexico
NASA Astrophysics Data System (ADS)
Butzer, Karl W.; Abbott, James T.; Frederick, Charles D.; Lehman, Paul H.; Cordova, Carlos E.; Oswald, John F.
2008-10-01
The distinction between the impact of climatic periodicities or land-use practices on soil erosion is an important issue for Pre-Hispanic and Colonial Mexico. That question can best be addressed by first documenting the dynamics of changing "wet" cycles during the Holocene in the central Mexican region between the northern limits of Pre-Hispanic agriculture and its southern margins in northwestern Chihuahua. Consequently the Laguna Project targeted a 125,000 km 2 sector of North-Central Mexico, 250 km from north to south and 500 km from east to west, from Saltillo to Durango. Some 40 sedimentary profiles with multiple cumulic soils were studied in the field and laboratory, supported by 163 conventional 14C and AMS dates on charcoal and soil humates. We distinguish: (1) wet floodplains (with humic paleosols, redox phenomena reflecting high water tables, channel-ponding sequences, and interbedded tufas) that imply aquifer recharge, sustained base flow, and mainly low-energy conditions; and (2) high-energy pulses of discharge that mobilized cobble gravels or forced channel entrenchment ("gullying") and were tied to episodic, excessive rains that promoted valley and slope instability. In between such "wet" cycles and recurrent disequilibrium events, climate was similar to today, probably less humid, with limited geomorphologic change or slow soil formation. "Wet" cycles were rare at the end of the Pleistocene, but prominent during the Holocene. Disequilibrium proxies became common and dramatic after 2500 BP. The drainages from the Eastern and Western Sierra Madres responded in phase, but varied in detail. Around AD 1050-1200 "natural" erosion led to loss of soil organic carbon, as alternating severe droughts and heavy rains destroyed the ground cover and led to ecological aridification, well before arrival of Spanish miners and settlers. The evidence that human activity triggered Pre-Hispanic or Colonial erosion in Central Mexico should therefore be re-evaluated. Global comparisons and interpretations are discussed, but with caution, since no single theory can explain the whole of the record. The soil-geomorphology geoarchive of North-Central Mexico primarily is an environmental history of alternating "wet" cycles, rather than of sustained wet or dry climates. The critical differences between "soaking" and "excessive" rains, with their respective impacts, may be due to switching between winter and summer storm categories.
NASA Astrophysics Data System (ADS)
Berger, J. F.; Salvador, P. G.; Erkens, G.; Toonen, W. H. J.; Purdue, L.; Barra, A.; Houben, P.
2012-04-01
The Linear Band Ceramic (LBK) culture represents a major event in the spread of agriculture in Europe. Occupation particularly occurred in river valleys, with largest densities found along the rivers Danube, Elbe and Rhine. The interaction between the emergence of this culture and the dominant climatic and hydrological conditions is not yet fully established. As part of the ANR OBRESOC project, in which LBK activity is investigated in a transect from France (Marne river) to the catchment of the Danube river (Tisza), we studied palaeo-environmental changes in the Rhine valley between 7600-6600 cal. yrs. BP. Focus is on the Upper Rhine Graben and the Lower Rhine valley near the Rhine Delta apex, which is thought to be a peripheral region of LBK-activity. In these regions, a total of five cores from abandoned channels were analysed to reconstruct palaeo-environmental dynamics in vegetation and fluvial activity during the period of LBK development. Abandoned channel fills are excellent sites to perform detailed studies of palaeo-environmental dynamics, as they (i) form proximal locations to occupation sites of the LBK culture, (ii) act as efficient traps of sediments in which different environmental proxies are well preserved, (iii) contain well-datable material for the construction of detailed age-depth models, and (iv) provide a long proxy record, potentially over more than a millennium at a single site. On all cores, high resolution analysis of channel fill deposits (grain size and geophysical properties) and biotic proxies (micro-charcoal fluxes and pollen assemblages) were preformed to reconstruct palaeo-environmental signals, such as changes in fluvial activity, forest fires, and vegetation evolution, which may be related to agricultural activity, and climatic and hydrogeomorphic changes in the region. In this contribution we compare the results of the high-resolution core analyses (1,5 to 5m sequences for the studied timeframe) derived from the more densely populated Upper Rhine Graben with those from the more peripheral Lower Rhine valley to decipher anthropogenic impacts from natural environmental circumstances. Moreover, we try to discriminate the local to the regional signals recorded in the fluvial archives, by comparing the proxy data with the pedo-sedimentary context. The ultimate goal is to model socio-environmental interactions during the LBK culture progression to Western Europe with MMA.
NASA Astrophysics Data System (ADS)
Engel, M.; Knipping, M.; Brückner, H.; Kraft, J. C.; Kiderlen, M.
2009-04-01
Detailed investigations on the Holocene stratigraphy of the lower Messenian plain (SW Peloponnese, Greece) carried out within the framework of a geoarchaeological study on the Protogeometric Poseidon Sanctuary of Akovitika indicate significant shoreline fluctuations during Holocene times. Sedimentary, geochemical, mineralogical, and microfossil analyses of 18 vibracores document a maximum landward shoreline displacement around 3000 BC. Subsequently, increased sediment loads entering the gulf predominantly at the eastern head overcompensated the decelerating eustatic sea level rise and triggered beach ridge progradation. Synopses of adjacent sediment cores reveal extended wetland formation in the swales between the sand ridges throughout the Holocene. The swamp areas enlarged continuously during the late Holocene marine regression and persisted until the large-scaled implementation of drainage measures in the 20th century. However, the strata representing former wetland environments provide excellently preserved pollen assemblages and enable detailed vegetation reconstruction of certain time windows within the past 7000 years. During early Neolithic times the lower Messenian plain was covered with open vegetation adapted to the seasonal standing water bodies. Deciduous oak forests were abundant but restricted to the surrounding marl terraces while no signs of human impact appear in the pollen record so far. In mid- to late Neolithic times initial modification of the local vegetation composition is evident. The Neogene terraces nearby were still covered with forest, albeit Pinus and evergreen oak gradually started replacing deciduous oak. Anthropogenic influence on the vegetation was moderate although the upper part of the sequence (approx. 3500 BC) contains increasing amounts of settlement indicators. Exceptionally high percentages of Erica and Cistus as well as of charcoal fragments point to extensive burning of woodland and subsequent sustained establishment of a heliophile macchia vegetation. Whether this is man-made or a result of increasing aridity remains uncertain. Agriculture can be excluded for the wet lower Messenian plain in Neolithic times, while it seems possible on the adjacent Neogene marl terraces. The pollen sequence of Submycenaean to Archaic times reflects reduced human impact after the Messenian late Bronze Age population climax. Decreasing amounts of Olea show the abandonment of olive orchards while rising dominance of Phyllirea indicates a temporary re-establishment of high macchia during the cultural decline of the Dark Ages. Higher percentages of Olea in the uppermost sample document a recovering human population in Messenia during Archaic times.
NASA Astrophysics Data System (ADS)
Diaz, Nathalie; Dietrich, Fabienne; Sebag, David; King, Georgina E.; Valla, Pierre G.; Durand, Alain; Garcin, Yannick; de Saulieu, Geoffroy; Deschamps, Pierre; Herman, Frédéric; Verrecchia, Eric P.
2018-07-01
Climate and environmental changes since the Last Glacial Maximum in the tropical zone of West Africa are usually inferred from marine and continental records. In this study, the potential of carbonate pedo-sedimentary geosystems, i.e. Vertisol relics, to record paleoenvironmental changes in the southwestern part of Chad Basin are investigated. A multi-dating approach was applied on different pedogenic organo-mineral constituents. Optically stimulated luminescence (OSL) dating was performed on the soil K-rich feldspars and was combined with radiocarbon dating on both the inorganic (14Cinorg) and organic carbon (14Corg) soil fractions. Three main pedo-sedimentary processes were assessed over the last 20 ka BP: 1) the soil parent material deposition, from 18 ka to 12 ka BP (OSL), 2) the soil organic matter integration, from 11 cal ka to 8 cal ka BP (14Corg), and 3) the pedogenic carbonate nodule precipitation, from 7 cal ka to 5 cal ka BP (14Cinorg). These processes correlate well with the Chad Basin stratigraphy and West African records and are shown to be related to significant changes in the soil water balance responding to the evolution of continental hydrology during the Late Quaternary. The last phase affecting the Vertisol relics is the increase of erosion, which is hypothesized to be due to a decrease of the vegetation cover triggered by (i) the onset of drier conditions, possibly strengthened by (ii) anthropogenic pressure. Archaeological data from Far North Cameroon and northern Nigeria, as well as sedimentation times in Lake Tilla (northeastern Nigeria), were used to test these relationships. The increase of erosion is suggested to possibly occur between c. 3 cal ka and 1 cal ka BP. Finally, satellite images revealed similar geosystems all along the Sudano-Sahelian belt, and initial 14Cinorg ages of the samples collected in four sites gave similar ages to those reported in this study. Consequently, the carbonate pedo-sedimentary geosystems are valuable continental paleoenvironmental archives and soil water balance proxies of the semiarid tropics of West Africa.
NASA Astrophysics Data System (ADS)
Pratt, T. L.
2017-12-01
Unconsolidated, near-surface sediments can influence the amplitudes and frequencies of ground shaking during earthquakes. Ideally these effects are accounted for when determining ground motion prediction equations and in hazard estimates summarized in seismic hazard maps. This study explores the use of teleseismic arrivals recorded on linear receiver arrays to estimate the seismic velocities, determine the frequencies of fundamental resonance peaks, and image the major reflectors in the Atlantic Coastal Plain (ACP) and Mississippi Embayment (ME) strata of the central and southeastern United States. These strata have thicknesses as great as 2 km near the coast in the study areas, but become thin and eventually pinch out landward. Spectral ratios relative to bedrock sites were computed from teleseismic arrivals recorded on linear arrays deployed across the sedimentary sequences. The large contrast in properties at the bedrock surface produces a strong fundamental resonance peak in the 0.2 to 4 Hz range. Contour maps of sediment thicknesses derived from drill hole data allow for the theoretical estimation of average velocities by matching the observed frequencies at which resonance peaks occur. The sloping bedrock surface allows for calculation of a depth-varying velocity profile, under the assumption that the velocities at each depth do not change laterally between stations. The spectral ratios can then be converted from frequency to depth, resulting in an image of the subsurface similar to that of a seismic reflection profile but with amplitudes being the spectral ratio caused by a reflector at that depth. The complete data set thus provides an average velocity function for the sedimentary sequence, the frequencies and amplitudes of the major resonance peaks, and a subsurface image of the major reflectors producing resonance peaks. The method is demonstrated using three major receiver arrays crossing the ACP and ME strata that originally were deployed for imaging the crust and mantle, confirming that teleseismic signals can be used to characterize sedimentary strata in the upper km.
Sedimentary organic matter variations in the Chukchi Borderland over the last 155 kyr
NASA Astrophysics Data System (ADS)
Rella, S. F.; Uchida, M.
2011-03-01
Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), C/N and CaCO3 from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on correlation of our CaCO3 record with the benthic δ18O stack, supplemented by lithological constraints, suggests that the piston core records paleoenvironmental changes of the last 155 kyr. According to this age model, TOC and C/N show orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC and C/N appear to correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 40 ka before present (BP) and thus seem to respond to abrupt northern hemispheric temperature changes. Between 65 and 40 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC and C/N variability. CaCO3 content tends to anti-correlate with TOC and C/N on both orbital and millennial time scales, which we interpret as enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased terrestrial organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.
NASA Astrophysics Data System (ADS)
Firtana Elcomert, Karolin; Kocaoglu, Argun
2014-05-01
Sedimentary basins affect the propagation characteristics of the seismic waves and cause significant ground motion amplification during an earthquake. While the impedance contrast between the sedimentary layer and bedrock predominantly controls the resonance frequencies and their amplitudes (seismic amplification), surface waves generated within the basin, make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be a pull-apart basin controlled by the northern branch of the North Anatolian Fault Zone (Şengör et al. 2005). A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. Using a spectral element code, SPECFEM2D (Komatitsch et al. 1998), this work presents some of the preliminary results of the 2-D seismic wave propagation simulations for the Izmit basin. The spectral-element method allows accurate and efficient simulation of seismic wave propagation due to its advantages over the other numerical modeling techniques by means of representation of the wavefield and the computational mesh. The preliminary results of this study suggest that seismic wave propagation simulations give some insight into the site amplification phenomena in the Izmit basin. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling reveals that observed seismograms include surface waves whose excitation is clearly related to the basin geometry.
Modern sedimentary environments on the Rhode Island inner shelf, off the eastern United States
Knebel, H.J.; Needell, S. W.; O'Hara, C. J.
1982-01-01
Analyses of side-scan sonar records along with previously published bathymetric, textural and subbottom data reveal the sedimentary environments on the inner Continental Shelf south of Narragansett Bay, Rhode Island. The bottom topography in this area is characterized by a broad central depression bordered by shallow, irregular sea floor on the north and east and by a discontinuous, curvilinear ridge on the south and west. Four distinct environments were identified: 1. (1) Pre-Mesozoic coastal rocks are exposed on the sea floor at isolated locations near the shore (waterdepths <32 m). These exposures have pronounced, irregular topographic relief and produce blotchy patterns on side-scan sonographs. 2. (2) Glacial moraine deposits form the discontinuous offshore ridge. These deposits have hummocky sea-floor relief, are covered by lag gravel and boudlers, and appear as predominantly black (strongly reflective) patterns on the side-scan records. 3. (3) Over most of the shallow, irregular bottom in the northeast, on the flanks of the morainal ridge, and atop bathymetric highs, the sea floor is characterized as a mosaic of light and dark patches and lineations. The dark (more reflective) zones are areas of coarse sands and megaripples (wavelengths = 0.8-1.2 m that either have no detectable relief or are slightly depressed relative to surrounding (light) areas of finer-grained sands. 4. (4) Smooth beds that produce nearly featureless patterns on the sonographs occupy the broad central bathymetric depression as well as smaller depressions north and east of Block Island. Within the broad depression, sonographs having practically no shading indicate a central zone of modern sandy silt, whereas records having moderate tonality define a peripheral belt of silty sand. The sedimentary environments that are outlined range from erosional or non-depositional (bedrock, glacial moraine) to depositional (featureless beds), and include areas that may reflect a combination of erosional and depositional processes (textural patchiness). The distribution and characteristics of the environments reveal the general post-glacial sedimentary history of this area and provide a guide to future utilization of the shelf surface. ?? 1982.
Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N
2017-06-01
Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (<1 cm of water column) pressure drop. The Thoron Mitigation System based on adsorption on charcoal bed offers a compact and effective device to remove 220 Rn from affluent air streams in a space constrained domain. The prototype system has been installed in a thorium fuel cycle facility where it is being evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of activated charcoal on callus growth and shoot organogenesis in tobacco. [Nicotiana tabacum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, M.J.; Henke, R.R.; Mansur, M.A.
1977-01-01
Incorporating activated charcoal (AC) in culture media has been shown to affect growth and development of various organisms. Since AC stimulates the development of tobacco haploid plantlets from cultured anthers, research was conducted to determine the effect of activated charcoal on pith-derived callus growth and shoot development in Nicotiana tabacum cv. Wisconsin 38. Our results indicate that the hormones required for callus growth and shoot development in Wisconsin-38 tobacco are adsorbed by AC, thereby inhibiting callus growth and prohibiting shoot development. This effect was observed even when AC was removed from the medium by filtration prior to culturing the callus.
Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska
NASA Astrophysics Data System (ADS)
Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.
2018-05-01
Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic Ocean proxy records and numerous other marine and terrestrial paleorecords. Comparison of diatom productivity against a sea-ice inferred reconstruction of the Arctic Oscillation (AO) from the Beaufort Sea (Darby et al., 2012) shows that periods of reduced productivity at Burial Lake coincide with inferred positive phases of the AO (AO+). Combined with modern observations of sea ice extent and meteorological data, we hypothesize that AO + conditions and a strengthened polar jet correspond with a shortened ice-free growing season, a decrease in the availability of limiting nutrients, and lower levels of diatom production at Burial Lake. Comparison of the spectral properties between opal and the AO reconstruction reveal similar millennial scale variations with ∼1500-yr variability during the middle Holocene that transition to ∼1000-yr variability during the late Holocene. In light of these findings, we suggest the possibility that millennial variations in diatom productivity observed in the Burial Lake record are related to millennial variability in high-latitude atmospheric circulation similar to the AO. These results shed light on the sensitivity of aquatic ecosystems in northern Alaska to changes in the duration of the ice-free growing season, the availability of limiting nutrients for phytoplankton growth, and Arctic-wide atmospheric circulation dynamics over the Holocene on millennial timescales.
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the performance, design, and operation specifications of the prescribed equipment. A demonstration... Administrator prior to compliance testing, based on an evaluation of comparative performance specifications and... stack barbecue charcoal that is designed to be lit without the packaging, the same as in paragraph (h)(1...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the performance, design, and operation specifications of the prescribed equipment. A demonstration... Administrator prior to compliance testing, based on an evaluation of comparative performance specifications and... stack barbecue charcoal that is designed to be lit without the packaging, the same as in paragraph (h)(1...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the performance, design, and operation specifications of the prescribed equipment. A demonstration... Administrator prior to compliance testing, based on an evaluation of comparative performance specifications and... stack barbecue charcoal that is designed to be lit without the packaging, the same as in paragraph (h)(1...
Extracting lignins from mill wastes
NASA Technical Reports Server (NTRS)
Humphrey, M. F.
1977-01-01
Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.
49 CFR 176.405 - Stowage of charcoal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of charcoal. 176.405 Section 176.405 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... bags and offered for transportation on board a vessel in a quantity over 1016 kg (2240 pounds) must be...
49 CFR 176.405 - Stowage of charcoal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of charcoal. 176.405 Section 176.405 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... bags and offered for transportation on board a vessel in a quantity over 1016 kg (2240 pounds) must be...
Surgical suite environmental control system. [using halothane absorbing filter
NASA Technical Reports Server (NTRS)
Higginbotham, E. J.; Jacobs, M. L.
1974-01-01
Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.
Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Guo, Wei; Xi, Beidou; He, Zhuoshi; Zeng, Xiangying; Wu, Fengchang
2016-03-01
Sediment core samples collected from Lake Chaohu were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to assess the spatial and temporal distributions of the PAHs during lacustrine sedimentary processes and regional economic development. Assessing the PAH sedimentary records over an approximately 100-year time span, we identified two stages in the PAH inputs and sources (before the 1970s and after the 1970s) in the eastern lake region near a village, whereas three stages (before the 1950s, 1950s-1990s and after the 1990s) were identified in the western lake region near urban and industrial areas. Rapid increases in the PAH depositional fluxes occurred during the second stage due to increased human activities in the Lake Chaohu basin. The composition and isomeric ratios of the PAHs revealed that pyrolysis is the main source of PAHs in this lake. Strong positive relationships between PAH concentration and the total organic carbon concentration, sediment grain size (<4μm), as well as the local population and Gross Domestic Product indicated that the sedimentary conditions impact the depositional characteristics of the PAHs; simultaneously, socioeconomic activities, such as energy consumption and the levels of urban industrialization and civilization, affect both the composition and abundance of the PAHs. Copyright © 2015. Published by Elsevier B.V.
Impact of the 2008 Wenchuan earthquake on river organic carbon provenance: Insight from biomarkers
NASA Astrophysics Data System (ADS)
Wang, Jin; Feng, Xiaojuan; Hilton, Robert; Jin, Zhangdong; Ma, Tian; Zhang, Fei; Li, Gen; Densmore, Alexander; West, A. Joshua
2017-04-01
Large earthquakes can trigger widespread landslides in active mountain belts, which can mobilize biospheric organic carbon (OC) from the soil and vegetation. Rivers can erode and export biospheric particulate organic carbon (POC), which is an export of ecosystem productivity and may result in a CO2 sink if buried in sedimentary deposits. Our previous work showed that the 2008 Mw 7.9 Wenchuan earthquake increased the discharge of biospheric OC by rivers, due to the increased supply by earthquake triggered landslides (Wang et al., 2016). However, while the OC derived from sedimentary rocks could be accounted for, the source of biospheric OC in rivers before and after the earthquake remains poorly constrained. Here we use suspended sediment samples collected from the Zagunao River before and after the Wenchuan earthquake and measured the specific compounds of OC, including fatty acids, lignin phenols and glycerol dialkyl glycerol tetraether (GDGT) lipids. In combination with the analysis of bulk elemental concentration (C and N) and carbon isotopic ratio, the new data shows differential export patterns for OC components derived from varied terrestrial sources. A high frequency sampling enabled us to explore how the biospheric OC source changes following the earthquake, helping to better understand the link between active tectonics and the carbon cycle. Our results are also important in revealing how sedimentary biomarker records may record past earthquakes.
Riverine Carbon and the Sedimentary Record on the Continental Shelves
2003-09-30
Geologia Marina (formerly Istituto di Geologia Marina) Consiglio Nazionale delle Ricerche Via Gobetti, 101 40129 Bologna, Italy phone: +39 (051...ORGANIZATION NAME(S) AND ADDRESS(ES) Istituto Scienze Marine, Sezione Geologia Marina,(formerly Istituto di Geologia Marina),Consiglio Nazionale delle
NASA Astrophysics Data System (ADS)
Andy, H.; Blarquez, O.; Grondin, P.
2017-12-01
Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem variability at the landscape scale and that reference condition should be supplemented with data on the long-term fire dynamics and forest composition variability.
Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry
NASA Astrophysics Data System (ADS)
Sonter, Laura J.; Barrett, Damian J.; Moran, Chris J.; Soares-Filho, Britaldo S.
2015-04-01
Steel produced using coal generates 7% of global anthropogenic CO2 emissions annually. Opportunities exist to substitute this coal with carbon-neutral charcoal sourced from plantation forests to mitigate project-scale emissions and obtain certified emission reduction credits under the Kyoto Protocol’s Clean Development Mechanism. This mitigation strategy has been implemented in Brazil and is one mechanism among many used globally to reduce anthropogenic CO2 emissions; however, its potential adverse impacts have been overlooked to date. Here, we report that total CO2 emitted from Brazilian steel production doubled (91 to 182 MtCO2) and specific emissions increased (3.3 to 5.2 MtCO2 per Mt steel) between 2000 and 2007, even though the proportion of coal used declined. Infrastructure upgrades and a national plantation shortage increased industry reliance on charcoal sourced from native forests, which emits up to nine times more CO2 per tonne of steel than coal. Preventing use of native forest charcoal could have avoided 79% of the CO2 emitted from steel production between 2000 and 2007; however, doing so by increasing plantation charcoal supply is limited by socio-economic costs and risks further indirect deforestation pressures and emissions. Effective climate change mitigation in Brazil’s steel industry must therefore minimize all direct and indirect carbon emissions generated from steel manufacture.
The Charcoal Trap: Miombo Woddlands and the Energy Demands of People
NASA Astrophysics Data System (ADS)
Kutsch, W. L.; Merbold, L.; Mukelabai, M. M.
2012-04-01
Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.
NASA Astrophysics Data System (ADS)
Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun
2012-08-01
Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.
Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia
2013-10-01
Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem
Blarquez, Olivier; Carcaillet, Christopher
2010-01-01
Background Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. Methods To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. Principal Findings We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. Conclusion Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years would threaten the dominant species and might override the resilience of subalpine forests. PMID:20814580
NASA Astrophysics Data System (ADS)
Rossetti, D. F.; Cohen, M. C. L.; Pessenda, L. C. R.
2015-12-01
Previous late Quaternary paleoclimatic interpretations in Amazonia have considered fluctuating dry to wet episodes with changes from savanna to forest, a view that concurs with other proposals of undisturbed rainforest despite global oscillations. Most of this debate is based on pollen data, but such elements are scarce in Amazonian sedimentary records. This work interprets vegetation in the Late Pleistocene and Holocene in a southwestern Amazonia lowland using δ13C, δ15N, C/N integrated with geomorphology, sedimentology and radiocarbon dating. The goal was to reconstruct vegetation changes through time and analyze their relation to climate and sedimentary dynamics. Fluvial channel and floodplain deposits with phytoplankton, as well as C3 and C4 land plants, were recorded. Between 42,033-43,168 cal yr BP and 34,804-35,584 cal yr BP, C4 land plants increased as a result of a climate drier than todaýs. However, wet climate prevailed from this time-frame until the onset of the Last Glaciation Maximum. In the Pleistocene/Holocene transition, there was an increased contribution of C4 land plants potentially related to dry episodes. However, the increased contribution of this type of land plant is not synchronous with Holocene dry episodes previously documented for the Amazonian lowland. On the other hand, it is remarkable that the record of this plant type was verified only in sites with modern grassland confined to fluvial paleo-landforms. Thus, rather than due to a dry climatic episode, the recorded grassland expansion and its maintenance up to the present time in the studied sites is more likely associated with the evolution of depositional environments, being coincidental with the progressive abandonment of fluvial systems. An important conclusion derived from the present work is that great care must be placed when reconstructing late Quaternary paleoclimate in Amazonia based on changes in floristic patterns, as they may be also a response to sedimentary dynamics.
Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey
NASA Astrophysics Data System (ADS)
Çağatay, M. N.; Erel, L.; Bellucci, L. G.; Polonia, A.; Gasperini, L.; Eriş, K. K.; Sancar, Ü.; Biltekin, D.; Uçarkuş, G.; Ülgen, U. B.; Damcı, E.
2012-12-01
Sedimentary earthquake records of the last 2400 a, including that of the devastating 17 August 1999 İzmit earthquake (Mw = 7.4), were studied in cores from the 210 m-deep central Karamürsel Basin of the İzmit Gulf in the eastern Sea of Marmara, using laser grain-size, physical properties, stable O and C isotopes and XRF Core Scanner analyses, and dated by radionuclide and radiocarbon methods. The earthquake records are represented by turbidite-homogenite mass-flow units (THU) that commonly contain a basal coarse layer, a middle laminated silt layer and an overlying homogeneous mud layer. The coarse basal part has a sharp and sometimes scoured lower boundary, and includes multiple coarse (sand/silt) layers or laminae showing normal size grading. Multiple coarse layers and occasional bi-directional cross-bedding suggest deposition from a bed-load during water column oscillations, or seiche effect. The grain-size characteristics of the overlaying laminated silt and the homogeneous mud units indicate deposition from weak oscillating currents and homogeneous suspension, respectively. High Mn value just below the base of THUs suggests diagenetic enrichment at oxic/anoxic redox boundary before the mass-flow event. Sharp decrease in Mn with very low values within the THUs suggests transient redox conditions following the mass-flow. Variable geochemical compositions of the basal coarse layers indicate different sediment sources for different THUs. Eight sedimentary earthquake records observed in the last 2400 a in the İzmit Gulf can be confidently correlated with the historical earthquakes of 1999, 1509 AD (Ms = 7.2), 1296 AD (I = VII), 865 AD (I = VIII), 740 AD (I = VIII), 268 AD (I = VIII), 358 AD (I = IX), and 427 BC. This gives an earthquake recurrence time of ca. 300 a, with the interval between consecutive events ranging from 90 to 695 a.
NASA Astrophysics Data System (ADS)
Freitas, Bernardo T.; Almeida, Renato P.; Carrera, Simone C.; Figueiredo, Felipe T.; Turra, Bruno B.; Varejão, Filipe G.; Assine, Mario L.
2017-12-01
This study, based on detailed sedimentologic and stratigraphic analysis of the Aptian succession preserved in the Recôncavo-Tucano-Jatobá Rift System (RTJ), present new elements for biostratigraphic correlation and paleogeographic reconstruction in the mid-Cretaceous South Atlantic realm, supporting novel interpretations on the tectonic and sedimentary evolution related to the W-Gondwana breakup. The Aptian sedimentary succession in the RTJ has been referred to as Marizal Formation, and interpreted as post-rift deposits. Detailed sedimentologic and stratigraphic studies of these deposits enabled the recognition and individualization of two distinctive sedimentary units that can be traced in the entire RTJ. These units are here described and named Banzaê and Cícero Dantas members of the Marizal Formation. Their contact is locally marked by the fossiliferous successions of the here proposed Amargosa Bed, lying at the top of the Banzaê Member. Both members of the Marizal Formation record large river systems captured by the Tucano Basin with the local development of eolian dune fields and fault-bounded alluvial fans. The Amargosa Bed represents a regional-scale base level change preserved between the Aptian fluvial successions along the RTJ. Hence, the studied sedimentary record presents important implications for the timing and direction of marine ingressions affecting NE-Brazil interior basins during the Aptian. A remarkable contrast in preserved fluvial architecture between the Banzaê Member, characterized by connected channel bodies, and the Cícero Dantas Member, characterized by isolated channel bodies within overbank fines, is here reported. The main interpreted control for the observed contrast in fluvial stratigraphy is sedimentary yield variation. The interval is also subject to the interpretation of a regional shift in the mechanism responsible for the subsidence of the basins formed during the Cretaceous break-up of the Central South Atlantic. This view is challenged by our results which reveal that basin forming extension continued throughout the Aptian. As a conclusion, the detailed stratigraphy of the Marizal Formation forward alternative geodynamic interpretations for the Aptian successions in northeastern Brazil, bringing new elements to the mid-Cretaceous biogeographical, paleogeographical and tectonic reconstructions of western Gondwana.
The investigation of terrestrial analogs for the paleoclimate of Mars
NASA Astrophysics Data System (ADS)
Thorpe, M.; Hurowitz, J.; Dehouck, E.
2016-12-01
The paleoclimate of Mars is recorded in sedimentary rocks and deposits, with geochemical and mineralogical lines of evidence illustrating an active hydrologic cycle and aqueous weathering environment. The nature of this paleoclimate remains a debatable subject, with several competing hypothesis existing from warm and wet to cold and icy. However, sedimentary processes in basaltic terrains are understudied, leading to an inadequate reference frame for the sedimentary record of Mars. Therefore, investigating the effects of climate on basaltic terrestrial analogs will help in establishing a context for understanding the ancient conditions of Mars. The Columbia River Basalts in Idaho, USA will serve as conditions in a warm and wet climate, while the weathering of Icelandic Basalts in southwestern Iceland will provide a cold and wet climate scenario. In the warm and wet conditions of Idaho, Miocene basaltic source rock is broken down by physical and chemical weathering, transported by streams and deposited locally as small deltas. The sediment that accumulates preserves the basaltic provenance mineralogy in grain sizes as small as silt. The major elemental geochemistry displays chemical weathering trends that are consistent with decreasing grain size, and interpreted as mafic mineral dissolution (i.e., olivine and pyroxenes). Clay mineral phases are separated into the finest grain size fraction during the sedimentation process and are identified as smectite clays. A similar story of preserving basaltic mineralogy is illustrated by Icelandic deposits, except mechanical breakdown of the sediment appears to have a larger impact. Primary mafic minerals are identified in even the clay size fraction of the Icelandic fluvial delta deposits. Additionally, there are limited abundances of clay mineral phases, with more obvious contributions of poorly crystalline phases in the less than 2 micron fraction. The preservation of basaltic provenance in the mineralogy of sediments generated in two contrasting climates is important to Mars were sedimentary rocks display a primary igneous mineralogy. Weathering trends and the formation of secondary clay and(or) poorly crystalline phases may be the defining tracers for climatic influence on sedimentary processes in basaltic environments.
NASA Astrophysics Data System (ADS)
Kandel, Andrew; Gasparyan, Boris; Bruch, Angela; Nahapetyan, Samvel; Weissbrod, Lior
2014-05-01
The well stratified locality of Aghitu-3 Cave in the southern Caucasus provides a glimpse into the daily lives of the earliest known Upper Paleolithic inhabitants of Armenia. With three main phases of sedimentation serving as a backdrop to human settlement, the locality provides an excellent stratigraphic record documenting environmental change between about 40,000 and 24,000 cal BP. From the end of MIS 3 with its warm and humid climate, early modern humans made use of the cave with increasing frequency during the colder and drier MIS 2. People produced stone tools from obsidian and chert, hunted medium sized ungulates and equids, and used bone tools to make clothing. The archaeological finds from Aghitu-3 suggest that mobile groups of Upper Paleolithic people used this high altitude (1601 m) cave as a seasonal camp with increasing frequency over time. Carnivores and birds of prey also made use of the cave, likely when humans were not present. The paleoenvironmental indicators confirm a warmer and more humid climate during the first sedimentary phase between about 40,000 and 33,000 cal BP. At about 35,000 cal BP the pollen profile indicates a vegetation of mixed deciduous and steppic species. The presence of green algae supports the interpretation that more humid conditions prevailed. Geological analysis indicates uniform, fine-grained deposition along the banks of a slow moving stream. This and the general lack of rock falls confirm a warmer and more humid climate. The spectrum of micromammals shows a higher proportion of golden hamster, also supporting a favorable climate. However, starting about 33,000 cal BP, we observe a second phase of deposition characterized by coarser sediment with evidence of rill washing, cycles of erosion and frequent large basalt rock falls. These observations suggest a dramatic cooling trend as the climate began to deteriorate. The third depositional phase starts about 29,000 cal BP and is marked by mainly aeolian deposition consisting of fine silt horizons with alternating layers of frost shattered basalt slabs. Pollen shows a change to boreal forest, and the increased presence of pika among the micromammals suggests colder and more barren conditions than today. The wide spectrum of micromammals further points to their likely accumulation by a non-selective raptor such as eagle owl. Fish remains of brown trout confirm the presence of a significant fluvial corridor, likely the nearby Vorotan River. This agrees with the charcoal remains identified thus far, which have the signature of a riparian woodland. The sedimentary sequence ends here, truncated at about 24,000 cal BP by late Holocene deposits of anthropogenic origin.
Navarro, Enrique; Méndez, Soco; Urrutia, Miren Begoñe; Arambalza, Udane; Ibarrola, Irrintzi
2016-09-01
Differential utilization of phytoplankton and detrital particles present in natural sediments of mud-flats was studied in a series of experiments performed on the infaunal bivalve Cerastoderma edule. In order to assess digestive selection, parameters of food processing (organic ingestion rate: OIR, gross absorption efficiency: GAE and gut passage time: GPT) were recorded for each organic component in different combinations of food particles radio-labelled with (14)C. Experimental design included the use of both labelled diets of a sole organic component and cross-labelled diets; i.e., mixed suspensions presenting alternatively labelled one of the various components tested: phytoplankton cells, sedimentary organic particles and particulate detritus from vascular salt-marsh plants. Preferential absorption of phytoplankton was accounted for by absorption efficiency values that were two-fold those for sedimentary detritus when recorded with mixed diets of both organic components. Two factors contributed to this difference: a) higher digestibility of microalgae, measured as the ratio of GAE to GPT, and b) faster gut passage of detrital particles that results from digestive selection likely involving the preferential incorporation of phytoplankton into the digestive gland. However, when diets based on a sole organic component (either phytoplankton or detritus) were compared, larger GPT were recorded for detrital particles that enabled improving GAE of this rather refractory food. Overall results of these experiments are consistent with most studies in trophic ecology based on stable isotopes enrichment, concerning both the diversity of trophic sources used by marine bivalves and its preferential utilization of phytoplankton over phyto-detritus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam
2015-03-01
Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.
NASA Astrophysics Data System (ADS)
Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.
2016-12-01
The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.
Cisneros-Dozal, L. M.; Heikoop, J.M.; Fessenden, J.; Anderson, R. Scott; Meyers, P.A.; Allen, Craig D.; Hess, M.; Larson, T.; Perkins, G.; Rearick, M.
2010-01-01
Elemental (C, N, Pb) and isotopic (δ13C, δ15N) measurements of cored sediment from a small bog in northern New Mexico reveal changes in climate during the Late Pleistocene and Holocene. Abrupt increases in Pb concentration and δ13C values ca. 14 420 cal. YBP indicate significant runoff to the shallow lake that existed at that time. Weathering and transport of local volcanic rocks resulted in the delivery of Pb-bearing minerals to the basin, while a 13C-enriched terrestrial vegetation source increased the δ13C values of the sedimentary material. Wet conditions developed over a 300 a period and lasted for a few hundred years. The Younger Dryas period (ca. 12 700–11 500 cal. YBP) caused a reduction in terrestrial productivity reflected in decreasing C/N values, δ15N values consistently greater than 0‰ and low organic content. By contrast, aquatic productivity increased during the second half of this period, evidenced by increasing δ13C values at the time of highest abundance of algae. Dry conditions ca. 8 000–6 000 cal. YBP were characterised by low organic carbon content and high Pb concentrations, the latter suggesting enhanced erosion and aeolian transport of volcanic rock. The range in δ13C, δ15N and C/N values in the sedimentary record fall within the range of modern plants, except during the periods of runoff and drought. The sedimentary record provides evidence of natural climate variability in northern New Mexico, including short- (multi-centennial) and long-(millennial) term episodes during the Late Pleistocene and Holocene.
NASA Astrophysics Data System (ADS)
McLennan, S. M.; Dehouck, E.; Hurowitz, J.; Lindsley, D. H.; Schoonen, M. A.; Tosca, N. J.; Zhao, Y. Y. S.
2016-12-01
Starting with Pathfinder and Global Surveyor, recent missions to Mars have provided great opportunity for low-temperature experimental geochemistry investigations of the Martian sedimentary record by providing geochemical and mineralogical data that can be used as meaningful tests for experiments. These missions have documented a long-lived, complex and dynamic sedimentary rock cycle, including "source-to-sink" sedimentary systems and global paleoenvironmental transitions through time. We designed and constructed an experimental facility, beginning in 2000, specifically to evaluate surficial processes on Mars. Our experimental philosophy has been to (1) keep apparatus simple and flexible, and if feasible maintain sample access during experiments; (2) use starting materials (minerals, rocks) close to known Mars compositions (often requiring synthesis); (3) address sedimentary processes supported by geological investigations at Mars; (4) begin with experiments at standard conditions so they are best supported by thermodynamics; (5) support experiments with thermodynamic-kinetic-mass balance modeling in both design and interpretation, and by high quality chemical, mineralogical and textural lab analyses; (6) interpret results in the context of measurements made at Mars. Although eliciting much comment in proposal and manuscript reviews, we have not attempted to slavishly maintain "Mars conditions", doing so only to the degree required by variables being tested in any given experiments. Among the problems we have addressed are (1) Amazonian alteration of rock surfaces; (2) Noachian-Hesperian chemical weathering; (3) epithermal alteration of `evolved' igneous rocks; (4) mineral surface chemical reactivity from aeolian abrasion; (5) evaporation of mafic brines; (6) early diagenesis of sedimentary iron mineralogy; (7) trace element and halogen behavior during chemical weathering and diagenesis; (8) photochemical influences on halogen distribution and speciation; (9) post-depositional stability of sedimentary amorphous materials.
NASA Astrophysics Data System (ADS)
Cornamusini, Gianluca; Talarico, Franco M.
2016-11-01
A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.
Evaluation of common bean (Phaseolus vulgaris) response to charcoal rot
USDA-ARS?s Scientific Manuscript database
Charcoal rot in common beans (Phaseolus vulgaris L.), caused by Macrophomina phaseolina (Tassi) Gold. (Mph), is an endemic disease in the prevailing hot and dry conditions in southern Puerto Rico. This study evaluated the 120 bean genotypes that compose the BASE 120 panel under screenhouse conditio...
USDA-ARS?s Scientific Manuscript database
Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...
Effect of Charcoal Rot on Selected Putative Drought Resistant Soybean Genotypes and Yield.
USDA-ARS?s Scientific Manuscript database
Charcoal rot (CR), caused by the fungus Macrophomina phaseolina (Tassi) Goid. is a pervasive disease of economic significance on soybeans ([(Glycine max (L.) Merr.) that is exacerbated when plants are under stress, especially under heat and drought condition. Thus, the objective of this research was...
Janice VanCleave's World: Fluffy and White.
ERIC Educational Resources Information Center
VanCleave, Janice
2000-01-01
Uses charcoal briquettes, ammonia, water, table salt, and laundry bluing to create white fluffy crystals. Briquettes are placed in a bowl while the remaining ingredients are mixed together and poured over the briquettes. The result is white fluffy crystals forming on top of the charcoal. This experiment dramatizes chemical reactions to…
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GUM AND WOOD CHEMICALS...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2011 CFR
2011-07-01
... grams per start. The manufacturer or importer shall maintain the report of findings. (c) When a charcoal... protocol, or are unclear (subject to different interpretations) and inadequate, the Administrator must be... to this subpart shall demonstrate compliance with the applicable requirements of § 59.203(d) using...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2010 CFR
2010-07-01
... grams per start. The manufacturer or importer shall maintain the report of findings. (c) When a charcoal... protocol, or are unclear (subject to different interpretations) and inadequate, the Administrator must be... to this subpart shall demonstrate compliance with the applicable requirements of § 59.203(d) using...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GUM AND WOOD CHEMICALS...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GUM AND WOOD CHEMICALS...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD CHEMICALS...
The report gives results of measurements of airborne emissions, during typical operating conditions, from charcoal-making kilns commonly used in the developing world. The kilns tested were of five types: brick beehive, mud beehive, earth mound, rice husk mound, and single (oil) d...
Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent
USDA-ARS?s Scientific Manuscript database
Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...
Fire and landscapes: patterns and processes
Jan W. Van Wagtendonk
2004-01-01
Fire has been a pervasive influence on the Sierra Nevadan landscape for millennia. Lake sediments containing charcoal and pollen indicate that fires have occurred for at least the past 13,000 years. Brunelle and Anderson (2003) found that charcoal accumulation varied with vegetation and temperature, increasing during warm periods dominated by oaks (Quercus...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD CHEMICALS...
Greenhouse Gas and Particulate Emissions and Impacts from Cooking Technologies in Africa
NASA Astrophysics Data System (ADS)
Kammen, D. M.; Bailis, R.; Kituyi, E.; Ezzati, M.
2003-12-01
In much of Africa, the largest fraction of energy consumption occurs within the residential sector and is derived primarily from woodfuels burned in simple stoves with poor combustion characteristics. Many of the products of incomplete combustion (PICs) are damaging to human health, particularly when they are concentrated in poorly ventilated indoor environments. Incomplete combustion also has potentially harmful impacts on the climate. Prevalent PICs include methane, a potent greenhouse gas (GHG) that is among the pollutants subject to controls under the Kyoto Protocol as well as carbon monoxide (CO), non-methane hydrocarbons (NMHCs) and particulate matter (PM), which can all have an effect on climate, but are not subject to controls under Kyoto. In addition, when woodfuels are used at a rate that reduces standing stocks of trees over the medium or long term, the CO2 released by combustion also has an impact. The choice of stove and fuel technology can have a significant impact on the emission of GHGs as well as on human exposure to health damaging pollutants. In this paper we analyze the emissions of different household energy technologies on a life-cycle basis. We use emission factors to estimate the emissions associated with production, distribution and end-use of common household fuels and assess the likely impacts of these emissions on public health and the global environment. We focus largely on charcoal, a popular fuel in many sub-Saharan African countries. Charcoal is produced by heating wood in the absence of sufficient air for complete combustion to occur. This process removes moisture and most of the volatile compounds. The compounds driven off in the process consist of condensable tars as well as many gaseous hydrocarbons, including ~40 g CH4 per kg of charcoal produced. Combining upstream and end-use emissions, every meal cooked with charcoal has 2-10 times the global warming effect of cooking the same meal with firewood and 5-12 times the effect of cooking the same meal with LPG or kerosene. When charcoal is produced in large quantities, as it is in Africa, the net warming effect can exceed the impact from the "modern energy sector" (transportation and industry) by 50-100 percent, even if charcoal is produced on a sustainable cycle so that all of the wood harvested for charcoal production is allowed to regenerate. However, while charcoal may be worse than firewood with respect to greenhouse gas emissions, it is an improvement with respect to exposure to health damaging pollutants, particularly particulate matter (PM). Levels of PM in households using charcoal are over 90 percent lower than households using open wood fires (316 -(159) mg/m3 for households using charcoal in a common improved stove compared to 3764 (360) mg/m3) for households using wood in open fires: mean (standard error)). These differences in exposure are consistent with 30 and 50 percent reductions in the incidence of acute respiratory infection (ARI) in adults and children under 5 respectively. Reconciling the costs and benefits of different household energy technologies creates a difficult policy challenge, particularly with the severe budgetary and resource constraints that household consumers and government agencies face in sub-Saharan Africa.
Four thousand years of environmental change and human activity in the Cochabamba Basin, Bolivia
NASA Astrophysics Data System (ADS)
Williams, Joseph J.; Gosling, William D.; Coe, Angela L.; Brooks, Stephen J.; Gulliver, Pauline
The Cochabamba Basin (Bolivia) is on the ancient road network connecting Andean and lowland areas. Little is known about the longevity of this trade route or how people responded to past environmental changes. The eastern end of the Cochabamba valley system constricts at the Vacas Lake District, constraining the road network and providing an ideal location in which to examine past human-environmental interactions. Multi-proxy analysis of sediment from Lake Challacaba has allowed a c. 4000 year environmental history to be reconstructed. Fluctuations in drought tolerant pollen taxa and calcium carbonate indicate two periods of reduced moisture availability ( c. 4000-3370 and c. 2190-1020 cal yr BP) compared to adjacent wetter episodes ( c. 3370-2190 and c. 1020 cal yr BP-present). The moisture fluctuations broadly correlate to El Niño/Southern Oscillation variations reported elsewhere. High charcoal abundance from c. 4000 to 2000 yr ago indicates continuous use of the ancient road network. A decline in charcoal and an increase in dung fungus ( Sporormiella) c. 1340 -1210 cal yr BP, suggests that cultural changes were a major factor in shaping the modern landscape. Despite undisputable impacts of human populations on the Polylepis woodlands today, we see no evidence of woodland clearance in the Challacaba record.
Arslan, Naheed; Khiljee, Sonia; Bakhsh, Allah; Ashraf, Muhammad; Maqsood, Iram
2016-03-01
This study was conducted to evaluate the availability of antidotes/key emergency drugs in tertiary care hospitals of the Punjab province, and to assess the knowledge of health care professionals in the stocking and administration of antidotes in the proper management of poisoning cases. Seventeen (n=17) tertiary care hospitals of Punjab Pakistan were selected. Two performas (A and B) were designed for 26 antidotes/key emergency drugs and given to the hospital pharmacists and physicians respectively. It was observed that Activated Charcoal, being the universal antidote was found only in 6 hospitals (41%). Digoxin Immune Fab, Edentate Calcium disodium and Glucagon were not available in emergency department of any hospital and even not included in the formulary of any hospital. About 80% pharmacists were aware of the method of preparation of Activated Charcoal and 85% physicians were familiar with its route of administration. Data showed that tertiary care hospitals of Punjab do not stock antidotes according to national drug policy. Moreover the study strongly suggests the development of health care centers and professional by organizing antidote awareness programs, continuous education and record keeping of poisonous cases and availability of emergency drugs around the clock.
Fire-free land use in pre-1492 Amazonian savannas
Iriarte, José; Power, Mitchell J.; Rostain, Stéphen; Mayle, Francis E.; Jones, Huw; Watling, Jennifer; Whitney, Bronwen S.; McKey, Doyle B.
2012-01-01
The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions. PMID:22493248
Fire regimes and vegetation change in tropical northern Australia during the late-Holocene
NASA Astrophysics Data System (ADS)
Mackenzie, Lydia; Moss, Patrick; Ulm, Sean; Sloss, Craig; Heijnis, Henk; Jacobsen, Geraldine
2016-04-01
This study explores the impact of human occupation and abandonment on fire regimes and vegetation communities in the South Wellesley Islands, Gulf of Carpentaria, tropical northern Australia, using charcoal and pollen analysis from four sediment records. Pollen analysis from wetland sediments reveal vegetation succession from mangrove communities to hypersaline mudflats and open woodlands occurred during the late-Holocene. Aquatic species replaced salt tolerant species as the prograding shoreline and dune development formed the Marralda wetlands by 800 cal a BP on the south east coast of Bentinck Island. Wetlands developed on the north and west coast by 500 and 450 cal a BP, respectively. The timing of wetland initiation indicates localised late-Holocene sea level regression, stabilisation and coastal plain development in the Gulf of Carpentaria. Wetland initiation encouraged permanent human occupation of the South Wellesley archipelago, with ongoing archaeological research finding permanent occupation in the last 1500 years, followed by a significant increase in sites from 700 years ago, which peaks over the last 300 years. Macro-charcoal (>125μm) accumulation rates provide a record of fire intensity and frequency across the Island. Both local and regional fire events increase in the last 700 years as traditional owners occupied the Island, with local fires occurring every 104 and 74 years on average (N= 4 and 5 respectively). In the 1950's traditional Indigenous Kaiadilt fire management practices ceased, with the frequency and peak magnitude of fire events significantly increasing and vegetation communities becoming more open. The South Wellesley Islands were unoccupied until the 1980's and were not influenced by European occupation. This study of an Island ecosystem during the late-Holocene provides insight into the effect of human presence and fire regimes on vegetation composition and distribution in a fire resilient environment.
High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa
NASA Astrophysics Data System (ADS)
Blaauw, Maarten; van Geel, Bas; Kristen, Iris; Plessen, Birgit; Lyaruu, Anna; Engstrom, Daniel R.; van der Plicht, Johannes; Verschuren, Dirk
2011-10-01
We dated a continuous, ˜22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ˜450 yr during glacial and late glacial time to ˜200 yr during the early and mid-Holocene, and increasing again to ˜250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ˜50-230 yr during the Holocene and ˜250-550 yr in the glacial section of the record. The δ 13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.
An Examination of Long-Term Environmental-Social Dynamics in the Balkans
NASA Astrophysics Data System (ADS)
Kulkarni, C.; Boger, R. A.
2015-12-01
This study examines the interactions of environmental and social dynamics in Central Balkans over the past millennium, a period that experienced three major climatic phases (Medieval Climate Anomaly, Little Ice Age, and the warm 20th century). Meanwhile, the same period witnessed a complex human history with the emergence-rise-decline of the Ottoman Empire and subsequent socio-political events (e.g. wars, famines, migrations). Environmental datasets for the analysis include biological proxies (pollen, spores, and charcoal), geochemical signals through X-ray fluorescence (XRF), and a detailed chronology based on AMS 14C dating of two western and central Serbian lakes while social datasets include historic population data, land use, settlement patterns, and critical historic events derived from a review of the literature and local archives. Among the environmental datasets, indigenous tree and herbaceous pollen from these Central Balkans records demonstrate fluctuations in woodland-grassland dynamics whereas potassium and titanium counts obtained through XRF act as a proxy for surface erosion and clastic input into the lakes. Microscopic charcoal, cereal pollen and subordinate anthropogenic pollen (e.g. cultivated fruits and vegetables) are used to distinguish strong human impact over the landscape. These key anthropogenic indicators create a more thorough social component of the analysis in association with the social datasets. After reconstructing the individual time series for each environmental and social dataset, the two Central Balkan records are correlated in order to identify the environmental and social homogeneity and heterogeneity patterns occurring at shorter and longer timescales during the period. Results provide insights on how a region responds to social and environmental stressors and our approach demonstrates ways to integrate natural and social science system research.
NASA Astrophysics Data System (ADS)
Klimaszewski-Patterson, A.; Mensing, S. A.; Weisberg, P.; Scheller, R. M.
2016-12-01
Humans have altered landscapes across North America for millennia. Ethnographic accounts record regular Native Californian use of fire, but not the exact quantity, frequency, or range to which fire use and management were employed. Previous paleoecological work at Holey Meadow (HLY), Sequoia National Forest, California (Klimaszewski-Patterson and Mensing, 2015) indicated two anomolous periods of forest composition (1550-1000 and 750-100 cal yr BP) over the 2000 years that were inconsistent climatic expections. This research uses the forest succession landscape model LANDIS-II to investigate whether the observed changes in forest composition at HLY can be explained by climatic fires, or whether the addition of Native American-set surface fires is necessary. Simulated outputs of vegetation from LANDS-II were compared to the pollen record at HLY. Results suggest that Native American-set surface fires (anthropogenic fire regime) are most consistent both the pollen and charcoal records from HLY, as well as nearby and regional fire scar records. Climatic fires alone do not seem to explain the paleorecord, and this indicate that HLY may represent an anthropogenically-modified landscape.
Taphonomic bias in pollen and spore record: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, L.H.
The high dispersibility and ease of pollen and spore transport have led researchers to conclude erroneously that fossil pollen and spore floras are relatively complete and record unbiased representations of the regional vegetation extant at the time of sediment deposition. That such conclusions are unjustified is obvious when the authors remember that polynomorphs are merely organic sedimentary particles and undergo hydraulic sorting not unlike clastic sedimentary particles. Prior to deposition in the fossil record, pollen and spores can be hydraulically sorted by size, shape, and weight, subtly biasing relative frequencies in fossil assemblages. Sorting during transport results in palynofloras whosemore » composition is environmentally dependent. Therefore, depositional environment is an important consideration to make correct inferences on the source vegetation. Sediment particle size of original rock samples may contain important information on the probability of a taphonomically biased pollen and spore assemblage. In addition, a reasonable test of hydraulic sorting is the distribution of pollen grain sizes and shapes in each assemblage. Any assemblage containing a wide spectrum of grain sizes and shapes has obviously not undergone significant sorting. If unrecognized, taphonomic bias can lead to paleoecologic, paleoclimatic, and even biostratigraphic misinterpretations.« less