Sample records for sediments drinking water

  1. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  2. Sediment Enzyme Activities and Microbial Community Diversity in an Oligotrophic Drinking Water Reservoir, Eastern China

    PubMed Central

    Zhang, Haihan; Huang, Tinglin; Liu, Tingting

    2013-01-01

    Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir. PMID:24205265

  3. Removal of Mycobacterium avium subspecies hominissuis (MAH) from drinking water by coagulation, flocculation and sedimentation processes.

    PubMed

    Wong, E A; Shin, G-A

    2015-03-01

    There has been a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water due to its ubiquitous presence in natural waters and remarkable resistance to both chemical and physical disinfectants in drinking water treatment processes. However, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Therefore, we determined the removal of MAH by alum coagulation, flocculation and sedimentation processes in optimized drinking water treatment conditions using standard jar test equipment. Contrary to the prevailing hypothesis, the results of this study show that removal of MAH by coagulation, flocculation and sedimentation processes was only moderate (approx. 0.65 log10) under low turbidity treatment conditions and the removal of MAH was actually lower than that of Escherichia coli (reference bacterium) in all the waters tested. Overall, the results of this study suggested that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for removing MAH, and more efforts to find an effective control measures against MAH should be made to reduce the risk of MAH infection from drinking water. Despite a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water and its remarkable resistance to water disinfectants, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Contrary to the prevailing hypothesis, the results of this study suggest that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for MAH removal. As these processes have been the last remaining conventional drinking water treatment processes that might be effective against MAH, more efforts should be urgently made to find an effective control measures against this important waterborne pathogen. © 2014 The Society for Applied Microbiology.

  4. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    EPA Science Inventory

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  5. Simulating sediment loading into the major reservoirs in Trinity River Basin

    USDA-ARS?s Scientific Manuscript database

    The Upper Trinity Basin supplies water to about one-fourth of Texas' population. The anticipated rapid growth of North Central Texas will certainly increase regional demands for high quality drinking water. This has increased concerns that sediment and nutrient loads received by drinking water reser...

  6. Distribution of polycyclic aromatic hydrocarbons in surface water and sediment near a drinking water reservoir in Northeastern China.

    PubMed

    Liu, Yu; Shen, Jimin; Chen, Zhonglin; Ren, Nanqi; Li, Yifan

    2013-04-01

    The levels of polycyclic aromatic hydrocarbons (PAHs) in the water and the sediment samples collected near the Mopanshan Reservoir-the most important drinking water resource of Harbin City in Northeast China-were examined. A total of 16 PAHs were concurrently identified and quantified in the three water bodies tested (Lalin River, Mangniu River, and Mopanshan Reservoir) and in the Mopanshan drinking water treatment plant during the high- and low water periods. The total PAH concentrations in the water and sediment samples ranged from 122.7 to 639.8 ng/L and from 89.1 to 749.0 ng/g dry weight, respectively. Similar spatial and temporal trends were also found for both samples. The lowest Σ16PAH concentration of the Mopanshan Reservoir was obtained during the high water period; by contrast, the Lalin River had the highest concentration during the low water period. The PAH profiles resembling the three water bodies, with high percentages of low-molecular weight PAHs and dominated by two- to three-ring PAHs (78.4 to 89.0%). Two of the molecular indices used reflected the possible PAH sources, indicating the main input from coal combustion, especially during the low water period. The conventional drinking water treatment operations resulted in a 20.7 to 67.0% decrease in the different-ringed PAHs in the Mopanshan-treated drinking water. These findings indicate that human activities negatively affect the drinking water resource. Without the obvious removal of the PAHs in the waterworks, drinking water poses certain potential health risks to people.

  7. Microbial Community Analysis in Water Storage Tank Sediment Exposed to Monochloramine - Portland

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation, including enhanced biological growth and more rapid disinfectant decay. The current research evaluated the microbial community composition after a drinking water storage facility’s sediment was e...

  8. Microbial Community Analysis in Water Storage Tank Sediment Exposed to Monochloramine

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation, including enhanced biological growth and more rapid disinfectant decay. The current research evaluated the microbial community composition after a drinking water storage facility’s sediment was e...

  9. The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs.

    PubMed

    Klanicova, Barbora; Seda, Jaromir; Slana, Iva; Slany, Michal; Pavlik, Ivo

    2013-12-01

    Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.

  10. Microbial profiles of a drinking water resource based on different 16S rRNA V regions during a heavy cyanobacterial bloom in Lake Taihu, China.

    PubMed

    Zhang, Junyi; Zhu, Congming; Guan, Rui; Xiong, Zhipeng; Zhang, Wen; Shi, Junzhe; Sheng, Yi; Zhu, Bingchuan; Tu, Jing; Ge, Qinyu; Chen, Ting; Lu, Zuhong

    2017-05-01

    Understanding of the bacterial community structure in drinking water resources helps to enhance the security of municipal water supplies. In this study, bacterial communities were surveyed in water and sediment during a heavy cyanobacterial bloom in a drinking water resource of Lake Taihu, China. A total of 325,317 high-quality sequences were obtained from different 16S ribosomal RNA (rRNA) regions (V3, V4, and V6) using the Miseq sequencing platform. A notable difference was shown between the water and sediment samples, as predominated by Cyanobacteria, Proteobacteria, and Actinobacteria in the water and Proteobacteria, Chloroflexi, and Verrucomicrobia in the sediment, respectively. The LD12 family dominated the water surface and was tightly associated with related indicators of cyanobacterial propagation, indicating involvement in the massive proliferation of cyanobacterial blooms. Alternatively, the genus Nitrospira dominated the sediment samples, which indicates that nitrite oxidation was very active in the sediment. Although pathogenic bacteria were not detected in a large amount, some genera such as Mycobacterium, Acinetobacter, and Legionella were still identified but in very low abundance. In addition, the effects of different V regions on bacterial diversity survey were evaluated. Overall, V4 and V3 were proven to be more promising V regions for bacterial diversity survey in water and sediment samples during heavy water blooms in Lake Taihu, respectively. As longer, cheaper, and faster DNA sequencing technologies become more accessible, we expect that bacterial community structures based on 16S rRNA amplicons as an indicator could be used alongside with physical and chemical indicators, to conduct comprehensive assessments for drinking water resource management.

  11. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1986-92

    USGS Publications Warehouse

    Tadayon, Saeid; Smith, C.F.

    1994-01-01

    Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.

  12. Study of Disinfectant Penetration in a Drinking Water Storage Tank Sediment Using Microelectrodes- Indianapolis

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation issues, including enhanced biological growth and more rapid disinfectant decay. For chloramine systems, sediment may harbor nitrifying bacteria, feeding on ammonia from monochloramine decay and dem...

  13. Impact of particles on sediment accumulation in a drinking water distribution system.

    PubMed

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough.

  14. Survey of the mutagenicity of surface water, sediments, and drinking water from the Penobscot Indian Nation.

    PubMed

    Warren, Sarah H; Claxton, Larry D; Diliberto, Janet; Hughes, Thomas J; Swank, Adam; Kusnierz, Daniel H; Marshall, Valerie; DeMarini, David M

    2015-02-01

    U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S. Published by Elsevier Ltd.

  15. THE EFFECT OF FLUORIDE ON THE EFFECTIVENESS OF CONVENTIONAL COAGULATION/FLOCCULATION/SEDIMENTATION USING ALUMINUM SULFATE

    EPA Science Inventory

    The Safe Drinking Water Act states that no drinking water facility is reuqired to fluoridate their water, however, any facility fluoridating their water is bound by the Maximum contaminant Level (MCL) of 4 mg/L. A survey of 600 large water utilities was conducted in conjunction w...

  16. Data for Sediments Paper

    EPA Pesticide Factsheets

    The full report on sediment resuspension in drinking water storage tanks and a link to an animation of results.This dataset is associated with the following publication:Ho, C., R. Murray , J. Christian, E. Ching, J. Slavin, J. Ortega, and L. Rossman. Sediment Resuspension and Transport in Water Distribution Storage Tanks. JOURNAL OF THE AMERICAN WATER WORKS ASSOCIATION. American Water Works Association, Denver, CO, USA, 108(6): ., (2016).

  17. Study on the method and mechanism of pre-pressure coagulation and sedimentation for Microcystis removal from drinking-water sources.

    PubMed

    Cong, Haibing; Sun, Feng; Chen, Wenjing; Xu, Yajun; Wang, Wei

    2018-02-01

    In order to effectively remove the Microcystis from drinking-water sources, pre-pressure treatment was first used to make the Microcystis lose buoyancy, and then it is easily removed by coagulation and sedimentation processes. The Microcystis-containing water from Taihu Lake was taken for the pre-pressure coagulation and sedimentation treatments in this study. Both intermittent laboratory experiment and continuous-flow field experiment were conducted. Experimental results showed that the optimum pre-pressure condition was pressuring at 0.6-0.8 MPa for at least 10 s, and 60 s was the best. Comparing with the pre-oxidation, pre-pressure could obviously increase the removal efficiency of Microcystis by following coagulation and sedimentation, and would not increase the dissolved microcystins. The mechanism of pre-pressure treatment was that the pre-pressure destroys the gas vesicles in Microcystis cells and the gas diffuses out of the cells, which leads the Microcystis to lose buoyancy and make them to sink. The recovery time of gas vesicles was longer than the sludge discharge period of sedimentation tank; therefore, the sinking Microcystis would not re-float in the sedimentation tank. In the practical application of drinking water treatment plant, the continuous-flow pressure device could be chosen, with the energy consumption of about 22.9 kw·h per 10,000 m 3 .

  18. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.

    2004-01-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.

  19. Glacial sediment causing regional-scale elevated arsenic in drinking water.

    PubMed

    Erickson, Melinda L; Barnes, Randal J

    2005-01-01

    In the upper Midwest, USA, elevated arsenic concentrations in public drinking water systems are associated with the lateral extent of northwest provenance late Wisconsin-aged drift. Twelve percent of public water systems located within the footprint of this drift (212 of 1764) exceed 10 microg/L arsenic, which is the U.S. EPA's drinking water standard. Outside of the footprint, only 2.4% of public water systems (52 of 2182) exceed 10 microg/L arsenic. Both glacial drift aquifers and shallow bedrock aquifers overlain by northwest provenance late Wisconsin-aged sediment are affected by arsenic contamination. Evidence suggests that the distinct physical characteristics of northwest provenance late Wisconsin-aged drift--its fine-grained matrix and entrained organic carbon that fosters biological activity--cause the geochemical conditions necessary to mobilize arsenic via reductive mechanisms such as reductive desorption and reductive dissolution of metal oxides. This study highlights an important and often unrecognized phenomenon: high-arsenic sediment is not necessary to cause arsenic-impacted ground water--when "impacted" is now defined as >10 microg/L. This analysis also demonstrates the scientific and economic value of using existing large but imperfect statewide data sets to observe and characterize regional-scale environmental problems.

  20. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    PubMed

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  1. Algal Toxin Removal Capabilities of Common Drinking Water ...

    EPA Pesticide Factsheets

    This presentation discusses the removal of cyanobacteria and cyanobacteria toxins through permanganate addition, powdered activated carbon addition, sedimentation, filtration and chlorination. The presentation is intended to help transfer the results of ORD research to state primacy agency personnel, practicing drinking water treatment personnel and consulting engineers.

  2. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1992-93

    USGS Publications Warehouse

    Tadayon, Saeid

    1995-01-01

    Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.

  3. Data on fluoride concentration in drinking water resources in Iran: A case study of Fars province; Larestan region.

    PubMed

    Dehghani, Mohammad Hadi; Haghighat, Gholam Ali; Yousefi, Mahmood

    2018-08-01

    Fluoride is a natural element among minerals, geochemical sediments and natural water systems which is entered to body chain by drinking water. Groundwater is the main and the best source of drinking water in southern areas of Iran especially in the cities of Lar and Gerash (Fars province). So due to the health significance fluoride including dental and skeletal fluorosis, fertility, abortion and thyroid diseases, etc., measuring has high importance in the water resources of this region of Iran. Fluoride concentration was 0.35-3.46 mg/L and 78.26% drinking water sources contains fluoride concentration above the WHO guideline.

  4. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    PubMed

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  5. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China.

    PubMed

    Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun

    2016-02-01

    High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.

  7. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam.

    PubMed

    Toan, Pham Van; Sebesvari, Zita; Bläsing, Melanie; Rosendahl, Ingrid; Renaud, Fabrice G

    2013-05-01

    Public concern in Vietnam is increasing with respect to pesticide pollution of the environment and of drinking water resources. While established monitoring programs in the Mekong Delta (MD) focus on the analysis of organochlorines and some organophosphates, the environmental concentrations of more recently used pesticides such as carbamates, pyrethroides, and triazoles are not monitored. In the present study, household level pesticide use and management was therefore surveyed and combined with a one year environmental monitoring program of thirteen relevant pesticides (buprofezin, butachlor, cypermethrin, α-endosulfan, β-endosulfan, endosulfan-sulfate, fenobucarb, fipronil, isoprothiolane, pretilachlor, profenofos, propanil, and propiconazole) in surface water, soil, and sediment samples. The surveys showed that household level pesticide management remains suboptimal in the Mekong Delta. As a consequence, a wide range of pesticide residues were present in water, soil, and sediments throughout the monitoring period. Maximum concentrations recorded were up to 11.24 μg l(-1) in water for isoprothiolane and up to 521 μg kg(-1) dm in sediment for buprofezin. Annual average concentrations ranged up to 3.34 μg l(-1) in water and up to 135 μg kg(-1) dm in sediment, both for isoprothiolane. Occurrence of pesticides in the environment throughout the year and co-occurrence of several pesticides in the samples indicate a considerable chronic exposure of biota and humans to pesticides. This has a high relevance in the delta as water for drinking is often extracted from canals and rivers by rural households (GSO, 2005, and own surveys). The treatment used by the households for preparing surface water prior to consumption (flocculation followed by boiling) is insufficient for the removal of the studied pesticides and boiling can actually increase the concentration of non-volatile pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Guam Pago Watershed Conservation

    Treesearch

    Maria Lynn Cruz; Laura F. Biggs

    2016-01-01

    The purpose of this research is to explore water science methodologies in determining the source of sedimentation in the Guam Pago Watershed. Watersheds provide drinking water, an agricultural water source, and forms of recreation.

  9. Environmental surveillance master sampling schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisping, L.E.

    This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring the onsite drinking water falls outside the scope of the SESP. The Hanford Environmental Health Foundation is responsible for monitoring the nonradiological parameters as defined in the National Drinking Water Standards while PNL conducts the radiological monitoring of themore » onsite drinking water. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize the expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control and reporting. The ground-water sampling schedule identifies ground-water sampling events used by PNL for environmental surveillance of the Hanford Site.« less

  10. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    USGS Publications Warehouse

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring tide. Future deployments will characterize the seasonal variability of these fluxes.

  11. Impact of Hydraulic Well Restoration on Native Bacterial Communities in Drinking Water Wells

    PubMed Central

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229

  12. Impact of hydraulic well restoration on native bacterial communities in drinking water wells.

    PubMed

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems.

  13. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water.

    PubMed

    Carmona, Eric; Andreu, Vicente; Picó, Yolanda

    2014-06-15

    The occurrence of 21 acidic pharmaceuticals, including illicit drugs, and personal care products (PPCPs) in waste, surface and drinking water and in sediments of the Turia River Basin (Valencia, Spain) was studied. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the determination of these PPCPs with electrospray (ESI) in negative ionization (NI) mode. Ammonium fluoride in the mobile phase improved ionization efficiency by an average increase in peak area of 5 compared to ammonium formate or formic acid. All studied compounds were detected and their concentration was waste water>surface water>drinking water. PPCPs were in waste water treatment plants (WWTPs) influents up to 7.26μgL(-1), dominated by ibuprofen, naproxen and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCOOH). WWTPs were highly effective in removing most of them, with an average removal rate of >90%. PPCPs were still detected in effluents in the 6.72-940ngL(-1) range, with the THCOOH, triclocarban, gemfibrozil and diclofenac as most prevalent. Similarly, diclofenac, gemfibrozil, ibuprofen, naproxen and propylparaben were detected quite frequently from the low ngL(-1) range to 7μgL(-1) in the surface waters of Turia River. Ibuprofen, methylparaben, salicylic acid and tetrahydrocannabinol (THC) were at concentrations up to 0.85ngg(-1) d.w. in sediments. The discharge of WWTP as well as of non-treated waters to this river is a likely explanation for the significant amount of PPCPs detected in surface waters and sediments. Mineral and tap waters also presented significant amounts (approx. 100ngL(-1)) of ibuprofen, naproxen, propylparaben and butylparaben. The occurrence at trace levels of several PPCPs in drinking water raises concerns about possible implications for human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Water Quality Protection from Nutrient Pollution: Case Analysis

    EPA Science Inventory

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...

  15. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  16. Asellus aquaticus as a Potential Carrier of Escherichia coli and Other Coliform Bacteria into Drinking Water Distribution Systems

    PubMed Central

    Christensen, Sarah C. B.; Arvin, Erik; Nissen, Erling; Albrechtsen, Hans-Jørgen

    2013-01-01

    Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL−1 were measured in the water and 200 E. coli and >240 total coliforms·mL−1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus−1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus−1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters. PMID:23455399

  17. Asellus aquaticus as a potential carrier of Escherichia coli and other coliform bacteria into drinking water distribution systems.

    PubMed

    Christensen, Sarah C B; Arvin, Erik; Nissen, Erling; Albrechtsen, Hans-Jørgen

    2013-03-01

    Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL-1 were measured in the water and 200 E. coli and >240 total coliforms·mL-1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus-1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus-1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters.

  18. [Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir].

    PubMed

    Huang, Ting-lin; Liu, Fei; Shi, Jian-chao

    2016-01-15

    The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.

  19. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk.

    PubMed

    Hanna, Nada; Sun, Pan; Sun, Qiang; Li, Xuewen; Yang, Xiwei; Ji, Xiang; Zou, Huiyun; Ottoson, Jakob; Nilsson, Lennart E; Berglund, Björn; Dyar, Oliver James; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2018-05-01

    To investigate the occurrence of antibiotic residues in different types of environmental samples including water samples in rural Shandong province, China. Further, to characterize the potential ecological risk for development of antibiotic resistance in the environment, and the potential direct human health risk of exposure to antibiotics via drinking water and vegetables. Environmental samples (n = 214) (river water, waste water, drinking water, sediments, manure, soil and edible parts of vegetables) were collected in twelve villages in Shandong province in eastern China. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine the concentration of antibiotic residues. The ratio of the measured environmental concentrations (MEC) to the predicted no-effect concentrations (PNEC) was used to evaluate the ecological risk (risk quotient, RQ) for development of antibiotic resistance. The potential risks to human health through exposure to antibiotics in drinking water were assessed by comparing measured environmental concentrations (MEC) and predicted no-effect concentration in drinking water (PNEC DW ), and in vegetables by comparing estimated daily intake (EDI) to ADI. Sulfapyridine, sulfamethoxazole, ciprofloxacin, enrofloxacin, levofloxacin, norfloxacin, chloramphenicol, florfenicol, doxycycline, and metronidazole were detected at concentrations ranging between 0.3 and 3.9 ng/L in river water, 1.3 and 12.5 ng/L in waste water, 0.5 and 21.4 ng/L in drinking water, 0.31 and 1.21 μg/kg in river sediment, 0.82 and 1.91 μg/kg in pig manure, 0.1 and 11.68 μg/kg in outlet sediment, 0.5 and 2.5 μg/kg in soil, and 6.3 and 27.2 μg/kg in vegetables. The RQs for resistance development were >1 for enrofloxacin, levofloxacin, and ranged between 0.1 and 1 for ciprofloxacin. MECs/PNEC DW ratios were <1 from exposure to antibiotics through drinking water for both adults and children. EDI/ADI ratios were <0.1 from exposure to antibiotics by vegetable consumption. Antibiotic pollutants were ubiquitous in various environmental compartments of Shandong province of China. Risk estimates indicated a potential for the measured levels of enrofloxacin, levofloxacin and ciprofloxacin in waste water to pose an ecological risk for resistance selection, and further studies are needed to validate this finding. The investigated antibiotics did not appear to pose an appreciable direct human health risk from environmental exposure through drinking water or vegetables consumption. However, they might still pose a risk for resistance development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Analysis of the bacterial communities associated with different drinking water treatment processes.

    PubMed

    Zeng, Dan-Ning; Fan, Zhen-Yu; Chi, Liang; Wang, Xia; Qu, Wei-Dong; Quan, Zhe-Xue

    2013-09-01

    A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.

  1. Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source.

    PubMed

    Boiteux, Virginie; Dauchy, Xavier; Bach, Cristina; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-04-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota and humans. Drinking water is a route of exposure for populations using water contaminated by PFAS discharges. This research entailed measuring concentrations, mass flows and investigating the fate of dozens PFASs in a river receiving effluents from a fluorochemical manufacturing facility. To measure the total concentration of perfluoroalkyl carboxylic acid (PFCA) precursors, an oxidative conversion method was used. Several dozen samples were collected in the river (water and sediment), in drinking water resources and at different treatment steps on four sampling dates. One PFCA and three fluorotelomers (FTs) were detected up to 62km downstream from the manufacturing facility. 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) was the predominant PFAS with a mass flow of 3830g/day 5.2km downstream from the facility. At all sampling points, PFAS concentrations in sediment were quite low (<6ng/g dw). Five of the 11 investigated wells showed detectable concentrations of PFASs. Interestingly, their profile patterns were different from those observed in the river, suggesting a transformation of PFCA precursors in the sediments of alluvial groundwater. Conventional drinking water treatments (aeration, sand or granular activated carbon filtration, ozonation or chlorination) did not efficiently remove PFASs. Furthermore, an increase in concentration of certain PFASs was observed after ozonation, suggesting that some FTs such as 6:2 FTAB can break down. Only nanofiltration was able to remove all the analyzed PFASs. In the treated water, total PFAS concentrations never exceeded 60ng/L. The oxidative conversion method revealed the presence of unidentified PFCA precursors in the river. Therefore, 18 to 77% of the total PFCA content after oxidation consisted of unidentified chemical species. In the treated water, these percentages ranged from 0 to 29%, relatively and reassuringly low values. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Impact of Climate Change on Lake Erie Drinking Water Quality—An Initial Assessment with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liou, L.

    2012-12-01

    A changing climate in the Lake Erie region appears to be having direct impacts on the quality of Lake Erie's drinking water. A dramatic increase in the size and duration of harmful algal blooms (HABs), changes in chlorophyll (Chl) levels and related primary production (PP), prominent sediment plumes, and nearshore production of submerged aquatic vegetation (SAV) are likely being impacted by warmer winters, more intense storms, and reduced ice extent, amongst other meteorological factors. Hypoxia, another major drinking water issue in the lake, is exacerbated by HABs and nearshore SAV. A Michigan Tech research team (Shuchman, Sayers, Brooks) has recently been developing algorithms to derive HAB extents, Chl levels, PP, sediment plume extents, and nearshore SAV maps for the Great Lakes. Inputs have primarily been derived from MODIS Aqua imagery from the NASA Oceancolor website; investigations in the capability of VIIRS imagery to provide the same critical data are being pursued. Remote sensing-derived ice extent and thickness spatial data are also being analyzed. Working with Liou and Lekki of the NASA Glenn Research Center, the study team is deriving algorithms specifically for Lake Erie and integrating them into an analysis of the lake's changing trends over the last 10 years (2002-2012) to improve understanding of how they are impacting the area's water quality, especially for customers dependent on Lake Erie drinking water. This analysis is tying these remote sensing-derived products to climate-driven meteorological factors to enable an initial assessment of how future changes could continue to impact the region's drinking water quality.

  3. High concentrations of fluoride and boron in drinking water wells in the Muenster region--results of a preliminary investigation.

    PubMed

    Queste, A; Lacombe, M; Hellmeier, W; Hillermann, F; Bortulussi, B; Kaup, M; Ott, K; Mathys, W

    2001-03-01

    In 1998, two cases of severe dental fluorosis in schoolchildren occurred in the Muenster region. These cases took place in one household, where fluoridated toothpaste, fluoridated salt, and fluoride tablets were consumed. Furthermore, the family used drinking water from its private well only. Analyses of the well water ordered by local health officials revealed very high amounts of fluoride, boron, and other electrolytes. This unusual combination of high amounts of fluoride and boron could also be found in the water of a great number of other private wells that are the only source for drinking water in this rural region of the Muensterland. Anthropogenic sources could be excluded. Because of this, the results of the water samples were collated to the specific geological situation in this area. In the Muenster region there are marl layers of the chalk era covered with quarternary sediments. The quarternary sediments are up to 10 to 20 metres thick and they usually conduct the groundwater. The marl contains high concentrations of fluoride and boron. In some places the groundwater has contact with these layers. To check the amount of fluoride and boron in the groundwater, indicator values were sought, which can give a hint of high contents of these trace elements. In this study the conductivity and acidity were identified as possible indicators of a high amount of fluoride and boron in the drinking water in this specific region. To work economically and efficiently, the drinking water should be checked for fluoride and boron on a regular basis only when these values are extraordinarily high. In the case of high concentrations, especially of fluoride, in the drinking water the persons concerned should be informed about their potential health risk, giving them the opportunity to optimise the total daily intake of fluoride.

  4. Sediment accumulation and water volume in Loch Raven Reservoir, Baltimore County, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; LaMotte, Andrew E.

    1999-01-01

    Baltimore City and its metropolitan area are supplied with water from three reservoirs, Liberty Reservoir, Prettyboy Reservoir, and Loch Raven Reservoir. Prettyboy and Loch Raven Reservoirs are located on the Gunpowder Falls (figure 1). The many uses of the reservoir system necessitate coordination and communication among resource managers. The 1996 Amendment to the Safe Drinking Water Act require States to complete source-water assessments for public drinking-water supplies. As part of an ongoing effort to provide safe drinking water and as a direct result of these laws, the City of Baltimore and the Maryland Department of the Environment (MDE), in cooperation with other State and local agencies, are studying the Gunpowder Falls Basin and its role as a source of water supply to the Baltimore area. As a part of this study, the U.S. Geological Survey (USGS), in cooperation with the Maryland Geological Survey (MGS), with funding provided by the City of Baltimore and MDE, is examining sediment accumulation in Loch Raven Reservoir. The Baltimore City Department of Public Works periodically determines the amount of water that can be stored in its reservoirs. To make this determination, field crews measure the water depth along predetermined transects or ranges. These transects provide consistent locations where water depth, or bathymetric, measurements can be made. Range surveys are repeated to provide a record of the change in storage capacity due to sediment accumulation over time. Previous bathymetric surveys of Loch Raven Reservoir were performed in 1943, 1961, 1972, and 1985. Errors in data-collection and analysis methods have been assessed and documented (Baltimore City Department of Public Works, 1989). Few comparisons can be made among survey results because of changing data-collection techniques and analysis methods.

  5. Mechanistic insights into the role of river sediment in the attenuation of the herbicide isoproturon.

    PubMed

    Trinh, Son B; Hiscock, Kevin M; Reid, Brian J

    2012-11-01

    Mechanistic insights into the relative contribution of sorption and biodegradation on the removal of the herbicide isoproturon (IPU) are reported. (14)C-radiorespirometry indicated very low levels of catabolic activity in IPU-undosed and IPU-dosed (0.1, 1, 100 μg L(-1)) river water (RW) and groundwater (GW) (mineralisation: <2%). In contrast, levels of catabolic activity in IPU-undosed and IPU-dosed river sediment (RS) were significantly higher (mineralisation: 14.5-36.9%). Levels of IPU catabolic competence showed a positive log-linear relationship (r(2) = 0.768) with IPU concentration present. A threshold IPU concentration of between 0.1 μg L(-1) and 1 μg L(-1) was required to significantly (p < 0.05) increase levels of catabolic activity. Given the EU Drinking Water Directive limit for a single pesticide in drinking water of <0.1 μg L(-1) this result suggests that riverbed sediment infiltration is potentially an appropriate 'natural' means of improving water quality in terms of pesticide levels at concentrations that are in keeping with regulatory limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    PubMed

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-08-01

    Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants. Copyright © 2016. Published by Elsevier B.V.

  8. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2001

    USGS Publications Warehouse

    Schuster, Paul F.

    2003-01-01

    Overview -- This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin during water year 2001 (October 2000 through September 2001). A broad range of chemical and biological analyses from three sets of samples are presented. First, samples were collected throughout the year at five stations in the basin (three on the mainstem Yukon River, one each on the Tanana and Porcupine Rivers). Second, fecal indicators were measured on samples from drinking-water supplies collected near four villages. Third, sediment cores from five lakes throughout the Yukon Basin were sampled to reconstruct historic trends in the atmospheric deposition of trace elements and hydrophobic organic compounds.

  9. Determination of selected heavy metal concentrations and distribution in a southwestern stream using macrophytes.

    PubMed

    Martinez, Edward A; Shu-Nyamboli, Chemanji

    2011-09-01

    Since the reduction of the arsenic standard from 50 to 10 μg L(-1) by the US Environmental Protection Agency in 2006 many small town and rural water municipalities were left with the task of preventing or mitigating arsenic contamination of drinking water supplies. In this study macrophytes and sediments were used to determine the concentration and distribution of heavy metals (As, Cd, Cu, Pb, and Zn) within the primary source of drinking water (Gallinas River watershed) to the residents of Las Vegas, New Mexico. Sampling was done in the spring and fall at four sites, two above the city and two below, and samples were analyzed using ICP-MS. Results showed significantly higher (p<.05) metal concentrations in plant roots than shoots for most metals. Spearman's correlation showed positive correlations (r>.3) between plant and sediment concentrations of Cd, Pb, Zn, As, and a negative correlation for Cu. The site above waste water treatment plant (AWWTP) had the highest plant tissue concentrations of Cd, Pb, Zn, and As. All of these concentrations attained critical toxicity levels exceeding sediment quality guidelines. High concentration factor values and levels of metals detected in macrophyte tissues indicate that heavy metals within sediments in the Gallinas River occur in bioavailable forms. Correlations between plant and sediment metal concentrations indicate that metal concentrations in macrophyte tissues are a good reflection of metal concentrations within the sediment in the Gallinas River. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary.

    PubMed

    Liu, Lin; Wang, Dongqi; Deng, Huanguang; Li, Yangjie; Chang, Siqi; Wu, Zhanlei; Yu, Lin; Hu, Yujie; Yu, Zhongjie; Chen, Zhenlou

    2014-09-01

    Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m(-2) h(-1) in marshes (ranged from 7.5 to 42.1 μmol m(-2) h(-1)) and 15.1 μmol m(-2) h(-1) at the mudflat (ranged from 6.6 to 26.5 μmol m(-2) h(-1)). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 10(8) g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

  11. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  12. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  13. Detection of Cryptosporidium sp. Oocyst and Giardia sp. cyst in faucet water samples from cattle and goat farms in Taiwan.

    PubMed

    Watanabe, Yuko; Kimura, Kenji; Yang, Cheng-Hsiung; Ooi, Hong-Kean

    2005-12-01

    A survey on the presence of Cryptosporidium oocyst and Giardia cyst in livestock drinking water as well as the urban tap water throughout Taiwan was carried out. Water examination for the presence of the protozoa was conducted by filtering through a PTFE membrane followed by immunomagnetic separation (IMS) and immunostaining the sediment with commercially available monoclonal antibody against Cryptosporidium and Giardia. Of the 55 different water samples from various sources examined, 2 were found to contain both of Cryptosporidium oocyst and Giardia cyst, 1 was found to contain Cryptosporidium oocyst only. These protozoa-positive water samples, originating from underground well and from the mountain spring, were also used as drinking water for livestock. However, no Cryptosporidium oocyst was found in the city tap water. This is the first report of Cryptosporidium oocyst and Giardia cyst being found in the drinking water for livestock.

  14. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    PubMed

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  15. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    PubMed

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia, Germany).

    PubMed

    Röske, Kerstin; Sachse, René; Scheerer, Carola; Röske, Isolde

    2012-02-01

    Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pharmaceuticals in the environment--exposure, effects and risks to humans and ecosystems: what we think we know, and what we need to know

    EPA Science Inventory

    U.S., European and Korean environmental monitoring and research programs have confirmed the occurrence of low levels of pharmaceuticals in stream waters, in soils and streambed sediments, in ground water, in estuaries, and in drinking water.

  19. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey.

    PubMed

    Ma, Liping; Li, Bing; Jiang, Xiao-Tao; Wang, Yu-Lin; Xia, Yu; Li, An-Dong; Zhang, Tong

    2017-11-28

    Excesses of antibiotic resistance genes (ARGs), which are regarded as emerging environmental pollutants, have been observed in various environments. The incidence of ARGs in drinking water causes potential risks to human health and receives more attention from the public. However, ARGs harbored in drinking water remain largely unexplored. In this study, we aimed at establishing an antibiotic resistome catalogue in drinking water samples from a wide range of regions and to explore the potential hosts of ARGs. A catalogue of antibiotic resistome in drinking water was established, and the host-tracking of ARGs was conducted through a large-scale survey using metagenomic approach. The drinking water samples were collected at the point of use in 25 cities in mainland China, Hong Kong, Macau, Taiwan, South Africa, Singapore and the USA. In total, 181 ARG subtypes belonging to 16 ARG types were detected with an abundance range of 2.8 × 10 -2 to 4.2 × 10 -1 copies of ARG per cell. The highest abundance was found in northern China (Henan Province). Bacitracin, multidrug, aminoglycoside, sulfonamide, and beta-lactam resistance genes were dominant in drinking water. Of the drinking water samples tested, 84% had a higher ARG abundance than typical environmental ecosystems of sediment and soil. Metagenomic assembly-based host-tracking analysis identified Acidovorax, Acinetobacter, Aeromonas, Methylobacterium, Methyloversatilis, Mycobacterium, Polaromonas, and Pseudomonas as the hosts of ARGs. Moreover, potential horizontal transfer of ARGs in drinking water systems was proposed by network and Procrustes analyses. The antibiotic resistome catalogue compiled using a large-scale survey provides a useful reference for future studies on the global surveillance and risk management of ARGs in drinking water. .

  20. Water and sediment transport modeling of a large temporary river basin in Greece.

    PubMed

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the sediment yield within the catchment with the highest annual sediment yield (3.5 t ha(-1)yr(-1)) to be generated from the western part of the watershed. The developed methodology facilitated the simulation of hydrology and sediment transport of the catchment providing consistent results and suggesting its usefulness as a tool for temporary rivers management. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Polychlorinated biphenyl concentrations in Hudson River water and treated drinking water at Waterford, New York

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Past discharge of PCBs into the Hudson River has resulted in contaminant concentrations of a few tenths of a microgram per liter in the water. Waterford is one of two large municipal users of the Hudson River for drinking-water supply. The treatment scheme at the Waterford plant, which processes approximately 1 million gallons per day, is similar to that of most conventional treatment plants except for the addition of powdered activated carbon during flocculation. Comparison of PCB concentrations in river water and intake water at the plant to concentrations in treated drinking-water samples indicates that purification processes remove 80 to 90 percent of the PCBs and that final concentrations seldom exceed 0.1 microgram per liter. No significant difference was noted between the removal efficiencies during periods of high river discharge, when PCBs are associated with suspended sediment, and low discharge, when PCBs are generally dissolved. (USGS)

  2. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  3. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer's tap. A new definition and methodological approach for biological stability is proposed.

  4. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer’s tap. A new definition and methodological approach for biological stability is proposed. PMID:26870010

  5. Trace element distribution in the water and sediments of certain storage lakes from the Jijia catchment, (Romania)

    NASA Astrophysics Data System (ADS)

    Dughila, A.; Iancu, O. G.; Romanescu, G. T.

    2012-04-01

    The present study aims at investigating the concentrations and distribution levels of a series of trace elements in water and sediment samples collected from six storage lakes located in the Jijia catchment - NE of Romania. The lakes are multi-purpose water reservoirs, three of them being mainly used as a source of municipal drinking water, or for fishing, irrigation for the farms in the area, protection against floods and the regulation of river flows. By contrast, agricultural wastes, fertilizers, raw sewage effluents and road runoff constitute the predominant anthropogenic sources, which supply the lakes in question with Cd, Cu, Pb and Zn. The present study was conducted on a series of 63 sediment samples and 18 water samples, collected from the same locations, in order to establish the distribution levels of certain trace elements from the water through sediments. Sediment cores were collected from two sections across each lake by means of a motor boat, using a system that consists of a graduated sampling tube (0.9 m in length and 72.5 mm in diameter) made of Plexiglas (Eijkelkamp sample tube guide). Prior to the analyses, the samples were air-dried, ground and homogenized using an agate mortar, oven-dried at 50 °C for 6 days and then sieved through 63 µm sieves. The sediment and water samples were subjected to a digestion technique with concentrated nitric acid using a microwave oven (Berghof type), and analyzed for the following elements: Pb, Zn, Cu, Cd, Cr and Ni. The total concentration of the elements was measured through atomic absorption spectrometry (AAS) with an RSD of < 10 % from solutions. The vertical distribution of most elements in the cores examined could be characterized as relatively uniform, with higher concentrations for those collected from the lakes which are more influenced by anthropogenic factors, compared to those situated in forested areas. The lake-water quality characteristics were below the recommended drinking water standards imposed by the current legislation (MMGA Ord. No. 161/16.02.2006 - Normative regarding the classification of surface waters in order to establish the ecological status of water bodies, which combines European and Romanian provisions), with the exception of copper (with very high concentrations in all the water samples), lead and cadmium. Keywords: AAS, Jijia catchment (Romania), lake water, sediment core, trace elements

  6. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    USGS Publications Warehouse

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to elevated arsenic in drinking water in New England. However, the extreme local variability of arsenic concentrations in ground water from these rock sources indicate that arsenic concentrations in ground water are affected by other factors in addition to arsenic concentrations in rock.

  7. Historical accumulation and ecological risk assessment of heavy metals in sediments of a drinking water lake.

    PubMed

    Wang, Guoqiang; Hu, Xinqi; Zhu, Yi; Jiang, Hong; Wang, Hongqi

    2018-06-21

    Heavy metal contamination in sediments is progressively being recognized as a challenging problem in large parts of the developing world, particularly in Asian countries. A drinking water lake in Yunnan-Guizhou plateau, China named Hongfeng Lake was selected as the research target. Forty surface sediment samples and 4 sediment cores were collected to reveal the accumulation of heavy metals in the sediments of the lake. The mean concentrations of Cr, Cu, Pb, Cd, As, and Hg in surface sediments were 81.67, 45.61, 29.78, 0.53, 22.71, and 0.25 mg/kg, respectively, which exceeded the background levels of sediment 1.1~3.3 times. The calculation of geoaccumulation (I geo ) and potential ecological risk (PER) index analysis were preformed, and the results showed a considerable risk for Cd and Hg on the whole. Spatially, the northern part showed a higher risk than the southern part and tributaries of the lake, and a moderate risk in the overall sediment of the lake. The historical level of heavy metals in Hongfeng Lake was traced by vertical sediments study and it was dated back approximately 35 years. The EF trends of a feature sampling site HF8 showed strong temporal variations, and peaked in the year 1995. After that, the EFs exhibited a declining trend, which reflects productive environmental protection and management by the local government. For the Hongfeng Lake, a typical lake with heavy metal-contaminated sediments, the in-situ remediation technique could be a suitable method for its remediation.

  8. High frequency of Helicobacter pylori DNA in drinking water in Kermanshah, Iran, during June-November 2012.

    PubMed

    Amirhooshang, Alvandi; Ramin, Abiri; Ehsan, Aryan; Mansour, Rezaei; Shahram, Bagherabadi

    2014-09-01

    To gain a better understanding of transmission and selecting appropriate measures for preventing the spread of Helicobacter pylori, the aim of this study was to investigate the prevalence of H. pylori in drinking water samples in Kermanshah, Iran. Drinking water samples were collected from around Kermanshah and filtered through 0.45 μm nitrocellulose filters. The bacterial sediment was subjected to DNA extraction and polymerase chain reaction (PCR) for H. pylori detection using newly designed primers targeted at the conserved region of the ureC gene. The overall detection rates for H. pylori DNA in the water samples were 56% (66/118) with a frequency of 36% (25/70) in tap water samples and 85% (41/48) in wells. The detection limit was 50 bacteria per liter of filtered water and a pure H. pylori DNA copy number of 6 per reaction. Based on the evidence we may suggest that recontamination occurred and H. pylori entered into the water piping system through cracked or broken pipes or was released from established H. pylori biofilms on pipes. In conclusion, a high prevalence of H. pylori was detected in drinking water samples that strengthens the evidence of H. pylori transmission through drinking water.

  9. Quality and disinfection trials of consumption water in storage reservoirs for rural area in the Marrakech region (Assif El Mal).

    PubMed

    Aziz, Faissal; Mandi, Laila; Boussaid, Abdellatif; Boraam, Fatima; Ouazzani, Naaila

    2013-03-01

    Traditional reservoirs for water storage are important systems of water supply in rural areas of Morocco. These reservoirs are fed by rainwater and/or directly from rivers through open channels; the stored water is used without any treatment as drinking water by the surrounding population. The present study aimed to assess the physicochemical and bacteriological quality of stored water and the corresponding sediment in six traditional reservoirs (R1 to R6) located in the rural municipality of Assif El Mal. We tested two inexpensive methods of disinfecting the stored water: chlorination and solar disinfection in bottles. The results show a rise of organic and mineral concentrations. Regarding bacteriological quality, a critical contamination level was detected (8 × 10(5) CFU/100 ml in water and 9 × 10(7) CFU/g in sediment) according to the 2002 Moroccan Standards for drinking water (0 CFU/100 ml). In the disinfection tests, chlorine disinfection removed all studied germs after just 1 hour, and the solar exposure process removed the majority of bacteria (after 3 hours) except those with a resistant form (Clostridia).

  10. Removal of Encephalitozoon intestinalis, calicivirus, and coliphages by conventional drinking water treatment.

    PubMed

    Gerba, Charles P; Riley, Kelley R; Nwachuku, Nena; Ryu, Hodon; Abbaszadegan, Morteza

    2003-07-01

    The removal of the Microsporidia, Encephalitozoon intestinalis, feline calicivirus and coliphages MS-2, PRD-1, and Fr were evaluated during conventional drinking water treatment in a pilot plant. The treatment consisted of coagulation, sedimentation, and mixed media filtration. Fr coliphage was removed the most (3.21 log), followed by feline calicivirus (3.05 log), E. coli (2.67 log), E. intestinalis (2.47 log), MS-2 (2.51 log). and PRD-1 (1.85 log). With the exception of PRD-1 the greatest removal of the viruses occurred during the flocculation step of the water treatment process.

  11. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.

  12. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-08-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  13. An approach for assessing potential sediment-bound contaminant threats near the intake of a drinking water treatment plant.

    PubMed

    Chen, Fei; Anderson, William B; Huck, Peter M

    2013-01-01

    To assist in assessing a potential contaminated sediment threat near a drinking water intake in a large lake, a technique known as the fingerprint analysis of leachate contaminants (FALCON), was investigated and enhanced to help draw more statistically significant definitive conclusions. This represents the first application of this approach, originally developed by the USEPA to characterize and track leachate penetration in groundwater and contaminant migration from waste and landfill sites, in a large lake from the point-of-view of source water protection. FALCON provided valuable information regarding contaminated sediment characterization, source attribution, and transport within a surface water context without the need for knowledge of local hydrodynamic conditions, potentially reducing reliance on complicated hydrodynamic analysis. A t-test to evaluate the significance of correlations was shown to further enhance the FALCON procedure. In this study, the sensitivity of FALCON was found to be improved by using concentration data from both conserved organics and heavy metals in combination. Furthermore, data analysis indicated that it may be possible to indirectly assess the success of remediation efforts (and the corresponding need to plan for a treatment upgrade in the event of escalating contaminant concentrations) by examining the temporal change in correlation between the source and intake sediment fingerprints over time. This method has potential for widespread application in situations where conserved contaminants such as heavy metals and higher molecular weight polycyclic aromatic hydrocarbons (PAHs), are being or have previously been deposited in sediment somewhere in, or within range of, an intake protection zone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production.

    PubMed

    Bonte, Matthijs; van Breukelen, Boris M; Stuyfzand, Pieter J

    2013-09-15

    Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular trace elements, have not been investigated. Here, we report the results of column experiments to assess the impacts of temperature variations (5°C, 11°C, 25°C and 60°C) on groundwater quality in anoxic reactive unconsolidated sandy sediments derived from an aquifer system widely used for drinking water production in the Netherlands. Our results showed that at 5 °C no effects on water quality were observed compared to the reference of 11°C (in situ temperature). At 25°C, As concentrations were significantly increased and at 60 °C, significant increases were observed pH and DOC, P, K, Si, As, Mo, V, B, and F concentrations. These elements should therefore be considered for water quality monitoring programs of shallow geothermal energy projects. No consistent temperature effects were observed on Na, Ca, Mg, Sr, Fe, Mn, Al, Ba, Co, Cu, Ni, Pb, Zn, Eu, Ho, Sb, Sc, Yb, Ga, La, and Th concentrations, all of which were present in the sediment. The temperature-induced chemical effects were probably caused by (incongruent) dissolution of silicate minerals (K and Si), desorption from, and potentially reductive dissolution of, iron oxides (As, B, Mo, V, and possibly P and DOC), and mineralisation of sedimentary organic matter (DOC and P). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The Arsenic Contamination of Drinking and Groundwaters in Bangladesh: Featuring Biogeochemical Aspects and Implications on Public Health.

    PubMed

    Raessler, Michael

    2018-07-01

    Arsenic is a widespread contaminant of drinking and groundwaters in the world. Even if these contaminations have a geogenic origin, they often are exacerbated by anthropogenic activities. This is particularly true for the Bengal delta. Millions of people in Bangladesh are consuming drinking water with arsenic concentrations ≥ 50 µg/L. Their drinking water supply is based on groundwaters extracted by pumping wells, which were part of a well-drilling program by the United Nations. The intention was to provide the people with groundwater instead of surface water due to its critical hygienic conditions. Unfortunately, many wells extract the groundwater at depths where arsenic concentrations are highest. Arsenic is being dissolved from the aquifer by biogeochemical processes that are fueled by the presence of high amounts of organics in the Bengal delta sediments. This problem was not encountered at the time due to a lack of chemical analyses of the waters.

  16. Monochloramine Cometabolism by Nitrifying Biofilm Relevant ...

    EPA Pesticide Factsheets

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kinetic experiments were not representative of drinking water distribution systems where bacteria grow predominantly as biofilm attached to pipe walls or sediments and physiological differences may exist between suspension and biofilm growth. Therefore, the current research was an important next step in extending the previous results to investigate monochloramine cometabolism by biofilm grown in annular reactors under drinking water relevant conditions. Estimated monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (25–40% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in drinking water relevant nitrifying biofilm; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in distribution systems. Investigate whether or not nitrifying biofilm can biologically transform monochloramine under drinking water relevant conditions.

  17. Biofouling potential and material reactivity in a simulated water distribution network supplied with stormwater recycled via managed aquifer recharge.

    PubMed

    Gonzalez, Dennis; Tjandraatmadja, Grace; Barry, Karen; Vanderzalm, Joanne; Kaksonen, Anna H; Dillon, Peter; Puzon, Geoff J; Sidhu, Jatinder; Wylie, Jason; Goodman, Nigel; Low, Jason

    2016-11-15

    The injection of stormwater into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. Limited information exists regarding the potential impact of aquifer treated stormwater in distribution system infrastructure. This study describes a one year pilot distribution pipe network trial to determine the biofouling potential for cement, copper and polyvinyl chloride pipe materials exposed to stormwater stored in a limestone aquifer compared to an identical drinking water rig. Median alkalinity (123 mg/L) and colour (12 HU) in stormwater was significantly higher than in drinking water (82 mg/L and 1 HU) and pipe discolouration was more evident for stormwater samples. X-ray Diffraction and Fluorescence analyses confirmed this was driven by the presence of iron rich amorphous compounds in more thickly deposited sediments also consistent with significantly higher median levels of iron (∼0.56 mg/L) in stormwater compared to drinking water (∼0.17 mg/L). Water type did not influence biofilm development as determined by microbial density but faecal indicators were significantly higher for polyvinyl chloride and cement exposed to stormwater. Treatment to remove iron through aeration and filtration would reduce the potential for sediment accumulation. Operational and verification monitoring parameters to manage scaling, corrosion, colour, turbidity and microbial growth in recycled stormwater distribution networks are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Information Summary, Area of Concern: Ashtabula River, Ohio

    DTIC Science & Technology

    1990-12-01

    Sediment data...............................10 Water quality data............................11 Groundwater impacts..............................11 Point...Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The Water Quality -Act of 1987, Section 118, authorizes the Great Lakes...serious impairment of ben- eficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality

  19. Adsorption and transport of As (V) in soil columns: Effect of As concentration, pH and sediment properties

    USDA-ARS?s Scientific Manuscript database

    It has been proposed that ground water contaminated with low concentrations of As (V) be remediated by infiltration and recharge into infiltration basins using the subsurface materials to adsorb the metal. This low cost remediation scheme allows for production of water that meets the drinking water ...

  20. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  1. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES.

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  2. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  3. 76 FR 32081 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... County. Groundwater near the Site is used for domestic purposes, including drinking water. Landfill No. 1... synthetic liner. The permit also required leachate collection, installation of groundwater monitoring wells... investigation during the RI/FS included waste, leachate, groundwater, surface water and sediment, soil, and air...

  4. Applicability of drinking water treatment residue for lake restoration in relation to metal/metalloid risk assessment

    PubMed Central

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng; Jiang, Helong

    2016-01-01

    Drinking water treatment residue (DWTR), a byproduct generated during potable water production, exhibits a high potential for recycling to control eutrophication. However, this beneficial recycling is hampered by unclear metal/metalloid pollution risks related to DWTR. In this study, the pollution risks of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn due to DWTR application were first evaluated for lake water based on human health risk assessment models and comparison of regulatory standards. The risks of DWTR were also evaluated for sediments on the basis of toxicity characteristics leaching procedure and fractionation in relation to risk assessment code. Variations in the biological behaviors of metal/metalloid in sediments caused by DWTR were assessed using Chironomus plumosus larvae and Hydrilla verticillata. Kinetic luminescent bacteria test (using Aliivibrio fischeri) was conducted to analyze the possibility of acute and chronic detrimental effects of sediment with DWTR application. According to the obtained results, we identify a potential undesirable effect of DWTR related to Fe and Mn (typically under anaerobic conditions); roughly present a dosage threshold calculation model; and recommend a procedure for DWTR prescreening to ensure safe application. Overall, managed DWTR application is necessary for successful eutrophication control. PMID:27929083

  5. Applicability of drinking water treatment residue for lake restoration in relation to metal/metalloid risk assessment

    NASA Astrophysics Data System (ADS)

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng; Jiang, Helong

    2016-12-01

    Drinking water treatment residue (DWTR), a byproduct generated during potable water production, exhibits a high potential for recycling to control eutrophication. However, this beneficial recycling is hampered by unclear metal/metalloid pollution risks related to DWTR. In this study, the pollution risks of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn due to DWTR application were first evaluated for lake water based on human health risk assessment models and comparison of regulatory standards. The risks of DWTR were also evaluated for sediments on the basis of toxicity characteristics leaching procedure and fractionation in relation to risk assessment code. Variations in the biological behaviors of metal/metalloid in sediments caused by DWTR were assessed using Chironomus plumosus larvae and Hydrilla verticillata. Kinetic luminescent bacteria test (using Aliivibrio fischeri) was conducted to analyze the possibility of acute and chronic detrimental effects of sediment with DWTR application. According to the obtained results, we identify a potential undesirable effect of DWTR related to Fe and Mn (typically under anaerobic conditions); roughly present a dosage threshold calculation model; and recommend a procedure for DWTR prescreening to ensure safe application. Overall, managed DWTR application is necessary for successful eutrophication control.

  6. Environmental monitoring at Mound: 1986 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carfagno, D.G.; Farmer, B.M.

    1987-05-11

    The local environment around Mound was monitored for tritium and plutonium-238. The results are reported for 1986. Environmental media analyzed included air, water, vegetation, foodstuffs, and sediment. The average concentrations of plutonium-238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1986 were 0.03% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1986 was 0.0005% of themore » DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1986 was 0.005% of the DOE DCG. The average incremental concentrations of plutonium-238 found during 1986 in surface and area drinking water were less than 0.00006% of the DOE DCG. The average incremental concentration of tritium in surface water was less than 0.005% of the DOE DCG. All tritium in drinking water data is compared to the US EPA Drinking Water Standard. The average concentrations in local private and municipal drinking water systems were less than 25% and 1.5%, respectively. Although no DOE DCG is available for foodstuffs, the average concentrations are a small fraction of the water DCG (0.04%). The concentrations of sediment samples obtained at offsite surface water sampling locations were extremely low and therefore represent no adverse impact to the environment. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are within 1% of the DOE standard of 100 mrem. None of these exceptions, however, had an adverse impact on the water quality of the Great Miami River or caused the river to exceed Ohio Stream Standards. 20 refs., 5 figs., 31 tabs.« less

  7. Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

    NASA Astrophysics Data System (ADS)

    Pehlivan, Rustem; Yilmaz, Osman

    2005-12-01

    The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s-1. The geological succession in the basin comprises limestone and dolomitic limestone of the Ylanl formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved.The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2-4, Cl- and HCO3- in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2-4, HCO-3, Cl-, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks.The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l-1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water-rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl-, and SO2-4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright

  8. The aqueous geochemistry of uranium in a drainage containing uraniferous organic-rich sediments, Lake Tahoe area, Nevada, USA

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1988-01-01

    Anomalously uraniferous waters occur in a small (4.2 km2) drainage in the west-central Carson Range, Nevada, on the eastern side of Lake Tahoe. The waters transport uranium from local U-rich soils and bedrock to organic-rich valley-fill sediments where it is concentrated, but weakly bound. The dissolved U and the U that is potentially available from coexisting sediments pose a threat to the quality of drinking water that is taken from the drainage. The U concentration in samples of 6 stream, 11 spring and 7 near-surface waters ranged from 0.1 V). Possible precipitation of U(IV) minerals is predicted under the more reducing conditions that are particularly likely in near-surface waters, but the inhibitory effects of sluggish kinetics or organic complexing are not considered. These combined results suggest that a process such as adsorption or ion exchange, rather than mineral saturation, is the most probable mechanism for uranium fixation in the sediments. -Authors

  9. A Legacy of Wildfire-associated Nutrient Releases to Drinking Water Supplies: Treatment Challenges and Adaptations Opportunities

    NASA Astrophysics Data System (ADS)

    Emelko, M.; Silins, U.; Stone, M.

    2016-12-01

    Wildfire remains the most catastrophic agent of landscape disturbance in many forested source water regions. Notably, while wildfire impacts on water have been well studied, little if any of that work has specifically focused on drinking water treatability impacts, which will have both significant regional differences and similarities. Wildfire effects on water quality, particularly nutrient concentrations and character/forms, can be significant. The longevity and downstream propagation of these effects, as well as the geochemical mechanisms regulating them have been largely undocumented at larger river basin scales. This work demonstrates that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability in some ecoregions. The short- and mid-term impacts include increases in primary productivity and dissolved organic carbon, associated changes in carbon character, and increased potential for the formation of disinfection byproducts during drinking water treatment. The longer term impacts also may include increases in potentially toxic algal blooms and the production of taste and odor compounds. These documented impacts, as well as strategies for assessing the risk of wildfire-associated water service disruptions and infrastructure and land management-associated opportunities for adaptation to and mitigation of wildfire risk to drinking water supply will be discussed.

  10. Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil.

    PubMed

    Elmahdy, M E I; Fongaro, G; Magri, M E; Petruccio, M M; Barardi, C R M

    2016-10-01

    This study aimed to evaluate the contamination level of the Peri Lagoon, the main freshwater reservoir of Santa Catarina Island, Southern Brazil, for human adenovirus (HAdV), hepatitis A virus (HAV), rotavirus species A (RVA), and somatic coliphages (SOMCPH). Viruses were also investigated in sediments and their sensitivity against natural sunlight was analysed by studying their spatial distribution in different depths of the water column. A total of 84 water samples and 48 sediment samples were examined by qPCR or RT-qPCR. Infectivity of HAdV and SOMCPH was determined and quantified by plaque assay method. A sum of 64% and 48% of water and sediment samples were positive for HAdV, respectively. RVA was present in 33% and 18% of water and sediment samples, and 25% of water samples were positive for HAV. HAdV were infectious in 76% of water and 83% of sediment samples that were positive by qPCR. SOMCPH could be detected in 42% and 18% of water and sediment samples, respectively. The data pointed a variation of viruses' prevalence according to the different water column depths. These results demonstrated that water sources and sediments contaminated by human wastes could play an important role in the recontamination of water columns harvested for further treatment or used for recreational purposes. These data can be of great value for future risk assessment analysis. Copyright © 2016. Published by Elsevier GmbH.

  11. Streamflow transport of radionuclides and other chemical constituents in the Puerco and the Little Colorado river basins, Arizona and New Mexico

    USGS Publications Warehouse

    Graf, Julia B.; Wirt, Laurie; Swanson, E.K.; Fisk, G.G.; Gray, J.R.

    1996-01-01

    Samples collected at streamflow-gaging stations in the Puerco and Little Colorado rivers show that radioactivity of suspended sediment at gaging stations downstream from inactive uranium mines was not significantly higher than at gaging stations where no mining has occurred upstream. Drinking-water standards for many constituents, however, commonly are exceeded during runoff because concentration of these constituents on sediment from natural processes is high and suspended-sediment loads are high during runoff.

  12. Study on a new water purification equipment with spiral lamellas

    NASA Astrophysics Data System (ADS)

    Feng, X. R.

    2017-08-01

    A new water purification equipment was introduced, especially the section of spiral lamellas. Utilization of spiral lamellas made the sedimentation space reach to 100%, not only improving sedimentation efficiency and reducing the cover space, but also saving investment. Production test results showed that the new water purification equipment with spiral lamellas had characteristics of excellent treatment efficiency and high shock resistant capacity. As the treatment water volume was 240 m3/d, when the turbidity, CODMn and UV254 were 203 NTU, 1.90 mg/L and 0.030 cm-1 in raw water, they were 0.32 NTU, 0.72mg/L and 0.011 cm-1 respectively in effluent water, which could fully meet the drinking water hygiene requirement.

  13. Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants.

    PubMed

    Lou, Jie-Chung; Lin, Chung-Yi; Han, Jia-Yun; Tseng, Wei-Biu; Hsu, Kai-Lin; Chang, Ting-Wei

    2012-06-01

    Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV(254), and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation-sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation-sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH(3)-N, and NO(3)-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH(3)-N should be regularly monitored in the GYWTP.

  14. Twenty years of water-quality studies in the Cheney Reservoir Watershed, Kansas, 1996-2016

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.; Kramer, Ariele R.

    2017-03-31

    Since 1996, the U.S. Geological Survey (USGS), in cooperation with the City of Wichita, has done studies in the Cheney Reservoir watershed to understand environmental effects on water-quality conditions. Early studies (1996–2001) determined subwatershed sources of contaminants, nutrient and sediment loading to Cheney Reservoir, changes in reservoir sediment quality over time, and watershed sources of phosphorus. Later studies (2001–present) focused on nutrient and sediment concentrations and mass transport from the watershed; the presence of cyanobacteria, cyanotoxins, and taste-and-odor compounds in the reservoir; and development of regression models for real-time computations of water-quality constituents of interest that may affect drinking-water treatment. This fact sheet summarizes key results from studies done by the USGS during 1996–2016 in the Cheney Reservoir watershed and Cheney Reservoir.

  15. Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae Virulence-Associated Genes: A Potential Trigger for Cholera Outbreaks in Developing Countries.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2017-01-01

    Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx -negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.

  16. Evaluating nanoparticle breakthrough during drinking water treatment.

    PubMed

    Abbott Chalew, Talia E; Ajmani, Gaurav S; Huang, Haiou; Schwab, Kellogg J

    2013-10-01

    Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. In this study we investigated the breakthrough of common NPs--silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)--into finished drinking water following conventional and advanced treatment. NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma-mass spectrometry (ICP-MS). Conventional treatment resulted in 2-20%, 3-8%, and 48-99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1-45% for Ag, 0-44% for TiO2, and 36-83% for ZnO. With UF, NP breakthrough was 0-2%, 0-4%, and 2-96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes.

  17. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    PubMed Central

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; Singh, Anup K.

    2016-01-01

    Waterborne pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal sedimentation immunoassay platform for detection of bacterial pathogens in water. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk. Beads at the distal end of the disk are imaged to quantify the fluorescence and determine the bacterial concentration. Our platform is fast (20 min), can detect as few as ∼10 bacteria with minimal sample preparation, and can detect multiple pathogens simultaneously. The platform was used to detect a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) spiked in tap and ground water samples. PMID:26858815

  18. Nitrification in lake sediment with addition of drinking water treatment residuals.

    PubMed

    Wang, Changhui; Liu, Juanfeng; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    Drinking water treatment residuals (WTRs), non-hazardous by-products generated during potable water production, can effectively reduce the lake internal phosphorus (P) loading and improve water quality in lakes. It stands to reason that special attention regarding the beneficial reuse of WTRs should be given not only to the effectiveness of P pollution control, but also to the effects on the migration and transformation of other nutrients (e.g., nitrogen (N)). In this work, based on laboratory enrichment tests, the effects of WTRs addition on nitrification in lake sediment were investigated using batch tests, fluorescence in situ hybridization, quantitative polymerase chain reaction and phylogenetic analysis techniques. The results indicated that WTRs addition had minor effects on the morphologies of AOB and NOB; however, the addition slightly enhanced the sediment nitrification potential from 12.8 to 13.2 μg-N g(-1)-dry sample h(-1) and also increased the ammonia oxidation bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundances, particularly the AOB abundances (P < 0.05), which increased from 1.11 × 10(8) to 1.31 × 10(8) copies g(-1)-dry sample. Moreover, WTRs addition was beneficial to the enrichment of Nitrosomonas and Nitrosospira multiformis and promoted the emergence of a new Nitrospira cluster, causing the increase in AOB and NOB diversities. Further analysis showed that the variations of nitrification in lake sediment after WTRs addition were primarily due to the decrease of bioavailable P, the introduction of new nitrifiers and the increase of favorable carriers for microorganism attachment in sediments. Overall, these results suggested that WTRs reuse for the control of lake internal P loading would also lead to conditions that are beneficial to nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Reasons for the lack of chemical stability of treated water rich in magnesium.

    PubMed

    Swietlik, Joanna; Raczyk-Stanisławiak, Urszula; Piszora, Paweł; Nawrocki, Jacek

    2011-12-01

    Chemical stability of water should be high enough to ensure that the water reaching the consumers would have the same composition as at the treatment plant. The drinking water supplied by one of the water treatment plants for the city of Poznań was observed to produce periodically white non-sedimenting precipitate on boiling, deteriorating its organoleptic properties. The phenomenon was found to be related to a high content of magnesium in the water taken for treatment and low content of other ions besides bicarbonates. XRD and SEM analyses have shown that a low ratio of calcium ions to magnesium ions leads to formation of calcite crystals on water boiling in which a fraction of cationic crystallographic sites are substituted with Mg(2+) ions giving (Ca(1-x)Mg(x))CO(3) crystallites. Such crystallites have smaller size than those of calcite formed on boiling water coming from other Poznań suppliers. The smaller size of the crystallites is responsible for their slower sedimentation and hence the observed increase in the water turbidity on its boiling. It has been proved that the appearance of precipitates in drinking water at the consumers can be achieved by reduction of the Mg/(Mg + Ca) ratio to below 3, which would inhibit peptisation of the precipitate and prevent water opacity and/or adjustment of pH of the raw water and removal of the carbon dioxide released to convert some carbonate hardness into non-carbonate one. These measures will limit the amount of the precipitate forming upon water boiling and change its microcrystalline type into an easier sedimenting one. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  1. Natural Anaerobic Biodegradation of TBA in Aquifer Sediments at Gasoline Spill Sites

    EPA Science Inventory

    TBA is an important contaminant at spills sites of gasoline that contains MTBE. The impact of TBA is particularly important in Southern California, where the State Action Level for TBA is 12 μg/L and many communities produce ground water for drinking water from an urban landscape...

  2. LOW-LEVEL EMERGING CONTAMINANTS IN LAKE HAVASU, ARIZONA AND CALIFORNIA AND THEIR ACCESS TO LAKE HAVASU CITY'S DRINKING WATER SUPPLY

    EPA Science Inventory

    In preparation of a wastewater effluent re-charge and recovery program, involving alluvial fan sediments, the City of Lake Havasu initiated a survey to evaluate possible waterborne sources of emerging contaminants in the water/wastewater distribution cycle. This distribution cyc...

  3. Water-Quality Conditions of Chester Creek, Anchorage, Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Ourso, Robert T.

    2006-01-01

    Between October 1998 and September 2001, the U.S. Geological Survey's National Water-Quality Assessment Program evaluated the water-quality conditions of Chester Creek, a stream draining forest and urban settings in Anchorage, Alaska. Data collection included water, streambed sediments, lakebed sediments, and aquatic organisms samples from urban sites along the stream. Urban land use ranged from less than 1 percent of the basin above the furthest upstream site to 46 percent above the most downstream site. Findings suggest that water quality of Chester Creek declines in the downstream direction and as urbanization in the watershed increases. Water samples were collected monthly and during storms at a site near the stream's mouth (Chester Creek at Arctic Boulevard) and analyzed for major ions and nutrients. Water samples collected during water year 1999 were analyzed for selected pesticides and volatile organic compounds. Concentrations of fecal-indicator bacteria were determined monthly during calendar year 2000. During winter, spring, and summer, four water samples were collected at a site upstream of urban development (South Branch of South Fork Chester Creek at Tank Trail) and five from an intermediate site (South Branch of South Fork Chester Creek at Boniface Parkway). Concentrations of calcium, magnesium, sodium, chloride, and sulfate in water increased in the downstream direction. Nitrate concentrations were similar at the three sites and all were less than the drinking-water standard. About one-quarter of the samples from the Arctic Boulevard site had concentrations of phosphorus that exceeded the U.S. Environmental Protection Agency (USEPA) guideline for preventing nuisance plant growth. Water samples collected at the Arctic Boulevard site contained concentrations of the insecticide carbaryl that exceeded the guideline for protecting aquatic life. Every water sample revealed a low concentration of volatile organic compounds, including benzene, toluene, tetrachloroethylene, methyl tert-butyl ether, and chloroform. No water samples contained volatile organic compounds concentrations that exceeded any USEPA drinking-water standard or guideline. Fecal-indicator bacteria concentrations in water from the Arctic Boulevard site commonly exceeded Federal and State guidelines for water-contact recreation. Concentrations of cadmium, copper, lead, and zinc in streambed sediments increased in the downstream direction. Some concentrations of arsenic, chromium, lead, and zinc in sediments were at levels that can adversely affect aquatic organisms. Analysis of sediment chemistry in successive lakebed-sediment layers from Westchester Lagoon near the stream's mouth provided a record of water-quality trends since about 1970. Concentrations of lead have decreased from peak levels in the mid-1970s, most likely because of removing lead from gasoline and lower lead content in other products. However, concen-trations in recently-deposited lakebed sediments are still about 10 times greater than measured in streambed sediments at the upstream Tank Trail site. Zinc concentrations in lakebed sediments also increased in the early 1970s to levels that exceeded guidelines to protect aquatic life and have remained at elevated but variable levels. Pyrene, benz[a]anthracene, and phenanthrene in lakebed sediments also have varied in concentrations and have exceeded protection guidelines for aquatic life since the 1970s. Concentrations of dichloro-diphenyl-trichloroethane, polychlorinated biphenyls (PCBs), or their by-products generally were highest in lakebed sediments deposited in the 1970s. More recent sediments have concentrations that vary widely and do not show distinct temporal trends. Tissue samples of whole slimy sculpin (Cottus cognatus), a non-migratory species of fish, showed con-centrations of trace elements and organic contaminants. Of the constituents analyzed, only selenium concentra-tions showed levels of potential concern for

  4. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    PubMed

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China.

    PubMed

    Cai, Jing; Gao, Shutao; Zhu, Like; Jia, Xuwei; Zeng, Xiangying; Yu, Zhiqiang

    2017-11-10

    This study was conducted to investigate the pollutant status and the retention mechanism of polycyclic aromatic hydrocarbons (PAHs) in soils and sediment from bank-water-level-fluctuating zone (WLFZ)-water systems in Hanfeng Lake, Three Gorges, China. The concentrations of the 16 PAHs ranged from 21.8 to 1324 ng g -1 dry wt for all 20 soil and sediment samples. These concentration levels were remarkably lower than those in soils and sediment collected domestically and worldwide. PAHs with two and three rings were found to be dominant in all the samples, with phenanthrene being most abundant. The spatial distribution of PAHs in bank soil, WLFZ soil, and sediment implied that the transfer and fate of PAHs in the bank soil-WLFZ soil-sediment systems were influenced by both water dynamic factors and physicochemical properties of PAHs. Diagnostic ratio analysis and principal component analysis suggested that the PAHs in the areas of Hanfeng Lake were primarily (>75%) derived from coal combustion and vehicle emissions . Use of natural gas, improving gasoline/diesel quality and phasing out old and nonstandard vehicles and ships are proposed to control PAH contamination and protect drinking water safety in the region.

  6. Comparison of UV photolysis, nanofiltration, and their combination to remove hormones from a drinking water source and reduce endocrine disrupting activity.

    PubMed

    Sanches, Sandra; Rodrigues, Alexandre; Cardoso, Vitor V; Benoliel, Maria J; Crespo, João G; Pereira, Vanessa J

    2016-06-01

    A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17β-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples. Moreover, the photolysis by-products produced, with higher endocrine disrupting activity than the parent compounds, were effectively retained by the membrane. The combination of direct LP/UV photolysis with nanofiltration is promising for a drinking water utility that needs to cope with sudden punctual discharges or deterioration of the water quality and wants to decrease the levels of chemicals in the nanofiltration retentate.

  7. Sources and seasonal variation of PAHs in the sediments of drinking water reservoirs in Hong Kong and the Dongjiang River (China).

    PubMed

    Liang, Yan; Fung, Pui Ka; Tse, Man Fung; Hong, Hua Chang; Wong, Ming Hung

    2008-11-01

    The main objective of this study was to investigate occurrence of polycyclic aromatic hydrocarbons (PAHs) in the sources of the drinking water supply of Hong Kong. The main emphasis was on the Dongjiang River in mainland China which is the major source, supplying 80% of the total consumption in Hong Kong (the remaining 20% is obtained from rain water). Sediments were collected from four sites along the Dongjiang River and four reservoirs in Hong Kong during both the dry and wet weather seasons. The concentrations of total PAHs in the sediments ranged between 36 and 539 microg/kg dry wt. The lower levels were detected at the upstream site on the Dongjiang River and at the reservoirs in Hong Kong (44-85 microg/kg dry wt), while the mid- and downstream sites on the Dongjiang River were more polluted (588-658 microg/kg dry wt). Examination of the PAH profiles revealed that the mid- and downstream sections of the Dongjiang River contained high percentages of 4,5,6-ring PAHs, similar to the amounts of atmospheric particulate matter and road dust collected during the dry weather season from the Pearl River Delta region as reported in the literature. Seasonal changes were revealed in the reservoirs of Hong Kong, with higher PAH levels in the wet weather season than in the dry weather season. For those reservoirs in Hong Kong that store water from the Dongjiang River, a distinct seasonal pattern was also observed, namely, that under dry weather season conditions the PAHs found in the sediments were primarily from petrogenic source, while under wet weather season conditions they were from pyrolytic sources. No such pattern was detected in the reservoirs which stored only rain water.

  8. SORPTION OF ARSENATE AND ARSENITE ON RUO2·XH2O: ANALYSIS OF SORBED PHASE OXIDATION STATE BY XANES

    EPA Science Inventory

    Arsenic contamination in water, soil and sediment is a global problem. Awareness of the problems created by As contamination have increased in recent years due to reports from Asia describing immense health problems due to As in drinking water [1, 2]. Changes in the U.S. regulati...

  9. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.

    PubMed

    Post, Gloria B; Cohn, Perry D; Cooper, Keith R

    2012-07-01

    Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    During 2010, additional suspended-sediment data were collected during selected runoff events to provide new data for model testing and to help better understand the sources of suspended-sediment loads. The model was updated and used to estimate and compare sediment yields from each of 64 subwatersheds comprising the lower Nueces River watershed study area for three selected runoff events: November 20-21, 2009, September 7-8, 2010, and September 20-21, 2010. These three runoff events were characterized by heavy rainfall centered near the study area and during which minimal streamflow and suspended-sediment load entered the lower Nueces River upstream from Wesley E. Seale Dam. During all three runoff events, model simulations showed that the greatest sediment yields originated from the subwatersheds, which were largely cropland. In particular, the Bayou Creek subwatersheds were major contributors of suspended-sediment load to the lower Nueces River during the selected runoff events. During the November 2009 runoff event, high suspended-sediment concentrations in the Nueces River water withdrawn for the City of Corpus Christi public-water supply caused problems during the water-treatment process, resulting in failure to meet State water-treatment standards for turbidity in drinking water. Model simulations of the November 2009 runoff event showed that the Bayou Creek subwatersheds were the primary source of suspended-sediment loads during that runoff event.

  11. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    USGS Publications Warehouse

    Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. ?? 2007 Elsevier B.V. All rights reserved.

  12. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.

    PubMed

    Stackelberg, Paul E; Gibs, Jacob; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Lippincott, R Lee

    2007-05-15

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant.

  13. Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India.

    PubMed

    Das, Suchismita; Choudhury, Shamim Sultana

    2016-01-01

    The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.

  14. Water-quality assessment of the Cook Inlet basin, Alaska : summary of data through 1997

    USGS Publications Warehouse

    Glass, Roy L.

    1999-01-01

    Among the first activities undertaken in each National Water-Quality Assessment (NAWQA) investigation are the compilation, screening, and statistical summary of available data concerning water-quality conditions in the study unit. The water-quality conditions of interest are those that are representative of the general ambient water quality of a given stream reach or area of an aquifer. This report identifies which existing water-quality data are suitable for characterizing general conditions in a nationally consistent manner and describes, to the extent possible, general water-quality conditions in the Cook Inlet Basin in southcentral Alaska. The study unit consists of all lands that drain into Cook Inlet, but not the marine environment itself. Surface-water-quality data are summarized for 31 sites on streams. Ground-water quality data are summarized for four regions using analyses from about 550 wells that yield water from unconsolidated glacial and alluvial deposits and analyses from 17 wells in western Cook Inlet, some of which may yield water from coal or weakly consolidated sandstone or conglomerate. The summaries focus on the central tendencies and typical variations in the data and use nonparametric statistics such as frequencies and percentile values. Few surface- and ground-water sites have long-term water-quality records and very few data are available for dissolved oxygen, nutrients, metals, trace elements, organic compounds, and radionuclides. In general, most waters in streams and wells have small concentrations of major inorganic constituents, nutrients, trace elements, and organic compounds. Most streams have water that is generally suitable for drinking-water supply, the growth and propagation of cold-water anadromous fish, and water-contact recreation. However, suspended-sediment concentrations in glacier-fed streams are naturally high and can make water from glacier-fed streams unsuitable for many uses unless the water is treated to remove the suspended sediment. Several streams and lakes in Anchorage have fecal coliform bacteria concentrations higher than allowed for drinking or water-contact recreation. Ground water in the major withdrawal regions is generally suitable for drinking and most other purposes, but some wells yield water having nitrate, iron, or arsenic concentrations higher than drinking-water criteria. Ground-water quality has been degraded in several areas as the result of leaks or spills of petroleum products.

  15. Removal of cyanobacteria and cyanotoxins through drinking water treatment-full-scale studies?

    EPA Science Inventory

    This presentation covers the control of intact cyanobacterial cells through particulate removal processes such as coagulation, sedimentation and filtration. The control of cyanobacterial toxins through oxidation and adsorption processes including, but not limited to, chlorine, oz...

  16. Presence of enteric viruses in freshwater and their removal by the conventional drinking water treatment process.

    PubMed Central

    Hurst, C. J.

    1991-01-01

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273

  17. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    NASA Astrophysics Data System (ADS)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  18. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    PubMed

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the ponds to increase turbidity.

  19. Risk exposure assessment of per- and polyfluoroalkyl substances (PFASs) in drinking water and atmosphere in central eastern China.

    PubMed

    Lu, Zhibo; Lu, Rong; Zheng, Hongyuan; Yan, Jing; Song, Luning; Wang, Juan; Yang, Haizhen; Cai, Minghong

    2018-04-01

    We examined per- and polyfluoroalkyl substances (PFASs) in air from eight cities, and in water from six drinking-water treatment plants (DWTPs), in central eastern China. We analyzed raw and treated water samples from the DWTPs for 17 ionic PFASs with high-performance liquid chromatography/negative-electrospray-ionization tandem mass spectrometry (HPLC/(-)ESI-MS/MS), and analyzed the gas and particle phases of atmospheric samples for 12 neutral PFASs by gas chromatography-mass spectrometry (GC-MS). Perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the dominant compounds in drinking water, and fluorotelomer alcohols (FTOHs) dominated in atmospheric samples. Of all the compounds in the treated water samples, the concentration of PFOA, at 51.0 ng L -1 , was the highest. Conventional treatments such as coagulation (COA), flocculation (FOC), sedimentation (SED), and sand filtration (SAF) did not remove PFASs. Advanced treatments, however, including ultrafiltration (UF) and activated carbon (AC), removed the majority of PFASs except for shorter-chain PFASs such as perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPA). We also investigated human exposure to PFASs via drinking water and the atmosphere and found that the mean daily intake of PFASs was 0.43 ng kg -1  day -1 .

  20. Occurrence of iodinated X-ray contrast media and their biotransformation products in the urban water cycle.

    PubMed

    Kormos, Jennifer Lynne; Schulz, Manoj; Ternes, Thomas A

    2011-10-15

    A LC tandem MS method was developed for the simultaneous determination of four iodinated X-ray contrast media (ICM) and 46 ICM biotransformation products (TPs) in raw and treated wastewater, surface water, groundwater, and drinking water. Recoveries ranged from 70% to 130%, and limits of quantification (LOQ) varied between 1 ng/L and 3 ng/L for surface water, groundwater and drinking water, and between 10 ng/L and 30 ng/L for wastewater. In a conventional wastewater treatment plant, iohexol, iomeprol, and iopromide were transformed to >80%, while iopamidol was transformed to 35%. In total, 26 TPs were detected above their LOQ in WWTP effluents. A significant change in the pattern of ICM TPs was observed after bank filtration and groundwater infiltration under aerobic conditions. Predominately, these TPs are formed at the end of the microbial transformation pathways in batch experiments with soil and sediment. These polar ICM TPs, such as iohexol TP599, iomeprol TP643, iopromide TP701A, and iopromide TP643, were not or only partially removed during drinking water treatment. As a consequence, several ICM TPs were detected in drinking water, at concentration levels exceeding 100 ng/L, with a maximum of 500 ng/L for iomeprol TP687.

  1. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant

    PubMed Central

    Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao

    2018-01-01

    The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β-cyclocitral and β-ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum. The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll-a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs. PMID:29301296

  2. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant.

    PubMed

    Shang, Lixia; Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao

    2018-01-02

    The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β -cyclocitral and β -ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum . The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll- a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs.

  3. Water quality in Reedy Fork and Buffalo Creek basins in the Greensboro area, North Carolina, 1986-87

    USGS Publications Warehouse

    Davenport, M.S.

    1989-01-01

    Water and bottom-sediment samples were collected from April 1986 through September 1987 at 19 sites in Guilford County and the City of Greensboro, North Carolina. Sampling locations included 13 stream sites, two lakes that supply the City of Greensboro with drinking water, two City of Greensboro finished drinking-water filtration plants, and effluent from the two municipal wastewater plants prior to outfall into receiving streams. Water sampling consisted of six surveys during various stages of steady ground-water flow at all sites and high-flow-event sampling during two storms at six sites. Bottom-sediment samples were collected at three sites during two routine sampling surveys. A summary of nearly 22, 000 separate chemical or physical analyses of water samples or bottom sediment is presented and discussed as individual values, ranges of values, or median values with respect to the locations of sampling sites, streamflow conditions, or other information bearing on water-quality conditions under discussion. The results include discussions of general water-quality indicators; major ion, nutrient, and trace-element concentrations; acid and base/neutral extractable organic compounds; volatile organic compounds; and organochlorine and organophosphorus pesticides detected at each sampling site. Loadings of selected constituents are also estimated on a yearly and daily basis. The quality of the raw and finished water, municipal effluents, and streams in the Greensboro area are characterized by using State and Federal water-quality standards. Inorganic constituents most commonly found in excess of standards were iron, copper, zinc, arsenic, phosphorus, manganese, cyanide, and mercury. Relatively few organic compounds were detected; however, those consistently reported were phthalate, thihalomethane, organophosphorus pesticide, benzol, and phenolic compounds. Selected inorganic, physical, and total organic carbon data are used in a Wilcoxon test for two independent variables to statistically compare water-quality characteristics in selected rural, semideveloped and urban basins. During low-flow sampling, the constituents that differed significantly among all sites were calcium, magnesium, and chloride. During low flows, concentrations of orthophosphate, fluoride, sulfate, and TOC differed at the urban site from the rural and semideveloped and urban sites. There were no significant differences among sites in concentrations of sodium, suspended sediment, nickel, zinc, copper, and mercury during low flows. The Wilcoxon test performed on high-flow data indicated that concentrations of TOC, chloride, sulfate, suspended sediment, and nickel were not significantly different among the sites.

  4. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    PubMed Central

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166; http://dx.doi.org/10.1289/ehp.1306574 PMID:23933526

  5. Removal Efficiencies and Attachment Coefficients for Cryptosporidium in Sandy Alluvial Riverbank Sediment

    EPA Science Inventory

    Riverbank filtration has been shown to be effective at removing viable Cryptosporidium parvum oocysts and, therefore, drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering a...

  6. Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites

    NASA Astrophysics Data System (ADS)

    Kvitsand, Hanne M. L.; Myrmel, Mette; Fiksdal, Liv; Østerhus, Stein W.

    2017-08-01

    Two case studies were carried out in central Norway in order to assess the performance of bank filtration systems in cold-climate fluvial aquifers relying on recharge from humic-rich surface waters with moderate microbial contamination. Three municipal wells and two surface-water sources at operative bank filtration systems were monitored for naturally occurring bacteriophages, fecal indicators, natural organic matter (NOM) and physico-chemical water quality parameters during a 4-month period. Aquifer passage effectively reduced the microorganism and NOM concentrations at both study sites. Bacteriophages were detected in 13 of 16 (81%) surface-water samples and in 4 of 24 (17%) well-water samples, and underwent 3 ± 0.3 log10 reduction after 50-80-m filtration and 20-30 days of subsurface passage. NOM reductions (color: 74-97%; dissolved organic carbon: 54-80%; very hydrophobic acids: 70%) were similar to those achieved by conventional water-treatment processes and no further treatment was needed. Both groundwater dilution and sediment filtration contributed to the hygienic water quality improvements, but sediment filtration appeared to be the most important process with regard to microbial and NOM reductions. A strengths-weaknesses-opportunities-threats analysis showed that bank filtration technology has a high potential as a pretreatment method for the provision of hygienically safe drinking water in Norway.

  7. Sedimentation of Free and Attached Cryptosporidium Oocysts and Giardia Cysts in Water

    PubMed Central

    Medema, G. J.; Schets, F. M.; Teunis, P. F. M.; Havelaar, A. H.

    1998-01-01

    Experimental analysis of the sedimentation velocity of Cryptosporidium parvum oocysts and Giardia lamblia cysts was compared with mathematical description of their sedimentation velocities by using measurements of (oo)cyst size and density and the density and viscosity of the sedimentation medium to determine if the sedimentation kinetics of freely suspended oocysts of C. parvum and cysts of G. lamblia can be described by Stokes’ law. The theoretically calculated sedimentation kinetics showed a good agreement with the experimentally observed kinetics. Both showed a decline in sedimentation velocity over time, caused primarily by variation in (oo)cyst density. The initial apparent sedimentation velocities in Hanks balanced salt solution at 23°C was 0.35 μm · s−1 for oocysts and 1.4 μm · s−1 for cysts. (Oo)cysts that enter the surface water environment by discharges of biologically treated sewage may be attached to sewage particles, and this will affect their sedimentation kinetics. Therefore, (oo)cysts were mixed with settled secondary effluent. (Oo)cysts readily attached to the (biological) particles in effluent; 30% of both cysts and oocysts attached during the first minutes of mixing, and this fraction increased to approximately 75% after 24 h. The sedimentation velocity of (oo)cysts attached to secondary effluent particles increased with particle size and was (already in the smallest size fraction [1 to 40 μm]) determined by the sedimentation kinetics of the effluent particles. The observed sedimentation velocities of freely suspended (oo)cysts are probably too low to cause significant sedimentation in surface water or reservoirs. However, since a significant proportion of both cysts and oocysts attached readily to organic biological particles in secondary effluent, sedimentation of attached (oo)cysts after discharge into surface water will probably be a significant factor in the environmental ecology of C. parvum and G. lamblia. Attachment to particles influences not only sedimentation of (oo)cysts in surface water but also their behavior in drinking water treatment processes. PMID:9797307

  8. Options of sustainable groundwater supply from safe aquifers in areas with elevated arsenic - a case study from Bangladesh

    NASA Astrophysics Data System (ADS)

    Jakariya, M.; Bhattacharya, P.; Bromssen, M. V.

    2008-05-01

    Access to safe drinking water is a basic human right. Several millions of people, mainly in developing countries are affected by arsenic in drinking water and the global impact now makes it a top priority water quality issue. A wide gap between the number of exposed people and the pace of mitigation programmes in rural areas of developing countries is the main problem in providing safe drinking water. The main challenge is to develop a sustainable mitigation option that rural and disadvantaged people can adopt and implement themselves to overcome possible public heath hazards. During the recent years, new approaches have emerged in Bangladesh, primarily emerging out of people's own initiative. The local drillers target presumed safe aquifers on the basis of colour and texture of the sediments. A recent study by our research group revealed a distinct correlation between the colour characteristics of the sediments and the groundwater redox conditions. The coupling between the colour of sediments and the redox characteristics of groundwater may thus be used as a tool to assess the risk for As mobilization from the aquifers. The study showed that it is possible to assess the relative risk of high concentrations of As in aquifers if the colour characteristics of the sediments are known and thus, local drillers may target safe aquifers. For validating the sustainability of this mitigation option geological, hydrogeological and microbiological investigations are needed. The sustainability of the aquifers needs to be assessed by combining results from various field and laboratory investigations and by running predictive models. There is also a need to raise the awareness and thereby create a platform for motivating the local drillers to be educated in installing safe tubewells. Awareness raising and community mobilisation are two top priorities for implementing a sustainable safe water project in rural village areas. Significant preparation, attention, and focus must be given to the human resource development stage of any project implementation. Local drillers need to be trained on how to handle and disseminate the invented method of installing safe tube wells. Capacity of the local level stakeholders and end users must be improved by providing training and conducting awareness campaigns. Based on the experiences and multidisciplinary research, Water Safety Plans needs to be formulated as well as adopted for long term monitoring and management of implemented mitigation options.

  9. Arsenic chemistry in soils and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendorf, S.; Nico, P.; Kocar, B.D.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 millionmore » people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved arsenic are generated. Within the subsequent sections of this chapter, we explore and describe the biological and chemical processes that control the partitioning of arsenic between the solid and aqueous phase.« less

  10. Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities.

    PubMed

    Suarez, M; Entenza, J M; Doerries, C; Meyer, E; Bourquin, L; Sutherland, J; Marison, I; Moreillon, P; Mermod, N

    2003-01-05

    Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings. Copyright 2002 Wiley Periodicals, Inc.

  11. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment.

    PubMed

    Levi, S; Hybel, A-M; Bjerg, P L; Albrechtsen, H-J

    2014-03-01

    In order to investigate aerobic degradation potential for the herbicides bentazone, mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, were screened for their degradation potential for the herbicides. In the presence of oxygen (14)C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides in microcosms using groundwater and sandy aquifer materials. To maintain a certain oxygen concentration this level was measured from the outside of the bottles with a fibre oxygen meter using oxygen-sensitive luminescent sensor foil mounted inside the microcosm, to which supplementary oxygen was added. The highest oxygen concentrations (corresponding to 4-11 mg L(-1)) stimulated degradation (a 14-27% increase for mecoprop, 3-9% for dichlorprop and 15-20% for bentazone) over an experimental period of 200 days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2 mg L(-1)). The sediment had substantial oxygen consumption (0.92-1.45O2 g(-1)dw over 200 days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due to the oxidation of organic matter and other reduced species such as Fe(2+), S(2-) and Mn in sediment before the biodegradation of herbicides takes place. This study suggests that oxygen enhancement around a drinking water abstraction field could stimulate the bioremediation of diffuse source contamination. Copyright © 2013. Published by Elsevier B.V.

  12. CHARACTERIZATION OF SUB-MICRON AQUEOUS IRON(III) COLLOIDS FORMED IN THE PRESENCE OF PHOSPHATE BY SEDIMENTATION FIELD FLOW FRACTIONATION WITH MULTI-ANGLE LASER LIGHT SCATTERING DETECTION

    EPA Science Inventory

    Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in...

  13. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA.

    PubMed

    Camacho, Lucy Mar; Gutiérrez, Mélida; Alarcón-Herrera, Maria Teresa; Villalba, Maria de Lourdes; Deng, Shuguang

    2011-04-01

    This review focuses on the occurrence and treatment of arsenic (As) in the arid region of northern Mexico (states of Chihuahua and Coahuila) and bordering states of the southwestern US (New Mexico, Arizona, and Texas), an area known for having high As concentrations. Information assembled and assessed includes the content and probable source of As in water, soil, and sediments and treatment methods that have been applied in the area. High As concentrations were found mainly in groundwater, their source being mostly from natural origin related to volcanic processes with significant anthropogenic contributions near mining and smelting of ores containing arsenic. The affinity of As for solid phases in alkaline conditions common to arid areas precludes it from being present in surface waters, accumulating instead in sediments and shifting its threat to its potential remobilization in reservoir sediments and irrigation waterways. Factors such as oxidation and pH that affect the mobility of As in the subsurface environment are mentioned. Independent of socio-demographic variables, nutritional status, and levels of blood lead, cognitive development in children is being affected when exposed to As. Treatments known to effectively reduce As content to safe drinking water levels as well as those that are capable of reducing As content in soils are discussed. Besides conventional methods, emergent technologies, such as phytoremediation, offer a viable solution to As contamination in drinking water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Relationship between industrial discharges and contamination of raw water resources by perfluorinated compounds: part II: Case study of a fluorotelomer polymer manufacturing plant.

    PubMed

    Dauchy, Xavier; Boiteux, Virginie; Rosin, Christophe; Munoz, Jean-François

    2012-09-01

    In this study, the concentrations of 10 perfluorinated compounds (PFCs) were measured in effluents of a fluorotelomer polymer manufacturing plant and its wastewater treatment plant. A 50-fold increase between the two effluents mass flows was observed. The water quality of two drinking water treatment plants located downstream at 15 and 25 km from the manufacturing plant was examined. An increase of the sum of PFCs was observed between the river (30 ng/L) and an alluvial well (70 ng/L), and between the raw water (9 ng/L) and the outlet of a biological treatment (97 ng/L). These results indicate a possible degradation of fluorotelomers, occurring during wastewater treatment, sediment infiltration in the alluvial aquifer, and drinking water treatment.

  15. Infiltration and quality of water for two arroyo channels, Albuquerque, New Mexico, 1988-92

    USGS Publications Warehouse

    Thomas, Carole L.

    1995-01-01

    Selected reaches of Grant Line Arroyo and Tijeras Arroyo in Albuquerque, New Mexico, were studied to collect information about the amount and quality of infiltration through arroyo channels. Infiltration rate was calculated for selected reaches of Grant Line Arroyo and Tijeras Arroyo based on instantaneous streamflow-loss volumes, wetted channel area, and instantaneous evaporation rates measured during 1988-92. Infiltration rates at Grant Line Arroyo ranged from 0.0 to 0.6 foot per day, and at Tijeras Arroyo from 2.28 to 30 feet per day. The evaporation rate ranged from one-tenth of 1 percent to 2 percent of the infiltration rate. Infiltration rates differed with the location of the reach isolated for measurement and with the time of day of the infiltration-rate measurement. Differences in intrinsic permeability of the sediments may be the most important factor affecting spatial variations in infiltration. The most important factor affecting temporal variations in infiltration may be the temperature of the water and sediment where infiltration occurs. Annual evaporation rates were greatest over saturated stream sediments and ranged from 802 to 1,025 millimeters per year or from 31.57 to 40.35 inches per year. Annual evaporation rates were least over unsaturated, unvegetated soil and ranged from 174 to 291 millimeters per year or from 6.85 to 11.46 inches per year. Annual evapotranspiration rates over grasses or shrubs or both were about one-half the rates over saturated stream sediments. Rates were similar for Grant Line and Tijeras Arroyos. The land- surface vegetation, availability of water at the land surface, availability of energy to enable a change of state from water to vapor, existence of a vapor concentration gradient, and a turbulent atmosphere to carry the vapor away may be the factors that determine the amount of evaporation and evapotranspiration. Water in Grant Line Arroyo and Tijeras Arroyo met U. S. Environmental Protection Agency drinking-water regulations for nitrate, volatile organic compounds, dissolved lead, and dissolved and total arsenic, barium, cadmium, chromium, copper, iron, silver, zinc, selenium, chloride, and sulfate concentrations. Total lead concentration in one sample from Tramway Floodway Channel, a tributary to Tijeras Arroyo, was 55 micrograms per liter, exceeding the Environmental Protection Agency drinking-water regulation of 50 micrograms per liter. Dissolved-solids concentrations calculated from the sum of cations and anions usually exceeded the Environmental Protection Agency drinking-water dissolved-solids regulation of 500 milligrams per liter at Tijeras Arroyo above Four Hills Bridge.

  16. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants.

    PubMed

    Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2014-02-01

    The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.

  17. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments.

    PubMed

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren; Lu, Jingrang

    2017-10-26

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L . pneumophila , Mycobacterium spp., P. aeruginosa , V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.

  18. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments

    PubMed Central

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren

    2017-01-01

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system. PMID:29072631

  19. Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian A.; Evans, David G.; Boss, Emmanuel

    2008-01-01

    Understanding the sources of dissolved organic carbon (DOC) in drinking-water reservoirs is an important management issue because DOC may form disinfection by-products, interfere with disinfection, or increase treatment costs. DOC may be derived from a host of sources-algal production of DOC in the reservoir, marginal production of DOC from mucks and vascular plants at the margins, and sediments in the reservoir. The purpose of this study was to assess if release of DOC from reservoir sediments containing ferric chloride coagulant was a significant source of DOC to the reservoir. We examined the source-specific contributions of DOC using a profiling system to measure the in situ distribution of optical properties of absorption and fluorescence at various locations in the reservoir. Vertical optical profiles were coupled with discrete water samples measured in the laboratory for DOC concentration and optical properties: absorption spectra and excitation emission matrix spectra (EEMs). Modeling the in situ optical data permitted estimation of the bulk DOC profile in the reservoir as well as separation into source-specific contributions. Analysis of the source-specific profiles and their associated optical characteristics indicated that the sedimentary source of DOC to the reservoir is significant and that this DOC is labile in the reservoir. We conclude that optical profiling is a useful technique for understanding complex biogeochemical processes in a reservoir.

  20. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.

    PubMed

    Berg, M; Tran, H C; Nguyen, T C; Pham, H V; Schertenleib, R; Giger, W

    2001-07-01

    This is the first publication on arsenic contamination of the Red River alluvial tract in the city of Hanoi and in the surrounding rural districts. Due to naturally occurring organic matter in the sediments, the groundwaters are anoxic and rich in iron. With an average arsenic concentration of 159 micrograms/L, the contamination levels varied from 1 to 3050 micrograms/L in rural groundwater samples from private small-scale tubewells. In a highly affected rural area, the groundwater used directly as drinking water had an average concentration of 430 micrograms/L. Analysis of raw groundwater pumped from the lower aquifer for the Hanoi water supply yielded arsenic levels of 240-320 micrograms/L in three of eight treatment plants and 37-82 micrograms/L in another five plants. Aeration and sand filtration that are applied in the treatment plants for iron removal lowered the arsenic concentrations to levels of 25-91 micrograms/L, but 50% remained above the Vietnamese Standard of 50 micrograms/L. Extracts of sediment samples from five bore cores showed a correlation of arsenic and iron contents (r2 = 0.700, n = 64). The arsenic in the sediments may be associated with iron oxyhydroxides and released to the groundwater by reductive dissolution of iron. Oxidation of sulfide phases could also release arsenic to the groundwater, but sulfur concentrations in sediments were below 1 mg/g. The high arsenic concentrations found in the tubewells (48% above 50 micrograms/L and 20% above 150 micrograms/L) indicate that several million people consuming untreated groundwater might be at a considerable risk of chronic arsenic poisoning.

  1. Pepper mild mottle virus as a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid sand filtration, ozonation, and biological activated carbon treatments in Japan.

    PubMed

    Kato, Ryuichi; Asami, Tatsuya; Utagawa, Etsuko; Furumai, Hiroaki; Katayama, Hiroyuki

    2018-04-01

    To assess the potential of pepper mild mottle virus (PMMoV) as a viral process indicator, its reduction through coagulation-sedimentation (CS) and rapid sand filtration (RSF) were compared with those of Escherichia coli, previously used viral indicators, and norovirus genotype II (NoV GII; enteric virus reference pathogen) in a bench-scale experiment. PMMoV log 10 reductions in CS (1.96 ± 0.30) and RSF (0.26 ± 0.38) were similar to those of NoV GII (1.86 ± 0.61 and 0.28 ± 0.46). PMMoV, the most abundant viruses in the raw water, was also determined during CS, RSF, and advanced treatment processes at two full-scale drinking water treatment plants under strict turbidity management over a 13-month period. PMMoV was concentrated from large-volume water samples (10-614 L) and quantified by Taqman-based quantitative polymerase chain reaction. The PMMoV log 10 reduction in CS (2.38 ± 0.74, n = 13 and 2.63 ± 0.76, n = 10 each for Plant A and B) and in ozonation (1.91 ± 1.18, n = 5, Plant A) greatly contributed to the overall log 10 reduction. Our results suggest that PMMoV can act as a useful treatment process indicator of enteric viruses and can be used to monitor the log 10 reduction of individual treatment processes at drinking water treatment plants due to its high and consistent copy numbers in source water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India.

    PubMed

    Sankar, M S; Vega, M A; Defoe, P P; Kibria, M G; Ford, S; Telfeyan, K; Neal, A; Mohajerin, T J; Hettiarachchi, G M; Barua, S; Hobson, C; Johannesson, K; Datta, S

    2014-08-01

    High levels of geogenic arsenic (As) and manganese (Mn) in drinking water has led to widespread health problems for the population of West Bengal, India. Here we delineate the extent of occurrences of As and Mn in Murshidabad, where the contaminated aquifers occur at shallow depths between 35 and 40 m and where access to safe drinking water is a critical issue for the local population. A total of 78 well-water samples were taken in 4 blocks on either side of the river Bhagirathi: Nabagram and Kandi (west, Pleistocene sediments), Hariharpara and Beldanga (east, Holocene sediments). High As, total iron (FeT) and low Mn concentrations were found in waters from the Holocene gray sediment aquifers east of the river Bhagirathi, while the opposite was found in the Pleistocene reddish-brown aquifer west of the river Bhagirathi in Murshidabad. Speciation of As in water samples from Holocene sediments revealed the dominant species to be As(III), with ratios of As(III):AsT ranging from 0.55 to 0.98 (average 0.74). There were indications from saturation index estimations that Mn solubility is limited by the precipitation of MnCO3. Tubewells from high As areas in proximity to anthropogenic waste influx sources showing high molar Cl/Br ratios, low SO4(2-) and low NO3(-) demonstrate relatively lower As concentrations, thereby reducing As pollution in those wells. Analyses of core samples (2 in each of the blocks) drilled to a depth of 45 m indicate that there is no significant variation in bulk As (5-20mg/kg) between the Holocene and Pleistocene sediments, indicating that favorable subsurface redox conditions conducive to mobilization are responsible for the release of As. The same applies to Mn, but concentrations vary more widely (20-2000 mg/kg). Sequential extraction of Holocene sediments showed As to be associated with 'specifically sorbed-phosphate-extractable' phases (10-15%) and with 'amorphous and well crystalline Fe-oxyhydroxide' phases (around 37%) at As-contaminated well depths, suggesting that the main As release mechanisms could be either competitive ion exchange with PO4(3-), or the dissolution of Fe oxyhydroxides. In the Pleistocene sediments Mn is predominantly found in the easily exchangeable fraction. Published by Elsevier B.V.

  3. Atomic Force Microscopy (AFM) for In-Situ Biofilm Surface Characterization during Free Chlorine and Monochloramine Exposure

    EPA Science Inventory

    Drinking water distribution system biofilm are attached to pipe walls and found in sediments. These biofilms are complex and contain a variety of microorganisms embedded in a matrix with extracellular polymeric substances (EPS), providing protection from disinfection. Without pro...

  4. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2011-05-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (<2 mm) and annelida. In total, 52 water samples were collected from fire hydrants at 31 locations, and two elevated tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus since living A. aquaticus were nearly only found in samples with sediment contents higher than 100 ml/m(3) sample. Presence of A. aquaticus was not correlated to turbidity of the water. Measurements by ATP, heterotrophic plate counting and Colilert(®) showed that the microbial quality of the water was high at all locations with or without animals. Four other large Danish drinking water supplies were additionally sampled (nine pipe samples and one elevated tank), and invertebrates were found in all systems, three of four containing A. aquaticus, indicating a nationwide occurrence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Antibiotics elimination and risk reduction at two drinking water treatment plants by using different conventional treatment techniques.

    PubMed

    Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan

    2018-04-20

    Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.

  6. Assessment of drinking water quality using indicator bacteria and bacteriophages.

    PubMed

    Méndez, Javier; Audicana, Ana; Cancer, Mercedes; Isern, Anna; Llaneza, Julian; Moreno, Belén; Navarro, Mercedes; Tarancón, M Lluisa; Valero, Fernando; Ribas, Ferran; Jofre, Juan; Lucena, Francisco

    2004-09-01

    Bacterial indicators and bacteriophages suggested as potential indicators of water quality were determined by public laboratories in water from springs, household water wells, and rural and metropolitan water supplies in north-eastern Spain. Indicator bacteria were detected more frequently than bacteriophages in springs, household water wells and rural water supplies. In contrast, positive bacteriophage detections were more numerous than those of bacteria in metropolitan water supplies. Most of the metropolitan water supply samples containing indicators had concentrations of chlorine below 0.1 mg l(-1), their indicator loads resembling more closely those of rural water supplies than any other samples taken from metropolitan water supplies. The number of samples from metropolitan water supplies containing more than 0.1 mg l(-1) of chlorine that contained phages clearly outnumbered those containing indicator bacteria. Some association was observed between rainfall and the presence of indicators. Sediments from service reservoirs and water from dead ends in the distribution network of one of the metropolitan water supplies were also tested. Bacterial indicators and phages were detected in a higher percentage than in samples of tap water from the same network. Additionally, indicator bacteria were detected more frequently than bacteriophages in sediments of service reservoirs and water from dead end samples. We conclude that naturally occurring indicator bacteria and bacteriophages respond differently to chlorination and behave differently in drinking water distribution networks. Moreover, this study has shown that testing for the three groups of phages in routine laboratories is easy to implement and feasible without the requirement for additional material resources for the laboratories.

  7. A review of arsenic and its impacts in groundwater of the Ganges-Brahmaputra-Meghna delta, Bangladesh.

    PubMed

    Edmunds, W M; Ahmed, K M; Whitehead, P G

    2015-06-01

    Arsenic in drinking water is the single most important environmental issue facing Bangladesh; between 35 and 77 million of its 156 million inhabitants are considered to be at risk from drinking As-contaminated water. This dominates the list of stress factors affecting health, livelihoods and the ecosystem of the delta region. There is a vast literature on the subject so this review provides a filter of the more important information available on the topic. The arsenic problem arises from the move in the 1980s and 1990s by international agencies to construct tube wells as a source of water free of pathogens, groundwater usually considered a safe source. Since arsenic was not measured during routine chemical analysis and also is difficult to measure at low concentrations it was not until the late 1990s that the widespread natural anomaly of high arsenic was discovered and confirmed. The problem was exacerbated by the fact that the medical evidence of arsenicosis only appears slowly. The problem arises in delta regions because of the young age of the sediments deposited by the GBM river system. The sediments contain minerals such as biotite which undergo slow "diagenetic" reactions as the sediments become compacted, and which, under the reducing conditions of the groundwater, release in the form of toxic As(3+). The problem is restricted to sediments of Holocene age and groundwater of a certain depth (mainly 30-150 m), coinciding with the optimum well depth. The problem is most serious in a belt across southern Bangladesh, but within 50 m of the coast the problem is only minor because of use of deep groundwater; salinity in shallow groundwater here is the main issue for drinking water. The Government of Bangladesh adopted a National Arsenic Policy and Mitigation Action Plan in 2004 for providing arsenic safe water to all the exposed population, to provide medical care for those who have visible symptoms of arsenicosis. There is as yet no national monitoring program in place. Various mitigation strategies have been tested, but generally the numerous small scale technological remedies have proved unworkable at village level. The current statistics show that use of deep groundwater (below 150 m) is the main source of arsenic mitigation over most of the arsenic affected areas as well as rainwater harvesting in certain location.

  8. Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15

    USGS Publications Warehouse

    Hermosillo, Edyth; Coes, Alissa L.

    2017-03-01

    Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.

  9. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    PubMed

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  10. Heavy metal accumulations in water, sediment, and some cyprinid species in Porsuk Stream (Turkey).

    PubMed

    Köse, Esengül; Çiçek, Arzu; Uysal, Kazim; Tokatlı, Cem; Emiroğlu, Özgür; Arslan, Naime

    2015-03-01

    Porsuk Stream is one of Turkey's most important river systems and also one of the most important branches of the Sakarya River. It provides drinking and utility water for two Turkish cities (Kütahya and Eskişehir) with a total population of one million. In this study, water, sediment, and some tissues (liver, gill, and muscle) of five cyprinid fish species were collected seasonally (2010-2011) from eight stations on the Porsuk Stream, and the zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and arsenic (As) levels of collected samples were determined. The data observed were evaluated with national and international quality criteria. Based on the data observed, it was determined that the Porsuk Stream is affected by significant inorganic pollution from the Kütahya and Eskişehir Provinces. It was also determined that the Porsuk Dam Lake has an important cleaning capacity and that the water and sediment quality of the Porsuk Stream improves after the output of the dam lake.

  11. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture of modern (Post-1950) and old (Pre-1950) ground water. As a result, concentrations of age tracers were detectable but diluted by older ground water. Deep ground water generally represented water that was recharged under natural conditions and therefore had much older ages. Ground water reaching the public-supply well was a mixture of older intermediate and deep ground water and young shallow ground water that has been anthropogenically-influenced to a greater extent than intermediate ground water. Uranium and nitrate pose the most significant threat to the quality of water discharged from the public-supply well. Although pesticides and VOCs were present in ground water from the public-supply well and monitoring wells, currently concentrations of these contaminants are generally less than one-hundredth the concentration of drinking water standards. In contrast, both uranium and nitrate were above half the concentration of drinking water standards for public-supply well samples, and were above drinking water standards for several water-table and shallow monitoring wells. Shallow ground water contributes roughly 20 percent of the total flow to the public-supply well and was the entry point of most contaminants reaching the public-supply well. Naturally-occurring uranium, which is commonly adsorbed to aquifer sediments, was mobilized by oxygen-rich, high-alkalinity water, causing concentrations in some monitoring wells to be above the drinking-water standard of 30 ug/L (microgram per liter). Adsorption experiments, sediment extractions, and uranium isotopes indicated uranium in water-table and shallow ground water was leached from aquifer sediments. Uranium is strongly correlated to bicarbonate concentrations (as measured by alkalinity) in ground water. Bicarbonate can effectively limit uranium adsorption to sediments. As a result, continued downward movement of high-alkalinity, oxygen-rich ground water will likely lead to larger portions of the aquifer having

  12. Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota.

    PubMed

    May, T W; Wiedmeyer, R H; Gober, J; Larson, S

    2001-01-01

    Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 microg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 microg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 microg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.

  13. Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Gober, J.; Larson, S.

    2001-01-01

    Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 μg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 μg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 μg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.

  14. The quality of our Nation's waters: groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993-2005

    USGS Publications Warehouse

    Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.

    2015-01-01

    The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.

  15. The effect of coarse gravel on cohesive sediment entrapment in an annular flume

    NASA Astrophysics Data System (ADS)

    Glasbergen, K.; Stone, M.; Krishnappan, B.; Dixon, J.; Silins, U.

    2015-03-01

    While cohesive sediment generally represents a small fraction (<0.5%) of the total sediment mass stored in gravel-bed rivers, it can strongly influence physical and biogeochemical processes in the hyporheic zone and alter aquatic habitat. This research was conducted to examine mechanisms governing the interaction of cohesive sediments with gravel beds in the Elbow River, Alberta, Canada. A series of erosion and deposition experiments with and without a gravel bed were conducted in a 5-m diameter annular flume. The critical shear stress for deposition and erosion of cohesive sediment without gravel was 0.115 Pa and 0.212 Pa, respectively. In experiments with a gravel bed, cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized under the maximum applied shear stresses (1.11 Pa) used in the experiment. The gravel bed had an entrapment coefficient (ratio between the entrapment flux and the settling flux) of 0.2. Accordingly, when flow conditions are sufficient to produce a shear stress that will mobilize the armour layer of the gravel bed (>16 Pa), cohesive materials trapped within the gravel bed will be entrained and transported into the Glenmore Reservoir, where sediment-associated nutrients may pose treatment challenges to the drinking water supply.

  16. Evaluating a 5-year metal contamination remediation and the biomonitoring potential of a freshwater gastropod along the Xiangjiang River, China.

    PubMed

    Li, Deliang; Pi, Jie; Zhang, Ting; Tan, Xiang; Fraser, Dylan J

    2018-05-16

    Effective remediation of heavy metal pollution in aquatic systems is desired in many regions, but it requires integrative assessments of sediments, water, and biota that can serve as robust biomonitors. We assessed the effects of a 5-year metal contamination remediation along the Xiangjiang River, China, by comparing concentrations of trace metals in water and surface sediments between 2010-2011 and 2016. We also explored the trace metal biomonitoring potential of a freshwater gastropod (Bellamya aeruginosa). Metal concentrations in water (means and ranges) dropped over time to within permissible limits of drinking water guidelines set by China, USEPA, and WHO in 2016. Although sediment means and ranges of Cd, Pb, Zn, and Mn also diminished with remediation, those for Cr and Cu slightly increased, and all six metals retained concentrations higher than standards set by China. All metals in sediments could also be associated with anthropogenic inputs using a hierarchical clustering analysis, and they generate high potential ecological risks based on several indices, especially for Cd and As. The bio-sediment accumulation factors of all measured trace metals in gastropod soft tissues and shells were lower than 1.0, except for Ca. Trace metal contents in gastropods were positively correlated with those in water and surface sediments for As (soft tissues) and Cr (shells). Collectively, our results do not yet highlight strong beneficial effects of 5-year remediation and clearly illustrate the heavy metal pollution remaining in Xiangjiang River sediment. Additional physical, chemical, and biological measurements should be implemented to improve sediment quality. We further conclude that gastropod soft tissues and shells can be suitable biomonitors of spatial differences in some heavy metals found within river sediments (e.g., As, Cr).

  17. Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes.

    PubMed

    van Lieverloo, J Hein M; Hoogenboezem, Wim; Veenendaal, Gerrit; van der Kooij, Dick

    2012-10-15

    A survey of invertebrates in drinking water from treatment works, internal taps and hydrants on mains was carried out by almost all water companies in the Netherlands from September 1993 to August 1995. Aquatic sow bugs (Asellidae, 1-12 mm) and oligochaeta worms (Oligochaeta, 1-100 mm), both known to have caused rare though embarrassing consumer complaints, were found to form 98% of the mean biomass in water flushed from mains. Their numbers in the mains water ranged up to 1500 (mean 37) Asellidae m(-3) and up to 9900 (mean 135) Oligochaeta m(-3). Smaller crustaceans (0.5-2 mm) dominated the numbers in water from mains. e.g. water fleas (Cladocera and Copepoda up to 14,000 m(-3)). Common invertebrates in treated water and in tap water were Rotifera (<1 mm) and nematode worms (Nematoda, <2 mm). No Asellidae, large Oligochaeta (>5 mm) or other large invertebrates were found in 1560 samples of 200 l treated water or tap water. Large variations in invertebrate abundance were found within and between distribution systems. Of the variability of mean biomass in mains per system, 55%, 60% and 63% could statistically be explained by differences in the Biofilm Formation Rate, non-particulate organic matter and the permanganate index of the treated water of the treatment works respectively. A similar correlation was found between mean invertebrate biomass and mean sediment volumes in the distribution systems (R(2) = 52%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Aging Reservoirs in a Changing Climate: Examining Storage Loss of Large Reservoirs and Variability of Sedimentation Rate in a Dominant Cropland Region

    NASA Astrophysics Data System (ADS)

    Rahmani, V.; Kastens, J.; deNoyelles, F.; Huggins, D.; Martinko, E.

    2015-12-01

    Dam construction has multiple environmental and hydrological consequences including impacts on upstream and downstream ecosystems, water chemistry, and streamflow. Behind the dam the reservoir can trap sediment from the stream and fill over time. With increasing population and drinking and irrigation water demands, particularly in the areas that have highly variable weather and extended drought periods such as the United States Great Plains, reservoir sedimentation escalates water management concerns. Under nearly all projected climate change scenarios we expect that reservoir water storage and management will come under intense scrutiny because of the extensive use of interstate river compacts in the Great Plains. In the state of Kansas, located in the Great Plains, bathymetric surveys have been completed during the last decade for many major lakes by the Kansas Biological Survey, Kansas Water Office, and the U.S. Army Corps of Engineers. In this paper, we studied the spatial and temporal changes of reservoir characteristics including sedimentation yield, depletion rate, and storage capacity loss for 24 federally-operated reservoirs in Kansas. These reservoirs have an average age of about 50 years and collectively have lost approximately 15% of their original capacity, with the highest annual observed single-reservoir depletion rate of 0.84% and sedimentation yield of 1,685 m3 km-2 yr-1.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  20. Arsenic geochemistry of alluvial sediments and pore waters affected by mine tailings along the Belle Fourche and Cheyenne River floodplains

    USGS Publications Warehouse

    Pfeifle, Bryce D.; Stamm, John F.; Stone, James J.

    2018-01-01

    Gold mining operations in the northern Black Hills of South Dakota resulted in the discharge of arsenopyrite-bearing mine tailings into Whitewood Creek from 1876 to 1977. Those tailings were transported further downstream along the Belle Fourche River, the Cheyenne River, and the Missouri River. An estimated 110 million metric tons of tailings remain stored in alluvial deposits of the Belle Fourche and Cheyenne Rivers. Pore-water dialysis samplers were deployed in the channel and backwaters of the Belle Fourche and Cheyenne Rivers to determine temporal and seasonal changes in the geochemistry of groundwater in alluvial sediments. Alluvial sediment adjacent to the dialysis samplers were cored for geochemical analysis. In comparison to US Environmental Protection Agency drinking water standards and reference concentrations of alluvial sediment not containing mine tailings, the Belle Fourche River sites had elevated concentrations of arsenic in pore water (2570 μg/L compared to 10 μg/L) and sediment (1010 ppm compared to < 34 ppm), respectively. Pore water arsenic concentration was affected by dissolution of iron oxyhydroxides under reducing conditions. Sequential extraction of iron and arsenic from sediment cores indicates that substantial quantities of soluble metals were present. Dissolution of arsenic sorbed to alluvial sediment particles appears to be affected by changing groundwater levels that cause shifts in redox conditions. Bioreductive processes did not appear to be a substantial transport pathway but could affect speciation of arsenic, especially at the Cheyenne River sampling sites where microbial activity was determined to be greater than at Belle Fourche sampling sites.

  1. The effect of weathering in the Buyukmelen River basin on the geochemistry of suspended and bed sediments and the hyrogeochemical characteristics of river water, Duzce, Turkey

    NASA Astrophysics Data System (ADS)

    Pehlivan, Rustem

    2010-07-01

    The Buyukmelen River is expected to be a water source that can supply the drinking water needs of Istanbul until 2040. The drinking and utility water needs of Istanbul are to transport water from the Buyukmelen River to Istanbul via pipeline and pump it into the Alibeykoy and Omerli reservoirs when their water levels drop. The Buyukmelen River is located in the province of Duzce in 170 km east of Istanbul and its water basin is approximately 2250 km 2. The Buyukmelen River flows muddy in the rainy season and into the Black Sea. The chemical compositions of natural waters alter due to interaction with geological formations, physical and chemical weathering of various rocks and the effects of mining and agricultural production. A research was conducted at the Buyukmelen River basin to determine the effects of hydrological processes. Therefore, the samples of rocks, soil, stream water, suspended and bed sediment were collected from the Buyukmelen River basin. Geochemical and water chemistry analyses of samples were performed at ALS Chemex laboratories, Canada. The bed sediments contain quartz, calcite, plagioclase, amphibole and clay minerals. The clay minerals in the suspended and bed sediment samples are kaolinite, smectite and illite. The water samples collected from the Aksu, Kucukmelen, Asarsu and Ugursuyu streams and the Buyukmelen River in winter (December 2005) and summer (June 2006) periods are rich in Ca and HCO 3 ions. The ions most abundant in rainfall sample are HCO 3 and Na. The ion compositions of surface waters have increased due to the weathering of limestone, agglomerate and volcanic sandstones, light acidic rainfall, semi-arid Black Sea climate in the Buyukmelen basin. The suspended sediment amount of the Buyukmelen River in the rainy season (December 2005) is 174 mg/l. According to the water contamination regulation of Turkey, the Buyukmelen Rivers belongs to quality class 4 based on Al ion and to quality class 3 based on Fe ion in winter period, and to quality class 2 based on Mn concentration in summer period. Chemical index of alteration (CIA) indices observed in the suspended and bed sediments (average of 55) suggest that their source area underwent moderate degrees of chemical weathering processes. According to Upper Continental Crust (UCC) values, the suspended sediment was rich in elements such as Fe 2O 3, CaO, MgO, MnO, TiO 2, P 2O 5, V, Cr, Co, Cu, Zn, As, Cd, Sb, Hg and Pb. The element concentrations of the suspended sediments were related to size fractionation, mainly of clay content. The mentioned enrichment was contributed by agglomerate, basalt, volcanic sandstone and graywacke from rocks in the study area. Source of ions such as Al, Fe, Mn, Ba, Cr, Co, Cu, Ni, Ti and Hg and major in the Buyukmelen River is interaction with rocks such as the agglomerate, basalt, andesite, volcanic sandstone and graywacke. As suggested by Singh et al. (2005), before weathering of some rocks in the Buyukmelen River basin, it was determined that they were graywacke and literanite based on the geochemistry of the suspended and bed sediments.

  2. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area.

    PubMed

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng; Hwang, Yaw-Huei; Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei

    2011-12-15

    High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23±0.03 mM) in pore waters and mobilization of As(III) (206.7±21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27±0.01 mM and 571.4±63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Spatial Variability of Metals in Surface Water and Sediment in the Langat River and Geochemical Factors That Influence Their Water-Sediment Interactions

    PubMed Central

    Lim, Wan Ying; Aris, Ahmad Zaharin; Zakaria, Mohamad Pauzi

    2012-01-01

    This paper determines the controlling factors that influence the metals' behavior water-sediment interaction facies and distribution of elemental content (75As, 111Cd, 59Co, 52Cr, 60Ni, and 208Pb) in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals' concentration varied among stations. Metal concentrations of water ranged between 0.08–24.71 μg/L for As, <0.01–0.53 μg/L for Cd, 0.06–6.22 μg/L for Co, 0.32–4.67 μg/L for Cr, 0.80–24.72 μg/L for Ni, and <0.005–6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47–30.04 mg/kg for As, 0.02–0.18 mg/kg for Cd, 0.87–4.66 mg/kg for Co, 4.31–29.04 mg/kg for Cr, 2.33–8.25 mg/kg for Ni and 5.57–55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb) were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans. PMID:22919346

  4. Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture- and shipping-impacted subtropical lake, China.

    PubMed

    Zeng, Qingfei; Jeppesen, Erik; Gu, Xiaohong; Mao, Zhigang; Chen, Huihui

    2018-06-01

    The spatial-temporal distribution of polycyclic aromatic hydrocarbons (PAHs), their source, and potential health risks were determined in overlying water and surface sediments from Chinese Lake Guchenghu, adjacent commercial mitten crab ponds and the connected Wushen Canal to assess the contamination profile of the area. The total PAHs concentrations in sediment and water were 86.7-1790 ng g -1 dry weight (dw) and 184-365 ng L -1 in summer and 184-3140 ng g -1 dw and 410-1160 ng L -1 in winter. Two- and 3-ring PAHs were the predominant compounds in water, while PAHs with 4-6 rings dominated in the sediment at both upstream and downstream sites. PAHs concentrations in water and sediment correlated significantly. Diagnostic ratios and positive matrix factorization (PMF) analyses indicated a strong influence of pyrogenic sources, principally biomass combustion and vehicle emission, on the concentrations of PAHs. The distribution, source identification, and mean effects range median quotients (mERMQ) analyses suggested that the most contaminated area was located downstream and upstream of the Wushen Canal, followed by Lake Guchenghu and a commercial crab pond area. From an ecological point of view, PAHs posed a potential risk to drinking water sources as the concentrations exceeded the guideline value of 0.05 μg L -1 . The risk posed by sediment PAHs appeared to be low except for the downstream sites, which showed a low to medium ecotoxicological risk. The total incremental lifetime cancer risks ranged between 10 -7 and 10 -5 , indicating a potential health risk for the local population when exposed to sediment from the area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.

    PubMed

    Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A; Mitra, Siddhartha

    2003-07-20

    A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.

  6. Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: a critical review.

    PubMed

    Srinivasan, Rangesh; Sorial, George A

    2011-01-01

    Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds--2-methyl isoborneol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed along with the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full-scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of MIB/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.

  7. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran.

    PubMed

    Yousefi, Mahmood; Saleh, Hossein Najafi; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nabizadeh, Ramin; Mohammadi, Ali Akbar

    2018-02-01

    This cross-sectional study was conducted on the drinking water resources of the city of Jolfa (East Azerbaijan province, Iran) from samples taken from 30 wells. Calcium hardness, pH, total alkalinity, TDS, temperature and other chemical parameters were measured using standard methods. The Langelier, Rayzner, Puckhorius and aggressive indices were calculated. The results showed that the Langelier, Reynar, Puckorius, Larson-skold and aggressive indices were 1.15 (± 0.43), 6.92 (± 0.54), 6.42 (± 0.9), 0.85 (± 0.72) and 12.79 (± 0.47), respectively. In terms of water classification, 30% of samples fell into the NaCl category and 26.6% in the NaHCO 3 category and 43.4% samples in the CaHCO 3 , MgHCO 3 and MgCl category. The sedimentation indices indicated that the water of the wells could be considered as corrosive.

  8. Quantification of Gravel Rural Road Sediment Production

    NASA Astrophysics Data System (ADS)

    Silliman, B. A.; Myers Toman, E.

    2014-12-01

    Unbound rural roads are thought to be one of the largest anthropogenic sources of sediment reaching stream channels in small watersheds. This sediment deposition can reduce water quality in the streams negatively impacting aquatic habitat as well as impacting municipal drinking water sources. These roads are thought to see an increase in construction and use in southeast Ohio due to the expansion of shale gas development in the region. This study set out to quantify the amount of sediment these rural roads are able to produce. A controlled rain event of 12.7 millimeters of rain over a half hour period was used to drive sediment production over a 0.03 kilometer section of gravel rural road. These 8 segments varied in many characteristics and produced from 2.0 to 8.4 kilograms of sediment per 0.03 kilometers of road with the average production over the 8 segments being 5.5 kilograms of sediment. Sediment production was not strongly correlated with road segment slope but traffic was found to increase sediment production from 1.1 to 3.9 times as much sediment after traffic use. These results will help inform watershed scale sediment budgeting, and inform best management practices for road maintenance and construction. This study also adds to the understanding of the impacts of rural road use and construction associated with the changing land use from agricultural to natural gas extraction.

  9. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances.

    PubMed

    Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-02-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.

  10. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    PubMed

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.

  11. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA

    DOE PAGES

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...

    2014-06-07

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  12. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied in order to reduce health risks.

  13. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China.

    PubMed

    Cheung, K C; Poon, B H T; Lan, C Y; Wong, M H

    2003-09-01

    The effects of anthropogenic activities, industrialization and urbanization on the accumulation of heavy metals and nutrients in sediments and water of rivers in the Pearl River Delta region were examined. Most sediments were seriously contaminated with Cd, Pb, and Zn in accordance with the classification by Hong Kong Environmental Protection Department. Total phosphorus (P) and nitrogen (N) concentrations in sediments ranged from 0.02% to 0.12% and 0.06% to 0.64%, respectively. High carbon (C), N, P and sulphur (S) levels at Yuen Long Creek were related to the discharge of industrial effluents along the river. The enrichment of P and ammoniacal-nitrogen (NH4+-N) in water were obvious. For most sites, the P concentration exceeded 0.1 mg/l, which is the recommended concentration in flowing water to encourage excessive growth of aquatic plants. Nine out of the 16 sites studied had NH4+-N concentration over 2 mg/l. The rivers in the south of Deep Bay (Hong Kong) had high nutrient exports compared with the rivers in the east region and western oceanic water. The concentrations of nitrate-nitrogen NO3--N in surface water were under the maximum contaminant level in public drinking water supplies (10 mg/l) except for one site. Although the concentrations of heavy metals in overlying water were low, their accumulations were significant. High contents of nickel (Ni) and zinc (Zn) in water were found at certain locations, suggesting the occurrence of some local contamination. These preliminary results indicated that river and sediment transported pollutants is likely one of the factors for the water quality degradation of Deep Bay water.

  14. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-12-15

    Many South Africans living in resource-poor settings with little or no access to pipe-borne water still rely on rivers as alternative water sources for drinking and other purposes. The poor microbial quality of such water bodies calls for appropriate monitoring. However, routine monitoring only takes into consideration the microbial quality of the water column, and does not include monitoring of the riverbed sediments for microbial pollution. This study sought to investigate the microbial quality of riverbed sediments in the Apies River, Gauteng Province, South Africa, using Escherichia coli as a faecal indicator organism and to investigate the impact of seasonal variation on its abundance. Weekly samples were collected at 10 sampling sites on the Apies River between May and August 2013 (dry season) and between January and February 2014 (wet season). E. coli was enumerated using the Colilert®-18 Quanti-Tray® 2000 system. All sites tested positive for E. coli. Wastewater treatment work effluents had the highest negative impact on the river water quality. Seasonal variations had an impact on the concentration of E. coli both in water and sediments with concentrations increasing during the wet season. A strong positive correlation was observed between temperature and the E. coli concentrations. We therefore conclude that the sediments of the Apies River are heavily polluted with faecal indicator bacteria and could also harbour other microorganisms including pathogens. The release of such pathogens into the water column as a result of the resuspension of sediments due to extreme events like floods or human activities could increase the health risk of the populations using the untreated river water for recreation and other household purposes. There is therefore an urgent need to reconsider and review the current South African guidelines for water quality monitoring to include sediments, so as to protect human health and other aquatic lives. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. High mobilization of arsenic, metals and rare earth elements in seepage waters driven by respiration of old allochthonous organic carbon.

    PubMed

    Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Machill, Susanne; Werner, Ingo; Dudel, E Gert

    2013-12-01

    Metal and metalloid mobilization processes within seepage water are of major concern in a range of water reservoir systems. The mobilization process of arsenic and heavy metals within a dam and sediments of a drinking water reservoir was investigated. Principle component analysis (PCA) on time series data of seepage water showed a clear positive correlation of arsenic with iron and DOC (dissolved organic carbon), and a negative correlation with nitrate due to respiratory processes. A relationship of reductive metal and metalloid mobilization with respiration of old carbon was shown. The system is influenced by sediment layers as well as a recent DOC input from degraded ombrotrophic peatbogs in the catchment area. The isotopic composition ((12)C, (13)C and (14)C) of DOC is altered along the path from basin to seepage water, but no significant changes in structural parameters (LC-OCD-OND, FT-IR) could be seen. DIC (dissolved inorganic carbon) in seepage water partly originates from respiratory processes, and a higher relationship of it with sediment carbon than with the DOC inventory of infiltrating water was found. This study revealed the interaction of respiratory processes with metal and metalloid mobilization in sediment water flows. In contrast to the presumption that emerging DOC via respiratory processes mainly controls arsenic and metal mobilization it could be shown that the presence of aged carbon compounds is essential. The findings emphasize the importance of aged organic carbon for DOC, DIC, arsenic and metal turnover.

  16. Mountain wetlands: efficient uranium filters - potential impacts

    USGS Publications Warehouse

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  17. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Higueras, Pablo L.; Adatto, Isaac; Lasorsa, Brenda K.

    2004-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almade??n District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almade??n area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almade??n are among the highest found at Hg mines worldwide. Mine wastes from Almade??n contain highly elevated Hg concentrations, ranging from 160 to 34 000 ??g/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almade??n mine is also contaminated, containing Hg as high as 13 000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 ??g/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almade??n mine and significant conversion to methyl-Hg in the surface environment.

  18. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    DOE PAGES

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; ...

    2016-01-01

    Water-born pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal microfluidic platform (SpinDx) for detection of bacterial pathogens using bead-based immunoassays. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by fluorescence microscopy. Our platform is fast (20 min), sensitive (10 3 CFU/mL), requires minimal sample preparation, and can detect multiple pathogens simultaneously with sensitivitymore » similar to that required by the EPA. We demonstrate detection of a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) at concentrations as low as 10 3 CFU/mL or 30 bacteria per reaction.« less

  19. Cylindrospermopsin degradation in sediments--the role of temperature, redox conditions, and dissolved organic carbon.

    PubMed

    Klitzke, Sondra; Fastner, Jutta

    2012-04-01

    One possible consequence of increasing water temperatures due to global warming in middle Europe is the proliferation of cylindrospermopsin-producing species from warmer regions. This may lead to more frequent and increased cylindrospermopsin (CYN) concentrations in surface waters. Hence, efficient elimination of CYN is important where contaminated surface waters are used as a resource for drinking water production via sediment passage. Sediments are often characterized by a lack of oxygen and low temperature (i.e. approx. 10 °C). The presence of dissolved organic carbon (DOC) is not only known to enhance but also to retard contaminant degradation by influencing the extent of lag phases. So far CYN degradation has only been investigated under oxic conditions and at room temperature. Therefore, the aim of our experiments was to understand CYN degradation, focusing on the effects of i) anoxic conditions, ii) low temperature (i.e. 10 °C) in comparison to room temperature (23±4 °C) and iii) DOC on lag phases. We used two natural sandy sediments (virgin and preconditioned) and surface water to conduct closed-loop column experiments. Anoxic conditions either inhibited CYN degradation completely or retarded CYN breakdown in comparison to oxic conditions (T(1/2) (oxic)=2.4 days, T(1/2) (anoxic)=23.6 days). A decrease in temperature from 20 °C to 10 °C slowed down degradation rates by a factor of 10. The presence of DOC shortened lag phases in virgin sediments at room temperature but induced a lag phase in preconditioned sediments at 10 °C, indicating potential substrate competition. These results show that information on physico-chemical conditions in sediments is crucial to assess the risk of CYN breakthrough. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  1. Installation Restoration Program. Remedial Investigation Report. Volk Field Air National Guard, Camp Douglas, Wisconsin. Volume 1.

    DTIC Science & Technology

    1993-09-01

    Surface Area Contacted Per Event SB soil boring Sb Antimony SD sediment sample SDG Sample Delivery Group SDWA Safe Drinking Water Act Se Selenium sec second...and were laid out using a Brunton compass and measuring tape. The station locations were gridded at intervals of 25 feet. Measurements indicating the

  2. Effect of sediment settling on controlling golden mussel invasion in water transfer project

    NASA Astrophysics Data System (ADS)

    Xu, Mengzhen; Wang, Zhaoyin; Bogen, Jim; Pan, Baozhu

    2013-04-01

    Inter-basin water transfer projects have been widely used to solve uneven distribution of water resources and water shortage in China. Along with the transferring of water resources, golden mussel (Limnoperna fortunei), the filter-collector macro-invertebrate species originating from southern China has also been inadvertently transferred to new aquatic environment, resulting in quick and uncontrolled spread of the species. The golden mussels are invasive by nature and endowed with a strong byssus for attaching onto their habitat, allowing them to easily invade natural and artificial aquatic systems, which was resulted in high-density golden mussel attachment that causes serious bio-fouling. Invasion and bio-fouling by golden mussels in water transfer systems has drawn attention widely because it has resulted in high resistance to water flow, corrosion of pipe walls and even clogging of tunnels, as well as causing water pollution and ecological imbalance in the regions that receive water infested with golden mussels. Field investigation was conducted along the East River, which is the main drinking water resource for Cantong province and Hongkong, China, to study the natural habitats of golden mussels. Surveys of water transfer tunnels which carry water from the East River to several big cities in Cantong province were done to study golden mussel invasion and attachment in tunnels. It is found that in the natural habitat, golden mussels mainly attach to bedrock and bank stones and solid surfaces facing upstream, while no golden mussels are attached on the surfaces facing downstream and suffering sediment deposition. In the water transfer tunnels, golden mussel attachment densities of 40,000 individuals/m2 mainly occurred on the portion of tunnel walls which face downwards and thus avoid sedimentation. An experiment was designed to study the effect of sediment settling on golden mussel attachment. The results showed that settling of fine sediment particles affects golden mussels by preventing them from filtering food and oxygen from water, and in this way killing them. The attachment density decreased with increased sediment deposition. Golden mussel density decreased by about 70-90% when the sedimentation rate increased by 3-6 times. Therefore, spraying with fine sediment or creating hyper-concentration of sediment water to treat golden mussels before they enter tunnels is recommended as an effective strategy for controlling golden mussel invasion and high-density bio-fouling. Key words: golden mussel invasion; bio-fouling; sediment settling; habitat; controlling strategy

  3. Prioritizing pesticide compounds for analytical methods development

    USGS Publications Warehouse

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1 compounds are high priority as new analytes. The objective for analytical methods development is to design an integrated analytical strategy that includes as many of the Tier 1 pesticide compounds as possible in a relatively few, cost-effective methods. More than 60 percent of the Tier 1 compounds are high priority because they are anticipated to be present at concentrations approaching levels that could be of concern to human health or aquatic life in surface water or groundwater. An additional 17 percent of Tier 1 compounds were frequently detected in monitoring studies, but either were not measured at levels potentially relevant to humans or aquatic organisms, or do not have benchmarks available with which to compare concentrations. The remaining 21 percent are pesticide degradates that were included because their parent pesticides were in Tier 1. Tier 1 pesticide compounds for water span all major pesticide use groups and a diverse range of chemical classes, with herbicides and their degradates composing half of compounds. Many of the high priority pesticide compounds also are in several national regulatory programs for water, including those that are regulated in drinking water by the U.S. Environmental Protection Agency under the Safe Drinking Water Act and those that are on the latest Contaminant Candidate List. For sediment, a total of 175 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods available for monitoring and studies. More than 60 percent of these compounds are included in some USGS analytical method; however, some are spread across several research methods that are expensive to perform, and monitoring data are not extensive for many compounds. The remaining Tier 1 compounds for sediment are high priority as new analytes. The objective for analytical methods development for sediment is to enhance an existing analytical method that currently includes nearly half of the pesticide compounds in Tier 1 by adding as many additional Tier 1 compounds as are analytically compatible. About 35 percent of the Tier 1 compounds for sediment are high priority on the basis of measured occurrence. A total of 74 compounds, or 42 percent, are high priority on the basis of predicted likelihood of occurrence according to physical-chemical properties, and either have potential toxicity to aquatic life, high pesticide useage, or both. The remaining 22 percent of Tier 1 pesticide compounds were either degradates of Tier 1 parent compounds or included for other reasons. As with water, the Tier 1 pesticide compounds for sediment are distributed across the major pesticide-use groups; insecticides and their degradates are the largest fraction, making up 45 percent of Tier 1. In contrast to water, organochlorines, at 17 percent, are the largest chemical class for Tier 1 in sediment, which is to be expected because there is continued widespread detection in sediments of persistent organochlorine pesticides and their degradates at concentrations high enough for potential effects on aquatic life. Compared to water, there are fewer available benchmarks with which to compare contaminant concentrations in sediment, but a total of 19 Tier 1 compounds have at least one sediment benchmark or screening value for aquatic organisms. Of the 175 compounds in Tier 1, 77 percent have high aquatic-life toxicity, as defined for this process. This evaluation of pesticides and degradates resulted in two lists of compounds that are priorities for USGS analytical methods development, one for water and one for sediment. These lists will be used as the basis for redesigning and enhancing USGS analytical capabilities for pesticides in order to capture as many high-priority pesticide compounds as possible using an economically feasible approach.

  4. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Genthe, Bettina; Momba, Maggy Ndombo Benteke

    2016-10-01

    Although higher microbial concentrations have been reported in sediments than in the overlying water column, most quantitative microbial risk assessment (QMRA) studies have not clearly indicated the contribution of sediment-borne pathogens to estimated risks. Thus, the present study aimed at determining the public health risk associated with exposure to pathogenic bacteria in polluted river water under undisturbed conditions and conditions of sediment resuspension in the Apies River, Gauteng, South Africa. Microbial pathogens were isolated and identified using culture and molecular methods. The beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with the various pathogens, following accidental/intentional ingestion of 1mL or 100mL (or 50mL) of untreated river water. Mean wet season Escherichia coli counts ranged between 5.8E+01 and 8.8E+04MPN/100mL (water column) and between 2.40E+03 and 1.28E+05MPN/100mL (sediments). Mean dry season E. coli counts ranged between 5.11E+00 and 3.40E+03MPN/100mL (water column) and between 5.09E+00 and 6.30E+03MPN/100mL (sediments). Overall (water and sediments) Vibrio cholerae was the most detected pathogen (58.8%) followed by Salmonella spp. (23.9%) and Shigella (10.1%). Ingestion of 1mL of river water could lead to 0%-4% and 1%-74% Pi with E. coli during the dry and wet season, respectively. During the dry season, the Pi with V. cholerae, Salmonella spp. and Shigella spp. were 0%-1.39%, 0%-4.11% and 0%-0.16% respectively, depending on volume of water ingested. The risks of infections with all microorganisms increased during the wet season. A 2-log increase in water E. coli count following sediments disturbance led to approximately 10 times higher Pi with E. coli than when sediments were undisturbed. Therefore, the use of the untreated water from the Apies River for drinking, household purposes or recreational activities poses a potential health risk to the users of the river. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reconnaissance-level assessment of water and bottom-sediment quality, including pesticides and mercury, in Yankton Sioux Tribe wetlands, Charles Mix County, South Dakota, June-July 2005

    USGS Publications Warehouse

    Schaap, Bryan D.; Bartholomay, Roy C.

    2006-01-01

    During June and July 2005, water and bottom-sediment samples were collected from selected Yankton Sioux Tribe wetlands within the historic Reservation area of eastern Charles Mix County as part of a reconnaissance-level assessment by the U.S. Geological Survey and Yankton Sioux Tribe. The water samples were analyzed for pesticides and mercury species. In addition, the water samples were analyzed for physical properties and chemical constituents that might help further characterize the water quality of the wetlands. The bottom-sediment samples were analyzed for mercury species. During June 2005, water samples were collected from 19 wetlands and were analyzed for 61 widely used pesticide compounds. Many pesticides were not detected in any of the water samples and many others were detected only at low concentrations in a few of the samples. Thirteen pesticides were detected in water samples from at least one of the wetlands. Atrazine and de-ethyl atrazine were detected at each of the 19 wetlands. The minimum, maximum, and median dissolved atrazine concentrations were 0.056, 0.567, and 0.151 microgram per liter (?g/L), respectively. Four pesticides (alachlor, carbaryl, chlorpyrifos, and dicamba) were detected in only one wetland each. The number of pesticides detected in any of the 19 wetlands ranged from 3 to 8, with a median of 6. In addition to the results for this study, recent previous studies have frequently found atrazine in Lake Andes and the Missouri River, but none of the atrazine concentrations have been greater than 3 ?g/L, the U.S. Environmental Protection Agency's Maximum Contaminant Level for atrazine in drinking water. During June and July 2005, water and bottom-sediment samples were collected from 10 wetlands. Water samples from each of the wetlands were analyzed for major ions, organic carbon, and mercury species, and bottom-sediment samples were analyzed for mercury species. For the whole-water samples, the total mercury concentrations ranged from 1.11 to 29.65 nanograms per liter (ng/L), with a median of 10.56 ng/L. The methylmercury concentrations ranged from 0.45 to 14.03 ng/L, with a median of 2.28 ng/L. For the bottom-sediment samples, the total mercury concentration ranged from 21.3 to 74.6 nanograms per gram (ng/g), with a median of 54.2 ng/g. The methylmercury concentrations ranged from <0.11 to 2.04 ng/g, with a median of 0.78 ng/g. The total mercury concentrations in the water samples were all much less than 2 ?g/L (2,000 ng/L), the U.S. Environmental Protection Agency's Maximum Contaminant Level for mercury in drinking water. However, water samples from four of the wetlands had concentrations larger than 0.012 ?g/L (12 ng/L), the State of South Dakota's chronic standard for surface waters, including wetlands. Maximum methylmercury concentrations for this study are larger than reported concentrations for wetlands in North Dakota and concentrations reported for the Cheyenne River Indian Reservation in South Dakota.

  6. Iron Isotope Variations in Reduced Groundwater and in Drinking Water Supplies: A Case Study of Hanoi, Vietnam

    NASA Astrophysics Data System (ADS)

    Teutsch, N.; Berg, M.; von Gunten, U.; Halliday, A.

    2004-12-01

    In reduced groundwater iron is involved in biotic and abiotic transformation processes, both of which could lead to iron isotope fractionation. The reduced groundwater aquifers in the area of the Vietnamese capital of Hanoi are the main drinking water sources for the city. These groundwaters contain arsenic, which imposes a serious health threat to millions of people. Dissolved arsenic is related to the reducing conditions prevalent in the groundwater, and iron and arsenic contents are correlated in the sediments. We are employing iron isotope composition as a tool to better understand the processes leading to the transformation of iron in the groundwater and its role in various biogeochemical processes in reduced environments. Drinking water is supplied to the city of Hanoi from several water treatment plants (WTP) which pump the raw groundwater from a lower aquifer, while the rural surroundings pump untreated groundwater from an upper aquifer by private tubewells. Surface water from the Red River delta is the main source of recharge to these two aquifers. Due to high content of particulate natural organic matter (NOM) in the sediment leading to extensive microbial activity, the groundwaters are anoxic and rich in dissolved iron(II). The iron(II) removal in the WTPs is carried by a multi-step treatment including aeration, settling, filtration, and chlorination. We have collected natural groundwater samples for isotopic analysis from two aquifers at several locations, a groundwater depth profile and its corresponding sediment phases from the upper aquifer and the underlying aquitard, raw and treated water from several WTPs, as well as the corresponding iron(III) precipitates. The iron concentrations of groundwaters analysed in this study range from 3 to 28 mg/L and δ 57Fe (57/54 deviation from IRMM 014) values vary between -1.2 and +1.5 ‰ . The sediment depth profile has a δ 57Fe around +0.3 ‰ , which implies that the high values obtained in the groundwater nearby (+0.9 - +1.2 ‰ ) cannot be explained by a simple reductive dissolution process, which would be expected to favour the lighter Fe isotopes. Removal of iron in the WTP is followed by a strong decrease of δ 57Fe, probably due to formation of heavier Fe(III) phases. High δ 57Fe values are found in both aquifers and correspond to high concentrations of iron in the groundwater. We hypothesize that the iron isotopic variations observed so far are an indication for iron sources and transformation processes that could not be detected by only measuring dissolved iron concentrations. Current investigations will further explore this hypothesis.

  7. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  8. Forest Road Erosion, Sediment Transport, and Model Validation in the Southern Appalachians

    Treesearch

    Mark S. Riedel; James M. Vose

    2002-01-01

    Abstract: The Conasauga River Watershed, located in northern Georgia and southern Tennessee, has one of the most diverse aquatic ecosystems in this region and is currently being considered for designation as a wild and scenic river. The Conasauga River also serves as a major source of drinking water for numerous large cities. Due to the close...

  9. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident.

    PubMed

    Zhao, Xue-Min; Yao, Ling-Ai; Ma, Qian-Li; Zhou, Guang-Jie; Wang, Li; Fang, Qiao-Li; Xu, Zhen-Cheng

    2018-03-01

    In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ < 1) between December 2012 to December 2013. Cd concentration in sediment in polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mercury and cadmium contamination of irrigation water, sediment, soil and shallow groundwater in a wastewater-irrigated field in Tianjin, China.

    PubMed

    Wu, G-H; Cao, S-S

    2010-03-01

    We investigated the concentrations of Hg, Cd, Pb and As in samples of irrigation water, sediment, soil and groundwater from a field in Tianjin that was irrigated with wastewater. The results showed that the concentrations (Hg, 0.82 microg/L; Cd, 0.18 microg/L; Pb, 1.5 microg/L; As, 8.02 microg/L) in the irrigation water did not exceed the China Surface Water Quality Standard or the maximum concentrations in irrigation water recommended by the FAO. The concentrations of metals in the groundwater of wells (Hg, 0.016 microg/L; Cd, 0.128 microg/L; Pb, 0.25 microg/L; As, 4.65 microg/L) were lower than China Groundwater Quality Standard and the WHO guideline values for drinking water. The groundwater had not yet been contaminated through vertical infiltration-induced leaching. However, a substantial buildup of Hg and Cd in river sediments (I(geo) for Hg and Cd; 5.24 and 3.04, respectively) and wastewater-irrigated soils (I(geo) for Hg and Cd; 2.50 and 3.09, respectively) was observed. Taken together, these results indicated that irrigation with wastewater damaged the soil quality over the long term and that metals more easily accumulated in vegetable fields than rice fields.

  11. Determination of heavy metal levels in water, sediment and tissues of tench (Tinca tinca L., 1758) from Beyşehir Lake (Turkey).

    PubMed

    Tekin-Ozan, Selda

    2008-10-01

    In the present study, some heavy metals (Cu, Fe, Zn and Mn) were seasonally determined in water, sediment and some tissues of fish Tinca tinca from Beyşehir Lake, which is an important bird nesting and visiting area, a water source for irrigation and drinking. In the water, Fe has the highest concentrations among the studied metals. Generally, the metal concentrations increased in the hottest period decreased in warm seasons. Results for levels in water were compared with national and international water quality guidelines, as well as literature data reported for the lakes. Fe was the highest in sediment samples, also Cu and Zn were the highest in spring, while Fe and Mn were in autumn. Among the heavy metals studied, Cu and Mn were below the detection limits in some tissues. Generally, higher concentrations of the tested metals were found in the summer and winter, compared with those during the autumn and spring seasons. High levels of heavy metals were found in liver of T. tinca, while low levels in muscle samples. Metal concentrations in the muscle of examined fish were within the safety permissible levels for human consumption. The present study shows that precautions need to be taken in order to prevent further heavy metal pollution.

  12. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    USGS Publications Warehouse

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes in water-quality conditions through time, characterizing potentially harmful cyanobacterial events, and indicating changes in water-quality conditions that may affect drinking-water treatment processes.

  13. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco.

    PubMed

    El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul

    2017-10-01

    This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Roles of Ferrous and Sulfide Ions in the Fromation of Algae—Induced Black Bloom in Hyper Eutrophic Freshwater Lakes in China

    NASA Astrophysics Data System (ADS)

    Shen, Q.; Gao, Q.; Yu, C.; Zhang, L.; Wang, Z.

    2016-12-01

    Water column hypoxia is one of the most serious threats from eutrophication to large water bodies. In the past several years, black bloom phenomenon has become a serious ecosystem disaster in some important severe eutrophic lakes in China, which caused not only environment degradation but also drinking water crisis. Black color and offensive odour of the water column are two notorious sensory features. High Fe2+ and ΣH2S (ΣS2-=S2-+HS-+H2S) were typical characteristics of the black bloom water. Analysis of the black substances of the black bloom water using X-ray photoelectron spectroscopy indicated that abundant FeS were included in these particulates. The black color of the black bloom water could be attributed to the formation of FeS in the anoxic/anaerobic water column. Field investigation and laboratory incubation experiment indicated that the formation of black bloom was closely related to the Fe2+ and ΣH2S in surface sediments. The Fe2+ concentration in surface sediment pore water was high and showed a release tendency from the sediment water interface to the overlying water during the formation of black bloom, while the similar trend was found in ΣH2S production at sediment water micro-interface. Both Fe2+ and ΣS2- affected by oxic and redox conditions, respectively, contributed to the formation of black bloom significantly. However, ΣS2- was found to be the limiting factor directly controlling the outbreak of black bloom. Analysis of microbioal community diversity demonstrated that sulfate reducing bacteria (SRB) were abundant in the surface sediment of black bloom, which strongly influenced the production and accumulation of ΣH2S and drove the formation of black bloom.

  15. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    USGS Publications Warehouse

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal water-quality standards for common ion and nutrient concentrations with the exception of manganese, which is common in central New York where water sourced from shale rock or glacial sediments derived from shale bedrock naturally develops higher manganese concentrations. One shallow dug well also had elevated sodium and chloride concentrations that are likely sourced from road salt runoff from two nearby roads.

  16. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in the Yuma Valley, Arizona, 1995

    USGS Publications Warehouse

    Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William

    1997-01-01

    Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con

  17. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    USGS Publications Warehouse

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  18. Molecular survey of occurrence and quantity of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in municipal drinking water storage tank sediments.

    PubMed

    Lu, J; Struewing, I; Yelton, S; Ashbolt, N

    2015-07-01

    To examine the occurrence and quantity of potential pathogens and an indicator of microbial contamination in the sediments of municipal drinking water storage tanks (MDWSTs), given the absence of such data across the United States. Sediment samples (87 MDWST) from eighteen locations across ten states of the United States were collected and assayed by qPCR for a range of potential enteric and opportunistic microbial pathogens and a sewage-associated Bacteroides marker. Potential opportunistic pathogens dominated, with the highest detection of occurrence (per cent positive detection; average cell equivalence (CE)) being Mycobacterium spp. (88·9%; 6·7 ± 8·5 × 10(4) CE g(-1) ), followed by Legionella spp. (66·7%; 5·2 ± 5·9 × 10(3) CE g(-1) ), Pseudomonas aeruginosa (22·2%; 250 ± 880 CE g(-1) ) and Acanthamoeba spp. (38·9%; 53 ± 70 CE g(-1) ), with no detected Naegleria fowleri. Most enteric pathogens (Campylobacter jejuni, Escherichia coli 0157:H7, Salmonella enterica, Cryptosporidium parvum and Giardia duodenalis) were not detected, except for a trace signal for Campylobacter spp. There was significant correlation between the qPCR signals of Legionella spp. and Acanthamoeba spp. (R(2) = 0·61, n = 87, P = 0·0001). Diverse Legionella spp. including Leg. pneumophila, Leg. pneumophila sg1 and Leg. anisa were identified, each of which might cause legionellosis. These results imply that potential opportunistic pathogens are common within MDWST sediments and could act as a source of microbial contamination, but need downstream growth to be of potential concern. The results imply that opportunistic pathogen risks may need to be managed by regular tank cleaning or other management practices. 2015 The Society for Applied Microbiology.

  19. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299.

    PubMed

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-05-04

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h-1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53%±1.69% and 58.65%±0.61%, respectively. The ammonia removal rate reached 44.12%±1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5-9 mg/L, pH 8-9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41%±3.17% (sterilized) and 44.88%±4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p<0.05). High C/N was beneficial for nitrate reduction (p<0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p>0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem.

  20. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.

  1. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.

  2. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    USGS Publications Warehouse

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62 milligrams per liter), and lowest in Fresh Pond (54 milligrams per liter). Bed sediments in Hobbs Brook and Stony Brook Reservoirs were enriched in iron, manganese, and arsenic relative to those in the impounded lower Charles River in Boston, Massachusetts. Trophic state indices, calculated for each reservoir based on nutrient concentrations, water-column transparency, and phytoplankton abundances, indicated that the upper and middle basins of Hobbs Brook Reservoir were moderately to highly productive and likely to produce algal blooms; the lower basin of Hobbs Brook Reservoir and Stony Brook Reservoir were similar and intermediate in productivity, and Fresh Pond was relatively unproductive and unlikely to produce algal blooms. This pattern is likely due to sedimentation of organic and inorganic particles in the three basins of Hobbs Brook Reservoir and in Stony Brook Reservoir. Molar ratios of nitrogen to phosphorus ranged from 55 in Stony Brook Reservoir to 120 in Hobbs Brook Reservoir, indicating that phytoplankton algae in these water bodies may be phosphorus limited and therefore sensitive to small increases in phosphorus loading from the drainage basin. Nitrogen loads were found to be less important than phosphorus to the trophic condition of the reservoirs. Hobbs Brook and Stony Brook, the two principle streams draining the Cambridge drinking-water source area, differed in their relative contributions to many of the estimated constituent loads. The estimated load of fecal coliform bacteria was more than seven times larger for the mainly residential Stony Brook subbasin upstream from Kendal Green, Mass., than it was for the more commercial and industrial Hobbs Brook subbasin, though the drainage areas of the two subbasins differ only by about 20 percent. The State standard for fecal coliform bacteria in streams in the Cambridge drinking-water source area (20 colony forming units per 100 milliliters) was exceeded at all sampling stations. Estimated s

  3. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China.

    PubMed

    Xing, Liqun; Zhang, Qin; Sun, Xu; Zhu, Hongxia; Zhang, Shenghu; Xu, Huaizhou

    2018-04-30

    Organophosphate esters (OPEs) are ubiquitous in the environment and pose a potential threat to ecosystem and human health. This study investigated the concentrations, distributions and risk of 12 OPEs in surface water and sediment from Luoma Lake, Fangting River and Yi River. Solid-phase extraction (SPE) method were used to extract OPEs from water samples, ultrasonic process and SPE method were used to extract OPEs from sediment samples, and the extracts were finally analyzed using the HPLC-MS/MS. The results revealed that the median and maximum concentrations of ΣOPEs were 73.9 and 1066 ng/L in surface water, and were 28.7 and 35.9 ng/g in sediment, respectively. Tris(2-chloroethyl) phosphate (TCEP) and trimethyl phosphate (TMP) were the most abundant OPEs in the surface water with median concentrations of 24.3 and 16.4 ng/L in Luoma Lake, respectively. Triethyl phosphate (TEP) was the most abundant OPE in the sediment with a median concentrations of 28.9 ng/g. However, tricresyl phosphate (TCrP) and ethylhexyl diphenyl phosphate (EHDPP) predominantly contributed to the ecological risk with respective median risk quotients 0.07 and 0.01 for surface water in Luoma Lake. TEP and TCrP were the most significant contributors to the ecological risk with respective median risk quotients of 6.4 × 10 -4 and 5.6 × 10 -4 for sediment. It was also found that inflowing Fangting River could be the major pollution source to Luoma Lake. The no-cancer and carcinogenic risks of OPEs were lower than the theoretical threshold of risk. The study found that the ecological and human health risks due to the exposure to OPEs were currently acceptable. In other words, the Luoma Lake was relatively safer to use as a drinking water source in urban areas in the context of OPEs pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Lahore city, Pakistan.

    PubMed

    Aiman, Umme; Mahmood, Adeel; Waheed, Sidra; Malik, Riffat Naseem

    2016-02-01

    The present study was designed to probe the levels of heavy metals (Cd, Pb, Cr, Mn, Cu, Ni, Zn and Fe) for different environmental matrices (ground water, wastewater, sediment, soil, dust and leachates). Impact of solid waste dumping site on nearby human population has also been assessed. The results revealed that concentration of Pb, Fe, Cd, Mn and Cu surpassed the permissible limits of World Health Organization (WHO) and US Environmental Protection Agency (USEPA) in water, soil, sediments, while aforesaid metals in wastewater were above the National Environmental Quality Standards (NEQS). Our results for enrichment factor (EF) and geo-accumulation (I(geo)) values revealed that soils and sediments were contaminated with Cd, Pb, Ni and Mn. The Cd content caused a considerably high potential ecological risk (E(r)(i) ≥ 320) in soil and sediments. Pb and Cd caused high health risk (HR > 1) to local residents via dust and drinking water intake. Potential cancer risk for Pb was higher than USEPA standard values (1.0E-06-1.0E-04) through water intake. The Mehmood Booti dumping site is a potential source of toxic pollutants contamination to the surrounding population. It is recommended to take proper actions for its management to resolve this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment.

    PubMed

    Ayotte, Joseph D; Nolan, Bernard T; Nuckols, John R; Cantor, Kenneth P; Robinson, Gilpin R; Baris, Dalsu; Hayes, Laura; Karagas, Margaret; Bress, William; Silverman, Debra T; Lubin, Jay H

    2006-06-01

    We developed a process-based model to predict the probability of arsenic exceeding 5 microg/L in drinking water wells in New England bedrock aquifers. The model is being used for exposure assessment in an epidemiologic study of bladder cancer. One important study hypothesis that may explain increased bladder cancer risk is elevated concentrations of inorganic arsenic in drinking water. In eastern New England, 20-30% of private wells exceed the arsenic drinking water standard of 10 micrograms per liter. Our predictive model significantly improves the understanding of factors associated with arsenic contamination in New England. Specific rock types, high arsenic concentrations in stream sediments, geochemical factors related to areas of Pleistocene marine inundation and proximity to intrusive granitic plutons, and hydrologic and landscape variables relating to groundwater residence time increase the probability of arsenic occurrence in groundwater. Previous studies suggest that arsenic in bedrock groundwater may be partly from past arsenical pesticide use. Variables representing historic agricultural inputs do not improve the model, indicating that this source does not significantly contribute to current arsenic concentrations. Due to the complexity of the fractured bedrock aquifers in the region, well depth and related variables also are not significant predictors.

  6. Relations of water-quality constituent concentrations to surrogate measurements in the lower Platte River corridor, Nebraska, 2007 through 2011

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Soenksen, Philip J.; Rus, David L.

    2014-01-01

    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The U.S. Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebr. [USGS site 06800500]; Salt Creek near Ashland, Nebr. [USGS site 06805000]; and Platte River at Louisville, Nebr. [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions. Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models. Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus, orthophosphate, chloride, atrazine, acetochlor, suspended sediment, and E. coli. Models developed for Salt Creek included nitrate plus nitrite, total Kjeldahl nitrogen, suspended sediment, and E. coli. Lastly, models developed for the Platte River site included total Kjeldahl nitrogen, total phosphorus, sodium, metolachlor, atrazine, acetochlor, suspended sediment, and E. coli.

  7. Impact of climate change on persistent turbidity in the water supply system of a Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Chung, S. W.; Park, H. S.; Lim, K. J.; Kang, B.

    2016-12-01

    Persistent turbidity, a long-term resuspension of fine particles in aquatic system, is one of the major water quality concerns for the sustainable management of water supply systems in metropolitan areas. Turbid water has undesirable aesthetic and recreational appeal and may have harmful effect on ecosystem health, in addition to increasing water treatment costs in drinking water supply systems. These concerns have been more intensified as the strength and frequency of rainfall events increase by climate change in the Asian monsoon climate region, including Korea. The aim of this study was to assess the impact of potential climate change on the persistent turbidity of the Han River systems that supplies drinking water to approximately 25 million consumers dwelling in the Seoul Metropolitan areas. A comprehensive numerical and statistical modeling suit has been developed and applied to the systems for the projection of future climate, responding hydrological and soil erosion processes in the watershed, and sediment transport processes in the rivers and reservoirs systems. The down-scaled 100 years of climatic data from General Circulation Model (HadGEM2-AO) based on the IPCC's greenhouse-gas emissions scenario RCP4.5 were used for the forcing data of the watershed and river-reservoir models. As the results, an extreme flood event that may incur significant persistent turbidity was projected to be occurred five times in the future. The threshold of a flood event that is classified as an extreme event was based on the historical flood event that occurred on July of 2006 when turbid water had persisted within the Soyang Reservoir and discharged to the downstream of the Han River systems over the year until May of the following year. A two-dimensional river and reservoir model simulated the transport and dynamics of suspended sediments in Soyang Reservoir, and routed the discharged turbid water to the downstream of Paldang Reservoir, in which most of the drinking water offtake facilities are located. The statistical features of the extreme flood events, their impact on the persistent turbidity on the downstream rivers and reservoirs, and consequently on the water supply system of the Seoul Metropolitan areas will be presented in the special session.

  8. Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor.

    PubMed

    Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M; De Seta, Graciela E; Reina, Fernando D; Panigatti, Cecilia; Litter, Marta I; Harms, Hauke

    2015-05-21

    Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron.

  9. Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor

    PubMed Central

    Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M.; De Seta, Graciela E.; Reina, Fernando D.; Panigatti, Cecilia; Litter, Marta I.; Harms, Hauke

    2015-01-01

    Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron. PMID:26006123

  10. Estuarine water-quality and sediment data, and surface-water and ground-water-quality data, Naval Submarine Base Kings Bay, Camden County, Georgia, January 1999

    USGS Publications Warehouse

    Leeth, David C.; Holloway, Owen G.

    2000-01-01

    In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).

  11. Water quality in the central Columbia Plateau, Washington and Idaho, 1992-95

    USGS Publications Warehouse

    Williamson, Alex K.; Munn, Mark D.; Ryker, Sarah J.; Wagner, Richard J.; Ebbert, James C.; Vanderpool, Ann M.

    1998-01-01

    Water quality in the Central Columbia Plateau of eastern Washington and western Idaho has been adversely affected by agriculture, especially in irrigated areas, according to the results of a five-year investigation by the U. S. Geological Survey (USGS). Some improvements, however, are noticeable, such as less sediment being washed into streams. These improvements may be the result of increased use of best management practices (BMPs) by area farmers. Areas with intensive fertilizer use and irrigation, such as in the Columbia Basin Irrigation Project (CBIP), showed the greatest impacts on ground-water quality. (The CBIP includes parts of Franklin, Grant, and Adams counties in eastern Washington.)

  12. Water-quality and biological data for selected streams, lakes, and wells in the High Point Lake watershed, Guilford County, North Carolina, 1988-89

    USGS Publications Warehouse

    Davenport, M.S.

    1993-01-01

    Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.

  13. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health.

    PubMed

    Mohamed, Zakaria A; Deyab, Mohamed Ali; Abou-Dobara, Mohamed I; El-Sayed, Ahmad K; El-Raghi, Wesam M

    2015-08-01

    Monitoring of cyanobacteria and their associated toxins has intensified in raw water sources of drinking water treatment plants (WTPs) in most countries of the world. However, it is not explored yet for Egyptian WTPs. Therefore, this study was undertaken to investigate the occurrence of cyanobacteria and their microcystin (MC) toxins in the Nile River source water of Damietta WTP during warm months (April-September 2013) and to evaluate the removal efficiency of both cyanobacterial cells and MCs by conventional methods used in this plant as a representative of Egyptian drinking WTPs. The results showed that the source water at the intake of Damietta WTP contained dense cyanobacterial population (1.1-6.6 × 107 cells L(-1)) dominated by Microcystis aeruginosa. This bloom was found to produce MC-RR and MC-LR. Both cyanobacterial cell density and intracellular MCs in the intake source water increased with the increase in temperature and nutrients during the study period, with maximum values obtained in August. During treatment processes, cyanobacterial cells were incompletely removed by coagulation/flocculation/sedimentation (C/F/S; 91-96.8%) or sand filtration (93.3-98.9%). Coagulation/flocculation induced the release of MCs into the ambient water, and the toxins were not completely removed or degraded during further treatment stages (filtration and chlorination). MCs in outflow tank water were detected in high concentrations (1.1-3.6 μg L - 1), exceeding WHO provisional guideline value of 1 μg L - 1 for MC-LR in drinking water. Based on this study, regular monitoring of cyanobacteria and their cyanotoxins in the intake source water and at different stages at all WTPs is necessary to provide safe drinking water to consumers or to prevent exposure of consumers to hazardous cyanobacterial metabolites.

  14. [Microcystin safety study during Cyanobacteria removal by pressure enhanced coagulation process].

    PubMed

    Jiang, Xin-Yue; Luan, Qing; Cong, Hai-Bing; Xu, Si-Tao; Liu, Yu-Jiao; Zhu, Xue-Yuan

    2014-11-01

    Pressure enhanced coagulation and sedimentation technique is an effective way for blue algae treatment. It is not clear whether Cyanobacteria balloon rupture will cause Cyanobacteria cells rupture, resulting in high intracellular concentrations of microcystin LR leak into the water, affecting drinking water safety. Therefore, in this study experimental comparative study of pressure and pre-oxidation of water containing Cyanobacteria was carried out to examine the microcystin LR concentration changes and Cyanobacteria removal efficiency. The results showed that microcystin concentration increase was not significant by the pre-treatment with Cyanobacteria water pressure, while the pre-oxidation process caused a significant increase in the concentration of microcystin. After 0.5-0.8 MPa pressure coagulation and sedimentation, removal of Cyanobacteria basically was over 90%, up to 93.5%, while the removal rate by pre-oxidation was low and unstable. Effluent turbidity is also significantly better in the pre-pressure method than the pre-oxidation. The results indicated that pressure enhanced coagulation is a safe and reliable method for Cyanobacteria removal.

  15. A hydrological and geochemical analysis of chromium mobilization from serpentinized ultramafic rocks and serpentine soils at the McLaughlin Natural Reserve, Lake County, California

    NASA Astrophysics Data System (ADS)

    McClain, C.; Maher, K.; Fendorf, S.

    2011-12-01

    California recently adopted the nation's first Public Health Goal (PHG) for hexavalent chromium (Cr(VI)) in drinking water (0.02 μg/L) because recent studies show that Cr(VI) may be carcinogenic through ingestion. Approximately one third of drinking water sources in California tested for Cr(VI) have levels above 1 μg/L and thus may pose a risk to human health. Cr(VI) can enter drinking water directly from anthropogenic sources or from the release of Cr(III) in natural geogenic sources such as rocks, sediments and soils, and subsequent oxidation to Cr(VI) by manganese oxides. Ultramafic rocks and related soils and sediments have elevated Cr and Mn concentrations compared to other rock types. To study the release of Cr(VI) to water from geogenic sources we examined the local hydrology, groundwater, surface water, soils and sediment compositions within a serpentinized ultramafic terrain along Hunting Creek, a tributary to Putah Creek, at the McLaughlin Natural Reserve in the California Coast Ranges. The hydrology of the site is dominated by fracture flow: groundwater wells were screened in fractured serpentinite, and springs emanating from fractured serpentinite bedrock contribute to the baseflow of Hunting Creek. Soil profiles and bedrock were analyzed for major and trace elements by XRF to assess the fate of Cr during weathering and the distribution of manganese oxides. These factors, along with mineral surface areas, microbial activity, water content, and flow dynamics, collectively control the oxidation of Cr(III). The prevalence of Mg-HCO3 waters at this site indicates that waters are primarily interacting with serpentinites. Pyroxenes are slightly to highly undersaturated and amorphous silica is saturated. Smectite clays, chlorite, and hydromagnesite are supersaturated, indicating formation of secondary mineral phases is favorable and could lead to the inclusion of Cr(III). Total Cr concentrations in surface and groundwater vary from 0.1-26 μg/L and Cr(VI) concentrations vary from < 2.5-22 μg/L, where the highest concentrations were found in seeps emanating from fractured serpentinite and in tributaries to Hunting Creek. Aqueous Cr is mostly present as Cr(VI) (likely CrO42- and MgCrO4), which is consistent with the high pH (7.98-8.72). A reactive transport approach, constrained by solid and fluid data, was used to assess the geochemical transformations that occur along flow paths in order to evaluate the coupling between hydrologic and biogeochemical processes. Similar ultramafic rocks and terrains occur in belts along the Coast Range and the Foothills to the Sierra Nevada and in the Klamath Mountains. Creeks and rivers draining these ultramafic terrains have transported Cr-bearing sediments to the Central Valley, (and other densely populated sedimentary basins and alluvial plains) where they are now widely distributed both at the surface and buried underground, interlaced with aquifer materials. This study highlights the importance of using a holistic approach that considers multiple length scales to understand the factors that control Cr distribution and speciation in natural waters.

  16. Water Quality Protection from Nutrient Pollution: Case ...

    EPA Pesticide Factsheets

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  17. Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at depths greater than a few hundred feet may be naturally too salty for human consumption. The leaking and spilling of fuel and chemical products and the disposal of industrial wastes has degraded the quality of ground water at numerous sites.

  18. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and the capacity of treatment facilities and supporting water infrastructure to deliver safe drinking water consistently and reliably. Simulation models of water treatment facilities are used to evaluate the outcome of specific source water quality scenarios on treatment system performance and reliability. Modeling results are used to evaluate the process and operational capacity to respond to transient water quality changes and adapt to longer-term variability in water quality and availability. In some cases, changes in temperature and mineral content serve to improve the overall treatment performance. In addition, the integration of microbially enhanced treatment systems such as biological filtration can provide additional capacity. Conversely, changes in the nutrient and temperature dynamics can trigger algal and cyanobacterial blooms that can impair performance. Research needs are identified and the importance of developing more integrated modeling systems is highlighted.

  19. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios.

    PubMed

    Bourgeois, J C; Walsh, M E; Gagnon, G A

    2004-03-01

    Spent filter backwash water (SFBW) and clarifier sludge generally comprise the majority of the waste residual volume generated and in relative terms, these can be collectively referred to as combined filter backwash water (CFBW). CFBW is essentially a low-solids wastewater with metal hydroxide flocs that are typically light and slow to settle. This study evaluates the impact of adding calcium and magnesium carbonates to CFBW in terms of assessing the impacts on the sedimentation and DAF separation processes. Representative CFBW samples were collected from two surface water treatment plants (WTP): Lake Major WTP (Dartmouth, Nova Scotia, Canada) and Victoria Park WTP (Truro, Nova Scotia, Canada). Bench-scale results indicated that improvements in the CFBW settled water quality could be achieved through the addition of the divalent cations, thereby adjusting the monovalent to divalent (M:D) ratios of the wastewater. In general, the DAF process required slightly higher M:D ratios than the sedimentation process. The optimum M:D ratios for DAF and sedimentation were determined to be 1:1 and 0.33:1, respectively. It was concluded that the optimisation of the cation balance between monovalent cations (e.g., Na(+), K(+)) and added divalent cations (i.e., Ca(2+), Mg(2+)) aided in the settling mechanism through charge neutralisation-precipitation. The increase in divalent cation concentrations within the waste residual stream promoted destabilisation of the negatively charged colour molecules within the CFBW, thereby causing the colloidal content to become more hydrophobic.

  20. Natural attenuation of NDMA precursors in an urban, wastewater-dominated wash.

    PubMed

    Woods, Gwen C; Dickenson, Eric R V

    2016-02-01

    N-Nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) that is potentially carcinogenic and has been found to occur in drinking water treatment systems impacted with treated wastewater. A major gap in NDMA research is an understanding of the persistence of wastewater-derived precursors within the natural environment. This research sought to fill this knowledge gap by surveying NDMA precursors across the length of a wastewater effluent-dominated wash. Significant precursor reduction (17%) was found to occur from introduction into the wash to a point 9 h downstream. This reduction translates into a half-life of roughly 32 h for bulk NDMA precursors. Further laboratory experiments examining rates of photolysis, biodegradation and loss to sediments, illustrated that both photolytic and biological degradation were effective removal mechanisms for NDMA precursors. Loss to sediments that were acquired from the wash did not appear to reduce NDMA precursors in the water column, although a control conducted with DI water provided evidence that significant NDMA precursors could be released from autoclaved sediments (suggesting that sorption does occur). Microbial experiments revealed that microbes associated with sediments were much more effective at degrading precursors than microbes within the water column. Overall, this study demonstrated that natural processes are capable of attenuating NDMA precursors relatively quickly within the environment, and that utilities might benefit from maximizing source water residency time in the environment, prior to introduction into treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    PubMed

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for confirmation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The impact of the High Park Wildfire on stream water quality and implications for drinking water treatment

    NASA Astrophysics Data System (ADS)

    Rosario-Ortiz, F.

    2014-12-01

    The Cache La Poudre (CLP) watershed in Northern Colorado was impacted by the High Park fire, which burned from June 9th through July 1st of 2012. The CLP watershed serves as a source of drinking water for three water districts in Northern Colorado, including the City of Fort Collins. Sampling was conducted during four different storm events immediately after the fire was extinguished. The sampling was expanded through spring and summer 2013 in order to capture the flush of debris from the wildfire into the CLP River. Samples were also collected from an unburned control site for comparison. Surface water samples were analyzed for parameters including nutrients, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) characterization. In addition, bench scale treatment analyses were conducted to better understand the impacts of the wildfire on treatment processes for drinking water utilities. Lastly, leaching of stream bank sediments was conducted to determine the potential longer term inputs of burned material to the stream water. The overarching goals of the sampling campaign were to: 1) Evaluate the impact that wildfires have on the properties of DOM, specifically with respect to DBP formation and speciation (TTHM, HAA5, HAN, NDMA); 2) Establish the condition under which the source water could be effectively treated (using coagulation) to remove DBP precursors; 3) Evaluate the use of fluorescence spectroscopy as a surrogate for the concentration and reactivity of DOM in the CLP watershed; and 4) Assess the quantity and quality of DOM leached from streambed sediments. Preliminary results showed elevated DOC levels during the storm events and at wildfire impacted sites compared to the unburned site following the fire. DBP yields were higher for the four storm events following the fire when compared to yields for the control site located upstream of the burn area, and also when compared to data from a previous DBP study conducted on similar Colorado source waters in 2010. Fluorescence spectroscopy shows promise as a tool for discerning differences in DOM quality between burned and unburned areas of the CLP watershed. Ultimately, the results of this study will offer insight for recovering this watershed as a sustainable water source and will prepare utilities for future wildfires.

  3. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    PubMed

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of an attached growth reactor for NH₄-N removal at a drinking water supply system in Kathmandu Valley, Nepal.

    PubMed

    Khanitchaidecha, Wilawan; Shakya, Maneesha; Nakano, Yuichi; Tanaka, Yasuhiro; Kazama, Futaba

    2012-01-01

    Higher concentrations of ammonium (NH(4)-N) and iron (Fe) than a standard for drinking are typical characteristics of groundwater in the study area. To remove NH(4)-N and Fe, the drinking water supply system in this study consists of a series of treatment units (i.e., aeration and sedimentation, filtration, and chlorination); however, NH(4)-N in treated water is higher than a standard for drinking (i.e., <1.5 mg NH(4)-N/L). The objective of this study, therefore, is to develop an attached growth system containing a fiber carrier for reducing NH(4)-N concentration within a safe level in the treated water. To avoid the need of air supply for nitrification, groundwater was continuously dripped through the reactor. It made the system simple operation and energy efficient. Effects of reactor design (reactor length and carrier area) were studied to achieve a high NH(4)-N removal efficiency. In accordance with raw groundwater characteristics in the area, effects of low inorganic carbon (IC) and phosphate (PO(4)-P) and high Fe on the removal efficiency were also investigated. The results showed a significant increase in NH(4)-N removal efficiency with reactor length and carrier area. A low IC and PO(4)-P had no effect on NH(4)-N removal, whereas a high Fe decreased the efficiency significantly. The first 550 days operation of a pilot-scale reactor installed in the drinking water supply system showed a gradual increase in the efficiency, reaching to 95-100%, and stability in the performance even with increased flow rate from 210 to 860 L/day. The high efficiency of the present work was indicated because only less than 1 mg of NH(4)-N/L was left over in the treated water.

  5. Ground-water hydrology of James City County, Virginia

    USGS Publications Warehouse

    Harsh, John F.

    1980-01-01

    Urbanization and increase in water demand prompted a 2-year study of groundwater availability and quality in the county of James City. The coastal-plain sediments, parts of which underlie the county, are the largest source of groundwater in Virginia. Four aquifers form the complex aquifer system. Hydraulic characteristics vary from aquifer to aquifer and from place to place. The Cretaceous aquifer furnishes nearly all the water for industrial and municipal needs. Movement of water in the Cretaceous aquifer is toward cones of depression formed by pumping centers at Williamsburg and Dow Badische Co. All aquifers contain water that generally meets State standards for drinking water. Water in the Cretaceous aquifer is of the sodium chloride bicarbonate type. As depth of aquifer increases, the concentrations of dissolved solids and chloride also increase. Saline water (more than 250 milligrams per liter) occupies the deeper parts of the confined aquifers. The amount of water stored in the coastal sediments is estimated to be 650-1300 billion gallons. An increase in pumpage to accomodate the expected daily demand of 9.8 million gallons per day in year 2000 is feasible provided pumpage is distributed over the county. (USGS)

  6. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    USGS Publications Warehouse

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.

  7. Perchlorate contamination in Chile: Legacy, challenges, and potential solutions.

    PubMed

    Vega, Marcela; Nerenberg, Robert; Vargas, Ignacio T

    2018-07-01

    This paper reviews the unique situation of perchlorate contamination in Chile, including its sources, presence in environmental media and in the human population, and possible steps to mitigate its health impacts. Perchlorate is a ubiquitous water contaminant that inhibits thyroid function. Standards for drinking water range from 2 to 18 µg L -1 in United States and Europe. A major natural source of perchlorate contamination is Chile saltpeter, found in the Atacama Desert. High concentrations of perchlorate have presumably existed in this region, in soils, sediments, surface waters and groundwaters, for millions of years. As a result of this presence, and the use of Chile saltpeter as a nitrogen fertilizer, perchlorate in Chile has been found at concentrations as high as 1480 µg L -1 in drinking water, 140 µg/kg -1 in fruits, and 30 µg L -1 in wine. Health studies in Chile have shown concentrations of 100 µg L - 1 in breast milk and 20 µg L -1 in neonatal serum. It is important to acknowledge perchlorate as a potential health concern in Chile, and assess mitigation strategies. A more thorough survey of perchlorate in Chilean soils, sediments, surface waters, groundwaters, and food products can help better assess the risks and potentially develop standards. Also, perchlorate treatment technologies should be more closely assessed for relevance to Chile. The Atacama Desert is a unique biogeochemical environment, with millions of years of perchlorate exposure, which can be mined for novel perchlorate-reducing microorganisms, potentially leading to new biological treatment processes for perchlorate-containing waters, brines, and fertilizers. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Characterization of selected radionuclides in sediment and surface water in Standley Lake, Great Western Reservoir, and Mower Reservoir, Jefferson County, Colorado, 1992

    USGS Publications Warehouse

    Clow, D.W.; Johncox, D.A.

    1995-01-01

    Lake sediment and surface water from Standley Lake, Great Western Reservoir, and Mower Reservoir, near Denver, Colorado, were sampled and analyzed for selected radionuclides during August through October, 1992. Sample concentrations were summarized and compared to results from a study conducted in 1983-84. Median plutonium-239,240 (239,240Pu) concentrations in lake-sediment grab samples from Standley Lake, Great Western Reservoir, and Mower Reservoir were 0.037, 0.105, and 0.351 picocuries per gram (pCi/g). The maximum concen- tration of 239,240Pu dissolved in lake water was 0.009 picocuries per liter, substantially below limits suggested by the Colorado Department of Health and the Environment. Dissolved concentrations of gross alpha and uranium isotopes were below National Drinking Water Standards in all water samples. There was no statistically significant difference between 239,240Pu concentration in lake-sediment grab samples collected from Standley Lake in 1983-84 and in 1992; however, there was a small, but statistically significant, difference at Great Western Reservoir (p<0.05). In 1992 at Great Western Reservoir, median 239,240Pu concentrations were 0.040 pCi/g lower than in 1983-84. There was a small, but statistically significant (p<0.05) difference in 239,240Pu concentrations in lake- bottom-sediment cores collected in 1983-84 and in 1992. Measured concentrations tended to be higher in 1983-84 than in 1992. The differences were greatest at concentrations above 1.5 pCi/g; in those samples concentrations were 10 to 30% higher in 1983-84 than in 1992.

  9. Removal of cyanobacterial toxins by sediment passage

    NASA Astrophysics Data System (ADS)

    Gruetzmacher, G.; Boettcher, G.; Chorus, I.; Bartel, H.

    2003-04-01

    Cyanbacterial toxins ("Cyanotoxins") comprise a wide range of toxic substances produced by cyanobacteria ("blue-green algae"). Cyanobacteria occur in surface water word wide and can be found in high concentrations during so-called algal blooms when conditions are favourable (e.g. high nutrient levels, high temperatures). Some cyanobacteria produce hepato- or neurotoxins, of which the hepatotoxic microcystins are the most common in Germany. The WHO guideline value for drinking water was set at 1 μg/L. However, maximum concentrations in surface water can reach 25 mg/L, so that a secure method for toxin elimination has to be found when this water is used as source water for drinking water production. In order to assess if cyanotoxins can be removed by sediment passage the German Federal Environmental Agency (UBA) conducted laboratory- and field scale experiments as well as observations on bank filtration field sites. Laboratory experiments (batch- and column experiments for adsorption and degradation parameters) were conducted in order to vary a multitude of experimental conditions. These experiments were followed by field scale experiments on the UBA's experimental field in Berlin. This plant offers the unique possibility to conduct experiments on the behaviour of various agents - such as harmful substances - during infiltration and bank filtration under well-defined conditions on a field scale, and without releasing these substances to the environment. Finally the development of microcystin concentrations was observed between infiltrating surface water and a drinking water well along a transsecte of observation wells. The results obtained show that infiltration and bank filtration normally seem to be secure treatment methods for source water contaminated by microcystins. However, elimination was shown to be difficult under the following circumstances: - dying cyanobacterial population due to insufficient light and / or nutrients, low temperatures or application of algizides (high amount of extracellular microcystins), - sandy material with low shares of clay and silt (little adsorption), - low temperatures (delayed biodegradation), - anoxic conditions (delayed biodegradation), - missing clogging layer or "schmutzdecke" (little bacteria), - no previous contact to microcystins (non adapted bacteria). It is therefore the aim of a new project financed by the KompetenzZentrum Wasser Berlin (KWB) to focus on these critical circumstances in order to find out how to optimise artificial recharge and bank filtration regarding microcystin elimination.

  10. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- summary of information on pesticides, 1970-90

    USGS Publications Warehouse

    Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.

    1996-01-01

    Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.

  11. Analysis of the bacterial community composition in acidic well water used for drinking in Guinea-Bissau, West Africa.

    PubMed

    Machado, Ana; Bordalo, Adriano A

    2014-08-01

    Potable water is a resource out of reach for millions worldwide, and the available water may be chemically and microbiologically compromised. This is particularly acute in Africa, where water-networks may be non-existent or restricted to a small fraction of the urban population, as in the case of Guinea-Bissau, West Africa. This study was carried out seasonally in Bolama (11°N), where unprotected hand-dug wells with acidic water are the sole source of water for the population. We inspected the free-living bacterial community dynamics by automated rRNA intergenic spacer analyses, quantitative polymerase chain reaction and cloning approaches. The results revealed a clear seasonal shift in bacterial assemblage composition and microbial abundance within the same sampling site. Temperature, pH and turbidity, together with the infiltration and percolation of surface water, which takes place in the wet season, seemed to be the driving factors in the shaping and selection of the bacterial community and deterioration of water quality. Analysis of 16S rDNA sequences revealed several potential pathogenic bacteria and uncultured bacteria associated with water and sediments, corroborating the importance of a culture-independent approach in drinking water monitoring. Copyright © 2014. Published by Elsevier B.V.

  12. Characterizing spatiotemporal variations of chromophoric dissolved organic matter in headwater catchment of a key drinking water source in China.

    PubMed

    Chen, Yihan; Yu, Kaifeng; Zhou, Yongqiang; Ren, Longfei; Kirumba, George; Zhang, Bo; He, Yiliang

    2017-12-01

    Natural surface drinking water sources with the increasing chromophoric dissolved organic matter (CDOM) have profound influences on the aquatic environment and drinking water safety. Here, this study investigated the spatiotemporal variations of CDOM in Fengshuba Reservoir and its catchments in China. Twenty-four surface water samples, 45 water samples (including surface water, middle water, and bottom water), and 15 pore water samples were collected from rivers, reservoir, and sediment of the reservoir, respectively. Then, three fluorescent components, namely two humic-like components (C1 and C2) and a tryptophan-like component (C3), were identified from the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) for all samples. For spatial distributions, the levels of CDOM and two humic-like components in the reservoir were significantly lower than those in the upstream rivers (p < 0.01), indicating that the reservoir may act as a reactor to partly reduce the levels of exogenous input including CDOM and humic-like matters from the surrounding catchment. For temporal variations, the mean levels of CDOM and three fluorescent components did not significantly change in rivers, suggesting that perennial anthropic activity maybe an important factor impacting the concentration and composition of river CDOM but not the precipitation and runoff. However, these mean values of CDOM for the bulk waters of the reservoir changed markedly along with seasonal variations, indicating that the hydrological processes in the reservoir could control the quality and quantity of CDOM. The different correlations between the fluorescent components and primary water parameters in the river, reservoir, and pore water samples further suggest that the reservoir is an important factor regulating the migration and transformation of FDOM along with the variations of different environmental gradients.

  13. Groundwater and organic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, H.E.

    1995-12-01

    Groundwater is a major source of drinking water for many communities. Unfortunately, organic chemicals such as dry cleaning fluids, solvent, fuels, and pesticides have contaminated groundwater in many areas, rendering the groundwater useless as a drinking water resource. In many cases, the groundwater cannot be cleaned up with current technologies, particularly if the groundwater has been contaminated with immiscible (low solubility) organic liquids. In this talk, I will describe the path I have followed from geologist to geochemist and finally to environmental engineer. As a geologist, I studied the chemistry of rock metamorphosis. As a geochemist, I explored for goldmore » and other metals. Now as an environmental engineer, I investigate the behavior of organic liquids in the subsurface. While these fields all appear very different, in reality I have always focused on the interaction of rocks or sediments with the fluids with which they come in contact.« less

  14. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants.

    PubMed Central

    Jofre, J; Ollé, E; Ribas, F; Vidal, A; Lucena, F

    1995-01-01

    The presence of bacteriophages at different stages in three drinking water treatment plants was evaluated to study the usefulness of phages as model organisms for assessing the efficiency of the processes. The bacteriophages tested were somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis. The presence of enteroviruses and currently used bacterial indicators was also determined. Most bacteriophages were removed during the prechlorination-flocculation-sedimentation step. In these particular treatment plants, which include prechlorination, phages were, in general, more resistant to the treatment processes than present bacterial indicators, with the exception, in some cases, of clostridia. Bacteriophages infecting B. fragilis were found to be more resistant to water treatment than either somatic or F-specific coliphages or even clostridia. Enteric viruses were found only in untreated water in low numbers, and consequently, the efficiency of the plants in the removal of viruses could not be evaluated with precision. The numbers and frequencies of detection of the various microorganisms in water samples taken in the distribution network served by the three plants confirm the results found in the finished water at the plants. PMID:7574632

  15. Determination of heavy metal contents in water, sediments, and fish tissues of Shizothorax plagiostomus in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Ahmad, Kabir; Azizullah, Azizullah; Shama, Shama; Khattak, Muhammad Nasir Khan

    2014-11-01

    The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn > Cu ≈ Pb > Ni ≈ Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu > Zn > Ni > Pb > Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04-1.19, 0.03-0.12, and 0.01-0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.

  16. Worldwide occurrences of arsenic in ground water

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2002-01-01

    Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.

  17. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Pesticides in streams, streambed sediment, and ground water, 1974-94

    USGS Publications Warehouse

    Fallon, J.D.; Fong, A.L.; Andrews, W.J.

    1997-01-01

    Atrazine was the only pesticide that equaled or exceeded a maximum contaminant level (of 3.0 micrograms per liter) for drinking water. Two stream samples from a small urban watershed in Minneapolis had atrazine concentrations of 3.6 and 3.8 micrograms per liter, and one ground-water sample had a concentration of 3.0 micrograms per liter. Trace concentrations (less than 0.06 micrograms per liter) of the organochlorine insecticides chlordane, dieldrin, endrin, and heptachlor exceeded chronic freshwater-quality criteria in stream samples from the Mississippi, Minnesota, St. Croix, and Vemillion Rivers in 1981 and 1990.

  18. Quality of water on the Prairie Band Potawatomi Reservation, northeastern Kansas, May 2001 through August 2003

    USGS Publications Warehouse

    Ross Schmidt, Heather C.

    2004-01-01

    Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.

  19. Water quality status and trends in the United States

    USGS Publications Warehouse

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  20. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  1. Occurrence of Cryptosporidium and Giardia in raw and finished drinking water in north-eastern Spain.

    PubMed

    Ramo, Ana; Del Cacho, Emilio; Sánchez-Acedo, Caridad; Quílez, Joaquín

    2017-02-15

    This paper collects the first large-sample-size study on the presence of Cryptosporidium oocysts and Giardia cysts in drinking water plants at the 20 most populated towns in Aragón (north-eastern Spain). Samples of influent raw water and effluent finished water were collected from each plant during different seasons and processed according to USEPA Method 1623. Cryptosporidium oocysts and Giardia cysts were detected in samples collected from 55% and 70% plants, respectively, with nine plants being positive for both protozoa and only four plants being negative over the study period. Both parasites were identified in the raw water throughout the year, with a lower frequency in autumn and a peak in winter, at a mean concentration of 67±38 oocysts per 100l and 125±241 cysts per 100l. The turbidity of raw water was not related to the presence or concentration of (oo)cysts, and the (oo)cyst removal efficiency was not related to the type of water treatment. One or both pathogens were identified in the finished water in 7 out of 11 plants with a conventional treatment process (coagulation, flocculation, sedimentation, filtration, and disinfection processes) compared to 4 out of 9 plants that did not apply one of the pre-chlorination treatment steps. Protozoa were detected in the finished water of positive plants at a mean concentration of 88±55 oocysts per 100l and 37±41 cysts per 100l, and most of them excluded propidium iodide so were considered potentially viable. The ubiquity of these parasites in the drinking water sources and the inefficiency of conventional water treatment in reducing/inactivating them may present a serious public health issue in this geographical area. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008.

    PubMed

    Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.

  3. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration.

    PubMed

    Zheng, Weixi; Lichwa, Joseph; D'Alessio, Matteo; Ray, Chittaranjan

    2009-08-01

    Riverbank filtration (RBF) refers to the process of capturing surface water passing through the river-sediment-aquifer system by using a collection technique such as a well or an infiltration gallery. RBF removes nearly all suspended and a large number of dissolved contaminants from the surface water. Therefore, it can function as an effective pretreatment process in drinking-water production. TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) are three military explosive chemicals that are considered of concern to human health when present in source waters. This study is to evaluate the ability of the filtration media in RBF systems to remove these chemicals. The results from an anoxic batch test showed that all three chemicals will degrade while passing through streambed sediments. The pseudo first-order degradation-rate constants for TNT, RDX, and HMX were measured to be 0.33, 0.055, and 0.033d(-1), respectively. Under aerobic conditions only TNT showed significant degradation. Results from a model RBF system showed that the mobility of the three chemical contaminants in streambed sediments was in the order: HMX>RDX>TNT. The results suggest that RBF is capable of removing TNT and RDX but HMX levels may continue to be of concern-especially when collector wells use laterals running directly beneath the stream or riverbed.

  4. Occurrence of diarrhoeagenic Escherichia coli virulence genes in water and bed sediments of a river used by communities in Gauteng, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2016-08-01

    In most developing countries, especially in Southern Africa, little is known about the presence of diarrhoeagenic Escherichia coli (DEC) pathotypes in riverbed sediments. The present study sought to investigate the presence of DEC virulence genes in riverbed sediments of the Apies River, a river used by many communities in Gauteng, South Africa. Water and sediment samples were collected from the river between July and August 2013 (dry season) and also between January and February 2014 (wet season) following standard procedures. Isolation of E. coli was done using the Colilert®-18 Quanti-Tray® 2000 system. DNA was extracted from E. coli isolates using the InstaGene™ matrix from Bio-Rad and used as template DNA for real-time PCR. Water pH, temperature, dissolved oxygen, electrical conductivity and turbidity were measured in situ. Over 59 % of 180 samples analysed were positive for at least one of the seven DEC virulence genes investigated. The eaeA gene was the most isolated gene (29.44 %) while the ipaH gene the least isolated (8.33 %). The ipaH gene (p = 0.012) and the ST gene (stIa, p = 0.0001, and stIb, p = 0.019) were positively correlated with temperature. The detection of diarrhoeagenic E. coli virulence genes in the sediments of the Apies River shows that the sediments of this river might not only be a reservoir of faecal indicator bacteria like E. coli but also pathogenic strains of this bacterium. These organisms could represent a public health risk for poor communities relying on this water source for various purposes such as drinking and recreational use. There is therefore an urgent need to monitor these DEC pathotypes especially in areas without adequate water supplies.

  5. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    PubMed

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.

  6. Water quality in the St. Croix National Scenic Riverway, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, D.J.

    1986-01-01

    A water quality study of the St. Croix National Scenic Riverway, was conducted during the period 1975-83. Concentrations of most constituents analyzed, and constituent loads and yields were lower in the Scenic Riverway than in other Wisconsin streams. Water quality samples were collected at 10 stations throughout the study area and were compared to analyses of samples from selected National Stream Quality Accounting Network stations (NASWAN) and the Hydrologic Bench-Mark Network (HBMN) station in Wisconsin. The average suspended sediment (SS) concentration for 9 of the 10 stations in this study was 7.7 mg/L. The concentrations of major cations and anionsmore » at two of the stations were similar to concentrations at the HBMN station Popple River near Fence. Mean total phosphorus concentrations ranged from 0.02 to 0.08 mg/L at the study stations and from 0.03 to 0.16 mg/L at selected NASQAN stations. Concentrations of trace metals were below safe drinking water standards at all the study sites, except for iron and manganese which exceeded drinking water standards at some of the study sites. Pesticides were sampled at the St. Croix River at St. Croix Falls and above and below cranberry bogs that drain into the Namekagon River. Average annual loads of SS, total phosphorus, total nitrogen, and dissolved solids were calculated by a flow duration curve method. Suspended sediment yields ranged from 1.9 to 13.3 tons/sq mi. The average SS yield for Wisconsin is 80 tons/sq mi. total phosphorus and other constituents exhibited the same trend. 26 refs., 10 figs., 12 tabs.« less

  7. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations at depth for Bi, Cd, Cu, Hg, In, Pb, Sb, Sn, Te, and Zn. Radioisotope dating indicates that the elevated metal and trace element concentrations are associated with sediments deposited before 1963. Arsenic concentration was greater in cattail roots compared with surrounding sediment at Tavasci Marsh. Concentrations of As, Ni, and Se from yellow bullhead catfish (Ameiurus natalis) in Tavasci Marsh exceeded the 75th percentile of several other regional studies. Mercury concentration in dragonfly larvae and fish from Tavasci Marsh were similar to or greater than in Tavasci Marsh sediment. Future work includes a biologic risk assessment utilizing the data collected in this study to provide the monument management with additional information for their restoration plan.

  8. Wet weather impact on trihalomethane formation potential in tributaries to drinking water reservoirs.

    PubMed

    Alkhatib, E; Peters, R

    2008-04-01

    During rain storm events, land surface runoff and resuspension of bottom sediments cause an increase in Trihalomethane (THM) precursors in rivers. These precursors, when chlorinated at water treatment facilities will lead to the formation of THMs and hence impact drinking water resources. In order to evaluate the wet weather impact on the potential formation of THMs, river samples were collected before, during and after three rain storms ranging from 15.2 to 24.9 mm precipitation. The samples were tested for THM formation potential and other indicators including UV254 absorbance, turbidity and volatile suspended solid (VSS). Average levels of THMs increased from 61 microg/l during dry weather to 131 microg/l during wet weather, and then went back to 81 microg/l after rain ended. Wet weather values of THM are well above the maximum contaminant level (MCL) 80 microg/l, set by EPA for drinking water. THM indicators also exhibited similar trends. Average levels increased from 0.6 to 1.8 abs; 2.6 to 6 ntu; and 7.5 to 15 mg/l respectively for UV254, turbidity and VSS. A positive correlation was observed between THM formation and THM indicators. The t-test of significance (p-value) was less than 0.05 for all indicators, and R values ranged from 0.85 to 0.92 between THMs and the indicators, and 0.72 to 0.9 among indicators themselves.

  9. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    PubMed

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Assessing potential release tendency of As, Mo and W in the tributary sediments of the Three Gorges Reservoir, China.

    PubMed

    Gao, Li; Gao, Bo; Peng, Wenqi; Xu, Dongyu; Yin, Shuhua

    2018-01-01

    As the largest man-made reservoir in China, the Three Gorges Reservoir (TGR) has significant influence on national drinking water safety. The geochemical behavior of trace elements at the sediment-water interface (SWI) is still unknown. The mobilization characteristics of trace elements (As, Mo and W)-determined by diffusive gradients in thin films (DGT)-were studied to quantitatively calculate the release trends in the SWI in three typical tributaries and the mainstream of the TGR in the summer. The results showed that concentrations of DGT-labile As, Mo and W in the overlying water and sediment cores showed significant variations in the ranges of 0.05-50.90, 0.30-1.63 and 0.01-0.42μgL -1 , respectively. The apparent net diffusive fluxes were significantly positive in most sampling sites (77.8% for As, 88.8% for Mo and 66.6% for W), suggesting that the sediment was the source of these three elements. It was noteworthy that the maximum net diffusive fluxes of As and W were found in the upstream of Meixi tributary, which may be attributed to anthropogenic activities. In addition, As, Mo and W may be incorporated in Fe and Mn oxyhydroxides and these three elements simultaneously remobilized with Fe and Mn. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    USGS Publications Warehouse

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.

  12. Evaluation of the impact of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir

    NASA Astrophysics Data System (ADS)

    Samal, N. R.; Pierson, D. C.; Staehr, P. A.; Pradhanang, S. M.; Smith, D. G.

    2013-12-01

    Episodic inputs of dissolved and particulate material during storm events can have important effects on lake and reservoir ecosystem function and also impact reservoir drinking water quality. We evaluate the impacts of storm events using vertical profiles of temperature, dissolved oxygen, turbidity, conductivity and chlorophyll automatically collected at 6 hour intervals in Ashokan Reservoir, which is a part of the New York City drinking water supply. Storm driven inputs to the reservoir periodically result in large input of suspended sediments that result in reservoir turbidity levels exceeding 25 NTU, and substantial reductions in the euphotic depth. Dissolved materials associated with these same storms would be expected to stimulate bacterial production. This study involves the use of a conceptual model to calculate depth specific estimates of gross primary production (GPP) and ecosystem respiration (R) using three years of data that included 777 events that increased reservoir turbidity levels to over 25 NTU. Using data from before, during and after storm events, we examine how the balance between GPP and R is influenced by storm related increases in turbidity and dissolved organic matter, which would in turn influence light attenuation and bacterial production. Key words: metabolism, primary production, GPP, respiration, euphotic depth, storm event, reservoir

  13. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment

    USGS Publications Warehouse

    Ayotte, J.D.; Nolan, B.T.; Nuckols, J.R.; Cantor, K.P.; Robinson, G.R.; Baris, D.; Hayes, L.; Karagas, M.; Bress, W.; Silverman, D.T.; Lubin, J.H.

    2006-01-01

    We developed a process-based model to predict the probability of arsenic exceeding 5 ??g/L in drinking water wells in New England bedrock aquifers. The model is being used for exposure assessment in an epidemiologic study of bladder cancer. One important study hypothesis that may explain increased bladder cancer risk is elevated concentrations of inorganic arsenic in drinking water. In eastern New England, 20-30% of private wells exceed the arsenic drinking water standard of 10 micrograms per liter. Our predictive model significantly improves the understanding of factors associated with arsenic contamination in New England. Specific rock types, high arsenic concentrations in stream sediments, geochemical factors related to areas of Pleistocene marine inundation and proximity to intrusive granitic plutons, and hydrologic and landscape variables relating to groundwater residence time increase the probability of arsenic occurrence in groundwater. Previous studies suggest that arsenic in bedrock groundwater may be partly from past arsenical pesticide use. Variables representing historic agricultural inputs do not improve the model, indicating that this source does not significantly contribute to current arsenic concentrations. Due to the complexity of the fractured bedrock aquifers in the region, well depth and related variables also are not significant predictors. ?? 2006 American Chemical Society.

  14. Dynamic linear models to explore time-varying suspended sediment-discharge rating curves

    NASA Astrophysics Data System (ADS)

    Ahn, Kuk-Hyun; Yellen, Brian; Steinschneider, Scott

    2017-06-01

    This study presents a new method to examine long-term dynamics in sediment yield using time-varying sediment-discharge rating curves. Dynamic linear models (DLMs) are introduced as a time series filter that can assess how the relationship between streamflow and sediment concentration or load changes over time in response to a wide variety of natural and anthropogenic watershed disturbances or long-term changes. The filter operates by updating parameter values using a recursive Bayesian design that responds to 1 day-ahead forecast errors while also accounting for observational noise. The estimated time series of rating curve parameters can then be used to diagnose multiscale (daily-decadal) variability in sediment yield after accounting for fluctuations in streamflow. The technique is applied in a case study examining changes in turbidity load, a proxy for sediment load, in the Esopus Creek watershed, part of the New York City drinking water supply system. The results show that turbidity load exhibits a complex array of variability across time scales. The DLM highlights flood event-driven positive hysteresis, where turbidity load remained elevated for months after large flood events, as a major component of dynamic behavior in the rating curve relationship. The DLM also produces more accurate 1 day-ahead loading forecasts compared to other static and time-varying rating curve methods. The results suggest that DLMs provide a useful tool for diagnosing changes in sediment-discharge relationships over time and may help identify variability in sediment concentrations and loads that can be used to inform dynamic water quality management.

  15. Comparative analysis of hydroacoustic lakebed classification in three different Brazilian reservoirs

    NASA Astrophysics Data System (ADS)

    Hilgert, Stephan; Sotiri, Klajdi; Fuchs, Stephan

    2017-04-01

    Until today, the surface of artificial water bodies around the world reached an area of around 500,000 km2 equaling one third of the surface of natural water bodies. Most of the constructed waster bodies are reservoirs with a variety of usage purposes, reaching from drinking water supply, electricity production, flood protection to recreation. All reservoirs have in common, that they disrupt riverine systems and their biochemical cycles and promote the accumulation of sediments upstream of the dam. The accumulated sediments contain organic matter, nutrients and/or pollutants which have a direct influence on the water quality within the impoundment. Consequently, detailed knowledge about the amount and the quality of accumulated sediments is an essential information for reservoir management. In many cases the extensive areas covered by the impoundments make it difficult and expensive to assess sediment characteristics with a high spatial resolution. Spatial extrapolations and mass balances based on point information may suffer from strong deviations. We combined sediment point measurements (core and grab sampling) with hydroacoustic sediment classification in order to precisely map sediment parameters. Three different reservoirs (Vossoroca, Capivari, Passauna) in the south-east of Brazil were investigated between 2011 and 2015. A single beam echosounder (EA 400, Kongsberg) with two frequencies (200 & 38 kHz) was used for the hydroacoustic classification. Over 50 core samples and 30 grab samples were taken for physical and chemical analysis to serve as ground truthing of the hydroacoustic measurements. All three reservoirs were covered with dense measurement transects allowing for a lakebed classification of the entire sediment surface. Significant correlations of physical parameters like grain size distribution and density as well chemical parameters like organic carbon content and total phosphorous with a selection of hydroacoustic parameters were obtained. They enabled the derivation of empiric models used for the extrapolation of the sediment point information to the entire reservoir surface. With the obtained spatial information carbon and phosphorous budgets were calculated. Former stock calculations, which were based solely on point sampling, could be improved The results show that the method is transferable to different reservoirs with varying characteristics in regard of their catchments, morphology and trophic state.

  16. Geochemical Effects of Induced Stream-Water and Artificial Recharge on the Equus Beds Aquifer, South-Central Kansas, 1995-2004

    USGS Publications Warehouse

    Schmidt, Heather C. Ross; Ziegler, Andrew C.; Parkhurst, David L.

    2007-01-01

    Artificial recharge of the Equus Beds aquifer is part of a strategy implemented by the city of Wichita, Kansas, to preserve future water supply and address declining water levels in the aquifer of as much as 30 feet caused by withdrawals for water supply and irrigation since the 1940s. Water-level declines represent a diminished water supply and also may accelerate migration of saltwater from the Burrton oil field to the northwest and the Arkansas River to the southwest into the freshwater of the Equus Beds aquifer. Artificial recharge, as a part of the Equus Beds Ground-Water Recharge Project, involves capturing flows larger than base flow from the Little Arkansas River and recharging the water to the Equus Beds aquifer by means of infiltration or injection. The geochemical effects on the Equus Beds aquifer of induced stream-water and artificial recharge at the Halstead and Sedgwick sites were determined through collection and analysis of hydrologic and water-quality data and the application of statistical, mixing, flow and solute-transport, and geochemical model simulations. Chloride and atrazine concentrations in the Little Arkansas River and arsenic concentrations in ground water at the Halstead recharge site frequently exceeded regulatory criteria. During 30 percent of the time from 1999 through 2004, continuous estimated chloride concentrations in the Little Arkansas River at Highway 50 near Halstead exceeded the Secondary Drinking-Water Regulation of 250 milligrams per liter established by the U.S. Environmental Protection Agency. Chloride concentrations in shallow monitoring wells located adjacent to the stream exceeded the drinking-water criterion five times from 1995 through 2004. Atrazine concentrations in water sampled from the Little Arkansas River had large variability and were at or near the drinking-water Maximum Contaminant Level of 3.0 micrograms per liter as an annual average established by the U.S. Environmental Protection Agency. Atrazine concentrations were much smaller than the drinking-water criterion and were detected at much smaller concentrations in shallow monitoring wells and diversion well water located adjacent to the stream probably because of sorption on aquifer sediment. Before and after artificial recharge, large, naturally occurring arsenic concentrations in the recharge water for the Halstead diversion well and recharge site exceeded the Maximum Contaminant Level of 10 micrograms per liter established by the U.S. Environmental Protection Agency for drinking water. Arsenic and iron concentrations decreased when water was recharged through recharge basins or a trench; however, chemical precipitation and potential biofouling eventually may decrease the artificial recharge efficiency through basins and trenches. At the Sedgwick site, chloride concentrations infrequently exceeded regulatory criteria. Large concentrations of atrazine were treated to decrease concentrations to less than regulatory criteria. Recharge of treated stream water through recharge basins avoids potentially large concentrations of arsenic and iron that exist at the Halstead diversion site. Results from a simple mixing model using chloride as a tracer indicated that the water chemistry in shallow monitoring well located adjacent to the Little Arkansas River was 80 percent of stream water, demonstrating effective recharge of the alluvial aquifer by the stream. Results also indicated that about 25 percent of the water chemistry of the diversion well water was from the shallow part of the aquifer. Additionally, diverting water through a diversion well located adjacent to the stream removed about 75 percent of the atrazine, probably through sorption to aquifer sediment, and decreased the need for additional water treatment to remove atrazine. A flow and solute-transport model was developed using water-level and chloride concentration data to simulate and better evaluate the quantity of stream-water flow to the p

  17. The history of Cesium-137 liquid emissions by Mühleberg Nuclear Power Plant (Switzerland) is recorded in Lake Biel sediments

    NASA Astrophysics Data System (ADS)

    Girardclos, Stéphanie; Faessler, Jérôme; Loizeau, Jean-Luc; Zehringer, Markus

    2014-05-01

    Lake sediments record changes happening in their upstream river catchment and regional environment which includes traces of artificial radionuclides emissions deriving from human activities. 137Cs emissions started worldwide in the early 1950's and peaked in 1963-64 due to nuclear bomb tests in the high atmosphere. A second 137Cs activity peak, due to the 1986 Chernobyl catastrophe is recorded in sediment archives from central Europe. These two events (1963/64 and 1986) serve routinely as time markers for recent lake records. Nuclear Power Plants (NPPs) are often constructed along river course for cooling purposes. Since 1972, Mühleberg NPP (central Switzerland) lies 18 km upstream Lake Biel and releases radioactive liquid emissions into the Aare river which adds to the diffuse - above mentioned - radioactive pollution, as revealed by Albrecht et al. (1995; 1998) and recently confirmed by Thevenon et al. (2013) from Lake Biel sediments. The water of Lake Biel is used as drinking water for ca. 60'000 inhabitants and its outflowing water is further used by downstream cities lying on the Aare-Rhine course such as Basel (200'000 inhab.) In this study, the 137Cs activity curve of a 90-cm-long sediment core (BIE10-8), retrieved in April 2010 from the central Lake Biel basin at ca. 50 m depth, and measured by gamma ray spectrometry using high resolution germanium detectors, confirms previous work and reveals a new peak for the year 1998-2000, as observed by Thevenon et al. (2013). This peak is most certainly due to Mühleberg NPP as shown by the good correlation with declared 137Cs liquid emissions indicating a significant increase in 1998-99. Decay corrected activity data, converted into 137Cs fluxes, point to water pollution by Mühleberg NPP in 1975-1985 as being similar to those linked to the catastrophic events in 1963-64 and 1986 (about 75%). As former study showed that Lake Biel sediments scavenge only a portion of the total radionuclide in water, i.e. 30-55% for 60Co (Albrecht et al. 1999), our results indicate that the estimated quantities of 137Cs input infered from the sediment record correspond well to historic declared liquid emissions. Overall, this study shows how lake or reservoir sediments can be used to trace back and verify the history of past liquid emissions from nuclear power plants. In the context of the Aare and Rhine course, were radionuclide liquid emissions from four NPP add-up in the same river system until the city of Basel and also further add-up downstream in Germany, it is necessary to bring new knowledge on this subject to quantify the 35-years-long exposure through river water for drinking water and irrigation to low but repeated radioactivity. This work was financed by SNF projects on Lake Biel nr. 121666 and 146889 and gamma ray analysis by the State Laboratory of Basel-City. REFERENCES Albrecht, A., Groudsmit, G. & Zeh M. 1999: Importance of lacustrine physical factors for the distribution of anthropogenic 60Co in Lake Biel. Limnol. Oceanogr., 44, 196-206. Albrecht ,A., Reichert, P., Beer, J. & Lück A. 1995: Evaluation of the importance of reservoir sediments as sinks for reactor-derived radionuclides in riverine systems. Journal of Environmental Radioactivity, 28, 239-269. Albrecht, A., Reiser, R., Lück, A., Stoll, J.-M.A. & Giger W. 1998. Radiocesium dating of sediments from lakes and reservoirs of different hydrological regimes. Environmental Science & Technology, 1882-1887. Thevenon, F., Wirth, S.B., Fujak, M., Poté, J. & Girardclos S. 2013. Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquatic Sciences, 75, 413-424.

  18. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R. China.

    PubMed

    Huang, Xianfei; Hu, Jiwei; Li, Cunxiong; Deng, Jiajun; Long, Jian; Qin, Fanxin

    2009-12-01

    Baihua Lake, a man-made reservoir, is one of the five drinking water sources for Guiyang City in China's southwestern province of Guizhou. In the present research, the distribution and accumulation characteristics of heavy metals (Pb, Cd, As, Cu and Zn) for the sediment of this lake were analyzed by examination of 10 recently collected samples. A method based on toxic-response factor was applied to assess the potential ecological risk of these heavy metals to the water body. For comparison, the two sets of reference data representing the pre-industrial and the local baseline pollution levels were employed to derive the accumulating coefficients for the heavy metals under study. The calculated potential ecological risk indices show that the lake was polluted by heavy metals and both cadmium and arsenic loadings were critical factors responsible for the ecological hazards posed to Baihua Lake by the five elements.

  19. Preliminary assessment of heavy metals in water, sediment and macrophyte ( Lemna minor) collected from Anchar Lake, Kashmir, India

    NASA Astrophysics Data System (ADS)

    Showqi, Irfana; Lone, Farooq Ahmad; Naikoo, Mehrajuddin

    2018-06-01

    Water samples, sediments and free floating macrophytic plant, Lemna minor specimens were collected from five designated sites in Anchar lake (Srinagar, J&K, India) to assess its heavy metal (Cu, Cr, Zn, Ni, Cd, Pb) load and changes on seasonal basis. The concentration of heavy metals was determined using atomic absorption spectroscopy. Most of the samples were found within limits of maximum permissible concentrations as recommended by WHO (Guidelines for drinking water quality, pp 491-493, 2006). During all the seasons, highest concentration of all heavy metals (Cu, Cr, Zn, Ni, Cd, Pb) was recorded at highly polluted sites of the lake viz. near agricultural fields (S1), near settlements (S3) and SKIMS (S4). These sites received huge agrochemical run-off from the surrounding agricultural fields, solid and liquid wastes from the nearby catchment areas and effluents from Sher-e-Kashmir Institute of Medical Sciences (SKIMS) compared to control site lake centre (S5). Furthermore, most of the metals in water and sediment were found with highest concentration during autumn (Viz., Cu-1.5 ppm; Zn-0.38 ppm; Ni-1.89 ppm; Pb-0.84 ppm in water and Cu-26.9 ppm; Zn-13.6 ppm; Pb-4.33 ppm in sediment) and summer (Viz., Cr-0.68 ppm in water and Ni-4.8 ppm; Cd-2.6 ppm; Cr-8.01 ppm in sediment) seasons. Also in Lemna minor plant highest concentration was observed during summer season (Cu-29.09 ppm; Zn-19.11 ppm; Ni-5.7 ppm; Cd-1.34 ppm; Cr-9.18 ppm and Pb-9.77 ppm). From these observations, it was found that the sources of heavy metals in Anchar lake were both natural and anthropogenic ones. This study recommended that continuous monitoring of heavy metals (Viz; Cu, Cr, Zn, Ni, Cd and Pb) in water, sediment and other aquatic biota of Anchar lake should be directed to protection of ecological status of the lake and its surrounding area.

  20. Biofilms in drinking water and their role as reservoir for pathogens.

    PubMed

    Wingender, Jost; Flemming, Hans-Curt

    2011-11-01

    Most microorganisms on Earth live in various aggregates which are generally termed "biofilms". They are ubiquitous and represent the most successful form of life. They are the active agent in biofiltration and the carriers of the self-cleaning potential in soils, sediments and water. They are also common on surfaces in technical systems where they sometimes cause biofouling. In recent years it has become evident that biofilms in drinking water distribution networks can become transient or long-term habitats for hygienically relevant microorganisms. Important categories of these organisms include faecal indicator bacteria (e.g., Escherichia coli), obligate bacterial pathogens of faecal origin (e.g., Campylobacter spp.) opportunistic bacteria of environmental origin (e.g., Legionella spp., Pseudomonas aeruginosa), enteric viruses (e.g., adenoviruses, rotaviruses, noroviruses) and parasitic protozoa (e.g., Cryptosporidium parvum). These organisms can attach to preexisting biofilms, where they become integrated and survive for days to weeks or even longer, depending on the biology and ecology of the organism and the environmental conditions. There are indications that at least a part of the biofilm populations of pathogenic bacteria persists in a viable but non-culturable (VBNC) state and remains unnoticed by the methods appointed to their detection. Thus, biofilms in drinking water systems can serve as an environmental reservoir for pathogenic microorganisms and represent a potential source of water contamination, resulting in a potential health risk for humans if left unnoticed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Resting Stage of Plankton Diversity from Singapore Coastal Water: Implications for Harmful Algae Blooms and Coastal Management

    NASA Astrophysics Data System (ADS)

    Trottet, Aurore; Wilson, Bryan; Sew Wei Xin, Genevieve; George, Christaline; Casten, Lemuel; Schmoker, Claire; Rawi, Nurul Syazana Binte Modh; Chew Siew, Moon; Larsen, Ole; Eikaas, Hans S.; Tun, Karenne; Drillet, Guillaume

    2018-02-01

    Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.

  2. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India.

    PubMed

    Saha, Dipankar; Sahu, Sudarsan

    2016-04-01

    Groundwater arsenic (As) load in excess of drinking limit (50 µg L(-1)) in the Gangetic Plains was first detected in 2002. Though the menace was known since about two decades from the downstream part of the plains in the Bengal Basin, comprising of Lower Ganga Plain and deltaic plains of Ganga-Brahmaputra-Meghna River system, little thought was given to its possible threat in the upstream parts in the Gangetic Plains beyond Garo-Rajmahal Hills. The contamination in Bengal Basin has become one of the extensively studied issues in the world and regarded as the severest case of health hazard in the history of mankind. The researches and investigations in the Gangetic Plains during the last decade (2003-2013) revealed that the eastern half of the plains, also referred as Middle Ganga Plain (MGP), is particularly affected by contamination, jeopardising the shallow aquifer-based drinking water supply. The present paper reviews researches and investigations carried out so far in MGP by various research institutes and government departments on wide array of issues of groundwater As such as its spatio-temporal variation, mobilisation paths, water level behaviour and flow regime, configuration of contaminated and safe aquifers and their recharge mechanism. Elevated conc. of groundwater As has been observed in grey and dark grey sediments of Holocene age (Newer Alluvium) deposited in a fluvio-lacustrine environment in the floodplain of the Ganga and most of its northern tributaries from Himalayas. Older Alluvium, comprising Pleistocene brownish yellow sediment, extending as deeper aquifers in Newer Alluvium areas, is low in groundwater As. Similarities and differences on issues between the MGP and the Bengal Basin have been discussed. The researches point towards the mobilisation process as reductive dissolution of iron hydroxide coating, rich in adsorbed As, mediated by microbial processes. The area is marked with shallow water level (<8.0 m below ground) with ample monsoonal recharge. The infiltrated rainwater and percolating water from surface water bodies carry organic carbon from sediments (particularly from the clay plugs in abandoned channels), abetting microbial processes, spread of anoxic front and release of As.

  3. Superfund Record of Decision (EPA Region 6): Cimarron Mining Corporation site, Operable Unit 1, Lincoln County, Carrizozo, NM. (First remedial action), September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-21

    The 10.6-acre Cimarron Mining site, Lincoln County, New Mexico, is an inactive milling facility used to recover iron from ores transported to the site. A shallow aquifer, which is not a potential drinking water source, and a deeper primary drinking water aquifer lie beneath the site. Cyanide was used until 1982 to recover precious metals. The operation of the mill resulted in the discharge of contaminated liquids onsite. The sources of environmental cyanide contamination at the site are the processed waste materials, including tailings piles and cinder block trench sediment piles, the cyanide solution and tailings spillage areas, and themore » cyanide solution recycling and disposal areas, including cinder block trenches and an unlined discharge pit. The major sources of ground water contamination by cyanide are the cinder block trenches and the discharge pit. These areas of prolonged contact between cyanide solution and underlying soil led to cyanide contamination in the shallow aquifer. The ROD addresses contaminated shallow ground water at the Cimarron Mining mill area as Operable Unit 1 (OU1). The primary contaminants of concern affecting the ground water are inorganics including cyanide.« less

  4. Subtropical freshwater storages: a major source of nitrous oxide and methane?

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Yuan, Zhiguo

    2013-04-01

    Studies of greenhouse gas cycling in subtropical water bodies, particularly in the Southern Hemisphere, are very limited. This represents an important gap in our understanding of global emissions as the higher temperatures experienced in the subtropics will likely accelerate greenhouse gas production and consumption. Critical to understanding the net impact of these accelerated rates are detailed studies of representative systems within this region. In this paper we present a model artificial freshwater storage: Gold Creek Dam in South East Queensland, Australia. Freshwater storages are commonplace for drinking water and irrigation purposes in Australia as unpredictable rainfall patterns make river and ground water sources unreliable. Over 85 % of Australian rivers are modified with weirs and dams providing permanent inundation of previously terrestrial environments. The higher temperatures experienced at these latitudes drive thermal stratification of these systems as well as rapidly deoxygenate bottom waters. High organic matter availability in the sediment zone as well as the anoxic overlying water provide ideal conditions for reduced products (including methane and ammonia) from microbial processing to be formed and diffuse into bottom waters. A mid-water metalimnion is generally associated with large gradients in dissolved oxygen availability and reduced metabolites undergo oxidation prior to their emission from water surface. An intensive field study was undertaken to improve understanding of production and transformation rates of methane and nitrous oxide from the sediments, through the water column and to the atmosphere. Sediment nutrient (ammonia, nitrite/nitrate and filterable reactive phosphorus) and greenhouse gas (methane and nitrous oxide) porewater samples were collected at selected sites. To determine the magnitude of the benthic sediment contribution of methane and nitrous oxide to the water column sediment incubations were conducted in the laboratory. To determine the likely atmospheric flux from this water body surface floating chambers were used to collect gas. Results showed maximum methane concentrations in the sediment porewaters and deeper water column, both anoxic environments. However, nitrous oxide had highest concentrations at the oxycline zone of the water column. Sediment incubations showed clear methane efflux demonstrating the sediments to be a consistent source of methane. Sediments were either a source or sink of nitrous oxide depending on overlying dissolved oxygen concentration. Floating chamber incubations clearly demonstrated Gold Creek Dam was a source of both methane and nitrous oxide with methane an order of magnitude higher expressed as CO2 equivalents. Diffusive atmospheric fluxes of methane ranged from 20 to 450 mg m-2 d-1 and were comparable to tropical reservoirs rather than temperate reservoirs (LOUIS et al., 2000). Results are likely to be globally relevant as an increasing number of large dams are being constructed to meet growing water demand and under a warming climate process occurring in subtropical systems can give insights into future changes likely to occur in temperate systems.

  5. GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: A case study in Hooghly River basin in West Bengal, India.

    PubMed

    Mondal, Rahul; Mukherjee, Ayan; Biswas, Subrata; Kole, Ramen Kumar

    2018-04-30

    A liquid-liquid extraction (LLE) for water and modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method for sediment combined with gas chromatography-tandem mass spectrometry (GC-MS/MS) detection in multiple reaction monitoring (MRM) mode was standardized for determination of 31 pesticides. Performance characteristics for the selected pesticides were acceptable according to European Commission's (EC) guidelines for method validation (recovery 70-120%, RSD <20% and R 2 value ≥ 0.99). River, pond and tubewell water and river sediment samples (64 nos.) were collected from Hooghly River basin in West Bengal, India during 2014-2016. About 42% of the samples showed the presence of 19 pesticides with the highest loading of total pesticides (T-pesticides) in river water (3.01 ng mL -1 ) followed by sediment (1.25 ng g -1 ), pond (0.40 ng mL -1 ) and tubewell (0.02 ng mL -1 ) water. The non-agricultural OC (organochlorine) insecticides were detected in all river water and sediment samples mainly due to HCHs (hexachlorocyclohexane) from old source and fresh use of DDTs (dichlorodiphenyltrichloroethane) in local areas. No OC insecticides were detected in pond and tubewell water. Maximum residues of some recommended pesticides in agriculture were obtained in pond water. Most of the river water samples (93.7%) were in excess of EC limit (0.50 ng mL -1 ) of T-pesticides for drinking followed by pond water samples (56.2%). Tubewell water samples were free from T-pesticide threat but exceeded the EC limit (0.10 ng mL -1 ) for single pesticide in case of chlorpyrifos only. Ecological risk on aquatic animals was observed for OCs in river and chlorpyrifos in pond aquatic ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299

    PubMed Central

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-01-01

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h−1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53% ± 1.69% and 58.65% ± 0.61%, respectively. The ammonia removal rate reached 44.12% ± 1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5–9 mg/L, pH 8–9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41% ± 3.17% (sterilized) and 44.88% ± 4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p < 0.05). High C/N was beneficial for nitrate reduction (p < 0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p > 0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem. PMID:25946341

  7. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.

    2015-03-01

    This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  8. Ground-water quality in the central part of the Passaic River basin, northeastern New Jersey, 1959-88

    USGS Publications Warehouse

    Czarnik, T.S.; Kozinski, Jane

    1994-01-01

    Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0.690. Concentrations of tritium were greater than the detection limit in 33 of 35 ground-water samples, indicating that most ground water in the study area is more recent than 1953.

  9. Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments.

    PubMed

    Shafie, Nur Aliaa; Aris, Ahmad Zaharin; Zakaria, Mohamad Pauzi; Haris, Hazzeman; Lim, Wan Ying; Isa, Noorain Mohd

    2013-01-01

    An investigative study was carried out in Langat River to determine the heavy metal pollution in the sediment with 22 sampling stations selected for the collection of sediment samples. The sediment samples were digested and analyzed for extractable metal ((48)Cd, (29)Cu, (30)Zn, (33)As, (82)Pb) using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Parameters, such as pH, Eh, electrical conductivity (EC), salinity, cation exchange capacity (CEC) and loss on ignition (LOI) were also determined. The assessment of heavy metal pollution was derived using the enrichment factors (EF) and geoaccumulation index (I(geo)). This study revealed that the sediment is predominantly by As > Cd > Pb > Zn > Cu. As recorded the highest EF value at 187.45 followed by Cd (100.59), Pb (20.32), Zn (12.42) and Cu (3.46). This is similar to the I(geo), which indicates that the highest level goes to As (2.2), exhibits moderately polluted. Meanwhile, Cd recorded 1.8 and Pb (0.23), which illustrates that both of these elements vary from unpolluted to moderately polluted. The Cu and Zn levels are below 0, which demonstrates background concentrations. The findings are expected to update the current status of the heavy metal pollution as well as creating awareness concerning the security of the river water as a drinking water source.

  10. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-08-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants.

  11. Approaches for Sustainable Mitigation of Arsenic Calamity in Bangladesh: Search for Safe Drinking Water

    NASA Astrophysics Data System (ADS)

    Alauddin, M.; Bhattacharjee, M.; Zakaria, A. B.; Rahman, M. M.; Seraji, M. S.

    2008-05-01

    Arsenic contamination of groundwater in Gangetic plain of Bihar, West Bengal in India and Bengal delta plain Bangladesh is shaping up as the greatest environmental health disaster in the current century. About 450 million combined population in these regions are at risk of developing adverse health effects due to arsenic contamination in groundwater. For an effective and sustainable mitigation, it is essential that we improve our understanding of fundamental processes of arsenic mobilization in sediments, biogeochemistry of arsenic in aquifer sediments and weigh a wide range of options for arsenic safe water for the vast population. In this paper, aspects of arsenic removal technology from groundwater in affected areas, sustainable development of household water filtration systems, deep aquifer water as potential arsenic safe water will be presented. In addition, sustainable development of water purification systems such as pond sand filtration (PSF), river sand filtration (RSF), rain water harvesting (RWH), dug well and their acceptability by the community will be discussed. A recent development of indigenous technology by local masons involves searching safe water through bore hole sediment color. The viability of this option in certain areas of Bangladesh will be discussed. Also, one of the household filtration systems approved by the government and locally known as SONO filter was recognized recently by the National Academy of Engineering -Grainger Challenge Prize for sustainability. Over 30, 000 of this unit were deployed in arsenic affected areas of Bangladesh. The affordability, ease of maintenance, social acceptability and environmental friendliness of all options will be addressed in the presentation.

  12. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.

    PubMed

    Ritter, Len; Solomon, Keith; Sibley, Paul; Hall, Ken; Keen, Patricia; Mattu, Gevan; Linton, Beth

    2002-01-11

    On a global scale, pathogenic contamination of drinking water poses the most significant health risk to humans, and there have been countless numbers of disease outbreaks and poisonings throughout history resulting from exposure to untreated or poorly treated drinking water. However, significant risks to human health may also result from exposure to nonpathogenic, toxic contaminants that are often globally ubiquitous in waters from which drinking water is derived. With this latter point in mind, the objective of this commission paper is to discuss the primary sources of toxic contaminants in surface waters and groundwater, the pathways through which they move in aquatic environments, factors that affect their concentration and structure along the many transport flow paths, and the relative risks that these contaminants pose to human and environmental health. In assessing the relative risk of toxic contaminants in drinking water to humans, we have organized our discussion to follow the classical risk assessment paradigm, with emphasis placed on risk characterization. In doing so, we have focused predominantly on toxic contaminants that have had a demonstrated or potential effect on human health via exposure through drinking water. In the risk assessment process, understanding the sources and pathways for contaminants in the environment is a crucial step in addressing (and reducing) uncertainty associated with estimating the likelihood of exposure to contaminants in drinking water. More importantly, understanding the sources and pathways of contaminants strengthens our ability to quantify effects through accurate measurement and testing, or to predict the likelihood of effects based on empirical models. Understanding the sources, fate, and concentrations of chemicals in water, in conjunction with assessment of effects, not only forms the basis of risk characterization, but also provides critical information required to render decisions regarding regulatory initiatives, remediation, monitoring, and management. Our discussion is divided into two primary themes. First we discuss the major sources of contaminants from anthropogenic activities to aquatic surface and groundwater and the pathways along which these contaminants move to become incorporated into drinking water supplies. Second, we assess the health significance of the contaminants reported and identify uncertainties associated with exposures and potential effects. Loading of contaminants to surface waters, groundwater, sediments, and drinking water occurs via two primary routes: (1) point-source pollution and (2) non-point-source pollution. Point-source pollution originates from discrete sources whose inputs into aquatic systems can often be defined in a spatially explicit manner. Examples of point-source pollution include industrial effluents (pulp and paper mills, steel plants, food processing plants), municipal sewage treatment plants and combined sewage-storm-water overflows, resource extraction (mining), and land disposal sites (landfill sites, industrial impoundments). Non-point-source pollution, in contrast, originates from poorly defined, diffuse sources that typically occur over broad geographical scales. Examples of non-point-source pollution include agricultural runoff (pesticides, pathogens, and fertilizers), storm-water and urban runoff, and atmospheric deposition (wet and dry deposition of persistent organic pollutants such as polychlorinated biphenyls [PCBs] and mercury). Within each source, we identify the most important contaminants that have either been demonstrated to pose significant risks to human health and/or aquatic ecosystem integrity, or which are suspected of posing such risks. Examples include nutrients, metals, pesticides, persistent organic pollutants (POPs), chlorination by-products, and pharmaceuticals. Due to the significant number of toxic contaminants in the environment, we have necessarily restricted our discussion to those chemicals that pose risks to human health via exposure through drinking water. A comprehensive and judicious consideration of the full range of contaminants that occur in surface waters, sediments, and drinking water would be a large undertaking and clearly beyond the scope of this article. However, where available, we have provided references to relevant literature to assist the reader in undertaking a detailed investigation of their own. The information collected on specific chemicals within major contaminant classes was used to determine their relative risk using the hazard quotient (HQ) approach. Hazard quotients are the most widely used method of assessing risk in which the exposure concentration of a stressor, either measured or estimated, is compared to an effect concentration (e.g., no-observed-effect concentration or NOEC). A key goal of this assessment was to develop a perspective on the relative risks associated with toxic contaminants that occur in drinking water. Data used in this assessment were collected from literature sources and from the Drinking Water Surveillance Program (DWSP) of Ontario. For many common contaminants, there was insufficient environmental exposure (concentration) information in Ontario drinking water and groundwater. Hence, our assessment was limited to specific compounds within major contaminant classes including metals, disinfection by-products, pesticides, and nitrates. For each contaminant, the HQ was estimated by expressing the maximum concentration recorded in drinking water as a function of the water quality guideline for that compound. There are limitations to using the hazard quotient approach of risk characterization. For example, HQs frequently make use of worst-case data and are thus designed to be protective of almost all possible situations that may occur. However, reduction of the probability of a type II error (false negative) through the use of very conservative application factors and assumptions can lead to the implementation of expensive measures of mitigation for stressors that may pose little threat to humans or the environment. It is important to realize that our goal was not to conduct a comprehensive, in-depth assessment of risk for each chemical; more comprehensive assessments of managing risks associated with drinking water are addressed in a separate issue paper by Krewski et al. (2001a). Rather, our goal was to provide the reader with an indication of the relative risk of major contaminant classes as a basis for understanding the risks associated with the myriad forms of toxic pollutants in aquatic systems and drinking water. For most compounds, the estimated HQs were < 1. This indicates that there is little risk associated with exposure from drinking water to the compounds tested. There were some exceptions. For example, nitrates were found to commonly yield HQ values well above 1 in- many rural areas. Further, lead, total trihalomethanes, and trichloroacetic acid yielded HQs > 1 in some treated distribution waters (water distributed to households). These latter compounds were further assessed using a probabilistic approach; these assessments indicated that the maximum allowable concentrations (MAC) or interim MACs for the respective compounds were exceeded <5% of the time. In other words, the probability of finding these compounds in drinking water at levels that pose risk to humans through ingestion of drinking water is low. Our review has been carried out in accordance with the conventional principles of risk assessment. Application of the risk assessment paradigm requires rigorous data on both exposure and toxicity in order to adequately characterize potential risks of contaminants to human health and ecological integrity. Weakness rendered by poor data, or lack of data, in either the exposure or effects stages of the risk assessment process significantly reduces the confidence that can be placed in the overall risk assessment. (ABSTRACT TRUNCATED)

  13. Retention and mitigation of metals in sediment, soil, water, and plant of a newly constructed root-channel wetland (China) from slightly polluted source water.

    PubMed

    Wang, Baoling; Wang, Yu; Wang, Weidong

    2014-01-01

    Constructed root-channel wetland (CRCW) is a term for pre-pond/wetland/post-pond complexes, where the wetland includes plant-bed/ditch landscape and root-channel structure. Source water out of pre-ponds flows through alternate small ditches and plant beds with root-channels via a big ditch under hydraulic regulation. Then source water flows into post-ponds to finish final polishing. This article aims to explore the potential of components of a pilot CRCW in China on mitigating metals in micro-polluted source water during its initial operation stage. We investigated six heavy metals (Cd, Cr, Cu, Ni, Zn, and Pb) in surface sediment, plant-bed subsurface soil, water, and aquatic plants during 2012-2013. Monitoring results showed that pond/ditch sediments and plant-bed soil retained a significant amount of Cr, Ni, and Zn with 93.1%, 72.4%, and 57.5% samples showing contamination factor above limit 1 respectively. Remarkably the high values of metal enrichment factor (EF) occurred in root-channel zones. Water monitoring results indicated that Ni, Zn, and Pb were removed by 78.5% (66.7%), 57.6% (59.6%), and 26.0% (7.5%) in east (west) wetland respectively. Mass balance estimation revealed that heavy metal mass in the pond/ditch sediments accounted for 63.30% and that in plant-bed soil 36.67%, while plant uptake occupied only 0.03%. The heavy metal accretion flux in sediments was 0.41 - 211.08 μg · cm(-2) · a(-1), less than that in plant-bed soil (0.73 - 543.94 μg · cm(-2) · a(-1)). The 1.83 ha wetland has retained about 86.18 kg total heavy metals within 494 days after operation. This pilot case study proves that constructed root-channel wetland can reduce the potential ecological risk of purified raw water and provide a new and effective method for the removal of heavy metals from drinking water sources.

  14. Sediment budgets, transport, and depositional trends in a large tidal delta

    USGS Publications Warehouse

    Morgan, Tara; Wright, Scott A.

    2016-01-01

    The Sacramento-San Joaquin Delta is the largest delta on the west coast of the United States. It is formed where the confluence of California’s two largest rivers (the Sacramento and San Joaquin) meet the ocean tides and has a significant physical gradient from fluvial to tidal. It is a semidiurnal system (two high and two low tides per day). Today, the Delta is one of the most manipulated in the United States. Once composed of many shallow, meandering and braided dendritic channels and dead-end sloughs and wetlands, it is now a network of leveed canals moving clear water around subsided islands. It historically has supported a biologically diverse tidal wetland complex, of which only 3% remains today (Whipple et al., 2012). It has also witnessed a collapse in the native fish populations. The Delta provides critical habitat for native species, however the hydrology and water quality are complicated by manipulations and diversions to satisfy multiple statewide objectives. Today water managers face co-equal goals of water supply to Californians and maintenance of ecosystem health and function. The Delta is a hub for both a multi-hundred-million dollar agricultural industry and a massive north-to-south water delivery system, supplying the primary source of freshwater to Central Valley farmers and drinking water for two-thirds of California’s population. Large pump facilities support the water demand and draw water from the Delta, further altering circulation patterns and redirecting the net flow toward the export facilities (Monsen et al., 2007). Fluvial sedimentation, along with organic accumulation, creates and sustains the Delta landscape. Hydraulic mining for gold in the watershed during the late 1800s delivered an especially large sediment pulse to the Delta. More recently, from 1955 to the present, a significant sediment decline has been observed that is thought to have been caused mostly by the construction of water storage reservoirs that trap the upstream sediment supply (Wright and Schoellhamer, 2004). Today, one concern is whether the volume of sediment supplied from the upper watershed is sufficient to support ecological function and sustain the Delta landscape and ecosystem in the face of climate change, sea level rise, and proposed restoration associated with the Bay Delta Conservation Plan (http://baydeltaconservationplan.com). Ecosystem health is a management focus and 150,000 acres of restoration is currently proposed, therefore it is of increasingly important to understand the quantity of sediment available for marsh and wetland restoration throughout the Bay Delta Estuary. It is also important to understand the pathways for sediment transport and the sediment budget into each of three Delta regions (figure 1) to guide restoration planning, modeling, and management.

  15. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and (5) results of optical, X-ray diffraction, and scanning-electron microscopy examination of mineral grains in the aquifer sediments. Sulfur-isotopic composition of ground- water samples also supports the models. In general, the quality of ground water in the study area meets Nevada State drinking-water standards and is acceptable for most uses. In addition to analysis for major ions, samples were analyzed for 22 inorganic trace elements, 3 nutrients, and 4 radionuclides. Selenium in 1 sample is the only constituent that exceeded Nevada State primary drinking-water standards. Nevada State secondary- drinking water standards were exceeded for fluoride in 1 sample, for iron in 7 samples, and for manganese in 19 samples. Minor constituent con- centrations are generally the result of local redox conditions, and are primarily from minerals in volcanic and marine metasedimentary rocks, metal- oxide coatings on mineral grains, and organic matter.

  16. Occurrence of selected contaminants in water, fish tissue, and streambed sediments in central Nebraska, 1992-95

    USGS Publications Warehouse

    Frenzel, Steven A.

    1996-01-01

    Surface and ground water in Nebraska may contain contaminants resulting from human activities. For purposes of this publication, a contaminant is any element or compound whose presence may affect the water's suitability for certain uses. For example, herbicide concentrations may exceeed the U.S. Environmental Protection Agency's (USEPA) Health Advisory Levels (HAL) for drinking water or trace-element concentrations may exceed guidelines for the protection of aquatic life. In general, the contaminats discussed in this report enter the aquatic system through nonpoint-source runoff from agricultural lands that dominate the Nebraska landscape. However,because this assessment was conducted as part of a larger, national program, a screening for contaminants with non-agricultural origins was included.The measurement of water quality involves a variety of steps, each contributing unique information while also aggregating to an overall assessment. One aspect of water-quality assesment is to describe the occurrence and distribution of contaminants. Some contaminants may be hundreds or thousands of times more concentrated in the tissues of aquatic organisms or in fine sediments than they are in the water. As a result, fish tissue and streambed sediments are well suited for the detection of certain contaminants. For example, pesticides used in the United States prior to the early 1970's, such as DDT, may have degraded into more stable but still toxic compounds that are highly concentrated in fish tissues. Conversely, other contaminants are not concentrated in sediments or tissues but are readily detected in water samples. Organonitrogen herbicides (such as atrazine), the most commonly used herbicides in Nebraska, are examples of water-soluble contaminants.Several sampling strategies were used to address specific questions. Some sites were sampled repeatedly through time and during all hydrologic conditions, whereas others were sampled only once to determine presence of contaminants. Because a strong relation between concentration and streamflow often exists for contaminants originating from nonpoint sources, streams typically were sampled near gaging stations that monitor streamflow.

  17. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the underlying 30-cm-long segment of sediment. A follow-up study conducted the following year at the same location demonstrated that removal of the top 5 cm of sediment resulted in a six-fold decrease in the efficiency of the near-surface bottom sediments for filtering out Synechococcus, cyanophage, and well-characterized microspheres.

  18. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano.

    PubMed

    Ormachea Muñoz, Mauricio; Wern, Hannes; Johnsson, Fredrick; Bhattacharya, Prosun; Sracek, Ondra; Thunvik, Roger; Quintanilla, Jorge; Bundschuh, Jochen

    2013-11-15

    Environmental settings in the southern area of Lake Poopó in the Bolivian highlands, the Altiplano, have generated elevated amounts of arsenic (As) in the water. The area is characterised by a semiarid climate, slow hydrological flow and geologic formations of predominantly volcanic origin. The present study aimed at mapping the extent of the water contamination in the area and to investigate the geogenic sources and processes involved in the release of As to the groundwater. Ground- and surface-water samples were collected from 24 different sites, including drinking water wells and rivers, in the southern Poopó basin in two different field campaigns during the dry and rainy seasons. The results revealed variable levels of As in shallow drinking water wells and average concentration exceeding the WHO guidelines value. Arsenic concentrations range from below 5.2 μg/L (the detection level) to 207 μg/L and averages 72 μg/L. Additionally, high boron (B) concentrations (average 1902 μg/L), and high salinity are further serious concerns for deteriorating the groundwater quality and rendering it unsuitable for drinking. Groundwater is predominantly of the Na-Cl-HCO3 type or the Ca-Na-HCO3 type with neutral or slightly alkaline pH and oxidising character. While farmers are seriously concerned about the water scarcity, and on a few occasions about salinity, there are no concerns about As and B present at levels exceeding the WHO guidelines, and causing negative long term effects on human health. Sediment samples from two soil profiles and a river bed along with fourteen rock samples were also collected and analysed. Sequential extractions of the sediments together with the calculation of the mineral saturation indices indicate that iron oxides and hydroxides are the important secondary minerals phases which are important adsorbents for As. High pH values, and the competition of As with HCO3 and dissolved silica for the adsorption sites probably seems to be an important process for the mobilisation of As in the shallow groundwaters of the region. Continuous monitoring and expansion of monitoring systems are necessary prerequisites for better understanding of the pattern of As mobilisation in the Southern Poopó Basin. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China.

    PubMed

    Lin, Tao; Yu, Shilin; Chen, Wei

    2016-06-01

    The occurrence and removal of 39 selected pharmaceutical and personal care products (PPCPs) were investigated in an advanced drinking water treatment plant (ADWTP) around Taihu Lake. Fourteen of 39 targeted pharmaceuticals were detected in the raw water. After a series of purification processes, only indomethacin, caffeine and sulfamethoxazole were found in effluent, albeit at concentrations less than 2 ng L(-1). The results of principal component analysis suggested that three main purification processes, oxidation, coagulation combined with sedimentation and filtration combined with bio-degradation, influenced the removal performance of PPCPs. The ecotoxicological and human health risk assessment confirmed that drugs detected in effluent posed no potential toxicity and also suggested that two PPCPs (roxithromycin and sulfamethoxazole), especially sulfamethoxazole, should be seriously considered as candidates for regulatory monitoring and prioritization. Finally, the correlation between removal efficiency and risk quotient indicated that uniform removal efficiency for all PPCPs may not reflect an equal risk control in the ADWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    PubMed

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  1. Fate and Transport of Hydrophobic and Hydrophilic ...

    EPA Pesticide Factsheets

    Cyanobacteria (also known as “blue-green algae”) are microscopic organisms that are found in most bodies of water, which can multiply to form harmful algal blooms (HABs) under favorable conditions (i.e., rich nutrients, strong sunlight, and high temperature). Many genera of cyanobacteria are known to produce cyanotoxins such as microcystins (MCs), cylindrospermopsin (CYN), saxitoxins, and anatoxin-a. HABs have been a major health and environmental issue in Europe, Asia as well as the United States. Cyanoxtoxins in water can be partitioned into two categories (i.e., intracellular and extracellular toxins). In most cases, cyanotoxins exist intracellularly in the cytoplasm of cyanobacteria. However, when the cells die or lyse, as well as in response to stressors in the environment, intracellular toxins may be released into the water, becoming extracellular cyanotoxins. According to literature, 95% of MCs are intracellular, but only 50% of CYN is typically intracellular under typical conditions.Cyanotoxins are relatively stable under a variety of water quality conditions and can be persistent in aquatic environments. Conventional drinking water treatment plants (DWTPs), which typically utilize coagulation/flocculation/sedimentation (C/F/S) and sand filtration (SF) have been considered as safe barriers for cyanobacteria and associated intracellular toxins. However, these conventional drinking water treatment processes are ineffective in removing hydrophilic disso

  2. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.

    PubMed

    Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah

    2014-11-15

    The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    PubMed

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  4. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    PubMed

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Assessment of petroleum-hydrocarbon contamination in the surficial sediments and ground water at three former underground storage tank locations, Fort Jackson, South Carolina, 1995

    USGS Publications Warehouse

    Robertson, J.F.

    1996-01-01

    Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for laboratory analysis and field-property determinations. Petroleum hydrocarbons and lead were detected at concentrations exceeding regulatory limits for drinking water in ground water from Site 1062 only. Petroleum hydrocarbons were detected in ground water from three wells at Site 1062, with the highest concentrations occurring in the area of the former underground storage tanks. Benzene was detected at concentrations as much as 28 micrograms per liter; toluene as much as 558 micrograms per liter; para- and meta-xylenes as much as 993 micrograms per liter; and naphthalene as much as 236 micrograms per liter. Ethylbenzene and ortho-xylene were detected in one well at concentrations of 70 and 6 micrograms per liter, respectively. Dissolved lead was detected in ground water from four wells at concentrations from 5 to 152 micrograms per liter. Analysis of ground-water samples collected from Sites 2438 and 2444 showed little evidence of petroleum-hydrocarbon contamination. Petroleum hydrocarbons were not detected in any of the ground-water samples collected from Site 2438. With the exception of a low concentration of naphthalene (11 micrograms per liter) detected in ground water from one well, petroleum hydrocarbons and lead were not detected in ground water collected from Site 2444.

  6. High levels of faecal contamination in drinking groundwater and recreational water due to poor sanitation, in the sub-rural neighbourhoods of Kinshasa, Democratic Republic of the Congo.

    PubMed

    Kayembe, John M; Thevenon, Florian; Laffite, Amandine; Sivalingam, Periyasamy; Ngelinkoto, Patience; Mulaji, Crispin K; Otamonga, Jean-Paul; Mubedi, Josué I; Poté, John

    2018-04-01

    In many urban and peri-urban areas of developing countries, shallow wells and untreated water from urban rivers are used for domestic purposes, including drinking water supply, population bathing and irrigation for urban agriculture. The evaluation and monitoring of water quality are therefore necessary for preventing potential human risk associated with the exposure to contaminated water. In this study, physicochemical and bacteriological parameters were assessed in an urban river (named Kokolo Canal/Jerusalem River) draining the municipality of Lingwala (City of Kinshasa, Democratic Republic of the Congo) and in two shallow wells used as drinking water supplies, during the wet and dry seasons in order to estimate the seasonal variation of contamination. The faecal indicator bacteria (FIB) isolated strains (Escherichia coli (E. coli) and Enterococcus (ENT)) from water and surface sediment, were characterized for human-specific bacteroides by molecular approach. The results revealed very high faecal contamination of water from the shallow wells, and of water and sediments from the river, during both wet and dry seasons. During the wet season, E. coli reached the values of 18.6 × 10 5 and 4.9 × 10 5  CFU 100 mL -1 in Kokolo Canal and shallow wells, respectively; and Enterococcus reached the values of 7.4 × 10 4 and 2.7 × 10 4  CFU 100 mL -1 . Strong mutually positive correlation was observed between E. coli and ENT, with the range of R-value being 0.93 < r < 0.97 (p-value < 0.001, n = 15). The PCR assays for human-specific Bacteroides indicated that more than 98% of 500 isolated FIB strains were of human origin, pointing out the effect of poor household sanitation practices on surface water but also on groundwater contamination. The water samples from the shallow wells and Kokolo Canal were highly polluted with faecal matter in both seasons. However, the pollution level was significantly higher during the wet season compared to the dry season. Physicochemical analysis revealed also very high water electrical conductivity, with values much higher than the recommended limits of the World Health Organization guideline for drinking water. These results highlight the potential human health risk associated with the exposure to water contamination from shallow wells and Kokolo Canal, due to the very high level of human FIB. Rapid, unplanned and uncontrolled population growth in the city of Kinshasa is increasing considerably the water demand, whereas there is a dramatic lack of appropriate sanitation and wastewater facilities, as well as of faecal sludge (and solid waste) management and treatment. The lack of hygiene and the practice of open defecation is leading to the degradation of water quality, consequently the persistence of waterborne diseases in the neighbourhoods of sub-rural municipalities, and there is a growing threat to the sustainability to water resources and water quality. The results of this study should encourage municipality policy and strategy on increasing the access to safely managed sanitation services; in order to better protect surface water and groundwater sources, and limit the proliferation of epidemics touching regularly the city. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Surface-water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; pesticides and other synthetic organic compounds in water, sediment, and biota, 1975-90

    USGS Publications Warehouse

    Sullivan, Daniel J.; Stinson, Troy W.; Crawford, J. Kent; Schmidt, Arthur R.; Colman, John A.

    1998-01-01

    The distribution of pesticides and other synthetic organic compounds in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin was examined from 1987 through 1990 as part of the pilot National Water-Quality Assesssment Program conducted by the U.S. Geological Survey. Historical data for water and sediment collected from 1975 through 1986 were similar to data collected from 1987 through 1990. Some compounds were detected in concentrations that exceed U.S. Environmental Protection Agency water-quality criteria. Results from pesticide sampling at four stations in 1988 and 1989 identified several agricultural pesticides that were detected more frequently and at higher concentrations in urban areas than in agricultural areas. Results from herbicide sampling at 17 stations in the Kankakee and Iroquois River Basins in 1990 indicated that atrazine concentrations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water during runoff periods. Results from sampling for volatile and semivolatile organic compounds in water indicate that, with one exception, all stations at which more than one compound was detected were within 2 miles downstream from the nearest point source. Detections at two stations in the Chicago urban area accounted for 37 percent of the total number of detections. Concentrations of tetrachloroethylene, trichloroethylene, and 1,2-dichlorethane from stations in the Des Plaines River Basin exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water in one and two samples from the two stations in the Chicago area. Phenols and pentachlorophenols were detected most frequently in the Des Plaines River Basin where point-source discharges were common. Phenol concentrations were significantly different among the Des Plaines, Kankakee, and Fox River Basins. Phenols and pentachlorophenols never exceeded the general use and secondary contact standards. Results from a 1989 synoptic survey of semivolatile organic compounds in sediment indicate that these compounds were detected most frequently at sites in the Chicago urban area. Of the 17 stations at which 10 or more compounds were detected, 14 were located in the Des Plaines River subbasin, and 1 was on the Illinois River mainstem. As was the case with organic compounds in water, each of these sites was located within 2 miles downstream from point sources. Biota samples were collected and analyzed for organochlorines and polynuclear aromatic hydrocarbons in 1989 and 1990. The most commonly detected compound in both years was p,p'-DDE. National Academy of Science recommendations for chlordane and dieldrin for protection of predators were exceeded in 19 and 10 samples, respectively, when the 1989 and 1990 data were combined. In the nine fish-fillet samples collected in 1989, concentrations exceeded U.S. Environmental Protection Agency fish-tissue criteria in nine fillets for p,p'-DDE and five fillets for dieldrin.

  8. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.

    PubMed

    Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon

    2008-02-01

    This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.

  9. Assessment of heavy metals in loose deposits in drinking water distribution system.

    PubMed

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  10. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  11. Superfund Record of Decision (EPA Region 2): Kin-Buc Landfill, Edison Township, Middlesex County, NJ. (Second remedial action), September 1992. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-28

    The 200-acre Kin-Buc Landfill consists of several inactive disposal areas and is located in Edison Township, Middlesex County, New Jersey. Land use in the area is predominantly industrial and commercial, with some residences within 2 miles north of the site. No drinking water supply wells are located within a 2-mile radius of the site. As a result of an oil spill in 1976, EPA conducted an investigation of the property. In 1980, clean-up activities were initiated under the Clean Water Act and included removal, treatment, and disposal of leachate and drummed waste. The ROD addresses a final remedy for OU2more » consisting of the sediment and groundwater in the Edmonds Creek wetlands area, Mill Brook/Martins Creek, Mound B, and the low-lying area. The primary contaminants of concern affecting the sediment and ground water are VOCs, including benzene and xylenes; other organics, including PAHs, PCBs, and pesticides; and metals, including arsenic and lead. The selected remedy for the site are included.« less

  12. Effect of adsorbent addition on floc formation and clarification.

    PubMed

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Solution by dilution?--A review on the pollution status of the Yangtze River.

    PubMed

    Floehr, Tilman; Xiao, Hongxia; Scholz-Starke, Björn; Wu, Lingling; Hou, Junli; Yin, Daqiang; Zhang, Xiaowei; Ji, Rong; Yuan, Xingzhong; Ottermanns, Richard; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2013-10-01

    The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.

  14. Managing peatland vegetation for drinking water treatment.

    PubMed

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  15. Managing peatland vegetation for drinking water treatment

    PubMed Central

    Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.

    2016-01-01

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision. PMID:27857210

  16. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    PubMed

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.

  17. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed Central

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-01-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496

  18. Reactive Transport of the Uranyl Ion in Soils, Sediments, and Groundwater Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Ilton, Eugene S.; Liu, Chongxuan

    2013-05-16

    Uranium is a ubiquitous trace component in rocks ranging from 1.2 to 1.3 µg g-1 in sedimentary rocks, 2.2 to 15 µg g-1 in granites, and 20 to 120 µg g-1 in phosphates (Langmuir, 1997; Plant et al., 1999). Uranium (U) is released to natural waters in dilute concentrations (generally < 10-7 mole L-1) from the weathering of these sources, with water concentrations in uraniferous geologic terrains, such as the southwestern U.S. (USGS, 2011), being higher (~ 10-6.5 mol L-1). Elevated water-borne concentrations are associated with the weathering of natural ore bodies [~10-6 mol L-1; e.g, (Payne and Airey, 2006)],more » the extraction and mining of U for armaments (Jiang and Aschner, 2009; WHO, 2001) and nuclear fuels [10-6 to 10-3 mol L-1; (Abdelouas et al., 1999)], and the disposal of waste solids and liquids from nuclear fuels reprocessing and arms production [~ 10-6 to 10-2 mol L-1; e.g., (Wan et al., 2009; Zachara et al., 2007)]. The form of U present in natural waters at high concentration is generally the uranyl ion [e.g., UO22+] which is quite soluble. Groundwater in many parts of the world contains dissolved U originating from natural and anthropogenic sources (ATSDR, 2011; EFSA, 2009). Low levels of dissolved U in drinking water are considered a health concern, causing renal and other effects (Kurttio et al., 2002; Kurttio et al., 2005; Limson Zamora et al., 1998; Nriagu et al., 2012; Raymond-Whish et al., 2007; Selden et al., 2009). The U.S. Environmental Protection Agency has established a regulatory drinking water standard of 30 µg L-1 (1.26 x 10-7 mol L-1) or 30 pCi L-1, whichever is exceeded first. The World Health Organization has recommended an even lower drinking water standard of 15 µg L-1 [6.3 x 10-8 mol L-1; (WHO, 2005)]. Human exposure to U through drinking water is expected to rise as world-wide reliance on groundwater sources increase (ESS, 2010).« less

  19. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    NASA Astrophysics Data System (ADS)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-06-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  20. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    NASA Astrophysics Data System (ADS)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  1. Streambed-material characteristics and surface-water quality, Green Pond Brook and tributaries, Picatinny Arsenal, New Jersey, 1983-90

    USGS Publications Warehouse

    Storck, D.A.; Lacombe, Pierre

    1996-01-01

    This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were detected in surface- water samples in concentrations greater than the U.S. Environmental Protection Agency primary drinking-water regulations. Only two constituents, iron and manganese, were detected in concen- trations greater than the U.S. Environmental Protection Agency secondary drinking-water regulations.

  2. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    PubMed

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide useful information for the identification of highly polluted areas, and aid the development of integrated watershed management system in the drinking water resource area.

  3. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    USGS Publications Warehouse

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  4. Land-use effects on erosion, sediment yields, and reservoir sedimentation: a case study in the Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.C.; Webb, R.M.T.; McIntyre, S.C.; Wolfe, W.J.

    2006-01-01

     Lago Loíza impounded in 1953 to supply San Juan, Puerto Rico, with drinking water; by 1994, it had lost 47% of its capacity. To characterize sedimentation in Lago Loíza, a study combining land-use history, hillslope erosion rates, and subbasin sediment yields was conducted. Sedimentation rates during the early part of the reservoir’s operation (1953– 1963) were slightly higher than the rates during 1964–1990. In the early history of the reservoir, cropland comprised 48% of the basin and erosion rates were high. Following economic shifts during the 1960s, cropland was abandoned and replaced by forest, which increased from 7.6% in 1950 to 20.6% in 1987. These land-use changes follow a pattern similar to the northeastern United States. Population in the Lago Loíza Basin increased 77% from 1950 to 1990, and housing units increased 194%. Sheetwash erosion measured from 1991 to 1993 showed construction sites had the highest sediment concentration (61,400 ppm), followed by cropland (47,400 ppm), pasture (3510 ppm), and forest (2050 ppm). This study illustrates how a variety of tools and approaches can be used to understand the complex interaction between land use, upland erosion, fluvial sediment transport and storage, and reservoir sedimentation. 

  5. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir.

    PubMed

    Long, Yan; Liu, Changbao; Lin, Hengliang; Li, Ningning; Guo, Qingwei; Xie, Shuguang

    2017-06-01

    In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0-5 cm, 5-10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 10 5 to 8.24 × 10 5 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32-2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from "Candidatus Methylomirabilis oxyfera". Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.

  6. Lead in ancient Rome's city waters.

    PubMed

    Delile, Hugo; Blichert-Toft, Janne; Goiran, Jean-Philippe; Keay, Simon; Albarède, Francis

    2014-05-06

    It is now universally accepted that utilization of lead for domestic purposes and water distribution presents a major health hazard. The ancient Roman world was unaware of these risks. How far the gigantic network of lead pipes used in ancient Rome compromised public health in the city is unknown. Lead isotopes in sediments from the harbor of Imperial Rome register the presence of a strong anthropogenic component during the beginning of the Common Era and the Early Middle Ages. They demonstrate that the lead pipes of the water distribution system increased Pb contents in drinking water of the capital city by up to two orders of magnitude over the natural background. The Pb isotope record shows that the discontinuities in the pollution of the Tiber by lead are intimately entwined with the major issues affecting Late Antique Rome and its water distribution system.

  7. Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing.

    PubMed

    Héry, Marina; Rizoulis, Athanasios; Sanguin, Hervé; Cooke, David A; Pancost, Richard D; Polya, David A; Lloyd, Jonathan R

    2015-06-01

    Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate-respiring bacteria, were determined by DNA stable-isotope probing. After incubation with (13) C-acetate and (13) C-lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.-related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate-respiring Sulfurospirillum spp. (13) C-acetate selected for ArrA related to Geobacter spp. whereas (13) C-lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA-phylotype related to the sulphate-reducing Desulfovibrio oxamicus DSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X-ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.

    PubMed

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T

    2017-12-31

    About 50% of U.S. water pollution problems are caused by non-point source (NPS) pollution, primarily sediment and nutrients from agricultural areas, despite the widespread implementation of agricultural Best Management Practices (BMPs). However, the effectiveness of implementation strategies and type of BMPs at watershed scale are still not well understood. In this study, the Soil and Water Assessment Tool (SWAT) ecohydrological model was used to assess the effectiveness of pollutant mitigation strategies in the Raccoon River watershed (RRW) in west-central Iowa, USA. We analyzed fourteen management scenarios based on systematic combinations of five strategies: fertilizer/manure management, changing row-crop land to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems, specifically aimed at reducing nitrate and total suspended sediment yields from hotspot areas in the RRW. Moreover, we assessed implications of climate change on management practices, and the impacts of management practices on water availability, row crop yield, and total agricultural production. Our results indicate that sufficient reduction of nitrate load may require either implementation of multiple management practices (38.5% with current setup) or conversion of extensive areas into perennial grass (up to 49.7%) to meet and maintain the drinking water standard. However, climate change may undermine the effectiveness of management practices, especially late in the 21st century, cutting the reduction by up to 65% for nitrate and more for sediment loads. Further, though our approach is targeted, it resulted in a slight decrease (~5%) in watershed average crop yield and hence an overall reduction in total crop production, mainly due to the conversion of row-crop lands to perennial grass. Such yield reductions could be quite spatially heterogeneously distributed (0 to 40%). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China.

    PubMed

    Niu, Yong; Niu, Yuan; Pang, Yong; Yu, Hui

    2015-11-01

    Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu.

  10. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Sun River area, west-central Montana, 1986-87

    USGS Publications Warehouse

    Knapton, J.R.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    The Sun River area was selected for a reconnaissance investigation of irrigation drainage because sufficient information existed to indicate that potential problems of a toxic nature might exist. The area of study included the Sun River Irrigation Project, Freeze-out Lake Game Management Area, and Benton Lake National Wildlife Refuge. Water, bottom sediment , and biota were sampled at selected sites and analyzed for inorganic and organic constituents that could be toxic at large concentrations. Although selenium was of primary concern, other trace elements and selected pesticides were also analyzed. Some water quality problems have been prevalent for many years in the Sun River Irrigation Projects, including the Sun River and Muddy Creek. However, during this study, most sampling sites were free of concentrations of toxic constituents that are in excess of established criteria and standards. There was little change in arsenic, boron, mercury, and selenium concentrations in fish and invertebrates at Sun River sampling sites upstream and downstream from the irrigation project. Presently, the most serious threat within the irrigation project appears to be from nitrate in groundwater. Water from some wells contains nitrate concentration in excess of drinking water standards (10 mg/L) established for the State of Montana. The largest selenium concentrations in water and bottom sediment were from seeps that surround Benton Lake, with maximum concentrations of 580 mg/L in water and biological samples. Several eared-grebe livers from Freezeout Lake and several coot livers and eggs from Benton Lake had selenium concentrations indicative of contamination. (See also W89-07064) (Author 's abstract)

  11. Pb-Sr isotopic and geochemical constraints on sources and processes of lead contamination in well waters and soil from former fruit orchards, Pennsylvania, USA: A legacy of anthropogenic activities

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.

    2016-01-01

    Isotopic discrimination can be an effective tool in establishing a direct link between sources of Pb contamination and the presence of anomalously high concentrations of Pb in waters, soils, and organisms. Residential wells supplying water containing up to 1600 ppb Pb to houses built on the former Mohr orchards commercial site, near Allentown, PA, were evaluated to discern anthropogenic from geogenic sources. Pb (n = 144) and Sr (n = 40) isotopic data and REE (n = 29) data were determined for waters from residential wells, test wells (drilled for this study), and surface waters from pond and creeks. Local soils, sediments, bedrock, Zn-Pb mineralization and coal were also analyzed (n = 94), together with locally used Pb-As pesticide (n = 5). Waters from residential and test wells show overlapping values of 206Pb/207Pb, 208Pb/207Pb and 87Sr/86Sr. Larger negative Ce anomalies (Ce/Ce*) distinguish residential wells from test wells. Results show that residential and test well waters, sediments from residential water filters in water tanks, and surface waters display broad linear trends in Pb isotope plots. Pb isotope data for soils, bedrock, and pesticides have contrasting ranges and overlapping trends. Contributions of Pb from soils to residential well waters are limited and implicated primarily in wells having shallow water-bearing zones and carrying high sediment contents. Pb isotope data for residential wells, test wells, and surface waters show substantial overlap with Pb data reflecting anthropogenic actions (e.g., burning fossil fuels, industrial and urban processing activities). Limited contributions of Pb from bedrock, soils, and pesticides are evident. High Pb concentrations in the residential waters are likely related to sediment build up in residential water tanks. Redox reactions, triggered by influx of groundwater via wells into the residential water systems and leading to subtle changes in pH, are implicated in precipitation of Fe oxyhydroxides, oxidative scavenging of Ce(IV), and desorption and release of Pb into the residential water systems. The Pb isotope features in the residences and the region are best interpreted as reflecting a legacy of industrial Pb present in underlying aquifers that currently supply the drinking water wells.

  12. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.

    PubMed

    Rymszewicz, A; O'Sullivan, J J; Bruen, M; Turner, J N; Lawler, D M; Conroy, E; Kelly-Quinn, M

    2017-09-01

    The use of turbidity for indicating environmentally detrimental levels of suspended and colloidal matter in freshwater systems, and for defining acceptable water quality standards in national and European drinking water regulations, is well established. Turbidity is therefore frequently adopted as a surrogate for suspended sediment concentrations (SSC), or as a relative and objective measure of water clarity in monitoring programmes. Through systematic, controlled experimentation, we tested the response of 12 commercially available turbidity sensors, of various designs, to gauge their measurement consistency when benchmarked against pre-prepared sediment suspensions of known SSC. Results showed that despite calibration to a Formazin standard, sensor responses to identical SSC solutions (in the range of 20-1000 mg L -1 ) varied considerably. For a given SSC, up to five-fold differences in recorded turbidity were recorded across the tested instruments. Furthermore, inconsistent measurements were identified across instruments, regardless of whether they operated using backscatter or side-scatter optical principles. While the findings may have implications for compliance with turbidity-based water quality standards, they are less likely to be an issue when turbidity is being used as a surrogate for SSC, provided that instrument use remains constant and that instrument drift is not an issue. In this study, a field comparison of a subset of four study sensors showed that despite very different absolute turbidity readings for a given SSC, well correlated and reliable turbidity - SSC ratings were established (as evidenced by r 2 coefficients from 0.92 to 0.98). This led to reasonably consistent suspended sediment load estimates of between 64.7 and 70.8 tonnes for a rainfall event analysed. This study highlights the potential for issues to arise when interpreting water turbidity datasets that are often assumed to be comparable, in that measurement inconsistency of the type reported here may remain unknown to water resource decision-makers and practitioners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guidemore » to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.« less

  14. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    USGS Publications Warehouse

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  15. Hydrologic Controls on Nitrogen Cycling Processes and Functional Gene Abundance in Sediments of a Groundwater Flow-Through Lake.

    PubMed

    Stoliker, Deborah L; Repert, Deborah A; Smith, Richard L; Song, Bongkeun; LeBlanc, Denis R; McCobb, Timothy D; Conaway, Christopher H; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B

    2016-04-05

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  16. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level.

    PubMed

    Su, Ming; Jia, Dongmin; Yu, Jianwei; Vogt, Rolf D; Wang, Jingshi; An, Wei; Yang, Min

    2017-01-01

    Abatement and control of algae, producing toxins and creating taste & odor (T&O) in drinking water sources, is a major challenge for water supply. In this study we proposed a strategy based on water level regulation for the control of odor-producing cyanobacteria in source water. Miyun Reservoir, the main surface water source for Beijing, has been suffering from 2-methylisoborneol (2-MIB) induced T&O problems caused by deep-living Planktothrix sp. since 2002. The biomass of deep-living Planktothrix in Miyun Reservoir was found to be mainly governed by the water depth above its sediment habitat. An algorithm for water level regulation aiming to minimize the risk for T&O in different types of reservoirs is proposed. The study demonstrates that risk for T&O can be minimized by increasing the water level in Miyun Reservoir. The high-risk area can be reduced by about 2.91% (0.61% to 5.76%) of surface area for each meter increase in the water level, when the water level is lower than 145m. More specifically, the water level needs to be raised to higher than 147.7ma.s.l. from 131.0m in order to obtain an acceptable risk level (ARL) of 10%. This management strategy to abate T&O problems is simpler and cheaper to implement compared to traditional physical, chemical and biological techniques. Moreover, it has no apparent negative impact on water quality and aquatic organisms. Copyright © 2016. Published by Elsevier B.V.

  17. Groundwater-based water wells characterization from Guinea Bissau (Western Africa): A risk evaluation for the local population.

    PubMed

    Ferrante, Margherita; Signorelli, Salvatore Santo; Ferlito, Santina Letizia; Grasso, Alfina; Dimartino, Angela; Copat, Chiara

    2018-04-01

    The study conducted in two regions of Guinea Bissau, Oio and Cacheu, focusing on the characterization of the groundwater supplies sampled during the dry season and their associated risks for human health. Twenty samples were collected in wells located nearby pit latrines. In situ analyses were conducted with Semi-quantitative test strips for the determination of turbidity, pH, chloride, carbonate, sulfites, ammonium, nitrite and nitrate. The analysis of metals was performed by an ICP-MS Elan DRC-e and an ICP-OES Optima 8000. The Target Hazard Quotient (THQ) was applied to evaluate the risk of developing chronic systemic effects derived from exposure to metals. Values of concern of turbidity ammonium, and pH values were lower than the normal range for drinking water in most samples. From both regions, Fe and Al were occasionally found with values higher than the international thresholds fixed by the World Health Organization and by the European Commission for drinking water, while, only in one sample from Cacheu region Pb was found significantly above these limits. THQs resulted next to the level of risk (1) for the highest values found of Al, As, Fe and Mn. Of great concern is the resident risk obtained from a well water of Cacheu for the highest value of Pb (96.8μg/L), because the values of the resident risk found of 1 and 0.7 for child and adults respectively. The results obtained highlighted a close correlation between the chemistry of water and sediment and a correlation with the proximity of the water supplies with the latrines. This study evidenced the potential toxicity of the water supplies for the local populations and the risk of developing chronic systemic effects due to some physico-chemical parameters, the importance of functioning water pipeline system, the importance of maintaining adequate distance between latrines and drinking water access. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks.

    PubMed

    Alves, Renato I S; Sampaio, Carolina F; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Segura-Muñoz, Susana I

    2014-08-01

    Pardo River (Brazil) is suffering from an important anthropogenic impact due to the pressure of highly populated areas and the influence of sugarcane cultivation. The objective of the present study was to determine the levels of 13 trace elements (As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V and Zn) in samples of surface water and sediments from the Pardo River. Furthermore, the human health risks associated with exposure to those metals through oral intake and dermal absorption were also evaluated. Spatial and seasonal trends of the data were closely analyzed from a probabilistic approach. Manganese showed the highest mean concentrations in both water and sediments, remarking the incidence of the agricultural activity and the geological characteristics within the basin. Thallium and arsenic were identified as two priority pollutants, being the most important contributors to the Hazard Index (HI). Since non-carcinogenic risks due to thallium exposure slightly exceeded international guidelines (HI>1), a special effort should be made on this trace element. However, the current concentrations of arsenic, a carcinogenic element, were in accordance to acceptable lifetime risks. Nowadays, there is a clear increasing growth in human population and economic activities in the Pardo River, whose waters have become a serious strategic alternative for the potential supply of drinking water. Therefore, environmental monitoring studies are required not only to assure that the current state of pollution of Pardo River does not mean a risk for the riverside population, but also to assess the potential trends in the environmental levels of those elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Predicting fire effects on water quality: a perspective and future needs

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Langhans, Christoph; Noske, Philip; Lane, Patrick

    2017-04-01

    Forest environments are a globally significant source of drinking water. Fire presents a credible threat to the supply of high quality water in many forested regions. The post-fire risk to water supplies depends on storm event characteristics, vegetation cover and fire-related changes in soil infiltration and erodibility modulated by landscape position. The resulting magnitude of runoff generation, erosion and constituent flux to streams and reservoirs determines the severity of water quality impacts in combination with the physical and chemical composition of the entrained material. Research to date suggests that most post-fire water quality impacts are due to large increases in the supply of particulates (fine-grained sediment and ash) and particle-associated chemical constituents. The largest water quality impacts result from high magnitude erosion events, including debris flow processes, which typically occur in response to short duration, high intensity storm events during the recovery period. Most research to date focuses on impacts on water quality after fire. However, information on potential water quality impacts is required prior to fire events for risk planning. Moreover, changes in climate and forest management (e.g. prescribed burning) that affect fire regimes may alter water quality risks. Therefore, prediction requires spatial-temporal representation of fire and rainfall regimes coupled with information on fire-related changes to soil hydrologic parameters. Recent work has applied such an approach by combining a fire spread model with historic fire weather data in a Monte Carlo simulation to quantify probabilities associated with fire and storm events generating debris flows and fine sediment influx to a reservoir located in Victoria, Australia. Prediction of fire effects on water quality would benefit from further research in several areas. First, more work on regional-scale stochastic modelling of intersecting fire and storm events with landscape zones of erosion vulnerability is required to support quantitative evaluation of water quality risk and the effect of future changes in climate and land management. Second, we underscore previous calls for characterisation of landscape-scale domains to support regionalisation of parameter sets derived from empirical studies. Recent examples include work identifying aridity as a control of hydro-geomorphic response to fire and the use of spectral-based indices to predict spatial heterogeneity in ash loadings. Third, information on post-fire erosion from colluvial or alluvial stores is needed to determine their significance as both sediment-contaminant sinks and sources. Such sediment stores may require explicit spatial representation in risk models for some environments and sediment tracing can be used to determine their relative importance as secondary sources. Fourth, increased dating of sediment archives could provide regional datasets of fire-related erosion event frequency. Presently, the lack of such data hinders evaluation of risk models linking fire and storm events to erosion and water quality impacts.

  20. New England's Drinking Water | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  1. Freshwater sediments and sludges: two important terrestrial sinks for emissions from damaged NPPs

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Evangelia Souti, Maria; Ulbrich, Susanne; Hormann, Volker

    2013-04-01

    Surface deposition of radionuclides released from the damaged Fukushima NPPs is well documented and emissions to the Pacific Ocean and their distribution with time and space are also subject to monitoring and research. In both cases, solid matter (soil and sea sediment, respectively) acts as a sink for radioisotopes after their transport through air and water. The possible hazards from direct irradiation of workers and public and from entry of radionuclides into food chains are well recognized. Apart from direct deposition onto soil, plants, building roofs etc., aerosols and contaminated rainwater will reach surface waters, leading to long-term deposition in freshwater sediments (and possibly to interim contamination of drinking water). In populated and industrial areas, drained rainwater will enter the wastewater collection and treatment chain if a combined rain and wastewater sewer is used. Depending on the processes in the wastewater treatment plant and chemical element and speciation, the isotopes will either concentrate in treatment sludge or be released with the effluent to rivers and lakes and their sediments. The mentioned media may act as long-term storage for radioisotopes when disposed of properly, but can also contribute to direct irradiation of workers or public, lead to continuous releases to the environment and possibly enter the food chain in the same way as soil and sea sediments. It appears therefore essential to monitor these environmental compartments as well. However, very few data on Fukushima-related radioisotope concentration in sludges and freshwater sediments have been published to date. We will therefore compare data for regional surface deposition and related concentrations in surface water, river sediments and sewage sludge obtained in Europe during 1986 to published data from Japan in 2011 for the most important common short-lived (I-131, half-life = 8.02 d) and long-lived (Cs-137, half-life = 30.17 yr) isotopes. As in central Europe the Chernobyl fallout was not accompanied by other catastrophic events, well documented time series of data exist. It might become possible to estimate sludge and sediment isotope concentrations in Japan by proportionality considerations and by application of transport models when no or insufficient current data exist. Additional insight into transport processes can be obtained from ongoing investigations of medically used I-131 in wastewater and rivers. The results might help in identification and remediation of possibly emerging hazards.

  2. The effects of land use on fluvial sediment chemistry for the conterminous U.S. - Results from the first cycle of the NAWQA Program: Trace and major elements, phosphorus, carbon, and sulfur

    USGS Publications Warehouse

    Horowitz, A.J.; Stephens, V.C.

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began the first cycle of its National Water Quality Assessment (NAWQA) Program. The Program encompassed 51 river basins that collectively accounted for more than 70% of the total water use (excluding power generation), and 50% of the drinking water supply in the U.S. The basins represented a variety of hydrologic settings, rock types (geology), land-use categories, and population densities. One aspect of the first cycle included bed sediment sampling; sites were chosen to represent baseline and important land-use categories (e.g., agriculture, urban) in each basin. In total, over 1200 bed sediment samples were collected. All samples were size-limited (< 63????m) to facilitate spatial and/or temporal comparisons, and subsequently analyzed for a variety of chemical constituents including major (e.g., Fe, Al,) and trace elements (e.g., Cu, Zn, Cd), nutrients (e.g., P), and carbon. The analyses yielded total (??? 95% of the concentrations present), rather than total-recoverable chemical data. Land-use percentages, upstream underlying geology, and population density were determined for each site and evaluated to asses their relative influence on sediment chemistry. Baseline concentrations for the entire U.S. also were generated from a subset of all the samples, and are based on material collected from low population (??? 27??p km- 2) density, low percent urban (??? 5%), agricultural or undeveloped areas. The NAWQA baseline values are similar to those found in other national and global datasets. Further, it appears that upstream/underlying rock type has only a limited effect (mostly major elements) on sediment chemistry. The only land-use category that appears to substantially affect sediment chemistry is percent urban, and this result is mirrored by population density; in fact, the latter appears more consistent than the former.

  3. Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System

    NASA Astrophysics Data System (ADS)

    Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.

    2015-12-01

    Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to <5 mg/L downstream. pH ranged from 3 to 5.6 while suspended solids ranged from <10 to 100 mg/L. We used Geochemist Workbench to assess copper speciation and to evaluate the thermodynamic controls for the formation and dissolution of solid phases. A sediment trap was used to concentrate suspended particulate matter, which was analyzed with ICP-MS, TXRF (total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020

  4. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area

    NASA Astrophysics Data System (ADS)

    Peng, Chi; Cai, Yimin; Wang, Tieyu; Xiao, Rongbo; Chen, Weiping

    2016-11-01

    In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95th percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates.

  5. Accumulation of radium in sediments from continued disposal of produced water and hydraulic fracturing flowback water

    NASA Astrophysics Data System (ADS)

    Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.

    2014-12-01

    Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.

  6. Managed aquifer recharge as environmental tool risk mitigation linked to the presence of herbicides.

    NASA Astrophysics Data System (ADS)

    Di Roma, Antonella; Nieto Yàbar, Daniel; Pepi, Salvatore; Vaccaro, Carmela

    2017-04-01

    The pollution due to some herbicides which was used in flood plains and karst areas of various regions in the world is causing major problems in supplying drinking water from surface water bodies and aquifers. Pesticides and herbicides are widely used in agriculture, vineyards, industry and public hygiene. They are spread on soil surface, in air, into deep soil causing problems in surface water bodies and aquifers. In Italy the interest of presence of pesticides in water resources began around 1980 after episodes of drinking water contamination due to some herbicides and atrazine (ATR). After years away from the ban on the use of atrazine (use prohibition in the 90's), its degradation products are still present in groundwater of large areas of the plains of Nord Italy (Bottoni et al.,2013). Intensive use of triazines has become harmful for the local population that live in the Veneto-Friuli plain where the high gravels permeability of alluvial fans allowed to the widespread diffusion of triazines and related metabolites. The main mechanism of atrazine action in soil is microbial degradation, the kinetics of these products is closely connected with the availability of nitrates in the soil. The half-life of atrazine is 30-180 days but its disintegration is blocked by nitrates presence (Jones et al 1982). ATR is trapped in cohesive levels as peat and silty clay soils and periodically released by the interaction water sediment. Artificial recharge in areas with highly permeable aquifers allows to realize qualitative and quantitative regeneration because water low in nitrates and Dissolved Oxygen can promote the biological and chemical disintegration of pesticides such as atrazine and its metabolites. A case study is represented by the Friuli plain, near the Tagliamento river. Based on the WARBO project data that has applied artificial recharge in Mereto di Tomba test site where the dissolved nitrate content of water in some cases exceed the 50 mg/L limit according to Italian legislation (DL 152/2006), is proposed to apply this methodology to deal drinking water supply problem that afflicts the fields wells of Pordenone city resources. The study conducted on city aqueduct waters have shown the presence of atrazine metabolite that exceeds 0.10 µg/ l referred by law limits (ISPRA Report 2015). The release and infiltration of fresh water through the controlled charging reduces the concentration of nitrates promoting the degradation of atrazine metabolites. Application of recharging methods could be a method the contamination reduction of ATR and herbicides with the recovery of water resource. Bottoni P., Grenni P., Lucentini L., Barra Caracciolo A.2013.Terbuthylazine and other triazines in Italian water resources Microchemical Journal 107 136-142 Jones TW, Kemp WM, Stevenson JC, Means JC .1982. Degradation of atrazine in estuarine water/sediment systems and soils. J Environ Qual 11:632-638 www.isprambiente.gov.it/files/pubblicazioni/rapporti/rapporto-244/Rapporto_244_2016.pdf

  7. Arsenic: The Silent Killer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years,more » can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.« less

  8. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    NASA Astrophysics Data System (ADS)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  9. Lead in ancient Rome’s city waters

    PubMed Central

    Delile, Hugo; Blichert-Toft, Janne; Goiran, Jean-Philippe; Keay, Simon; Albarède, Francis

    2014-01-01

    It is now universally accepted that utilization of lead for domestic purposes and water distribution presents a major health hazard. The ancient Roman world was unaware of these risks. How far the gigantic network of lead pipes used in ancient Rome compromised public health in the city is unknown. Lead isotopes in sediments from the harbor of Imperial Rome register the presence of a strong anthropogenic component during the beginning of the Common Era and the Early Middle Ages. They demonstrate that the lead pipes of the water distribution system increased Pb contents in drinking water of the capital city by up to two orders of magnitude over the natural background. The Pb isotope record shows that the discontinuities in the pollution of the Tiber by lead are intimately entwined with the major issues affecting Late Antique Rome and its water distribution system. PMID:24753588

  10. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nitrogen Species in Soil, Sediment, and Ground Water at a Former Sewage-Treatment Wastewater Lagoon: Naval Air Station Whidbey Island, Island County, Washington

    USGS Publications Warehouse

    Cox, S.E.; Dinicola, R.S.; Huffman, R.L.

    2007-01-01

    The potential for contamination of ground water from remnant sewage sludge in re-graded sediments of a deconstructed sewage-treatment lagoon was evaluated. Ground-water levels were measured in temporary drive-point wells, and ground-water samples were collected and analyzed for nutrients and other water-quality characteristics. Composite soil and sediment samples were collected and analyzed for organic carbon and nitrogen species. Multiple lines of evidence, including lack of appreciable organic matter in sediments of the former lagoon, agronomic analysis of nitrogen, the sequestration of nitrogen in the developing soils at the former lagoon, and likely occurrence of peat deposits within the aquifer material, suggest that the potential for substantial additions of nitrogen to ground water beneath the former sewage lagoon resulting from remnant sewage sludge not removed from the former lagoon are small. Concentrations of nitrogen species measured in ground-water samples were small and did not exceed the established U.S. Environmental Protection Agency's maximum contaminant levels for nitrate (10 milligrams per liter). Concentrations of nitrate in ground-water samples were less than the laboratory reporting limit of 0.06 milligram per liter. Seventy to 90 percent of the total nitrogen present in ground water was in the ammonia form with a maximum concentration of 7.67 milligrams per liter. Concentrations of total nitrogen in ground water beneath the site, which is the sum of all forms of nitrogen including nitrate, nitrite, ammonia, and organic nitrogen, ranged from 1.15 to 8.44 milligrams per liter. Thus, even if all forms of nitrogen measured in ground water were converted to nitrate, the combined mass would be less than the maximum contaminant level. Oxidation-reduction conditions in ground water beneath the former sewage lagoon were reducing. Given the abundant supply of ambient organic carbon in the subsurface and in ground water at the former lagoon, any nitrate that may leach from residual sludge and be transported to ground water with recharge is expected to be quickly denitrified or transformed to nitrite and ammonia under the strongly reducing geochemical conditions that are present. Concentrations of organic carbon, the primary constituent of sewage sludge, in sediments of the former sewage lagoon were less than 1 percent, indicating a near absence of organic matter. The amount of total nitrogen present in the sediments at the former sewage lagoon was only about 25 percent of the amount typically present in developed agricultural soils. The lack of substantial carbon and nitrogen in sediments of the former sewage lagoon indicates that surficial sediments of the former lagoon are essentially devoid of residual sewage sludge. The largest concentration of total nitrogen measured in soil samples from the former sewage lagoon (330 milligrams per kilogram) was used to calculate an estimate of the amount of nitrogen that might be leached from residual sewage sludge by recharge. During the first two years following deconstruction of the former sewage lagoon, the concentration of total nitrogen in recharge leachate might exceed 10 milligrams per liter but the recharge leachate would not likely result in substantial increases in the nitrate concentration in ground water to concentrations greater than the drinking-water maximum contaminant level of 10 milligrams per liter.

  12. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province, Iran.

    PubMed

    Keshavarzi, Behnam; Mokhtarzadeh, Zeinab; Moore, Farid; Rastegari Mehr, Meisam; Lahijanzadeh, Ahmadreza; Rostami, Soqra; Kaabi, Helena

    2015-12-01

    Karoon is the longest river in Iran and provides water for industries located along its banks, such as metal, petrochemical, and oil industries. It is also the source of drinking water for cities such as Ahwas, Abadan, and Khorramshahr. In this study, 34 and 18 surface sediment samples were collected and analyzed for heavy metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and polycyclic aromatic hydrocarbons (PAHs). The measured concentrations of heavy metals were compared with US EPA sediment quality guidelines, and the results showed that Cu concentration was above the threshold effect level (TEL) in 65.67% of the samples and Hg concentration was above the effect range median (ERM) in some samples. The results revealed that Hg was severely enriched (5 < enrichment factor < 20) and classified in very high ecological risk index category. It is the major metallic contaminant in the study area. The total PAH concentrations ranged from 11.54-117,730 μg/kg, with the mean value of 7034.55 μg/kg dominated by lower molecular weight (LMW) PAHs. The total potentially carcinogenic PAHs (∑cPAHs) in sediment samples ranged from 2.09 to 31,930 μg/kg, indicating high carcinogenic potential of sediments in the study area. The total toxic equivalent (TEQ) values ranged from 1.06 to 7228.7 μg/kg. Maximum TEQ occurred in Abadan oil refinery station followed by Khorramshahr soap factory and Abadan petrochemical complex. Principal component analysis and cluster analysis also revealed the relationships between the studied parameters and identified their probable sources.

  13. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, Sheila F.; Writer, Jeffrey H.; Blaine McCleskey, R.; Martin, Deborah A.

    2015-08-01

    Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h-1. These storms, which typically occur several times each year in July-September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10-156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.

  14. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

    USGS Publications Warehouse

    Murphy, Sheila F.; Writer, Jeffrey H.; McCleskey, R. Blaine; Martin, Deborah A.

    2015-01-01

    Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h−1. These storms, which typically occur several times each year in July–September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10–156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.

  15. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    PubMed

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment processes in actual full-scale DWTPs. Copyright © 2016. Published by Elsevier Ltd.

  16. Assessing the microbial quality of improved drinking water sources: results from the Dominican Republic.

    PubMed

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.

  17. Assessing the Microbial Quality of Improved Drinking Water Sources: Results from the Dominican Republic

    PubMed Central

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water. PMID:24218411

  18. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale.

    PubMed

    Casentini, Barbara; Falcione, Fabiano Teo; Amalfitano, Stefano; Fazi, Stefano; Rossetti, Simona

    2016-12-01

    Different countries in Europe still suffer of elevated arsenic (As) concentration in groundwaters used for human consumption. In the case of households not connected to the distribution system, decentralized water supply systems, such as Point of Use (POU) and Point of Entry (POE), offer a direct benefit for the consumers. Field scale ex-situ treatment systems based on metallic iron (ZVI) are already available for the production of reduced volumes of drinking water in remote areas (village scale). To address drinking water needs at larger scale, we designed a pilot unit able to produce an elevated daily volume of water for human consumption. We tested the long-term As removal efficiency of a two steps ZVI treatment unit for the production of 400 L/day clean water based on the combination of ZVI corrosion process with sedimentation and retention of freshly formed Fe precipitates. The system treated 100 μg/L As(V)-contaminated oxic groundwater in a discontinuous operation mode at a flow rate of 1 L/min for 31 days. Final removal was 77-96% and the most performing step was aeration/sedimentation (A/S) tank with a 60-94% efficiency. Arsenic in the outflow slightly exceeded the drinking water limit of 10 μg/L only after 6000 L treated and Fe concentration was always below 0.2 mg/L. Under proposed operating conditions ZVI passivation readily occurred and, as a consequence, Fe production sharply decreased. Arsenic mobility attached to particulate was 13-60% after ZVI column and 37-100% after A/S tank. Uniform amorphous cluster of Fe nanoparticles (100 nm) formed during aeration drove As removal process with an adsorption capacity corresponding to 20.5 mg As /g Fe . Research studies often focus only on chemico-physical aspects disregarding the importance of biological processes that may co-occur and interfere with ZVI corrosion, As removal and safe water production. We explored the microbial transport dynamics by flow cytometry, proved as a suitable tool to monitor the fate of both single cells and bioactive particles along the treatment train of the pilot unit. A net release of bioactive particles, representing on average 26.5% of flow cytometric events, was promoted by the ZVI filter, with densities 10 times higher than those found in the inflow. In conclusion, the proposed system was efficient to treat large daily volumes of As contaminated groundwater. However, filter design and operating conditions should be carefully adapted to specific situation, since several key factors affect As removal efficiency. An effort in the optimization of ZVI filter design should be made to reduce fast observed ZVI passivation and low As adsorption capacity of the whole filter. More attention to biomass retention and bioactive particles travelling within the unit should be given in order to elucidate bacteria influences on As removal efficiency and related sanitary risks on long term basis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective

  20. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background.

    PubMed

    Kaprara, E; Kazakis, N; Simeonidis, K; Coles, S; Zouboulis, A I; Samaras, P; Mitrakas, M

    2015-01-08

    This study provides a survey on potential Cr(VI) exposure attributed to drinking water in Greece. For this reason, a wide sampling and chemical analysis of tap waters from around 600 sites, supplied by groundwater resources, was conducted focusing on areas in which the geological substrate is predominated by ultramafic minerals. Results indicate that although violations of the current chromium regulation limit in tap water are very rare, 25% of cases showed Cr(VI) concentrations above 10 μg/L, whereas Cr(VI) was detectable in 70% of the samples (>2 μg/L). Mineralogy and conditions of groundwater reservoirs were correlated to suggest a possible Cr(VI) leaching mechanism. Higher Cr(VI) values are observed in aquifers in alluvial and neogene sediments of serpentine and amphibolite, originating from the erosion of ophiolithic and metamorphic rocks. In contrast, Cr(VI) concentration in samples from ophiolithic and metamorphic rocks was always below 10 μg/L due to both low contact time and surface area, as verified by low conductivity and salt concentration values. These findings indicate that under specific conditions, pollution of water by Cr(VI) is favorable by a slow MnO2-catalyzed oxidation of soluble Cr(III) to Cr(VI) in which manganese products [Mn(III)/Mn(II)] are probably re-oxidized by oxygen. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy

    USGS Publications Warehouse

    Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.

    2012-01-01

    The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.

  2. Similar sediment provenance of low and high arsenic aquifers in Bangladesh

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Yang, Q.; Li, S.; Hemming, S. R.; Zhang, Y.; Rasbury, T.; Hemming, G.

    2017-12-01

    Geogenic arsenic (As) in drinking water, especially in groundwater, is estimated to have affected the health of over 100 million people worldwide, with nearly half of the total at risk population in Bangladesh. Sluggish flow and reducing biogeochemical environment in sedimentary aquifers have been shown as the primary controls for the release of As from sediment to the shallower groundwater in the Holocene aquifer. In contrast, deeper groundwater in the Pleistocene aquifer is depleted in groundwater As and sediment-extractable As. This study assesses the origin of the sediment in two aquifers of Bangladesh that contain distinctly different As levels to ascertain whether the source of the sediment is a factor in this difference through measurements of detrital mica Ar-Ar age, detrital zircon U-Pb age, as well as sediment silicate Sr and Nd isotopes. Whole rock geochemical data were also used to illuminate the extent of chemical weathering. Detrital mica 40Ar/39Ar cooling ages and detrital zircon U-Pb ages show no statistical difference between high-As Holocene sediment and low-As Pleistocene sediment, but suggest an aquifer sediment source of both the Brahmaputra and the Ganges rivers. Silicate 87Sr/86Sr and 143Nd/144Nd further depict a major sediment source from the Brahmaputra river, which is supported by a two end member mixing model using 87Sr/86Sr and Sr concentrations. Pleistocene and Holocene sediments show little difference in weathering of mobile elements including As, while coarser sediments and a longer history of the Pleistocene aquifer suggest that sorting and flushing play more important roles in regulating the contrast of As occurrence between these two aquifers.

  3. A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff

    USGS Publications Warehouse

    Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas

    2000-01-01

    Accurate and representative sediment data are critical for assessing the potential effects of highway and urban runoff on receiving waters. The U.S. Environmental Protection Agency identified sediment as the most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. Representative sediment data are also necessary for quantifying and interpreting concentrations, loads, and effects of trace elements and organic constituents associated with highway and urban runoff. Many technical issues associated with the collecting, processing, and analyzing of samples must be addressed to produce valid (useful for intended purposes), current, complete, and technically defensible data for local, regional, and national information needs. All aspects of sediment data-collection programs need to be evaluated, and adequate quality-control data must be collected and documented so that the comparability and representativeness of data obtained for highway- and urban-runoff studies may be assessed. Collection of representative samples for the measurement of sediment in highway and urban runoff involves a number of interrelated issues. Temporal and spatial variability in runoff result from a combination of factors, including volume and intensity of precipitation, rate of snowmelt, and features of the drainage basin such as area, slope, infiltration capacity, channel roughness, and storage characteristics. In small drainage basins such as those found in many highway and urban settings, automatic samplers are often the most suitable method for collecting samples of runoff for a variety of reasons. Indirect sediment-measurement methods are also useful as supplementary and(or) surrogate means for monitoring sediment in runoff. All of these methods have limitations in addition to benefits, which must be identified and quantified to produce representative data. Methods for processing raw sediment samples (including homogenization and subsampling) for subsequent analysis for total suspended solids or suspended-sediment concentration often increase variance and may introduce bias. Processing artifacts can be substantial if the methods used are not appropriate for the concentrations and particle-size distributions present in the samples collected. Analytical methods for determining sediment concentrations include the suspended-sediment concentration and the total suspended solids methods. Although the terms suspended-sediment concentration and total suspended solids are often used interchangeably to describe the total concentration of suspended solid-phase material, the analytical methods differ and can produce substantially different results. The total suspended solids method, which commonly is used to produce highway- and urban-runoff sediment data, may not be valid for studies of runoff water quality. Studies of fluvial and highway-runoff sediment data indicate that analyses of samples by the total suspended solids method tends to under represent the true sediment concentration, and that relations between total suspended solids and suspended-sediment concentration are not transferable from site to site even when grain-size distribution information is available. Total suspended solids data used to calculate suspended-sediment loads in highways and urban runoff may be fundamentally unreliable. Consequently, use of total suspended solids data may have adverse consequences for the assessment, design, and maintenance of sediment-removal best management practices. Therefore, it may be necessary to analyze water samples using the suspended-sediment concentration method. Data quality, comparability, and utility are important considerations in collection, processing, and analysis of sediment samples and interpretation of sediment data for highway- and urban-runoff studies. Results from sediment studies must be comparable and readily transf

  4. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  5. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  6. 76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... water supplies. The Council will also receive updates about several on-going drinking water program... ENVIRONMENTAL PROTECTION AGENCY [FRL-9425-8] Meeting of the National Drinking Water Advisory... meeting of the National Drinking Water Advisory Council (NDWAC), established under the Safe Drinking Water...

  7. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  8. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  9. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  10. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  11. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    PubMed

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Drinking Water Policy & Recommendations History of Drinking Water Treatment Drinking Water FAQ Fast Facts Healthy Water Sites Healthy Water ... if needed. You may also wish to consider water treatment methods such as reverse osmosis, distillation, and carbon ...

  13. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    USGS Publications Warehouse

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville than White River near Fayetteville and Richland Creek at Goshen. Loads and yields of most constituents were greater at the War Eagle Creek and White River stations than at the Richland Creek Station.

  14. Radioactivity in the environment; a case study of the Puerco and Little Colorado River basins, Arizona and New Mexico

    USGS Publications Warehouse

    Wirt, Laurie

    1994-01-01

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.

  15. Drinking Water Quality Status and Contamination in Pakistan

    PubMed Central

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  16. Drinking Water Quality Status and Contamination in Pakistan.

    PubMed

    Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  17. Handbook for the Institutional and Financial Implementation of Water Utilities.

    DTIC Science & Technology

    1984-05-01

    water . From a public health standpoint, water is necessary for drinking and sanitation. While public drinking water use aver- ages approximately 5 pints a... water . Domestic water includes that water furnished to homes, hotels, apartments, etc., for sanitary, drinking , washing, and other purposes. This use...with establishing Primary Drinking Water Standards under the Safe Drinking Water Act of 1974 (Public Law 93-523) for all public

  18. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    PubMed

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  19. Quantifying effects of climate change on the snowmelt-dominated groundwater resources of northern New England

    USGS Publications Warehouse

    Dudley, Robert W.; Hodgkins, Glenn A.; Shanley, James B.; Mack, Thomas J.

    2010-01-01

    Recent U.S. Geological Survey (USGS) climate studies in New England have shown substantial evidence of hydrologic changes during the last 100 years, including trends toward earlier snowmelt runoff, decreasing occurrence of river ice, and decreasing winter snowpack. These studies are being expanded to include investigation of trends in groundwater levels and fluctuations. Groundwater is an important drinking-water source throughout northern New England (Maine, New Hampshire, and Vermont). The USGS is currently investigating whether or not groundwater recharge from snowmelt and precipitation exhibits historical trends. In addition to trend-testing, groundwater resources also will be analyzed by relating groundwater-level changes to the large year-to-year variability in weather conditions. Introduction The USGS has documented many seasonal climate-related changes in the northeastern United States that have occurred during the last 30 to 150 years. These changes include earlier snowmelt runoff in the late winter and early spring, decreasing duration of ice on rivers and lakes, decreasing ratio of snowfall to total precipitation, and denser and thinner late-winter snowpack. All of these changes are consistent with warming winter and spring air temperatures (Dudley and Hodgkins, 2002; Hodgkins and others, 2002; Huntington and others, 2004; Hodgkins and others, 2005; Hodgkins and Dudley, 2006a; Hodgkins and Dudley, 2006b). Climate-model projections for the Northeast indicate air-temperature warming, earlier snowmelt runoff, increases in annual evaporation, and decreased low streamflows (Hayhoe and others, 2007). The contribution and timing of spring snowmelt to groundwater recharge is particularly important to groundwater resources in the northeastern United States where aquifers typically consist of thin sediments overlying crystalline bedrock with relatively little storage capacity (Mack, 2009). Following spring recharge, groundwater slowly flows into streams throughout the summer. This groundwater flow is a source of cool water during the summer and accounts for a large proportion of the streamflow during summer low-flow periods. Groundwater is an important drinking-water source in northern New England. Approximately 32 percent of public water suppliers draw water from groundwater sources in Vermont, New Hampshire, and Maine, and approximately 40 percent of the population derives its drinking water from private wells (Kenny and others, 2009). It is vital to understand changes that may be occurring to such an important resource for planning industrial and agricultural water uses and protecting drinking water.

  20. Variation of physicochemical properties of drinking water treatment residuals and Phoslock(®) induced by fulvic acid adsorption: Implication for lake restoration.

    PubMed

    Wang, Changhui; Jiang, He-Long; Xu, Huacheng; Yin, Hongbin

    2016-01-01

    The use of phosphorus (P) inactivating agents to reduce internal P loading from sediment for lake restoration has attracted increasing attention. Reasonably, the physicochemical properties of P inactivating agents may vary with the interference of various environmental factors, leading to the change of control effectiveness and risks. In this study, the effect of fulvic acid (FA) adsorption on the properties of two agents, drinking water treatment residuals (DWTRs) and Phoslock®, was investigated. The results showed that after adsorption, there was little change for the main structures of DWTRs and Phoslock®, but the thermostability of Phoslock®, as well as the particle size and settleability of the two agents decreased. The specific surface area and pore volume of DWTRs also decreased, while those of Phoslock® increased. Further analysis indicated that aluminum and iron in DWTRs were stable during FA adsorption, but a substantial increase of lanthanum release from Phoslock® was observed, in particular at first (P < 0.01). Moreover, the P immobilization capability of DWTRs had little change after FA adsorption, while the capability of Phoslock® after FA adsorption decreased in solutions (P < 0.001) and sediments (P < 0.1); interestingly, from the view of engineering application, the performance of Phoslock® was not substantially affected. Overall, each P inactivating agent had its own particular responses of the physicochemical properties to environment factors, and detailed investigations on the applicability of each agent were essential before practical application.

  1. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China.

    PubMed

    Liu, Jia; Qi, Shihua; Yao, Jun; Yang, Dan; Xing, Xinli; Liu, Hongxia; Qu, Chengkai

    2016-11-01

    Hanjiang River, the second largest river in Guangdong Province, Southern China, is the primary source of drinking water for the cities of Chaozhou and Shantou. Our previous studies indicated that soils from an upstream catchment area of the Hanjiang River are moderately contaminated with organochlorine pesticides (OCPs), which can easily enter the river system via soil runoff. Therefore, OCPs, especially downstream drinking water sources, may pose harmful health and environmental risks. On the basis of this hypothesis, we measured the OCP concentrations in dissolved phase (DP), suspended particle matter (SPM), and surface sediment (SS) samples collected along the Hanjiang River Basin in Fujian and Guangdong provinces. OCP residue levels were quantified through electron capture detector gas chromatography to identify the OCP sources and deposits. The concentration ranges of OCPs in DP, SPM, and SS, respectively, were 2.11-12.04 (ng/L), 6.60-64.77 (ng/g), and 0.60-4.71 (ng/g) for hexachlorocyclohexanes (HCHs), and 2.49-4.77 (ng/L), 6.75-80.19 (ng/g), and 0.89-252.27 (ng/g) for dichloro-diphenyl-trichloroethanes (DDTs). Results revealed that DDTs represent an ecotoxicological risk to the Hanjiang River Basin, as indicated by international sediment guidelines. This study serves as a basis for the future management of OCP concentrations in the Hanjiang River Basin, and exemplifies a pattern of OCP movement (like OCP partition among multimedia) from upstream to downstream. This pattern may be observed in similar rivers in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Geographic distribution and exposure population of drinking water with high concentration of arsenic in China].

    PubMed

    Zhang, L; Chen, C

    1997-09-01

    According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.

  3. Spatio-temporal Distribution and Chemical Speciation of Iron and Manganese in Sediments from Lake Aha, China

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Hu, Jiwei; Qin, Fanxin; Jiang, Cuihong; Huang, Xianfei; Deng, Jiajun; Li, Cunxiong

    2010-11-01

    This paper reports an investigation on pollution and potential risk on elements of iron (Fe) and manganese (Mn) in sediments from Lake Aha, which is a drinking-water source for Guiyang City, the capital of Guizhou Province in southwestern China. In the present research, chemical speciation of Fe and Mn in sediments from the lake was studied based on the sequential extraction procedure developed by Tessier et al.. The results obtained from the study are as follows. The average values of total Fe were 47617 mg/kg and 70325 mg/kg in sediments from the lake in summer and winter respectively, and its speciation consisted mainly of residual and Fe-Mn oxides fractions. The amounts of total Fe and the distribution of its speciation in the sediments should be affected by effluents from a large quantity of deserted coal mines in the lake basin in summer and winter. The average values of total Mn were 7996 mg/kg and 1753 mg/kg in summer and winter respectively, and its speciation is primarily comprised of carbonate and Fe-Mn oxides fractions. The amounts of total Mn and its distribution in different fractions in the sediments were believed to be primarily influenced by effluents from those deserted coal mines in summer and by the condition of redox interface in winter.

  4. Retention and Migration of Chlorpyrifos in Aquatic Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Gebremariam, S. Y.; Beutel, M.; Yonge, D.; Flury, M.; Harsh, J. B.

    2010-12-01

    The accurate description of the fate and transport of potentially toxic agricultural pesticides in sediments and soils is of great interest to environmental scientists and regulators. Of particular concern is the widely documented detection of agricultural pesticides and their byproducts in drinking water wells. This presentation discusses results of a study of the fate and transport of chlorpyrifos, a strongly hydrophobic organophosphate-pesticide, in sediments and soils collected from a range of aquatic environments. Using radio-labeled chlorpyrifos, this study is unique in its comprehensive nature and focus on aquatic sediments, for which studies involving pesticide fate and transport are limited. Study components include: (1) batch equilibrium experiments to evaluate sorption/desorption parameters; (2) kinetic and non-equilibrium sorption experiments using miniaturized flow-cells; (3) column experiments to understand patterns of pesticide break through; and (4) numerical modeling of chlorpyrifos transport through aquatic sediments and soils. Initial results show that chlorpyrifos sorption, when corrected for reversible sorption to container walls, exhibited two component sorption, a large irreversible fraction and a smaller reversible fraction that can act as a secondary source. In addition, of a wide range of soil parameters measured, organic carbon content exhibited the highest correlation with chlorpyrifos retention in cranberry field soils. Simulation models developed in this study, which account for hysteretic and nonlinear sorption, will help to better predict the fate of chlorpyrifos and other hydrophobic chemicals in sediments and soils.

  5. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: a review.

    PubMed

    Zhao, Xingjuan; Gao, Bo; Xu, Dongyu; Gao, Li; Yin, Shuhua

    2017-09-01

    The Three Gorges Dam in China is the world's largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.

  6. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  7. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico).

    PubMed

    Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam

    2015-03-01

    Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.

  8. Adjustment of total suspended solids data for use in sediment studies

    USGS Publications Warehouse

    Glysson, G. Douglas; Gray, John R.; Conge, L.M.; Hotchkiss, Rollin H.; Glade, Michael

    2000-01-01

    The U.S. Environmental Protection Agency identifies fluvial sediment as the single most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. A significant amount of suspended-sediment data has been produced using the total suspended solids (TSS) laboratory analysis method. An evaluation of data collected and analyzed by the U.S. Geological Survey and others has shown that the variation in TSS analytical results is considerably larger than that for traditional suspended-sediment concentration analyses (SSC) and that the TSS data show a negative bias when compared to SSC data. This paper presents the initial results of a continuing investigation into the differences between TSS and SSC results. It explores possible relations between these differences and other hydrologic data collected at the same stations. A general equation was developed to relate TSS data to SSC data. However, this general equation is not applicable for data from individual stations. Based on these analyses, there appears to be no simple, straightforward way to relate TSS and SSC data unless pairs of TSS and SSC results are available for a station.

  9. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.

  10. Ammonia pollution characteristics of centralized drinking water sources in China.

    PubMed

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  11. Small Drinking Water System Initiative | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Reliable, safe, high quality drinking water is essential to sustaining our communities. Approximately 90% of New England's drinking water systems - about 10,000 systems - are small and most use ground water sources.

  12. Basic Information about Lead in Drinking Water

    MedlinePlus

    ... Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question ... Related Information from Other Federal Government Agencies General Information about Lead in Drinking Water How Lead Gets ...

  13. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals

    EPA Pesticide Factsheets

    Learn about Secondary Drinking Water Regulations for nuisance chemicals contained in some drinking water. They are established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations.

  14. White Sands Missile Range 2011 Drinking Water Quality Report

    DTIC Science & Technology

    2012-01-01

    This Annual Drinking Water Quality Report, or the Consumer Confi dence Report, is required by the Safe Drinking Water Act (SDWA). The SDWA ensures...public drinking water systems meet national standards for the protection of your health. This report provides details about where your water comes...NMED). WSMR tap water meets all EPA and NMED drinking water standards. What is This Water Quality Report? Este informe contiene informacion importante

  15. A Transformational Journey: Compositional Changes in Organic Matter during Desorption from Sediments

    NASA Astrophysics Data System (ADS)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R.; Bergamaschi, B. A.; Hernes, P.

    2016-12-01

    The release of organic matter (OM) from suspended particles via desorption is a critical component of OM cycling since dissolved OM (DOM) fuels aquatic ecosystems and is a precursor for disinfection by-products formation. This study assessed the elemental and molecular composition of DOM desorbed abiotically from sediments and soils of an irrigated agricultural watershed of northern California. Relative to mineral-bound OM, the released DOM was nitrogen-poor (lower carbon:nitrogen ratios) and depleted in amino acids and lignin phenols (lower carbon-normalized yields). Water-extracted DOM appeared substantially more degraded than its parent particulate OM with increased molar contributions of acidic amino acids, non-protein amino acids, and acidic lignin phenols, all molecular indicators of a more extensively processed OM pool. Desorption processes also significantly altered lignin compositional ratios which help distinguish vascular-plant sources of DOM. Specific optical parameters, including spectral slope, specific UV absorbance at 254 nm (SUVA254), and fluorescence index (FI), did not constitute useful proxies for the desorbed DOM pool, while absorption coefficients and fluorescence peak intensities were strongly correlated with extracted DOM concentrations and composition. This study highlights the profound impact of desorption on DOM composition which, if unaccounted for, could lead to misinterpretations of common biomarkers and optical proxies used to predict DOM sources and reactivity. Our findings suggest that sediments contribute a biogeochemically distinct source of DOM to surface waters, with potential impacts on aquatic health and drinking water quality.

  16. Ecological conditions of ponds situated on blast furnace slag deposits located in South Gare Site of Special Scientific Interest (SSSI), Teesside, UK.

    PubMed

    Raper, E; Davies, S; Perkins, B; Lamb, H; Hermanson, M; Soares, A; Stephenson, T

    2015-06-01

    Slag, a by-product from the iron and steel industry, has a range of applications within construction and is used in wastewater treatment. Historically considered a waste material, little consideration was given to the environmental impacts of its disposal. South Gare (a Site of Special Scientific Interest) located at the mouth of the Tees estuary, UK, formed on slag deposits used to create a sea wall and make the land behind permanent. Over time, ponds formed in depressions with the water chemistry, being significantly impacted by the slag deposits. Calcium levels reached 504 mg/L, nitrate 49.0 mg/L and sulphate 1,698 mg/L. These levels were also reflected in the composition of the sediment. pH (5.10-9.90) and electrical conductivity (2,710-3,598 µS/cm) were variable but often notably high. Pb, Cu and Cd were not present within the water, whilst Zn ranged from 0.027 to 0.37 mg/L. Heavy metal levels were higher in surface sediments. Zinc was most dominant (174.3-1,310.2 mg/L) followed by Pb (9.9-431 mg/L), Cu (8.4-41.8 mg/L) and Cd (0.4-1.1 mg/L). A sediment core provided a historical overview of the ponds. The ponds were unfavourable for aquatic biodiversity and unsuitable for drinking water abstraction.

  17. New England Drinking Water Program | US EPA

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  18. Illicit drugs and the environment--a review.

    PubMed

    Pal, Raktim; Megharaj, Mallavarapu; Kirkbride, K Paul; Naidu, Ravi

    2013-10-01

    Illicit drugs and their metabolites are the latest group of emerging pollutants. Determination of their concentration in environment (such as water bodies, soil, sediment, air) is an indirect tool to estimate the community level consumption of illicit drug and to evaluate potential ecotoxicological impacts from chronic low level exposure. They enter the wastewater network as unaltered drugs and/or their active metabolites by human excretion after illegal consumption or by accidental or deliberate disposal from clandestine drug laboratories. This article critically reviews the occurrence and concentration levels of illicit drugs and their metabolites in different environmental compartments (e.g., wastewater, surface waters, groundwater, drinking water, and ambient air) and their potential impact on the ecosystem. There is limited published information available on the presence of illicit drugs in the environment, reports are available mainly from European countries, UK, USA, and Canada but there is a lack of information from the remainder of the world. Although the environmental concentrations are not very high, they can potentially impact the human health and ecosystem functioning. Cocaine, morphine, amphetamine, and MDMA have potent pharmacological activities and their presence as complex mixtures in water may cause adverse effect on aquatic organisms and human health. However, there is no current regulation demanding the determination of occurrence of these emerging pollutants in treated wastewater, surface water, drinking water, or atmosphere. Thus, critical investigation on distribution pattern of this new group of emerging contaminant and their potential harmful impact on our environment needs immediate attention. Copyright © 2012. Published by Elsevier B.V.

  19. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  20. Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release

    USGS Publications Warehouse

    Landmeyer, J.E.; Tanner, T.L.; Watt, B.E.

    2004-01-01

    The largest documented release of organotin compounds to a freshwater river system in the United States occurred in early 2000 in central South Carolina. The release consisted of an unknown volume of various organotin compounds such tetrabutyltin (TTBT), tributyltin (TBT), tetraoctyltin (TTOT), and trioctyl tin (TOT) and resulted in a massive fish kill and the permanent closures of a municipal wastewater treatment plant and a local city's only drinking-water intake. Initial sampling events in 2000 and 2001 indicated that concentrations of the ecologically toxic TTBT and TBT were each greater than 10 000 ??g/kg in surface-water bed sediments in depositional areas, such as lakes and beaver ponds downstream of the release. Bed-sediment samples collected between 2001 and 2003, however, revealed a substantial decrease in bed-sediment organotin concentrations and an increase in concentrations of degradation intermediate compounds. For example, in bed sediments of a representative beaver pond located about 1.6 km downstream of the release, total organotin concentrations [the sum of TTBT, TBT, and the TBT degradation intermediates dibutyltin (DBT) and monobutyltin (MBT)] decreased from 38 670 to 298 ??g/kg. In Crystal Lake, a large lake about 0.4 km downstream from the beaver pond, total organotin concentrations decreased from 28 300 to less than 5 ??g/kg during the same time period. Moreover, bed-sediment inorganic tin concentrations increased from pre-release levels of less than 800 to 32 700 ??g/kg during this time. These field data suggest that the released organotin compounds, such as TBT, are being transformed into inorganic tin by bed-sediment microbial processes. Microcosms were created in the laboratory that contained bed sediment from the two sites and were amended with tributyltin (as tributyltin chloride) under an ambient air headspace and sacrificially analyzed periodically for TBT, the biodegradation intermediates DBT and MBT, and tin. TBT concentrations decreased faster [half-life (t1/2) = 28 d] in the organic-rich sediments (21.5%) that characterized the beaver pond as compared to the slower (t1/2 = 78 d) degradation rate in the sandy, organic-poor, sediments (0.43%) of Crystal Lake. Moreover, the concentration of inorganic tin increased in microcosms containing bed sediments from both locations. These field and laboratory results suggest that biotransformation of the released organotins, in particular the ecologically detrimental TBT, does occur in this fresh surface-water system impacted with high concentrations of neat organotin compounds.

  1. Consumers' choice of drinking water: Is it dependent upon perceived quality, convenience, price and attitude?

    NASA Astrophysics Data System (ADS)

    Wahid, Nabsiah Abdul; Cheng, Patrick Tan Foon; Abustan, Ismail; Nee, Goh Yen

    2017-10-01

    Tap water is one of the many sources of water that the public as consumers can choose for drinking. This study hypothesized that perceived quality, convenience, price and environmental attitude would determine consumers's choice of drinking water following the Attribution Theory as the underlying model. A survey was carried out on Malaysia's public at large. From 301 usable data, the PLS analysis revealed that only perceived quality, convenience and price attributed towards the public's choice of drinking water while attitude was not significant. The findings are beneficial for the water sector industry, particularly for drinking water operators, state governments, and alternative drinking water manufacturers like bottled water companies. The ability to identify factors for why consumers in the marketplace choose the source of their drinking water would enable the operators to plan and strategize tactics that can disseminate accurate knowledge about the product that can motivate marketability of drinking water in Malaysia.

  2. Public health assessment for Petro-Chemical, Inc. (Turtle Bayou) Liberty, Liberty County, Texas, Region 6. CERCLIS No. TXD980873350. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-30

    The Petro-Chemical Systems, Inc. site, located near Liberty, Texas, is a site where unauthorized disposal of petroleum-based oils has taken place. Although there is evidence of past exposure to site contaminants, the best available evidence does not indicate that humans are currently being exposed to site contaminants at levels that could cause adverse health effects. Contaminated ground water, surface water, soils, and surface water sediments have been found on the site. Although sampling was done for 144 priority pollutants, the primary contaminants of concern are benzene, ethylbenzene, xylene, naphthalene, polycyclic aromatic hydrocarbons, and lead. Because the greatest threat to publicmore » health would be contamination of drinking water, the Agency for Toxic Substances and Disease Registry (ATSDR) has recommended that necessary actions are taken to insure that private wells do not become contaminated with site contaminants.« less

  3. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly affected by gully erosion, rill or sheet erosion have been delineated. Furthermore, the measurement of radionuclide content in suspended sediment after the snowmelt suggests that most of this sediment consists in resuspended material rather than on newly eroded soil. In the Mexican watershed, a different contribution of andisols and acrisols to erosion is suspected. Overall, the bulk of erosion is generated by rather small areas within the watershed. In this region characterised by a succession of wet and dry seasons, the Be-7 content in rainfall and sediment has been measured at the scale of a 2.5 km2 sub-watershed in order to better understand the erosion transfer between hillslopes and rivers during the rainy season. This outlines the contribution of individual storms to seasonal erosion. Overall, this study brings important insights about sediment sources and fluxes within these watersheds located in contrasted environments. A further step consists in comparing experimental results with model outputs, and to evaluate the impact of on-going erosion mitigation measures.

  4. Water and Sediment Quality in the Yukon River and its Tributaries Between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004

    USGS Publications Warehouse

    Halm, Douglas R.; Dornblaser, Mark M.

    2007-01-01

    The Yukon River basin is the fourth largest watershed in North America at 831,400 square kilometers (km2). Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, subsistence, and recreational fish and game resources. Climate warming in the Arctic and Subarctic regions encompassing the Yukon basin has recently become a concern because of possible far-reaching effects on the ecosystem. Large amounts of carbon and nutrients are stored in permafrost and have potential for release in response to this warming. These changes in carbon and nutrient cycling may result in changes in stream chemistry and productivity, including salmon populations, and ultimately changes in the chemistry and productivity of the Bearing Sea. To address these concerns, the U.S. Geological Survey (USGS) conducted a 5-year comprehensive water-quality study of the Yukon River and its major tributaries starting in 2000. The study included frequent water-quality sampling at a fixed site network as well as intensive sampling along the Yukon River and its major tributaries. This report contains observations of water and sediment quantity and quality of the Yukon River and its tributaries in Canada during 2004. Chemical, biological, physical, and discharge data are presented for the reach of river between Atlin, British Columbia, Canada, and Eagle, Alaska, USA.

  5. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia.

    PubMed

    Guo, Huaming; Zhang, Bo; Li, Yuan; Berner, Zsolt; Tang, Xiaohui; Norra, Stefan; Stüben, Doris

    2011-04-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO₄²⁻ concentrations and δ³⁴S values indicates that bacterial reduction of SO₄²⁻ occurs in reducing aquifers. Due to high concentrations of Fe (> 0.5 mg L⁻¹), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Research Spotlight: The varying life expectancies of American reservoirs

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-04-01

    Tasked with controlling floods, coping through droughts, generating electricity, maintaining the flow of drinking water, preserving species' habitats, and managing the local environment, the United States' large-scale freshwater management system is important. Unfortunately, as sediment is washed from river basins to reservoirs, the persistent addition of material eats away at a reservoir's capacity and, consequently, its useful life expectancy. Understanding the integrity of the reservoir system is particularly important, with climate projections anticipating warmer, drier conditions for some parts of the country. Using a database of sedimentation surveys conducted between 1775 and 1993, Graf et al. calculate the life expectancies of many of the nation's reservoirs. They find that although most of the country's large reservoirs were built between 1950 and 1960, they have a wide range of expiration dates. They find that most large reservoirs, those with capacities greater than 1.2 cubic kilometers (0.29 cubic mile), have useful life expectancies ranging from 200 to more than 1000 years, with the lowest average life expectancy in the interior West. (Water Resources Research, doi:10.1029/2009WR008836, 2010)

  7. An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee

    USGS Publications Warehouse

    Carmichael, J.K.

    1989-01-01

    Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)

  8. REGULATED CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...

  9. An examination of the potential added value of water safety plans to the United States national drinking water legislation.

    PubMed

    Baum, Rachel; Amjad, Urooj; Luh, Jeanne; Bartram, Jamie

    2015-11-01

    National and sub-national governments develop and enforce regulations to ensure the delivery of safe drinking water in the United States (US) and countries worldwide. However, periodic contamination events, waterborne endemic illness and outbreaks of waterborne disease still occur, illustrating that delivery of safe drinking water is not guaranteed. In this study, we examined the potential added value of a preventive risk management approach, specifically, water safety plans (WSPs), in the US in order to improve drinking water quality. We undertook a comparative analysis between US drinking water regulations and WSP steps to analyze the similarities and differences between them, and identify how WSPs might complement drinking water regulations in the US. Findings show that US drinking water regulations and WSP steps were aligned in the areas of describing the water supply system and defining monitoring and controls. However, gaps exist between US drinking water regulations and WSPs in the areas of team procedures and training, internal risk assessment and prioritization, and management procedures and plans. The study contributes to understanding both required and voluntary drinking water management practices in the US and how implementing water safety plans could benefit water systems to improve drinking water quality and human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Hydrology and human behavior: two key factors of diarrhea incidence in montane tropical humid areas

    NASA Astrophysics Data System (ADS)

    Boithias, Laurie; Choisy, Marc; Souliyaseng, Noy; Jourdren, Marine; Quet, Fabrice; Buisson, Yves; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Sengtaheuanghoung, Oloth; Pierret, Alain; Rochelle-Newall, Emma; Becerra, Sylvia; Ribolzi, Olivier

    2017-04-01

    The global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. In this study we hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and Fecal Indicator Bacteria (FIB) counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. For this mixed methods approach, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature) at the outlet of 2 catchments in Northern Lao PDR, and the number of diarrheal disease cases reported in 6 health centers located in the Luang Prabang Province. We also examined the socio-behavioral factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources and hygiene habits. We found the FIB Escherichia coli to be present all year long (100-1,000 MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. We thus found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies.

  11. World Health Organization discontinues its drinking-water guideline for manganese.

    PubMed

    Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra

    2012-06-01

    The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.

  12. Public perception of drinking water safety in South Africa 2002–2009: a repeated cross-sectional study

    PubMed Central

    2012-01-01

    Background In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. Methods This repeated cross-sectional study draws on General Household Surveys from 2002–2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002–2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. Results The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000–02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. Conclusion This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period. PMID:22834485

  13. Public perception of drinking water safety in South Africa 2002-2009: a repeated cross-sectional study.

    PubMed

    Wright, Jim A; Yang, Hong; Rivett, Ulrike; Gundry, Stephen W

    2012-07-27

    In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. This repeated cross-sectional study draws on General Household Surveys from 2002-2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002-2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000-02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period.

  14. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  15. Hot Topics/New Initiatives | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  16. Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry.

    PubMed

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang

    2017-12-31

    Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment processes. Alcohol and ketone removals were probably related to the reduction in protein-like materials. Alkane removal was probably related to the reduction in fulvic acid-like and humic acid-like materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008

    USGS Publications Warehouse

    Garrett, Jessica D.

    2012-01-01

    Excess nutrients, suspended-sediment loads, and the presence of pesticides in Iowa rivers can have deleterious effects on water quality in State streams, downstream major rivers, and the Gulf of Mexico. Fertilizer and pesticides are used to support crop growth on Iowa's highly productive agricultural landscape and for household and commercial lawns and gardens. Water quality was characterized near the mouths of 10 major Iowa tributaries to the Mississippi and Missouri Rivers from March 2004 through September 2008. Stream loads were calculated for select ions, nutrients, and sediment using approximately monthly samples, and samples from storm and snowmelt events. Water-quality samples collected using standard streamflow-integrated protocols were analyzed for major ions, nutrients, carbon, pesticides, and suspended sediment. Statistical data summaries of sample data used parametric and nonparametric techniques to address potential bias related to censored data and multiple levels of censoring of data below analytical detection limits. Constituent stream loads were computed using standard pre-defined models in S-LOADEST that include streamflow and time terms plus additional terms for streamflow variability and streamflow anomalies. Streamflow variability terms describe the difference in streamflow from recent average conditions, whereas streamflow anomaly terms account for deviations from average conditions from long- to short-term sequentially. Streamflow variability or anomaly terms were included in 44 of 80 site/constituent individual models, demonstrating the usefulness of these terms in increasing accuracy of the load estimates. Constituent concentrations in Iowa streams exhibit streamflow, seasonal, and spatial patterns related to the landform and climate gradients across the studied basins. The streamflow-concentration relation indicated dilution for ions such as chloride and sulfate. Other constituent concentrations, such as dissolved organic carbon and suspended sediment, increased with streamflow. Nitrogen concentrations (total nitrogen and nitrate plus nitrite) increased with low and moderate streamflows, but decreased with high streamflows. Seasonal patterns observed in constituent concentrations were affected by streamflow, algae blooms, and pesticide application. The various landform regions produced different water-quality responses across the study basins; for example, total phosphorus, suspended sediment, and turbidity were greatest from the steep, loess-dominated southwestern Iowa basins. Nutrient concentrations, though not regulated for drinking water at the study sites, were high compared to drinking-water limits and criteria for protection of aquatic life proposed for other Midwestern states (Iowa criteria for aquatic life have not been proposed). Nitrate plus nitrite concentrations exceeded the drinking-water limit [10 milligrams per liter (mg/L)] in 11 percent of all samples at the 10 sites, and exceeded Minnesota's proposed aquatic life criteria (4.9 mg/L) in 68 percent of samples. The Wisconsin standard for total phosphorus (0.1 mg/L) was exceeded in 92 percent of samples. Ammonia standards, current during sample collection and at publication of this report, for protection of aquatic life were met for all samples, but draft criteria proposed in 2009 to protect more sensitive species like mussels, were exceeded at three sites. Loads and yields also differed among sites and years. The Big Sioux, Little Sioux, and Des Moines Rivers produced the greatest sulfate yields. Mississippi River tributaries had greater chloride yields than Missouri River tributaries. The Big Sioux River also had the lowest silica yields and total nitrogen and nitrate yields, whereas nitrogen yields were greater in the northeastern rivers. The Boyer and Nishnabotna River total phosphorus yields were the greatest in the study. The Boyer River orthophosphate yields were greatest except in 2008, when the Maquoketa River produced the greatest yield. Rivers in southwestern Iowa's Western Loess Hills and Steeply Rolling Loess Prairie ecoregions had the greatest suspended-sediment yields, whereas the smallest yields were in the Big Sioux and Wapsipinicon Rivers. In the 10 Iowa rivers studied, combined annual total nitrogen stream transport ranged from 3.68 to 9.95 tons per square mile per year, and total phosphorus transport ranged from 0.138 to 0.570 tons per square mile per year. Six-month loads relative to fertilizer use ranged from 8 to 56 percent for nitrogen, and 1.0 to 11.1 percent for phosphorus. The smallest loads relative to fertilizer use for both nitrogen and phosphorus occurred in July-December of dry years, and the largest nitrogen and phosphorus loads relative to use were in wet years from January-June.

  18. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  19. In-filled reservoirs serving as sediment archives to analyse soil organic carbon erosion - Taking a closer look at the Karoo rangelands

    NASA Astrophysics Data System (ADS)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus

    2016-04-01

    The semi-arid rangelands of the Great Karoo region in South Africa, which are nowadays characterized by badlands on the foot slopes of upland areas and complex gully systems in valley bottoms, have experienced a number of environmental changes. With the settlement of European farmers in the late 18th century agricultural activities increased, leading to overgrazing which probably acted as a trigger to land degradation. As a consequence of higher water demands and shifting rainfall patterns, many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods. Most of these dams are now filled with sediment and many have become breached, revealing sediment archives that can be used to analyse land use changes as well as carbon erosion and deposition during the last ca. 100 years. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping, erosion modelling and sediment analysis have been employed to trace back the sediment origin and redistribution within the catchment, setting a special focus on the carbon history. Sediment deposits from a silted-up reservoir were analysed for varying physicochemical parameters, in order to analyse erosional and depositional patterns. A sharp decrease in total carbon content with decreasing depth suggests that land degradation during and after the post-European settlement most likely triggered erosion of the relatively fertile surface soils which presumably in-filled the reservoirs. It is assumed that the carbon-rich bottom layers of the dam deposits originate from these eroded surface soils. A combination of erosion modelling and sediment analysis will be used to determine the source areas of the depositional material and might clarify the question if land degradation in the Karoo has resulted in its return from being a net sink of carbon into a net source of carbon.

  20. Iodine and selenium in natural water, their fixation on geochemical barriers in soils and rocks and explanation of I and Se behavior in water-solid phase system using thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Ryzhenko, Boris; Cherkasova, Elena; Sedykh, Ivelina; Korsakova, Nadezhda; Berezkin, Victor; Kolmykova, Lyudmila; Danilova, Valentina; Khushvakhtova, Sabzbakhor

    2014-05-01

    Iodine and selenium are essential for normal functioning of thyroid gland. Their natural deficiency in areas subjected to radioiodine contamination during nuclear tests and accidents may increase the risk of thyroid cancer among the most sensitive groups of population. Deficiency is caused by both the low abundance of microelements in the environmental components of the local food chain and their fixation on geochemical barriers due to such processes as chemical transformation, sorption, chemisorption, complexing. The studies of iodine and selenium distribution in soils, herbs and drinking water in rural settlements of the Bryansk oblast' confirmed low level of iodine and selenium content in local soils, plants and water and revealed different character of their distribution in soils and waters formed in geochemically different conditions of water migration in areas of fluvioglacial, moraine and loess-like soil forming rocks (the polesje, moraine and opolje landscapes correspondingly). Iodine content in top horizons of the soils developed on loess-like sediments and rich in organic matter was considerably higher as compared to those formed on sandy moraine or fluvioglacial sediments. For selenium the difference was not pronounced. Iodine was noted for positive correlation with Corg and fixation in the soil profile on carbonate barrier. A negative correlation was found between selenium content in grasses and in topsoil of subordinated elementary landscapes characterized by waterlogged and reduction conditions in soils. Thermodynamic modeling performed for 47 water samples on the basis of their chemical composition helped to explain the established patterns of iodine and selenium behavior in soil-water system. It demonstrated the possibility of existence of CaI+ and MgI+ complexes in water and sedimentation of FeSe(cr) in presence of a considerable amount of Fe2+. Iodine complexation with Ca and Mg ions may explain its further fixation on carbonate barrier in soils, and selenium sedimentation may decrease its availability to plants in gley kinds of soils elsewhere. It may be suggested that the organic water-soluble iodine complexes typical for polesije landscapes and the mineral ones in opolje landscapes could have increased the mobility of radioiodine isotopes and their transfer to food chains in the contaminated areas. The work was supported the Russian Foundation for Basic Research (grants 10-05-01148 and 13-05-00823).

  1. Geochemical processes regulating F-, as and NO3- content in the groundwater of a sector of the Pampean Region, Argentina.

    PubMed

    Borzi, Guido E; García, Leandro; Carol, Eleonora S

    2015-10-15

    The presence of F(-) and As in groundwater is common in volcanic aquifers. Excessive concentrations of these ions affect the quality of drinking water and can be harmful to health. When there is an anthropogenic source in phreatic aquifers, NO3(-) is incorporated to the groundwater components, deteriorating its quality. The objective of this work is to assess the geochemical processes that regulate the contents of F(-), As and NO3(-) of the groundwater in a sector of the Pampean Region in Argentina. This area is supplied with water by exploiting a multilayer aquifer, composed of a phreatic aquifer occurring in loess sediments and a fluvial semi-confined aquifer, separated by an aquitard. The results obtained show that the phreatic aquifer has a higher concentration of F(-), As and NO3(-) than the semi-confined aquifer. Fluoride derives from the dissolution of volcanic glass at a slightly alkaline pH and from anion exchange; however, it may also be absorbed by the reprecipitating carbonates. The As is released by desorption, with the main source being the glass and lithic fragments of the loess. The NO3(-) originates from the decomposition of organic matter, mainly in the septic tanks of the peri-urban areas. Meanwhile, the As and F(-) content in the semi-confined aquifer is lower and its origin is the result of water inflow by vertical downward infiltration from the phreatic aquifer through the aquitard. The Pampean Region is one of the areas with the largest volume of agricultural exports in the world and at present it is undergoing a strong social and economic growth. Understanding the geochemical processes that regulate the quality of drinking water is of vital importance to generate water management guidelines aiming at minimizing the deterioration of drinking water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sorption kinetics of Hg and HgCl[sub 2] on Kirkwood-Cohansey aquifer sediments from the New Jersey Coastal Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, C.; Peterson, J.

    1992-01-01

    Anomalously high Hg concentrations have been detected from domestic wells in the Kirkwood-Cohansey Aquifer System, New Jersey Coastal Plain. Mercury concentrations ranging from 0.2--83.0 [mu]g/l in relatively shallow wells ([lt] 100 feet) have been detected. Concentrations in excess of 2.0 [mu]g/l, (the USEPA Drinking Water Standard) have been detected in wells where the Cohansey Sand is overlain by the Bridgeton Formation; a fluvial iron-rich sand with some gravelly channel deposits containing goethite and gibbsite nodules. In this study, Bridgeton Fm. sediments were used to determine the sorption kinetics for solutions containing HgCl[sub 2] and for solutions containing dissolved elemental Hgmore » in order to assess the potential for the Bridgeton sediments to act as a conduit for Hg mobilized from the surface. Results of batch equilibrium experiments suggest that dissolved elemental Hg sorbs to Bridgeton sediments by a risk-order kinetic process. Sorption of the Hg proceeded exponentially and equilibrium was reached within 14 hours. The sorption kinetics for the HgCl[sub 2] solutions, however, appear to be of a second or higher order. For this compound sorption to the sediments begins exponentially, but after 6 hours desorption into the water begins to predominate followed by a slower exponential sorption step that requires nearly 36 hours to reach equilibrium. These experiments illustrate the necessity of determining the distribution coefficients of possible source compounds when attempting to evaluate mobilization potential of a contaminant in the unsaturated zone. Moreover, these data also suggest that HgCl[sub 2], a seed dressing for corn, medial bacteriacide, and embalming fluid ingredient, is more mobile in the environment than dissolved elemental Hg. Consequently, the ground water contamination potential appears to be greater for HgCl[sub 2] than for elemental Hg.« less

  3. Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination.

    PubMed

    Matsushita, Taku; Morimoto, Ayako; Kuriyama, Taisuke; Matsumoto, Eisuke; Matsui, Yoshihiko; Shirasaki, Nobutaka; Kondo, Takashi; Takanashi, Hirokazu; Kameya, Takashi

    2018-07-01

    Removal efficiencies of 28 pesticide transformation products (TPs) and 15 parent pesticides during steps in drinking water treatment (coagulation-sedimentation, activated carbon adsorption, and ozonation) were estimated via laboratory-scale batch experiments, and the mechanisms underlying the removal at each step were elucidated via regression analyses. The removal via powdered activated carbon (PAC) treatment was correlated positively with the log K ow at pH 7. The adjusted coefficient of determination (r 2 ) increased when the energy level of the highest occupied molecular orbital (HOMO) was added as an explanatory variable, the suggestion being that adsorption onto PAC particles was largely governed by hydrophobic interactions. The residual error could be partly explained by π-π electron donor-acceptor interactions between the graphene surface of the PAC particles and the adsorbates. The removal via ozonation correlated positively with the energy level of the HOMO, probably because compounds with relatively high energy level HOMOs could more easily transfer an electron to the lowest unoccupied molecular orbital of ozone. Overall, the TPs tended to be more difficult to remove via PAC adsorption and ozonation than their parent pesticides. However, the TPs that were difficult to remove via PAC adsorption did not induce strong mutagenicity after chlorination, and the TPs that were associated with strong mutagenicity after chlorination could be removed via PAC adsorption. Therefore, PAC adsorption is hypothesized to be an effective method of treating drinking water to reduce the possibility of post-chlorination mutagenicity associated with both TPs and their parent pesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania.

    PubMed

    Zobrist, Jürg; Sima, Mihaela; Dogaru, Diana; Senila, Marin; Yang, Hong; Popescu, Claudia; Roman, Cecilia; Bela, Abraham; Frei, Linda; Dold, Bernhard; Balteanu, Dan

    2009-08-01

    In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues. The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km(2). About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite. The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis. The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L(-1), Fe 100 mg L(-1), Cu 2.9 mg L(-1), Cd 1.4 mg L(-1) as well as those of SO(4) up to 2.2 g L(-1). In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity. Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater. Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid-base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future. The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples' opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations. Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results. The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  5. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.

    PubMed

    Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P

    2018-06-13

    Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Your Drinking Water Source | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Local communities are responsible for protecting their community's drinking water, and as a citizen, you can directly affect the success or failure of your community's drinking water protection efforts.

  7. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  8. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    NASA Astrophysics Data System (ADS)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  9. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    PubMed

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  10. Occurrence of organic wastewater compounds in drinking water, wastewater effluent, and the Big Sioux River in or near Sioux Falls, South Dakota, 2001-2004

    USGS Publications Warehouse

    Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.

    2006-01-01

    The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one OWC was detected at a concentration greater than the study reporting level (metolachlor; 0.0040 ug/L). During base-flow conditions, Big Sioux River sites upstream from the WWTP discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for upstream sites than downstream sites during both base-flow and runoff conditions.discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for

  11. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  12. Source Water Protection Basics

    EPA Pesticide Factsheets

    Defines drinking water sources (source water), identifies drinking water sources, and describes source water assessments and protection, roles of government and organizations in drinking water source protection

  13. Rates of As and trace-element mobilization caused by Fe reduction in mixed BTEX–ethanol experimental plumes

    USGS Publications Warehouse

    Ziegler, Brady A.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2015-01-01

    Biodegradation of organic matter, including petroleum-based fuels and biofuels, can create undesired secondary water-quality effects. Trace elements, especially arsenic (As), have strong adsorption affinities for Fe(III) (oxyhydr)-oxides and can be released to groundwater during Fe-reducing biodegradation. We investigated the mobilization of naturally occurring As, cobalt (Co), chromium (Cr), and nickel (Ni) from wetland sediments caused by the introduction of benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol mixtures under iron- and nitrate-reducing conditions, using in situ push–pull tests. When BTEX alone was added, results showed simultaneous onset and similar rates of Fe reduction and As mobilization. In the presence of ethanol, the maximum rates of As release and Fe reduction were higher, the time to onset of reaction was decreased, and the rates occurred in multiple stages that reflected additional processes. The concentration of As increased from <1 μg/L to a maximum of 99 μg/L, exceeding the 10 μg/L limit for drinking water. Mobilization of Co, Cr, and Ni was observed in association with ethanol biodegradation but not with BTEX. These results demonstrate the potential for trace-element contamination of drinking water during biodegradation and highlight the importance of monitoring trace elements at natural and enhanced attenuation sites.

  14. Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts.

    PubMed

    Weber, Andrea K; Barber, Larry B; LeBlanc, Denis R; Sunderland, Elsie M; Vecitis, Chad D

    2017-04-18

    Growing evidence that certain poly- and perfluoroalkyl substances (PFASs) are associated with negative human health effects prompted the U.S. Environmental Protection Agency to issue lifetime drinking water health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in 2016. Given that groundwater is a major source of drinking water, the main objective of this work was to investigate geochemical and hydrological processes governing the subsurface transport of PFASs at a former fire training area (FTA) on Cape Cod, Massachusetts, where PFAS-containing aqueous film-forming foams were used historically. A total of 148 groundwater samples and 4 sediment cores were collected along a 1200-m-long downgradient transect originating near the FTA and analyzed for PFAS content. The results indicate that unsaturated zones at the FTA and at hydraulically downgradient former domestic wastewater effluent infiltration beds both act as continuous PFAS sources to the groundwater despite 18 and 20 years of inactivity, respectively. Historically different PFAS sources are evident from contrasting PFAS composition near the water table below the FTA and wastewater-infiltration beds. Results from total oxidizable precursor assays conducted using groundwater samples collected throughout the plume suggest that some perfluoroalkyl acid precursors at this site are transporting with perfluoroalkyl acids.

  15. Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Weber, Andrea K.; Barber, Larry B.; LeBlanc, Denis R.; Sunderland, Elsie M.; Vecitis, Chad D.

    2017-01-01

    Growing evidence that certain poly- and perfluoroalkyl substances (PFASs) are associated with negative human health effects prompted the U.S. Environmental Protection Agency to issue lifetime drinking water health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in 2016. Given that groundwater is a major source of drinking water, the main objective of this work was to investigate geochemical and hydrological processes governing the subsurface transport of PFASs at a former fire training area (FTA) on Cape Cod, Massachusetts, where PFAS-containing aqueous film-forming foams were used historically. A total of 148 groundwater samples and 4 sediment cores were collected along a 1200-m-long downgradient transect originating near the FTA and analyzed for PFAS content. The results indicate that unsaturated zones at the FTA and at hydraulically downgradient former domestic wastewater effluent infiltration beds both act as continuous PFAS sources to the groundwater despite 18 and 20 years of inactivity, respectively. Historically different PFAS sources are evident from contrasting PFAS composition near the water table below the FTA and wastewater-infiltration beds. Results from total oxidizable precursor assays conducted using groundwater samples collected throughout the plume suggest that some perfluoroalkyl acid precursors at this site are transporting with perfluoroalkyl acids.

  16. Characterization of drinking water treatment for virus risk assessment.

    PubMed

    Teunis, P F M; Rutjes, S A; Westrell, T; de Roda Husman, A M

    2009-02-01

    Removal or inactivation of viruses in drinking water treatment processes can be quantified by measuring the concentrations of viruses or virus indicators in water before and after treatment. Virus reduction is then calculated from the ratio of these concentrations. Most often only the average reduction is reported. That is not sufficient when treatment efficiency must be characterized in quantitative risk assessment. We present three simple models allowing statistical analysis of series of counts before and after treatment: distribution of the ratio of concentrations, and distribution of the probability of passage for unpaired and paired water samples. Performance of these models is demonstrated for several processes (long and short term storage, coagulation/filtration, coagulation/sedimentation, slow sand filtration, membrane filtration, and ozone disinfection) using microbial indicator data from full-scale treatment processes. All three models allow estimation of the variation in (log) reduction as well as its uncertainty; the results can be easily used in risk assessment. Although they have different characteristics and are present in vastly different concentrations, different viruses and/or bacteriophages appear to show similar reductions in a particular treatment process, allowing generalization of the reduction for each process type across virus groups. The processes characterized in this paper may be used as reference for waterborne virus risk assessment, to check against location specific data, and in case no such data are available, to use as defaults.

  17. Water-quality assessment of the Sacramento River basin, California : water quality of fixed sites, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dileanis, Peter D.

    2000-01-01

    Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater concentrations of mercury were mostly higher than the criterion. Exceedances of water-quality standards happened most frequently during winter when suspended-sediment concen-trations also were elevated. Most mercury is found in association with suspended sediment. The greatest loading or transport of mercury out of the Sacramento River Basin to the San Francisco Bay occurs in the winter and principally follows storm events.

  18. Tribal Set-Aside Program of the Drinking Water Infrastructure Grant

    EPA Pesticide Factsheets

    The Safe Drinking Water Act (SWDA), as amended in 1996, established the Drinking Water State Revolving Fund (DWSRF) to make funds available to drinking water systems to finance infrastructure improvements.

  19. A high-resolution historical sediment record of nutrients, trace elements and organochlorines (DDT and PCB) deposition in a drinking water reservoir (Lake Brêt, Switzerland) points at local and regional pollutant sources.

    PubMed

    Thevenon, Florian; de Alencastro, Luiz Felippe; Loizeau, Jean-Luc; Adatte, Thierry; Grandjean, Dominique; Wildi, Walter; Poté, John

    2013-03-01

    The (137)Cs and (210)Pb dating of a 61-cm long sediment core retrieved from a drinking water reservoir (Lake Brêt) located in Switzerland revealed a linear and relatively high sedimentation rate (~1 cm year(-1)) over the last decades. The continuous centimeter scale measurement of physical (porewater and granulometry), organic (C(org), P, N, HI and OI indexes) and mineral (C(min) and lithogenic trace elements) parameters therefore enables reconstructing the environmental history of the lake and anthropogenic pollutant input (trace metals, DDT and PCBs) at high resolution. A major change in the physical properties of the lowermost sediments occurred following the artificial rise of the dam in 1922. After ca. 1940, there was a long-term up-core increase in organic matter deposition attributed to enhance primary production and anoxic bottom water conditions due to excessive nutrient input from a watershed predominantly used for agriculture that also received domestic effluents of two wastewater-treatment plants. This pattern contrasts with the terrigenous element input (Eu, Sc, Mg, Ti, Al, and Fe) which doubled after the rising of the dam but continuously decreased during the last 60 years. By comparison, the trace metals (Cu, Pb and Hg) presented a slight enrichment factor (EF) only during the second part of the 20th century. Although maximum EF Pb (>2) occurred synchronously with the use of leaded gasoline in Switzerland (between ca. 1947 and 1985) the Hg and Cu profiles exhibited a relatively similar trend than Pb during the 20th century, therefore excluding the alkyl-lead added to petrol as the dominant (atmospheric) source of lead input to Lake Brêt. Conversely, the Cu profile that did not follow the decrease registered in Pb and Hg during the last 10 years, suggests an additional source of Cu probably linked to the impact of agricultural activities in the area. In absence of heavy industries in the catchment, the atmospheric deposition of DDT and PCBs via surface runoff followed the historical emissions of POPs in Switzerland. Such result highlights the regional contamination of freshwater resources by the large-scale emission of toxic industrial chemicals in the 1960s and 1970s as well as the efficiency of the regulatory measures subsequently taken. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    PubMed

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  1. Green money

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The U.S. Environmental Protection Agency (EPA) is currently requesting proposals for its first round of science research grants for 1997. The program is designed to promote interdisciplinary research in ecosystem indicators; exploratory research; complex exposures and human variability in risk assessment; endocrine disrupters; ambient air quality; health effects of particulate matter; and drinking water and contaminated sediments. Application dates vary by topic between January 15 and February 15, 1997. Further information about the grants program can be obtained on the EPA web page at http://www.epa.gov/ncerqa, or by calling the EPA grants and fellowship hotline at 1-800-490-9194.

  2. Are stream stabilization projects reducing suspended sediment concentrations and turbidity in the New York City Water Supply Watershed?

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Siemion, J.; Davis, W. D.

    2015-12-01

    Turbidity and suspended sediment concentrations (SSCs) are primary water quality concerns in the upper Esopus Creek watershed, the main tributary to the Ashokan reservoir. The Ashokan reservoir is one of 6 surface water reservoirs that constitute about 90% of New York City's drinking water supply. This study quantified turbidity levels and SSCs at 10 locations throughout the upper Esopus Creek watershed for 3 years prior to the implementation of 2 stream stabilization projects and for 18 months after the projects were completed. More than 93 percent of the total-suspended sediment load occurred on days with flows greater than or equal to the 90th percentile of flows observed during the study period. Discharge, SSC, and turbidity were strongly related at the outlet of the upper Esopus Creek, but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek, the largest tributary. Stony Clove Creek, consistently produced higher SSCs and turbidity than any of the other Esopus Creek tributaries. Nonetheless, there was not a strong relation between either turbidity or SSC and discharge because there was a series of eroding banks in contact with fine grained glacio-lacustrine deposits and associated hill slope failures within the Stony Clove Creek watershed that delivered elevated turbidity and SSCs to the stream during all flow conditions. Stream bank stabilization projects were completed at two of the largest bank failures. After the projects were completed there was decrease in stream SSC and turbidity however, flows during the 18 months following the projects were lower than before the projects. Nevertheless, a shift in the SSC and turbidity discharge rating curves suggests that the stream stabilization projects resulted in lower turbidity levels and SSCs for similar discharge conditions as compared to before the projects thereby reducing sediment yields within the watershed as a result of those projects.

  3. Effects of Forest and Grassland Management On Drinking Water Quality for Public Water Supplies:A Review And Synthesis of the Scientific Literature - Review Draft

    Treesearch

    George E. Dissmeyer

    1999-01-01

    The Importance of Safe Public Drinking Water The United States Congress justified passing the Safe Drinking Water Amendments (SDWA) of 1996 (P. L. 104-182) by stating "safe drinking water is essential to the protection of public health".For 50 years the basic axiom for public health protection has been safe drinking water...

  4. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  5. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  6. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  7. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  8. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  9. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  10. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  11. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  12. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  13. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  14. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9186-8] Tribal Drinking Water Operator Certification Program... details of EPA's voluntary Tribal Drinking Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be...

  15. The substitution of sand filtration by immersed-UF for surface water treatment: pilot-scale studies.

    PubMed

    Lihua, Sun; Xing, Li; Guoyu, Zhang; Jie, Chen; Zhe, Xu; Guibai, Li

    2009-01-01

    The newly issued National Drinking Water Standard required that turbidity should be lower than 1 NTU, and the substitution of sand filtration by immersed ultrafiltration (immersed-UF) is feasible to achieve the standard. This study aimed to optimise the operational processes (i.e. aeration, backwashing) through pilot scale studies, to control membrane fouling while treating the sedimentation effluent. Results indicated that the immersed-UF was promising to treat the sedimentation effluent. The turbidity was below 0.10 NTU, bacteria and E. coli were not detected in the permeate water. The intermittent filtration with aeration is beneficial to inhibit membrane fouling. The critical aeration intensity is observed to be 60.0 m(3) m(-2) h(-1). At this aeration intensity, the decline rate of permeate flux in one period of backwashing was 1.94% and 7.03% for intermittent filtration and sustained filtration respectively. The different membrane backwashing methods (i.e. aeration 1.5 min, synchronous aeration and water backwashing 2 min, water backwashing 1.5 min; synchronous aeration and water backwashing 3 min, water backwashing 2 min; aeration 3 min, single water backwashing 2 min; synchronous aeration and water backwashing 5 min; single water backwashing 5 min) on the recovery of permeate flux were compared, indicating that the synchronous aeration and water backwashing exhibited best potential for permeate flux recovery. The optimal intensity of water backwashing is shown to be 90.0 L m(-2) h(-1). When the actual water intensity was below or exceeded the value, the recovery rate of permeate flux would be reduced. Additionally, the average operating cost for the immersed UF membrane, including the power, the chemical cleaning reagents, and membrane modules replacement, was about 0.31 RMB/m(3).

  16. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP contamination. In karstic aquifers, however, there is an increased probability that if any ENPs enter the groundwater system they will reach the extraction point of a drinking water treatment plant (DWTP). The ability to remove ENPs during water treatment depends on the specific design of the treatment process. In conventional DWTPs with no flocculation step a proportion of ENPs, if present in the raw water, may reach the final drinking water. The use of ultrafiltration techniques improves drinking water safety with respect to ENP contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Human Health Benchmarks for Pesticides

    EPA Pesticide Factsheets

    Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.

  18. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    NASA Astrophysics Data System (ADS)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    The turbid tropical Cointzio reservoir, located in the Trans Mexican Volcanic Belt (TMVB), behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of Michoacán, and for downstream irrigation during the dry season. This reservoir is a perfect example of a human-impacted system since its watershed is mainly composed of degraded volcanic soils and is subjected to high erosion processes and agricultural loss. The reservoir is threatened by sediment accumulation and nutrients originating from untreated waters in the upstream watershed. The high content of very fine clay particles and the lack of water treatment plants lead to serious episodes of eutrophication (up to 70 μg chl. a L-1), high levels of turbidity (Secchi depth < 30 cm) and a long period of anoxia (from May to October). Based on intensive field measurements in 2009 (deposited sediment, benthic chamber, water vertical profiles, reservoir inflow and outflow) we determined suspended sediment (SS), carbon (C), nitrogen (N) and phosphorus (P) mass balances. Watershed SS yields were estimated at 35 t km2 y-1 of which 89-92 % were trapped in the Cointzio reservoir. As a consequence the reservoir has already lost 25 % of its initial storage capacity since its construction in 1940. Nutrient mass balances showed that 50 % and 46 % of incoming P and N were retained by sedimentation, and mainly eliminated through denitrification respectively. Removal of C by 30 % was also observed both by sedimentation and through gas emission. To complete field data analyses we examined the ability of vertical one dimensional (1DV) numerical models (Aquasim biogeochemical model coupled with k-ɛ mixing model) to reproduce the main biogeochemical cycles in the Cointzio reservoir. The model can describe all the mineralization processes both in the water column and in the sediment. The values of the entire mass balance of nutrients and of the mineralization rates (denitrification and aerobic benthic mineralization) calculated from the model fitted well to the field measurements. Furthermore, this analysis indicates that the benthic mineralizations are the dominant processes involved in the nutrients release. This is the first implementation of a biogeochemical model applied to a highly productive reservoir in the TMVB in order to estimate nutrients release from sediments. It could be used for scenarios of reduction of eutrophication in the reservoir. This study provides a good example of the behavior of a small tropical reservoir under intense human pressure and it will help stakeholders to adopt appropriate strategies for the management of turbid tropical reservoirs.

  19. World Health Organization Discontinues Its Drinking-Water Guideline for Manganese

    PubMed Central

    Frisbie, Seth H.; Mitchell, Erika J.; Dustin, Hannah; Maynard, Donald M.

    2012-01-01

    Background: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.” Objective: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011. Methods: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Discussion: Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. Conclusions: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn. PMID:22334150

  20. [Knowledge, attitude and practice on drinking water of primary and secondary students in Shenzhen].

    PubMed

    Liu, Jiaxin; Hu, Xiaoqi; Zhang, Qian; Du, Songming; Pan, Hui; Dai, Xingbi; Ma, Guansheng

    2014-05-01

    To investigate the status on drinking water related knowledge, attitude and practice of primary and secondary students in Shenzhen. All 832 primary and secondary students from three schools in Shenzhen were selected by using multi-stage random sampling method. The information of drinking water related knowledge, time of drinking water and the type of drink chose in different situations were collected by questionnaires. 87.3% of students considered plain water being the healthiest drink in daily life, and the percent in girls (90.6%) was significantly higher than that in boys (84.4% ) (chi2 = 7.13, P = 0.0089). The awareness percent of the harm of dehydration was 84.5%. The percent in high school students (96.4%) was significantly higher than that in primary (73.9%) and middle school students (94.2%) (chi2 = 73.77, P < 0.0001). 63.7% of students considered that the healthiest time of drinking water was in the morning with an empty stomach, and 46.3% chose when they felt thirsty. However, 63.7% drank water when they felt thirsty, and 50.6% drank water in the morning with an empty stomach. The percent of drinking plain water at school was the highest (83.4%), followed by at home (64.1%) and in public (26.2%). There were 45.2% and 53.3% of students, respectively, choosing sugary drinks as their favorite drink and most frequently drinking in public places. Primary and secondary students in Shenzhen have a good awareness of drinking water, which is inconsistent with their practice. Meanwhile, a considerable proportion of students towards choosing drinks have many misconceptions. The education of healthy drinking water should be strengthened.

  1. [Analysis on current status of drinking water quality in rural areas of China].

    PubMed

    Zhang, L; Chen, Y; Chen, C; Wang, H; Yan, H Z; Zhao, Y C

    1997-01-01

    An investigation on drinking water quality in rural areas of 180 counties in 26 provinces, municipalities and autonomous regions of China was carried out. The population surveyed was 89.39 million. 69.6% of which was supplied with ground water. Central water supply systems served 47.1% of population. Quality of drinking water was graded according to the "Guidelines for Implementation of the 'Sanitary Standard for Drinking Water' in Rural Areas". The rate of population supplied with unqualified drinking water was 42.7%. The bacteriological indices of drinking water exceeded the standard seriously. Organic pollution occurred extensively. Some regions supplied with water of high concentration of fluoride.

  2. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant.

    PubMed

    Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif

    2007-07-15

    The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.

  3. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  4. Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; A, Yinglan; Jiang, Hong; Fu, Qing; Zheng, Binghui

    2015-01-01

    Increasing water pollution in developing countries poses a significant threat to environmental health and human welfare. Understanding the spatial distribution and apportioning the sources of pollution are important for the efficient management of water resources. In this study, ten types of heavy metals were detected during 2010-2013 for all ambient samples and point sources samples. A pollution assessment based on the surficial sediment dataset by Enrichment Factor (EF) showed the surficial sediment was moderately contaminated. A comparison of the multivariate approach (principle components analysis/absolute principle component score, PCA/APCS) and the chemical mass balance model (CMB) shows that the identification of sources and calculation of source contribution based on the CMB were more objective and acceptable when source profiles were known and source composition was complex. The results of source apportionment for surficial heavy metals, both from PCA/APCS and CMB model, showed that the natural background (30%) was the most dominant contributor to the surficial heavy metals, followed by mining activities (29%). The contribution percentage of the natural background was negatively related to the degree of contamination. The peak concentrations of many heavy metals (Cu, Ba, Fe, As and Hg) were found in the middle layer of sediment, which is most likely due to the result of development of industry beginning in the 1970s. However, the highest concentration of Pb appeared in the surficial sediment layer, which was most likely due to the sharp increase in the traffic volume. The historical analysis of the sources based on the CMB showed that mining and the chemical industry are stable sources for all of the sections. The comparing of change rates of source contribution versus years indicated that the composition of the materials in estuary site (HF1) is sensitive to the input from the land, whereas center site (HF4) has a buffering effect on the materials from the land through a series of complex movements. These results provide information for the development of improved pollution control strategies for the lakes and reservoirs.

  5. [Research and development of a vehicle-mounted drinking water installation and its purification effect].

    PubMed

    Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong

    2012-01-01

    To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.

  6. Water Quality on the Prairie Band Potawatomi Reservation, Northeastern Kansas, June 1996 through August 2006

    USGS Publications Warehouse

    Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.

    2007-01-01

    This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration

  7. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  8. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  9. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae), of Cross River, Nigeria.

    PubMed

    Ayotunde, Ezekiel Olatunji; Offem, Benedict Obeten; Ada, Fidelis Bekeh

    2012-09-01

    Cross River serves as a major source of drinking water, transportation, agricultural activities and fishing in Cross River State, Nigeria. Since there is no formal control of effluents discharged into the river, it is important to monitor the levels of metals contaminants in it, thus assessing its suitability for domestic and agricultural use. In order to determine this, three sampling stations designated as Ikom (Station I), Obubra Ogada (Station II) and Calabar (Station III) were randomly selected to study. For this, ten samples of the freshwater Silver Catfish (Chryshchythys nigrogitatus) (29.4-39.5cm SL, 310-510g), sediment and water were collected from each sampling Station from June 2009-June 2010. The heavy metals profiles ofZn, Cu, Fe, Co, Pb, Cd and Cr, in water, sediments and fish muscle were analyzed by atomic absorption spectrophotometry (AAS). In fish, the heavy metals concentration was found to be Cu>Fe>Zn>Cu>Pb>Cd>Co; the highest mean concentration of Copper (0.297 +/- 0.022 microg/g), Cadmium (0.011 +/- 0.007 microg/g), Iron (0.371 +/- 0.489 microg/g), Lead (0.008 +/- 0.008 microg/g), were determined for the fish. In water, the order was found to be Fe>Pb>Zn>Cu>Cr>Cd>Co; the highest mean concentration of Iron (0.009 +/- 0.00) microg/g), Copper (0.015 +/- 0.01 microg/g), Lead (0.0002 +/- 0.00 microg/g) Cadmium (0.0006 +/- 0.001 microg/g), Zinc (0.0036 +/- 0.003 microg/g), were observed in the surface water, respectively. The highest mean concentration of Copper (0.037 +/- 0.03 microg/g), Iron (0.053 +/- 0.04 microg/g), Lead (0.0002 +/- 0.00 microg/g), Cobalt (0.0002 +/- 0.00 microg/g), Cadmium (0.0006 +/- 0.001 microg/g) and Zinc (.009 +/- 0.0015 microg/g) was observed in the bottom water. In sediments, the concentration order found was Zn>Fe>Cu>Pb>Co>Cd; the highest mean concentration of 0.057 +/- 0.04 microg/g, 0.043 +/- 0.03 microg/g, 0.0006 +/- 0.00 microg/g, 0.0002 +/- 0.00 microg/g, 0.0009 +/- 0.00 microg/g, 0.099 +/- 0.00404 microg/g in Iron, Copper, Lead, Cobalt, Cadmium and Zinc were observed in the sediment, respectively; Chromium was not detected in the sediment for the whole sampling area. Most of the heavy metals were below the maximum allowable levels set by the WHO, FEPA and USEPA, except Zinc which mean concentration of 0.099 +/- 0.00404 microg/g was above the recommended limit of 0.0766 microg/g of USEPA in the sediment at Ikom. This implies that the waste assimilation capacity of the river is high, a phenomenon that could be ascribed to dilution, sedimentation and continuous water exchange. This is an indication that an urban and industrial waste discharged into the Cross River has a significant effect on the ecological balance of the river. Thus fish species from the Cross River harvested are safe for human consumption.

  10. Preliminary study of sources and processes of enrichment of manganese in water from University of Rhode Island supply wells

    USGS Publications Warehouse

    Silvey, William Dudley; Johnston, Herbert E.

    1977-01-01

    Concentrations of dissolved manganese have increased from 0.0 to as much as 3.3 mg/liter over a period of years in closely spaced University of Rhode Island supply wells. The wells tap stratified glacial deposits and derive part of their water from infiltration from a nearby river-pond system. The principal sources of the manganese seem to be coatings of oxides and other forms of manganese on granular aquifer materials and organic-rich sediments on the bottom of the pond and river. Chemical analyses of water from an observation well screened from 3 to 5 feet below the pond bottom indicate that infiltration of water through organic-rich sediments on the pond bottom is the likely cause of manganese enrichment in the well supplies. After passing through the organic layer, the water contains concentrations of manganese as high as 1.2 mg/liter. Manganese in water in concentrations that do not cause unpleasant taste is not regarded to be toxicologically significant. However, concentrations in excess of a few tenths of a milligram per liter are undesirable in public supplies and in many industrial supplies. Brown and others (21970) note that waters containing manganese in concentrations less than 0.1 mg/liter seldom prove troublesome, but that those containing more than 0.5 mg/liter may form objectionable deposits on cooked food, laundry, and plumbing fixtures. The U.S. Public health Service (1962) recommends that the concentrations of manganese in drinking and culinary water not exceed 0.05 mg/liter. (Woodard-USGS)

  11. Formative Research to Design a Promotional Campaign to Increase Drinking Water among Central American Latino Youth in an Urban Area.

    PubMed

    Barrett, Nicole; Colón-Ramos, Uriyoán; Elkins, Allison; Rivera, Ivonne; Evans, W Douglas; Edberg, Mark

    2017-06-01

    Latinos consume more sugary drinks and less water than other demographic groups. Our objective was to understand beverage choice motivations and test promotional concepts that can encourage Central American Latino urban youth to drink more water. Two rounds of focus group discussions were conducted (n = 10 focus groups, 61 participants, 6-18 years old). Data were transcribed verbatim and analyzed using inductive and deductive coding approaches. Youth motivations for drinking water were shaped by level of thirst, weather, energy, and perceptions of health benefits. Youth were discouraged from drinking water due to its taste and perceptions of the safety and cleanliness of tap water. Youth beverage preference depended on what their friends were drinking. Availability of water versus other beverages at home and other settings influenced their choice. Promotional materials that included mixed language, informative messages about the benefits of drinking water, and celebrities or athletes who were active, energized, and drinking water were preferred. A promotional campaign to increase water consumption among these Latino youth should include bicultural messages to underscore the power of water to quench true thirst, highlight the health benefits of drinking water, and address the safety of tap water.

  12. Water-induced thermogenesis reconsidered: the effects of osmolality and water temperature on energy expenditure after drinking.

    PubMed

    Brown, Clive M; Dulloo, Abdul G; Montani, Jean-Pierre

    2006-09-01

    A recent study reported that drinking 500 ml of water causes a 30% increase in metabolic rate. If verified, this previously unrecognized thermogenic property of water would have important implications for weight-loss programs. However, the concept of a thermogenic effect of water is controversial because other studies have found that water drinking does not increase energy expenditure. The objective of the study was to test whether water drinking has a thermogenic effect in humans and, furthermore, determine whether the response is influenced by osmolality or by water temperature. This was a randomized, crossover design. The study was conducted at a university physiology laboratory. Participants included healthy young volunteer subjects. Intervention included drinking 7.5 ml/kg body weight (approximately 518 ml) of distilled water or 0.9% saline or 7% sucrose solution (positive control) on different days. In a subgroup of subjects, responses to cold water (3 C) were tested. Resting energy expenditure, assessed by indirect calorimetry for 30 min before and 90 min after the drinks, was measured. Energy expenditure did not increase after drinking either distilled water (P = 0.34) or 0.9% saline (P = 0.33). Drinking the 7% sucrose solution significantly increased energy expenditure (P < 0.0001). Drinking water that had been cooled to 3 C caused a small increase in energy expenditure of 4.5% over 60 min (P < 0.01). Drinking distilled water at room temperature did not increase energy expenditure. Cooling the water before drinking only stimulated a small thermogenic response, well below the theoretical energy cost of warming the water to body temperature. These results cast doubt on water as a thermogenic agent for the management of obesity.

  13. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Personal protective equipment, hygiene behaviours and occupational risk of illness after July 2011 flood in Copenhagen, Denmark.

    PubMed

    Wójcik, O P; Holt, J; Kjerulf, A; Müller, L; Ethelberg, S; Mølbak, K

    2013-08-01

    Incidence of various diseases can increase following a flood. We aimed to identify professionals in Copenhagen who became ill after contact with 2 July 2011 floodwater/sediment and determine risks and protective factors associated with illness. We conducted a cohort study of employees engaged in post-flood management activities. Participants completed a questionnaire collecting information about demographics, floodwater/sediment exposure, compliance with standard precautions, and symptoms of illness. Overall, 257 professionals participated, with 56 (22%) cases. Risk of illness was associated with not washing hands after floodwater/sediment contact [relative risk (RR) 2∙45], exposure to floodwater at work and home (RR 2∙35), smoking (RR 1∙92), direct contact with floodwater (RR 1∙86), and eating/drinking when in contact with floodwater (RR 1∙77). Professionals need to follow standard precautions when in contact with floodwater/sediment, especially proper hand hygiene after personal protective equipment use and before eating/drinking and smoking.

  15. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  16. 76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... small water systems and efforts underway to address nutrient pollution of drinking water supplies. The... ENVIRONMENTAL PROTECTION AGENCY [FRL-9496-4] Meeting of the National Drinking Water Advisory... meeting. SUMMARY: Notice is hereby given of a meeting of the National Drinking Water Advisory Council...

  17. 76 FR 33756 - Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Primacy Application for National Primary Drinking Water Regulations for the State of Missouri AGENCY... Department of Natural Resources, Public Drinking Water Branch, 1101 Riverside Drive, Jefferson City, MO 65101. (2) Environmental Protection Agency-Region 7, Water Wetlands and Pesticides Division, Drinking Water...

  18. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time

    USGS Publications Warehouse

    Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.

  19. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time.

    PubMed

    Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee

    2007-02-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.

  20. Hydrologic monitoring of selected streams in coal fields of central and southern Utah; summary of data collected, August 1978-September 1984

    USGS Publications Warehouse

    Price, Don; Plantz, G.G.

    1987-01-01

    The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)

  1. Novel sorbents for environmental remediation

    NASA Astrophysics Data System (ADS)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session on Novel sorbents for environmental remediation, will also be evaluated and presented.

  2. Transport and transportation pathways of hazardous chemicals from solid waste disposal.

    PubMed Central

    Van Hook, R I

    1978-01-01

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772

  3. Drinking water and health research: a look to the future in the United States and globally.

    PubMed

    Sobsey, Mark D

    2006-01-01

    Drinking water supplies continue to be a major source of human disease and death globally because many of them remain unsafe and vulnerable. Greater efforts are needed to address the key issues and questions which influence the provision of safe drinking water. Efforts are needed to re-evaluate and set new and better priorities for drinking water research and practice. More stakeholders need to be included in the processes of identifying key issues and setting priorities for safe drinking water. The overall approach to drinking water research and the provision of safe drinking water needs to become more rational and scientific, and become more visionary and anticipatory of the ever-present and emerging risks to drinking water safety. Collectively, we need to do a better job of making safe water available, accessible and affordable for all. One such approach to safe water for all is household water treatment and safe storage, which is being promoted globally by the World Health Organization and many other stakeholders and partners to reduce the global burden of waterborne disease.

  4. Effects of human placental S9 and induced rat liver S9 on the mutagenicity of drinking waters processed from humus-rich surface waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartiainen, T.; Lampelo, S.

    The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less

  5. Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94

    USGS Publications Warehouse

    Oblinger, C.J.; Treece, M.W.

    1996-01-01

    The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly greater than all other site categories. Phosphorus was significantly greater than for reservoir sites or headwater streams. Few concentrations of trace metals were greater than the minimum reporting limit, and U.S. Environmental Protection Agency drinking-water standards were rarely exceeded. Detections, when they occurred, were most frequent for sites below urban areas and wastewater-treatment plant effluents. A small number of samples for analysis of acetanilide, triazine, carbamate, and chlorophenoxy acid pesticides indicate that some of these compounds are generally present in area waters in small concentrations. Organochlorine and organophosphorus pesticides are ubiquitous in the study area in very small concentrations. Trihalomethanes were detected at sites below urban areas and wastewater-treatment plants. Otherwise, volatile organic compounds and semivolatile compounds were generally not detected. Suspended-sediment, nitrogen, phosphorus, lead, and zinc loads into Falls Lake, Jordan Lake, University Lake, Cane Creek Reservoir, Little River Reservoir, and Lake Michie were calculated. In general, reservoirs act as traps for suspended sediment and constituents associated with suspended sediments. During 1989-94, annual suspended-sediment load to Falls Lake ranged from 29,500 to 88,200 tons. Because Lake Michie trapped from 83 to 93 percent of the suspended sediment delivered by Flat River, Flat River is a minor contributor of suspended sediment to Falls Lake. Yields of suspended sediment from Little River, Little Lick Creek, and Flat River Basins were between 184 and 223 tons per square mile and appear to have increased increased slightly from yields reported in a study for the period 1970-79. Annual suspended-sediment load to Jordan Lake ranged from 271,000 to 622,000 tons from 1989 through 1994 water years. The Haw River contributed more than 75 percent of the tota load to Jordan Lake. The suspended-sediment yields for Haw River and Northeast Cree

  6. 3D simulation of the influence of internal mixing dynamics on the propagation of river plumes in Lake Constance

    NASA Astrophysics Data System (ADS)

    Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas

    2017-04-01

    Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.

  7. Problems of drinking water treatment along Ismailia Canal Province, Egypt.

    PubMed

    Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E

    2008-03-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.

  8. Problems of drinking water treatment along Ismailia Canal Province, Egypt*

    PubMed Central

    Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.

    2008-01-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  9. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  10. Middle School Student Attitudes about School Drinking Fountains and Water Intake

    PubMed Central

    Patel, Anisha I.; Bogart, Laura M.; Klein, David J.; Cowgill, Burt; Uyeda, Kimberly E.; Hawes-Dawson, Jennifer; Schuster, Mark A.

    2014-01-01

    Objective Describe middle school student attitudes about school drinking fountains, investigate whether such attitudes are associated with intentions to drink water at school, and determine how intentions relate to overall water intake. Methods Students (n=3,211) in 9 California middle schools completed surveys between 2009–2011. We used multivariate linear regression, adjusting for school sociodemographic characteristics, to examine how attitudes about fountains (5-point scale; higher scores indicating more positive attitudes) were associated with intentions to drink water at school and how intentions to drink water at school were related to overall water intake. Results Mean age of students was 12.3 (SD=0.7) years; 75% were Latino, 89% low-income, and 39% foreign-born. Fifty-two percent reported lower than recommended overall water intake (<3 glasses/day), and 30% reported that they were unlikely or extremely unlikely to drink water at school. Fifty-nine percent reported that school fountains were unclean, 48% that fountain water does not taste good, 33% that fountains could make them sick, 31% that it was not okay to drink from fountains, and 24% that fountain water is contaminated. In adjusted analyses, attitudes about school drinking fountains were related to intentions to drink water at school (B=0.41; p-value <0.001); intentions to drink water at school were also associated with overall water intake (B=0.20; p-value <0.001). Conclusions and Relevance Students have negative attitudes about school fountains. To increase overall water intake, it may be important to promote and improve drinking water sources not only at school, but also at home and in other community environments. What’s New Although most schools provide water via fountains, little is known about student attitudes about fountains. In this study, middle school students had negative attitudes about fountains; such attitudes were associated with lower intentions to drink water at school. PMID:25169158

  11. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  12. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China.

    PubMed

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-11-12

    This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.

  13. 76 FR 71560 - Notice of a Public Meeting on Long Term 2 Enhanced Surface Water Treatment Rule: Initiate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Management Division, Office of Ground Water and Drinking Water (MC 4607M), Environmental Protection Agency... drinking water. The 1996 Amendments to the Safe Drinking Water Act (SDWA) require EPA to review its existing drinking water regulations every six years. SDWA specifies that any revision to a national primary...

  14. Geomorphologic and geologic overview for water resources development: Kharit basin, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mosaad, Sayed

    2017-10-01

    This study demonstrates the importance of geomorphologic, geologic and hydrogeologic assessment as an efficient approach for water resources development in the Kharit watershed. Kharit is one of largest watersheds in the Eastern Desert that lacks water for agricultural and drinking purposes, for the nomadic communities. This study aims to identify and evaluate the geomorphologic, geologic and hydrogeologic conditions in the Kharit watershed relative to water resource development using remote sensing and GIS techniques. The results reveal that the watershed contains 15 sub-basins and morphometric analyses show high probability for flash floods. These hazards can be managed by constructing earth dikes and masonry dams to minimize damage from flash floods and allow recharge of water to shallow groundwater aquifers. The Quaternary deposits and the Nubian sandstone have moderate to high infiltration rates and are relatively well drained, facilitating surface runoff and deep percolation into the underlying units. The sediments cover 54% of the watershed area and have high potential for groundwater extraction.

  15. Pyrosequence Analysis of the hsp65 Genes of Nontuberculous Mycobacterium Communities in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    Heijnen, Leo; van der Kooij, Dick

    2013-01-01

    Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance. PMID:23913420

  16. Pyrosequence analysis of the hsp65 genes of nontuberculous mycobacterium communities in unchlorinated drinking water in the Netherlands.

    PubMed

    van der Wielen, Paul W J J; Heijnen, Leo; van der Kooij, Dick

    2013-10-01

    Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.

  17. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    NASA Astrophysics Data System (ADS)

    Brima, Eid I.

    2017-03-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  18. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China.

    PubMed

    Xu, Li; Wang, Tieyu; Wang, Jihua; Lu, Anxiang

    2017-04-01

    The occurrence, speciation and transport of heavy metals in 9 coastal rivers from watershed of Laizhou Bay were investigated. The largest dissolved concentrations of Cd, Cu and Zn in water were 6.26, 2755.00, 2076.00 μg/L, respectively, much higher than several drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb and Cd in sediments were 1462, 1602, 196, 67.2, 63.5 and 1.41 mg/kg, dw, respectively. Correlation and principal component analysis was also conducted to determine the extent between the concentrations of metals in water and sediment, as well as relevant parameters. Throughout the river stretch, most of Cr Zn, Cr, Ni and Pb bound to residual fraction, however, Cd was preferentially bound to the exchangeable phase. Among the 9 rivers, Yellow river account for 72.5%, 67.5%, 55.4%, 59.4%, 79.4% and 85.5% for Cr, Ni, Cu, Zn. Cd and Pb, respectively. The combined potential ecological risk indexes were used to evaluate potential risks. The majority of sampling sites from watershed of Laizhou Bay have moderate ecological risk from metals. The government should pay more attention to the ecological risk of river ecosystem which flow to Laizhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia.

    PubMed

    Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z

    2016-02-01

    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  20. Dissolved air flotation and me.

    PubMed

    Edzwald, James K

    2010-04-01

    This paper is mainly a critical review of the literature and an assessment of what we know about dissolved air flotation (DAF). A few remarks are made at the outset about the author's personal journey in DAF research, his start and its progression. DAF has been used for several decades in drinking water treatment as an alternative clarification method to sedimentation. DAF is particularly effective in treating reservoir water supplies; those supplies containing algae, natural color or natural organic matter; and those with low mineral turbidity. It is more efficient than sedimentation in removing turbidity and particles for these type supplies. Furthermore, it is more efficient in removing Giardia cysts and Cryptosporidium oocysts. In the last 20 years, fundamental models were developed that provide a basis for understanding the process, optimizing it, and integrating it into water treatment plants. The theories were tested through laboratory and pilot-plant studies. Consequently, there have been trends in which DAF pretreatment has been optimized resulting in better coagulation and a decrease in the size of flocculation tanks. In addition, the hydraulic loading rates have increased reducing the size of DAF processes. While DAF has been used mainly in conventional type water plants, there is now interest in the technology as a pretreatment step in ultrafiltration membrane plants and in desalination reverse osmosis plants. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. The genetic basis of novel water utilisation and drinking behaviour traits and their relationship with biological performance in turkeys.

    PubMed

    Rusakovica, Julija; Kremer, Valentin D; Plötz, Thomas; Rohlf, Paige; Kyriazakis, Ilias

    2017-09-29

    There is increasing interest in the definition, measurement and use of traits associated with water use and drinking behaviour, mainly because water is a finite resource and its intake is an important part of animal health and well-being. Analysis of such traits has received little attention, due in part to the lack of appropriate technology to measure drinking behaviour. We exploited novel equipment to collect water intake data in two lines of turkey (A: 27,415 and B: 12,956 birds). The equipment allowed continuous recording of individual visits to the water station in a group environment. Our aim was to identify drinking behaviour traits of biological relevance, to estimate their genetic parameters and their genetic relationships with performance traits, and to identify drinking behaviour strategies among individuals. Visits to the drinkers were clustered into bouts, i.e. time intervals spent in drinking-related activity. Based on this, biologically relevant traits were defined: (1) number of visits per bout, (2) water intake per bout, (3) drinking time per bout, (4) drinking rate, (5) daily bout frequency, (6) daily bout duration, (7) daily drinking time and (8) daily water intake. Heritability estimates for most drinking behaviour traits were moderate to high and the most highly heritable traits were drinking rate (0.49 and 0.50) and daily drinking time (0.35 and 0.46 in lines A and B, respectively). Genetic correlations between drinking behaviour and performance traits were low except for moderate correlations between daily water intake and weight gain (0.46 and 0.47 in lines A and B, respectively). High estimates of breeding values for weight gain were found across the whole range of estimated breeding values for daily water intake, daily drinking time and water intake per bout. We show for the first time that drinking behaviour traits are moderately to highly heritable. Low genetic and phenotypic correlations with performance traits suggest that current breeding goals have not and will not affect normal water drinking behaviour. Birds express a wide range of different drinking behaviour strategies, which can be suitable to a wide range of environments and production systems.

  2. Influence of organic matter, nutrients, and cyclodextrin on microbial and chemical herbicide and degradate dissipation in subsurface sediment slurries.

    PubMed

    Kerminen, Kaisa; Le Moël, Romain; Harju, Vilhelmiina; Kontro, Merja H

    2018-03-15

    Pesticides leaching from soil to surface and groundwater are a global threat for drinking water safety, as no cleaning methods occur for groundwater environment. We examined whether peat, compost-peat-sand (CPS) mixture, NH 4 NO 3 , NH 4 NO 3 with sodium citrate (Na-citrate), and the surfactant methyl-β-cyclodextrin additions enhance atrazine, simazine, hexazinone, dichlobenil, and the degradate 2,6-dichlorobenzamide (BAM) dissipations in sediment slurries under aerobic and anaerobic conditions, with sterilized controls. The vadose zone sediment cores were drilled from a depth of 11.3-14.6m in an herbicide-contaminated groundwater area. The peat and CPS enhanced chemical atrazine and simazine dissipation, and the peat enhanced chemical hexazinone dissipation, all oxygen-independently. Dichlobenil dissipated under all conditions, while BAM dissipation was fairly slow and half-lives could not be calculated. The chemical dissipation rates could be associated with the chemical structures and properties of the herbicides, and additive compositions, not with pH. Microbial atrazine degradation was only observed in the Pseudomonas sp. ADP amended slurries, although the sediment slurries were known to contain atrazine-degrading microorganisms. The bioavailability of atrazine in the water phase seemed to be limited, which could be due to complex formation with organic and inorganic colloids. Atrazine degradation by indigenous microbes could not be stimulated by the surfactant methyl-β-cyclodextrin, or by the additives NH 4 NO 3 and NH 4 NO 3 with Na-citrate, although the nitrogen additives increased microbial growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  4. 40 CFR 141.201 - General public notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking... violations of national primary drinking water regulations (NPDWR) and for other situations, as listed in... required by the drinking water regulations. (iv) Failure to comply with testing procedures as prescribed by...

  5. BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"

    EPA Science Inventory

    Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...

  6. Solid-phase microextraction of organophosphate pesticides in source waters for drinking water treatment facilities.

    PubMed

    Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda

    2006-09-01

    The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.

  7. Pesticides and their breakdown products in Lake Waxahachie, Texas, and in finished drinking water from the lake

    USGS Publications Warehouse

    Ging, Patricia B.

    2002-01-01

    Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.

  8. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project statewide.Groundwater resources used for public drinking water in the WSJV study unit are among the most saline and most affected by high concentrations of inorganic constituents of all groundwater resources used for public drinking water that have been assessed by the GAMA Priority Basin Project statewide. Among the 82 GAMA Priority Basin Project study areas statewide, the Delta–Mendota study area ranked above the 90th percentile for aquifer-scale proportions of groundwater resources having concentrations of total dissolved solids (TDS), sulfate, chloride, manganese, boron, chromium(VI), selenium, and strontium above benchmarks, and the Westside study area ranked above the 90th percentile for TDS, sulfate, manganese, and boron.In the WSJV study unit as a whole, one or more inorganic constituents with regulatory or non-regulatory, health-based benchmarks were present at concentrations above benchmarks in about 53 percent of the groundwater resources used for public drinking water, and one or more organic constituents with regulatory health-based benchmarks were detected at concentrations above benchmarks in about 3 percent of the resource. Individual constituents present at concentrations greater than health-based benchmarks in greater than 2 percent of groundwater resources used for public drinking water included: boron (51 percent, SWRCB-DDW notification level), chromium(VI) (25 percent, SWRCB-DDW maximum contaminant level (MCL)), arsenic (10 percent, EPA MCL), strontium (5.1 percent, EPA Lifetime health advisory level (HAL)), nitrate (3.9 percent, EPA MCL), molybdenum (3.8 percent, EPA HAL), selenium (2.6 percent, EPA MCL), and benzene (2.6 percent, SWRCB-DDW MCL). In addition, 50 percent of the resource had TDS concentrations greater than non-regulatory, aesthetic-based SWRCB-DDW upper secondary maximum contaminant level (SMCL), and 44 percent had manganese concentrations greater than the SWRCB-DDW SMCL.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors, inferences from geochemical and age-dating tracer results, and by considering the water-quality results in the context of the hydrogeologic setting of the WSJV study unit.Natural factors, particularly the lithologies of the source areas for groundwater recharge and of the aquifers, were the dominant factors affecting groundwater quality in most of the WSJV study unit. However, where groundwater resources used for public supply included groundwater recharged in the modern era, mobilization of constituents by recharge of water used for irrigation also affected groundwater quality. Public-supply wells in the Westside study area had a median depth of 305 m and primarily tapped groundwater recharged hundreds to thousands of years ago, whereas public-supply wells in the Delta–Mendota study area had a median depth of 85 m and primarily tapped either groundwater recharged within the last 60 years or groundwater consisting of mixtures of this modern recharge and older recharge.Public-supply wells in the WSJV study unit are screened in the Tulare Formation and zones above and below the Corcoran Clay Member are used. The Tulare Formation primarily consists of alluvial sediments derived from the Coast Ranges to the west, except along the valley trough at the eastern margin of the WSJV study unit where the Tulare Formation consists of fluvial sands derived from the Sierra Nevada to the east. Groundwater from wells screened in the Sierra Nevada sands had manganese-reducing or manganese- and iron-reducing oxidation-reduction (redox) conditions. These redox conditions commonly were associated with elevated arsenic or molybdenum concentrations, and the dominance of arsenic(III) in the dissolved arsenic supports reductive dissolution of iron and manganese oxyhydroxides as the mechanism. In addition, groundwater from many wells screened in Sierra Nevada sands contained low concentrations of nitrite or ammonium, indicating reduction of nitrate by denitrification or dissimilatory processes, respectively.Geology of the Coast Ranges westward of the study unit strongly affects groundwater quality in the WSJV. Elevated concentrations of TDS, sulfate, boron, selenium and strontium in groundwater were primarily associated with aquifer sediments and recharge derived from areas of the Coast Ranges dominated by Cretaceous-to-Miocene age, organic-rich, reduced marine shales, known as the source of selenium in WSJV soils, surface water, and groundwater. Low sulfur-isotopic values (δ34S) of dissolved sulfate indicate that the sulfate was largely derived from oxidation of biogenic pyrite from the shales, and correlations with trace element concentrations, geologic setting, and groundwater geochemical modeling indicated that distributions of sulfate, strontium, and selenium in groundwater were controlled by dissolution of secondary sulfate minerals in soils and sediments.Elevated concentrations of chromium(VI) were primarily associated with aquifer sediments and recharge derived from areas of the Coast Ranges dominated by the Franciscan Complex and ultramafic rocks. The Franciscan Complex also has boron-rich, sodium-chloride dominated hydrothermal fluids that contribute to elevated concentrations of boron and TDS.Groundwater from wells screened in Coast Ranges alluvium was primarily oxic and relatively alkaline (median pH value of 7.55) in the Delta–Mendota study area, and primarily nitrate-reducing or suboxic and alkaline (median pH value of 8.4) in the Westside study area. Many groundwater samples from those wells have elevated concentrations of arsenic(V), molybdenum, selenium, or chromium(VI), consistent with desorption of metal oxyanions from mineral surfaces under those geochemical conditions.High concentrations of benzene were associated with deep wells located in the vicinity of petroleum deposits at the southern end of the Westside study area. Groundwater from these wells had premodern age and anoxic geochemical conditions, and the ratios among concentrations of hydrocarbon constituents were different from ratios found in fuels and combustion products, which is consistent with a geogenic source for the benzene rather than contamination from anthropogenic sources.Water stable-isotope compositions, groundwater recharge temperatures, and groundwater ages were used to infer four types of groundwater: (1) groundwater derived from natural recharge of water from major rivers draining the Sierra Nevada; (2) groundwater primarily derived from natural recharge of water from Coast Ranges runoff; (3) groundwater derived from recharge of pumped groundwater applied to the land surface for irrigation; and (4) groundwater derived from recharge during a period of much cooler paleoclimate. Water previously used for irrigation was found both above and below the Corcoran Clay, supporting earlier inferences that this clay member is no longer a robust confining unit.Recharge of water used for irrigation has direct and indirect effects on groundwater quality. Elevated nitrate concentrations and detections of herbicides and fumigants in the Delta–Mendota study area generally were associated with greater agricultural land use near the well and with water recharged during the last 60 years. However, the extent of the groundwater resource affected by agricultural sources of nitrate was limited by groundwater redox conditions sufficient to reduce nitrate. The detection frequency of perchlorate in Delta–Mendota groundwater was greater than expected for natural conditions. Perchlorate, nitrate, selenium, and strontium concentrations were correlated with one another and were greater in groundwater inferred to be recharge of previously pumped groundwater used for irrigation. The source of the perchlorate, selenium, and strontium appears to be salts deposited in the soils and sediments of the arid WSJV that are dissolved and flushed into groundwater by the increased amount of recharge caused by irrigation. In the Delta–Mendota study area, the groundwater with elevated concentrations of selenium was found deeper in the aquifer system than it was reported by a previous study 25 years earlier, suggesting that this transient front of groundwater with elevated concentrations of constituents derived from dissolution of soil salts by irrigation recharge is moving down through the aquifer system and is now reaching the depth zone used for public drinking water supply.

  9. Oxygenated drinking water enhances immune activity in broiler chicks and increases survivability against Salmonella Gallinarum in experimentally infected broiler chicks.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo

    2012-03-01

    It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.

  10. Problems with provision: barriers to drinking water quality and public health in rural Tasmania, Australia.

    PubMed

    Whelan, Jessica J; Willis, Karen

    2007-01-01

    Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.

  11. Safety of packaged water distribution limited by household recontamination in rural Cambodia.

    PubMed

    Holman, Emily J; Brown, Joe

    2014-06-01

    Packaged water treatment schemes represent a growing model for providing safer water in low-income settings, yet post-distribution recontamination of treated water may limit this approach. This study evaluates drinking water quality and household water handling practices in a floating village in Tonlé Sap Lake, Cambodia, through a pilot cross-sectional study of 108 households, approximately half of which used packaged water as the main household drinking water source. We hypothesized that households purchasing drinking water from local packaged water treatment plants would have microbiologically improved drinking water at the point of consumption. We found no meaningful difference in microbiological drinking water quality between households using packaged, treated water and those collecting water from other sources, including untreated surface water, however. Households' water storage and handling practices and home hygiene may have contributed to recontamination of drinking water. Further measures to protect water quality at the point-of-use may be required even if water is treated and packaged in narrow-mouthed containers.

  12. [Total drinking water intake and sources of children and adolescent in one district of Shenzhen].

    PubMed

    Du, Songming; Hu, Xiaoqi; Zhang, Qian; Wang, Xiaojun; Liu, Ailing; Pan, Hui; He, Shuang; Ma, Guansheng

    2013-05-01

    To describe total drinking water intake among primary and middle school students in one district of Shenzhen and to provide scientific evidence for adequate intakes of drinking water for different people in China. A total of 816 students from three primary and middle schools of Shenzhen was selected using three-stage random sampling method. The information on amounts and types of daily drinking water was recorded by subjects for seven consecutive days using a 24 hours measurement. The amounts and types of daily drinking water among different ages and between boys and girls were analyzed. The average total drinking water of subjects was (1225+/-557) ml/d, and the consumption of total drinking water in boys ((1303+/-639) ml/d) was significantly higher than that in girls ((1134+/-478) ml/d, P<0.01). The consumption of total drinking water of secondary school students ((1389+/-541) ml/d) and high school student ((1318+/-641) ml/d) was no statistically difference, but was higher than primary school students ((1097+/-525) ml/d, P<0.01). The average plain water and beverages of the subjects was (818+/-541) ml/d and (407+/-294) ml/d respectively. Major of fluid intake comes from drinking water in children and adolescenct of Shenzhen. The knowledge of drinking water of primary school students is need to comprehensive enough.

  13. Small Drinking Water Systems Communication and Outreach ...

    EPA Pesticide Factsheets

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  14. Biological control experiment of excess propagation of Cyclops for drinking water security.

    PubMed

    Lin, Tao; Cui, Fu-Yi; Liu, Dong-Mei

    2007-01-01

    Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this study, an ecological project was put forward for the excess propagation control of Cyclops by stocking the filter-feeding fishes such as silver carp and bighead carp under the condition of no extraneous nutrient feeding. The results of experiments with different stocking biomass showed that the propagation of Cyclops could be controlled effectively, and the water quality was improved simultaneously by impacting on nutriment level and plankton community structure at proper stocking density of 30 g/m3 of water. The growth of Cyclops may not be effectually controlled with lower biomass of fish (10 g), and the natural food chain relation may be destroyed for Cyclops dying out in water while the intense stocking of 120 g per cubic meter of water. In addition, the high predator pressure may accelerate supplemental rate of nutrients from bottom sediments to water body to add the content of total nitrogen and phosphorus in water.

  15. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    PubMed

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  16. Fecal contamination of drinking water within peri-urban households, Lima, Peru.

    PubMed

    Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H

    2007-10-01

    We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.

  17. Increasing the availability and consumption of drinking water in middle schools: a pilot study.

    PubMed

    Patel, Anisha I; Bogart, Laura M; Elliott, Marc N; Lamb, Sheila; Uyeda, Kimberly E; Hawes-Dawson, Jennifer; Klein, David J; Schuster, Mark A

    2011-05-01

    Although several studies suggest that drinking water may help prevent obesity, no US studies have examined the effect of school drinking water provision and promotion on student beverage intake. We assessed the acceptability, feasibility, and outcomes of a school-based intervention to improve drinking water consumption among adolescents. The 5-week program, conducted in a Los Angeles middle school in 2008, consisted of providing cold, filtered drinking water in cafeterias; distributing reusable water bottles to students and staff; conducting school promotional activities; and providing education. Self-reported consumption of water, nondiet soda, sports drinks, and 100% fruit juice was assessed by conducting surveys among students (n = 876), preintervention and at 1 week and 2 months postintervention, from the intervention school and the comparison school. Daily water (in gallons) distributed in the cafeteria during the intervention was recorded. After adjusting for sociodemographic characteristics and baseline intake of water at school, the odds of drinking water at school were higher for students at the intervention school than students at the comparison school. Students from the intervention school had higher adjusted odds of drinking water from fountains and from reusable water bottles at school than students from the comparison school. Intervention effects for other beverages were not significant. Provision of filtered, chilled drinking water in school cafeterias coupled with promotion and education is associated with increased consumption of drinking water at school. A randomized controlled trial is necessary to assess the intervention's influence on students' consumption of water and sugar-sweetened beverages, as well as obesity-related outcomes.

  18. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia

    PubMed Central

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-01-01

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption. PMID:28984825

  19. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.

    PubMed

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-10-06

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  20. Behaviors and attitudes associated with low drinking water intake among US adults, Food Attitudes and Behaviors Survey, 2007.

    PubMed

    Goodman, Alyson B; Blanck, Heidi M; Sherry, Bettylou; Park, Sohyun; Nebeling, Linda; Yaroch, Amy L

    2013-04-11

    Water is vital for life, and plain water is a calorie-free option for hydration. Increasing consumption of drinking water is a strategy to reduce energy intake and lose or maintain weight; however, information on the characteristics of consumers who drink water is limited. Our objective was to describe the characteristics of people who have a low intake of drinking water and to determine associations between their behaviors and attitudes and their intake of water. We analyzed data from a nationally representative sample of 3,397 US adults who participated in the National Cancer Institute's 2007 Food Attitudes and Behaviors Survey. Multivariable logistic regression was used to identify sociodemographic characteristics and health-related behaviors and attitudes associated with self-reported drinking water intake of less than 4 cups per day. Overall, 7% of adults reported no daily consumption of drinking water, 36% reported drinking 1 to 3 cups, 35% reported drinking 4 to 7 cups, and 22% reported drinking 8 cups or more. The likelihood of drinking less than 4 cups of water daily was significantly higher among participants aged 55 years or older than among those aged 18 to 34 (adjusted odds ratio [AOR], 1.3), among residents of the Northeast than among residents of the South (AOR, 1.4), among participants who consumed 1 cup or less of fruits or vegetables per day than among those who consumed 4.5 cups or more (AOR, 3.0), among participants who did not exercise than among those who exercised 150 minutes or more per week (AOR, 1.7), and among participants who were neither trying to gain nor lose weight than among those trying to lose weight (AOR, 1.3). Low drinking water intake was associated with age, region of residence, and several unhealthful behaviors and attitudes. Understanding characteristics associated with low drinking water intake may help to identify populations that could benefit from interventions to help adults drink more water.

Top