Science.gov

Sample records for seed increases oil

  1. Increasing the flow of carbon into seed oil.

    PubMed

    Weselake, Randall J; Taylor, David C; Rahman, M Habibur; Shah, Saleh; Laroche, André; McVetty, Peter B E; Harwood, John L

    2009-01-01

    The demand for vegetable oils for food, fuel (bio-diesel) and bio-product applications is increasing rapidly. In Canada alone, it is estimated that a 50 to 75% increase in canola oil production will be required to meet the demand for seed oil in the next 7-10years. Plant breeding and genetics have demonstrated that seed oil content is a quantitative trait based on a number of contributing factors including embryo genetic effects, cytoplasmic effects, maternal genetic effects, and genotype-environment interactions. Despite the involvement of numerous quantitative trait loci in determining seed oil content, genetic engineering to over-express/repress specific genes encoding enzymes and other proteins involved in the flow of carbon into seed oil has led to the development of transgenic lines with significant increases in seed oil content. Proteins encoded by these genes include enzymes catalyzing the production of building blocks for oil assembly, enzymes involved in oil assembly, enzymes regulating metabolic carbon partitioning between oil, carbohydrate and secondary metabolite fractions, and transcription factors which orchestrate metabolism at a more general level. PMID:19625012

  2. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  3. Expression of Umbelopsis ramanniana DGAT2A in Seed Increases Oil in Soybean1[OA

    PubMed Central

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M.C.; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-01-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed. PMID:18633120

  4. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    PubMed

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  5. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.

    PubMed

    Shen, Bo; Allen, William B; Zheng, Peizhong; Li, Changjiang; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Tarczynski, Mitchell C

    2010-07-01

    Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.

  6. The ectopic expression of the wheat Puroindoline genes increase germ size and seed oil content in transgenic corn.

    PubMed

    Zhang, Jinrui; Martin, John M; Beecher, Brian; Lu, Chaofu; Hannah, L Curtis; Wall, Michael L; Altosaar, Illimar; Giroux, Michael J

    2010-11-01

    Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression.

  7. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana.

    PubMed

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Nath, Pravendra; Sane, Vidhu A

    2013-12-01

    The increasing consumption of fossil fuels and petroleum products is leading to their rapid depletion and is a matter of concern around the globe. Substitutes of fossil fuels are required to sustain the pace of economic development. In this context, oil from the non food crops (biofuel) has shown potential to substitute fossil fuels. Jatropha curcas is an excellent shrub spread and naturalized across the globe. Its oil contains a high percentage of unsaturated fatty acids (about 78-84% of total fatty acid content) making the oil suitable for biodiesel production. Despite its high oil content, it has been poorly studied in terms of important enzymes/genes responsible for oil biosynthesis. Here, we describe the isolation of the full length cDNA clone of JcDGAT1, a key enzyme involved in oil biosynthesis, from J. curcas seeds and manipulation of oil content and composition in transgenic Arabidopsis plants by its expression. Transcript analysis of JcDGAT1 reveals a gradual increase from early seed development to its maturation. Homozygous transgenic Arabidopsis lines expressing JcDGAT1 both under CaMV35S promoter and a seed specific promoter show an enhanced level of total oil content (up by 30-41%) in seeds but do not show any phenotypic differences. In addition, our studies also show alterations in the oil composition through JcDGAT1 expression. While the levels of saturated FAs such as palmitate and stearate in the oil do not change, there is significant reproducible decrease in the levels of oleic acid and a concomitant increase in levels of linolenic acid both under the CaMV35S promoter as well as the seed specific promoter. Our studies thus confirm that DGAT is involved in flux control in oil biosynthesis and show that JcDGAT1 could be used specifically to manipulate and improve oil content and composition in plants. PMID:24125179

  8. Fish oil and flax seed oil supplemented diets increase FFAR4 expression in the rat colon

    PubMed Central

    Kandi, Praveen; Singh, Monalisa; Britt, April; Hayslett, Renee; Moniri, Nader H.

    2015-01-01

    Background and objective Omega-3 fatty acids, such as α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are polyunsaturated fatty acids (PUFA) that have long been associated with anti-inflammatory activity and general benefit toward human health. Over the last decade, the identification of a family of cell-surface G protein-coupled receptors that bind and are activated by free-fatty acids, including omega-3 fatty acids, suggests that many effects of PUFA are receptor-mediated. One such receptor, free-fatty acid receptor-4 (FFAR4), previously described as GPR120, has been shown to modulate anti-inflammatory and insulin-sensitizing effects in response to PUFA such as ALA and DHA. Additionally, FFAR4 stimulates secretion of the insulin secretagogue glucagon like peptide-1 (GLP-1) from the GI tract and acts as a dietary sensor to regulate energy availability. The aim of the current study was to assess the effects of dietary omega-3 fatty acid supplementation on FFAR4 expression in the rat colon. Methods Sprague-Dawley rats were fed control soybean oil diets or alternatively, diets supplemented with either fish oil, which is enriched in DHA and EPA, or flaxseed oil, which is enriched in ALA, for seven weeks. GLP-1 and blood glucose levels were monitored weekly and at the end of the study period, expression of FFAR4 and the inflammatory marker TNF–α was assessed. Results Our findings indicate that GLP-1 and blood glucose levels were unaffected by omega-3 supplementation, however, animals that were fed fish or flaxseed oil-supplemented diets had significantly heightened colonic FFAR4 and actin expression, and reduced expression of the pro-inflammatory cytokine TNF-α compared to animals fed control diets. Conclusions These results suggest that similar to ingestion of other fats, dietary intake of omega-3 fatty acids can alter FFAR4 expression within the colon. PMID:26275932

  9. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds.

    PubMed

    Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K

    2015-11-01

    Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. PMID:26351151

  10. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds.

    PubMed

    Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K

    2015-11-01

    Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil.

  11. Increased 5-HT Levels Following Repeated Administration of Nigella sativa L. (Black Seed) Oil Produce Antidepressant Effects in Rats.

    PubMed

    Perveen, Tahira; Haider, Saida; Zuberi, Nudrat Anwar; Saleem, Sadia; Sadaf, Sana; Batool, Zehra

    2014-03-01

    The seeds of Nigella sativa L., commonly known as black seed or black cumin, and its extracts are used in folk medicine in the Middle East and in Asian countries for the promotion of good health and as a remedy for many ailments. These seeds have many acclaimed medicinal properties such as broncho-dilatory, immunopotentiating, analgesic, anti-inflammatory, and hypotensive. In the present study, the antidepressant activity following the repeated administration of Nigella sativa L. oil has been monitored using the forced swim test. Rats treated with Nigella sativa L. oil exhibited a significant increase in struggling time after oral administration of Nigella sativa L. oil (0.1 ml/kg/day) for four weeks. Nigella sativa L. oil increased brain 5-HT levels and decreased 5-HT turnover (5-HT/5-HIAA ratio). Levels of tryptophan increased significantly in the brain and plasma following the repeated administration of Nigella sativa L. oil. Nigella sativa L. oil showed a potential antidepressant-like effect.

  12. Biotechnology of oil seed crops

    SciTech Connect

    James, A.T.

    1985-02-01

    A general summary of possibilities and limitation application of biotechnology processes to processing and/or production of fats and oils is presented. Enzymatic processes, cloning of premium perennial oil crops and genetic manipulation of oil seed compositions are discussed.

  13. Physiology of Oil Seeds

    PubMed Central

    Ketring, D. L.; Morgan, P. W.

    1971-01-01

    Germination, ethylene production, and carbon dioxide production by dormant Virginia-type peanuts were determined during treatments with plant growth regulators. Kinetin, benzylaminopurine, and 2-chloroethylphosphonic acid induced extensive germination above the water controls. Benzylaminopurine and 2-chloroethylphosphonic acid increased the germination of the more dormant basal seeds to a larger extent above the controls than the less dormant apical seeds. Coumarin induced a slight stimulation of germination while abscisic acid, 2,4-dichlorophenoxyacetic acid, and succinic acid 2,2-dimethylhydrazide did not stimulate germination above the controls. In addition to stimulating germination, the cytokinins also stimulated ethylene production by the seeds. In the case of benzylaminopurine, where the more dormant basal seeds were stimulated to germinate above the control to a larger extent than the less dormant apical seeds, correspondingly more ethylene production was induced in the basal seeds. However, the opposite was true of kinetin for both germination and ethylene production. When germination was extensively stimulated by the cytokinins, maximal ethylene and carbon dioxide evolution occurred at 24 and 72 hours, respectively. Abscisic acid inhibited ethylene production and germinaton of the seeds while carbon dioxide evolution was comparatively high. The crucial physiological event for germination of dormant peanut seeds was enhancement of ethylene production by the seeds. PMID:16657647

  14. The ectopic expression of the wheat puroindoline genes increase germ size and seed oil content in transgenic corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Her...

  15. Consumption of Buglossoides arvensis seed oil is safe and increases tissue long-chain n-3 fatty acid content more than flax seed oil - results of a phase I randomised clinical trial.

    PubMed

    Lefort, Natalie; LeBlanc, Rémi; Giroux, Marie-Andrée; Surette, Marc E

    2016-01-01

    Enrichment of tissues with ≥20-carbon n-3 PUFA like EPA is associated with positive cardiovascular outcomes. Stearidonic acid (SDA; 18 : 4n-3) and α-linolenic acid (ALA; 18 : 3n-3) are plant-derived dietary n-3 PUFA; however, direct comparisons of their impact on tissue n-3 PUFA content are lacking. Ahiflower(®) oil extracted from Buglossoides arvensis seeds is the richest known non-genetically modified source of dietary SDA. To investigate the safety and efficacy of dietary Ahiflower oil, a parallel-group, randomised, double-blind, comparator-controlled phase I clinical trial was performed. Diets of healthy subjects (n 40) were supplemented for 28 d with 9·1 g/d of Ahiflower (46 % ALA, 20 % SDA) or flax seed oil (59 % ALA). Blood and urine chemistries, blood lipid profiles, hepatic and renal function tests and haematology were measured as safety parameters. The fatty acid composition of fasting plasma, erythrocytes, polymorphonuclear cells and mononuclear cells were measured at baseline and after 14 and 28 d of supplementation. No clinically significant changes in safety parameters were measured in either group. Tissue ALA and EPA content increased in both groups compared with baseline, but EPA accrual in plasma and in all cell types was greater in the Ahiflower group (time × treatment interactions, P ≤ 0·01). Plasma and mononuclear cell eicosatetraenoic acid (20 : 4n-3) and docosapentaenoic acid (22 : 5n-3) content also increased significantly in the Ahiflower group compared with the flax group. In conclusion, the consumption of Ahiflower oil is safe and is more effective for the enrichment of tissues with 20- and 22-carbon n-3 PUFA than flax seed oil. PMID:26793308

  16. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.

    PubMed

    Li, Xueyuan; Mei, Desheng; Liu, Qing; Fan, Jing; Singh, Surinder; Green, Allan; Zhou, Xue-Rong; Zhu, Li-Hua

    2016-01-01

    High oleic oil is an important industrial feedstock that has been one of the main targets for oil improvement in a number of oil crops. Crambe (Crambe abyssinica) is a dedicated oilseed crop, suitable for industrial oil production. In this study, we down-regulated the crambe fatty acid desaturase (FAD) and fatty acid elongase (FAE) genes for creating high oleic seed oil. We first cloned the crambe CaFAD2, CaFAD3 and CaFAE1 genes. Multiple copies of each of these genes were isolated, and the highly homologous sequences were used to make RNAi constructs. These constructs were first tested in Arabidopsis, which led to the elevated oleic or linoleic levels depending on the genes targeted, indicating that the RNAi constructs were effective in regulating the expression of the target genes in nonidentical but closely related species. Furthermore, down-regulation of CaFAD2 and CaFAE1 in crambe with the FAD2-FAE1 RNAi vector resulted in even more significant increase in oleic acid level in the seed oil with up to 80% compared to 13% for wild type. The high oleic trait has been stable in subsequent five generations and the GM line grew normally in greenhouse. This work has demonstrated the great potential of producing high oleic oil in crambe, thus contributing to its development into an oil crop platform for industrial oil production.

  17. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa.

    PubMed

    Roy Choudhury, Swarup; Riesselman, Adam J; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins consisting of Gα, Gβ and Gγ subunits play an integral role in mediating multiple signalling pathways in plants. A novel, recently identified plant-specific Gγ protein, AGG3, has been proposed to be an important regulator of organ size and mediator of stress responses in Arabidopsis, whereas its potential homologs in rice are major quantitative trait loci for seed size and panicle branching. To evaluate the role of AGG3 towards seed and oil yield improvement, the gene was overexpressed in Camelina sativa, an oilseed crop of the Brassicaceae family. Analysis of multiple homozygous T4 transgenic Camelina lines showed that constitutive overexpression of AGG3 resulted in faster vegetative as well as reproductive growth accompanied by an increase in photosynthetic efficiency. Moreover, when expressed constitutively or specifically in seed tissue, AGG3 was found to increase seed size, seed mass and seed number per plant by 15%-40%, effectively resulting in significantly higher oil yield per plant. AGG3 overexpressing Camelina plants also exhibited improved stress tolerance. These observations draw a strong link between the roles of AGG3 in regulating two critical yield parameters, seed traits and plant stress responses, and reveal an effective biotechnological tool to dramatically increase yield in agricultural crops. PMID:24102738

  18. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    PubMed

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds. PMID:26503031

  19. Frying stability of Moringa stenopetala seed oil.

    PubMed

    Lalas, Stavros; Gortzi, Olga; Tsaknis, John

    2006-06-01

    The frying performance of Moringa stenopetala seed oil (extracted with cold press or n-hexane) was studied especially as regards repeated frying operations. The oils were used for intermittent frying of potato slices and cod filets at a temperature of 175 degrees C for 5 consecutive days (5 fryings per day). The chemical changes occurring in oils were evaluated. Free fatty acid content, polar compounds, colour and viscosity of the oils all increased, whereas the iodine value, smoke point, polyunsaturated fatty acid content, induction period and tocopherol content decreased. The effect of the oil on the organoleptic quality of these fried foods and the theoretical number of frying operations possible before having to discard the oil was also determined. The analytical and sensory data showed that the lowest deterioration occurred in cold press produced oil. PMID:16810562

  20. Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil.

    PubMed

    Basu, M; Prasad, R; Jayamurthy, P; Pal, K; Arumughan, C; Sawhney, R C

    2007-11-01

    Seabuckthorn (SBT) seed oil is a rich source of unsaturated fatty acids, phytosterols, carotenoids and flavonoids, which are known to have significant anti-atherogenic and cardioprotective activity. The anti-atherogenic activity of supercritical CO(2) extracted SBT seed oil was evaluated in white albino rabbits fed on high cholesterol diet for 60 days. The study was performed on 20 male healthy rabbits divided into four groups of 5 animals each. Group I - control, group II - SBT seed oil, group III - cholesterol (1%) for 60 days, group IV - cholesterol+SBT seed oil. After 30 days of high cholesterol diet, group IV rabbits received 1 ml of SBT seed oil daily for 30 days. Blood total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C) and triglyceride (TG) levels were measured before and after the administration of SBT seed oil. The vasorelaxant activity of the seed oil was studied in vitro using aortic ring model technique and changes in isometric force were recorded using a polygraphic recording system. Accumulation of cholesterol in the aorta was studied using Sudan-IV staining technique. SBT seed oil feeding to normal rabbits for 18 days caused a significant decline in plasma cholesterol, LDL-C, atherogenic index (AI) and LDL/HDL ratio. The HDL-C levels, HDL-C/TC ratio (HTR) and vasorelaxant activity of the aorta were significantly increased. In cholesterol-fed animals the TC, TG, LDL-C and AI were significantly increased and showed a decline following seed oil administration. The increase in HDL-C was more marked in seed oil treated hypercholesterolemic animals. The acetylcholine-induced vasorelaxant activity was significantly decreased in cholesterol-fed animals and could be restored to that of normal values by seed oil administration. These observations suggest that supercritical CO(2) extracted SBT seed oil has significant anti-atherogenic and cardioprotective activity. PMID:17498939

  1. [Effect of five kinds of vegetable seed oil on serum lipid and lipid peroxidation in rats].

    PubMed

    Guo, Y; Cai, X; Zhao, X; Shi, R

    2001-01-01

    The effects of vegetable seed oil on hyperlipidemia induced by high lipid diet in rats. Male adult Wistar rats were fed on the test diet containing 94% high lipid diet and 6% lard pinon seed oil, perilla seed oil, blackcurrent seed oil, borage seed oil and evening primrose seed oil respectively for 3 weeks. The results showed that the vale of trilyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C(high density lipoprotein cholesterol) ratio increased and the vale of HDL-C/TC ratio and lecithin-cholesterol acyltransferase(LCAT) activity decreased in the groups with vegetable seed oil were less than that of the control group. The results suggested that all the five kinds of vegetable seed oil had the effect of regulating lipid metabolism of hyperlipidemia rats to some extent. Pinon seed oil and borage seed oil may be well suited for the prevention of atherosclerosis. PMID:11255765

  2. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil

    PubMed Central

    Burgal, Julie; Shockey, Jay; Lu, Chaofu; Dyer, John; Larson, Tony; Graham, Ian; Browse, John

    2010-01-01

    Summary A central goal of green chemistry is to produce industrially useful fatty acids in oilseed crops. Although genes encoding suitable fatty acid-modifying enzymes are available from many wild species, progress has been limited because the expression of these genes in transgenic plants produces low yields of the desired products. For example, Ricinus communis fatty acid hydroxylase 12 (FAH12) produces a maximum of only 17% hydroxy fatty acids (HFAs) when expressed in Arabidopsis. cDNA clones encoding R. communis enzymes for additional steps in the seed oil biosynthetic pathway were identified. Expression of these cDNAs in FAH12 transgenic plants revealed that the R. communis type-2 acyl-coenzyme A:diacylglycerol acyltransferase (RcDGAT2) could increase HFAs from 17% to nearly 30%. Detailed comparisons of seed neutral lipids from the single- and double-transgenic lines indicated that RcDGAT2 substantially modified the triacylglycerol (TAG) pool, with significant increases in most of the major TAG species observed in native castor bean oil. These data suggest that RcDGAT2 prefers acyl-coenzyme A and diacylglycerol substrates containing HFAs, and biochemical analyses of RcDGAT2 expressed in yeast cells confirmed a strong preference for HFA-containing diacylglycerol substrates. Our results demonstrate that pathway engineering approaches can be used successfully to increase the yields of industrial feedstocks in plants, and that members of the DGAT2 gene family probably play a key role in this process. PMID:18643899

  3. Elastohydrodynamic Traction Properties of Seed Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and s...

  4. Elastohydrodynamic (EHD) traction properties of seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and sev...

  5. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. PMID:26304382

  6. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene.

  7. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  8. Determination of oil in sunflower seeds

    SciTech Connect

    Kochlar, S.P.; Rossell, J.B.

    1987-06-01

    Oil content measurement in sunflower seeds on an ''as is'' basis by current official methods is often associated with poor reproducibility. This study shows that the main factor contributing to this poor agreement is the particle size to which seeds are ground. This invariably influences the homogeneity of the bulk ground sample from which subsequent subsamples are taken. It is therefore suggested that oil content determinations on sunflower seeds should be carried out on seed samples that have been evenly and finely ground, to a particle size not greater than 2.0 mm, in a mechanical mill such as the Ultra-Centrifugal mill. Other factors investigated were seed composition (free husk, empty husk, crude fiber and seed meats) and structural differences in the seeds by light microscopy. (Refs. 16).

  9. Amended safety assessment of Sesamum indicum (sesame) seed oil, hydrogenated sesame seed oil, Sesamum indicum (sesame) oil unsaponifiables, and sodium sesameseedate.

    PubMed

    Johnson, Wilbur; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-05-01

    Sesamum indicum (sesame) seed oil and related cosmetic ingredients are derived from Sesamum indicum. Sesamum indicum (sesame) seed oil, sesamum indicum (sesame) oil unsaponifiables, and hydrogenated sesame seed oil function as conditioning agents. Sodium sesameseedate functions as a cleansing agent, emulsifying agent, and a nonaqueous viscosity increasing agent. These ingredients are neither skin irritants, sensitizers, teratogens, nor carcinogens at exposures that would result from cosmetic use. Both animal and human data relevant to the cosmetic use of these ingredients were reviewed. The CIR Expert Panel concluded that these ingredients are safe in the present practices of use and concentration as described in this safety assessment.

  10. Compression ignition performance using sunflower seed oil

    SciTech Connect

    Yarbrough, C.M.; LePori, W.A.; Engler, C.R.

    1981-01-01

    Sunflower seed oil subjected to various levels of processing and blends with diesel fuel were evaluated in a single cylinder diesel engine. Results from short duration performance tests and longer duration load tests are reported. 8 refs.

  11. Fatty acid content of selected seed oils.

    PubMed

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  12. Liquid-Liquid Phase Separation of Oil Bodies from Seeds.

    PubMed

    Nykiforuk, Cory L

    2016-01-01

    Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic's recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during "upstream processing" of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles.

  13. Liquid-Liquid Phase Separation of Oil Bodies from Seeds.

    PubMed

    Nykiforuk, Cory L

    2016-01-01

    Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic's recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during "upstream processing" of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles. PMID:26614290

  14. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for soybean [Glycine max (L.) Merr.] meal has increased worldwide and soybean importers often offer premiums for soybean containing higher contents of protein and oil. Objectives were to detect quantitative trait loci (QTL) associated with soybean seed protein, oil, and seed weight in a soyb...

  15. Biochemical pathways in seed oil synthesis.

    PubMed

    Bates, Philip D; Stymne, Sten; Ohlrogge, John

    2013-06-01

    Oil produced in plant seeds is utilized as a major source of calories for human nutrition, as feedstocks for non-food uses such as soaps and polymers, and can serve as a high-energy biofuel. The biochemical pathways leading to oil (triacylglycerol) synthesis in seeds involve multiple subcellular organelles, requiring extensive lipid trafficking. Phosphatidylcholine plays a central role in these pathways as a substrate for acyl modifications and likely as a carrier for the trafficking of acyl groups between organelles and membrane subdomains. Although much has been clarified regarding the enzymes and pathways responsible for acyl-group flux, there are still major gaps in our understanding. These include the identity of several key enzymes, how flux between alternative pathways is controlled and the specialized cell biology leading to biogenesis of oil bodies that store up to 80% of carbon in seeds.

  16. The Effect of Camellia Seed Oil Intake on Lipid Metabolism in Mice.

    PubMed

    Satou, Tadaaki; Sato, Naoko; Kato, Haruyo; Kawamura, Mana; Watanabe, Sanae; Koike, Kazuo

    2016-04-01

    Camellia seed oil has mainly been applied to the production of cosmetics, and research into its dietary effects is required. Alterations in lipid metabolism by the intake of camellia seed oil were investigated. Health parameters such as diet intake, weight gain, fat mass, and plasma cholesterol and triglyceride levels were measured in mice fed a high fat diet containing camellia seed oil; comparisons were made to a normal diet and a high fat diet containing either soybean oil or olive oil as controls. No significant differences in weight gain and diet intake were observed between the groups. However, the camellia seed oil diet suppressed epididymal fat weight similarly to the olive oil diet. In total cholesterol and HDL (high density lipoprotein) cholesterol levels, the soybean oil, olive oil and camellia seed oil diet groups showed significant increases compared with the normal diet. However, increases in LDL (low density lipoprotein) cholesterol levels were inhibited by the camellia seed oil diet similarly to the olive oil diet. As the high oleic acid content of camellia seed oil is similar to that of olive oil, it is proposed that its presence mitigated fat accumulation and plasma cholesterol levels. PMID:27396207

  17. Antihypertensive and cardioprotective effects of pumpkin seed oil.

    PubMed

    El-Mosallamy, Aliaa E M K; Sleem, Amany A; Abdel-Salam, Omar M E; Shaffie, Nermeen; Kenawy, Sanaa A

    2012-02-01

    Pumpkin seed oil is a natural product commonly used in folk medicine for treatment of prostatic hypertrophy. In the present study, the effects of treatment with pumpkin seed oil on hypertension induced by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (50 mg /kg/day) in rats were studied and compared with those of the calcium channel blocker amlodipine. Pumpkin seed oil (40 or 100 mg/kg), amlodipine (0.9 mg/kg), or vehicle (control) was given once daily orally for 6 weeks. Arterial blood pressure (BP), heart rate, electrocardiogram (ECG) changes, levels of serum nitric oxide (NO) (the concentrations of nitrite/nitrate), plasma malondialdehyde (MDA), blood glutathione, and erythrocytic superoxide dismutase activity were measured. Histopathological examination of heart and aorta was conducted as well. L-NAME administration resulted in a significant increase in BP starting from the second week. Pumpkin seed oil or amlodipine treatment significantly reduced the elevation in BP by L-NAME and normalized the L-NAME-induced ECG changes-namely, prolongation of the RR interval, increased P wave duration, and ST elevation. Both treatments significantly decreased the elevated levels of MDA and reversed the decreased levels of NO metabolites to near normal values compared with the L-NAME-treated group. Amlodipine also significantly increased blood glutathione content compared with normal (but not L-NAME-treated) rats. Pumpkin seed oil as well as amlodipine treatment protected against pathological alterations in heart and aorta induced by L-NAME. In conclusion, this study has shown that pumpkin seed oil exhibits an antihypertensive and cardioprotective effects through a mechanism that may involve generation of NO.

  18. Biochemical characterisation during seed development of oil palm (Elaeis guineensis).

    PubMed

    Kok, Sau-Yee; Namasivayam, Parameswari; Ee, Gwendoline Cheng-Lian; Ong-Abdullah, Meilina

    2013-07-01

    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA. PMID:23575803

  19. Biochemical characterisation during seed development of oil palm (Elaeis guineensis).

    PubMed

    Kok, Sau-Yee; Namasivayam, Parameswari; Ee, Gwendoline Cheng-Lian; Ong-Abdullah, Meilina

    2013-07-01

    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA.

  20. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.

    PubMed

    Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M

    2016-05-31

    Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants. PMID:27254458

  1. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.

    PubMed

    Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M

    2016-05-31

    Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.

  2. Three new tetranortriterpenoids from neem seed oil.

    PubMed

    Hallur, Gurulingappa; Sivramakrishnan, Apoorba; Bhat, Sujata V

    2002-08-01

    Three new tetranortriterpenoids, 1alpha,2alpha-epoxy-17beta-hydroxyazadiradione (1), 1alpha,2alpha-epoxynimolicinol (2), and 7-deacetylnimolicinol (3), have been isolated from a methanol extract of neem oil (Azadirachta indica, seed oil) along with the known compounds epoxyazadiradione, 17beta-hydroxyazadiradione, gedunin, nimbin, and nimolicinol (4). Spectral studies and chemical transformations were used to establish the structure of compounds 1-3. The characterization of the epoxides 1 and 2 in neem oil is of biogenetic significance, as they may be considered as intermediates between A-ring enones and 1,3-diols among the A. indica tetranortriterpenoids. PMID:12193026

  3. Ameliorating Effects of Exogenously Applied Proline on Seed Composition, Seed Oil Quality and Oil Antioxidant Activity of Maize (Zea mays L.) under Drought Stress

    PubMed Central

    Ali, Qasim; Anwar, Farooq; Ashraf, Muhammad; Saari, Nazamid; Perveen, Rashida

    2013-01-01

    This study was carried out to appraise whether or not the exogenous application of a potential osmoprotectant, proline, could ameliorate the adverse effects of drought stress on maize seed and seed oil composition, as well as oil antioxidant activity. Water stress reduced the kernel sugar, oil, protein and moisture contents and most of the seed macro- and micro-elements analyzed in both maize cultivars but it increased the contents of seed fiber and ash. Water stress increased the oil oleic acid content with a subsequent decrease in the amount of linoleic acid, resulting in an increased oil oleic/linoleic ratio for both maize cultivars. However, no variation was observed in oil stearic and palmitic acids content due to water stress. A considerable drought induced an increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids were observed in both maize cultivars. However, oil phenolic and carotenoid content as well as 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity decreased. Foliar-applied proline significantly increased the content of seed sugar, oil, protein, moisture, fiber and ash in both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of proline increased the oil oleic and linoleic acid contents. The concentrations of antioxidant compounds namely phenolics, carotenoids, flavonoids and tocopherols estimated in the seed oil increased due to foliar-applied proline under water deficit conditions that was positively correlated with the enhanced oil DPPH free radical scavenging activity. Moreover, the increase in the contents of these antioxidant compounds and oil antioxidant activity due to the foliar application of proline was noted to be more pronounced under water deficit conditions. PMID:23344043

  4. Evaluation of chosen fruit seeds oils as potential biofuel

    NASA Astrophysics Data System (ADS)

    Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.

    2012-04-01

    Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.

  5. Para rubber seed oil: new promising unconventional oil for cosmetics.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha

    2014-01-01

    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.

  6. Para rubber seed oil: new promising unconventional oil for cosmetics.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha

    2014-01-01

    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly. PMID:24976614

  7. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  8. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved

  9. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  10. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis.

    PubMed

    Liu, Fang; Xia, Yuping; Wu, Lei; Fu, Donghui; Hayward, Alice; Luo, Junling; Yan, Xiaohong; Xiong, Xiaojuan; Fu, Ping; Wu, Gang; Lu, Changming

    2015-02-25

    Oilseed rape (Brassica napus) is one of the most important oilseed crops globally. To meet increasing demand for oil-based products, the ability to enhance desirable oil content in the seed is required. This study assessed the capability of five genes in the triacylglyceride (TAG) synthesis pathway to enhance oil content. The genes BnGPDH, BnGPAT, BnDGAT, ScGPDH and ScLPAAT were overexpressed separately in a tobacco (Nicotiana benthamiana) model system, and simultaneously by pyramiding in B. napus, under the control of a seed specific Napin promoter. ScLPAAT transgenic plants showed a significant increase of 6.84% to 8.55% in oil content in tobacco seeds, while a ~4% increase was noted for BnGPDH and BnGPAT transgenic seeds. Seed-specific overexpression of all four genes in B. napus resulted in as high a 12.57% to 14.46% increased in seed oil content when compared to WT, equaling close to the sum of the single-gene overexpression increases in tobacco. Taken together, our study demonstrates that BnGPDH, BnGPAT and ScLPAAT may effectively increase seed oil content, and that simultaneous overexpression of these in transgenic B. napus may further enhance the desirable oil content relative to single-gene overexpressors. PMID:25523093

  11. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  12. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  13. Viscosity of Common Seed and Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  14. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  15. Increasing seed size and quality by manipulating BIG SEEDS 1 in legume species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant organs such as seeds are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a novel and conserved ro...

  16. [Isothiocyanate and vinyl thio-oxazolidone contents of rape seeds and rape seed oil].

    PubMed

    Franzke, C; Göbel, R; Noack, G; Seiffert, I

    1975-01-01

    Comparative studies on the isothiocyanate content of rape-seeds and rape-seed oil show that, apart from nearly 300 mg/100 g of vinyl thio-oxazolidone, rape-seeds contain almost 200--300 mg/100 g of isothiocyanates of which 3-butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are the main components as evidenced thin-layer and gaschromatographically. Only about 1 mg/100 g of isothiocyanates are found in pressed rape-seed oil; and but circa 10 mg/100 g, in extracted rape-seed oil. 3-Butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are once more the main components. Thioglycerides are not detected in the oil. Vinyl thio-oxazolidone is found only in extracted rape-seed oil (about 2 mg/100 g). PMID:1152977

  17. Composition of essential oils from seeds of Abies koreana.

    PubMed

    Wajs-Bonikowska, Anna; Olejnik, Karol; Bonikowski, Radosław; Banaszczak, Piotr

    2013-02-01

    The essential oils from seeds of nine Abies koreana specimens have been studied using GC-MS-FID and NMR methods, leading to the determination of 96 volatiles, which constituted over 99% of the oils. The hydrodistilled oils of fresh, resinous scent were isolated with yields in the range of 3.8-8.5%. The results showed that the essential oil of Korean fir seeds contained 70-95% monoterpenes and 1-20% oxygenated monoterpenes as the dominant groups. The numerous sesquiterpenes, diterpenes and their oxygenated derivatives constituted only 2-8% of the oil. The major component of the seed essential oil was limonene (41-72 g/100g); the laevorotary form of this terpene predominated. A. koreana seeds seem to be a rich source of both essential oil and (-)-limonene, whose average enantiomeric excess was above 95%. PMID:23513736

  18. Seed oil and fatty acid composition in Capsicum spp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  19. Supercritical carbon dioxide extraction of cuphea seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...

  20. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  1. Continuous hydrolysis of Cuphea seed oil in subcritical water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea seed oil (CSO) is a source of medium chain fatty acids for use in chemical manufacturing, including detergents, shampoos and lubricants. Cuphea seed oil is high in decanoic acid and this fatty acid is especially useful in the preparation of estolide biobased lubricants, which have excellent ...

  2. Biological Networks Underlying Soybean Seed Oil Composition and Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  3. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  4. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  5. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  6. Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil.

    PubMed

    Gossell-Williams, M; Davis, A; O'Connor, N

    2006-01-01

    The oil from the pumpkin (Cucurbita pepo) seed is claimed to be useful in the management of benign prostatic hyperplasia. This investigation seeks to examine the effect of pumpkin seed oil on testosterone-induced hyperplasia of the prostate of rats. Hyperplasia was induced by subcutaneous administration of testosterone (0.3 mg/100 g of body weight) for 20 days. Simultaneous oral administration of either pumpkin seed oil (2.0 and 4.0 mg/100 g of body weight) or corn oil (vehicle) was also given for 20 days. The weights of the rats were recorded weekly, and the influence of testosterone and pumpkin seed oil on the weight gain of the rats was examined. On day 21, rats were sacrificed, and the prostate was removed, cleaned, and weighed. The prostate size ratio (prostate weight/rat body weight) was then calculated. Neither testosterone nor pumpkin seed oil had any significant influence on the weight gain of the rats. Testosterone significantly increased prostate size ratio (P < .05), and this induced increase was inhibited in rats fed with pumpkin seed oil at 2.0 mg/100 g of body weight. The protective effect of pumpkin seed oil was significant at the higher pumpkin seed oil dose (P < .02). We conclude pumpkin seed oil can inhibit testosterone-induced hyperplasia of the prostate and therefore may be beneficial in the management of benign prostatic hyperplasia.

  7. Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.

    PubMed

    Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

    2014-09-01

    The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial. PMID:25204067

  8. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.

    PubMed

    Timilsena, Yakindra Prasad; Adhikari, Raju; Barrow, Colin J; Adhikari, Benu

    2016-10-01

    Chia seed oil (CSO) microcapsules were produced by using chia seed protein isolate (CPI)-chia seed gum (CSG) complex coacervates aiming to enhance the oxidative stability of CSO. The effect of wall material composition, core-to-wall ratio and method of drying on the microencapsulation efficiency (MEE) and oxidative stability (OS) was studied The microcapsules produced using CPI-CSG complex coacervates as wall material had higher MEE at equivalent payload, lower surface oil and higher OS compared to the microcapsules produced by using CSG and CPI individually. CSO microcapsules produced by using CSG as wall material had lowest MEE (67.3%) and oxidative stability index (OSI=6.6h), whereas CPI-CSG complex coacervate microcapsules had the highest MEE (93.9%) and OSI (12.3h). The MEE and OSI of microcapsules produced by using CPI as wall materials were in between those produced by using CSG and CPI-CSG complex coacervates as wall materials. The CSO microcapsules produced by using CPI-CSG complex coacervate as shell matrix at core-to-wall ratio of 1:2 had 6 times longer storage life compared to that of unencapsulated CSO. The peroxide value of CSO microcapsule produced using CPI-CSG complex coacervate as wall material was <10meq O2/kg oil during 30 days of storage. PMID:27212219

  9. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.

    PubMed

    Timilsena, Yakindra Prasad; Adhikari, Raju; Barrow, Colin J; Adhikari, Benu

    2016-10-01

    Chia seed oil (CSO) microcapsules were produced by using chia seed protein isolate (CPI)-chia seed gum (CSG) complex coacervates aiming to enhance the oxidative stability of CSO. The effect of wall material composition, core-to-wall ratio and method of drying on the microencapsulation efficiency (MEE) and oxidative stability (OS) was studied The microcapsules produced using CPI-CSG complex coacervates as wall material had higher MEE at equivalent payload, lower surface oil and higher OS compared to the microcapsules produced by using CSG and CPI individually. CSO microcapsules produced by using CSG as wall material had lowest MEE (67.3%) and oxidative stability index (OSI=6.6h), whereas CPI-CSG complex coacervate microcapsules had the highest MEE (93.9%) and OSI (12.3h). The MEE and OSI of microcapsules produced by using CPI as wall materials were in between those produced by using CSG and CPI-CSG complex coacervates as wall materials. The CSO microcapsules produced by using CPI-CSG complex coacervate as shell matrix at core-to-wall ratio of 1:2 had 6 times longer storage life compared to that of unencapsulated CSO. The peroxide value of CSO microcapsule produced using CPI-CSG complex coacervate as wall material was <10meq O2/kg oil during 30 days of storage.

  10. Blends of rapeseed oil with black cumin and rice bran oils for increasing the oxidative stability.

    PubMed

    Rudzińska, Magdalena; Hassanein, Minar M M; Abdel-Razek, Adel G; Ratusz, Katarzyna; Siger, Aleksander

    2016-02-01

    For the increase of oxidative stability and phytonutrient contents of rapeseed oil 5, 10 and 20 % blends with rice bran oil and black cumin oil were prepared. Profiles of different bioactive lipid components of blends including tocopherols, tocotrienols, phytosterols and phytostanols as well as fatty acid composition were carried out using HPLC and GLC. Rancimat was used for detecting oxidative stability of the fatty material. The blends with black cumin seed oil characterized higher level of α- and γ-tocopherols as well as all isomers of tocotrienols. Presence of rice bran oil in blends leads to increased tocotrienols amounts, β-sitosterol and squalene. Blending resulted in lowering ratio of PUFA/SFA and improves stability of these oils. The ratio of omega-6/omega-3 raises from 2.1 in rapeseed oil to 3.7 and 3.0 in blends with black cumin and rice bran oils, respectively. Addition of 10 and 20 % of black cumin and rice bran oils to rapeseed oil were influenced on the oxidative stability of prepared blends. The results appear that blending of rapeseed oil with black cumin seed oil or rice bran oil enhanced nutritional and functional properties via higher oxidative stability as well as improved phytonutrient contents.

  11. Blends of rapeseed oil with black cumin and rice bran oils for increasing the oxidative stability.

    PubMed

    Rudzińska, Magdalena; Hassanein, Minar M M; Abdel-Razek, Adel G; Ratusz, Katarzyna; Siger, Aleksander

    2016-02-01

    For the increase of oxidative stability and phytonutrient contents of rapeseed oil 5, 10 and 20 % blends with rice bran oil and black cumin oil were prepared. Profiles of different bioactive lipid components of blends including tocopherols, tocotrienols, phytosterols and phytostanols as well as fatty acid composition were carried out using HPLC and GLC. Rancimat was used for detecting oxidative stability of the fatty material. The blends with black cumin seed oil characterized higher level of α- and γ-tocopherols as well as all isomers of tocotrienols. Presence of rice bran oil in blends leads to increased tocotrienols amounts, β-sitosterol and squalene. Blending resulted in lowering ratio of PUFA/SFA and improves stability of these oils. The ratio of omega-6/omega-3 raises from 2.1 in rapeseed oil to 3.7 and 3.0 in blends with black cumin and rice bran oils, respectively. Addition of 10 and 20 % of black cumin and rice bran oils to rapeseed oil were influenced on the oxidative stability of prepared blends. The results appear that blending of rapeseed oil with black cumin seed oil or rice bran oil enhanced nutritional and functional properties via higher oxidative stability as well as improved phytonutrient contents. PMID:27162385

  12. Gamma-linolenic acid egg production enriched with hemp seed oil and evening primrose oil in diet of laying hens.

    PubMed

    Park, Sang-Oh; Hwangbo, Jong; Yuh, In-Suh; Park, Byung-Sung

    2014-07-01

    This study was carried out to find out the effect of supplying gamma linolenic acid (GLA) on laying performance and egg quality. A hundred twenty of 30 weeks old hyline brown laying hens with 98% of egg production were completely randomized to 4 different treatment groups by 30 hens (the control group fed with the diet containing beef tallow, 3 treatment groups fed with the diet containing corn oil, the diet containing hemp seed oil and the diet containing evening primrose oil, respectively), and their laying performance and egg production were investigated for 5 weeks. Intake of hemp seed oil or evening primrose helped to increase the retention rate of GLA, which was transmigrated into eggs from blood. GLA was not detected in the blood samples of control group and treatment group fed diet containing corn oil, while it was significantly increased in the blood samples of the treatment groups fed with diet containing hemp seed oil and diet containing evening primrose oil, respectively. GLA retention was not observed in the eggs produced respectively by control group and treatment group fed with diet containing corn oil, whereas it was significantly increased in the eggs produced by the treatment group fed with diet containing hemp seed oil by 1.09% and the treatment group fed with diet containing evening primrose oil by 4.87%. This result suggests that GLA-reinforced functional eggs can be produced by adding hemp seed oil and evening primrose oil to the feed for laying hens and feeding them with it. It is thought that further researches and clinical trials on biochemical mechanism related to atopic dermatitis should be conducted in future.

  13. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel.

    PubMed

    Saydut, Abdurrahman; Duz, M Zahir; Kaya, Canan; Kafadar, Aylin Beycar; Hamamci, Candan

    2008-09-01

    The sesame (Sesamum indicum L.) oil was extracted from the seeds of the sesame that grows in Diyarbakir, SE Anatolia of Turkey. Sesame seed oil was obtained in 58wt/wt%, by traditional solvent extraction. The methylester of sesame (Sesamum indicum L.) seed oil was prepared by transesterification of the crude oil. Transesterification shows improvement in fuel properties of sesame seed oil. This study supports the production of biodiesel from sesame seed oil as a viable alternative to the diesel fuel.

  14. Grape Seed Oil Compounds: Biological and Chemical Actions for Health.

    PubMed

    Garavaglia, Juliano; Markoski, Melissa M; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  15. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    PubMed Central

    Garavaglia, Juliano; Markoski, Melissa M.; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  16. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.

    PubMed

    de Santana, Fernanda Carvalho; Shinagawa, Fernanda Branco; Araujo, Elias da Silva; Costa, Ana Maria; Mancini-Filho, Jorge

    2015-12-01

    The seed oils of different varieties of 4 Passiflora species cultivated in Brazil were analyzed and compared regarding their physicochemical parameters, fatty acid composition and the presence of minor components, such as phytosterols, tocopherols, total carotenoids, and phenolic compounds. The antioxidant capacities of the oil extracts were determined using the 2,2'azinobis [3-ethylbenzothiazoline-6-sulfonic acid] and oxygen radical absorbance capacity methods. The results revealed that all studied Passiflora seed oils possessed similar physicochemical characteristics, except for color, and predominantly contained polyunsaturated fatty acids with a high percentage of linolenic acid (68.75% to 71.54%). Other than the total phytosterol content, the extracted oil from Passiflora setacea BRS Pérola do Cerrado seeds had higher quantities (% times higher than the average of all samples), of carotenoids (44%), phenolic compounds (282%) and vitamin E (215%, 56%, 398%, and 100% for the α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol isomers, respectively). The methanolic extracts from Passiflora setacea BRS Pérola do Cerrado seed oil also showed higher antioxidant activity, which was positively correlated with the total phenolic, δ-tocopherol, and vitamin E contents. For the first time, these results indicate that Passiflora species have strong potential regarding the use of their seeds for oil extraction. Due to their interesting composition, the seed oils may be used as a raw material in manufacturing industries in addition to other widely used vegetable oils. PMID:26512548

  17. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  18. Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China.

    PubMed

    Siddeeg, Azhari; Xia, Wenshui

    2015-12-01

    Seinat seed oil was blended with peanut oil for the enhancement of stability and chemical characteristics of the blend. The physicochemical properties (relative density, refractive index, free fatty acids, saponification value, iodine value and peroxide value) of seinat seed and peanut oil blends in ratios 95:5, 85:15, 30:70 and 50:50 proportions were evaluated, as well as oxidative stability index, deferential scanning calorimetric (DSC) characteristics and tocopherols content. Results of oil blend showed that there was no negative effect by the addition of seinat seed oil to peanut oil and also had decreased percentages of all saturated fatty acids except stearic acid, conversely, increased the levels of unsaturated fatty acids. As for the sensory evaluation, the panelist results showed that seinat seed oil blends had no significant differences (p < 0.05) in all attributes except the purity. The results indicated that the blending of seinat seed oil with peanut oil had also increased the stability and tocopherols content. As Sudan is the first producer of seinat oil, blending of seinat seed oil with traditional oil like quality, and may decrease the consumption of other expensive edible oils.

  19. Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China.

    PubMed

    Siddeeg, Azhari; Xia, Wenshui

    2015-12-01

    Seinat seed oil was blended with peanut oil for the enhancement of stability and chemical characteristics of the blend. The physicochemical properties (relative density, refractive index, free fatty acids, saponification value, iodine value and peroxide value) of seinat seed and peanut oil blends in ratios 95:5, 85:15, 30:70 and 50:50 proportions were evaluated, as well as oxidative stability index, deferential scanning calorimetric (DSC) characteristics and tocopherols content. Results of oil blend showed that there was no negative effect by the addition of seinat seed oil to peanut oil and also had decreased percentages of all saturated fatty acids except stearic acid, conversely, increased the levels of unsaturated fatty acids. As for the sensory evaluation, the panelist results showed that seinat seed oil blends had no significant differences (p < 0.05) in all attributes except the purity. The results indicated that the blending of seinat seed oil with peanut oil had also increased the stability and tocopherols content. As Sudan is the first producer of seinat oil, blending of seinat seed oil with traditional oil like quality, and may decrease the consumption of other expensive edible oils. PMID:26604391

  20. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Pyke, David A.

    2012-01-01

    Premise of the study: Seed longevity and persistence in soil seed banks may be especially important for population persistence in ecosystems where opportunities for seedling establishment and disturbance are unpredictable. The fire regime, an important driver of population dynamics in sagebrush steppe ecosystems, has been altered by exotic annual grass invasion. Soil seed banks may play an active role in postfire recovery of the foundation shrub Artemisia tridentata, yet conditions under which seeds persist are largely unknown. Methods: We investigated seed longevity of two Artemisia tridentata subspecies in situ by retrieving seed bags that were placed at varying depths over a 2 yr period. We also sampled naturally dispersed seeds in litter and soil immediately after seed dispersal and before flowering in subsequent seasons to estimate seed persistence. Key results: After 24 mo, seeds buried at least 3 cm below the soil surface retained 30–40% viability whereas viability of seeds on the surface and under litter declined to 0 and Artemisia tridentata has the potential to form a short-term soil seed bank that persists longer than has been commonly assumed, and that burial is necessary for seed longevity. Use of seeding techniques that promote burial of some seeds to aid in formation of a soil seed bank may increase restoration potential.

  1. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus.

  2. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus. PMID:26302483

  3. Effect of processing conditions on oil point pressure of moringa oleifera seed.

    PubMed

    Aviara, N A; Musa, W B; Owolarafe, O K; Ogunsina, B S; Oluwole, F A

    2015-07-01

    Seed oil expression is an important economic venture in rural Nigeria. The traditional techniques of carrying out the operation is not only energy sapping and time consuming but also wasteful. In order to reduce the tedium involved in the expression of oil from moringa oleifera seed and develop efficient equipment for carrying out the operation, the oil point pressure of the seed was determined under different processing conditions using a laboratory press. The processing conditions employed were moisture content (4.78, 6.00, 8.00 and 10.00 % wet basis), heating temperature (50, 70, 85 and 100 °C) and heating time (15, 20, 25 and 30 min). Results showed that the oil point pressure increased with increase in seed moisture content, but decreased with increase in heating temperature and heating time within the above ranges. Highest oil point pressure value of 1.1239 MPa was obtained at the processing conditions of 10.00 % moisture content, 50 °C heating temperature and 15 min heating time. The lowest oil point pressure obtained was 0.3164 MPa and it occurred at the moisture content of 4.78 %, heating temperature of 100 °C and heating time of 30 min. Analysis of Variance (ANOVA) showed that all the processing variables and their interactions had significant effect on the oil point pressure of moringa oleifera seed at 1 % level of significance. This was further demonstrated using Response Surface Methodology (RSM). Tukey's test and Duncan's Multiple Range Analysis successfully separated the means and a multiple regression equation was used to express the relationship existing between the oil point pressure of moringa oleifera seed and its moisture content, processing temperature, heating time and their interactions. The model yielded coefficients that enabled the oil point pressure of the seed to be predicted with very high coefficient of determination. PMID:26139917

  4. Effect of processing conditions on oil point pressure of moringa oleifera seed.

    PubMed

    Aviara, N A; Musa, W B; Owolarafe, O K; Ogunsina, B S; Oluwole, F A

    2015-07-01

    Seed oil expression is an important economic venture in rural Nigeria. The traditional techniques of carrying out the operation is not only energy sapping and time consuming but also wasteful. In order to reduce the tedium involved in the expression of oil from moringa oleifera seed and develop efficient equipment for carrying out the operation, the oil point pressure of the seed was determined under different processing conditions using a laboratory press. The processing conditions employed were moisture content (4.78, 6.00, 8.00 and 10.00 % wet basis), heating temperature (50, 70, 85 and 100 °C) and heating time (15, 20, 25 and 30 min). Results showed that the oil point pressure increased with increase in seed moisture content, but decreased with increase in heating temperature and heating time within the above ranges. Highest oil point pressure value of 1.1239 MPa was obtained at the processing conditions of 10.00 % moisture content, 50 °C heating temperature and 15 min heating time. The lowest oil point pressure obtained was 0.3164 MPa and it occurred at the moisture content of 4.78 %, heating temperature of 100 °C and heating time of 30 min. Analysis of Variance (ANOVA) showed that all the processing variables and their interactions had significant effect on the oil point pressure of moringa oleifera seed at 1 % level of significance. This was further demonstrated using Response Surface Methodology (RSM). Tukey's test and Duncan's Multiple Range Analysis successfully separated the means and a multiple regression equation was used to express the relationship existing between the oil point pressure of moringa oleifera seed and its moisture content, processing temperature, heating time and their interactions. The model yielded coefficients that enabled the oil point pressure of the seed to be predicted with very high coefficient of determination.

  5. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  6. Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk.

    PubMed

    Gök, Vel

    2015-01-01

    Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits.

  7. Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk

    PubMed Central

    2015-01-01

    Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits. PMID:26761834

  8. Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk.

    PubMed

    Gök, Vel

    2015-01-01

    Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits. PMID:26761834

  9. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  10. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated...

  11. Hypolipidemic effect of seed oil of noni (Morinda citrifolia).

    PubMed

    Pazos, Diana C; Jiménez, Fabiola E; Garduño, Leticia; López, V Eric; Cruz, M Carmen

    2011-07-01

    Morinda citrifolia, has been reported to posses different biological activities and almost all parts of this have been studied phytochemically. However there are few studies on the seeds of fruit. The objective of present study was investigated the effect to Noni Seed Oil (NSO) on serum lipid levels in normolipidemic and hyperlipidemic induced mice. We find that administration of noni oil causes a reduction in total cholesterol and triglycerides levels in both models. However hypolipidemic effect is higher when hyperlipidemia is presented.

  12. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade.

    PubMed

    Bhat, Rajeev; Reddy, Kasa Ravindra Nadha

    2017-01-15

    Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils.

  13. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade.

    PubMed

    Bhat, Rajeev; Reddy, Kasa Ravindra Nadha

    2017-01-15

    Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils. PMID:27542495

  14. Rapid development of a castor cultivar with increased oil content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor seed oil contains 90% ricinoleic acid which has a wide range of industrial applications. Improvement in oil content would be of great benefit to castor growers and oil processers. Two cycles of phenotypic recurrent selection were conducted through screening for high oil content castor seeds u...

  15. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.

    PubMed

    Troegeler-Meynadier, A; Puaut, S; Farizon, Y; Enjalbert, F

    2014-09-01

    Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored.

  16. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2013-01-15

    The physicochemical properties, fatty acid, tocopherol, thermal properties, (1)H NMR, FTIR and profiles of non-conventional oil extracted from Citrullus colocynthis (L.) Schrad seeds were evaluated and compared with conventional sunflower seed oil. In addition, the antioxidant properties of C. colocynthis seed oil were also evaluated. The oil content of the C. colocynthis seeds was 23.16%. The main fatty acids in the oil were linoleic acid (66.73%) followed by oleic acid (14.78%), palmitic acid (9.74%), and stearic acid (7.37%). The tocopherol content was 121.85 mg/100g with γ-tocopherol as the major one (95.49%). The thermogravimetric analysis showed that the oil was thermally stable up to 286.57°C, and then began to decompose in four stages namely at 377.4°C, 408.4°C, 434.9°C and 559.2°C. The present study showed that this non-conventional C. colocynthis seed oil can be used for food and non-food applications to supplement or replace some of the conventional oils.

  17. Physicochemical characteristics of citrus seed oils from kerman, iran.

    PubMed

    Reazai, Mohammad; Mohammadpourfard, Issa; Nazmara, Shahrokh; Jahanbakhsh, Mahdi; Shiri, Leila

    2014-01-01

    Recently, there has been a great deal of attention on usage, byproducts, and wastes of the food industry. There have been many studies on the properties of citrus seeds and extracted oil from citrus grown in Kerman, Iran. The rate of oil content of citrus seeds varies between 33.4% and 41.9%. Linoleic acid (33.2% to 36.3%) is the key fatty acid found in citrus seeds oil and oleic (24.8% to 29.3%) and palmitic acids (23.5% to 29.4%) are the next main fatty acids, respectively. There are also other acids found at trivial rates such as stearic, palmitoleic, and linolenic. With variation between 0.54 meg/kg and 0.77 mgq/kg in peroxide values of citrus seed oils, acidity value of the oil varies between 0.44% and 0.72%. The results of the study showed that citrus seeds under study (orange and sour lemon grown in Kerman province) and the extracted oil have the potential of being used as the source of edible oil. PMID:25136460

  18. Method for Attaining Caraway Seed Oil Fractions with Different Composition.

    PubMed

    Shiwakoti, Santosh; Poudyal, Shital; Saleh, Osama; Astatkie, Tess; Zheljazkov, Valtcho D

    2016-06-01

    Caraway (Carum carvi L.) is a medicinal and aromatic plant; its seeds (fruits) are used as spice and they contain essential oils. We hypothesized that by collecting caraway oil at different time points during the extraction process, we could obtain oil fractions with distinct chemical composition. A hydrodistillation time (HDT) study was conducted to test the hypothesis. The caraway seed oil fractions were collected at eight different HDT (at 0 - 2, 2 - 7, 7 - 15, 15 - 30, 30 - 45, 45 - 75, 75 - 105, and 105 - 135 min). Additionally, a non-stop HD for 135 min was conducted as a control. Most of the oil was eluted early in the HD process. The non-stop HDT treatment yielded 2.76% oil by weight. Of the 24 essential oil constituents, limonene (77 - 19% of the total oil) and carvone (20 - 79%) were the major ones. Other constituents included myrcene (0.72 - 0.16%), trans-carveol (0.07 - 0.39%), and β-caryophyllene (0.07 - 0.24%). Caraway seed oil with higher concentration of limonene can be obtained by sampling oil fractions early in HD process; conversely, oil with high concentration of carvone can be obtained by excluding the fractions eluted early in the HD process. We demonstrated a method of obtaining caraway seed oil fractions with various and unique composition. These novel oil fractions with unique composition are not commercially available and could have much wider potential uses, and also target different markets compared to the typical caraway essential oil.

  19. Method for Attaining Caraway Seed Oil Fractions with Different Composition.

    PubMed

    Shiwakoti, Santosh; Poudyal, Shital; Saleh, Osama; Astatkie, Tess; Zheljazkov, Valtcho D

    2016-06-01

    Caraway (Carum carvi L.) is a medicinal and aromatic plant; its seeds (fruits) are used as spice and they contain essential oils. We hypothesized that by collecting caraway oil at different time points during the extraction process, we could obtain oil fractions with distinct chemical composition. A hydrodistillation time (HDT) study was conducted to test the hypothesis. The caraway seed oil fractions were collected at eight different HDT (at 0 - 2, 2 - 7, 7 - 15, 15 - 30, 30 - 45, 45 - 75, 75 - 105, and 105 - 135 min). Additionally, a non-stop HD for 135 min was conducted as a control. Most of the oil was eluted early in the HD process. The non-stop HDT treatment yielded 2.76% oil by weight. Of the 24 essential oil constituents, limonene (77 - 19% of the total oil) and carvone (20 - 79%) were the major ones. Other constituents included myrcene (0.72 - 0.16%), trans-carveol (0.07 - 0.39%), and β-caryophyllene (0.07 - 0.24%). Caraway seed oil with higher concentration of limonene can be obtained by sampling oil fractions early in HD process; conversely, oil with high concentration of carvone can be obtained by excluding the fractions eluted early in the HD process. We demonstrated a method of obtaining caraway seed oil fractions with various and unique composition. These novel oil fractions with unique composition are not commercially available and could have much wider potential uses, and also target different markets compared to the typical caraway essential oil. PMID:27119969

  20. A Vernonia Diacylglycerol Acyltransferase Can Increase Renewable Oil Production.

    PubMed

    Hatanaka, Tomoko; Serson, William; Li, Runzhi; Armstrong, Paul; Yu, Keshun; Pfeiffer, Todd; Li, Xi-Le; Hildebrand, David

    2016-09-28

    Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. This study shows that by manipulating a highly active acyl-CoA:diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in oilseeds can be increased without reducing the protein component. Compared to other plant DGATs, a DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in yeast, insect cells, and soybean. Soybean lines expressing VgDGAT1A show a 4% increase in oil content without reductions in seed protein contents or yield per unit land area. Incorporation of this trait into 50% of soybeans worldwide could result in an increase of 850 million kg oil/year without new land use or inputs and be worth ∼U.S.$1 billion/year at 2012 production and market prices.

  1. Biodiesel production from seed oil of Cleome viscosa L.

    PubMed

    Kumari, Rashmi; Jain, Vinod Kumar; Kumar, Sushil

    2012-07-01

    Edible oil seed crops, such as rapeseed, sunflower, soyabean and safflower and non-edible seed oil plantation crops Jatropha and Pongamia have proved to be internationally viable commercial sources of vegetable oils for biodiesel production. Considering the paucity of edible oils and unsustainability of arable land under perennial plantation of Jatropha and Pongamia in countries such as India, the prospects of seed oil producing Cleome viscosa, an annual wild short duration plant species of the Indogangetic plains, were evaluated for it to serve as a resource for biodiesel. The seeds of C. viscosa resourced from its natural populations growing in Rajasthan, Haryana and Delhi areas of Aravali range were solvent extracted to obtain the seed oil. The oil was observed to be similar in fatty acid composition to the non-edible oils of rubber, Jatropha and Pongamia plantation crops and soybean, sunflower, safflower, linseed and rapeseed edible oil plants in richness of unsaturated fatty acids. The Cleome oil shared the properties of viscosity, density, saponification and calorific values with the Jatropha and Pongamia oils, except that it was comparatively acidic. The C. viscosa biodiesel had the properties of standard biodiesel specified by ASTM and Indian Standard Bureau, except that it had low oxidation stability. It proved to be similar to Jatropha biodiesel except in cloud point, pour point, cold filter plugging point and oxidation stability. In view of the annual habit of species and biodiesel quality, it can be concluded that C. viscosa has prospects to be developed into a short-duration biodiesel crop.

  2. Biodiesel production from seed oil of Cleome viscosa L.

    PubMed

    Kumari, Rashmi; Jain, Vinod Kumar; Kumar, Sushil

    2012-07-01

    Edible oil seed crops, such as rapeseed, sunflower, soyabean and safflower and non-edible seed oil plantation crops Jatropha and Pongamia have proved to be internationally viable commercial sources of vegetable oils for biodiesel production. Considering the paucity of edible oils and unsustainability of arable land under perennial plantation of Jatropha and Pongamia in countries such as India, the prospects of seed oil producing Cleome viscosa, an annual wild short duration plant species of the Indogangetic plains, were evaluated for it to serve as a resource for biodiesel. The seeds of C. viscosa resourced from its natural populations growing in Rajasthan, Haryana and Delhi areas of Aravali range were solvent extracted to obtain the seed oil. The oil was observed to be similar in fatty acid composition to the non-edible oils of rubber, Jatropha and Pongamia plantation crops and soybean, sunflower, safflower, linseed and rapeseed edible oil plants in richness of unsaturated fatty acids. The Cleome oil shared the properties of viscosity, density, saponification and calorific values with the Jatropha and Pongamia oils, except that it was comparatively acidic. The C. viscosa biodiesel had the properties of standard biodiesel specified by ASTM and Indian Standard Bureau, except that it had low oxidation stability. It proved to be similar to Jatropha biodiesel except in cloud point, pour point, cold filter plugging point and oxidation stability. In view of the annual habit of species and biodiesel quality, it can be concluded that C. viscosa has prospects to be developed into a short-duration biodiesel crop. PMID:22822531

  3. Characteristics of grape seed and oil from nine Turkish cultivars.

    PubMed

    Ozcan, Mehmet Musa; Unver, Ahmet; Gümüş, Tuncay; Akın, Aydın

    2012-11-01

    Percentages of crude oil, protein, fibre and ash of grape seeds obtained from Turkish cultivars were of the ranges 5.40-10.79, 5.24-7.54, 17.6-27.1, and 1.2-2.6, respectively. The highest crude oil, crude protein and crude fibre were determined in Siyah pekmezlik, Karadimrit and Antep grape seeds. The energy values of seeds were established to be between 102.28 and 148.07 kcal g(-1). Potassium and calcium contents of seed samples were found to be at high levels compared to sodium. The seeds contained 686-967 ppm of Na, 2468-3618 ppm of K and 2373-4127 ppm of Ca. The refractive index, relative density, acidity, saponification value, unsaponifiable matter and iodine value of seed oils were determined to be in the ranges 1.474-1.477 [Formula: see text], 0.909-0.934 25/25°C, 0.74-1.24%, 181-197, 0.91-1.66%, and 126-135, respectively. The main fatty acids were of the ranges 60.7-68.5% linoleic, 16.1-23.4% oleic and 8.0-10.2% palmitic. The highest percentages of linoleic acid (68.5%) was determined in Siyah pekmezlik seed oil. PMID:22132714

  4. Lubricity characteristics of seed oils modified by acylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  5. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed.

  6. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed. PMID:25119487

  7. [Analysis of oil synthesis metabolism pathways based on transcriptome changes in tung oil tree's seeds during three different development stages].

    PubMed

    Chen, Hao; Jiang, Gui-Xiong; Long, Hong-Xu; Tan, Xiao-Feng

    2013-12-01

    Tung oil tree (Verniciafordii) is one of the important woody oil plants in China. Past researches on tung oil tree mainly focu on the cultivation and conventional breeding while the molecular mechanisms related to tung oil synthesis are still uncovered. We compared transcriptome of tung oil tree's seeds at three different oil synthesis stages using RNA-seq technology and then obtained a lot of differentially expressed Unigenes. Through GO classification and pathway enrichment analysis, all of these differentially expressed Unigenes were classified into 128 metabolism pathways including fatty acid biosynthesis and glycerophospholipid metabolism which are involved in oil synthesis. Some homologous proteins of key enzymes were obtained when the sequences of the Unigenes within these two pathways were aligned against KEGG database. Through analysis of expression profiles of these key enzyme genes during seed's oil synthesis stage, this research not only shed light on elucidation of plant oil synthesis but also provides candidate genes for genetic improvement of tung oil tree thereby increasing the yield per unit area of tung oil tree.

  8. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop.

    PubMed

    Zhang, Yang; Mulpuri, Sujatha; Liu, Aizhong

    2016-05-01

    Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.

  9. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    PubMed

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.

  10. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    PubMed

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils. PMID:25007749

  11. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  12. Surface structure and properties of plant seed oil bodies.

    PubMed

    Tzen, J T; Huang, A H

    1992-04-01

    Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles called oil bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oil bodies isolated from mature maize (Zea mays) embryos maintained their discreteness, but coalesced after treatment with trypsin but not with phospholipase A2 or C. Phospholipase A2 or C exerted its activity on oil bodies only after the exposed portion of oleosins had been removed by trypsin. Attempts were made to reconstitute oil bodies from their constituents. TAG, either extracted from oil bodies or of a 1:2 molar mixture of triolein and trilinolein, in a dilute buffer were sonicated to produce droplets of sizes similar to those of oil bodies; these droplets were unstable and coalesced rapidly. Addition of oil body PL or dioleoyl phosphatidylcholine, with or without charged stearylamine/stearic acid, or oleosins, to the medium before sonication provided limited stabilization effects to the TAG droplets. High stability was achieved only when the TAG were sonicated with both oil body PL (or dioleoyl phosphatidylcholine) and oleosins of proportions similar to or higher than those in the native oil bodies. These stabilized droplets were similar to the isolated oil bodies in chemical properties, and can be considered as reconstituted oil bodies. Reconstituted oil bodies were also produced from TAG of a 1:2 molar mixture of triolein and trilinolein, dioleoyl phosphatidylcholine, and oleosins from rice (Oryza sativa), wheat (Triticum aestivum), rapeseed (Brassica napus), soybean (Glycine max), or jojoba (Simmondsia chinensis). It is concluded that both oleosins and PL are required to stabilize the oil bodies and that oleosins prevent oil bodies from coalescing by providing steric hindrance. A structural model of an oil body is presented. The current findings on seed oil bodies could be extended to the intracellular storage lipid

  13. Specialization of Oleosins in Oil Body Dynamics during Seed Development in Arabidopsis Seeds[W][OPEN

    PubMed Central

    Miquel, Martine; Trigui, Ghassen; d’Andréa, Sabine; Kelemen, Zsolt; Baud, Sébastien; Berger, Adeline; Deruyffelaere, Carine; Trubuil, Alain; Lepiniec, Loïc; Dubreucq, Bertrand

    2014-01-01

    Oil bodies (OBs) are seed-specific lipid storage organelles that allow the accumulation of neutral lipids that sustain plantlet development after the onset of germination. OBs are covered with specific proteins embedded in a single layer of phospholipids. Using fluorescent dyes and confocal microscopy, we monitored the dynamics of OBs in living Arabidopsis (Arabidopsis thaliana) embryos at different stages of development. Analyses were carried out with different genotypes: the wild type and three mutants affected in the accumulation of various oleosins (OLE1, OLE2, and OLE4), three major OB proteins. Image acquisition was followed by a detailed statistical analysis of OB size and distribution during seed development in the four dimensions (x, y, z, and t). Our results indicate that OB size increases sharply during seed maturation, in part by OB fusion, and then decreases until the end of the maturation process. In single, double, and triple mutant backgrounds, the size and spatial distribution of OBs are modified, affecting in turn the total lipid content, which suggests that the oleosins studied have specific functions in the dynamics of lipid accumulation. PMID:24515832

  14. Analysis of Peanut Seed Oil by NIR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectra (NIRS) were collected from Arachis hypogaea seed samples and used in predictive models to rapidly identify varieties with high oleic acid. The method was developed for shelled peanut seeds with intact testa. Spectra were evaluated initially by principal component an...

  15. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya.

    PubMed

    Tsaknis, J; Lalas, S; Gergis, V; Dourtoglou, V; Spiliotis, V

    1999-11-01

    The oil from Moringa oleifera variety Mbololo seeds from Kenya was extracted using three different procedures including cold press (CP), extraction with n-hexane (H), and extraction with a mixture of chloroform/methanol (50:50) (CM). The oil concentration ranged from 25.8% (CP) to 31.2% (CM). The density, refractive index, color, smoke point, viscosity, acidity, saponification value, iodine value, fatty acid methyl esters, sterols, tocopherols (by HPLC), peroxide value, and at 232 and 270 nm and the susceptibility to oxidation measured with the Rancimat method were determined. The oil was found to contain high levels of unsaturated fatty acids, especially oleic (up to 75.39%). The dominant saturated acids were behenic (up to 6. 73%) and palmitic (up to 6.04%). The oil was also found to contain high levels of beta-sitosterol (up to 50.07%), stigmasterol (up to 17.27%), and campesterol (up to 15.13%). alpha-, gamma-, and delta-tocopherols were detected up to levels of 105.0, 39.54, and 77. 60 mg/kg of oil, respectively. The induction period (at 120 degrees C) of M. oleifera seed oil was reduced from 44.6 to 64.3% after degumming. The M. oleifera seed oil showed high stability to oxidative rancidity. The results of all the above determinations were compared with those of a commercial virgin olive oil. PMID:10552840

  16. Terminalia belerica Roxb. seed oil: a potential biodiesel resource.

    PubMed

    Sarin, Rakesh; Sharma, Meeta; Khan, Arif Ali

    2010-02-01

    Terminalia belerica seeds, collected from Indian forests, were explored as an alternate bioresource for biodiesel synthesis. The oil yield of T. belerica seed is about 31% (dry weight basis). The fatty acid profile of T. belerica seed oil shows predominance of oleic acid (C(18:1)) glycerides (61.5%) along with linoleic (18.5%) and palmitic (11.6%) glycerides. Oil was extracted and evaluated for physico-chemical properties vis-a-vis jatropha, sunflower, soybean and rapeseed oil. T. belerica oil was transesterified with methanol in the presence of sodium methoxide catalyst. The physico-chemical properties of synthesized methyl ester were compared to jatropha, sunflower, soybean and rapeseed methyl esters as per ASTM D-6751 specification of biodiesel. Synthesized T. belerica methyl ester was also blended in diesel at 5-20% ratios and evaluated for key physico-chemical properties as per IS 1460 specification and found to meet in properties evaluated as per specific standards. The study revealed the possibility of T. belerica seed oil as potential resource of biodiesel.

  17. Comparison of conventional and in situ methods of transesterification of seed oil from a series of sunflower cultivars

    SciTech Connect

    Harrington, K.J.; D'Arcy-Evans, C.

    1985-06-01

    The cost of vegetable oil monoesters represents one of the major restrictions on their use as an alternative fuel for diesel engines. This cost can be reduced by increasing the yield of esters produced from a given quantity of oil stive fuel for diesel engines. This cost can be reduced by increasing the yield of esters produced from a given quantity of oil seed. Transesterification of sunflower seed oil in situ with acidified methanol has been shown to produce fatty acid methyl esters in yields significantly greater than those obtained from conventional reaction with pre-extracted seed oil. Yield improvements of over 20% were achieved and could be related to the moisture content of the seed. Fatty ester compositions and cloud points of the products from the in situ reactions were virtually identical to those of esters produced using conventional techniques.

  18. Hypolipidemic effect of seed oil of noni (Morinda citrifolia).

    PubMed

    Pazos, Diana C; Jiménez, Fabiola E; Garduño, Leticia; López, V Eric; Cruz, M Carmen

    2011-07-01

    Morinda citrifolia, has been reported to posses different biological activities and almost all parts of this have been studied phytochemically. However there are few studies on the seeds of fruit. The objective of present study was investigated the effect to Noni Seed Oil (NSO) on serum lipid levels in normolipidemic and hyperlipidemic induced mice. We find that administration of noni oil causes a reduction in total cholesterol and triglycerides levels in both models. However hypolipidemic effect is higher when hyperlipidemia is presented. PMID:21834246

  19. Densities of mixtures containing n-alkanes with sunflower seed oil at different temperatures

    SciTech Connect

    Gonzalez, C.; Resa, J.M.; Ruiz, A.; Gutierrez, J.I.

    1996-07-01

    Densities for mixtures containing sunflower seed oil with pentane, hexane, heptane, and octane have been determined at various temperatures between 298.15 K and 313.15 K using a vibrating tube densimeter. The derived excess volumes have been correlated by the Redlich-Kister equation. All the systems showed negative deviations from ideality. The excess volumes increased with an increase in temperature.

  20. Diversity of Sterol Composition in Tunisian Pistacia lentiscus Seed Oil.

    PubMed

    Mezni, Faten; Labidi, Arbia; Khouja, Mohamed Larbi; Martine, Lucy; Berdeaux, Olivier; Khaldi, Abdelhamid

    2016-05-01

    Pistacia lentiscus L. seed oil is used in some Mediterranean forest area for culinary and medicinal purposes. In this study, we aim to examine, for the first time, the effect of growing area on sterol content of Pistacia lentiscus seed oil. Fruits were harvested from 13 different sites located in northern and central Tunisia. Gas chromatography-flame-ionization detection (GC-FID) was used to quantify sterols and gas chromatography/mass spectrometry (GC/MS) was used to identify them. The major sterol identified was β-sitosterol with a value ranging from 854.12 to 1224.09 mg/kg of oil, thus making up more than 54% of the total sterols. The other two main sterols were cycloartenol (11%) and 24-methylene-cycloartenol (5%). Statistical results revealed that growing location significantly (P < 0.001) affected phytosterol levels in these oils. PMID:27060921

  1. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    PubMed

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P < 0.05). In addition, soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P < 0.05). Safflower-seed oil significantly decreased serum TAG and UA, whereas palm oil significantly increased serum cholesterol, TAG, blood urea N and creatinine. However, soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  2. The physico-chemical properties of some citrus seeds and seed oils.

    PubMed

    Juhaimi, Fahad A L; Matthäus, Bertrand; Özcan, Mehmet Musa; Ghafoor, Kashif

    2016-03-01

    The chemical properties, mineral contents, fatty acid and tocopherol contents of seed and seed oils of some citrus genus provided from several locations in Turkey and Saudi Arabia were determined. While Ca contents of seeds were between 5018 mg/kg (Kütdiken lemon) and 7619 mg/kg (kinnow mandarin), K contents of seeds varied between 7007 mg/kg (Orlando orange) and 10334 mg/kg (kinnow mandarin). Glucose and fructose contents of citrus seed samples varied between 3.75 g/kg and 5.75 g/kg, and 4.09 g/kg and 6.03 g/kg. Palmitic, oleic and linoleic acids were established as dominant fatty acids. Palmitic, oleic and linoleic acid contents of citrus seed oils varied between 19.6% (Kütdiken lemon) and 26.2% (pineapple orange), 21.3% (kinnow mandarin) and 31.4% (Kütdiken lemon) and 32.3% (Kütdiken lemon) and 43.7% (kinnow mandarin), respectively. The total amount of tocopherols of Turkish citrus oil varied between 0.5 mg/100 g (Fremont mandarin) and 18.8 mg/100 g (bitter orange).

  3. The physico-chemical properties of some citrus seeds and seed oils.

    PubMed

    Juhaimi, Fahad A L; Matthäus, Bertrand; Özcan, Mehmet Musa; Ghafoor, Kashif

    2016-03-01

    The chemical properties, mineral contents, fatty acid and tocopherol contents of seed and seed oils of some citrus genus provided from several locations in Turkey and Saudi Arabia were determined. While Ca contents of seeds were between 5018 mg/kg (Kütdiken lemon) and 7619 mg/kg (kinnow mandarin), K contents of seeds varied between 7007 mg/kg (Orlando orange) and 10334 mg/kg (kinnow mandarin). Glucose and fructose contents of citrus seed samples varied between 3.75 g/kg and 5.75 g/kg, and 4.09 g/kg and 6.03 g/kg. Palmitic, oleic and linoleic acids were established as dominant fatty acids. Palmitic, oleic and linoleic acid contents of citrus seed oils varied between 19.6% (Kütdiken lemon) and 26.2% (pineapple orange), 21.3% (kinnow mandarin) and 31.4% (Kütdiken lemon) and 32.3% (Kütdiken lemon) and 43.7% (kinnow mandarin), respectively. The total amount of tocopherols of Turkish citrus oil varied between 0.5 mg/100 g (Fremont mandarin) and 18.8 mg/100 g (bitter orange). PMID:27023319

  4. Effect of long-term optional ingestion of canola oil, grape seed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats.

    PubMed

    Asadi, Farzad; Shahriari, Ali; Chahardah-Cheric, Marjan

    2010-01-01

    The aim of the present study was to determine the effect of long-term optional intake of vegetable oils (canola, grape seed, corn) and yogurt butter on the serum, liver and muscle cholesterol status. Twenty-five male Wistar rats were randomly categorized into five groups (n=5) as follows: control, canola oil, grape seed oil, corn oil and manually prepared yogurt butter. In each group, 24h two bottle choice (oil and water) tests were performed for 10 weeks. Serum cholesterol values showed a trend to decrease in grape seed oil, corn oil and yogurt butter groups compared to the control. Optional intake of yogurt butter made a significant increase in HDL-C values (42.34+/-9.98 mg/dL) yet decrease in LDL-C values (11.68+/-2.06 mg/dL) compared to the corresponding control (19.07+/-3.51; 30.96+/-6.38 mg/dL, respectively). Furthermore, such findings were concomitant with a significant decrease in the liver TC levels (1.75+/-0.31 mg/g liver) and an increase in the muscle TC levels (1.85+/-0.32 mg/g liver) compared to the corresponding control (2.43+/-0.31; 0.94+/-0.14 mg/g liver, respectively). Optional intake of manually prepared yogurt butter has more beneficial effects on serum lipoprotein cholesterol values with some alterations in the liver and muscle cholesterol states than the vegetable oils.

  5. Characteristics, composition and oxidative stability of Lannea microcarpa seed and seed oil.

    PubMed

    Bazongo, Patrice; Bassolé, Imaël Henri Nestor; Nielsen, Søren; Hilou, Adama; Dicko, Mamoudou Hama; Shukla, Vijai K S

    2014-01-01

    The proximate composition of seeds and main physicochemical properties and thermal stability of oil extracted from Lannea microcarpa seeds were evaluated. The percentage composition of the seeds was: ash (3.11%), crude oil (64.90%), protein (21.14%), total carbohydrate (10.85%) and moisture (3.24%). Physicochemical properties of the oil were: refractive index, 1.473; melting point, 22.60°C; saponification value, 194.23 mg of KOH/g of oil; iodine value, 61.33 g of I2/100 g of oil; acid value, 1.21 mg of KOH/g of oil; peroxide value, 1.48 meq of O2/kg of oil and oxidative stability index, 43.20 h. Oleic (43.45%), palmitic (34.45%), linoleic (11.20%) and stearic (8.35%) acids were the most dominant fatty acids. Triacylglycerols with equivalent carbon number (ECN) 48 and ECN 46 were dominant (46.96% and 37.31%, respectively). The major triacylglycerol constituents were palmitoyl diolein (POO) (21.23%), followed by dipalmitoyl olein (POP) (16.47%), palmitoyl linoleyl olein (PLO) (12.03%), dipalmitoyl linolein (PLP) (10.85%) and dioleoyl linolein (LOO) (9.30%). The total polyphenol and tocopherol contents were 1.39 mg GAE g-1 DW and 578.56 ppm, respectively. γ-Tocopherol was the major tocopherol (437.23 ppm). These analytical results indicated that the L. microcarpa seed oil could be used as a frying oil and in the cosmetic industry. PMID:24566330

  6. Effects of seed preparation and oil pressing on milkweed (Asclepias spp.) protein functional properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of seed cooking and oil processing conditions on functional properties of milkweed seed proteins were determined to identify potential value-added uses for the meal. Milkweed seeds were flaked and then cooked in the seed conditioner at 82°C for 30, 60 or 90 min. Oil was extracted by scre...

  7. Protective effects of seabuckthorn seed oil on mouse injury induced by sulfur dioxide inhalation.

    PubMed

    Ruan, Aidong; Min, Hang; Meng, Ziqiang; Lü, Zhenmei

    2003-09-01

    Sulfur dioxide (SO2) is a common but important air pollutant. Micronuclei (MN) in the polychromatic erythrocytes (PCE) of mouse bone marrow and the ratio between organ and body weight of treatment mouse were determined and analyzed in vivo in order to study injury of sulfur dioxide inhalation on organs and germ plasm of mouse as well as protective effect of seabuckthorn seed oil against this injury. It was showed that SO2 inhalation induced the change of the ratio between organ and body of mouse organs, such as liver, lung, kidney, and spleen, and a significant increase of number of MNPCE, while seabuckthorn seed oil offered a protection against such injury.

  8. Comparative effects of sandalwood seed oil on fatty acid profiles and inflammatory factors in rats.

    PubMed

    Li, Guipu; Singh, Anish; Liu, Yandi; Sunderland, Bruce; Li, Duo

    2013-02-01

    The aim of the present study was to investigate the effect of sandalwood seed oil on fatty acid (FA) profiles and inflammatory factors in rats. Fifty male Sprague-Dawley rats were randomly divided into five different dietary groups: 10 % soybean oil (SO), 10 % olive oil (OO), 10 % safflower oil (SFO), 10 % linseed oil (LSO) and 8 % sandalwood seed oil blended with 2 % SO (SWSO) for 8 weeks. The SWSO group had a higher total n-3 polyunsaturated fatty acids (PUFA) levels but lower n-6:n-3 PUFA ratios in both adipose tissue and liver than those in the SO, OO and SFO groups (p < 0.05). Although the SWSO group had a much lower 18:3n-3 level (4.51 %) in their dietary lipids than the LSO group (58.88 %), the levels of docosahexaenoic acid (DHA: 22:6n-3) in liver lipids and phospholipids of the SWSO group (7.52 and 11.77 %) were comparable to those of the LSO group (7.07 and 13.16 %). Ximenynic acid, a predominant acetylenic FA in sandalwood seed oil, was found to be highly incorporated into adipose tissue (13.73 %), but relatively lower in liver (0.51 %) in the SWSO group. The levels of prostaglandin F(2α), prostaglandin E₂, thromboxane B₂, leukotriene B₄, tumor necrosis factor-α and interleukin-1β in both liver and plasma were positively correlated with the n-6:n-3 ratios, suggesting that increased n-6 PUFA appear to increase the formation of pro-inflammatory cytokines, whereas n-3 PUFA exhibit anti-inflammatory activity. The present results suggest that sandalwood seed oil could increase tissue levels of n-3 PUFA, DHA and reduce the n-6:n-3 ratio, and may increase the anti-inflammatory activity in rats. PMID:23275078

  9. Extraction of oil from Euphorbia Lagascae seeds by screw pressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Euphorbia lagascae (Spreng.) is a drought tolerant plant native to Spain. Euphorbia seeds contain 45-50% oil with 60-65% of its fatty acids as vernolic (12S,13R-epoxy-cis-9-octadecenoic) acid. Vernolic acid has wide applications in paints and coatings, plasticizers, adhesives, polymers, and lubrican...

  10. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    PubMed Central

    Matthäus, Bertrand; Özcan, Mehmet Musa

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  11. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils.

    PubMed

    Matthäus, Bertrand; Musazcan Özcan, Mehmet

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  12. Biotransformation of constituents of essential oils by germinating wheat seed.

    PubMed

    Dudai, N; Larkov, O; Putievsky, E; Lerner, H R; Ravid, U; Lewinsohn, E; Mayer, A M

    2000-11-01

    Wheat seeds, when exposed to essential oils, are able to metabolise certain monoterpenes. The actual amounts of the compounds and their derivatives in the endosperm and embryo of wheat seeds, after exposure to the monoterpenes were determined. Neral and geranial, which are the constituents of citral, are reduced and oxidised to the corresponding alcohols and acids. Similarly citronellal, pulegone and carvacrol are converted partly to the corresponding reduction and oxidation products. The aromatic compound vanillin is partly reduced to vanillyl alcohol or oxidised to vanillic acid. In all cases it seems that part of the compounds applied are degraded, as indicated by the inability to account for all the compounds, which were supplied to the germinated seeds. In most cases the derivatives of the essential oil applied were less toxic than the parent compound. The possible role of non-specific enzymes by which the compounds are oxidised or reduced is discussed. PMID:11140596

  13. Pyrolysis of sunflower seed hulls for obtaining bio-oils.

    PubMed

    Casoni, Andrés I; Bidegain, Maximiliano; Cubitto, María A; Curvetto, Nestor; Volpe, María A

    2015-02-01

    Bio-oils from pyrolysis of as received sunflower seed hulls (SSH), hulls previously washed with acid (SSHA) and hulls submitted to a mushroom enzymatic attack (BSSH) were analyzed. The concentration of lignin, hemicellulose and cellulose varied with the pre-treatment. The liquid corresponding to SSH presented a relatively high concentration of acetic acid and a high instability to storage. The bio-oil from SSHA showed a high concentration of furfural and an appreciable amount of levoglucosenone. Lignin was degraded upon enzymatic activity, for this reason BSSH led to the highest yield of bio-oil, with relative high concentration of acetic acid and stability to storage.

  14. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth)

    PubMed Central

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-01-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity. PMID:25493197

  15. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth).

    PubMed

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-11-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity.

  16. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  17. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  18. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  19. Seed oil composition of Paullinia cupana var. sorbilis (Mart.) Ducke.

    PubMed

    Avato, P; Pesante, M A; Fanizzi, F P; Santos, C Aimbiré de Moraes

    2003-07-01

    The chemical composition of the oil extracted from the seeds of Paullinia cupana var. sorbilis (Mart.) Ducke (syn. P. sorbilis) was investigated. Cyanolipids constituted 3% of the total oil from guaraná seeds, whereas acylglycerols accounted for 28%. 1H and 13C NMR analyses indicated that type I cyanolipids (1-cyano-2-hydroxymethylprop-2-ene-1-ol diesters) are present in the oil from P. cupana. GC and GC-MS analysis showed that cis-11-octadecenoic (cis-vaccenic acid) and cis-11-eicosenoic acids were the main FA (30.4 and 38.7%) esterified to the nitrile group. Paullinic acid (7.0%) was also an abundant component. Oleic acid (37.4%) was the dominant fatty acyl chain in the acylglycerols.

  20. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  1. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane.

  2. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  3. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting.

    PubMed

    Gracka, Anna; Jeleń, Henryk H; Majcher, Małgorzata; Siger, Aleksander; Kaczmarek, Anna

    2016-01-01

    Two varieties of rapeseed (one high oleic - containing 76% of oleic acid, and the other - containing 62% of oleic acid) were used to produce virgin (pressed) oil. The rapeseeds were roasted at different temperature/time combinations (at 140-180°C, and for 5-15min); subsequently, oil was pressed from the roasted seeds. The roasting improved the flavour and contributed to a substantial increase in the amount of a potent antioxidant-canolol. The changes in volatile compounds related to roasting conditions were monitored using comprehensive gas chromatography-mass spectrometry (GC×GC-ToFMS), and the key odorants for the non-roasted and roasted seeds oils were determined by gas chromatography-olfactometry (GC-O). The most important compounds determining the flavour of oils obtained from the roasted seeds were dimethyl sulphide, dimethyltrisulfide, 2,3-diethyl-5-methylpyrazine, 2,3-butenedione, octanal, 3-isopropyl-2-methoxypyrazine and phenylacetaldehyde. For the oils obtained from the non-roasted seeds, the dominant compounds were dimethylsulfide, hexanal and octanal. Based on GC×GC-ToFMS and principal component analysis (PCA) of the data, several compounds were identified that were associated with roasting at the highest temperatures regardless of the rapeseed variety: these were, among others, methyl ketones (2-hexanone, 2-heptanone and 2-octanone).

  4. Compositions of the seed oil of the Borago officinalis from Iran.

    PubMed

    Morteza, Elham; Akbari, Gholam-Ali; Moaveni, Payam; Alahdadi, Iraj; Bihamta, Mohammad-Reza; Hasanloo, Tahereh; Joorabloo, Ali

    2015-01-01

    In order to investigate the composition of borage (Borago officinalis L.) seed oil, this research was performed under the field conditions at Shahriyar and Garmsar zones, Iran during the 2012 planting year. The oil yield of borage was 31.46% and 33.7% at Shahriyar and Garmsar zone, respectively, and nine and eight fatty acids were identified in the seed oil of borage at Shahriyar and Garmsar, respectively - palmitic, linoleic, stearic and γ-linolenic acids were dominant in the seed oil of borage from both zones. Unsaturated fatty acid content was more than the saturated fatty acids in both zones. The ratio of linoleic acid and α-linolenic acid in the borage cultivated at Shahriyar and Garmsar zones was 2.13 and 2.29. The fatty acid profile of Garmsar borage, oleic and oleic/linoleic acid ratio, increased. Locations with different ecological conditions resulted in changes in both seed oil content and fatty acid profile of borage. PMID:25360856

  5. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting.

    PubMed

    Gracka, Anna; Jeleń, Henryk H; Majcher, Małgorzata; Siger, Aleksander; Kaczmarek, Anna

    2016-01-01

    Two varieties of rapeseed (one high oleic - containing 76% of oleic acid, and the other - containing 62% of oleic acid) were used to produce virgin (pressed) oil. The rapeseeds were roasted at different temperature/time combinations (at 140-180°C, and for 5-15min); subsequently, oil was pressed from the roasted seeds. The roasting improved the flavour and contributed to a substantial increase in the amount of a potent antioxidant-canolol. The changes in volatile compounds related to roasting conditions were monitored using comprehensive gas chromatography-mass spectrometry (GC×GC-ToFMS), and the key odorants for the non-roasted and roasted seeds oils were determined by gas chromatography-olfactometry (GC-O). The most important compounds determining the flavour of oils obtained from the roasted seeds were dimethyl sulphide, dimethyltrisulfide, 2,3-diethyl-5-methylpyrazine, 2,3-butenedione, octanal, 3-isopropyl-2-methoxypyrazine and phenylacetaldehyde. For the oils obtained from the non-roasted seeds, the dominant compounds were dimethylsulfide, hexanal and octanal. Based on GC×GC-ToFMS and principal component analysis (PCA) of the data, several compounds were identified that were associated with roasting at the highest temperatures regardless of the rapeseed variety: these were, among others, methyl ketones (2-hexanone, 2-heptanone and 2-octanone). PMID:26592559

  6. Compositions of the seed oil of the Borago officinalis from Iran.

    PubMed

    Morteza, Elham; Akbari, Gholam-Ali; Moaveni, Payam; Alahdadi, Iraj; Bihamta, Mohammad-Reza; Hasanloo, Tahereh; Joorabloo, Ali

    2015-01-01

    In order to investigate the composition of borage (Borago officinalis L.) seed oil, this research was performed under the field conditions at Shahriyar and Garmsar zones, Iran during the 2012 planting year. The oil yield of borage was 31.46% and 33.7% at Shahriyar and Garmsar zone, respectively, and nine and eight fatty acids were identified in the seed oil of borage at Shahriyar and Garmsar, respectively - palmitic, linoleic, stearic and γ-linolenic acids were dominant in the seed oil of borage from both zones. Unsaturated fatty acid content was more than the saturated fatty acids in both zones. The ratio of linoleic acid and α-linolenic acid in the borage cultivated at Shahriyar and Garmsar zones was 2.13 and 2.29. The fatty acid profile of Garmsar borage, oleic and oleic/linoleic acid ratio, increased. Locations with different ecological conditions resulted in changes in both seed oil content and fatty acid profile of borage.

  7. Osage orange (Maclura pomifera L) seed oil poly-(-a-hydroxy dibutylamine) triglycerides: Synthesis and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In exploring alternative vegetable oils for non-food industrial applications, especially in temperate climates, tree seed oils that are not commonly seen as competitors to soybean, peanut, and corn oils can become valuable sources of new oils. Many trees produce edible fruits and seeds while others ...

  8. Analysis of oil content of Jatropha curcas seeds under storage condition.

    PubMed

    Sushma

    2014-05-01

    Jatropha curcas has been recognized as an ideal plant for biodiesel. There are unlimited reasons to consider Jatropha curcas a better tree borne oilseed plants than any other as it grows well on arid soils and entail minimal investment. The present study evaluates the effect of seed storage on quality and quantity of oil content such that it can be used for oil extraction and ensures availability of biodiesel throughout the year. The seeds were collected and stored at four temperatures viz. -5 °C, 0 °C, 5 °C and room temperature (open air condition) for 15 months of storage durations and evaluated at every three months interval. There was a significant decrease in oil content and oil quality with increase in storage duration. Although, the seed stored at temperature 5 °C gave the highest quality and quantity attributes at all durations. The first 3 months of storage account for the least decline as in the initial oil content in Kernel weight basis (54.61%) and seed weight basis (36.12%), there was a only decrease of 4.67% and 4.97% respectively at 5 °C whereas in other temperatures viz. -5 °C, 0 °C and room temperature (open air condition), there was a decline of 18.11, 14.48 and 9.06% in kernel weight basis and 18.36, 15.14 and 9.30% in seed weight basis respectively which accelerated with duration. Similarly, quality parameters viz. moisture content, acid value, iodine value, saponification value, refractive index (30 °C), relative viscosity and specific gravity were initially as 7.59%, 1.42 mg KOH g⁻¹ oil, 108.61 g l₂ 100 g⁻¹ oil, 189.37 mg KOH g⁻¹ oil, 1.466, 21.30 and 0.911 respectively which change to 13.71%, 1.74 mg KOH g⁻¹ oil, 107.95 g l₂ 100 g⁻¹ oil, 191.48 mg KOH g⁻¹ oil, 1.470, 23.45 and 0.918, respectively after 3 months of storage. Hence, change in quality and quantity parameters indicated the importance of proper seed storage on availability of bio-diesel throughout the year and economics in its processing i e

  9. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene.

    PubMed

    Knutzon, D S; Thompson, G A; Radke, S E; Johnson, W B; Knauf, V C; Kridl, J C

    1992-04-01

    Molecular gene transfer techniques have been used to engineer the fatty acid composition of Brassica rapa and Brassica napus (canola) oil. Stearoyl-acyl carrier protein (stearoyl-ACP) desaturase (EC 1.14.99.6) catalyzes the first desaturation step in seed oil biosynthesis, converting stearoyl-ACP to oleoyl-ACP. Seed-specific antisense gene constructs of B. rapa stearoyl-ACP desaturase were used to reduce the protein concentration and enzyme activity of stearoyl-ACP desaturase in developing rapeseed embryos during storage lipid biosynthesis. The resulting transgenic plants showed dramatically increased stearate levels in the seeds. A continuous distribution of stearate levels from 2% to 40% was observed in seeds of a transgenic B. napus plant, illustrating the potential to engineer specialized seed oil compositions.

  10. Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil.

    PubMed

    Wang, Libing; Yu, Haiyan

    2012-05-01

    In this paper, Siberian apricot (Prunus sibirica L.) seed kernel oil was investigated for the first time as a promising non-conventional feedstock for preparation of biodiesel. Siberian apricot seed kernel has high oil content (50.18 ± 3.92%), and the oil has low acid value (0.46 mg g(-1)) and low water content (0.17%). The fatty acid composition of the Siberian apricot seed kernel oil includes a high percentage of oleic acid (65.23 ± 4.97%) and linoleic acid (28.92 ± 4.62%). The measured fuel properties of the Siberian apricot biodiesel, except cetane number and oxidative stability, were conformed to EN 14214-08, ASTM D6751-10 and GB/T 20828-07 standards, especially the cold flow properties were excellent (Cold filter plugging point -14°C). The addition of 500 ppm tert-butylhydroquinone (TBHQ) resulted in a higher induction period (7.7h) compliant with all the three biodiesel standards. PMID:22440572

  11. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).

    PubMed

    Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis

    2014-06-01

    The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present. PMID:24823227

  12. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  13. Antimycotic effect of fixed oils treated with herbal seeds on the growth of fungi causing otomycosis.

    PubMed

    Jain, S; Agarwal, S C; Malaiya, S

    1993-07-01

    Invitro antimycotic effect of the coconut, mustard, groundnut & soyabeen oils and the seeds of trigonella, ajwoin, mustard and garlic bulbs were mixed in the above oil samples to determine their effect on the spore germination of five pathogenic fungi i.e., Aspergillus niger, A.flavus, Absidia corymbifera, Penicilium nigricans and Candida albicans, isolated from otitic fungal infection of external ear (tympanic membrane) of human beings of different places. Growth of these fungi was completely inhibited by the oil of mustard when mixed seeds of trigonella, ajwoin, mustard and garlic bulbs, while coconut oil with ajwoin seeds was found to be less funitoxic. In addition to these other oils and different plant parts were also found to have fungitoxicity against test pathogens and increase pf 50 - 100 percent inhibition was noted in these cases. Present study indicated the possible role of test oils and different plant parts in control of otomycosis in human being after further experimental in-vivo condition. PMID:22556643

  14. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.).

    PubMed

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit; Soares, Emanuela L; Soares, Arlete A; Roepstorff, Peter; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748 could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP that are differentially expressed during seed development.

  15. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey.

    PubMed

    Duman, Erman; Ozcan, Mehmet Musa

    2014-01-01

    The mineral contents of seed and seed oils of Capparis species growing wild in Turkey were established by inductively coupled plasma-atomic emission spectrometry. Capparis spinosa var. spinosa (2010) and Capparis ovata var. canescens variety (2009) were determined to be rich in terms of mineral matter as 19,514.60 and 16,995.92 ppm as a total, respectively. C. spinosa var. spinosa collected from Muğla-Milas region (2009) had the highest amount of Ca with 1,010.67 ppm in C. spinosa species and in C. ovata species. C. ovata var. canescens collected from Ankara-Beypazarı (2010) region had the highest amount of Ca with 833.92 ppm Ca amount in C. spinosa var. spinosa, inermis, herbaceae seeds decreased in 2010. C. spinosa var. inermis collected from Antalya-Serik (2010) in C. spinosa species had rich amount of Ca with 123.78 ppm and C. ovata var. palaestina seed oils collected from Mardin-Savur region (2009) had rich amount of Ca with 253.71 ppm in C. ovata species. The oil of C. spinosa var. herbaceae variety collected from Mardin-Midyat region (2010) was determined to have the highest major mineral matter (Ca, K, Mg, Na, and P) with 1,424.37 ppm in C. spinosa species. It was also determined that as a result, caper seed and oils were found to be important sources of nutrients and essential elements.

  16. Acute toxicity study of the oil from Azadirachta indica seed (neem oil).

    PubMed

    Gandhi, M; Lal, R; Sankaranarayanan, A; Banerjee, C K; Sharma, P L

    1988-01-01

    The seed oil of Azadirachta indica (neem oil) is well known for its medicinal properties in the indigenous Indian system of medicine. Its acute toxicity was documented in rats and rabbits by the oral route. Dose-related pharmacotoxic symptoms were noted along with a number of biochemical and histopathological indices of toxicity. The 24-h LD50 was established as 14 ml/kg in rats and 24 ml/kg in rabbits. Prior to death, animals of both species exhibited comparable pharmacotoxic symptoms in order and severity, with lungs and central nervous system as the target organs of toxicity. Edible mustard seed oil (80 ml/kg) was tested in the same manner to document the degree to which the physical characteristics of an oil could contribute to the oral toxicity of neem oil. PMID:3419203

  17. Soybean GmDREBL Increases Lipid Content in Seeds of Transgenic Arabidopsis

    PubMed Central

    Zhang, Yu-Qin; Lu, Xiang; Zhao, Fei-Yi; Li, Qing-Tian; Niu, Su-Ling; Wei, Wei; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2016-01-01

    A DREB-type transcription factor gene GmDREBL has been characterized for its functions in oil accumulation in seeds. The gene is specifically expressed in soybean seeds. The GmDREBL is localized in nucleus and has transcriptional activation ability. Overexpression of GmDREBL increased the fatty acid content in the seeds of transgenic Arabidopsis plants. GmDREBL can bind to the promoter region of WRI1 to activate its expression. Several other genes in the fatty acid biosynthesis pathway were also enhanced in the GmDREBL-transgenic plants. The GmDREBL can be up-regulated by GmABI3 and GmABI5. Additionally, overexpression of GmDREBL significantly promoted seed size in transgenic plants compared to that of WT plants. Expression of the DREBL is at higher level on the average in cultivated soybeans than that in wild soybeans. The promoter of the DREBL may have been subjected to selection during soybean domestication. Our results demonstrate that GmDREBL participates in the regulation of fatty acid accumulation by controlling the expression of WRI1 and its downstream genes, and manipulation of the gene may increase the oil contents in soybean plants. Our study provides novel insights into the function of DREB-type transcription factors in oil accumulation in addition to their roles in stress response. PMID:27694917

  18. Protein composition of oil bodies from mature Brassica napus seeds.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie

    2009-06-01

    Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.

  19. Protein composition of oil bodies from mature Brassica napus seeds.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie

    2009-06-01

    Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation. PMID:19562800

  20. Investigations into the chemistry and insecticidal activity of euonymus europaeus seed oil and methanol extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Euonymus europaeus seeds and seed oil were investigated for their volatiles using GC-MS-FID, Headspace-SPME/GC-MS-FID, and derivative GC-MS-FID for their volatiles and HPLC-DAD-CAD/MS for their non-volatile compounds. The seeds contain about 30% of fatty oil, mainly glyceryl trioleate, small amounts...

  1. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies.

    PubMed

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Angeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster.Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells. PMID:23460824

  2. Protective Effect of Borage Seed Oil and Gamma Linolenic Acid on DNA: In Vivo and In Vitro Studies

    PubMed Central

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Ángeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster. Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells. PMID:23460824

  3. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies.

    PubMed

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Angeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster.Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells.

  4. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    PubMed Central

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  5. Effect of the refining process on Moringa oleifera seed oil quality.

    PubMed

    Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Núñez-Gastélum, José A; Servín de la Mora-López, Gabriela; López-Hernández, Julia; Paseiro-Losada, Perfecto

    2015-11-15

    We evaluated the physicochemical properties and oxidative stability of the oil extracted from the seeds of Moringa oleifera during its refining process. Refining is accomplished in three stages: neutralization, degumming, and bleaching. Four samples were analyzed, corresponding to each step of the processed and crude oil. Increases in the density, viscosity, saponification value and oxidation of the oil were detected during the refining, while the peroxide value and carotenoid content diminished. Moreover, the refractive index and iodine content were stable throughout the refining. Nine fatty acids were detected in all four samples, and there were no significant differences in their composition. Oleic acid was found in the largest amount, followed by palmitic acid and behenic acid. The crude, neutralized, and degummed oils showed high primary oxidation stability, while the bleached oil had a low incidence of secondary oxidation.

  6. Effect of the refining process on Moringa oleifera seed oil quality.

    PubMed

    Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Núñez-Gastélum, José A; Servín de la Mora-López, Gabriela; López-Hernández, Julia; Paseiro-Losada, Perfecto

    2015-11-15

    We evaluated the physicochemical properties and oxidative stability of the oil extracted from the seeds of Moringa oleifera during its refining process. Refining is accomplished in three stages: neutralization, degumming, and bleaching. Four samples were analyzed, corresponding to each step of the processed and crude oil. Increases in the density, viscosity, saponification value and oxidation of the oil were detected during the refining, while the peroxide value and carotenoid content diminished. Moreover, the refractive index and iodine content were stable throughout the refining. Nine fatty acids were detected in all four samples, and there were no significant differences in their composition. Oleic acid was found in the largest amount, followed by palmitic acid and behenic acid. The crude, neutralized, and degummed oils showed high primary oxidation stability, while the bleached oil had a low incidence of secondary oxidation. PMID:25976997

  7. Evaluation of the safety and efficacy of Lesquerella fendleri seed and oils as poultry feed additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella (Lesquerella fendleri (Gray) Wats) is an oil seed plant capable of growth over a large geographic area of the southwestern U.S. The seed oil contains hydroxyfatty acids, useful in a variety of industrial products, and can replace imported castor bean oil (Ricinus communis L.). Lesquere...

  8. Method for attaining fennel (Foeniculum vulgare Mill.) seed oil fractions with different composition and antioxidant capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fennel (Foeniculum vulgare Mill.) is cultivated for its seeds and foliage, which contain essential oil. We hypothesized that the collection of fennel seed oil at different time points during the distillation process may result in fennel oil with distinct composition and bioactivity. We collected ess...

  9. Effects of specific organs on seed oil accumulation in Brassica napus L.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hongli; Guo, Tingting; Sun, Xingchao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2014-10-01

    Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops.

  10. Dehulling of cuphea seed for the production of crude oil with low chlorophyll content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea (PSR23) seed oil is rich in medium chain fatty acids (MCFAs). MCFAs are used in soaps, detergents, cosmetics, lubricants, and food applications. Currently, cuphea is being grown to provide oil needed for research. The oil can be extracted effectively by screw pressing flaked whole seeds. ...

  11. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions.

    PubMed

    Bellaloui, Nacer; Stetina, Salliana R; Turley, Rickie B

    2015-01-01

    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed

  12. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    PubMed Central

    Bellaloui, Nacer; Stetina, Salliana R.; Turley, Rickie B.

    2015-01-01

    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed

  13. Sunflower seed oil: automotive fuel source. Final technical report

    SciTech Connect

    Denny, W.M.

    1984-01-01

    The intent of this portion of the project has to demonstrate the feasibility of utilizing sunflower seed oil as an alternate fuel for the spark ignition engine. The research was limited to small, one cylinder, air-cooled engines that are very common on the market place. Conventional fuels, such as gasoline, kerosene, diesel fuel blended with the sunflower oil were used. Sunfuel, sunflower oil, is difficult to procure and relatively expensive at approximately $4.00/gal. The research was unconcerned with how readily available or how competitively priced it was against petroleum products. All of the effort was to assume it was available and cost effective. We concentrated on making it burn in the heat engine and achieved it with marginal success. The review of the literature which was carried on concurrently with the research indicates several problems associated with producing Sunfuel.

  14. Ultrasound induced green solvent extraction of oil from oleaginous seeds.

    PubMed

    Sicaire, Anne-Gaëlle; Vian, Maryline Abert; Fine, Frédéric; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2016-07-01

    Ultrasound-assisted extraction of rapeseed oil was investigated and compared with conventional extraction for energy efficiency, throughput time, extraction yield, cleanness, processing cost and product quality. A multivariate study enabled us to define optimal parameters (7.7 W/cm(2) for ultrasonic power intensity, 40 °C for processing temperature, and a solid/liquid ratio of 1/15) for ultrasound-assisted extraction of oil from oilseeds to maximize lipid yield while reducing solvent consumption and extraction time using response surface methodology (RSM) with a three-variable central composite design (CCD). A significant difference in oil quality was noted under the conditions of the initial ultrasound extraction, which was later avoided using ultrasound in the absence of oxygen. Three concepts of multistage cross-current extraction were investigated and compared: conventional multistage maceration, ultrasound-assisted maceration and a combination, to assess the positive impact of using ultrasound on the seed oil extraction process. The study concludes that ultrasound-assisted extraction of oil is likely to reduce both economic and ecological impacts of the process in the fat and oil industry.

  15. Characterization of seed oils from fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste.

    PubMed

    Ku, C S; Mun, S P

    2008-05-01

    The physicochemical characteristics, fatty acid (FA) profile, and triacylglyceride (TAG) composition of seed oils from fresh Bokbunja (Rubus coreanus Miq.) fruits and traditional Bokbunja wine processing waste were determined in this study. Oil contents of the fresh seeds and the seeds from wine processing waste were similar, accounting for about 18% of dry weight. The free fatty acid (FFA) content between the two seed oils was significantly different (0.50% for fresh seed oil and 73.14% for wine seed oil). Iodine, conjugated diene, saponification values, and unsaponifiable matter were very similar in the oil samples, but the specific extinction coefficients at 232 and 270 nm of wine seed oil were higher than those of fresh seed oil. Linoleic (C18:2, 50.45-53.18%, L) and linolenic (C18:3, 29.36-33.25%, Ln) acids were the dominant FAs in the two seed oils, whereas oleic (C18:1, 7.32-8.04%, O), palmitic (C16:0, 1.55-1.65%, P), and stearic (C18:0, 0.65-0.68%, S) acids were the minor FAs. LLL, OLL, LLLn, OOL, LLnLn, and OOO were the abundant TAGs, representing >90% of the oils. PMID:17656085

  16. Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice.

    PubMed

    Su, Jianhui; Wang, Hongxin; Ma, Caoyang; Lou, Zaixiang; Liu, Chengxiang; Tanver Rahman, MdRamim; Gao, Chuanzhong; Nie, Rongjing

    2015-09-01

    This study was conducted to investigate the components of a new resource food in China, peony seed oil (PSO) by GC-MS (gas chromatography-mass spectrometry), its inhibitory effects on carbohydrate hydrolyzing enzymes in vitro and its anti-diabetic effects on mice induced by streptozotocin (STZ). The results showed that peony seed oil showed weak anti-α-amylase activity; however, strong anti-α-glucosidase activity was noted. The GC-MS analysis of the oil showed 9 constituents of which α-linolenic acid was found to be the major component (38.66%), followed by linoleic acid (26.34%) and oleic acid (23.65%). The anti-diabetic potential of peony seed oil was tested in STZ induced diabetic mice. Administration of peony seed oil and glibenclamide reduced the blood glucose level and the area under curve (AUC) in STZ induced diabetic mice. There were significant increases in body weight, liver glycogen content, serum insulin level, high-density lipoprotein cholesterol (HDL-C) and decreases in glycosylated hemoglobin (HbA1C), total serum cholesterol (TC), and triglyceride (TG) in test groups as compared to the untreated diabetic groups. In vivo antioxidant studies on STZ induced diabetic mice revealed the reduction of malondialdehyde (MDA) and increase of glutathione peroxides (GSH-px), superoxide dismutase (SOD), and glutathione (GSH). The results provided a sound rationale for future clinical trials of oral administration of peony seed oil to alleviate postprandial hyperglycemia in streptozotocin-induced diabetic mice.

  17. Characterisation and some possible uses of Plukenetia conophora and Adenopus breviflorus seeds and seed oils.

    PubMed

    Akintayo, E T; Bayer, E

    2002-10-01

    Two non-conventional seeds, Plukenetia conophora (PKCP) and Adenopus breviflorus (ADB) were analysed for their proximate, fatty acids, sterols composition and physico-chemical characteristics. Crude protein was 25.65% for PKCP and 28.25% for ADB. ADB had lower moisture content (4.5%) than PKCP (8.0%) indicating that the former has better shelf life. Oil yields of the seeds were 49.58% for PKCP and 56.22% for ADB. The major sterols were stigmasterol and beta-sitosterol in PKCP and ADB respectively. PKCP oil had 98.8% unsaturated fatty acids with linolenic acid predominating (70.1%) while ADB had 85.1% unsaturated fatty acids with linoleic acid being most abundant (65.3%). The very high saponification and iodine values of PKCP oil suggest its utilisation in alkyd resin, shoe polish, liquid soap and shampoo production. There is the possibility of using ADB oil in these regards as well as for edible purposes.

  18. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana

    PubMed Central

    Pelc, Sandra E; Linder, C Randal

    2015-01-01

    Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing and early growth rate in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated fatty acids but have substantially higher melting points (when chain length is held constant). This characteristic forms the basis of an adaptive hypothesis that lower melting point seeds (lower proportion of saturated fatty acids) should be favored under colder germination temperatures due to earlier germination and faster growth before photosynthesis, while at warmer germination temperatures, seeds with a higher amount of energy (higher proportion of saturated fatty acids) should be favored. To assess the effects of seed oil melting point on timing of seedling emergence and fitness, high- and low-melting point lines from a recombinant inbred cross of Arabidopsis thaliana were competed in a fully factorial experiment at warm and cold temperatures with two different density treatments. Emergence timing between these lines was not significantly different at either temperature, which aligned with warm temperature predictions, but not cold temperature predictions. Under all conditions, plants competing against high-melting point lines had lower fitness relative to those against low-melting point lines, which matched expectations for undifferentiated emergence times. PMID:25628873

  19. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana.

    PubMed

    Pelc, Sandra E; Linder, C Randal

    2015-01-01

    Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing and early growth rate in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated fatty acids but have substantially higher melting points (when chain length is held constant). This characteristic forms the basis of an adaptive hypothesis that lower melting point seeds (lower proportion of saturated fatty acids) should be favored under colder germination temperatures due to earlier germination and faster growth before photosynthesis, while at warmer germination temperatures, seeds with a higher amount of energy (higher proportion of saturated fatty acids) should be favored. To assess the effects of seed oil melting point on timing of seedling emergence and fitness, high- and low-melting point lines from a recombinant inbred cross of Arabidopsis thaliana were competed in a fully factorial experiment at warm and cold temperatures with two different density treatments. Emergence timing between these lines was not significantly different at either temperature, which aligned with warm temperature predictions, but not cold temperature predictions. Under all conditions, plants competing against high-melting point lines had lower fitness relative to those against low-melting point lines, which matched expectations for undifferentiated emergence times. PMID:25628873

  20. Vasorelaxant effect of essential oil isolated from Nigella sativa L. seeds in rat aorta: Proposed mechanism.

    PubMed

    Cherkaoui-Tangi, Khadija; Israili, Zafar Hasan; Lyoussi, Badiaâ

    2016-01-01

    The effect of the essential oil extracted from Nigella sativa (L.) seeds (Nigella oil) was investigated for its vasorelaxant activity on isolated rat aorta. Nigella oil at concentrations of 10-100 μg/mL elicited a dose-dependent relaxation of the aorta, which was pre-contracted with noradrenaline (NA, 10(-6) M) or KCl (100mM). In the presence of Nigella oil (75 μg/mL, the dose response curves to increasing concentrations of NA (10(-9) M to 10(-4)M) or KCl (10mM-100mM) were displaced downwards, indicating inhibition of the vasoconstrictive effect. This relaxation effect was independent of the presence of endothelium. In addition, the vasodilatory activity of the Nigella oil was not affected by pre-treatment of the rings with N(G)-nitro-L-Arginine (an inhibitor of endothelial nitric oxide synthase; 0.1mM), suggesting that the vasorelaxant effect is not mediated by nitric oxide. Furthermore, pre-treatment of the rings with Nigella oil (75 μg/mL suppressed the tension increment produced by increasing external calcium concentration (0.25 mM to 1.5mM). Tin conclusion, the essential oil extracted from Nigella sativa seeds produces smooth muscle relaxation, which is independent of endothelium and is not mediated by nitric oxide. The results also suggest that the vasorelaxing effect of the oil results from the blockade of both voltage-sensitive and receptor-operated calcium channels, and this may have therapeutic significance, in that Nigella oil may be useful as an antihypertensive agent in humans.

  1. Vasorelaxant effect of essential oil isolated from Nigella sativa L. seeds in rat aorta: Proposed mechanism.

    PubMed

    Cherkaoui-Tangi, Khadija; Israili, Zafar Hasan; Lyoussi, Badiaâ

    2016-01-01

    The effect of the essential oil extracted from Nigella sativa (L.) seeds (Nigella oil) was investigated for its vasorelaxant activity on isolated rat aorta. Nigella oil at concentrations of 10-100 μg/mL elicited a dose-dependent relaxation of the aorta, which was pre-contracted with noradrenaline (NA, 10(-6) M) or KCl (100mM). In the presence of Nigella oil (75 μg/mL, the dose response curves to increasing concentrations of NA (10(-9) M to 10(-4)M) or KCl (10mM-100mM) were displaced downwards, indicating inhibition of the vasoconstrictive effect. This relaxation effect was independent of the presence of endothelium. In addition, the vasodilatory activity of the Nigella oil was not affected by pre-treatment of the rings with N(G)-nitro-L-Arginine (an inhibitor of endothelial nitric oxide synthase; 0.1mM), suggesting that the vasorelaxant effect is not mediated by nitric oxide. Furthermore, pre-treatment of the rings with Nigella oil (75 μg/mL suppressed the tension increment produced by increasing external calcium concentration (0.25 mM to 1.5mM). Tin conclusion, the essential oil extracted from Nigella sativa seeds produces smooth muscle relaxation, which is independent of endothelium and is not mediated by nitric oxide. The results also suggest that the vasorelaxing effect of the oil results from the blockade of both voltage-sensitive and receptor-operated calcium channels, and this may have therapeutic significance, in that Nigella oil may be useful as an antihypertensive agent in humans. PMID:26826822

  2. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.

    PubMed

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques. The results showed the percentage (%) moisture, crude fibre, ash, crude protein, lipids and total carbohydrate contents of the seeds as 7.51 and 4.27, 7.70 and 5.51, 1.02 and 2.94, 10.57 and 11.67, 47.80 and 50.42 and 32.84 and 29.47 while the calorific values were 553.99 and 567.32 Kcal/100 g for C. nucifera and C. citrullus, respectively. The two seed oils were odourless and at room temperature (30 degrees C) liquids, with a pale yellow to yellowish colouration. Lipid indices of the seed oils indicated the Acid Values (AV) as 2.06-6.36 mg NaOH g(-1) and 2.99-6.17 mg NaOH g(-1), Free Fatty Acids (FFA) as 1.03-3.18 and 1.49-3.09%, Saponification Values (SV) as 252.44-257.59 and 196.82-201.03 mg KOH g(-1), Iodine Values (IV) as 9.73-10.99 and 110.93-111.46 mg of I2 g(-1) of oil and Peroxide Values (PV) as 0.21-0.21 and 1.53-2.72 mg O2 kg(-1) for soxhlet-mechanical extracted C. nucifera and C. citrullus seed oils, respectively. The studied characteristics of the oil extracts in most cases compared favourably with most conventional vegetable oils sold in the Nigeria markets; however, there were some observed levels of significant differences in the values at p < or = 0.05. These results suggest that the seeds examined may be nutritionally potent and also viable sources of seed oils judging by their oil yield. The data also showed that the seed oils were edible inferring from their low AV and their corresponding low FFA contents. Industrially, the results revealed the seed oils to have great potentials in soap manufacturing industries because of their high SV. They were also shown to be non-drying due to their low IV which also suggested that the oils contain few unsaturated bonds and therefore have low susceptibility to oxidative rancidity and deterioration as

  3. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.

    PubMed

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques. The results showed the percentage (%) moisture, crude fibre, ash, crude protein, lipids and total carbohydrate contents of the seeds as 7.51 and 4.27, 7.70 and 5.51, 1.02 and 2.94, 10.57 and 11.67, 47.80 and 50.42 and 32.84 and 29.47 while the calorific values were 553.99 and 567.32 Kcal/100 g for C. nucifera and C. citrullus, respectively. The two seed oils were odourless and at room temperature (30 degrees C) liquids, with a pale yellow to yellowish colouration. Lipid indices of the seed oils indicated the Acid Values (AV) as 2.06-6.36 mg NaOH g(-1) and 2.99-6.17 mg NaOH g(-1), Free Fatty Acids (FFA) as 1.03-3.18 and 1.49-3.09%, Saponification Values (SV) as 252.44-257.59 and 196.82-201.03 mg KOH g(-1), Iodine Values (IV) as 9.73-10.99 and 110.93-111.46 mg of I2 g(-1) of oil and Peroxide Values (PV) as 0.21-0.21 and 1.53-2.72 mg O2 kg(-1) for soxhlet-mechanical extracted C. nucifera and C. citrullus seed oils, respectively. The studied characteristics of the oil extracts in most cases compared favourably with most conventional vegetable oils sold in the Nigeria markets; however, there were some observed levels of significant differences in the values at p < or = 0.05. These results suggest that the seeds examined may be nutritionally potent and also viable sources of seed oils judging by their oil yield. The data also showed that the seed oils were edible inferring from their low AV and their corresponding low FFA contents. Industrially, the results revealed the seed oils to have great potentials in soap manufacturing industries because of their high SV. They were also shown to be non-drying due to their low IV which also suggested that the oils contain few unsaturated bonds and therefore have low susceptibility to oxidative rancidity and deterioration as

  4. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wei, Fu-Yao; Luo, Meng; Wang, Wei; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-09-01

    In the present work, Forsythia suspense seed oil (FSSO) was investigated for the first time as an alternative non-conventional feedstock for the preparation of biodiesel. The FSSO yield is 30.08±2.35% (dry weight of F. suspense seed basis), and the oil has low acid value (1.07 mg KOH/g). The fatty acid composition of FSSO exhibits the predominance of linoleic acid (72.89%) along with oleic acid (18.68%) and palmitic acid (5.65%), which is quite similar to that of sunflower oil. Moreover, microwave-assisted transesterification process of FSSO with methanol in the presence of potassium hydroxide catalyst was optimized and an optimal biodiesel yield (90.74±2.02%) was obtained. Furthermore, the fuel properties of the biodiesel product were evaluated as against ASTM D-6751 biodiesel standards and an acceptable agreement was observed except the cetane number. Overall, this study revealed the possibility of FSSO as a potential resource of biodiesel feedstock.

  5. Characterization of novel triacylglycerol estolides from the seed oil of Mallotus philippensis and Trewia nudiflora.

    PubMed

    Smith, Mark A; Zhang, Haixia; Forseille, Li; Purves, Randy W

    2013-01-01

    Triacylglycerol estolides have been reported as components of the seed oil of a number of plant species and are generally associated with the presence of fatty acids containing hydroxyl groups. We have used MALDI-TOF MS to examine the intact acylglycerol species present in the seed oils of two plants that produce kamlolenic acid (18-hydroxy-Δ9cis,11trans,13trans-octadecatrienoic acid). Mallotus philippensis and Trewia nudiflora were both shown to produce seed oil rich in TAG-estolides. Analysis by MALDI-TOF MS/MS demonstrated that the TAG-estolides had a structure different to that previously proposed after enzymatic digestion of the oil. Acylglycerols containing up to 14 fatty acids were detected but fatty acid estolides were only present in a single position on the glycerol backbone, with predominantly non-hydroxyl fatty acids in the remaining two positions. Increased numbers of fatty acids per glycerol backbone were accounted for by the presence of fatty acid estolides containing a correspondingly greater number of fatty acids. For example, acylglycerols containing seven fatty acids had a fatty acid estolide of five fatty acids at one position on the glycerol backbone. Both capped and uncapped fatty acid estolides, with a free hydroxyl group, were present, with capped fatty acid estolides being more abundant in T. nudiflora and uncapped fatty acid estolides in M. philippensis.

  6. Physico-chemical properties of Tecoma stans Linn. seed oil: a new crop for vegetable oil.

    PubMed

    Sbihi, Hassen Mohamed; Mokbli, Sadok; Nehdi, Imededdine Arbi; Al-Resayes, Saud Ibrahim

    2015-01-01

    Tecoma stans Linn. is known to have various medicinal and therapeutic properties. However, to our knowledge, no information is available regarding their seed oils. In this study, the fatty acid (FA) compositions, physico-chemical properties and antioxidant capacities of T. stans seed oils (TSOs) were investigated. The oil content of the seeds was 15%. The FAs of the TSOs were analysed by GC-MS. α-Linolenic (45.47%), oleic (23.56%), linoleic (11.48%), palmitic (6.09%) and stearic (4.12%) acids were the major detected FAs. γ-Linolenic acid and stearidonic acid, unusually FAs, were also present (1.04% and 6.65%, respectively). The total tocol content in the TSOs was found to be 266.06 mg/100 g. The main component was γ-tocopherol (78.93%). The total phenolic content (168.69 mg GAE/100 g oil) and total flavonoid content (5.54 mg CE/g oil) were also determined in the TSOs.

  7. Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds.

    PubMed

    El Tahchy, Anna; Petrie, James R; Shrestha, Pushkar; Vanhercke, Thomas; Singh, Surinder P

    2015-01-01

    Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT) is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyzes monoacylglycerol (MAG) to form diacylglycerol (DAG), and then triacylglycerol (TAG). In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate by a series of three subsequent acylation reactions, or originated from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabeled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  8. Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds

    PubMed Central

    El Tahchy, Anna; Petrie, James R.; Shrestha, Pushkar; Vanhercke, Thomas; Singh, Surinder P.

    2015-01-01

    Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT) is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyzes monoacylglycerol (MAG) to form diacylglycerol (DAG), and then triacylglycerol (TAG). In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate by a series of three subsequent acylation reactions, or originated from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabeled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes. PMID:26834753

  9. Influence of weed seed oil contamination on the nutritional quality of diets containing low erucic acid rapeseed (Brassica napus, Tower cultivar) oil when fed to rats.

    PubMed

    Rose, S P; Bell, J M; Wilkie, I W; Schiefer, H B

    1981-02-01

    Oils from three samples of rapeseed screenings and a sample of stinkweed seeds (Thlaspi arvense) were added to Tower rapeseed oil at three levels (5, 10 and 15%). The contaminated Tower oils were fed at 20% (w/w) of a purified diet to male weanling Sprague-Dawley rats for 16 weeks. The screenings oils caused no increase in the focal myocardial lesion index or lipidosis of the rat hearts. Stinkweed oil gave a significant increase in myocardial lipidosis and a non-significant increase of the myocarditis index. These were attributed to an imbalance in the fatty acid composition of the Tower oil for the specific requirements of the growing rat. Screenings oil contamination had no significant effects on the feed intake or growth of the animals. The growth of rats fed stinkweed oil-contaminated diets was significantly lower than other treatments when it was adjusted for feed intake by analysis of covariance. No treatment effects on body organ weights nor on blood lipid parameter were observed. The presence of week seed oils, at the highest levels likely to be encountered in low erucic acid rapeseed oil, was concluded to have a significant influence on its nutritional value. PMID:7463174

  10. Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder.

    PubMed

    Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun

    2014-01-01

    The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans.

  11. Optical parameter determination of seed oil with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jiu-sheng; Zhao, Xiao-li; Xu, Degeng

    2009-07-01

    The spectral characteristics of corn oil after five minutes and ten minutes of boiling in the rang from 0.2THz to 1.5THz have been measured with THz time-domain spectroscopy (THz-TDS) at room temperature in nitrogen atmosphere. A novel iterative algorithm is employed to determinate the optical properties considering the effect of the cuvette. The refractive indices of the two corn oil samples show slow a decrease as the terahertz wave frequency increases. The power absorption coefficients increase as the frequency increases within the investigated terahertz wave frequency range. The results provided in this paper will help us to study the THz application to seed oil quality and safety detection further.

  12. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    PubMed

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  13. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    PubMed

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%). PMID:17141409

  14. Evaluation and Characterization of Malabar Tamarind [Garcinia cambogia (Gaertn.) Desr.] Seed Oil.

    PubMed

    Choppa, Tharachand; Selvaraj, Chinnadurai Immanuel; Zachariah, Abraham

    2015-09-01

    The objective of this study is to evaluate the chemical compounds present in the Malabar tamarind seed oil. The oil was extracted from the seeds of Malabar tamarind fruits collected from NBPGR Regional station, Thrissur. The seeds yielded 46.5 % of oil. Parameters such as the peroxide value, iodine value, saponification value, and acid value of the extracted Malabar tamarind seed oil were determined. These values were used to predict the quality of fatty acid methyl esters present in the oil. UV absorption spectroscopy of the oil showed hypsochromic shift, and the maximum absorbance was at 269 nm. The Fourier Transform Infrared Spectrum revealed the presence of olefin hydrogen and carbonyl group of ester compounds in the oil sample. The evaluation of the chemical compounds in the oil using gas chromatography coupled with mass spectrometry (GC-MS) revealed that, a total of five fatty acid methyl esters were present in the oil sample. Among the five fatty acid esters present in the Malabar tamarind seed oil, Methyl 16-methyl heptadecanoate (54.57 %) was found to be the predominant compound. This study also supports the presence of olefins in the long chain fatty acids from Nuclear Magnetic Resonance (NMR) data. There is a significant correlation between the properties and the characteristic profile of the oil sample. This study is the first report that shows Malabar tamarind as a promising source of oil seeds.

  15. Evaluation and Characterization of Malabar Tamarind [Garcinia cambogia (Gaertn.) Desr.] Seed Oil.

    PubMed

    Choppa, Tharachand; Selvaraj, Chinnadurai Immanuel; Zachariah, Abraham

    2015-09-01

    The objective of this study is to evaluate the chemical compounds present in the Malabar tamarind seed oil. The oil was extracted from the seeds of Malabar tamarind fruits collected from NBPGR Regional station, Thrissur. The seeds yielded 46.5 % of oil. Parameters such as the peroxide value, iodine value, saponification value, and acid value of the extracted Malabar tamarind seed oil were determined. These values were used to predict the quality of fatty acid methyl esters present in the oil. UV absorption spectroscopy of the oil showed hypsochromic shift, and the maximum absorbance was at 269 nm. The Fourier Transform Infrared Spectrum revealed the presence of olefin hydrogen and carbonyl group of ester compounds in the oil sample. The evaluation of the chemical compounds in the oil using gas chromatography coupled with mass spectrometry (GC-MS) revealed that, a total of five fatty acid methyl esters were present in the oil sample. Among the five fatty acid esters present in the Malabar tamarind seed oil, Methyl 16-methyl heptadecanoate (54.57 %) was found to be the predominant compound. This study also supports the presence of olefins in the long chain fatty acids from Nuclear Magnetic Resonance (NMR) data. There is a significant correlation between the properties and the characteristic profile of the oil sample. This study is the first report that shows Malabar tamarind as a promising source of oil seeds. PMID:26345007

  16. Hemp ( Cannabis sativa L.) seed oil: analytical and phytochemical characterization of the unsaponifiable fraction.

    PubMed

    Montserrat-de la Paz, S; Marín-Aguilar, F; García-Giménez, M D; Fernández-Arche, M A

    2014-02-01

    Non-drug varieties of Cannabis sativa L., collectively namely as "hemp", have been an interesting source of food, fiber, and medicine for thousands of years. The ever-increasing demand for vegetables oils has made it essential to characterize additional vegetable oil through innovative uses of its components. The lipid profile showed that linoleic (55%), α-linolenic (16%), and oleic (11%) were the most abundant fatty acids. A yield (1.84-1.92%) of unsaponifiable matter was obtained, and the most interesting compounds were β-sitosterol (1905.00 ± 59.27 mg/kg of oil), campesterol (505.69 ± 32.04 mg/kg of oil), phytol (167.59 ± 1.81 mg/kg of oil), cycloartenol (90.55 ± 3.44 mg/kg of oil), and γ-tocopherol (73.38 ± 2.86 mg/100 g of oil). This study is an interesting contribution for C. sativa L. consideration as a source of bioactive compounds contributing to novel research applications for hemp seed oil in the pharmaceutical, cosmetic food, and other non-food industries.

  17. Poppy seed oil protection of the hippocampus after cerebral ischemia and re-perfusion in rats.

    PubMed

    Cevik-Demirkan, A; Oztaşan, N; Oguzhan, E O; Cil, N; Coskun, S

    2012-11-01

    The brain is highly sensitive to hypoxia; this is true particularly of parts that are crucial for cognitive function. The effects of hypoxia are especially dramatic in the hippocampus. We evaluated the potential protective effects of poppy seed oil on the number of hippocampus cells and the serum antioxidant/oxidant status after cerebral ischemia and re-perfusion (CIR). Eighteen rats were divided into three equal groups. Group 1 served as the control group without CIR. Group 2 received poppy seed oil daily by oral gavage at a dose of 0.4 ml/kg, while group 3 was given 0.4 ml/kg saline solution by oral gavage per day; these treatments were continued for one month. Groups 2 and 3 were subjected to CIR induced by clamps on two points of both of the carotid arteries for 45 min followed by 45 min re-perfusion. There were significant decreases in the number of hippocampus cells between groups 1 and 2, and between groups 1 and 3. The mean cell number in group 2 was not significantly different from that of group 3. The serum nitric oxide levels in CIR groups were elevated significantly compared to controls, and were significantly higher in group 2 than in group 3. The glutathione levels were increased significantly in the poppy seed oil treated group compared to the saline CIR groups. The malondialdehyde levels were markedly increased in group 3 compared to both groups 1 and 2. Our study suggests that poppy seed oil can improve antioxidant defense capacity after CIR, although this treatment did not alter significantly the frequency of cell death.

  18. Comparative study of the chemical composition and mineral element content of Artocarpus heterophyllus and Treculia africana seeds and seed oils.

    PubMed

    Ajayi, Ibironke Adetolu

    2008-07-01

    A comparative study of Artocarpus heterophyllus and Treculia africana seeds, both of Moraceae family, was carried out to establish their chemical compositions and evaluate their mineral element content in order to investigate the possibility of using them for human and or animal consumption and also to examine if there is a relationship between the properties of these seeds. A. heterophyllus and T. africana are rich in protein; their protein contents are higher than those from high protein animal sources such as beef and marine fishes. Both seeds have high carbohydrate content and could act as source of energy for animals if included in their diets. The oil contents of the seeds are 11.39% and 18.54% for A. heterophyllus and T. africana, respectively. The oils are consistently liquid at room temperature. The results of the physicochemical properties of the two seeds are comparable to those of conventional oil seeds such as groundnut and palm kernel oils and could be useful for nutritional and industrial purposes. The seeds were found to be good sources of mineral elements. The result revealed potassium to be the prevalent mineral elements which are 2470.00 ppm and 1680.00 ppm for A. heterophyllus and T. africana, respectively followed by sodium, magnesium and then calcium. They also contain reasonable quantity of iron, in particular A. heterophyllus 148.50 ppm.

  19. Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition.

    PubMed

    Branham, Sandra E; Wright, Sara J; Reba, Aaron; Linder, C Randal

    2016-05-01

    The renewable source of highly reduced carbon provided by plant triacylglycerols (TAGs) fills an ever increasing demand for food, biodiesel, and industrial chemicals. Each of these uses requires different compositions of fatty acid proportions in seed oils. Identifying the genes responsible for variation in seed oil composition in nature provides targets for bioengineering fatty acid proportions optimized for various industrial and nutrition goals. Here, we characterized the seed oil composition of 391 world-wide, wild accessions of Arabidopsis thaliana, and performed a genome-wide association study (GWAS) of the 9 major fatty acids in the seed oil and 4 composite measures of the fatty acids. Four to 19 regions of interest were associated with the seed oil composition traits. Thirty-four of the genes in these regions are involved in lipid metabolism or transport, with 14 specific to fatty acid synthesis or breakdown. Eight of the genes encode transcription factors. We have identified genes significantly associated with variation in fatty acid proportions that can be used as a resource across the Brassicaceae. Two-thirds of the regions identified contain candidate genes that have never been implicated in lipid metabolism and represent potential new targets for bioengineering.

  20. Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition.

    PubMed

    Branham, Sandra E; Wright, Sara J; Reba, Aaron; Linder, C Randal

    2016-05-01

    The renewable source of highly reduced carbon provided by plant triacylglycerols (TAGs) fills an ever increasing demand for food, biodiesel, and industrial chemicals. Each of these uses requires different compositions of fatty acid proportions in seed oils. Identifying the genes responsible for variation in seed oil composition in nature provides targets for bioengineering fatty acid proportions optimized for various industrial and nutrition goals. Here, we characterized the seed oil composition of 391 world-wide, wild accessions of Arabidopsis thaliana, and performed a genome-wide association study (GWAS) of the 9 major fatty acids in the seed oil and 4 composite measures of the fatty acids. Four to 19 regions of interest were associated with the seed oil composition traits. Thirty-four of the genes in these regions are involved in lipid metabolism or transport, with 14 specific to fatty acid synthesis or breakdown. Eight of the genes encode transcription factors. We have identified genes significantly associated with variation in fatty acid proportions that can be used as a resource across the Brassicaceae. Two-thirds of the regions identified contain candidate genes that have never been implicated in lipid metabolism and represent potential new targets for bioengineering. PMID:26704140

  1. Control of silverleaf whitefly, cotton aphid and kanzawa spider mite with oil and extracts from seeds of sugar apple.

    PubMed

    Lin, Chien-Yih; Wu, Der-Chung; Yu, Jih-Zu; Chen, Bing-Huei; Wang, Chin-Ling; Ko, Wen-Hsiung

    2009-01-01

    Development of alternative methods for pest management is needed with the increased concern for adverse effects of pesticides for human health and the environment. The main goal of our study was to test the oil from seeds of sugar apple (Annona squamosa), an edible tropical fruit for pest control. The oil pressed out of seeds was as effective in controlling the silverleaf whitefly, Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae), infesting leaves of tomato plants in greenhouse conditions as the recommended insecticide, with the advantage of not being phytotoxic. When observed with a scanning electron microscope, the seed oil caused whitefly nymphs to shrink and detach from the leaf surface. Sugar apple seed oil was also very effective in controlling the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), on melon leaves and the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), on soybean leaves. The study revealed the possibility of developing the oil from sugar apple seeds, an agricultural waste, into a broad spectrum product friendly to the environment and human health for crop pest management.

  2. Diversity in oil content and fatty acid profile in seeds of wild cassava germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cassava (Manihot esculenta) is the only commercial species of the Manihot genus, cultivated for its starchy tuber roots. However, cassava seeds are known to be rich in oils and fats, there are scant reports on the content and properties of oil from cassava seeds and its wild relatives. Wild Manihot ...

  3. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds

    PubMed Central

    Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong

    2015-01-01

    Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts. PMID:26302041

  4. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds.

    PubMed

    Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong

    2015-01-01

    Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts.

  5. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress. PMID:25976784

  6. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress.

  7. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  8. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  9. Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers.

    PubMed

    Chai, Guohua; Bai, Zetao; Wei, Fang; King, Graham J; Wang, Chenggang; Shi, Lei; Dong, Caihua; Chen, Hong; Liu, Shengyi

    2010-05-01

    Regulation of seed oil accumulation in oilseed rape (Brassica napus) has important economic significance. However, few genes have been characterized that affect final seed oil content. Through a mutant identification, the class IV homeodomain-ZIP transcription factor GLABRA2 (GL2) has been found to regulate seed oil accumulation in Arabidopsis, in addition to its role in trichome development. In this study, we isolated four distinct orthologues of GL2 from B. napus (AC-genome), B. rapa (A) and B. oleracea (C), using an overlapping-PCR strategy. The four GL2 orthologues were very similar, with 96.10-99.69% identity in exon regions, 75.45-93.84% in intron regions, 97.34-99.87% in amino acid sequences. Alignments of the four genes revealed that the A-genome sequences of BnaA.GL2.a from B. napus and BraA.GL2.a from B. rapa are more similar than the others, and likewise the C-genome sequences of BnaC.GL2.b from B. napus and BolC.GL2.a from B. oleracea are more similar. BnaA.GL2.a and BraA.GL2.a from the A-genome are highly expressed in roots, whilst BnaC.GL2.b and BolC.GL2.a from the C-genome are preferentially expressed in seeds. Transgenic ectopic overexpression and suppression of BnaC.GL2.b in Arabidopsis allowed further investigation of the effect on seed oil content. Overexpression generated two phenotypes: the wild-type-like and the gl2-mutant-like (an Arabidopsis glabrous mutant of gl2-2), with increases in seed oil content of 3.5-5.0% in the gl2-mutant-like transgenic plants. Suppression resulted in increases of 2.5-6.1% in seed oil content, and reduced trichome number at the leaf margins. These results suggest that BnaC.GL2.b can negatively regulate oil accumulation in Arabidopsis seeds. As a result of comparing the four GL2 genes, three A/C-genome-specific primer sets were developed and a C-genome-specific EcoRV cleavage site was identified, which can be used as functional markers to distinguish these orthologues within Brassica species. The genes identified

  10. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  11. Genetic variability for phenotype, seed production, oil content, and fatty acid composition among 17 Roselle (Hibiscus sabdariffa) accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed oil and fatty acids in plants have human health implications. Oil from roselle (Hibiscus sabdariffa L.) seeds are used in Taiwan as a diuretic, laxative, and tonic. The objectives of this study were to evaluate seeds from 17 roselle accessions for oil and fatty acid variation in a greenhouse. S...

  12. Aloe ferox seed: a potential source of oil for cosmetic and pharmaceutical use.

    PubMed

    Dangarembizi, Rachael; Chivandi, Eliton; Erlwanger, Kennedy

    2013-03-01

    Aloe ferox is an important medicinal plant in Southern Africa whose seeds could be useful as a source of oil. The fatty acid composition of A. ferox seed oil was determined using gas chromatography. The physicochemical properties of the oil were analysed using standard methods. The seeds yielded 19.4% of a light textured oil using the Blight and Dyer's method and 12.3% using the Soxhlet extraction method. The saponification value of the seed oil was 241.9 mg KOH/g and the peroxide value was 8.9 meq/kg. The acid value of the seed oil was 51.5 mg KOH/g (25.9% free fatty acids). The major fatty acids found in the seed oil were linoleic acid (71.8%), oleic acid (12.0%), palmitic acid (11.2%) and stearic acid (2.9%). The results obtained suggest that as A. ferox seed oil is high in linoleic acid, it could be potentially exploited in the cosmetic and pharmaceutical industries. PMID:23678824

  13. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    PubMed

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-01-01

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined. PMID:22367027

  14. New vitamin E isomers (gamma-tocomonoenol and alpha-tocomonoenol) in seeds, roasted seeds and roasted seed oil from the Slovenian pumpkin variety 'Slovenska golica'.

    PubMed

    Butinar, Bojan; Bučar-Miklavčič, Milena; Mariani, Carlo; Raspor, Peter

    2011-09-15

    The Štajerska region in north-eastern Slovenia and the Styria region in southern Austria have a long tradition of growing pumpkins (Cucurbita pepo L.) as an oil crop. GC-MS determination of the free and esterified minor compounds in oil of roasted pumpkin seeds from the Slovenian C. pepo L. variety 'Slovenska golica' revealed the presence of two previously unreported compounds: alpha-tocomonoenol and gamma-tocomonoenol. Using the GC-MS data, reference samples (Crude Palm Oil) and tocopherol and tocotrienol standards it was possible to assign and quantify alpha-tocomonoenol (17.6±0.6μg/g) and gamma-tocomonoenol (118.7±1.0μg/g) compounds in roasted 'S. golica' seed oil using HPLC. The concentrations of alpha-tocopherol and gamma-tocopherol were 77.9±1.9μg/g and 586.0±4.6μg/g, respectively. Surprisingly the gamma-tocotrienol concentration found was only 6.9±0.2μg/g. Analysis of the seeds from which the oil was pressed showed the initial gamma-tocotrienol amount was even lower (1.6±0.1 and 2.2±0.1μg/g in the ground and roasted seeds, respectively) than in the roasted seed oil. PMID:25212163

  15. The sterols of Cucurbita moschata ("calabacita") seed oil.

    PubMed

    Rodriguez, J B; Gros, E G; Bertoni, M H; Cattaneo, P

    1996-11-01

    From the sterol fraction of seed oil from commercial Cucurbita moschata Dutch ("calabacita") delta 5 and delta 7 sterols having saturated and unsaturated side chain were isolated by chromatographic procedures and characterized by spectroscopic (1H and 13C-nuclear magnetic resonance, mass spectrometry) methods. The main components were identified as 24S-ethyl 5 alpha-cholesta-7,22E-dien-3 beta-ol (alpha-spinasterol); 24S-ethyl 5 alpha-cholesta-7,22E,25-trien-3 beta-ol (25-dehydrochondrillasterol); 24S-ethyl 5 alpha-cholesta-7,25-dien-3 beta-ol; 24R-ethyl-cholesta-7-en-3 beta-ol (delta 7-stigmastenol) and 24-ethyl-cholesta-7, 24(28)-dien-3 beta-ol (delta 7,24(28)-stigmastadienol).

  16. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil.

    PubMed

    Guan, Rui; Li, Xueyuan; Hofvander, Per; Zhou, Xue-Rong; Wang, Danni; Stymne, Sten; Zhu, Li-Hua

    2015-04-01

    The aim of this study was to evaluate the importance of three enzymes, LPCAT, PDCT and PDAT, involved in acyl turnover in phosphatidylcholine in order to explore the possibility of further increasing erucic acid (22:1) content in Crambe seed oil. The complete coding sequences of LPCAT1-1 and LPCAT1-2 encoding lysophosphatidylcholine acyltransferase (LPCAT), PDCT1 and PDCT2 encoding phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), and PDAT encoding phospholipid:diacylglycerol acyltransferase (PDAT) were cloned from developing Crambe seeds. The alignment of deduced amino acid sequences displayed a high similarity to the Arabidopsis homologs. Transgenic lines expressing RNA interference (RNAi) targeting either single or double genes showed significant changes in the fatty acid composition of seed oil. An increase in oleic acid (18:1) was observed, to varying degrees, in all of the transgenic lines, and a cumulative effect of increased 18:1 was shown in the LPCAT-PDCT double-gene RNAi. However, LPCAT single-gene RNAi led to a decrease in 22:1 accumulation, while PDCT or PDAT single-gene RNAi had no obvious effect on the level of 22:1. In agreement with the abovementioned oil phenotypes, the transcript levels of the target genes in these transgenic lines were generally reduced compared to wild-type levels. In this paper, we discuss the potential to further increase the 22:1 content in Crambe seed oil through downregulation of these genes in combination with fatty acid elongase and desaturases.

  17. Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed.

    PubMed

    Abiodun, O A; Akinoso, R; Olosunde, O O; Adegbite, J A; Omolola, O A

    2014-10-01

    Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed were determined. Oil was extracted from the seed using standard methods while the fatty acids of the oil, chemical and anti-nutritional properties of defatted seed flour were determined. Total fat yield of the seed flour was 12.20%. Defatted seed flour had higher crude fibre (36.92%), carbohydrate (40.07%) and ash (8.17%) contents. Major mineral contents were potassium, calcium, sodium and magnesium. The tissue contain appreciable amount of vitamin C (8.10 mg/100 g). Oleic acid (42.59%) was the major fatty acid in the seed oil and the total unsaturated fatty acid was 62.38%. The seed oil had higher acid and saponification values and low iodine value. Oxalate (11.09 mg/100 g) content was the major anti-nutrient in the defatted seed flour. Defatted T. danielli seed flour serves as good source of dietary fibre and energy.

  18. Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed.

    PubMed

    Abiodun, O A; Akinoso, R; Olosunde, O O; Adegbite, J A; Omolola, O A

    2014-10-01

    Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed were determined. Oil was extracted from the seed using standard methods while the fatty acids of the oil, chemical and anti-nutritional properties of defatted seed flour were determined. Total fat yield of the seed flour was 12.20%. Defatted seed flour had higher crude fibre (36.92%), carbohydrate (40.07%) and ash (8.17%) contents. Major mineral contents were potassium, calcium, sodium and magnesium. The tissue contain appreciable amount of vitamin C (8.10 mg/100 g). Oleic acid (42.59%) was the major fatty acid in the seed oil and the total unsaturated fatty acid was 62.38%. The seed oil had higher acid and saponification values and low iodine value. Oxalate (11.09 mg/100 g) content was the major anti-nutrient in the defatted seed flour. Defatted T. danielli seed flour serves as good source of dietary fibre and energy. PMID:24799240

  19. Liquefaction of cotton seed in sub-critical water/ethanol with modified medical stone for bio-oil.

    PubMed

    Yan, Xiaomin; Wang, Baofeng; Zhang, Jinjun

    2015-12-01

    This study investigated thermal liquefaction of cotton seed in an autoclave. The effects of solvent (ethanol/water, water and ethanol), temperature and some additives on product distribution were investigated. The results showed that using ethanol/water as solvent could get higher total conversion. The highest liquid oil yield (38.4%) was obtained at 300°C, 2MPa and 30min in ethanol/water with Mo/MS (medical stone). The highest hydrogen content in gas also was obtained when adding Mo/MS, and then followed by that when adding Co-Mo/MS. (1)H NMR analysis indicated that the use of additives (except MS) could increase the aliphatic content in liquid oil. (1)H NMR and (13)C NMR showed that the liquefied oil from liquefaction of cotton seed mainly obtained aliphatic compounds, and adding the additives only changed the amount of compounds and did not alter the type of compounds obtained in the oil.

  20. Supercritical fractional extraction of fennel seed oil and essential oil: Experiments and mathematical modeling

    SciTech Connect

    Reverchon, E.; Marrone, C.; Poletto, M.; Daghero, J.; Mattea, M.

    1999-08-01

    Supercritical CO{sub 2} extraction of fennel seeds has been performed in two steps; the first step was performed at 90 bar and 50 C to obtain the selective extraction of essential oil. The second one was performed at 200 bar and 40 C and allowed the extraction of vegetable oil. The experiments were performed using the fractional separation of the extracts using three different CO{sub 2} flow rates (0.5, 1.0, and 1.5 kg/h). On the basis of the extraction results and of the analysis of scanning electron microscopy (SEM) images of the vegetable matter, mathematical models of the two extraction processes have been proposed. The extraction of fennel vegetable oil has been modeled using a model based on differential mass balances and on the concept of broken and intact cells as evidenced by SEM. Only one adjustable parameter has been used: the internal mass-transfer coefficient k{sub t}. A fairly good fitting of the experimental data was obtained by setting k{sub t} = 8 {times} 10{sup {minus}8} m/s. The fennel essential oil extraction process was modeled as desorption from the vegetable matter plus a small mass-transfer resistance. The same internal mass-transfer coefficient value used for vegetable oil extraction allowed a fairly good fitting of the essential oil extraction data.

  1. [Comparison of seed oil physicochemical characteristics among three cultivars of Jatropha curcas L].

    PubMed

    Chen, Jian-miao; Liu, Lian; Liu, Zhao-pu; Long, Xiao-hua; Zheng, Qing-song; Mao, Yi-qing

    2009-12-01

    Taking the cultivars Nanyou 1, 2, and 3 of barbadosnut (Jatropha curcas L. ) with different genotypes that can grow and seed normally at the inshore land in Hainan as test materials, the characters of their seeds and the physicochemical characteristics of their seed oils were analyzed and compared. No significant differences were observed in the seed length, width, thickness, and surface area among the cultivars, but Nanyou 2 had greater 1000 seed mass and lower unsound kernel percentage than Nanyou 1 and Nanyou 3, suggesting that the seed satiation of Nanyou 2 was good and the fecundity was excellent. The kernel oil content of Nanyou 3 was significantly higher than that of Nanyou 1 and Nanyou 2, and there was no significant difference between Nanyou 1 and Nanyou 2. The seed oil peroxide value, refractive index, and saponification value of the three cultivars had no significant differences, but the acid value for Nanyou 2 was much lower than that for Nanyou 1 and Nanyou 3. The seed oil iodine value of the three cultivars was all below 100, and was significantly lower for Nanyou 2 than for Nanyou 1 and Nanyou 3. The fatty acids in the three cultivars seed oils were mainly oleic acid, palmitic acid, linoleic acid, stearic acid, and margaric acid, and dominated by unsaturated fatty acids. The contents of saturated fatty acids in Nanyou 2 seed oil were relatively higher than those in Nanyou 1 and Nanyou 3 seed oils, indicating that comparing with Nanyou 1, cultivars Nanyou 2 and Nanyou 3 had relatively good potential for application. PMID:20353052

  2. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  3. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  4. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds.

    PubMed

    Tian, Hong-Lei; Zhan, Ping; Li, Kai-Xiong

    2010-06-01

    In order to improve the comprehensive utilization of major by-products in apple-juice processing, the components, antioxidant and antimicrobial activities of oil in two species apple seeds, Fuji and New Red Star, were investigated. The Soxhlet extracted oil content of apple seeds raged from 20.69 to 24.32 g/100 g. The protein, fiber and ash contents were found to be 38.85-49.55 g/100 g, 3.92-4.32 g/100 g and 4.31-5.20 g/100 g, respectively; the extracted oils exhibited an iodine value of 94.14-101.15 g I/100 g oil; refractive index (40 degrees C) was 1.465-1.466; density (25 degrees C) was 0.902-0.903 mg/ml; saponification value was 179.01-197.25 mg KOH/g oil; and the acid value was 4.036-4.323 mg KOH/g oil. The apple seed oils mainly consisted of linoleic acid (50.7-51.4 g/100 g) and oleic acid (37.49-38.55 g/100 g). Other prominent fatty acids were palmitic acid (6.51-6.60 g/100 g), stearic acid (1.75-1.96 g/100 g) and arachidic acid (1.49-1.54 g/100 g). Apple seed oil was proven to possess interesting properties, emerging from its chemical composition and from the evaluation of its in vitro biological activities. The apple seed oil was almost completely active against bacteria, mildews were less sensitive to apple seed oil than yeasts, and the minimum inhibitory concentration (MIC) of apple seed oil ranged from 0.3 to 0.6 mg/ml. The observed biological activities showed that the oil had a good potential for use in the food industry and pharmacy. PMID:20128637

  5. A rapid and highly specific method to evaluate the presence of pyrrolizidine alkaloids in Borago officinalis seed oil.

    PubMed

    Vacillotto, Giulio; Favretto, Donata; Seraglia, Roberta; Pagiotti, Rita; Traldi, Pietro; Mattoli, Luisa

    2013-10-01

    Pyrrolizidine alkaloids (PAs) are complex molecules, present in plants as free bases and N-oxides. They are known for their hepatotoxicity, and consequently there is a health risk associated with the use of medicinal herbs that contain PAs. Unfortunately, there is no international regulation of PAs in foods, unlike those for herbs and medicines: in particular, for herbal preparation or herbal extracts, the total PA content must not exceed 1 µg/kg or 1 µg/l, respectively. Borago officinalis seed oil is a source of γ-linolenic acid, and its use is increased in both pharmaceutical and health food industries. Even if studies based on gas chromatography and TLC methods showed that PAs are not co-extracted with oil, the development of a rapid and sensitive method able to evaluate the presence of PAs in commercially available products is surely of interest. The presence of PAs in a commercially available Borago officinalis seed oil was tested either in the oil sample diluted with tetrahydrofuran/methanol (MeOH)/H2 O (85/10/5 v:v:v) or after extraction with MeOH/H2 O (50/50 v:v) solution The samples were analysed by electrospray ionization in positive ion mode and in high mass resolution (60,000) conditions. In both cases to evaluate the effectiveness of the method, spiking experiments were performed adding known amount of two PA standards to the borage seed oil. A limit of detection in the order of 200 ppt was determined for these two compounds, strongly analogous to Borago officinalis seed oil PAs. Consequently, if present, PAs level in Borago officinalis seed oil must lower than 200 ppt. PMID:24130010

  6. A rapid and highly specific method to evaluate the presence of pyrrolizidine alkaloids in Borago officinalis seed oil.

    PubMed

    Vacillotto, Giulio; Favretto, Donata; Seraglia, Roberta; Pagiotti, Rita; Traldi, Pietro; Mattoli, Luisa

    2013-10-01

    Pyrrolizidine alkaloids (PAs) are complex molecules, present in plants as free bases and N-oxides. They are known for their hepatotoxicity, and consequently there is a health risk associated with the use of medicinal herbs that contain PAs. Unfortunately, there is no international regulation of PAs in foods, unlike those for herbs and medicines: in particular, for herbal preparation or herbal extracts, the total PA content must not exceed 1 µg/kg or 1 µg/l, respectively. Borago officinalis seed oil is a source of γ-linolenic acid, and its use is increased in both pharmaceutical and health food industries. Even if studies based on gas chromatography and TLC methods showed that PAs are not co-extracted with oil, the development of a rapid and sensitive method able to evaluate the presence of PAs in commercially available products is surely of interest. The presence of PAs in a commercially available Borago officinalis seed oil was tested either in the oil sample diluted with tetrahydrofuran/methanol (MeOH)/H2 O (85/10/5 v:v:v) or after extraction with MeOH/H2 O (50/50 v:v) solution The samples were analysed by electrospray ionization in positive ion mode and in high mass resolution (60,000) conditions. In both cases to evaluate the effectiveness of the method, spiking experiments were performed adding known amount of two PA standards to the borage seed oil. A limit of detection in the order of 200 ppt was determined for these two compounds, strongly analogous to Borago officinalis seed oil PAs. Consequently, if present, PAs level in Borago officinalis seed oil must lower than 200 ppt.

  7. Dietary strawberry seed oil affects metabolite formation in the distal intestine and ameliorates lipid metabolism in rats fed an obesogenic diet

    PubMed Central

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-01-01

    Objective To answer the question whether dietary strawberry seed oil rich in α-linolenic acid and linoleic acid (29.3 and 47.2% of total fatty acids, respectively) can beneficially affect disorders induced by the consumption of an obesogenic diet. Design Thirty-two male Wistar rats were randomly assigned to four groups of eight animals each and fed with a basal or obesogenic (high in fat and low in fiber) diet that contained either strawberry seed oil or an edible rapeseed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. Results After 8 weeks of feeding, the obesogenic diet increased the body weight and the liver mass and fat content, whereas decreased the cecal acetate and butyrate concentration. This diet also altered the plasma lipid profile and decreased the liver sterol regulatory element-binding protein 1c (SREBP-1c) content. However, the lowest liver SREBP-1c content was observed in rats fed an obesogenic diet containing strawberry seed oil. Moreover, dietary strawberry seed oil decreased the cecal short-chain fatty acid concentrations (acetate, propionate, and butyrate) regardless of the diet type, whereas the cecal β-glucuronidase activity was considerably increased only in rats fed an obesogenic diet containing strawberry seed oil. Dietary strawberry seed oil also lowered the liver fat content, the plasma triglyceride level and the atherogenic index of plasma. Conclusions Strawberry seed oil has a potent lipid-lowering activity but can unfavorably affect microbial metabolism in the distal intestine. The observed effects are partly due to the synergistic action of the oil and the obesogenic diet. PMID:25636326

  8. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils.

    PubMed

    Jorge, Neuza; da Silva, Ana Carolina; Malacrida, Cassia Roberta

    2015-01-01

    Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2-83.5%, with linoleic acid being the dominant fatty acid (62.4-72.5%), followed by oleic acid (10.8-22.7%) and palmitic acid (9.2-9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable.

  9. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils.

    PubMed

    Jorge, Neuza; da Silva, Ana Carolina; Malacrida, Cassia Roberta

    2015-01-01

    Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2-83.5%, with linoleic acid being the dominant fatty acid (62.4-72.5%), followed by oleic acid (10.8-22.7%) and palmitic acid (9.2-9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable. PMID:25697079

  10. Characteristics and Composition of African Oil Bean Seed (Pentaclethra macrophylla Benth)

    NASA Astrophysics Data System (ADS)

    Ikhuoria, Esther U.; Aiwonegbe, Anthony E.; Okoli, Peace; Idu, Macdonald

    The African oil bean (Pentaclethra macrophylla) seed was analyzed for its proximate composition. The seed oil was also analyzed for mineral content and physicochemical characteristics. Proximate analysis revealed that the percentage crude protein, crude fibre, moisture and carbohydrate were 9.31, 21.66, 39.05 and 38.95%, respectively. The percentage oil content was 47.90% while the ash content was 3.27%. Results of minerals analysis showed that calcium had the highest concentration of all the elements analyzed and were found to be of the order: Ca > Mg > Pb > Fe > Mn > P > Cu. The low iodine value of the seed oil showed that it can be classified as non-drying oil and thus not suitable for paint and polish production. However, the low acid and free fatty acid values suggest its utilization as edible oil.

  11. A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed.

    PubMed

    Fuchs, Johannes; Neuberger, Thomas; Rolletschek, Hardy; Schiebold, Silke; Nguyen, Thuy Ha; Borisjuk, Nikolai; Börner, Andreas; Melkus, Gerd; Jakob, Peter; Borisjuk, Ljudmilla

    2013-02-01

    While often thought of as a smoking drug, tobacco (Nicotiana spp.) is now considered as a plant of choice for molecular farming and biofuel production. Here, we describe a noninvasive means of deriving both the distribution of lipid and the microtopology of the submillimeter tobacco seed, founded on nuclear magnetic resonance (NMR) technology. Our platform enables counting of seeds inside the intact tobacco capsule to measure seed sizes, to model the seed interior in three dimensions, to quantify the lipid content, and to visualize lipid gradients. Hundreds of seeds can be simultaneously imaged at an isotropic resolution of 25 µm, sufficient to assess each individual seed. The relative contributions of the embryo and the endosperm to both seed size and total lipid content could be assessed. The extension of the platform to a range of wild and cultivated Nicotiana species demonstrated certain evolutionary trends in both seed topology and pattern of lipid storage. The NMR analysis of transgenic tobacco plants with seed-specific ectopic expression of the plastidial phosphoenolpyruvate/phosphate translocator, displayed a trade off between seed size and oil concentration. The NMR-based assay of seed lipid content and topology has a number of potential applications, in particular providing a means to test and optimize transgenic strategies aimed at the manipulation of seed size, seed number, and lipid content in tobacco and other species with submillimeter seeds. PMID:23232144

  12. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows.

    PubMed

    Pi, Y; Gao, S T; Ma, L; Zhu, Y X; Wang, J Q; Zhang, J M; Xu, J C; Bu, D P

    2016-07-01

    This experiment was conducted to investigate effect of rubber seed oil compared with flaxseed oil when fed alone or in combination on milk yield, milk composition, and α-linolenic acid (ALA) concentration in milk of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized design. Cows were fed a basal diet (control; CON) or a basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO), or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis for 9 wk. Feed intake, milk protein percentage, and milk fat levels did not differ between the treatments. Cows fed the RO, FO, or RFO treatments had a higher milk yield than the CON group (up to 10.5% more), whereas milk fat percentages decreased. Compared with the CON, milk concentration of ALA was substantially higher in cows receiving RO or RFO, and was doubled in cows receiving FO. The ALA yield (g/d) increased by 31.0, 70.3, and 33.4% in milk from cows fed RO, FO, or RFO, respectively, compared with the CON. Both C18:1 trans-11 (vaccenic acid) and C18:2 cis-9,trans-11 (conjugated linoleic acid; CLA) levels were higher in cows fed added flaxseed or rubber seed oil. The CLA yield (g/d) increased by 336, 492, and 484% in cows fed RO, FO, or RFO, respectively, compared with the CON. The increase in vaccenic acid, ALA, and CLA was greater in cows fed RFO than in cows fed RO alone. Compared with the CON, the milk fat from cows fed any of the dietary supplements had a higher concentration of unsaturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids; conversely, the saturated fatty acids levels in milk fat were 30.5% lower. Insulin and growth hormones were not affected by dietary treatments; however, we noted an increase in both cholesterol and nonesterified fatty acids levels in the RO, FO, or RFO treatments. These results indicate that rubber seed oil and flaxseed oil will increase milk

  13. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows.

    PubMed

    Pi, Y; Gao, S T; Ma, L; Zhu, Y X; Wang, J Q; Zhang, J M; Xu, J C; Bu, D P

    2016-07-01

    This experiment was conducted to investigate effect of rubber seed oil compared with flaxseed oil when fed alone or in combination on milk yield, milk composition, and α-linolenic acid (ALA) concentration in milk of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized design. Cows were fed a basal diet (control; CON) or a basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO), or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis for 9 wk. Feed intake, milk protein percentage, and milk fat levels did not differ between the treatments. Cows fed the RO, FO, or RFO treatments had a higher milk yield than the CON group (up to 10.5% more), whereas milk fat percentages decreased. Compared with the CON, milk concentration of ALA was substantially higher in cows receiving RO or RFO, and was doubled in cows receiving FO. The ALA yield (g/d) increased by 31.0, 70.3, and 33.4% in milk from cows fed RO, FO, or RFO, respectively, compared with the CON. Both C18:1 trans-11 (vaccenic acid) and C18:2 cis-9,trans-11 (conjugated linoleic acid; CLA) levels were higher in cows fed added flaxseed or rubber seed oil. The CLA yield (g/d) increased by 336, 492, and 484% in cows fed RO, FO, or RFO, respectively, compared with the CON. The increase in vaccenic acid, ALA, and CLA was greater in cows fed RFO than in cows fed RO alone. Compared with the CON, the milk fat from cows fed any of the dietary supplements had a higher concentration of unsaturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids; conversely, the saturated fatty acids levels in milk fat were 30.5% lower. Insulin and growth hormones were not affected by dietary treatments; however, we noted an increase in both cholesterol and nonesterified fatty acids levels in the RO, FO, or RFO treatments. These results indicate that rubber seed oil and flaxseed oil will increase milk

  14. Synthesis of Azidohydrin from Hura crepitans Seed Oil: A Renewable Resource for Oleochemical Industry and Sustainable Development.

    PubMed

    Adewuyi, Adewale; Göpfert, Andrea; Wolff, Thomas; Rao, B V S K; Prasad, R B N

    2012-01-01

    The replacement of petrochemicals by oleochemical feedstocks in many industrial and domestic applications has resulted in an increase in demand for biobased products and as such recognizing and increasing the benefits of using renewable materials. In line with this, the oil extracted from the seed of Hura crepitans was characterized by an iodine value of 120.10 ± 0.70 g Iodine/100 g and a saponification number of 210.10 ± 0.40 mg KOH/g with the dominant fatty acid being C18:2 (52.8 ± 0.10%). The epoxidised fatty acid methyl esters prepared from the oil were used to synthesise the azidohydrin with a yield of 91.20%. The progress of the reaction was monitored and confirmed using FTIR and NMR. This showed the seed oil of Hura crepitans as a renewable resource that can be used to make valuable industrial and domestic products.

  15. Headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils.

    PubMed

    Kwon, Tae Young; Park, Ji Su; Jung, Mun Yhung

    2013-09-11

    A new headspace (HS)-solid phase microextraction (SPME)-gas chromatography-tandem quadrupole mass spectrometry (GC-MS(2)) was established for the simultaneous characterization and quantitation of pyrazines in perilla seed oils. HS-SPME conditions such as fiber choice, extraction temperature, and adsorption times were tested. The established GC-MS(2) showed low detection limit (LOD) and high specificity, recovery, and precision for analysis of pyrazines in perilla seed oils. The LODs for the pyrazines were in the range of 0.07-22.22 ng/g oil. The relative standard deviations (RSDs) for the intra- and interday repeated analyses of pyrazines were less than 9.49 and 9.76%, respectively. The mean recoveries for spiked pyrazines in perilla seed oil were in the range of 94.6-107.92%. Perilla seed oils were obtained by mechanical pressing from perilla seeds roasted to different degrees of roasting (mild, medium, medium dark, and dark roasting). Fourteen pyrazine compounds in perilla seed oils were isolated, identified, and quantitated. Among them, 2-methyl-3-propylpyrazine, tetramethylpyrazine, and 2,3-diethyl-5-methylpyrazine were the first identified in perilla seed oils. Degree of roasting influenced greatly the composition and contents of pyrazines in perilla seed oils. In light-roasted perilla seed oil, 2,5-dimethylpyrazine was the most predominant pyrazine. However, in dark-roasted perilla seed oil, 2-methylpyrazine was the most abundant pyrazine in the oil, representing 38.3% of its total pyrazine content. Dark-roasted perilla seed oil contains 16.78 times higher quantity of pyrazines than light-roasted perilla seed oil. This represents the first report on the quantity of pyrazines in perilla seed oils.

  16. Radioactive Chernobyl environment has produced high-oil flax seeds that show proteome alterations related to carbon metabolism during seed development.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Rashydov, Namik M; Hajduch, Martin

    2013-11-01

    Starting in 2007, we have grown soybean (Glycine max [L.] Merr. variety Soniachna) and flax (Linum usitatissimum, L. variety Kyivskyi) in the radio-contaminated Chernobyl area and analyzed the seed proteomes. In the second-generation flax seeds, we detected a 12% increase in oil content. To characterize the bases for this increase, seed development has been studied. Flax seeds were harvested in biological triplicate at 2, 4, and 6 weeks after flowering and at maturity from plants grown in nonradioactive and radio-contaminated plots in the Chernobyl area for two generations. Quantitative proteomic analyses based on 2-D gel electrophoresis (2-DE) allowed us to establish developmental profiles for 199 2-DE spots in both plots, out of which 79 were reliably identified by tandem mass spectrometry. The data suggest a statistically significant increased abundance of proteins associated with pyruvate biosynthesis via cytoplasmic glycolysis, L-malate decarboxylation, isocitrate dehydrogenation, and ethanol oxidation to acetaldehyde in early stages of seed development. This was followed by statistically significant increased abundance of ketoacyl-[acylcarrier protein] synthase I related to condensation of malonyl-ACP with elongating fatty acid chains. On the basis of these and previous data, we propose a preliminary model for plant adaptation to growth in a radio-contaminated environment. One aspect of the model suggests that changes in carbon assimilation and fatty acid biosynthesis are an integral part of plant adaptation. PMID:24111740

  17. Radioactive Chernobyl environment has produced high-oil flax seeds that show proteome alterations related to carbon metabolism during seed development.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Rashydov, Namik M; Hajduch, Martin

    2013-11-01

    Starting in 2007, we have grown soybean (Glycine max [L.] Merr. variety Soniachna) and flax (Linum usitatissimum, L. variety Kyivskyi) in the radio-contaminated Chernobyl area and analyzed the seed proteomes. In the second-generation flax seeds, we detected a 12% increase in oil content. To characterize the bases for this increase, seed development has been studied. Flax seeds were harvested in biological triplicate at 2, 4, and 6 weeks after flowering and at maturity from plants grown in nonradioactive and radio-contaminated plots in the Chernobyl area for two generations. Quantitative proteomic analyses based on 2-D gel electrophoresis (2-DE) allowed us to establish developmental profiles for 199 2-DE spots in both plots, out of which 79 were reliably identified by tandem mass spectrometry. The data suggest a statistically significant increased abundance of proteins associated with pyruvate biosynthesis via cytoplasmic glycolysis, L-malate decarboxylation, isocitrate dehydrogenation, and ethanol oxidation to acetaldehyde in early stages of seed development. This was followed by statistically significant increased abundance of ketoacyl-[acylcarrier protein] synthase I related to condensation of malonyl-ACP with elongating fatty acid chains. On the basis of these and previous data, we propose a preliminary model for plant adaptation to growth in a radio-contaminated environment. One aspect of the model suggests that changes in carbon assimilation and fatty acid biosynthesis are an integral part of plant adaptation.

  18. [The effects of grape seed and coriander oil on biochemical parameters of oral fluid in patients with periodontitis].

    PubMed

    Nikolaishvili, M; Gogua, M; Franchuki, Q; Tufinashvili, T; Zurabashvili, D

    2014-10-01

    Biochemical changes that are taking place in patients with periodontitis 1 and 2 the quality of the individuals place in a laqtatdegidrogenazis, alkaline phosphatase activity increase and reduced activity amilazais. Therefore we can conclude that, there is an increase in superoxide substances, which causes an increase in the oral cavity patobakteriebis and quality of periodontitis. The grape seed and coriander oil is of vegetable origin and antioxidant drugs. Their action causes a statistically significant increase in the amilazis, alkaline phosphatase and laqtatdegidrogenazis reduction, while the latter leads pH - rate of return to oral fluid. It should be noted that the positive effect of coriander oil, but less effective.

  19. [The effects of grape seed and coriander oil on biochemical parameters of oral fluid in patients with periodontitis].

    PubMed

    Nikolaishvili, M; Gogua, M; Franchuki, Q; Tufinashvili, T; Zurabashvili, D

    2014-10-01

    Biochemical changes that are taking place in patients with periodontitis 1 and 2 the quality of the individuals place in a laqtatdegidrogenazis, alkaline phosphatase activity increase and reduced activity amilazais. Therefore we can conclude that, there is an increase in superoxide substances, which causes an increase in the oral cavity patobakteriebis and quality of periodontitis. The grape seed and coriander oil is of vegetable origin and antioxidant drugs. Their action causes a statistically significant increase in the amilazis, alkaline phosphatase and laqtatdegidrogenazis reduction, while the latter leads pH - rate of return to oral fluid. It should be noted that the positive effect of coriander oil, but less effective. PMID:25416221

  20. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    DOE PAGESBeta

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; Hu, Zhaohui; Swift, Jennifer E.; Yalamanchili, Roopa; Dvora, Mia; Lin, Xiuli; Xie, Deyu; Qu, Rongda; et al

    2015-10-29

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less

  1. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  2. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. PMID:21803444

  3. Water-triacylglycerol interactions affect oil body structure and seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are investigating interactions between water and triacylglycerols (TAG) that appear to affect oil body stability and viability of seeds. Dried seeds are usually stored at freezer temperatures (-20oC) for long-term conservation of genetic resources. This globally accepted genebanking practice is...

  4. Effects of oil extraction on functional properties of protein in pennycress (Thlaspi arvense) seed and press cake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in pennycress (Thlaspi arvense) comes from its seed oil, which is being evaluated for biodiesel production. The seed also has notable protein content (33% db). The effects of oil processing conditions on functionality of pennycress seed proteins were determined to identify potential...

  5. Identification of genes/loci and functional markers for seed oil quality improvement by exploring soybean genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The difference in seed oil composition and content among soybean genotypes can be attributed mostly to variations in transcript sequences and/or transcript accumulation of oil-related genes expressed in seeds. We applied the Illumina HiSeq 2000 system to sequence RNA populations in soybean seeds fro...

  6. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils.

    PubMed

    Parry, John; Su, Lan; Luther, Marla; Zhou, Kequan; Yurawecz, M Peter; Whittaker, Paul; Yu, Liangli

    2005-02-01

    Cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils were evaluated for their fatty acid composition, carotenoid content, tocopherol profile, total phenolic content (TPC), oxidative stability index (OSI), peroxide value, and antioxidant properties. All tested seed oils contained significant levels of alpha-linolenic acid ranging from 19.6 to 32.4 g per 100 g of oil, along with a low ratio of n-6/n-3 fatty acids (1.64-3.99). The total carotenoid content ranged from 12.5 to 30.0 micromoles per kg oil. Zeaxanthin was the major carotenoid compound in all tested berry seed oils, along with beta-carotene, lutein, and cryptoxanthin. Total tocopherol was 260.6-2276.9 mumoles per kg oil, including alpha-, gamma-, and delta-tocopherols. OSI values were 20.07, 20.30, and 44.76 h for the marionberry, red raspberry, and boysenberry seed oils, respectively. The highest TPC of 2.0 mg gallic acid equivalents per gram of oil was observed in the red raspberry seed oil, while the strongest oxygen radical absorbance capacity was in boysenberry seed oil extract (77.9 micromol trolox equivalents per g oil). All tested berry seed oils directly reacted with and quenched DPPH radicals in a dose- and time-dependent manner. These data suggest that the cold-pressed berry seed oils may serve as potential dietary sources of tocopherols, carotenoids, and natural antioxidants.

  7. No positive influence of ingesting chia seed oil on human running performance.

    PubMed

    Nieman, David C; Gillitt, Nicholas D; Meaney, Mary Pat; Dew, Dustin A

    2015-05-01

    Runners (n = 24) reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg-1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max). Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA) during the chia seed oil (337%) versus water trial (35%) (70.8 ± 8.6, 20.3 ± 1.8 μg mL(-1), respectively, p < 0.001), run time to exhaustion did not differ between trials (1.86 ± 0.10, 1.91 ± 0.13 h, p = 0.577, respectively). No trial differences were found for respiratory exchange ratio (RER) (0.92 ± 0.01), oxygen consumption, ventilation, ratings of perceived exertion (RPE), and plasma glucose and blood lactate. Significant post-run increases were measured for total leukocyte counts, plasma cortisol, and plasma cytokines (Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), and Tumor necrosis factors-α (TNF-α)), with no trial differences. Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures. PMID:25988762

  8. No positive influence of ingesting chia seed oil on human running performance.

    PubMed

    Nieman, David C; Gillitt, Nicholas D; Meaney, Mary Pat; Dew, Dustin A

    2015-05-15

    Runners (n = 24) reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg-1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max). Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA) during the chia seed oil (337%) versus water trial (35%) (70.8 ± 8.6, 20.3 ± 1.8 μg mL(-1), respectively, p < 0.001), run time to exhaustion did not differ between trials (1.86 ± 0.10, 1.91 ± 0.13 h, p = 0.577, respectively). No trial differences were found for respiratory exchange ratio (RER) (0.92 ± 0.01), oxygen consumption, ventilation, ratings of perceived exertion (RPE), and plasma glucose and blood lactate. Significant post-run increases were measured for total leukocyte counts, plasma cortisol, and plasma cytokines (Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), and Tumor necrosis factors-α (TNF-α)), with no trial differences. Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures.

  9. No Positive Influence of Ingesting Chia Seed Oil on Human Running Performance

    PubMed Central

    Nieman, David C.; Gillitt, Nicholas D.; Meaney, Mary Pat; Dew, Dustin A.

    2015-01-01

    Runners (n = 24) reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg−1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max). Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA) during the chia seed oil (337%) versus water trial (35%) (70.8 ± 8.6, 20.3 ± 1.8 μg mL−1, respectively, p < 0.001), run time to exhaustion did not differ between trials (1.86 ± 0.10, 1.91 ± 0.13 h, p = 0.577, respectively). No trial differences were found for respiratory exchange ratio (RER) (0.92 ± 0.01), oxygen consumption, ventilation, ratings of perceived exertion (RPE), and plasma glucose and blood lactate. Significant post-run increases were measured for total leukocyte counts, plasma cortisol, and plasma cytokines (Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), and Tumor necrosis factors-α (TNF-α)), with no trial differences. Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures. PMID:25988762

  10. Extraction, isolation and characterisation of oil bodies from pumpkin seeds for therapeutic use.

    PubMed

    Adams, Gary G; Imran, Shahwar; Wang, Sheng; Mohammad, Abubaker; Kok, M Samil; Gray, David A; Channell, Guy A; Harding, Stephen E

    2012-10-15

    Pumpkin, a member of the Cucurbitaceae family has been used frequently as functional medicines for therapeutic use. Several phytochemicals such as polysaccharides, phenolic glycosides, 13-hydroxy-9Z, 11E-octadecatrienoic acid from the leaves of pumpkin, proteins from germinated seeds, have been isolated. Here the influence of pH, ionic strength, and temperature on the properties and stability of oil bodies from pumpkin (Cucurbita) were determined with a view to patterning oil body size and structure for future therapeutic intervention. Oil bodies from pumpkin seeds were extracted, isolated, characterised using optical microscopy, zeta potential and particle size distribution obtained. During microscopic analysis, the oil bodies were more intact and in an integrated form at the time of extraction but were ruptured with time. Water extracted oil bodies were spherical for all four layers where cream had larger oil bodies then upper curd. Lower curd and supernatant had considerably smaller size with lower curd densely packed and seemed to be rich in oil bodies than any of the four layers. At pH 3, in the absence of salt, the zeta potential is approximately +30 mV, but as the salt concentration increases, the ζ potential rises at 10 mM but then decreases over the salt range. This trend continues for the upper curd, lower curd and the supernatant and the degree of the reduction (mV) in zeta potential is of the order creamincreased salt concentrations induce negative potentials. Increasing the salt concentrations still further, however, does not make the ζ potential more negative. However, at pH 9 the zeta potential falls from 0 to -50 mV as the salt concentration increases with the largest reduction shown with 100 mM salt. Particle size distribution at increasing pH salt concentration

  11. Report-The fatty acid composition and physicochemical properties of the underutilised Cassia abbreviata seed oil.

    PubMed

    Dangarembizi, Rachael; Chivandi, Eliton; Dawood, Sumaya; Erlwanger, Kennedy Honey; Gundidza, Mazuru; Magwa, Michael Libala; Muredzi, Perkins; Samie, Amidou

    2015-05-01

    The fatty acid composition of the underutilised Cassia abbreviata seed oil was determined using gas chromatographic methods. C. abbreviata seeds yielded 9.53% of yellowish-green oil consisting mainly of oleic acid (37.8%), palmitic acid (26.5%), linoleic acid (26.7%), stearic acid (4.1%) and elaidic acid (2.1%). The oil was solid at room temperature, had a saponification value of 376.16 mg KOH/g and an iodine value of 26.48 g I2/100g oil. The fatty acid composition and saponification value of the C. abbreviata seed oil suggest that it may find application in both cosmetic and pharmaceutical natural product formulations.

  12. Report-The fatty acid composition and physicochemical properties of the underutilised Cassia abbreviata seed oil.

    PubMed

    Dangarembizi, Rachael; Chivandi, Eliton; Dawood, Sumaya; Erlwanger, Kennedy Honey; Gundidza, Mazuru; Magwa, Michael Libala; Muredzi, Perkins; Samie, Amidou

    2015-05-01

    The fatty acid composition of the underutilised Cassia abbreviata seed oil was determined using gas chromatographic methods. C. abbreviata seeds yielded 9.53% of yellowish-green oil consisting mainly of oleic acid (37.8%), palmitic acid (26.5%), linoleic acid (26.7%), stearic acid (4.1%) and elaidic acid (2.1%). The oil was solid at room temperature, had a saponification value of 376.16 mg KOH/g and an iodine value of 26.48 g I2/100g oil. The fatty acid composition and saponification value of the C. abbreviata seed oil suggest that it may find application in both cosmetic and pharmaceutical natural product formulations. PMID:26004707

  13. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  14. Soybean seed protein oil fatty acids sugars and minerals as affected by seeding rates and row spacing in the Midsouth USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the effects of seeding rates (SDR) and row spacing (RS) on soybean seed composition is almost non-existent. The objective of this research was to investigate the effect of SDR and RS on soybean seed protein, oil, fatty acids, sugars, and minerals using two soybean cultivars, P 93M90 (ear...

  15. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus

    PubMed Central

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1–7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC50 values (lethal concentration for 50% mortality) showed that C. maculatus (LC50 = 1.34 μL/L air) was more susceptible than T. confusum (LC50 = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides. PMID:23227365

  16. The therapeutic applications of celery oil seed extract on the plasticizer di(2-ethylhexyl) phthalate toxicity.

    PubMed

    El-Shinnawy, Nashwa A

    2015-04-01

    The present study investigated the impact of two doses, 500 mg/kg and 1000 mg/kg, of di(2-ethylhexyl) phthalate (DEHP) and studied the possible therapeutic dose of celery oil seed extract for 6 weeks on some atheroscelerogenic, obesogenic, antioxidant and liver functions in rats. Both doses of DEHP caused over-expression of peroxisome proliferator-activated receptor alpha (PPARα) messenger RNA with significant increase in liver weights, relative liver weights, serum cholesterol (Chol), triglycerides, low-density lipoprotein Chol, liver total lipids, along with an increase in the activities of serum aspartate aminotransferase, alanine aminotransferase, serum endothelin 1 and liver tissue thiobarbituric acid reactive substances (TBARS). Additionally, DEHP administration to rats resulted in significant decrease in final body weights, serum total protein, albumin, liver total protein and serum total nitric oxide. Our study confirmed the role of oral combination of Apium graveolens (celery) oil seed extract at small cumulative doses (50 µl/kg for 6 weeks) with DEHP in ameliorating the toxicological effects of DEHP, which was revealed in reducing the expression of PPARα, lipid profile, with restoring liver functions, vascular oxidative stress and inhibition of TBARS activity.

  17. Ricinus communis and Jatropha curcas (Euphorbiaceae) seed oil toxicity against Atta sexdens rubropilosa (Hymenoptera: Formicidae).

    PubMed

    Alonso, E C; Santos, D Y A C

    2013-04-01

    Leaf-cutting ants are the main herbivores in the New World tropics. Although the toxicity of seed oils against these ants has been poorly investigated, previous results revealed that seed oils exert considerable toxic activity against these insects. This paper analyzes the toxic action and deterrent properties of castor oil, Ricinus communis L., and physic nut oil, Jatropha curcas L., against workers of the leaf-cutting ant Atta sexdens rubropilosa reared in laboratory. Toxic effect was analyzed by feeding insects artificial diets supplemented with different oil concentrations and direct contact with the two oils. Deterrent activity was assessed by measuring the frequency of attendance to diets during the first 48 h of the ingestion bioassay. Castor oil at 10 and 30 mg/ml and physic nut oil at 5, 10, and 30 mg/ml were toxic by ingestion. In the direct contact bioassay, toxicity was observed for physic nut oil at 0.1 and 0.2 mg/ml, whereas castor oil exerted toxic effects only when the highest concentration was applied. Also, castor oil had a more pronounced deterrent effect against the leaf-cutting ant, compared with physic nut oil. Methods to apply these oils to control these insects are discussed.

  18. Bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides seeds against Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae).

    PubMed

    Fogang, Hervet Paulain Dongmo; Womeni, Hilaire Macaire; Piombo, Georges; Barouh, Nathalie; Tapondjou, Léon Azefack

    2012-03-01

    Experiments were conducted in the laboratory to evaluate the bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides (Rutaceae) against Acanthoscelides obtectus (Coleoptera: Bruchidae). The chemical composition of the essential oil and the fatty acid composition of the vegetable oil extracted from the seeds of Z. xanthoxyloides were determined. The insecticidal activities of these oils and the associated aromatized clay powder were evaluated against A. obtectus. Both oils were strongly repellent (100% repellency at 0.501 μl/cm² essential oil and 3.144 μl/cm² vegetable oil) and highly toxic (LC₅₀ = 0.118 μl/cm² for essential oil) to this beetle after contact on filter paper. The vapors of the essential oil were highly toxic to adult insects (LC₅₀ = 0.044 μl/cm³), and the aromatized powder made from clay and essential oil was more toxic (LD₅₀ = 0.137 μl/g) than the essential oil alone (LD₅₀ = 0.193 μl/g) after 2 days of exposure on a common bean. Both oils greatly reduced the F₁ insect production and bean weight loss and did not adversely affect the bean seed viability. In general, the results obtained indicate that these plant oils can be used for control of A. obtectus in stored beans.

  19. Effect of chemical structure on film-forming properties of seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...

  20. Processing of coriander fruits for the production of essential oil, triglyceride, and high protein seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as a fresh green herb or as a spice. The essential oil extracted from coriander fruit is also widely used as flavoring in a variety of food products. The fatty oil (triglyceride) fraction in the seed is rich in petrosel...

  1. Some rape/canola seed oils: fatty acid composition and tocopherols.

    PubMed

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80-64.92%), linoleic (17.11-20.92%) and palmitic (4.18-5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars.

  2. Oil content in seeds of the NPGS jojoba (Simmondsia chinensis) germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jojoba, Simmondsia chinensis, (Link) Schneider is a shrub native to warm and arid land regions of North and Latin America. Its seeds contain vegetable oil composed of long (C20-22), straight-chain liquid wax of non-glyceride esters. Minute amounts of triglycerides in its composition make the oil a l...

  3. Some rape/canola seed oils: fatty acid composition and tocopherols.

    PubMed

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80-64.92%), linoleic (17.11-20.92%) and palmitic (4.18-5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars. PMID:27023318

  4. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  5. Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies

    PubMed Central

    Rodríguez-García, María Isabel

    2014-01-01

    The major seed storage reserves in oilseeds are accumulated in protein bodies and oil bodies, and serve as an energy, carbon, and nitrogen source during germination. Here, the spatio-temporal relationships between protein bodies and several key enzymes (phospholipase A, lipase, and lipoxygenase) involved in storage lipid mobilization in cotyledon cells was analysed during in vitro seed germination. Enzyme activities were assayed in-gel and their cellular localization were determined using microscopy techniques. At seed maturity, phospholipase A and triacylglycerol lipase activities were found exclusively in protein bodies. However, after seed imbibition, these activities were shifted to the cytoplasm and the surface of the oil bodies. The activity of neutral lipases was detected by using α-naphthyl palmitate and it was associated mainly with protein bodies during the whole course of germination. This pattern of distribution was highly similar to the localization of neutral lipids, which progressively appeared in protein bodies. Lipoxygenase activity was found in both the protein bodies and on the surface of the oil bodies during the initial phase of seed germination. The association of lipoxygenase with oil bodies was temporally correlated with the appearance of phospholipase A and lipase activities on the surface of oil bodies. It is concluded that protein bodies not only serve as simple storage structures, but are also dynamic and multifunctional organelles directly involved in storage lipid mobilization during olive seed germination. PMID:24170742

  6. Proteomic identification of allergenic seed proteins, napin and cruciferin, from cold-pressed rapeseed oils.

    PubMed

    Puumalainen, T J; Puustinen, A; Poikonen, S; Turjanmaa, K; Palosuo, T; Vaali, K

    2015-05-15

    In Finland and France atopic children commonly react to seeds of oilseed rape and turnip rape in skin prick tests (SPT) and open food challenges. These seeds are not as such in dietary use and therefore the routes of sensitization are unknown. Possible allergens were extracted from commercial cold-pressed and refined rapeseed oils and identified by gel-based tandem nanoflow liquid chromatography mass spectrometry (LC-MS/MS). Napin (a 2S albumin), earlier identified as a major allergen in the seeds of oilseed rape and turnip rape, and cruciferin (an 11S globulin), a new potential seed allergen, were detected in cold-pressed oils, but not in refined oils. Pooled sera from five children sensitized or allergic to oilseed rape and turnip rape seeds reacted to these proteins from cold-pressed oil preparations and individual sera from five children reacted to these proteins extracted from the seeds when examined with IgE immunoblotting. Hence cold-pressed rapeseed oil might be one possible route of sensitization for these allergens.

  7. Quality characteristics and stability of Moringa oleifera seed oil of Indian origin.

    PubMed

    Ogunsina, Babatunde S; Indira, T N; Bhatnagar, A S; Radha, C; Debnath, S; Gopala Krishna, A G

    2014-03-01

    Cold pressed and hexane extracted moringa seed oils (CPMSO and HEMSO) were evaluated for their physico-chemical and stability characteristics. The iodine value, saponification value and unsaponifiable matter of CPMSO and HEMSO were found to be 67.8 and 68.5 g I2 / 100 g oil, 190.4 and 191.2 mg KOH / g oil and 0.59 and 0.65%, respectively. The total tocopherols of CPMSO and HEMSO were found to be 95.5 and 90.2 mg/Kg. The fatty acid composition of CPMSO and HEMSO showed oleic acid as the major fatty acid (78-79%). The oxidative, thermal and frying stabilities of the CPMSO were compared with commercial raw and refined groundnut oil (GNO and RGNO). The CPMSO was of adequate thermal stability and better oxidative stability as it showed 79% lesser peroxide formation than GNO. The frying stability of CPMSO was better as it showed lower increase in free fatty acid (28%), peroxide value (10 meq O2/Kg) and color (25%) than RGNO (48%, 22 meq O2/kg and 52%, respectively) after frying. PMID:24587525

  8. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes.

    PubMed

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H

    2012-01-01

    Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA. PMID:22806781

  9. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    NASA Astrophysics Data System (ADS)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  10. Antioxidant effect of poleo and oregano essential oil on roasted sunflower seeds.

    PubMed

    Quiroga, Patricia R; Grosso, Nelson R; Nepote, Valeria

    2013-12-01

    The objective was to evaluate the stability of sensory and chemical parameters in roasted sunflower seeds supplemented with oregano and poleo essential oils; and the consumer acceptability of this product. Four samples were prepared: plain roasted sunflower seeds (Control = RS-C), and sunflower seeds added with oregano (RS-O) or poleo (RS-P) essential oils or BHT (RS-BHT). Consumer acceptance was determined on fresh samples. The overall acceptance averages were 6.13 for RS-C, 5.62 for RS-P, and 5.50 for RS-O (9-point hedonic scale). The addition of BHT showed greater protection against the oxidation process in the roasted sunflower seeds. Oregano essential oil exhibited a greater antioxidant effect during storage than poleo essential oil. Both essential oils (oregano and poleo) provided protection to the product, inhibiting the formation of undesirable flavors (oxidized and cardboard). The antioxidant activity that presents essential oils of oregano and poleo could be used to preserve roasted sunflower seeds.

  11. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different Rosaceae species.

    PubMed

    Fromm, Matthias; Bayha, Sandra; Kammerer, Dietmar R; Carle, Reinhold

    2012-10-31

    Seed oils recovered from Rosaceae species such as dessert and cider apples (Malus domestica Borkh.), quince (Cydonia oblonga Mill.), and rose hip (Rosa canina L.) were analyzed for their tocopherol and carotenoid contents using HPLC-DAD-MS(n) following saponification. Qualitative and quantitative tocopherol and carotenoid compositions significantly differed, not only among the different genera but also among cultivars of one species. In particular, seed oils of cider apples were shown to contain higher amounts of both antioxidant classes than that of dessert apples. Total contents of tocopherols of the investigated Rosaceous seed oils ranged from 597.7 to 1099.9 mg/kg oil, while total carotenoid contents varied between 0.48 and 39.15 mg/kg oil. Thus, these seed oils were found to contain appreciable amounts of lipohilic antioxidants having health beneficial potential. The results of the present study contribute to a more economical and exhaustive exploitation of seed byproducts arising from the processing of these Rosaceous fruits. PMID:23020156

  12. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    PubMed

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  13. Spectroscopic and thermooxidative analysis of organic okra oil and seeds from Abelmoschus esculentus.

    PubMed

    de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; Dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi

    2012-01-01

    With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2 °C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption.

  14. Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.

    PubMed

    Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S

    2016-01-01

    Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel. PMID:27066350

  15. Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.

    PubMed

    Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S

    2016-01-01

    Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel.

  16. Spectroscopic and Thermooxidative Analysis of Organic Okra Oil and Seeds from Abelmoschus esculentus

    PubMed Central

    de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi

    2012-01-01

    With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2°C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption. PMID:22645459

  17. A herbivory-induced increase in the proportion of floating seeds in an invasive plant

    NASA Astrophysics Data System (ADS)

    Fukano, Yuya; Hirayama, Hiroyuki; Tanaka, Koichi

    2014-04-01

    It is important to determine the factors prompting seed dispersal because for plant species seed dispersal is the only opportunity to disperse into a new habitat. Previous studies showed that the maternal stress, such as high density and low nutrient levels, induces the adaptive plastic increase of the dispersal ability in seed heteromorphic plants. In this study, we examined whether herbivory can change the relative proportion of dispersal-related seed heteromorphism (floating or non floating seeds) in an invasive weed Ambrosia artemisiifolia. Because A. artemisiifolia often distributes in the riparian habitat, floating seeds might contribute to the long distance dispersal by hydrochory. Floating ability and seed weight were compared between plants damaged by a specialist herbivore Ophraella communa and undamaged plants. The damaged plants produced lighter and more likely floating seeds than the undamaged plants. However, multi-regression analysis revealed that the probability of floating was affected by seed weight but was not affected by herbivore treatment (damaged vs. undamaged plants). These results suggest that the increased proportion of floating seeds was not a direct response to the herbivore signal but an indirect response through the herbivore's effect on the reduction of seed weight. Plants damaged by herbivores might not only decrease seed production and quality but also increase the dispersal ability. These responses in dispersal ability against the herbivores might contribute to the spread of invasive plants.

  18. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  19. Transfer of thallium from rape seed to rape oil is negligible and oil is fit for human consumption.

    PubMed

    Loula, Martin; Kaňa, Antonín; Vosmanská, Magda; Koplík, Richard; Mestek, Oto

    2016-01-01

    Rape and other Brassicaceae family plants can accumulate appreciable amounts of thallium from the soil. Because some species of this family are common crops utilised as food for direct consumption or raw materials for food production, thallium can enter the food chain. A useful method for thallium determination is inductively coupled plasma mass spectrometry. The limit of detection (0.2 pg ml(-1) Tl or 0.02 ng g(-1) Tl, taking in the account dilution during sample decomposition) found in the current study was very low, and the method can be used for ultra-trace analysis. Possible transfer of thallium from rape seed to the rape oil was investigated in two ways. The balance of thallium in rape seed meal (content 140-200 ng g(-1) Tl) and defatted rape seed meal indicated that thallium did not pass into the oil (p < 0.05). Moreover, the analyses of thallium in six kinds of edible rape seed oil and three kinds of margarines showed that the amount of thallium in rape seed oil is negligible. PMID:26934111

  20. Transfer of thallium from rape seed to rape oil is negligible and oil is fit for human consumption.

    PubMed

    Loula, Martin; Kaňa, Antonín; Vosmanská, Magda; Koplík, Richard; Mestek, Oto

    2016-01-01

    Rape and other Brassicaceae family plants can accumulate appreciable amounts of thallium from the soil. Because some species of this family are common crops utilised as food for direct consumption or raw materials for food production, thallium can enter the food chain. A useful method for thallium determination is inductively coupled plasma mass spectrometry. The limit of detection (0.2 pg ml(-1) Tl or 0.02 ng g(-1) Tl, taking in the account dilution during sample decomposition) found in the current study was very low, and the method can be used for ultra-trace analysis. Possible transfer of thallium from rape seed to the rape oil was investigated in two ways. The balance of thallium in rape seed meal (content 140-200 ng g(-1) Tl) and defatted rape seed meal indicated that thallium did not pass into the oil (p < 0.05). Moreover, the analyses of thallium in six kinds of edible rape seed oil and three kinds of margarines showed that the amount of thallium in rape seed oil is negligible.

  1. Hemp-seed and olive oils: their stability against oxidation and use in O/W emulsions.

    PubMed

    Sapino, S; Carlotti, M E; Peira, E; Gallarate, M

    2005-01-01

    Hemp-seed oil has several positive effects on the skin: thanks to its unsaturated fatty acid (PUFA) content it alleviates skin problems such as dryness and those related to the aging process. We present a comparative study of hemp-seed and olive oils, determining some physicochemical indices and evaluating their stability against oxidation. The peroxide value of hemp-seed oil was below 20, the threshold limit for edible oils. Hemp-seed oil was less stable against peroxidation than olive oil, but MDA and MONO assays showed its stability to be above expectations. The chlorophyll contained in extra virgin olive oil had a higher photostability than that contained in hemp-seed oil, possibly due to the larger amount of antioxidant in the olive oil. A certain amount of Vitamin E was found in hemp-seed oil. Since quality analyses indicated that hemp-seed oil is relatively stable, emulsions were prepared with the two oils, and their stability and rheological characteristics were tested. Some of the resulting gel-emulsions were suitable for spraying on the skin.

  2. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice.

    PubMed

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Hamdi Pacha, Y

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD₅₀ values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opuntia ficus indica seeds were extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, and saponification value as well as refractive index and density. LD₅₀ values obtained by single doses, orally and intraperitoneally administered in mice, were respectively 43 ± 0,8 ;[40.7- 45.4 ] ml/kg body wt. p.o. and 2.72 ± 0,1 ;[2.52-2.92] ml/kg body wt. i.p. for Opuntia ficus indica ; and 37 ± 1 ;[34.4 - 39.8 ] ml/kg body wt. p.o. and 2.52 ± 0,2 ;[2.22 - 2.81 ] ml/kg body wt. i.p. for Pistacia lentiscus respectively. The yields of seed oil were respectively calculated as 20.25% and 10.41%. The acid and free fatty acid values indicated that the oil has a low acidity.

  3. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice.

    PubMed

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Hamdi Pacha, Y

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD₅₀ values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opuntia ficus indica seeds were extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, and saponification value as well as refractive index and density. LD₅₀ values obtained by single doses, orally and intraperitoneally administered in mice, were respectively 43 ± 0,8 ;[40.7- 45.4 ] ml/kg body wt. p.o. and 2.72 ± 0,1 ;[2.52-2.92] ml/kg body wt. i.p. for Opuntia ficus indica ; and 37 ± 1 ;[34.4 - 39.8 ] ml/kg body wt. p.o. and 2.52 ± 0,2 ;[2.22 - 2.81 ] ml/kg body wt. i.p. for Pistacia lentiscus respectively. The yields of seed oil were respectively calculated as 20.25% and 10.41%. The acid and free fatty acid values indicated that the oil has a low acidity. PMID:23983398

  4. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  5. Dispersal by rodent caching increases seed survival in multiple ways in canopy-fire ecosystems.

    PubMed

    Peterson, N B; Parker, V T

    2016-07-01

    Seed-caching rodents have long been seen as important actors in dispersal ecology. Here, we focus on the interactions with plants in a fire-disturbance community, specifically Arctostaphylos species (Ericaceae) in California chaparral. Although mutualistic relationships between caching rodents and plants are well studied, little is known how this type of relationship functions in a disturbance-driven system, and more specifically to systems shaped by fire disturbance. By burying seeds in the soil, rodents inadvertently improve the probability of seed surviving high temperatures produced by fire. We test two aspects of vertical dispersal, depth of seed and multiple seeds in caches as two important dimensions of rodent-caching behavior. We used a laboratory experimental approach to test seed survival under different heating conditions and seed bank structures. Creating a synthetic soil seed bank and synthetic fire/heating in the laboratory allowed us to have control over surface heating, depth of seed in the soil, and seed cache size. We compared the viability of Arctostaphylos viscida seeds from different treatment groups determined by these factors and found that, as expected, seeds slightly deeper in the soil had substantial increased chances of survival during a heating event. A key result was that some seeds within a cache in shallow soil could survive fire even at a depth with a killing heat pulse compared to isolated seeds; temperature measurements indicated lower temperatures immediately below caches compared to the same depth in adjacent soil. These results suggest seed caching by rodents increases seed survival during fire events in two ways, that caches disrupt heat flow or that caches are buried below the heat pulse kill zone. The context of natural disturbance drives the significance of this mutualism and further expands theory regarding mutualisms into the domain of disturbance-driven systems.

  6. Dispersal by rodent caching increases seed survival in multiple ways in canopy-fire ecosystems.

    PubMed

    Peterson, N B; Parker, V T

    2016-07-01

    Seed-caching rodents have long been seen as important actors in dispersal ecology. Here, we focus on the interactions with plants in a fire-disturbance community, specifically Arctostaphylos species (Ericaceae) in California chaparral. Although mutualistic relationships between caching rodents and plants are well studied, little is known how this type of relationship functions in a disturbance-driven system, and more specifically to systems shaped by fire disturbance. By burying seeds in the soil, rodents inadvertently improve the probability of seed surviving high temperatures produced by fire. We test two aspects of vertical dispersal, depth of seed and multiple seeds in caches as two important dimensions of rodent-caching behavior. We used a laboratory experimental approach to test seed survival under different heating conditions and seed bank structures. Creating a synthetic soil seed bank and synthetic fire/heating in the laboratory allowed us to have control over surface heating, depth of seed in the soil, and seed cache size. We compared the viability of Arctostaphylos viscida seeds from different treatment groups determined by these factors and found that, as expected, seeds slightly deeper in the soil had substantial increased chances of survival during a heating event. A key result was that some seeds within a cache in shallow soil could survive fire even at a depth with a killing heat pulse compared to isolated seeds; temperature measurements indicated lower temperatures immediately below caches compared to the same depth in adjacent soil. These results suggest seed caching by rodents increases seed survival during fire events in two ways, that caches disrupt heat flow or that caches are buried below the heat pulse kill zone. The context of natural disturbance drives the significance of this mutualism and further expands theory regarding mutualisms into the domain of disturbance-driven systems. PMID:27386076

  7. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  8. Modified method for combined DNA and RNA isolation from peanut and other oil seeds.

    PubMed

    Dang, Phat M; Chen, Charles Y

    2013-02-01

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA isolation from plant seeds is a prerequisite for many seed specific gene expression studies and DNA is necessary in marker-assisted selection and other genetic studies. We describe a modified method to isolate both RNA and DNA from the same seed tissue and have been successful with several oil seeds including peanut, soybean, sunflower, canola, and oil radish. An additional LiCl precipitation step was added to isolate both RNA and DNA from the same seed tissues. High quality nucleic acids were observed based on A(260)/A(280) and A(260)/A(230) ratios above 2.0 and distinct bands on gel-electrophoresis. RNA was shown to be suitable for reverse transcriptase polymerase chain reaction based on actin or 60S ribosomal primer amplification and DNA was shown to have a single band on gel-electrophoresis analysis. This result shows that RNA and DNA isolated using this method can be appropriate for molecular studies in peanut and other oil containing seeds.

  9. Studies on the seed oils of Parkia biglobosa and Parkia bicolor.

    PubMed

    Aiyelaagbe, O O; Ajaiyeoba, E O; Ekundayo, O

    1996-04-01

    The seed oils of Parkia biglobosa and Parkia bicolor (Mimosaceae) have been analysed for their possible edible utility and to provide some physical data on both oils. The fatty acid composition of the oils was identified. Six major fatty acids were identified in the oil of P. bicolor while five were identified in that of P. biglobosa by Gas Chromatography (GC) and Gas Chromatography-Mass Spectroscopy (GC-MS). The two oils contained five similar fatty acids in almost the same ratios. Arachidic acid was the most abundant fatty acids (greater than forty per cent) in both oils. Other fatty acids in the oils were behenic, stearic, palmitic and linoleic acids. The sixth fatty acid in P. bicolor was an odd number of carbon atom and un unsaturated fatty acid (C20H37COOH) named bicolargic acid. The oils were also found to be non toxic.

  10. Synchrony between fruit maturation and effective dispersers' foraging activity increases seed protection against seed predators

    PubMed Central

    Boulay, Raphaël; Carro, Francisco; Soriguer, Ramón C; Cerdá, Xim

    2007-01-01

    The evolution of pollination and seed dispersal mutualisms is conditioned by the spatial and temporal co-occurrence of animals and plants. In the present study we explore the timing of seed release of a myrmecochorous plant (Helleborus foetidus) and ant activity in two populations in southern Spain during 2 consecutive years. The results indicate that fruit dehiscence and seed shedding occur mostly in the morning and correspond to the period of maximum foraging activity of the most effective ant dispersers. By contrast, ant species that do not transport seeds and/or that do not abound near the plants are active either before or after H. foetidus diaspores are released. Experimental analysis of diet preference for three kinds of food shows that effective ant dispersers are mostly scavengers that readily feed on insect corpses and sugars. Artificial seed depots suggest that seeds deposited on the ground out of the natural daily time window of diaspore releasing are not removed by ants and suffer strong predation by nocturnal rodents Apodemus sylvaticus. Nevertheless, important inter-annual variations in rodent populations cast doubts on their real importance as selection agents. We argue that traits allowing synchrony between seed presentation and effective partners may constitute a crucial pre-adaptation for the evolution of plant–animal mutualisms involving numerous animal partners. PMID:17698486

  11. Seed oil triglyceride profiling of thirty-two hybrid grape varieties.

    PubMed

    De Marchi, Fabiola; Seraglia, Roberta; Molin, Laura; Traldi, Pietro; De Rosso, Mirko; Panighel, Annarita; Dalla Vedova, Antonio; Gardiman, Massimo; Giust, Mirella; Flamini, Riccardo

    2012-09-01

    Triglyceride profile of seed oil samples from 32 hybrid grape varieties not studied before was investigated. A new method for the analysis of triacylglycerols (TAGs) has been developed based on the direct infusion in the electrospray ionization (ESI) source and employing tetrahydrofuran/methanol/water (85:10:5 v|v|v) as solvent; the formation of [M + Na](+) ions in high yield has been observed. TAGs were identified by ESI-tandem mass spectrometry analysis, and the matrix-assisted-laser-desorption-ionization and time-of-flight profile of samples was determined. Six were the principal TAGs identified in seed oil: trilinolein (LLL) was the most abundant (43%), followed by dilinoleoyl-oleoylglycerol (LOL, 23%), and dilinoleoyl-palmitoylglycerol (LPL, 15%). Compounds present in lower concentration were LSL and LOO (11%), LOP (6%), and LSP (2%). Compared with seed oils produced from V. Vinifera grapes, some significant differences in the relative abundances of TAGs were found, in particular hybrid grape seed oils showed higher LOL and lower LPL content, respectively. Among the samples studied, a particularly high content of LLL (rich in unsaturated fatty acids) was found in seed oils from two red varieties. PMID:22972779

  12. Rhamnolipids Increase the Phytotoxicity of Diesel Oil Towards Four Common Plant Species in a Terrestrial Environment.

    PubMed

    Marecik, Roman; Wojtera-Kwiczor, Joanna; Lawniczak, Lukasz; Cyplik, Paweł; Szulc, Alicja; Piotrowska-Cyplik, Agnieszka; Chrzanowski, Lukasz

    2012-09-01

    The study focused on assessing the influence of rhamnolipids on the phytotoxicity of diesel oil-contaminated soil samples. Tests evaluating the seed germination and growth inhibition of four terrestrial plant species (alfalfa, sorghum, mustard and cuckooflower) were carried out at different rhamnolipid concentrations (ranging from 0 to 1.200 mg/kg of wet soil). The experiments were performed in soil samples with a different diesel oil content (ranging from 0 to 25 ml/kg of wet soil). It was observed that the sole presence of rhamnolipids may be phytotoxic at various levels, which is especially notable for sorghum (the germination index decreased to 41 %). The addition of rhamnolipids to diesel oil-contaminated soil samples contributed to a significant increase of their phytotoxicity. The most toxic effect was observed after a rhamnolipid-supplemented diesel oil biodegradation, carried out with the use of a hydrocarbon-degrading bacteria consortium. The supplemention of rhamnolipids (600 mg/kg of wet soil) resulted in a decrease of seed germination of all studied plant species and an inhibition of microbial activity, which was measured by the 2,3,5-triphenyltetrazolium chloride tests. These findings indicate that the presence of rhamnolipids may considerably increase the phytotoxicity of diesel oil. Therefore, their use at high concentrations, during in situ bioremediation processes, should be avoided in a terrestrial environment. PMID:22865941

  13. Effects of Oils and Essential Oils from Seeds of Zanthoxylum schinifolium against Foodborne Viral Surrogates

    PubMed Central

    Chung, Mi Sook

    2014-01-01

    Human noroviruses are the most frequent cause of foodborne viral disease and are responsible for the vast majority of nonbacterial gastroenteritis. However, no specific therapies are available for the efficient control or prevention of foodborne viral disease. Here, we determined the antiviral activities of oils from seeds of Zanthoxylum schinifolium (ZSO) against foodborne viral surrogates, feline calicivirus-F9 (FCV-F9), and murine norovirus-1 (MNV-1), using plaque assay. Time-of-addition experiments were designed to determine the antiviral mechanism of action of ZSO against the surrogates. Maximal antiviral effect was observed upon pretreatment of FCV-F9 or MNV-1 with ZSO, which comprised oleic acid, linoleic acid, palmitic acid, and linolenic acid as the major fatty acids. FCV-F9 was more sensitive to ZSO than MNV-1, and the 50% effective concentration of ZSO against pretreatment of FCV-F9 was 0.0007%. However, essential oils from Z. schinifolium (ZSE), which comprised 42% estragole, showed no inhibitory effects against FCV-F9 and MNV-1. These results suggest that the inhibitory activities of ZSO were exerted by direct interaction of FCV-F9 or MNV-1 virion with ZSO, which may be a food material candidate for control of foodborne viral disease. PMID:25587338

  14. Suitability of elemental fingerprinting for assessing the geographic origin of pumpkin (Cucurbita pepo var. styriaca) seed oil.

    PubMed

    Bandoniene, Donata; Zettl, Daniela; Meisel, Thomas; Maneiko, Marija

    2013-02-15

    An analytical method was developed and validated for the classification of the geographical origin of pumpkin seeds and oil from Austria, China and Russia. The distribution of element traces in pumpkin seed and pumpkin seed oils in relation to the geographical origin of soils of several agricultural farms in Austria was studied in detail. Samples from several geographic origins were taken from parts of the pumpkin, pumpkin flesh, seeds, the oil extracted from the seeds and the oil-extraction cake as well as the topsoil on which the plants were grown. Plants from different geographical origin show variations of the elemental patterns that are significantly large, reproducible over the years and ripeness period and show no significant influence of oil production procedure, to allow to a discrimination of geographical origin. A successful differentiation of oils from different regions in Austria, China and Russia classified with multivariate data analysis is demonstrated.

  15. Cinnamomum camphora Seed Kernel Oil Ameliorates Oxidative Stress and Inflammation in Diet-Induced Obese Rats.

    PubMed

    Fu, Jing; Zeng, Cheng; Zeng, Zheling; Wang, Baogui; Gong, Deming

    2016-05-01

    Cinnamomum camphora seed kernel oil (CCSKO) was found to reduce body fat deposition and improve blood lipid in both healthy and obese rats. The study was aimed to investigate the antioxidative stress and anti-inflammatory effects of CCSKO in high-fat-diet-induced obese rats. The obese rats were treated with CCSKO, lard, and soybean oil, respectively, for 12 wk. The level of total antioxidant capacity (T-AOC), activities of superoxide dismutase (SOD), glutathione peroxidase, and catalase, and levels of malondialdehyde (MDA), tumor necrosis factor (TNF)-α, peroxisome proliferator-activated receptor (PPAR)-γ, interleukin (IL)-6, and P65 were compared among CCSKO, lard, and soybean oil groups. Our results showed that the level of T-AOC and activities of SOD and catalase were significantly increased and the level of MDA was significantly decreased in CCSKO group. In addition, CCSKO treatment reduced the activities of serum glutamic oxaloacetic transaminase and glutamate-pyruvate transaminase, and levels of serum TNF-α, IL-6, and P65 through raising the level of PPAR-γ. In conclusion, CCSKO has, for the first time, been found to ameliorate oxidative stress and inflammation in high-fat-diet-induced obese rats. PMID:27003858

  16. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  17. SEED DETERIORATION INCREASES IN THE PRESENCE OF VOLATILES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of culinary importance emit low molecular weight carbonyl compounds that can be detected as volatiles in the surrounding air. Volatile carbonyl molecules are byproducts of cascading peroxidative reactions and can be highly reactive against proteins, lipids and nucleic acids. Carum carvi L. pro...

  18. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development.

    PubMed

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.

  19. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development.

    PubMed

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  20. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    PubMed Central

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  1. Seed Removal Increased by Scramble Competition with an Invasive Species.

    PubMed

    Minor, Rebecca L; Koprowski, John L

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert's squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert's squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert's squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  2. Seed Removal Increased by Scramble Competition with an Invasive Species

    PubMed Central

    Minor, Rebecca L.; Koprowski, John L.

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert’s squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert’s squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert’s squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert’s squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert’s squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  3. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources

    PubMed Central

    Yu, Shuiyan; Du, Shaobo; Yuan, Junhui; Hu, Yonghong

    2016-01-01

    Most common plant oils have little α-linolenic acid (C18:3Δ9,12,15, ALA) and an unhealthy ω6/ω3 ratio. Here, fatty acids (FAs) in the seeds of 11 species of Paeonia L., including 10 tree peony and one herbaceous species, were explored using gas chromatograph–mass spectrometer. Results indicated that all Paeonia had a ω6/ω3 ratio less than 1.0, and high amounts of ALA (26.7–50%), oleic acid (C18:1Δ9, OA) (20.8–46%) and linoleic acid (C18:2Δ9,12, LA) (10–38%). ALA was a dominant component in oils of seven subsection Vaginatae species, whereas OA was predominant in two subsection Delavayanae species. LA was a subdominant oil component in P. ostii and P. obovata. Moreover, the FA composition and distribution of embryo (22 FAs), endosperm (14 FAs) and seed coat (6 FAs) in P. ostii, P. rockii and P. ludlowii were first reported. Peony species, particularly P. decomposita and P. rockii, can be excellent plant resources for edible oil because they provide abundant ALA to balance the ω6/ω3 ratio. The differences in the ALA, LA and OA content proportion also make the peony species a good system for detailed investigation of FA biosynthesis pathway and ALA accumulation. PMID:27240678

  4. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species.

    PubMed

    Jarret, Robert L; Wang, Ming Li; Levy, Irvin J

    2011-04-27

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species-A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus-were evaluated for seed oil content using time domain NMR (TD-NMR). Oil content in seed of A. caillei, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus was in the ranges 2.51-13.61%, 12.36-21.56%, 6.62-16.7%, 16.1-22.0%, 10.3-19.8% and 10.8-23.2%, respectively. Accession PI639680 (A. tuberculatus) had the highest seed oil content (∼23%). Accessions of A. esculentus with high seed oil content included PI nos. PI274350 (21.5%), PI538082 (20.9%) and PI538097 (20.9%). Values for the three accessions of A. manihot with the highest seed oil content were PI nos. PI639673 (20.4%), PI639674 (20.9%) and PI639675 (21.9%), all representing var. tetraphyllus. Average percent seed oil in materials of A. esculentus from Turkey and Sudan (17.35% and 17.36%, respectively) exceeded the averages of materials from other locations. Ninety-eight accessions (total of six species) were also examined for fatty acid composition. Values of linoleic acid ranged from 23.6-50.65% in A. esculentus. However, mean linoleic acid concentrations were highest in A. tuberculatus and A. ficulneus. Concentrations of palmitic acid were significantly higher in A. esculentus (range of 10.3-36.35%) when compared to that of other species, and reached a maximum in PI489800 Concentrations of palmitic acid were also high in A. caillei (mean = ∼30%). Levels of oleic acid were highest in A. manihot, A. manihot var. tetraphyllus and A. moschatus.

  5. Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas

    PubMed Central

    Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan

    2016-01-01

    Objective: This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). Materials and Methods: J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. Results: The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. Conclusion: The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy. PMID:27516977

  6. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars.

    PubMed

    Nawirska-Olszańska, Agnieszka; Kita, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2013-08-15

    The objective of this study was to determine the antioxidant properties, and provide characteristics, of the oil obtained from the seeds of 12 pumpkin varieties belonging to the species Cucurbita maxima Duch. and Cucurbita pepo L. Another objective was to establish which of the two extracting agents, ethanol or methanol, is more effective. The seeds of the pumpkin varieties examined differ in chemical composition and antioxidant activity. The seeds of the cultivars belonging to the species C. maxima are characterised by a higher content of fatty acids than are the cultivars of the species C. pepo. In the seed oil, unsaturated acids are dominant (oleic and linoleic), and their proportion depends on the pumpkin variety. The highest content of unsaturated acids has been measured in the oil extracted from the seeds of the cultivar, Jet F1 (C. pepo). Antioxidant activity analysis has produced the following findings. The seeds of the pumpkin varieties that belong to the species C. pepo exhibit better antioxidant properties, regardless of the extraction solvent used. 50% ethanol is more efficient than 80% methanol when used as an extracting agent. The antioxidant activity values obtained with 50% ethanol are higher than those achieved with 80% methanol. Owing to the considerable differences in composition among the fatty acids examined, it is possible to choose the desired pumpkin variety for the intended use.

  7. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil.

    PubMed

    Errouane, Kheira; Doulbeau, Sylvie; Vaissayre, Virginie; Leblanc, Olivier; Collin, Myriam; Kaid-Harche, Meriem; Dussert, Stéphane

    2015-08-15

    In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions. PMID:25794750

  8. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil.

    PubMed

    Errouane, Kheira; Doulbeau, Sylvie; Vaissayre, Virginie; Leblanc, Olivier; Collin, Myriam; Kaid-Harche, Meriem; Dussert, Stéphane

    2015-08-15

    In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions.

  9. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    PubMed

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods.

  10. Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L.

    PubMed

    Chandran, Divya; Sankararamasubramanian, H M; Kumar, M Ashok; Parida, Ajay

    2014-04-01

    Jatropha curcas has been widely studied at the molecular level due to its potential as an alternative source of fuel. Many of the reports till date on this plant have focussed mainly on genes contributing to the accumulation of oil in its seeds. A suppression subtractive hybridization strategy was employed to identify genes which are differentially expressed in the mid maturation stage of J. curcas seeds. Random expressed sequence tag sequencing of the cDNA subtraction library resulted in 385 contigs and 1,428 singletons, with 591 expressed sequence tags mapping for enzymes having catalytic roles in various metabolic pathways. Differences in transcript levels in early and mid-to-late maturation stages of seeds were also investigated using sequence information obtained from the cDNA subtraction library. Seven out of 12 transcripts having putative roles in central carbon metabolism were up regulated in early seed maturation stage while lipid metabolism related transcripts were detected at higher levels in the later stage of seed maturation. Interestingly, 4 of the transcripts revealed putative alternative splice variants that were specifically present or up regulated in the early or late maturation stage of the seeds. Transcript expression patterns from the current study using maturing seeds of J. curcas reveal a subtle balancing of oil accumulation and utilization, which may be influenced by their energy requirements.

  11. Seed oil content and fatty acid composition in a genebank collection of Cucurbita moschata Duchesne and C. argyrosperma C. Huber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data on intraspecific variability for seed oil content, fatty acid composition and seed oil characteristics in Cucurbita moschata and C. argyrosperma are lacking in the scientific literature. We examined 528 genebank accessions of C. moschata and 166 accessions of C. argyrosperma - that included mem...

  12. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs.

  13. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs. PMID:27348480

  14. Harnessing indigenous plant seed oil for the production of bio-fuel by an oleaginous fungus, Cunninghamella blakesleeana- JSK2, isolated from tropical soil.

    PubMed

    Sukrutha, S K; Janakiraman, Savitha

    2014-01-01

    Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15-18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.

  15. Triacylglycerol biosynthesis in developing Ribes nigrum and Ribes rubrum seeds from gene expression to oil composition.

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Hoppula, Kati B; Karhu, Saila T; Yang, Baoru; Kallio, Heikki P

    2016-04-01

    Oils with sufficient contents of fatty acids, which can be metabolized into precursors of anti-inflammatory eicosanoids, have potential health effects. Ribes sp. seed oil is rich in α-linolenic, γ-linolenic and stearidonic acids belonging to this fatty acid group. Only a few previous studies exist on Ribes sp. gene expression. We followed the seed oil biosynthesis of four Ribes nigrum and two Ribes rubrum cultivars at different developmental stages over 2 years in Southern and Northern Finland with a 686 km latitudinal difference. The species and the developmental stage were the most important factors causing differences in gene expression levels and oil composition. Differences between cultivars were detected in some cases, but year and location had only small effects. However, expression of the gene encoding Δ(9)-desaturase in R. nigrum was affected by location. Triacylglycerol biosynthesis in Ribes sp. was distinctly buffered and typically followed a certain path, regardless of growth environment. PMID:26593580

  16. Crude oil as a microbial seed bank with unexpected functional potentials.

    PubMed

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-11-03

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it's of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a "seed bank" of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments.

  17. Crude oil as a microbial seed bank with unexpected functional potentials

    NASA Astrophysics Data System (ADS)

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-11-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments.

  18. Crude oil as a microbial seed bank with unexpected functional potentials

    PubMed Central

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-01-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments. PMID:26525361

  19. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions.

    PubMed

    Ramadan, Mohamed F; Kroh, Lothar W; Mörsel, Jörg-T

    2003-11-19

    Crude vegetable oils are usually oxidatively more stable than the corresponding refined oils. Tocopherols, phospholipids (PL), phytosterols, and phenols are the most important natural antioxidants in crude oils. Processing of vegetable oils, moreover, could induce the formation of antioxidants. Black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils were extracted with n-hexane and the oils were further fractionated into neutral lipids (NL), glycolipids (GL), and PL. Crude oils and their fractions were investigated for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by electron spin resonance (ESR) spectrometry and toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by spectrophotometric method. Coriander seed oil and its fractions exhibited the strongest RSA compared to black cumin and niger seed oils. The data correlated well with the total content of polyunsaturated fatty acids, unsaponifiables, and PL, as well as the initial peroxide values of crude oils. In overall ranking, RSA of oil fractions showed similar patterns wherein the PL exhibited greater activity to scavenge both free radicals followed by GL and NL, respectively. The positive relationship observed between the RSA of crude oils and their color intensity suggests the Maillard reaction products may have contributed to the RSA of seed oils and their polar fractions. The results demonstrate the importance of minor components in crude seed oils on their oxidative stability, which will reflect on their food value and shelf life. As part of the effort to assess the potential of these seed oils, the information is also of importance in processing and utilizing the crude oils and their byproducts.

  20. Plasma and hepatic cholesterol-lowering in hamsters by tomato pomace, tomato seed oil and defatted tomato seed supplemented in high fat diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the cholesterol-lowering effects of tomato pomace (TP), a byproduct of tomato processing, and its components such as tomato seed oil (TSO) and defatted tomato seed (DTS) in hamsters, a widely used animal model for cholesterol metabolism. Male Syrian Golden hamsters were fed high-fat di...

  1. Radiations and biodegradation techniques for detoxifying Carica papaya seed oil for effective dietary and industrial use.

    PubMed

    Afolabi, Israel Sunmola; Bisi-Adeniyi, Tolulope Dorcas; Adedoyin, Toluwalase Ronke; Rotimi, Solomon Oladapo

    2015-10-01

    Benzyl isothiocyanate (BITC) is toxic in high concentration. The capacity of Aspergillus niger, microwave and ultraviolet radiations to reduce the BITC levels in Carica papaya Linn seed oil were assessed in vitro. BITC at different concentrations were periodically exposed to microwave and ultraviolet radiations for 30 min and 10 h, respectively; and to identify Aspergillus niger for 4 days. Microwave radiation significantly reduced (p < 0.05) BITC levels (0.0272, 0.0544, and 0.0816 μmol) to 12.19, 8.99 and 27.5 % respectively within 15 min. Ultraviolet radiation significantly reduced (p < 0.05) BITC levels at all the concentrations. A. niger significantly increased (p < 0.05) BITC degradation on days 2 and 4 at 0.816, 1.36 and 2.72 nmol. Glutathione activity was significantly increased (p < 0.05) while glutathione S-transferase activity significantly reduced (p < 0.05) at all concentrations on days 3 and 4 respectively. The three techniques are possible models for improving the dietary consumption of the oil.

  2. Punicic acid from Trichosanthes kirilowii seed oil is rapidly metabolized to conjugated linoleic acid in rats.

    PubMed

    Yuan, Gao-Feng; Yuan, Jing-Qun; Li, Duo

    2009-04-01

    The incorporation and metabolism of orally administered punicic acid (PA), one isomer of conjugated linolenic acid (CLNA), in rat tissues and plasma were studied over a 24-hour period. The punic acid was derived from Trichosanthes kirilowii Maxim seed oil, a unique PA-containing material, and identified and analyzed by high-performance liquid chromatography and gas chromatography-mass spectrometry. The results show that PA was incorporated and metabolized to 9c,11t-conjugated linoleic acid (CLA) in rat plasma, liver, kidney, heart, brain, and adipose tissue. The level of PA and CLA in liver and plasma was higher than in brain, heart, kidney, and adipose tissue, and the lowest accumulation occurred in the brain. The observation that PA can be converted into 9c,11t-CLA has gained increased importance since it has been demonstrated that 9c,11t-CLA exerts many biological activities. Therefore natural resources containing CLNA, especially edible T. kirilowii seed, could be a potential dietary source of CLA, following PA metabolism. PA is expected to be used as a functional food and nutraceutical.

  3. Analytical characterization of Hempseed (seed of Cannabis sativa L.) oil from eight regions in China.

    PubMed

    Chen, Tianpeng; He, Jinfeng; Zhang, Jianchun; Zhang, Hua; Qian, Ping; Hao, Jianxiong; Li, Lite

    2010-06-01

    In this study, eight cultivars of hempseed were collected from different regions of China for analysis of physiochemical properties and chemical composition, as well as for seed indexes and proximate composition of seed kernel. The results indicated that Yunma No. 1 and Bama Huoma, with more than 50% oil and 30% protein in dehulled seed, could be considered as oil extraction material and protein source with respect to kernel yield. Iodine values ranging from 153.6 to 169.1 g/100 g reflected the high degree of unsaturation. The concentration of unsaturated fatty acids exceeded 90%, higher than most conventional vegetable oils. Moreover, polyunsaturated fatty acids ranged from 76.26% to 82.75% and were mainly composed of linoleic acid and α-linolenic acid with a ratio close to 3:1. γ-Tocopherol was found at an average concentration of 28.23 mg/100 g of hempseed oil. The results indicated that hempseed oil is a potentially valuable vegetable oil.

  4. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water.

    PubMed

    Ravber, Matej; Knez, Željko; Škerget, Mojca

    2015-01-01

    In this study, the subcritical water extraction is proposed as an alternative and greener processing method for simultaneous removal of oil- and water-soluble phase from sunflower seeds. Extraction kinetics were studied at different temperatures and material/solvent ratios in a batch extractor. Degree of hydrothermal degradation of oils was observed by analysing amount of formed free fatty acids and their antioxidant capacities. Results were compared to oils obtained by conventional methods. Water soluble extracts were analysed for total proteins, carbohydrates and phenolics and some single products of hydrothermal degradation. Highest amount of oil was obtained at 130 °C at a material/solvent ratio of 1/20 g/mL after 30 min of extraction. For all obtained oils minimal degree of hydrothermal degradation could be identified. High antioxidant capacities of oil samples could be observed. Water soluble extracts were degraded at temperatures ≥100 °C, producing various products of hydrothermal degradation.

  5. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds

    PubMed Central

    Ekman, Åsa; Hayden, Daniel M.; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development. PMID:19036843

  6. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  7. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds.

    PubMed

    Wu, Ziyun; Song, Lixia; Feng, Shengbao; Liu, Yuancai; He, Guangyuan; Yioe, Yoecelyn; Liu, Shao Quan; Huang, Dejian

    2012-09-01

    The effect of germination on bioactive components in legume seeds was investigated in terms of the antioxidant capacity and total phenolic contents. Germination increased the total phenolic content and antioxidant capacity of most seeds. Particularly in chickpea seeds, the isoflavone contents increased by over 100 fold, mainly due to the increase of formononetin and biochanin A level. As a result, these two compounds were conveniently isolated from the germinated seeds in preparative scale and structurally confirmed by UV-vis, ESI-MS, and (1)H NMR spectroscopies. Isoflavonoid fingerprints analyzed by HPLC-PDA and LC-ESI-MS demonstrated that germination could significantly increase isoflavonoids diversity. Twenty-five isoflavonoids were detected and identified tentatively. These include 20 isoflavones, 2 isoflavanones, and 3 pterocarpan phytoalexins. Total isoflavonoid content of germinated chickpea was approximately 5-fold of that of germinated soybean. Our findings suggest that the germinated chickpea seeds could serve as a promising functional food rich in isoflavonoids.

  8. Modification of Seed Oil Composition in Arabidopsis by Artificial microRNA-Mediated Gene Silencing

    PubMed Central

    Belide, Srinivas; Petrie, James Robertson; Shrestha, Pushkar; Singh, Surinder Pal

    2012-01-01

    Various post transcriptional gene silencing strategies have been developed and exploited to study gene function or engineer disease resistance. The recently developed artificial microRNA strategy is an alternative method of effectively silencing target genes. The Δ12-desaturase (FAD2), Fatty acid elongase (FAE1), and Fatty acyl-ACP thioesterase B (FATB) were targeted with amiR159b-based constructs in Arabidopsis thaliana to evaluate changes in oil composition when expressed with the seed-specific Brassica napus truncated napin (FP1) promoter. Fatty acid profiles from transgenic homozygous seeds reveal that the targeted genes were silenced. The down-regulation of the AtFAD-2 gene substantially increased oleic acid from the normal levels of ∼15% to as high as 63.3 and reduced total PUFA content (18:2Δ9,12 + 18:3Δ9,12,15 + 20:2Δ11,14 + 20:3Δ11,14,17) from 46.8 to 4.8%. Δ12-desaturase activity was reduced to levels as low as those in the null fad-2-1 and fad-2-2 mutants. Silencing of the FAE1 gene resulted in the reduction of eicosenoic acid (20:1Δ11) to 1.9 from 15.4% and silencing of FATB resulted in the reduction of palmitic acid (16:0) to 4.4% from 8.0%. Reduction in FATB activity is comparable with a FATB knock-out mutant. These results demonstrate for the first time amiR159b constructs targeted against three endogenous seed-expressed genes are clearly able to down-regulate and generate genotypic changes that are inherited stably over three generations. PMID:22866055

  9. Physical behavior of purified and crude wax obtained from sunflower (Helianthus annuus) seed oil refineries and seed hulls.

    PubMed

    Kanya, T C Sindhu; Sankar, K Udaya; Sastry, M C Shamnathaka

    2003-01-01

    The sunflower seed waxes obtained from two sources (i) seed hull as a standard and (ii) crude wax from oil refineries were studied for their crystallization, melting characteristics and morphology of crystals. The results of differential scanning calorimetry of wax obtained from seed hulls showed the melting temperature range of 13.18 degrees C with the onset at 62.32 degrees C, for purified wax, compared to the melting range of 24.73 degrees C with the onset at 42.3 degrees C. for crude wax. The enthalpy of fusion for both waxes were 57.55 mcal/mg and 7.63 mcal/mg, respectively. The DSC melt crystallization temperature range was 15.79 degrees C with the onset of 64.58 degrees C for purified wax and temperature range of 31.45 degrees C with an onset of 57.76 degrees C for crude wax. A similar pattern was observed of wax obtained from the crude wax of oil refineries. The enthalpy of crystallization was -64.27 mcal/mg and -7.67 mcal/mg, respectively. The purified wax obtained from the two sources (i) and (ii) were comparable with completion temperatures of 75.5 degrees C and 75.1 degrees C, respectively. The effect of inhibitor (lecithin) on crystallization of purified wax under light microscope and surface structure by scanning electron microscope were observed. Lecithin at 0.2% inhibited the crystallization but nucleation was unaltered. The wax crystal was inhibited to around 60% of the original size with 0.2% lecithin. It is concluded that the sunflower waxes studied were not comparable in their crystal properties of crude and purified states. Lecithin inhibited the crystallization of sunflower seed wax.

  10. Osage orange (Maclura pomifera L) seed oil poly(alpha-hydroxydibutylamine) triglycerides: Synthesis and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milled Osage orange seeds (Maclura pomifera (Raf.) Schneid) were Soxhlet extracted with hexane, and portions of the extract were treated with activated carbon before solvent removal. The crude oil was winterized and degummed by centrifugation at low temperature. Decantation of the centrifuge gave an...

  11. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  12. Fatty acid profile of seashore mallow (Kosteletzkya pentacarpos) seed oil and properties of the methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent literature, seashore mallow (Kosteletzkya pentacarpos; also known previously as Kosteletzkya virginica) seed oil was reported as a potential alternative feedstock for biodiesel. In the present work, the fatty acid profile of K. pentacarpos is shown to correspond to that of other plants in ...

  13. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  14. Coriander Seed Oil Methyl Esters as Biodiesel Fuel: Unique Fatty Acid Composition and Excellent Oxidative Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid (FA) hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt %) acid. Most of the remaining FA...

  15. Creating Conventional Soybeans with the High Oleic Acid Seed Oil Trait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commodity soybeans are poised to undergo a revolutionary change. Major shifts in market expectations for the nutritional quality of the oil, brought about in part through food labeling requirements and the suitability for biodiesel, are driving the commodity soybean to embrace new seed compositiona...

  16. Seed oil and Fatty acid content in okra (Abelmoschus esculentus) and related species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species were evaluated for seed oil content using TD-NMR. Species evaluated included; A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschat...

  17. EVIDENCE OF SEED OILS IN FINE PARTICLES FROM THE NEW YORK METROPOLITAN AREA

    EPA Science Inventory

    This abstract describes a poster on the contribution of seed oils used for cooking to organic particulate matter to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. Sam...

  18. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  19. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  20. An improved method for extraction of high-quality total RNA from oil seeds.

    PubMed

    Rayani, Azadeh; Dehghan Nayeri, Fatemeh

    2015-04-01

    Seeds of oilseed plants that contain large amounts of oil, polysaccharides, proteins and polyphenols are not amenable to conventional RNA isolation protocols. The presence of these substances affects the quality and quantity of isolated nucleic acids. Here, a rapid and efficient RNA isolation protocol that, in contrast to other methods tested, allows high purify, integrity and yield of total RNA from seeds of sesame, corn, sunflower, flax and rapeseed was developed. The average yields of total RNA from 70 mg oil seeds ranged from 84 to 310 µg with A260/A280 between 1.9 and 2.08. The RNA isolated with this protocol was verified to be suitable for PCR, quantitative real-time PCR, semi-quantitative RT-PCR, cDNA synthesis and expression analysis.

  1. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  2. Random Estimate the values of seed oil of Cucurbita maxima by refractive index method

    PubMed Central

    Saxena, R. B.

    2010-01-01

    The crude oil having lower iodine and free fatty acids values has Aamdosha properties. These properties are present due to toxic and anti-toxic compounds. These compounds can be harmful for the special diseases and may be unsaturated, saturated, open chain etc. The adulteration can take part as catalytic action for the toxic effect for the special diseases. Toxic properties of oils are removed by different ingrediants and methods. C. maxima seed tail (mst) is used with food and medicine. The present paper deals with the study of oil by refractive index and equations. PMID:22131677

  3. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety.

    PubMed

    Yanty, Noorzianna Abdul Manaf; Marikkar, Jalaldeen Mohammed Nazrim; Nusantoro, Bangun Prajanto; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-01-01

    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.

  4. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety.

    PubMed

    Yanty, Noorzianna Abdul Manaf; Marikkar, Jalaldeen Mohammed Nazrim; Nusantoro, Bangun Prajanto; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-01-01

    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds. PMID:25174674

  5. Determination of trigonelline in seeds and vegetable oils by capillary electrophoresis as a novel marker for the detection of adulterations in olive oils.

    PubMed

    Sánchez-Hernández, Laura; Puchalska, Patrycja; García-Ruiz, Carmen; Crego, Antonio L; Marina, Maria Luisa

    2010-07-14

    A capillary electrophoresis method with UV detection was developed for the first time for the determination of the pyridine betaine trigonelline (N-methylnicotinic acid) in seeds and vegetable oils. Analytical characteristics of the method showed its good performance in terms of linearity (r > 0.999), precision (relative standard deviations < 5%), and limits of detection (up to 0.9 microM or 1 ng/g for oils). The developed method was applied to the analysis of soy and sunflower seeds, three varieties of olives, and sunflower, soy, and extra virgin olive oils. Trigonelline was determined in soy and sunflower seeds and their respective oils, whereas it was not detected in olives or olive oils. Different mixtures of extra virgin olive oil with seed oils were analyzed, detecting up to 10% of soy oil in olive oil. As a consequence, trigonelline is proposed in this work as a novel marker for the detection of adulterations of olive oils with other vegetable oils such as soy and sunflower oils.

  6. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metab...

  7. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    PubMed

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  8. The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice.

    PubMed

    Eraslan, Gökhan; Kanbur, Murat; Aslan, Öznur; Karabacak, Mürsel

    2013-12-01

    This study was aimed at the investigation of the antioxidant effect of pumpkin seed oil against the oxidative stress-inducing potential of aflatoxin. For this purpose, 48 male BALB/c mice were used. Four groups, each comprising 12 mice, were established. Group 1 was maintained as the control group. Group 2 was administered with pumpkin seed oil alone at a dose of 1.5 mL/kg.bw/day (∼1375mg/kg.bw/day). Group 3 received aflatoxin (82.45% AFB1 , 10.65% AFB2 , 4.13% AFG1, and 2.77% AFG2 ) alone at a dose of 625 μg/kg.bw/day. Finally, group 4 was given both 1.5 mL/kg.bw/day pumpkin seed oil and 625 μg/kg.bw/day aflatoxin. All administrations were oral, performed with the aid of a gastric tube and continued for a period of 21 days. At the end of day 21, the liver, lungs, kidneys, brain, heart, and spleen of the animals were excised, and the extirpated tissues were homogenized appropriately. Malondialdehyde (MDA) levels and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities were determined in tissue homogenates. In conclusion, it was determined that aflatoxin exhibited adverse effects on most of the oxidative stress markers. The administration of pumpkin seed oil diminished aflatoxin-induced adverse effects. In other words, the values of the group, which was administered with both aflatoxin and pumpkin seed oil, were observed to have drawn closer to the values of the control group.

  9. Immunotoxicity activity from the essential oils of coriander (Coriandrum sativum) seeds.

    PubMed

    Chung, Ill-Min; Ahmad, Ateeque; Kim, Eun-Hye; Kim, Seung-Hyun; Jung, Woo-Suk; Kim, Jin-Hoi; Nayeem, Abdul; Nagella, Praveen

    2012-06-01

    The seeds of the Coriandrum sativum were extracted and the essential oil composition and immunotoxicity effects were studied. The analysis of the essential oil was conducted by gas chromatography-mass spectroscopy, which revealed 33 components, representing 99.99% of the total oil from the seeds of coriander. The major components are linalool (55.09%), α-pinene (7.49%), 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (E)- (5.70%), geraniol (4.83%), 3-Cyclohexene-1-methanol, α,α,4-trimethyl- (4.72%), hexadecanoic acid (2.65%), tetradecanoic acid (2.49%), 2-α-pinene (2.39%), citronellyl acetate (1.77%), and undecanal (1.29%). The seed oil had significant toxic effects against the larvae of Aedes aegypti with an LC(50) value of 21.55 ppm and LC(90) value of 38.79 ppm. The above data indicate that the major components in the essential oil of coriander play an important role as immunotoxicity on the A. aegypti.

  10. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea.

    PubMed

    Bhattacharya, Surajit; Das, Natasha; Maiti, Mrinal K

    2016-10-01

    The production of vegetable oil in many countries of the world, including India has not been able to keep pace with the increasing requirement, leading to a very large gap in the demand-supply chain. Thus, there is an urgent need to increase the yield potential of the oilseed crops so as to enhance the storage lipid productivity. The present study describes a novel metabolic engineering ploy involving the constitutive down-regulation of endogenous ADP-glucose pyrophosphorylase (BjAGPase) enzyme and the seed-specific expression of WRINKLED1 transcription factor (AtWRI1) from Arabidopsis thaliana in Indian mustard (Brassica juncea) with an aim to divert the photosynthetically fixed carbon pool from starch to lipid synthesis in the seeds for the enhanced production of storage lipids in the seeds of transgenic mustard plants. The starch content, in both the vegetative leaf and developing seed tissues of the transgenic B. juncea lines exhibited a reduction by about 45-53% compared to the untransformed control, whereas the soluble sugar content was increased by 2.4 and 1.3-fold in the leaf and developing seed tissues, respectively. Consequently, the transgenic lines showed a significant enhancement in total seed lipid content ranging between 7.5 and 16.9%. The results indicate that the adopted metabolic engineering strategy was successful in significantly increasing the seed oil content. Therefore, findings of our research suggest that the metabolic engineering strategy adopted in this study for shifting the anabolic carbon flux from starch synthesis to lipid biosynthesis can be employed for increasing the storage lipid content of seeds in other plant species. PMID:27314514

  11. Investigation on the mineral contents of capers (Capparis spp.) seed oils growing wild in Turkey.

    PubMed

    Ozcan, M Musa

    2008-09-01

    Minor and major mineral contents of seed oils of Capparis ovata Desf. var. canescens (Coss.) Heywood and Capparis spinosa var. spinosa used as pickling products in Turkey were determined by inductively coupled plasma atomic emission spectrometry. The seed oils contained Al, P, Na, Mg, Fe, and Ca, in addition to fatty acids. The highest mineral concentrations measured were 14.91-118.81 mg/kg Al, 1,489.34-11,523.74 mg/kg P, 505.78-4,489.51 mg/kg Na, 102.15-1,655.33 mg/kg Mg, 78.83-298.14 mg/kg Fe, and 1.04-76.39 mg/kg Ca. The heavy metal concentrations were less than the limit of detection in all oil samples. The results may also be useful for the evaluation of nutritional information. PMID:18800913

  12. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    PubMed

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.

  13. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    PubMed Central

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  14. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    PubMed

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  15. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    PubMed

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  16. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    PubMed

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars. PMID:25895270

  17. Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils.

    PubMed

    Matthaus, B; Özcan, M M; Al Juhaimi, F Y

    2015-01-01

    The oil contents of safflower seeds ranged from 23.08% to 36.51%. The major fatty acid of safflower oil is linoleic acid, which accounted for 55.1-77.0% in oils, with a mean value of 70.66%. Three types of tocopherols were found in safflower oil in various amount α-tocopherol, β-tocopherol and γ-tocopherol, ranged from 46.05 to 70.93 mg/100 g, 0.85 to 2.16 mg/100 g and trace amount to 0.45 mg/100 g oils, respectively. This research shows that both fatty acid and tocopherol contents differ significantly among the safflowers.

  18. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    PubMed

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.

  19. Isolation and identification of a potent radical scavenger (canolol) from roasted high erucic mustard seed oil from Nepal and its formation during roasting.

    PubMed

    Shrestha, Kshitij; Stevens, Christian V; De Meulenaer, Bruno

    2012-08-01

    Roasting of high erucic mustard (HEM) seed has been reported to give a typical flavor and increase the oxidative stability of the extracted oil. A potent radical scavenging compound was successfully isolated from roasted HEM seed oil in a single-step chromatographic separation using an amino solid-phase extraction column. Nuclear magnetic resonance and mass spectrometry spectra revealed the compound as 2,6-dimethoxy-4-vinylphenol (generally known as canolol), and its identity was fully confirmed by chemical synthesis. The formation of canolol during roasting was compared among HEM varieties (Brassica juncea, B. juncea var. oriental, Brassica nigra, and Sinapis alba) together with a low erucic rapeseed variety. HEM varieties were shown to produce less than one-third of canolol compared to rapeseed at similar roasting conditions. This observation was linked to a lower free sinapic acid content together with a lower loss of sinapic acid derivatives in the HEM varieties compared to rapeseed. Around 50% of the canolol formed in the roasted seed was shown to be extracted in the oil. Roasting of HEM seed before oil extraction was found to be a beneficial step to obtain canolol-enriched oil, which could improve the oxidative stability.

  20. Isolation and identification of a potent radical scavenger (canolol) from roasted high erucic mustard seed oil from Nepal and its formation during roasting.

    PubMed

    Shrestha, Kshitij; Stevens, Christian V; De Meulenaer, Bruno

    2012-08-01

    Roasting of high erucic mustard (HEM) seed has been reported to give a typical flavor and increase the oxidative stability of the extracted oil. A potent radical scavenging compound was successfully isolated from roasted HEM seed oil in a single-step chromatographic separation using an amino solid-phase extraction column. Nuclear magnetic resonance and mass spectrometry spectra revealed the compound as 2,6-dimethoxy-4-vinylphenol (generally known as canolol), and its identity was fully confirmed by chemical synthesis. The formation of canolol during roasting was compared among HEM varieties (Brassica juncea, B. juncea var. oriental, Brassica nigra, and Sinapis alba) together with a low erucic rapeseed variety. HEM varieties were shown to produce less than one-third of canolol compared to rapeseed at similar roasting conditions. This observation was linked to a lower free sinapic acid content together with a lower loss of sinapic acid derivatives in the HEM varieties compared to rapeseed. Around 50% of the canolol formed in the roasted seed was shown to be extracted in the oil. Roasting of HEM seed before oil extraction was found to be a beneficial step to obtain canolol-enriched oil, which could improve the oxidative stability. PMID:22746294

  1. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    PubMed

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology. PMID:27413228

  2. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    PubMed

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology.

  3. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation

    PubMed Central

    Wang, Jingxue; Singh, Sanjay K.; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed (Brassica napus) is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559. PMID:27746810

  4. Oil dispersant increases PAH uptake by fish exposed to crude oil.

    PubMed

    Ramachandran, Shahunthala D; Hodson, Peter V; Khan, Colin W; Lee, Ken

    2004-11-01

    The use of oil dispersants is a controversial countermeasure in the effort to minimize the impact of oil spills. The risk of ecological effects will depend on whether oil dispersion increases or decreases the exposure of aquatic species to the toxic components of oil. To evaluate whether fish would be exposed to more polycyclic aromatic hydrocarbon (PAH) in dispersed oil relative to equivalent amounts of the water-accommodated fraction (WAF), measurements were made of CYP1A induction in trout exposed to the dispersant (Corexit 9500), WAFs, and the chemically enhanced WAF (dispersant; CEWAF) of three crude oils. The crude oils comprised the higher viscosity Mesa and Terra Nova and the less viscous Scotian Light. Total petroleum hydrocarbon and PAH concentrations in the test media were determined to relate the observed CYP1A induction in trout to dissolved fractions of the crude oil. CYP1A induction was 6- to 1100-fold higher in CEWAF treatments than in WAF treatments, with Terra Nova having the greatest increase, followed by Mesa and Scotian Light. Mesa had the highest induction potential with the lowest EC50 values for both WAF and CEWAF. The dispersant Corexit was not an inducer and it did not appear to affect the permeability of the gill surface to known inducers such as beta-napthoflavone. These experiments suggest that the use of oil dispersants will increase the exposure of fish to hydrocarbons in crude oil. PMID:15388269

  5. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    PubMed

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  6. Synthesis of Azidohydrin from Hura crepitans Seed Oil: A Renewable Resource for Oleochemical Industry and Sustainable Development

    PubMed Central

    Adewuyi, Adewale; Göpfert, Andrea; Wolff, Thomas; Rao, B. V. S. K.; Prasad, R. B. N.

    2012-01-01

    The replacement of petrochemicals by oleochemical feedstocks in many industrial and domestic applications has resulted in an increase in demand for biobased products and as such recognizing and increasing the benefits of using renewable materials. In line with this, the oil extracted from the seed of Hura crepitans was characterized by an iodine value of 120.10 ± 0.70 g Iodine/100 g and a saponification number of 210.10 ± 0.40 mg KOH/g with the dominant fatty acid being C18:2 (52.8 ± 0.10%). The epoxidised fatty acid methyl esters prepared from the oil were used to synthesise the azidohydrin with a yield of 91.20%. The progress of the reaction was monitored and confirmed using FTIR and NMR. This showed the seed oil of Hura crepitans as a renewable resource that can be used to make valuable industrial and domestic products. PMID:24052854

  7. Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora.

    PubMed

    Bruni, R; Medici, A; Guerrini, A; Scalia, S; Poli, F; Muzzoli, M; Sacchetti, G

    2001-11-01

    Seed oil of wild Amaranthus caudatus from Ecuador was analyzed for determining the tocopherol, fatty acid, and sterol contents. The data obtained were compared with the analogous chemical profile of seed oil of Italian A. caudatus with the objective of evaluating the nutraceutical and alimentary potential of the Ecuadorian matrix. Supercritical fluid and ultrasound-enhanced extractions were performed on both matrices. Qualitative and quantitative determinations of tocopherols were performed by HPLC, whereas GC and GC-MS were used to determine the fatty acid composition and sterols, respectively. Supercritical fluid extraction at 400 atm was the most efficient extraction method in terms of both total yield extract and tocopherol yield. Seeds of Ecuadorian of A. caudatus contained higher levels of tocopherols than Italian samples, whereas the fatty acid composition and sterol content were similar. From the obtained results it can be suggested that seed oil of wild Ecuadorian A. caudatus can prove to be an effective nutraceutical and alimentary resource and a valid alternative to the European varieties.

  8. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies

    PubMed Central

    Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  9. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    PubMed

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  10. Integrating Sunflower Oil Seed Crops into Florida Horticultural Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locally produced biodiesel feedstock plant oil creates a unique possibility to integrate multiple-goal oriented cover crops into Florida horticultural production systems. Typically, cover crops are planted to improve soil fertility and the natural suppression of soilborne pests at times when fields...

  11. Polymer flooding increases production in giant oil field

    SciTech Connect

    Delamaide, E.; Corlay, P. )

    1994-12-01

    Daqing field, discovered in 1959, is the largest oil field in the People's Republic of China, with original oil in place exceeding two billion tons. Reservoir heterogeneity and oil viscosity have resulted in moderate displacement efficiency and high watercut. To increase recovery, polymer injection was tested in two pilots between 1987 and 1992, after lab and reservoir studies. Both pilots proved highly successful and led to the decision to extend polymer injection to the whole field. This article presents the history of Daqing polymer flooding, from preliminary studies to full-field extension.

  12. Antiatherogenic Potential of Nigella sativa Seeds and Oil in Diet-Induced Hypercholesterolemia in Rabbits.

    PubMed

    Al-Naqeep, Ghanya; Al-Zubairi, Adel S; Ismail, Maznah; Amom, Zulkhairi Hj; Esa, Norhaizan Mohd

    2011-01-01

    Nigella sativa or Black seed (N. sativa L.) is traditionally used for several ailments in many Middle Eastern countries. It is an annual herbaceous plant that belongs to the Ranuculacea family with many beneficial properties as antitumor, antidiabetic, antihypertensive, antioxidative and antibacterial. This work attempted to study the effect of N. sativa seeds powder and oil on atherosclerosis in diet-induced hypercholesterolemic (HC) rabbits in comparison with simvastatin (ST). Twenty-five adult New Zealand male white rabbits, weighing 1.5-2.5 kg, were divided into five groups; normal group (NC, n = 5) and four hypercholesterolemic groups (n = 20): a positive control (PC) and three HC groups force fed diet supplemented with 1000 mg Kg(-1) body weight of N. sativa powder (NSP), 500 mg Kg(-1) body N. sativa oil (NSO) and 10 mg Kg(-1) ST for 8 weeks. Feeding HC rabbits with N. sativa either in powder or oil forms was shown to significantly reduce (P < .05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) levels and enhance high-density lipoprotein cholesterol (HDL) levels after treatment for 2, 4, 6 and 8 weeks compared to the PC group. Plaque formation was significantly inhibited while the intima: media ratio was significantly reduced in the NSP and NSO supplemented groups compared to the PC group. In conclusion, treatment of HC rabbits with N. sativa seeds powder or oil showed hypocholesterolemic and antiatherogenic cardioprotective properties. PMID:21792359

  13. Fate of 14C-ethyl prothiofos insecticide in canola seeds and oils.

    PubMed

    Abdel-Gawad, Hassan; Hegazi, Bahira

    2010-02-01

    Canola plants were treated with (14)C- prohiofos under conditions simulating local agricultural practices. (14)C-residues in seeds were determined at different time intervals. At harvest time about 32 % of (14)C-activity was associated with oil. The methanol soluble (14)C-residues accounted for 12 % of the total seed residues after further seeds extraction, while the cake contained about 49 % of the total residues. About 69 % of the (14)C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. Chromatographic analysis of crude and refined oil revealed the presence of the parent compound together with three metabolites which were identified as prothiofos oxon, O-ethyl phosphorothioate and O-ethyl S-propyl phosphorothioate, besides one unknown compound. While methanol extract revealed the presence of despropylthio prothiofos and O-ethyl phosphoric acid as free metabolites acid hydrolysis of the conjugated metabolites in the methanol extract yielded 2, 4-dichlorophenole which was detected by color. When rats were fed the extracted cake for 72 hours, the bound residues were found to be bioavailable. The main excretion route was via the expired air (42 %), while the (14)C-residues excreted in urine and feces were 30 % and 11 %, respectively. The radioactivity detected among various organs accounted to 7.5 %.Chromatographic analysis of urine indicated the presence of prothiofos oxon, O-ethyl phosphoric acid and 2, 4-dichlorophenole as main degradation products of prothiofos in free and conjugated form.

  14. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank.

    PubMed

    Hoyle, Gemma L; Venn, Susanna E; Steadman, Kathryn J; Good, Roger B; McAuliffe, Edward J; Williams, Emlyn R; Nicotra, Adrienne B

    2013-05-01

    Global warming is occurring more rapidly above the treeline than at lower elevations and alpine areas are predicted to experience above average warming in the future. Temperature is a primary factor in stimulating seed germination and regulating changes in seed dormancy status. Thus, plant regeneration from seed will be crucial to the persistence, migration and post disturbance recruitment of alpine plants in future climates. Here, we present the first assessment of the impact of soil warming on germination from the persistent alpine soil seed bank. Contrary to expectations, soil warming lead to reduced overall germination from the soil seed bank. However, germination response to soil temperature was species specific such that total species richness actually increased by nine with soil warming. We further explored the system by assessing the prevalence of seed dormancy and germination response to soil disturbance, the frequency of which is predicted to increase under climate change. Seeds of a significant proportion of species demonstrated physiological dormancy mechanisms and germination of several species appeared to be intrinsically linked to soil disturbance. In addition, we found no evidence of subalpine species and little evidence of exotic weed species in the soil, suggesting that the soil seed bank will not facilitate their invasion of the alpine zone. In conclusion, changes in recruitment via the alpine soil seed bank can be expected under climate change, as a result of altered dormancy alleviation and germination cues. Furthermore, the alpine soil seed bank, and the species richness therein, has the potential to help maintain local species diversity, support species range shift and moderate species dominance. Implications for alpine management and areas for further study are also discussed.

  15. Bird and ant synergy increases the seed dispersal effectiveness of an ornithochoric shrub.

    PubMed

    Camargo, Paulo H S A; Martins, Milene M; Feitosa, Rodrigo M; Christianini, Alexander V

    2016-06-01

    Seed dispersal may involve different vectors of dispersal in two or more sequential phases (i.e., diplochory). However, contributions of each phase to the overall seed dispersal effectiveness (SDE) are poorly understood and hard to evaluate due to post-dispersal processes that affect seed and seedling survival. We investigated the simultaneous bird (phase 1, in plant canopy) and ant (phase 2, on the floor) contributions to SDE with the ornithochoric shrub Erythroxylum ambiguum in a Brazilian Atlantic forest. Twelve species of birds fed on fruit and dispersed approximately 26 % of the seed crop. The remaining seed crop, 90 % of which contained viable seeds, fell to the ground beneath the parental plant. Ants either cleaned seeds in fruits or carried fallen fruit and seeds from bird feces to their nests. Although E. ambiguum has no adaptation for ant dispersal, ants were as quantitatively important as birds. Birds and ants equally increased germination rates compared to controls. However, birds deposited seeds farther from the parent, where seedling survival was higher (78 %) than it was beneath the parent (44 %), whereas ants carried seeds to their nests, where seedling survival was higher (83 %) than in controls away from their nests (63 %). Diplochory allowed a 42 % increase in SDE compared to dispersal in phase 1 alone. High lipid content in the fruit pulp of E. ambiguum may facilitate the inclusion of ants in a second step of dispersal after diaspores reach the floor. Ants can also buffer the dispersal of diplochorous plants against decreases in phase 1 dispersers. PMID:26899481

  16. Role of bacteria isolates in the spoilage of fermented African oil bean seed ugba.

    PubMed

    Nwamaka, Nwagu Tochukwu; Chike, Amadi; Obiajulu, Alaekwe

    2010-05-15

    Study was carried out to determine the spoilage association of traditionally fermented ugba, product of African oil bean seed. Samples were collected from three markets within Enugu metropolis in Eastern Nigeria. Microbial population of ugba was isolated, characterized and identified. Effect of time on product quality, total viable cell count and individual growth pattern of isolates was evaluated. Microorganisms isolated were Proteus sp., Klebsiella sp., Staphylococcus epidermidis, E. coli, Bacillus licheniformis and Bacillus subtilis. Initial viable cell count increased from 4.6 x 10(8) -6.2 x 10(8), 6.0 x 10(9) -6.9 x 10(9) and 3.9 x 10(8) -5 x 10(8) cfu g(-1) by the 4th day for samples from Mayor, Kenyatta and Garki markets, respectively. Organoleptic changes in texture and colour were seen to be a factor of time of storage. A decline in growth of Proteus sp., E. coli, Klebsiella sp. and S. epidermidis by the 4th day of storage was observed for all samples. Viable cells of B. licheniformis increased from 6.1 x 10(7) -17.7 x 10(7) cfu g(-1), 13.9 x 10(8) -20.0 x 10(8) and 8.7 x 10(7) -15.5 x 10(7) by the 4th day of storage for samples from Mayor, Kenyatta and Garki markets respectively. Growth of B. subtilis increased from 9.2 x 10(7) -19.9 x 10(7), 14.9 x 10(8) -21.2 x 10(8) and 11.5 x 10(7) -17.2 x 10(7) cfu g(-1) for samples from Mayor, Kenyatta and Garki markets respectively. Our results indicate that ugba spoilage is primarily a result of the continued activity of African oil bean seed fermentative organisms B. subtilis and B. licheniformis.

  17. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    PubMed

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  18. A Noninvasive Platform for Imaging and Quantifying Oil Storage in Submillimeter Tobacco Seed1[W][OA

    PubMed Central

    Fuchs, Johannes; Neuberger, Thomas; Rolletschek, Hardy; Schiebold, Silke; Nguyen, Thuy Ha; Borisjuk, Nikolai; Börner, Andreas; Melkus, Gerd; Jakob, Peter; Borisjuk, Ljudmilla

    2013-01-01

    While often thought of as a smoking drug, tobacco (Nicotiana spp.) is now considered as a plant of choice for molecular farming and biofuel production. Here, we describe a noninvasive means of deriving both the distribution of lipid and the microtopology of the submillimeter tobacco seed, founded on nuclear magnetic resonance (NMR) technology. Our platform enables counting of seeds inside the intact tobacco capsule to measure seed sizes, to model the seed interior in three dimensions, to quantify the lipid content, and to visualize lipid gradients. Hundreds of seeds can be simultaneously imaged at an isotropic resolution of 25 µm, sufficient to assess each individual seed. The relative contributions of the embryo and the endosperm to both seed size and total lipid content could be assessed. The extension of the platform to a range of wild and cultivated Nicotiana species demonstrated certain evolutionary trends in both seed topology and pattern of lipid storage. The NMR analysis of transgenic tobacco plants with seed-specific ectopic expression of the plastidial phosphoenolpyruvate/phosphate translocator, displayed a trade off between seed size and oil concentration. The NMR-based assay of seed lipid content and topology has a number of potential applications, in particular providing a means to test and optimize transgenic strategies aimed at the manipulation of seed size, seed number, and lipid content in tobacco and other species with submillimeter seeds. PMID:23232144

  19. Differences in hoarding behaviors among six sympatric rodent species on seeds of oil tea ( Camellia oleifera) in Southwest China

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2011-05-01

    Seed hoarding is an important behavioral adaptation to food shortages for many rodent species. Sympatric rodents may affect the natural regeneration of large-seeded trees differently as seed dispersers or seed predators. Using seeds of oil tea ( Camellia oleifera), we investigated differences in hoarding behaviors among six sympatric rodent species in semi-natural enclosures in a subtropical forest in southwest of China. We found that all these six species ate seeds of C. oleifera, but only Edward's long-tailed rats ( Leopoldamys edwardsi) were predominantly scatter hoarders; chestnut rats ( Niviventer fulvescens) and white-bellied rats ( Niviventer confucianus) scatter hoarded and larder hoarded few seeds, but were seed predators; South China field mice ( Apodemus draco) exhibited little larder-hoarding behavior; and Chevrier's field mice ( A. chevrieri) as well as Himalayan rats ( Rattus nitidusa) did not hoard seeds at all. The rodents that engaged in scatter hoarding often formed single-seed caches and tended to cache seeds under grass or shrubs. Our findings indicate that sympatric rodents consuming seeds of the same species of plant can have different hoarding strategies, affecting seed dispersal and plant regeneration differently. We conclude by discussing the role of these species in hoarding seeds of C. oleifera and highlight the essential role of Edward's long-tailed rats as predominantly potential dispersers of this plant species.

  20. Oil, fatty acid, and protein content of seeds harvested from soybeans exposed to O sub 3 and/or SO sub 2

    SciTech Connect

    Grunwald, C. ); Endress, A.G. )

    1988-09-01

    In a series of greenhouse experiments, we exposed soybean plant (Corsoy-79) to low levels of O{sub 3} and SO{sub 2}, singly and in combination. Exposure to O{sub 3} and SO{sub 2} alone increased the oil content of the harvested seeds, but the protein content was essentially unchanged. The seed oil: protein ratio increased with increasing pollutant concentration in both experiments. These responses, however, were not observed in seeds harvested from plants exposed to mixtures of O{sub 3} and SO{sub 2}. Differences in fatty acid content and composition were also noted. Ozone alone caused an increase in seed fatty acid content as a result of increased linoleic and stearic acids coupled with decreased oleic acid. After exposure to SO{sub 2} alone, no significant alterations of the fatty acid composition were observed. No statistically significant pattern could be identified for the content of fatty acids in seeds harvested from plants exposed to the O{sub 3} + SO{sub 2} mixtures, although the accumulation of linoleic acid appeared to be depressed.

  1. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  2. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.

    PubMed

    Kuo, Ting-Chun; Shaw, Jei-Fu; Lee, Guan-Chiun

    2015-09-01

    The versatile Candida rugosa lipase (CRL) has been widely used in biotechnological applications. However, there have not been feasibility reports on the transesterification of non-edible oils to produce biodiesel using the commercial CRL preparations, mixtures of isozymes. In the present study, four liquid recombinant CRL isozymes (CRL1-CRL4) were investigated to convert various non-edible oils into biodiesel. The results showed that recombinant CRL2 and CRL4 exhibited superior catalytic efficiencies for producing fatty acid methyl ester (FAME) from Jatropha curcas seed oil. A maximum 95.3% FAME yield was achieved using CRL2 under the optimal conditions (50 wt% water, an initial 1 equivalent of methanol feeding, and an additional 0.5 equivalents of methanol feeding at 24h for a total reaction time of 48 h at 37 °C). We concluded that specific recombinant CRL isozymes could be excellent biocatalysts for the biodiesel production from low-cost crude Jatropha oil.

  3. Oil spills - increasing US dependence on oil imports heightens risks to environment

    SciTech Connect

    1992-01-17

    Calamitous oil spills in recent years have focused attention on the devastation the world`s leading energy source can wreak on the environment. In Alaska, the 1989 grounding of the supertanker Exxon Valdez in Prince William Sound caused the worst U.S. oil spill ever and promoted Congress to pass stringent oil-pollution legislation. In the Persian Gulf, {open_quotes}eco-terroism{close_quotes} committed by Iraqi forces during the gulf war left hundreds of wells burning and oil free-flowing out of Kuwait`s refineries and oil-shipping terminals. With the United States and much of the global community increasingly dependent on petroleum moved by supertankers, oil spills will continue to threaten the environment for the foreseeable future.

  4. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    SciTech Connect

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; Hu, Zhaohui; Swift, Jennifer E.; Yalamanchili, Roopa; Dvora, Mia; Lin, Xiuli; Xie, Deyu; Qu, Rongda; Sederoff, Heike W.

    2015-10-29

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolate catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.

  5. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae.

    PubMed

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil. PMID:20548937

  6. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae

    PubMed Central

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil. PMID:20548937

  7. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae.

    PubMed

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil.

  8. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates.

    PubMed

    Wajs-Bonikowska, Anna; Sienkiewicz, Monika; Stobiecka, Agnieszka; Maciąg, Agnieszka; Szoka, Łukasz; Karna, Ewa

    2015-03-01

    The chemical composition, including the enantiomeric excess of the main terpenes, the antimicrobial and antiradical activities, as well as the cytotoxicity of Abies alba and A. koreana seed and cone essential oils were investigated. Additionally, their seed hydrolates were characterized. In the examined oils and hydrolates, a total of 174 compounds were identified, which comprised 95.6-99.9% of the volatiles. The essential oils were mainly composed of monoterpene hydrocarbons, whereas the composition of the hydrolates, differing from the seed oils of the corresponding fir species, consisted mainly of oxygenated derivatives of sesquiterpenes. The seed and cone essential oils of both firs exhibited DPPH-radical-scavenging properties and low antibacterial activity against the bacterial strains tested. Moreover, they evoked only low cytotoxicity towards normal fibroblasts and the two cancer cell lines MCF-7 and MDA-MBA-231. At concentrations up to 50 μg/ml, all essential oils were safe in relation to normal fibroblasts. Although they induced cytotoxicity towards the cancer cells at concentrations slightly lower than those required for the inhibition of fibroblast proliferation, their influence on cancer cells was weak, with IC50 values similar to those observed towards normal fibroblasts.

  9. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds.

    PubMed

    Da Porto, Carla; Porretto, Erica; Decorti, Deborha

    2013-07-01

    Ultrasound-assisted extraction (US) carried out at 20 KHz, 150 W for 30 min gave grape seed oil yield (14% w/w) similar to Soxhlet extraction (S) for 6 h. No significant differences for the major fatty acids was observed in oils extracted by S and US at 150 W. Instead, K232 and K268 of US- oils resulted lower than S-oil. From grape seeds differently defatted (S and US), polyphenols and their fractions were extracted by maceration for 12 h and by ultrasound-assisted extraction for 15 min. Sonication time was optimized after kinetics study on polyphenols extraction. Grape seed extracts obtained from seeds defatted by ultrasound (US) and then extracted by maceration resulted the highest in polyphenol concentration (105.20mg GAE/g flour) and antioxidant activity (109 Eq αToc/g flour).

  10. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans.

    PubMed

    Chen, Yuxin; Zeng, Hong; Tian, Jun; Ban, Xiaoquan; Ma, Bingxin; Wang, Youwei

    2013-08-01

    This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO. PMID:23657528

  11. The mechanism of methylated seed oil on enhancing biological efficacy of topramezone on weeds.

    PubMed

    Zhang, Jinwei; Jaeck, Ortrud; Menegat, Alexander; Zhang, Zongjian; Gerhards, Roland; Ni, Hanwen

    2013-01-01

    Methylated seed oil (MSO) is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds.

  12. The Mechanism of Methylated Seed Oil on Enhancing Biological Efficacy of Topramezone on Weeds

    PubMed Central

    Zhang, Jinwei; Jaeck, Ortrud; Menegat, Alexander; Zhang, Zongjian; Gerhards, Roland; Ni, Hanwen

    2013-01-01

    Methylated seed oil (MSO) is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds. PMID:24086329

  13. Transcriptome Analysis of Yellow Horn (Xanthoceras sorbifolia Bunge): A Potential Oil-Rich Seed Tree for Biodiesel in China

    PubMed Central

    Liu, Yulin; Huang, Zhedong; Ao, Yan; Li, Wei; Zhang, Zhixiang

    2013-01-01

    Background Yellow horn (Xanthoceras sorbifolia Bunge) is an oil-rich seed shrub that grows well in cold, barren environments and has great potential for biodiesel production in China. However, the limited genetic data means that little information about the key genes involved in oil biosynthesis is available, which limits further improvement of this species. In this study, we describe sequencing and de novo transcriptome assembly to produce the first comprehensive and integrated genomic resource for yellow horn and identify the pathways and key genes related to oil accumulation. In addition, potential molecular markers were identified and compiled. Methodology/Principal Findings Total RNA was isolated from 30 plants from two regions, including buds, leaves, flowers and seeds. Equal quantities of RNA from these tissues were pooled to construct a cDNA library for 454 pyrosequencing. A total of 1,147,624 high-quality reads with total and average lengths of 530.6 Mb and 462 bp, respectively, were generated. These reads were assembled into 51,867 unigenes, corresponding to a total of 36.1 Mb with a mean length, N50 and median of 696, 928 and 570 bp, respectively. Of the unigenes, 17,541 (33.82%) were unmatched in any public protein databases. We identified 281 unigenes that may be involved in de novo fatty acid (FA) and triacylglycerol (TAG) biosynthesis and metabolism. Furthermore, 6,707 SSRs, 16,925 SNPs and 6,201 InDels with high-confidence were also identified in this study. Conclusions This transcriptome represents a new functional genomics resource and a foundation for further studies on the metabolic engineering of yellow horn to increase oil content and modify oil composition. The potential molecular markers identified in this study provide a basis for polymorphism analysis of Xanthoceras, and even Sapindaceae; they will also accelerate the process of breeding new varieties with better agronomic characteristics. PMID:24040247

  14. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan.

    PubMed

    Anwar, Farooq; Bhanger, M I

    2003-10-22

    The hexane-extracted oil content of Moringa oleifera seeds ranged from 38.00 to 42.00%. Protein, fiber, and ash contents were found to be 26.50-32.00, 5.80-9.29, and, 5.60-7.50%, respectively. Results of physical and chemical parameters of the extracted oil were as follows: iodine value, 68.00-71.80; refractive index (40 degrees C), 1.4590-1.4625; density (24 degrees C), 0.9036-0.9080 mg/mL; saponification value, 180.60-190.50; unsaponifiable matter, 0.70-1.10%; and color (1 in. cell), 0.95-1.10 R + 20.00-35.30 Y. Tocopherols (alpha, gamma, and delta) in the oil were up to 123.50-161.30, 84.07-104.00, and 41.00-56.00 mg/kg, respectively. The oil was found to contain high levels of oleic acid (up to 78.59%) followed by palmitic, stearic, behenic, and arachidic acid up to levels of 7.00, 7.50, 5.99, and 4.21%, respectively. The induction period (Rancimat, 20 L/h, 120 degrees C) of the crude oil was 9.99 h and reduced to 8.63 h after degumming. Specific extinctions at 232 and 270 nm were 1.70 and 0.31, respectively. Many parameters of M. oleifera oil indigenous to Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study were also compared with those of different vegetable oils.

  15. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan.

    PubMed

    Anwar, Farooq; Bhanger, M I

    2003-10-22

    The hexane-extracted oil content of Moringa oleifera seeds ranged from 38.00 to 42.00%. Protein, fiber, and ash contents were found to be 26.50-32.00, 5.80-9.29, and, 5.60-7.50%, respectively. Results of physical and chemical parameters of the extracted oil were as follows: iodine value, 68.00-71.80; refractive index (40 degrees C), 1.4590-1.4625; density (24 degrees C), 0.9036-0.9080 mg/mL; saponification value, 180.60-190.50; unsaponifiable matter, 0.70-1.10%; and color (1 in. cell), 0.95-1.10 R + 20.00-35.30 Y. Tocopherols (alpha, gamma, and delta) in the oil were up to 123.50-161.30, 84.07-104.00, and 41.00-56.00 mg/kg, respectively. The oil was found to contain high levels of oleic acid (up to 78.59%) followed by palmitic, stearic, behenic, and arachidic acid up to levels of 7.00, 7.50, 5.99, and 4.21%, respectively. The induction period (Rancimat, 20 L/h, 120 degrees C) of the crude oil was 9.99 h and reduced to 8.63 h after degumming. Specific extinctions at 232 and 270 nm were 1.70 and 0.31, respectively. Many parameters of M. oleifera oil indigenous to Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study were also compared with those of different vegetable oils. PMID:14558778

  16. Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera) Seed Oil.

    PubMed

    Sramala, Issara; Pinket, Wichchunee; Pongwan, Pawinee; Jarussophon, Suwatchai; Kasemwong, Kittiwut

    2016-01-01

    In this study, tea (Camellia oleifera) seed oil was formulated into self-emulsifying oil formulations (SEOF) to enhance the aqueous dispersibility and intestinal retention to achieve higher bioavailability. Self-emulsifying tea seed oils were developed by using different concentrations of lecithin in combination with surfactant blends (Span(®)80 and Tween(®)80). The lecithin/surfactant systems were able to provide clear and stable liquid formulations. The SEOF were investigated for physicochemical properties including appearance, emulsion droplets size, PDI and zeta potential. The chemical compositions of tea seed oil and SEOF were compared using GC-MS techniques. In addition, the oil adsorption measurement on artificial membranes was performed using a Franz cell apparatus and colorimetric analysis. The microscopic structure of membranes was observed with scanning electron microscopy (SEM). After aqueous dilution with fed-state simulated gastric fluid (FeSSGF), the droplet size of all SEOF was close to 200 nm with low PDI values and the zeta potential was negative. GC-MS chromatograms revealed that the chemical compositions of SEOF were not significantly different from that of the original tea seed oil. The morphological study showed that only the SEOF could form film layers. The oil droplets were extracted both from membrane treated with tea seed oil and the SEOF in order to evaluate the chemical compositions by GC-MS. PMID:27136528

  17. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation.

    PubMed

    Peng, Chao; Zhao, Su-Qing; Zhang, Jun; Huang, Gui-Ying; Chen, Lan-Ying; Zhao, Feng-Yi

    2014-12-15

    In this study, the essential oil from mustard seed was isolated by simultaneous steam distillation and extraction (SDE) and analyzed by gas chromatography-mass spectrometry (GC-MS). Fourteen components were identified in the mustard seed essential oil with allyl isothiocyanate being the main component (71.06%). The essential oil has a broad-spectrum antimicrobial activity with inhibition zones and MIC values in the range of 9.68-15.57 mm and 128-512 μg/mL respectively. The essential oil was subsequently encapsulated in complex coacervation microcapsules with genipin, a natural water-soluble cross-linker. The optimum parameters for the hardening effectiveness of the genipin-hardened essential oil microcapsules were 8h at 40°C and pH 10.0 with a genipin concentration of 0.075 g/g gelatin. The genipin-hardened microcapsules had a particle size of mainly 5-10 μm and strong chemistry stability which is potential for its application in food preservation. PMID:25038712

  18. Determination principal component content of seed oils by THz-TDS

    NASA Astrophysics Data System (ADS)

    Li, Jiu-sheng; Li, Xiang-jun

    2009-07-01

    The terahertz transmission spectra of seed oils are measured in the frequency range extending from 0.2 to 1.4 THz using terahertz time-domain spectroscopy (THz-TDS). The absorption spectra of three acid compounds (octadecanoic acid, octadecenoic acid and octadecadienoic acid) in seed oils are recorded and simulated using both THz-TDS and density functional theory (DFT) methods. Support vector regression (SVR) model using the raw measured terahertz spectral data directly as input of the principal component is established and is employed to determinate three acid compounds content for the terahertz time-domain spectroscopy. Comparison of the experimental data using liquid chromatography with predictions based on support vector regression, respectively, exhibits excellent agreement.

  19. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol.

    PubMed

    Mohamed, R; Fernández, J; Pineda, M; Aguilar, M

    2007-04-01

    The antioxidant potential of roselle (Hibiscus sabdariffa L.) extracts was studied. Different plant organs, including seeds, stems, leaves, and sepals, were analyzed with respect to their water-soluble antioxidant capacity, lipid-soluble antioxidant capacity, and tocopherol content, revealing that roselle seeds are a good source of lipid-soluble antioxidants, particularly gamma-tocopherol. Roselle seed oil was extracted and characterized, and its physicochemical parameters are summarized: acidity, 2.24%; peroxide index, 8.63 meq/kg; extinction coefficients at 232 (k(232)) and 270 nm (k(270)), 3.19 and 1.46, respectively; oxidative stability, 15.53 h; refractive index, 1.477; density, 0.92 kg/L; and viscosity, 15.9 cP. Roselle seed oil belongs to the linoleic/oleic category, its most abundant fatty acids being C18:2 (40.1%), C18:1 (28%), C16:0 (20%), C18:0 (5.3%), and C19:1 (1.7%). Sterols include beta-sitosterol (71.9%), campesterol (13.6%), Delta-5-avenasterol (5.9%), cholesterol (1.35%), and clerosterol (0.6%). Total tocopherols were detected at an average concentration of 2000 mg/kg, including alpha-tocopherol (25%), gamma-tocopherol (74.5%), and delta-tocopherol (0.5%). The global characteristics of roselle seed oil suggest that it could have important industrial applications, adding to the traditional use of roselle sepals in the elaboration of karkade tea.

  20. Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats.

    PubMed

    Morsy, T A; Kholif, S M; Kholif, A E; Matloup, O H; Salem, A Z M; Elella, A Abu

    2015-08-01

    This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.

  1. Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats

    PubMed Central

    Morsy, T. A.; Kholif, S. M.; Kholif, A. E.; Matloup, O. H.; Salem, A. Z. M.; Elella, A. Abu

    2015-01-01

    This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance. PMID:26104519

  2. Determination of selenium content in different types of seed oils by cathodic stripping potentiometry (CSP).

    PubMed

    Dugo, Giacomo; La Pera, Lara; Pollicino, Donatella; Saitta, Marcello

    2003-09-10

    Seed oils are consumed worldwide; moreover, they are used in the alimentary, cosmetic, pharmaceutical, and chemical industries. Due to their diffusion, it is interesting to investigate the presence of important micronutrients such as selenium in seed oils. The aim of this work was to develop a rapid, precise, and sensitive cathodic stripping potentiometry (CSP) method to determine the concentration of selenium in different types of seed oils. Selenium was extracted from the oily matrix by concentrated hydrochloric acid treatment at 90 degrees C. The analysis was executed by applying an electrolysis potential of -150 mV for 60 s and a constant current of -30 microA. Under these conditions, detection limits of <0.5 ng g(-1) were obtained. The method reproducibility (expressed as total RSD %) spanned from 0.2 to 0.8%. Recoveries ranged from 92.1 to 97.5%, providing evidence that selenium quantification remained unaffected by the extraction procedure described. The results obtained with the proposed method were compared with those obtained via graphite furnace atomic absorption spectroscopy (GFAAS), a common method for determining selenium. The results of the two methods agreed within 93.5-107.7%. The mean amounts of selenium found were 313.0 +/- 2.0, 458.3 +/- 1.3, 224.6 +/- 0.9, 99.5 +/- 0.8, 332.2 +/- 0.5, 144.0 +/- 0.7, and 295.5 +/- 1.2 ng g(-1), respectively, in peanut, soybean, sunflower, rice, corn, grapestone, and seed oils.

  3. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  4. Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate application in soybean cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications ...

  5. Edible oils for liver protection: hepatoprotective potentiality of Moringa oleifera seed oil against chemical-induced hepatitis in rats.

    PubMed

    Al-Said, Mansour S; Mothana, Ramzi A; Al-Yahya, Mohammed A; Al-Blowi, Ali S; Al-Sohaibani, Mohammed; Ahmed, Atallah F; Rafatullah, Syed

    2012-07-01

    In the present study, in vitro antioxidant, antioxidative stress and hepatoprotective activity of Moringa oleifera Lam. seed oil (Ben oil; BO) was evaluated against carbon tetrachloride (CCl(4) ) induced lipid peroxidation and hepatic damage in rats. The oil at 0.2 and 0.4 mL/rat was administered orally for 21 consecutive days. The substantially elevated serum enzymatic (GOT, GPT, ALP, GGT) and bilirubin levels were significantly restored towards normalization by the oil. There was a significant elevation in the level of malondialdehyde (MDA), non-protein sulfhydryl (NP-SH), and total protein (TP) contents in the liver tissue. The results obtained indicated that BO possesses potent hepatoprotective action against CCl(4) -induced hepatic damage by lowering liver marker enzymes, MDA concentration, and elevating NP-SH and TP levels in liver tissue. The biochemical observations were supplemented with histopathological examination of rat liver. The results of this study showed that treatment with Ben oil or silymarin (as a reference) appears to enhance the recovery from hepatic damage induced by CCl(4) . The pentobarbital induced narcolepsy prolongation in mice was retarded by the Ben oil. Acute toxicity test in mice showed no morbidity or mortality. In vitro DPPH radical scavenging and β-carotene-linolic acid assay tests of the BO exhibited a moderate antioxidant activity in both tests used. The possible mechanism(s) of the liver protective activity of Ben oil activity may be due to free radical scavenging potential caused by the presence of antioxidant component(s) in the oil. Consequently, BO can be used as a therapeutic regime in treatment of some hepatic disorders. PMID:22757719

  6. Kinetic and regulatory properties of cytosolic pyruvate kinase from germinating castor oil seeds.

    PubMed

    Podestá, F E; Plaxton, W C

    1991-10-15

    The kinetic and regulatory properties of cytosolic pyruvate kinase (PKc) isolated from endosperm of germinating castor oil seeds (Ricinus communis L.) have been studied. Optimal efficiency in substrate utilization (in terms of Vmax/Km for phosphoenolpyruvate or ADP) occurred between pH 6.7 and 7.4. Enzyme activity was absolutely dependent on the presence of a bivalent and a univalent metal cation, with Mg2+ and K+ fulfilling this requirement. Mg2+ binding showed positive and negative co-operativity at pH 6.5 (h = 1.6) and pH 7.2 (h = 0.69) respectively. Hyperbolic saturation kinetics were observed with phosphoenolpyruvate (PEP) and K+, whereas ADP acted as a mixed-type inhibitor over 1 mM. Glycerol (10%, v/v) increased the S0.5(ADP) 2.3-fold and altered the pattern of nucleotide binding from hyperbolic (h = 1.0) to sigmoidal (h = 1.79) without modifying PEP saturation kinetics. No activators were identified. ATP, AMP, isocitrate, 2-oxoglutarate, malate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-phosphoglycerate, glycerol 3-phosphate and phosphoglycolate were the most effective inhibitors. These metabolites yielded additive inhibition when tested in pairs. ATP and 3-phosphoglycerate were mixed-type inhibitors with respect to PEP, whereas competitive inhibition was observed for other inhibitors. Inhibition by malate, 2-oxoglutarate, phosphorylated triose sugars or phosphoglycolate was far more pronounced at pH 7.2 than at pH 6.5. Although 32P-labelling studies revealed that extensive phosphorylation in vivo of soluble endosperm proteins occurred between days 3 and 5 of seed germination, no alteration in the 32P-labelling pattern of 5-day-germinated endosperm was observed after 30 min of anaerobiosis. Moreover, no evidence was obtained that PKc was a phosphoprotein in aerobic or anoxic endosperms. It is proposed that endosperm PKc activity of germinating castor seeds is enhanced after anaerobiosis through concerted decreases in ATP levels, cytosolic pH and

  7. Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability.

    PubMed

    Zuk, Magdalena; Prescha, Anna; Stryczewska, Monika; Szopa, Jan

    2012-05-16

    The composition of polyunsaturated fatty acids in the tissues is very important to human health and strongly depends on dietary intake. Since flax seeds are the richest source of polyunsaturated acids, their consumption might be beneficial for human health. Unfortunately, they are highly susceptible to auto-oxidation, which generates toxic derivatives. The main goal of this study was the generation of genetically modified flax plants with increased antioxidant potential and stable and healthy oil production. Since among phenylpropanoid compounds those belonging to the flavonoid route have the lowest antioxidant capacity, the approach was to inhibit this route of the pathway, which might result in accumulation of other compounds more effective in antioxidation. The suppression of the chalcone synthase gene resulted in hydrolyzable tannin accumulation and thus increased antioxidant status of seeds of the transgenic plant. This was due to the partial redirecting of substrates for flavonoid biosynthesis to the other routes of the phenylpropanoid pathway. Consequently, transgenic plants produced more (20-45%) polyunsaturated fatty acids than the control and mainly α-linolenic acid. Thus, increasing the antioxidant potential of flax plants has benefits in terms of the yield of suitable oil for human dietary consumption.

  8. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  9. Healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model.

    PubMed

    Ito, Hiroshi; Asmussen, Sven; Traber, Daniel L; Cox, Robert A; Hawkins, Hal K; Connelly, Rhykka; Traber, Lillian D; Walker, Timothy W; Malgerud, Erik; Sakurai, Hiroyuki; Enkhbaatar, Perenlei

    2014-05-01

    To investigate the efficacy of sea buckthorn (SBT) seed oil - a rich source of substances known to have anti-atherogenic and cardioprotective activity, and to promote skin and mucosa epithelization - on burn wound healing, five adult sheep were subjected to 3rd degree flame burns. Two burn sites were made on the dorsum of the sheep and the eschar was excised down to the fascia. Split-thickness skin grafts were harvested, meshed, and fitted to the wounds. The autograft was placed on the fascia and SBT seed oil was topically applied to one recipient and one donor site, respectively, with the remaining sites treated with vehicle. The wound blood flow (LASER Doppler), and epithelization (ultrasound) were determined at 6, 14, and 21 days after injury. 14 days after grafting, the percentage of epithelization in the treated sites was greater (95 ± 2.2% vs. 83 ± 2.9%, p<0.05) than in the untreated sites. Complete epithelization time was shorter in both treated recipient and donor sites (14.20 ± 0.48 vs. 19.60 ± 0.40 days, p<0.05 and 13.40 ± 1.02 vs. 19.60 ± 0.50 days, p<0.05, respectively) than in the untreated sites, confirmed by ultrasound. In conclusion, SBT seed oil has significant wound healing activity in full-thickness burns and split-thickness harvested wounds.

  10. Purification and some properties of African oil bean seed lipoxygenase--Part 1.

    PubMed

    Anokwulu, M N

    2003-11-01

    Lipoxygenase was extracted from African oil bean seed and purified by ammonium sulphate precipitation, gel filtration on Sephadex G-25 and ion-exchange chromatography on DEAE--cellulose column. The enzyme was purified 79.63 fold and 36% of the enzyme activity was recovered. The molecular weight of the enzyme was 102,000 daltons and the peroxide value was 10.56 x 10(-3) mM. The Vmax was 0.14 OD min-1 while the Km value was 1.92 x 10(-4) M. The enzyme had an optimum pH of 7.0 and optimum temperature of 30 degrees C. While diethyl-dithiocarbamate was the best inhibitor of the enzyme's oxidation of linoleic acid, nordihydroguiaretic acid was the best antioxidant for its oxidation of the fatty acid. African oil bean seed lipoxygenase had high enzyme activity of 86% when compared to soybean lipoxygenase (considered to be the best source of the enzyme). This means that African oil bean seed is a good source of lipoxygenase for biotechnology such as the bleaching of browned yam tubers.

  11. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction.

    PubMed

    Yang, Yang; Li, Hongliang; Peng, Liang; Chen, Zhipeng; Zeng, Qingru

    2016-04-15

    Oil seed, which is a secondary product in phytoremediation, contaminated with heavy metals should be disposed of in an appropriate fashion. In this study, heavy metal concentrations found in oilseed rape and peanut oils were below 0.1 mg kg(-1) after extractions, being found most of the heavy metals in meals rather in oils. Extraction experiments were carried out to determine the optimum methodology for the removal of Pb and Cd from seed meals using K3C6H5O7, K2C4H4O6 and (NH4)2EDTA. The highest extraction of the Pb and Cd in the seed meals was achieved using 30 mM extractant solutions at 30°C for 24 h and a three-step extraction procedure. K3C6H5O7 and K2C4H4O6 had less impact on the removal of nutrients than (NH4)2EDTA. PMID:26616978

  12. Phosphorylation of glyoxysomal malate synthase from castor oil seed endosperm and cucumber cotyledon

    SciTech Connect

    Yang, Y.P; Randall, D.D. )

    1989-04-01

    Glyoxysomal malate synthase (MS) was purified to apparent homogeneity from 3-d germinating castor oil seed endosperm by a relatively simple procedure including two sucrose density gradient centrifugations. Antibodies raised to the caster oil seed MS crossreacted with MS from cucumber cotyledon. MS was phosphorylated in both tissues in an MgATP dependent reaction. The phosphorylation pattern was similar for both enzymes and both enzymes were inhibited by NaF, NaMo, (NH{sub 4})SO{sub 4}, glyoxylate and high concentration of MgCl{sub 2} (60 mM), but was not inhibited by NaCl and malate. Further characterization of the phosphorylation of MS from castor oil seed endosperms showed that the 5S form of MS is the form which is labelled by {sup 32}P. The addition of exogenous alkaline phosphatase to MS not only decreased enzyme activity, but could also dephosphorylate phospho-MS. The relationship between dephosphorylation of MS and the decrease of MS activity is currently under investigation.

  13. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil

    PubMed Central

    2011-01-01

    Background Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. Results The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. Conclusions This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC. PMID:22044685

  14. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain, and liver.

    PubMed

    Liu, Y; Longmore, R B

    1997-09-01

    Sandalwood (Santalum spicatum) seed oil, which occurs to about 50% of the weight of the seed kernels, contains 30-35% of total fatty acids (FA) as ximenynic acid (XMYA). This study was designed to obtain basic information on changes in tissue FA composition and on the metabolic fate of XMYA in mice fed a sandalwood seed oil (SWSO)-enriched diet. Female mice were randomly divided into three groups, each receiving different semisynthetic diets containing 5.2% (w/w) fat (standard laboratory diet), 15% canola oil, or 15% SWSO for 8 wk. The effects of SWSO as a dietary fat on the FA composition of adipose tissue, brain, and liver lipids were determined by analyses of FA methyl ester derivatives of extracted total lipid. The FA compositions of the liver and adipose tissue were markedly altered by the dietary fats, and mice fed on a SWSO-enriched diet were found to contain XMYA but only in low concentration (0.3-3%) in these tissues; XMYA was not detected in brain. Oleic acid was suggested to be a principal XMYA biotransformation product. The results were interpreted to suggest that the metabolism of XMYA may involve both biohydrogenation and oxidation reactions. PMID:9307938

  15. Savanna fires increase rates and distances of seed dispersal by ants.

    PubMed

    Parr, C L; Andersen, A N; Chastagnol, C; Duffaud, C

    2007-02-01

    Myrmecochory (seed dispersal by ants) is a prominent dispersal mechanism in many environments, and can play a key role in local vegetation dynamics. Here we investigate its interaction with another key process in vegetation dynamics-fire. We examine ant dispersal of seeds immediately before and after experimental burning in an Australian tropical savanna, one of the world's most fire-prone ecosystems. Specifically, our study addressed the effects of burning on: (1) the composition of ants removing seeds, (2) number of seed removals, and (3) distance of seed dispersal. Fire led to higher rates of seed removal post-fire when compared with unburnt habitat, and markedly altered dispersal distance, with mean dispersal distance increasing more than twofold (from 1.6 to 3.8 m), and many distance dispersal events greater than the pre-fire maximum (7.55 m) being recorded. These changes were due primarily to longer foraging ranges of species of Iridomyrmex, most likely in response to the simplification of their foraging landscape. The significance of enhanced seed-removal rates and distance dispersal for seedling establishment is unclear because the benefits to plants in having their seeds dispersed by ants in northern Australia are poorly known. However, an enhanced removal rate would enhance any benefit of reduced predation by rodents. Similarly, the broader range of dispersal distances would appear to benefit plants in terms of reduced parent-offspring conflict and sibling competition, and the location of favourable seedling microsites. Given the high frequency of fire in Australian tropical savannas, enhanced benefits of seed dispersal by ants would apply for much of the year. PMID:17033801

  16. Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?

    PubMed Central

    Thavarajah, Dil; Thavarajah, Pushparajah; Vial, Eric; Gebhardt, Mary; Lacher, Craig; Kumar, Shiv; Combs, Gerald F.

    2015-01-01

    Lentil (Lens culinaris Medik), a nutritious traditional pulse crop, has been experiencing a declining area of production in South East Asia, due to lower yields, and marginal soils. The objective of this study was to determine whether selenium (Se) fertilization can increase lentil yield, productivity, and seed quality (both seed Se concentration and speciation). Selenium was provided to five lentil accessions as selenate or selenite by foliar or soil application at rates of 0, 10, 20, or 30 kg Se/ha and the resulting lentil biomass, grain yield, seed Se concentration, and Se speciation was determined. Seed Se concentration was measured using inductively coupled plasma optical emission spectrometry (ICP-OES) after acid digestion. Seed Se speciation was measured using ICP-mass spectrometry with a high performance liquid chromatography (ICP-MS-LC) system. Foliar application of Se significantly increased lentil biomass (5586 vs. 7361 kg/ha), grain yield (1732 vs. 2468 kg /ha), and seed Se concentrations (0.8 vs. 2.4 μg/g) compared to soil application. In general, both application methods and both forms of Se increased concentrations of organic Se forms (selenocysteine and selenomethionine) in lentil seeds. Not surprisingly, the high yielding CDC Redberry had the highest levels of biomass and grain yield of all varieties evaluated. Eston, ILL505, and CDC Robin had the greatest responses to Se fertilization with respect to both grain yield, seed Se concentration and speciation; thus, use of these varieties in areas with low-Se soils might require Se fertilization to reach yield potentials. PMID:26042141

  17. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  18. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species.

    PubMed

    Tzen, JTC.; Cao, Yz.; Laurent, P.; Ratnayake, C.; Huang, AHC.

    1993-01-01

    Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation. PMID:12231682

  19. Characterisation of a highly saturated Irvingia gabonensis seed kernel oil with unusual linolenic acid content.

    PubMed

    Zoué, Lessoy T; Bédikou, Micaël E; Faulet, Betty M; Gonnety, Jean T; Niamké, Sébastien L

    2013-02-01

    The search for new sources of oil with improved characteristics has focused our attention on the characterisation of Irvingia gabonensis seed kernel oil. Physicochemical analysis have revealed the following assets: refractive index (1.42 ± 0.00), free fatty acids (2.3 ± 0.8%), peroxide value (3.33 ± 0.57 meq O(2)/kg), iodine value (32.43 ± 1.22 g I(2)/100 g), saponification value (233.75 ± 2.60 mg KOH/g), unsaponifiable matter (1.5 ± 0.02%), carotenoids (63 ± 0.01 mg β-carotene/100 g) and phospholipids (2.1 ± 0.01%). Absorbance of this oil decreased abruptly in the range of UV-B and UV-A wavelengths. Gas chromatography analysis showed that the major fatty acids were saturated, being mainly composed of lauric (C12:0, 39.35 ± 0.01%) and myristic acids (C14:0, 20.54 ± 0.01%). Nevertheless, an unusually high amount (6.44 ± 0.02%) of linolenic acid was also noted. Mass spectrometer analysis of volatile compounds highlighted the presence of various aromatic and aliphatic organic compounds. I. gabonensis seed kernel oil also showed oxidative stability at 60 °C after 12 days of storage with maximum peroxide value of 34.66 meq O(2)/kg. In view of these interesting characteristics, I. gabonensis seed kernel could be used as an alternative source of oil for lipid industries. PMID:23345325

  20. Differential protection of black-seed oil on econucleotidase, cholinesterases and aminergic catabolizing enzyme in haloperidol-induced neuronal damage of male rats

    PubMed Central

    Akintunde, Jacob K.; Irechukwu, C. Abigail

    2016-01-01

    Background: The antipsychotic, haloperidol, is extremely efficient in the treatment of schizophrenia but its application is constrained because of irreversible adverse drug reactions. Hence, in this study, we investigate the differential effects of black seed oil on cholinesterase [acetylcholinesterase (AChE) and butrylcholinesterase (BuChE), ectonucleotidase (5′-nucleotidase), lactate dehydrogenase (LDH) and monoamine oxidase (MAO)] activities and relevant markers of oxidative stress in the cerebrum of haloperidol-induced neuronal-damaged rats. Methods: The animals were divided into six groups (n = 10): normal control rats; haloperidol-induced rats: induced rats were pre-, co- and post-treated with black-seed oil respectively, while the last group was treated with extract oil only. The treatment was performed via oral administration and the experiment lasted 14 days. Results: The results revealed an increase in 5I nucleotidase, a marker of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis, as well as AChE, BuChE and MAO activities, with concomitant decrease in LDH activity of cerebrum in induced rats when compared with controls. Also, administration of haloperidol caused systemic oxidative damage and adverse histopathological changes in neuronal cells, indications of mental disorder. The differential treatments with black-seed oil prevented these alterations by increasing LDH and decreasing 5I nucleotidase, AChE, BuChE and MAO activities in the cerebrum. Essential oil post-treatment is most efficacious in reversing haloperidol-induced neuronal damage in rat; followed by pre- and cotreatment, respectively. Conclusions: We concluded that essential black-seed oil enhanced the wellness of aminergic, purinergic and cholinergic neurotransmissions of haloperidol-induced neuronal damage in rats. PMID:27493717

  1. Targeted mutation of Δ12 and Δ15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil.

    PubMed

    Bielecka, Monika; Kaminski, Filip; Adams, Ian; Poulson, Helen; Sloan, Raymond; Li, Yi; Larson, Tony R; Winzer, Thilo; Graham, Ian A

    2014-06-01

    We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.

  2. Genome-wide association study in arabidopsis thaliana of natural variation in seed oil melting point, a widespread adaptive trait in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed oil melting point is an adaptive, quantitative trait determined by the relative proportions of the fatty acids that compose the oil. Micro- and macro-evolutionary evidence suggests selection has changed the melting point of seed oils to co-vary with germination temperatures because of a trade-o...

  3. Changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) during storage as influenced by temperature and air oxygen.

    PubMed

    Goffman, F D; Möllers, C

    2000-05-01

    The changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) were studied during a storage period of 24 weeks at different incubation temperatures and exposure to air oxygen (open and closed flasks). In the extracted oil, total tocopherol content remained unaltered at 5 and 20 degrees C throughout the 24 weeks of storage. At 40 degrees C, a beginning degradation was observed already after 4 weeks in both open and closed flasks; the alpha-tocopherol content was affected most, followed by gamma-tocopherol and plastochromanol-8. After 16 weeks at 40 degrees C, the total tocopherol content in the oil was reduced by more than 90%. In intact seeds, no tocopherol degradation was observed; only the seeds incubated at 40 degrees C and in open flasks showed slightly lower tocopherol contents. However, the analysis of the tocopherol composition in the stored seeds showed a decrease in the alpha-tocopherol content and an increase in the gamma-tocopherol content, which resulted in a decreasing alpha-/gamma-tocopherol ratio. This trend was most apparent at 40 degrees C and after 24 weeks of storage. A reduction of plastochromanol-8 occurred only at 40 degrees C and was more pronounced in open flasks. At 40 degrees C and in closed flasks a gradual increase in the content of alpha-tocotrienol was observed, a compound normally not accumulated in rapeseed. PMID:10820066

  4. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    NASA Astrophysics Data System (ADS)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  5. Antibacterial activity of Karanj (Pongamia pinnata) and Neem (Azadirachta indica) seed oil: a preliminary report.

    PubMed

    Baswa, M; Rath, C C; Dash, S K; Mishra, R K

    2001-01-01

    The antibacterial activity of Karanj (Pongamia pinnata) and Neem (Azadirachta indica) seed oil in vitro against fourteen strains of pathogenic bacteria was assessed. Using the tube dilution technique, it was observed that 57.14 and 21.42% of the pathogens were inhibited at 500 microl/ml; 14.28 and 71.42% at 125 microl/ml; and 28.57 and 7.14% at 250 microl/ml of Karanj and Neem oils, respectively. The activity with both the oils was bactericidal and independent of temperature and energy. Most of the pathogens were killed more rapidly at 4 degrees C than 37 degrees C. The activity was mainly due to the inhibition of cell-membrane synthesis in the bacteria. PMID:11414503

  6. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. PMID:21482464

  7. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line.

    PubMed

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    Nigella sativa (N sativa), commonly known as black seed, has been used in traditional medicine to treat many diseases. The antioxidant, anti-inflammatory, and antibacterial activities of N sativa extracts are well known. Therefore, the present study was designed to investigate the anticancer activity of seed extract (NSE) and seed oil (NSO) of N sativa against a human lung cancer cell line. Cells were exposed to 0.01 to 1 mg/ml of NSE and NSO for 24 h, then percent cell viability was assessed by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed NSE and NSO significantly reduce the cell viability and alter the cellular morphology of A-549 cells in a concentration dependent manner. The percent cell viability was recorded as 75%, 50%, and 26% at 0.25, 0.5, and 1 mg/ml of NSE by MTT assay and 73%, 48%, and 23% at 0.25, 0.5, and 1 mg/ml of NSE by NRU assay. Exposure to NSO concentrations of 0.1 mg/ml and above for 24 h was also found to be cytotoxic. The decrease in cell viability at 0.1, 0.25, 0.5, and 1 mg/ml of NSO was recorded to be 89%, 52%, 41%, and 13% by MTT assay and 85%, 52%, 38%, and 11% by NRU assay, respectively. A-549 cells exposed to 0.25, 0.5 and 1 mg/ml of NSE and NSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment of seed extract (NSE) and seed oil (NSO) of Nigella sativa significantly reduce viability of human lung cancer cells.

  8. NMR analysis of oils from pine nuts ( Pinus sibirica) and seeds of common pine ( Pinus silvestris L.)

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Tychinskaya, L. Yu.; Gaidukevich, O. A.; Klyuev, A. Yu.; Kulakova, A. N.; Petlitskaya, N. M.; Rykove, S. V.

    2007-07-01

    We studied the fatty-acid composition of oils from pine nuts and seeds of common pine using PMR and 13C NMR and gas chromatography. We found that the main components of the glycerides are palmitic, stearic, oleic, linoleic, γ-linolenic, pinolenic, and cis-9-eicosenoic acids. The oils contain about 2% sn-1,2-diacylglycerides in addition to triglycerides.

  9. Variability in seed oil content and fatty acid composition, phenotypic traits and self-incompatibility among selected niger germplasm accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Niger (Guizotia abyssinica, L.) is a desirable oilseed crop for birdseed, especially for finches (Spinus spp.) because of its high ratio of unsaturated to saturated fatty acids and relatively high oil content. In 2012, phenotypic traits, seed oil and fatty acid content measurements were made on 14 p...

  10. Optimization of oil extraction from giant bushel gourd seeds using response surface methodology.

    PubMed

    Popoola, Yetunde Yemisi; Akinoso, Rahman; Raji, Akeem Olayemi

    2016-09-01

    Gourd seeds have been identified as a source of edible oil, but there is sparse literature on the effect of processing factors on the characteristics of oil extracted from any Lagenaria spp. Optimization of oil extraction with the aid of expeller was achieved by applying response surface methodology. The variables were roasting temperature (87.70-172.0°C) and roasting duration (7.93-22.07 min), while the responses were oil yield and oil quality (free fatty acid, color, specific gravity, saponification value, moisture, and refractive index). Data obtained were analyzed at P < 0.05. Roasting conditions significantly influenced all the responses at P < 0.05. The optimum roasting condition was 100°C for 20 min, which gave 27.62% oil yield with good quality attributes (free fatty acid: 0.61%, color: 3.47 abs, specific gravity: 0.90 g/mL, saponification value: 289.66 mL, and refractive index: 1.47).

  11. Optimization of oil extraction from giant bushel gourd seeds using response surface methodology.

    PubMed

    Popoola, Yetunde Yemisi; Akinoso, Rahman; Raji, Akeem Olayemi

    2016-09-01

    Gourd seeds have been identified as a source of edible oil, but there is sparse literature on the effect of processing factors on the characteristics of oil extracted from any Lagenaria spp. Optimization of oil extraction with the aid of expeller was achieved by applying response surface methodology. The variables were roasting temperature (87.70-172.0°C) and roasting duration (7.93-22.07 min), while the responses were oil yield and oil quality (free fatty acid, color, specific gravity, saponification value, moisture, and refractive index). Data obtained were analyzed at P < 0.05. Roasting conditions significantly influenced all the responses at P < 0.05. The optimum roasting condition was 100°C for 20 min, which gave 27.62% oil yield with good quality attributes (free fatty acid: 0.61%, color: 3.47 abs, specific gravity: 0.90 g/mL, saponification value: 289.66 mL, and refractive index: 1.47). PMID:27625780

  12. Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil.

    PubMed

    Jouki, Mohammad; Mortazavi, Seyed Ali; Yazdi, Farideh Tabatabaei; Koocheki, Arash

    2014-01-01

    In this study thyme essential oil (TEO) concentrations ranging from 0% to 2.0%, incorporated in quince seed mucilage (QSM) film were used. Antibacterial activity, physical, mechanical, barrier and antioxidant properties of QSM films were evaluated. The antimicrobial activity of the QSM films incorporated with thyme essential oil was screened against 11 important food-related bacterial strains by agar disc-diffusion assay. Films containing 1% of thyme essential oil were effective against all test microorganisms and exhibited a strong inhibitory effect on the growth of Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. QSM films exhibited some antioxidant activity, which was significantly improved by the addition of the essential oil. A reduction of the glass transition temperature, as determined by differential scanning calorimetry (DSC), was caused by addition of thyme essential oil into the QSM films. Scanning electron microscopy was carried out to explain structure-property relationships. Incorporating thyme essential oil into edible QSM films provides a novel way to improve the safety and shelf life of ready-to-eat foods. PMID:24274540

  13. Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil.

    PubMed

    Jouki, Mohammad; Mortazavi, Seyed Ali; Yazdi, Farideh Tabatabaei; Koocheki, Arash

    2014-01-01

    In this study thyme essential oil (TEO) concentrations ranging from 0% to 2.0%, incorporated in quince seed mucilage (QSM) film were used. Antibacterial activity, physical, mechanical, barrier and antioxidant properties of QSM films were evaluated. The antimicrobial activity of the QSM films incorporated with thyme essential oil was screened against 11 important food-related bacterial strains by agar disc-diffusion assay. Films containing 1% of thyme essential oil were effective against all test microorganisms and exhibited a strong inhibitory effect on the growth of Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. QSM films exhibited some antioxidant activity, which was significantly improved by the addition of the essential oil. A reduction of the glass transition temperature, as determined by differential scanning calorimetry (DSC), was caused by addition of thyme essential oil into the QSM films. Scanning electron microscopy was carried out to explain structure-property relationships. Incorporating thyme essential oil into edible QSM films provides a novel way to improve the safety and shelf life of ready-to-eat foods.

  14. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.

    PubMed

    Wang, Feng; Chang, Zhoufan; Duan, Peigao; Yan, Weihong; Xu, Yuping; Zhang, Lei; Miao, Juan; Fan, Yunchang

    2013-12-01

    Hydrothermal liquefaction (HTL) of Litsea cubeba seed was conducted over different temperature (250-350°C), time (30-120 min), reactor loading (0.5-4.5 g) and Na2CO3 loading (0-10 wt.%). Temperature was the most influential factor affecting the yields of product fractions. The highest bio-oil yield of 56.9 wt.% was achieved at 290°C, 60 min, and reactor loading of 2.5 g. The presence of Na2CO3 favored the conversion of the feedstock but suppressed the production of bio-oil. The higher heating values of the bio-oil were estimated at around 40.8 MJ/kg. The bio-oil, which mainly consisted of toluene, 1-methyl-2-(1-methylethyl)-benzene, fatty acids, fatty acid amides, and fatty acid esters, had a smaller total acid number than that of the oil obtained from the direct extraction of the starting material. It also contained nitrogen that was far below the bio-oil produced from the HTL of microalgae, making it more suitable for the subsequent refining.

  15. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis.

    PubMed

    Bae, Jung Myung; Kwak, Man Sup; Noh, Seol Ah; Oh, Mi-Joung; Kim, Youn-Sung; Shin, Jeong Sheop

    2014-08-01

    Results of transcriptome analyses suggest that expansin genes play an active role in seed development and yield, but gain- or loss-of-function studies have not yet elucidated the functional role(s) of the expansin gene(s) in these processes. We have overexpressed a sweetpotato expansin gene (IbEXP1) in Arabidopsis under the control of cauliflower mosaic 35S promoter in an attempt to determine the effect of the expansin gene in seed development and yield in heterologous plants. The growth rate was enhanced in IbEXP1-overexpressing (ox) plants relative to wild-type Col-0 plants during early vegetative growth stage. At the reproductive stage, the number of rosette leaves was higher in IbEXP1-ox plants than that in Col-0 plants, and siliques were thicker. IbEXP1-ox plants produced larger seeds, accumulated more protein and starch in each seed, and produced more inflorescence stems and siliques than Col-0 plants, leading to a 2.1-2.5-fold increase in total seed yield per plant. The transcript level of IbEXP1 was up-regulated in response to brassinosteroid (BR) treatment in sweetpotato, and the transcript levels of three BR-responsive genes, fatty acid elongase 3-ketoacyl-CoA synthase 1, HAIKU1 and MINISEED3, were also increased in IbEXP1-ox Arabidopsis plants, suggesting a possible involvement of IbEXP1 in at least one of the BR signaling pathways. Based on these results, we suggest that overexpression of IbEXP1 gene in heterologous plants is effective in increasing seed size and number and, consequently, seed yield.

  16. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  17. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    PubMed

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  18. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.).

    PubMed

    Krist, Sabine; Stuebiger, Gerald; Unterweger, Heidrun; Bandion, Franz; Buchbauer, Gerhard

    2005-10-19

    Poppy seed oil (Oleum Papaveris Seminis) is used for culinary and pharmaceutical purposes, as well as for making soaps, paints, and varnishes. Astonishingly, hardly anything was yet known about the volatile compounds of this promising comestible. Likewise, there are no current published data about the triglyceride (TAG) composition of poppy seed oils available. In this investigation solid-phase microextraction (SPME) with DVB/Carboxen/PDMS Stable-Flex fiber was applied to the study of volatile compounds of several seed oil samples from Papaver somniferum L. (Papaveraceae). 1-Pentanol (3.3-4.9%), 1-hexanal (10.9-30.9%), 1-hexanol (5.3-33.7%), 2-pentylfuran (7.2-10.0%), and caproic acid (2.9-11.5%) could be identified as the main volatile compounds in all examined poppy seed oil samples. Furthermore, the TAG composition of these oils was analyzed by MALDI-ReTOF- and ESI-IT-MS/MS. The predominant TAG components were found to be composed of linoleic, oleic, and palmitic acid, comprising approximately 70% of the oils. TAG patterns of the different poppy varieties were found to be very homogeneous, showing also no significant differences in terms of the applied pressing method of the plant seeds.

  19. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants.

    PubMed

    Branham, Sandra E; Wright, Sara J; Reba, Aaron; Morrison, Ginnie D; Linder, C Randal

    2016-05-01

    Seed oil melting point is an adaptive, quantitative trait determined by the relative proportions of the fatty acids that compose the oil. Micro- and macro-evolutionary evidence suggests selection has changed the melting point of seed oils to covary with germination temperatures because of a trade-off between total energy stores and the rate of energy acquisition during germination under competition. The seed oil compositions of 391 natural accessions of Arabidopsis thaliana, grown under common-garden conditions, were used to assess whether seed oil melting point within a species varied with germination temperature. In support of the adaptive explanation, long-term monthly spring and fall field temperatures of the accession collection sites significantly predicted their seed oil melting points. In addition, a genome-wide association study (GWAS) was performed to determine which genes were most likely responsible for the natural variation in seed oil melting point. The GWAS found a single highly significant association within the coding region of FAD2, which encodes a fatty acid desaturase central to the oil biosynthesis pathway. In a separate analysis of 15 a priori oil synthesis candidate genes, 2 (FAD2 and FATB) were located near significant SNPs associated with seed oil melting point. These results comport with others' molecular work showing that lines with alterations in these genes affect seed oil melting point as expected. Our results suggest natural selection has acted on a small number of loci to alter a quantitative trait in response to local environmental conditions.

  20. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants.

    PubMed

    Branham, Sandra E; Wright, Sara J; Reba, Aaron; Morrison, Ginnie D; Linder, C Randal

    2016-05-01

    Seed oil melting point is an adaptive, quantitative trait determined by the relative proportions of the fatty acids that compose the oil. Micro- and macro-evolutionary evidence suggests selection has changed the melting point of seed oils to covary with germination temperatures because of a trade-off between total energy stores and the rate of energy acquisition during germination under competition. The seed oil compositions of 391 natural accessions of Arabidopsis thaliana, grown under common-garden conditions, were used to assess whether seed oil melting point within a species varied with germination temperature. In support of the adaptive explanation, long-term monthly spring and fall field temperatures of the accession collection sites significantly predicted their seed oil melting points. In addition, a genome-wide association study (GWAS) was performed to determine which genes were most likely responsible for the natural variation in seed oil melting point. The GWAS found a single highly significant association within the coding region of FAD2, which encodes a fatty acid desaturase central to the oil biosynthesis pathway. In a separate analysis of 15 a priori oil synthesis candidate genes, 2 (FAD2 and FATB) were located near significant SNPs associated with seed oil melting point. These results comport with others' molecular work showing that lines with alterations in these genes affect seed oil melting point as expected. Our results suggest natural selection has acted on a small number of loci to alter a quantitative trait in response to local environmental conditions. PMID:26865732

  1. Fatty acids profile and alteration of lemon seeds extract (Citrus limon) added to soybean oil under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2013-10-01

    This paper aimed at evaluating fatty acids profile and the total alteration of lemon seeds extract added to soybean oil under thermoxidation, verifying the isolated and synergistic effect of these antioxidants. Therefore, Control treatments, LSE (2,400 mg/kg Lemon Seeds Extract), TBHQ (mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at 0, 5, 10, 15 and 20 h intervals and analyzed as for fatty acid profile and total polar compounds. Results were subjected to variance analyses and Tukey tests at a 5% significance level. An increase in the percentage of saturated fatty acids and mono-unsaturated, and decrease in polyunsaturated fatty acids was observed, regardless of the treatments studied. For total polar compounds, it was verified that Mixtures 1 and 2 presented values lower than 25% with 20 h of heating, not surpassing the limits established in many countries for disposal of oils and fats under high temperatures, thus proving the synergistic effect of antioxidants. PMID:24426004

  2. Gamma-linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization.

    PubMed

    López-Martínez, Juan Carlos; Campra-Madrid, Pablo; Guil-Guerrero, José Luis

    2004-01-01

    Solvent winterization of seed oil and free fatty acids (FFAs) was employed to obtain gamma-linolenic acid (GLA; 18:3omega6) concentrates from seed oils of two Boraginaceae species, Echium fastuosum and Borago officinalis. Different solutions of seed oils and FFAs from these two oils at 10%, 20% and 40% (w/w) were crystallized at 4 degrees C, -24 degrees C and -70 degrees C, respectively, using hexane, acetone, diethyl ether, isobutanol and ethanol as solvents. Best results were obtained for B. officinalis FFAs in hexane, reaching a maximum GLA concentration of 58.8% in the liquid fraction (LF). In E. fastuosum, the highest GLA concentration (39.9%) was also achieved with FFAs in hexane. PMID:16233632

  3. Gamma-linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization.

    PubMed

    López-Martínez, Juan Carlos; Campra-Madrid, Pablo; Guil-Guerrero, José Luis

    2004-01-01

    Solvent winterization of seed oil and free fatty acids (FFAs) was employed to obtain gamma-linolenic acid (GLA; 18:3omega6) concentrates from seed oils of two Boraginaceae species, Echium fastuosum and Borago officinalis. Different solutions of seed oils and FFAs from these two oils at 10%, 20% and 40% (w/w) were crystallized at 4 degrees C, -24 degrees C and -70 degrees C, respectively, using hexane, acetone, diethyl ether, isobutanol and ethanol as solvents. Best results were obtained for B. officinalis FFAs in hexane, reaching a maximum GLA concentration of 58.8% in the liquid fraction (LF). In E. fastuosum, the highest GLA concentration (39.9%) was also achieved with FFAs in hexane.

  4. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care.

    PubMed

    Danby, Simon G; AlEnezi, Tareq; Sultan, Amani; Lavender, Tina; Chittock, John; Brown, Kirsty; Cork, Michael J

    2013-01-01

    Natural oils are advocated and used throughout the world as part of neonatal skin care, but there is an absence of evidence to support this practice. The goal of the current study was to ascertain the effect of olive oil and sunflower seed oil on the biophysical properties of the skin. Nineteen adult volunteers with and without a history of atopic dermatitis were recruited into two randomized forearm-controlled mechanistic studies. The first cohort applied six drops of olive oil to one forearm twice daily for 5 weeks. The second cohort applied six drops of olive oil to one forearm and six drops of sunflower seed oil to the other twice daily for 4 weeks. The effect of the treatments was evaluated by determining stratum corneum integrity and cohesion, intercorneocyte cohesion, moisturization, skin-surface pH, and erythema. Topical application of olive oil for 4 weeks caused a significant reduction in stratum corneum integrity and induced mild erythema in volunteers with and without a history of atopic dermatitis. Sunflower seed oil preserved stratum corneum integrity, did not cause erythema, and improved hydration in the same volunteers. In contrast to sunflower seed oil, topical treatment with olive oil significantly damages the skin barrier, and therefore has the potential to promote the development of, and exacerbate existing, atopic dermatitis. The use of olive oil for the treatment of dry skin and infant massage should therefore be discouraged. These findings challenge the unfounded belief that all natural oils are beneficial for the skin and highlight the need for further research.

  5. Concentrations of viable oil-degrading microorganisms are increased in feces from Calanus finmarchicus feeding in petroleum oil dispersions.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Hansen, Bjørn Henrik; Altin, Dag; Brakstad, Odd Gunnar

    2015-09-15

    Zooplankton are suggested to be biotic contributors to the transport and weathering of oil in marine environments due to their ingestion of oil. In the present experiment, feeding activity and microbial communities in feces from Calanus finmarchicus feeding in oil dispersions were characterized. Feeding activity was significantly reduced in oil dispersions. The microbial communities in clean and oil-containing copepod feces were dominated by Rhodobacteraceae family bacteria (Lesingera, Phaeobacter, Rugeria, and Sulfitobacter), which were suggested to be indigenous to copepod feces. The results also indicated that these bacteria were metabolizing oil compounds, as a significant increase in the concentrations of viable oil degrading microorganisms was observed in oil-containing feces. This study shows that bacteria in feces from copepods feeding in dilute oil dispersions have capacity for degradation of oil. Zooplankton may therefore contribute to weathering of oil by excreting feces with microbial communities already adapted to degradation of oil.

  6. (13)C NMR characterization of triacylglycerols of Moringa oleifera seed oil: an "oleic-vaccenic acid" oil.

    PubMed

    Vlahov, Giovanna; Chepkwony, Paul Kiprono; Ndalut, Paul K

    2002-02-27

    The composition of acyl chains and their positions in the triacylglycerols of the oil extracted from seeds of Moringa oleifera were studied by (13)C NMR spectroscopy. The unsaturated chains of M. oleifera seed oil were found to comprise only mono-unsaturated fatty acids and, in particular, two omega-9 mono-unsaturated acids, (cis-9-octadecenoic (oleic acid) and cis-11-eicosenoic acids) and one omega-7 mono-unsaturated acid (cis-11-octadecenoic acid (vaccenic acid)). The mono-unsaturated fatty acids were detected as separated resonances in the spectral regions where the carbonyl and olefinic carbons resonate according to the 1,3- and 2-positions on the glycerol backbone. The unambiguous detection of vaccenic acid was also achieved through the resonance of the omega-3 carbon. The (13)C NMR methodology enabled the simultaneous detection of oleate, vaccenate, and eicosenoate chains according to their positions on the glycerol backbone (1,3- and 2-positions) through the carboxyl, olefinic, and methylene envelope carbons of the triacylglycerol acyl chains. PMID:11853466

  7. The Durative Use of Suspension Cells and Callus for Volatile Oil by Comparative with Seeds and Fruits in Capparis spinosa L

    PubMed Central

    Liu, Wei; Gan, Lu; Fu, Chunhua; Jia, Haibo; Li, Maoteng

    2014-01-01

    Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS) was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource. PMID:25422894

  8. The durative use of suspension cells and callus for volatile oil by comparative with seeds and fruits in Capparis spinosa L.

    PubMed

    Yin, Yongtai; He, Yuchi; Liu, Wei; Gan, Lu; Fu, Chunhua; Jia, Haibo; Li, Maoteng

    2014-01-01

    Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS) was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource.

  9. Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.).

    PubMed

    Troncoso-Ponce, M Adrián; Garcés, Rafael; Martínez-Force, Enrique

    2010-12-01

    As opposed to other oilseeds, developing sunflower seeds do not accumulate starch initially. They rely on the sucrose that comes from the mother plant to synthesise lipid precursors. Glycolysis is the principal source of carbon skeletons and reducing power for lipid biosynthesis. In this work, glycolytic initial metabolites and enzyme activities from developing seed of two different sunflower lines, of high and low oil content, were compared during storage lipid synthesis. These two lines showed different kinetic lipid accumulation in the developing embryos. Fatty acids levels during the initial and final stage of lipid synthesis were higher in CAS-6 than in ZEN-8. The analysis of the photosynthate and sugars content suggests that, although the hexoses levels were quite similar in both lines, the amount of sucrose produced by the mother plant and available for lipid synthesis was higher in CAS-6. Although, a smaller amount of sucrose is available in the ZEN-8 line, its seeds maintain the levels of intermediate sugars in the initial steps of glycolysis due to an increase in the levels of the invertase, hexokinase and phosphoglucose isomerase activities in ZEN-8, with respect to CAS-6. Also, a readjustment in the final part of this metabolic route took place, with the activities of phosphoglycerate kinase and enolase in CAS-6 being higher, allowing increased synthesis of phosphoenolpiruvate, the intermediate carbon donor for fatty acid synthesis. In addition, recently, it has been shown that Arabidopsis mutants with a lower fat content in their seeds have a higher amount of sucrose. These data together point to these last two enzymatic activities, phosphoglycerate kinase and enolase, as being responsible for the lower fat content in the ZEN-8 line.

  10. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis.

    PubMed

    Sanjaya; Durrett, Timothy P; Weise, Sean E; Benning, Christoph

    2011-10-01

    Increasing the energy density of biomass by engineering the accumulation of triacylglycerols (TAGs) in vegetative tissues is synergistic with efforts to produce biofuels by conversion of lignocellulosic biomass. Typically, TAG accumulates in developing seeds, and little is known about the regulatory mechanisms and control factors preventing oil biosynthesis in vegetative tissues in most plants. Here, we engineered Arabidopsis thaliana to ectopically overproduce the transcription factor WRINKLED1 (WRI1) involved in the regulation of seed oil biosynthesis. Furthermore, we reduced the expression of APS1 encoding a major catalytic isoform of the small subunit of ADP-glucose pyrophosphorylase involved in starch biosynthesis using an RNAi approach. The resulting AGPRNAi-WRI1 lines accumulated less starch and more hexoses. In addition, these lines produced 5.8-fold more oil in vegetative tissues than plants with WRI1 or AGPRNAi alone. Abundant oil droplets were visible in vegetative tissues. TAG molecular species contained long-chain fatty acids, similar to those found in seed oils. In AGPRNAi-WRI1 lines, the relative expression level of sucrose synthase 2 was considerably elevated and correlated with the level of sugars. The relative expression of the genes encoding plastidic proteins involved in de novo fatty acid synthesis, biotin carboxyl carrier protein isoform 2 and acyl carrier protein 1, was also elevated. The relative contribution of TAG compared to starch to the overall energy density increased 9.5-fold in one AGPRNAi-WRI1 transgenic line consistent with altered carbon partitioning from starch to oil. PMID:22003502

  11. Patterns of domestication in the Ethiopian oil-seed crop noug (Guizotia abyssinica).

    PubMed

    Dempewolf, Hannes; Tesfaye, Misteru; Teshome, Abel; Bjorkman, Anne D; Andrew, Rose L; Scascitelli, Moira; Black, Scott; Bekele, Endashaw; Engels, Johannes M M; Cronk, Quentin C B; Rieseberg, Loren H

    2015-06-01

    Noug (Guizotia abyssinica) is a semidomesticated oil-seed crop, which is primarily cultivated in Ethiopia. Unlike its closest crop relative, sunflower, noug has small seeds, small flowering heads, many branches, many flowering heads, and indeterminate flowering, and it shatters in the field. Here, we conducted common garden studies and microsatellite analyses of genetic variation to test whether high levels of crop-wild gene flow and/or unfavorable phenotypic correlations have hindered noug domestication. With the exception of one population, analyses of microsatellite variation failed to detect substantial recent admixture between noug and its wild progenitor. Likewise, only very weak correlations were found between seed mass and the number or size of flowering heads. Thus, noug's 'atypical' domestication syndrome does not seem to be a consequence of recent introgression or unfavorable phenotypic correlations. Nonetheless, our data do reveal evidence of local adaptation of noug cultivars to different precipitation regimes, as well as high levels of phenotypic plasticity, which may permit reasonable yields under diverse environmental conditions. Why noug has not been fully domesticated remains a mystery, but perhaps early farmers selected for resilience to episodic drought or untended environments rather than larger seeds. Domestication may also have been slowed by noug's outcrossing mating system.

  12. Patterns of domestication in the Ethiopian oil-seed crop noug (Guizotia abyssinica)

    PubMed Central

    Dempewolf, Hannes; Tesfaye, Misteru; Teshome, Abel; Bjorkman, Anne D; Andrew, Rose L; Scascitelli, Moira; Black, Scott; Bekele, Endashaw; Engels, Johannes M M; Cronk, Quentin C B; Rieseberg, Loren H

    2015-01-01

    Noug (Guizotia abyssinica) is a semidomesticated oil-seed crop, which is primarily cultivated in Ethiopia. Unlike its closest crop relative, sunflower, noug has small seeds, small flowering heads, many branches, many flowering heads, and indeterminate flowering, and it shatters in the field. Here, we conducted common garden studies and microsatellite analyses of genetic variation to test whether high levels of crop–wild gene flow and/or unfavorable phenotypic correlations have hindered noug domestication. With the exception of one population, analyses of microsatellite variation failed to detect substantial recent admixture between noug and its wild progenitor. Likewise, only very weak correlations were found between seed mass and the number or size of flowering heads. Thus, noug's ‘atypical’ domestication syndrome does not seem to be a consequence of recent introgression or unfavorable phenotypic correlations. Nonetheless, our data do reveal evidence of local adaptation of noug cultivars to different precipitation regimes, as well as high levels of phenotypic plasticity, which may permit reasonable yields under diverse environmental conditions. Why noug has not been fully domesticated remains a mystery, but perhaps early farmers selected for resilience to episodic drought or untended environments rather than larger seeds. Domestication may also have been slowed by noug's outcrossing mating system. PMID:26029260

  13. Characterization of the aroma signature of styrian pumpkin seed oil ( Cucurbita pepo subsp. pepo var. Styriaca) by molecular sensory science.

    PubMed

    Poehlmann, Susan; Schieberle, Peter

    2013-03-27

    Application of the aroma extract dilution analysis on a distillate prepared from an authentic Styrian pumpkin seed oil followed by identification experiments led to the characterization of 47 odor-active compounds in the flavor dilution (FD) factor range of 8-8192 among which 2-acetyl-1-pyrroline (roasty, popcorn-like), 2-propionyl-1-pyrroline (roasty, popcorn-like), 2-methoxy-4-vinylphenol (clove-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Among the set of key odorants, 2-propionyl-1-pyrroline and another 20 odorants were identified for the first time as constituents of pumpkin seed oil. To evaluate the aroma contribution in more detail, 31 aroma compounds showing the highest FD factors were quantitated by means of stable isotope dilution assays. On the basis of the quantitative data and odor thresholds determined in sunflower oil, odor activity values (OAV; ratio of concentration to odor threshold) were calculated, and 26 aroma compounds were found to have an OAV above 1. Among them, methanethiol (sulfury), 2-methylbutanal (malty), 3-methylbutanal (malty), and 2,3-diethyl-5-methylpyrazine (roasted potato) reached the highest OAVs. Sensory evaluation of an aroma recombinate prepared by mixing the 31 key odorants in the concentrations as determined in the oil revealed that the aroma of Styrian pumpkin seed oil could be closely mimicked. Quantitation of 11 key odorants in three commercial pumpkin seed oil revealed clear differences in the concentrations of distinct odorants, which were correlated with the overall aroma profile of the oils.

  14. Chemical composition and antimicrobial activity of the essential oil of apricot seed.

    PubMed

    Lee, Hyun-Hee; Ahn, Jeong-Hyun; Kwon, Ae-Ran; Lee, Eun Sook; Kwak, Jin-Hwan; Min, Yu-Hong

    2014-12-01

    In traditional oriental medicine, apricot (Prunus armeniaca L.) seed has been used to treat skin diseases such as furuncle, acne vulgaris and dandruff, as well as coughing, asthma and constipation. This study describes the phytochemical profile and antimicrobial potential of the essential oil obtained from apricot seeds (Armeniacae Semen). The essential oil isolated by hydrodistillation was analysed by gas chromatography-mass spectroscopy. Benzaldehyde (90.6%), mandelonitrile (5.2%) and benzoic acid (4.1%) were identified. Disc diffusion, agar dilution and gaseous contact methods were performed to determine the antimicrobial activity against 16 bacteria and two yeast species. The minimum inhibitory concentrations ranged from 250 to 4000, 500 to 2000 and 250 to 1000 µg/mL for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The minimum inhibitory doses by gaseous contact ranged from 12.5 to 50, 12.5 to 50 and 3.13 to 12.5 mg/L air for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The essential oil exhibited a variable degree of antimicrobial activity against a range of bacteria and yeasts tested.

  15. [The fatty acid composition of large pumpkin seed oil (Curucbitae maxima Dich) cultivated in Georgia].

    PubMed

    2014-09-01

    The aim of the study was to identify qualitatively and quantitatively fatty acid composition of large pumpkin seed oil cultivated in Georgia (Cucurbitae maxima Duch) and evaluate its biological activities. Evaluation was conducted using high-performance liquid chromatography method. Fatty acids ranging from C12:0 to C22:0 were identified in the probe. The oil contained 0,2В±0,01mg% lauric, 0,3В±0,01 mg% miristic, 9,0В±0,7mg% palmitic, 5,5В±0,4 mg% stearic, 28,1В±1,0 mg% oleic, 40,2В±1,9 mg% linolic, 12,1В±1,0 mg% linolenic, 2,0В±0,2mg% arachinic and 1,2В±0,1 mg% begenic acids. The investigation showed that large pumpkin seed oil contains a range of biologically significant fatty acids, unique proportion of which attaches great value to the vegetative material.

  16. Microencapsulation of conjugated linolenic acid-rich pomegranate seed oil by an emulsion method.

    PubMed

    Sen Gupta, Surashree; Ghosh, Santinath; Maiti, Prabir; Ghosh, Mahua

    2012-12-01

    Controlled release of food ingredients and their protection from oxidation are the key functionality provided by microencapsulation. In the present study, pomegranate seed oil, rich in conjugated linolenic acid, was microencapsulated. As encapsulating agent, sodium alginate or trehalose was used. Calcium caseinate was used as the emulsifier. Performances of the two encapsulants were compared in respect of the rate of release of core material from the microcapsules and stability of microcapsules against harsh conditions. Microencapsulation was carried out by preparation of an emulsion containing calcium caseinate as the emulsion stabilizer and a water-soluble carbohydrate (either sodium alginate or trehalose) as the encapsulant. An oil-in-water emulsion was prepared with pomegranate seed oil as the inner core material. The emulsion was thereby freeze-dried and the dried product pulverized. External morphology of the microcapsules was studied under scanning electron microscope. Micrographs showed that both types of microcapsules had uneven surface morphology. Release rate of the microcapsules was studied using UV-spectrophotometer. Trehalose-based microcapsules showed higher release rate. On subjecting the microcapsules at 110 °C for specific time periods, it was observed that sodium alginate microcapsules retained their original properties. Hence, we can say that sodium alginate microcapsules are more heat resistant than trehalose microcapsules. PMID:23014855

  17. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil.

    PubMed

    Tian, Yuting; Xu, Zhenbo; Zheng, Baodong; Martin Lo, Y

    2013-01-01

    The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercriti cal fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE. PMID:22964031

  18. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    PubMed

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding.

  19. Chemical composition and antimicrobial activity of the essential oil of apricot seed.

    PubMed

    Lee, Hyun-Hee; Ahn, Jeong-Hyun; Kwon, Ae-Ran; Lee, Eun Sook; Kwak, Jin-Hwan; Min, Yu-Hong

    2014-12-01

    In traditional oriental medicine, apricot (Prunus armeniaca L.) seed has been used to treat skin diseases such as furuncle, acne vulgaris and dandruff, as well as coughing, asthma and constipation. This study describes the phytochemical profile and antimicrobial potential of the essential oil obtained from apricot seeds (Armeniacae Semen). The essential oil isolated by hydrodistillation was analysed by gas chromatography-mass spectroscopy. Benzaldehyde (90.6%), mandelonitrile (5.2%) and benzoic acid (4.1%) were identified. Disc diffusion, agar dilution and gaseous contact methods were performed to determine the antimicrobial activity against 16 bacteria and two yeast species. The minimum inhibitory concentrations ranged from 250 to 4000, 500 to 2000 and 250 to 1000 µg/mL for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The minimum inhibitory doses by gaseous contact ranged from 12.5 to 50, 12.5 to 50 and 3.13 to 12.5 mg/L air for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The essential oil exhibited a variable degree of antimicrobial activity against a range of bacteria and yeasts tested. PMID:25219371

  20. Characterisation of Blighia sapida (Sapindaceae) seed oil and defatted cake from Benin.

    PubMed

    Djenontin, Sebastien Tindo; Wotto, Valentin D; Lozano, Paul; Pioch, Daniel; Sohounhloue, Dominique K C

    2009-01-01

    A sample of Blighia sapida seeds collected in Benin has been analysed and the results are compared to the scarcely available literature data. The chemical analysis of seed oil shows a saponification value of 145 and an iodine value of 66, consistent with the high mono-unsaturated fatty acids (FAs) content (63.8 wt%). The most interesting feature is the prominent concentration of eicosenoic acid (48.4 wt%). Arachidic acid being the main component within the saturated group, the C20 FAs fraction accounts for 68.4 wt%, thus making the peculiar composition of this oil. Among the unsaponifiable fraction (2.4 wt%), the major sterol is stigmasterol (54.6 wt%), surprisingly over passing beta-sitosterol. Tocols (338 ppm) contains mainly alpha- and gamma-tocopherol. Regarding the defatted cake, results show the prominent position of starch and a noticeable amount of proteins and fibers (44.2, 22.4, 15.6 wt%, respectively). Seventeen amino acids were identified together with valuable minerals (total ashes 3.5 wt%). Possible uses of oil and defatted cake are discussed. PMID:19384732

  1. Treatment of Arabidopsis thaliana seeds with an HSP90 inhibitor increases plant resistance

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    2016-07-01

    Resistance of plants to unfavourable conditions is an important feature to use them as an autotrophic link of Life Support Systems in space exploration missions. It significantly depends on basic and stress-induced levels of heat shock proteins (HSP) in cells. It is known that HSP90 can bind and maintain heat shock transcription factors (HSF) as a monomer that lacks DNA binding activity and thereby regulate HSP expression. Modulation of activity of the HSP synthesis and resistance by HSP90 in plants is not well investigated. The objective of this study was to determine how treatment of seeds with an HSP90 inhibitor affects environmental responsiveness in Arabidopsis thaliana. Seed treatment with geldanamycin (GDA) was used to reduce HSP90 function. The affect of space flight stressors was simulated by gamma-irradiation and thermal upshift. Two series of experiments were carried out: 1) exposure of dry seeds to gamma-irradiation (1 kGy, ^{60}Co); 2) heat shock of seedlings. It was shown that GDA treatment of seeds stimulated the seedling growth after seed irradiation. It also increased both the basic thermotolerance (45°C for 45 min) and induced thermotolerance (45°C for 1,5-2,5 h after pretreatment at 37°C for 2 h) in seedlings. In addition, seed treatment with GDA had a prolonged effect on the HSP70 production in seedlings under normal and stressful conditions. It shows that the stimulatory effects of GDA may be caused by induction of HSP70 synthesis. The obtained data demonstrate that pre-treatment of seeds with GDA before planting allows inducing the stress resistance at least at early growth stages of plants.

  2. Rainfall Enhancement by Dynamic Cloud Modification: Massive silver iodide seeding causes rainfall increases from single clouds over southern Florida.

    PubMed

    Woodley, W L

    1970-10-01

    In summary, the following points are made: 1) There are essentially two approaches to seeding for rain inducement, static and dynamic. 2) The dynamic approach is effective in inducing growth and increasing precipitation from individually seeded convective clouds under specifiable conditions. 3) The static approach to seeding for precipitation increases is apparently not relevant to the summer cumuli of Florida and Missouri. 4) Regional seeding climatologies, including studies of natural freezing processes in convective clouds, should be completed before commencement of a seeding operation. 5) The results of a seeding operation are frequently better understood by stratification of the data, especially with respect to weather conditions. Precipitation increases from seeding are usually found under fair weather regimes with isolated showers, whereas decreases are often noted under naturally rainy conditions.

  3. Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production.

    PubMed

    Giuffrè, Angelo Maria; Tellah, Sihem; Capocasale, Marco; Zappia, Clotilde; Latati, Mourad; Badiani, Maurizio; Ounane, Sidi Mohamed

    2016-01-01

    As a result of a recent ad hoc prospection of the Algerian territory, a collection of peanut (groundnut; Arachis hypogaea L.) landraces was established, covering a remarkable array of diversity in terms of morphological and physiological features, as well as of adaptation to local bioclimatic conditions. In the present work, the oils extracted from the seeds of these landraces were evaluated in terms of edible properties and suitability for biodiesel production. As for edible use, a low free acidity (ranging from 0.62 to 1.21%) and a high oleic acid content (44.61-50.94%) were common features, although a poor stability to oxidation [high peroxide values, high spectrophotometric indices, and low % of inhibition in the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)· test] was observed in a few cases. As for biodiesel production, low values of acidity [1.23-2.40 mg KOH (g oil)(-1)], low iodine values [90.70-101.54 g I2 (g oil)(-1)], high cetane numbers (56.95-58.88) and high calorific values (higher heating value 37.34-39.27 MJ kg(-1)) were measured. Edible properties and suitability for biodiesel production were discussed with respect to the German standard DIN 51605 for rapeseed oil and to the EN 14214 standard, respectively. One way ANOVA and Hierarchical Cluster Analysis showed significant differences among the oils from the Algerian peanut landraces.

  4. A blinded, placebo-controlled study of the efficacy of borage seed oil and fish oil in the management of canine atopy.

    PubMed

    Harvey, R G

    1999-04-10

    Twenty-one dogs with atopy were entered into a blinded, placebo-controlled study lasting eight weeks. They were randomly divided into three groups and were all given supplementary oils orally once daily. The dogs in groups A and B were given borage seed oil and fish oil in combination (Viacutan; Boehringer Ingelheim Vetmedica) to provide 176 mg/kg or 88 mg/kg borage seed oil respectively. The dogs in group C were given 204 mg/kg olive oil as a placebo. They were all re-examined after four and eight weeks and scored for pruritus, erythema, oedema, alopecia and self-excoriation. After eight weeks the scores for erythema and self-excoriation, and the total score for the dogs in group A, and the total score for the dogs in group B were significantly reduced (P < 0.05). The dogs in group C showed no significant improvement.

  5. Development of an enzyme-linked immunosorbent assay method to detect mustard protein in mustard seed oil.

    PubMed

    Koppelman, Stef J; Vlooswijk, Riek; Bottger, Gina; Van Duijn, Gert; Van der Schaft, Peter; Dekker, Jacco; Van Bergen, Hans

    2007-01-01

    An enzyme-linked immunosorbent assay for the detection of mustard protein was developed. The assay is based on a polyclonal antiserum directed against a mixture of mustard proteins raised in rabbits. The assay has a detection limit of 1.5 ppm (milligrams per kilogram) and is suitable for the detection of traces of mustard protein in mustard seed-derived flavoring ingredients. Limited cross-reactivity testing showed that no other plant proteins reacted significantly. From the animal proteins tested, only milk showed some cross-reactivity. With this sensitive assay, it was shown that refined mustard seed oil produced by steam distillation does not contain detectable amounts of mustard protein. Mustard seed oil is used as a flavoring in very low quantities, typically between 40 and 200 mg/kg. Thus, 100 g of a food product flavored with 200 mg of mustard seed oil per kg containing < 1.5 mg of protein per kg would represent an amount of mustard seed protein of <30 ng. Taking into account the published literature on allergic reactions to the unintended ingestion of mustard, this conservatively low calculated level indicates that it is unlikely that food products containing mustard seed oil as a flavoring ingredient will elicit an allergic reaction in mustard-allergic individuals. PMID:17265878

  6. Field emergence and plant density of sand bluestem lines selected for increased seed germination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sand bluestem (Andropogon hallii Hack.) populations AB-medium Syn-1 and Syn-2, and CD-tall Syn-1 and Syn-2 were developed from populations AB-medium Syn-0 and CD-tall Syn-0 by recurrent selection for increased seed germination in low water potentials. The objective of this research was to verify if...

  7. Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil (Lens culinaris Medik), a nutritious traditional pulse crop, has been experiencing a declining availability in Asia, due to lower yields and marginal soils. The objective of this study was to determine whether selenium (Se) fertilization can increase lentil yield, productivity, and seed quali...

  8. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis.

    PubMed

    Maisonneuve, Sylvie; Bessoule, Jean-Jacques; Lessire, René; Delseny, Michel; Roscoe, Thomas J

    2010-02-01

    In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.

  9. Authentication of vegetable oils by bulk and molecular carbon isotope analyses with emphasis on olive oil and pumpkin seed oil.

    PubMed

    Spangenberg, J E; Ogrinc, N

    2001-03-01

    The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope ((13)C) of the bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta(13)C(16:0) vs. delta(13)C(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).

  10. Bleaching of browned water yam (Dioscorea alata) with African oil bean seed lipoxygenase (Part 2).

    PubMed

    Anokwulu, M N

    2004-01-01

    Purified African oil bean seed lipoxygenase was used to bleach water yam tubers that were browned by exposing their cut surfaces to air. The enzyme solution destroyed the polyphenols extracted from the browned water yams and the polyphenols at the browned yam tubers which resulted in the bleaching of the browned yam tubers to their original white colour. The destruction of the polyphenol extract and the bleaching of the browned yam tubers were found to be dependent on the enzyme concentration of the enzyme.

  11. Additional male mediterranean fruitfly (Ceratitis capitata wied.) Attractants from Angelica seed oil (Angelica archangelica L.).

    PubMed

    Flath, R A; Cunningham, R T; Mon, T R; John, J O

    1994-08-01

    Two sesquiterpene hydrocarbons, β-copaene and β-ylangene, were isolated from bioactive fractions of angelica seed oil and were shown by field bioassays to be attractive to the male Mediterranean fruit fly. Their relative attractiveness, compared with the(+)-and (-)-α-copaene enantiomers, are: (+)-α-copaene>angelica β-copaene>angelica β-ylangene>(-)-α-copaene. The enantiomer ratios for the two compounds are: β-copaene, 61.4% (+), 38.6% (-); β-ylangene, 91.9% (+), 8.1% (-).trans-α-Bergamotene was also isolated from the same fractions, but in sufficient quantity for bioassay [enantiomer ratio: 95.7% (+), 4.3% (-)]. PMID:24242723

  12. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus.

    PubMed

    Cao, Zhengying; Tian, Fang; Wang, Nian; Jiang, Congcong; Lin, Bing; Xia, Wei; Shi, Jiaqin; Long, Yan; Zhang, Chunyu; Meng, Jinling

    2010-04-01

    The history of canola breeding began with the discovery of germplasm with low erucic acid content in seeds of spring forage cultivar in the 1950's. FAE1 mutations led to a dramatic decrease of the seed erucic acid content in Arabidopsis thaliana. The products of the two FAE1 loci, BnA8.FAE1 and BnC3.FAE1, showed additive effects to the level of erucic acid content in oilseed rape. Previous research believed that the pleiotropy of FAE1 was responsible for the decrease in seed oil content along with the reduction of seed erucic acid content in the modern cultivars. TN DH population was developed from a canola cultivar Tapidor and a Chinese traditional cultivar Ningyou7. The population had been tested in 10 and 11 environments to map QTLs for the erucic acid content and oil content in seeds. As the map resolution increased, a novel QTL for seed erucic acid content was revealed, after Meta-analysis, 7 cM away from the most significant seed erucic acid content QTL where BnA8.FAE1 is located. Seven independent QTLs for seed oil content (qOC) were detected around the two seed erucic acid content QTLs (qEA) across 39.20 cM on linkage group A8. Two of the qOCs co-localized with the two qEAs, respectively, and were detected in a single environment. The other five qOCs were detected in 10 of 11 environments independent of qEAs. Alleles from Tapidor in all the QTLs at the 0-39.20 cM region contributed negative effects to either erucic acid content or oil content in seeds. Parallel, genotyping showed that on 5 of the 7 QTLs regions, Tapidor alleles had the same genotypes with that in 'Liho', the original low seed erucic acid content source. Through rounds of crossbreeding with oil-cropped cultivars and intensive selection for multi generations, Tapidor still had the inferior alleles for low seed oil content from 'Liho', the forage rape. This showed a strong linkage drag of low seed oil content, which was controlled by the five qEA-independent qOCs, with low seed erucic acid

  13. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo).

    PubMed

    Hernández-Santos, Betsabé; Rodríguez-Miranda, Jesús; Herman-Lara, Erasmo; Torruco-Uco, Juan G; Carmona-García, Roselis; Juárez-Barrientos, José M; Chávez-Zamudio, Rubí; Martínez-Sánchez, Cecilia E

    2016-07-01

    The effects of amplitude and time of ultrasound-assisted extraction on the physicochemical properties and the fatty acid profile of pumpkin seed oil (Cucurbita pepo) were evaluated. Ultrasound time (5-30 min) and the response variables amplitude (25-100%), extraction yield, efficiency, oxidative stability in terms of the free fatty acids (FFA) of the plant design comprising two independent experiments variables, peroxide (PV), p-anisidine (AV), totox value (TV) and the fatty acid profile were evaluated. The results were analyzed by multiple linear regression. The time and amplitude showed significant differences (P<0.05) for all variables. The highest yield of extraction was achieved at 5 min and amplitude of 62.5% (62%). However, the optimal ultrasound-assisted extraction conditions were as follows: ultrasound time of 26.34 min and amplitude of 89.02%. All extracts showed low FFA (2.75-4.93% oleic acid), PV (1.67-4.68 meq/kg), AV (1.94-3.69) and TV (6.25-12.55) values. The main fatty acids in all the extracts were oleic and linoleic acid. Therefore, ultrasound-assisted oil extraction had increased performance and reduced extraction time without affecting the oil quality.

  14. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo).

    PubMed

    Hernández-Santos, Betsabé; Rodríguez-Miranda, Jesús; Herman-Lara, Erasmo; Torruco-Uco, Juan G; Carmona-García, Roselis; Juárez-Barrientos, José M; Chávez-Zamudio, Rubí; Martínez-Sánchez, Cecilia E

    2016-07-01

    The effects of amplitude and time of ultrasound-assisted extraction on the physicochemical properties and the fatty acid profile of pumpkin seed oil (Cucurbita pepo) were evaluated. Ultrasound time (5-30 min) and the response variables amplitude (25-100%), extraction yield, efficiency, oxidative stability in terms of the free fatty acids (FFA) of the plant design comprising two independent experiments variables, peroxide (PV), p-anisidine (AV), totox value (TV) and the fatty acid profile were evaluated. The results were analyzed by multiple linear regression. The time and amplitude showed significant differences (P<0.05) for all variables. The highest yield of extraction was achieved at 5 min and amplitude of 62.5% (62%). However, the optimal ultrasound-assisted extraction conditions were as follows: ultrasound time of 26.34 min and amplitude of 89.02%. All extracts showed low FFA (2.75-4.93% oleic acid), PV (1.67-4.68 meq/kg), AV (1.94-3.69) and TV (6.25-12.55) values. The main fatty acids in all the extracts were oleic and linoleic acid. Therefore, ultrasound-assisted oil extraction had increased performance and reduced extraction time without affecting the oil quality. PMID:26964969

  15. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants.

    PubMed

    De Souza, A; Garcí, D; Sueiro, L; Gilart, F; Porras, E; Licea, L

    2006-05-01

    The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10 min and at 170 mT (rms) for 3 min. Non-treated seeds were considered as controls. Plants were grown in experimental plots (30.2 m(2)) and were cultivated according to standard agricultural practices. During the vegetative and generative growth stages, samples were collected at regular intervals for growth rate analyses, and the resistance of plants to geminivirus and early blight was evaluated. At physiological maturity, the plants were harvested from each plot and the yield and yield parameters were determined. In the vegetative stage, the treatments led to a significant increase in leaf area, leaf dry weight, and specific leaf area (SLA) per plant. Also, the leaf, stem, and root relative growth rates of plants derived from magnetically treated seeds were greater than those shown by the control plants. In the generative stage, leaf area per plant and relative growth rates of fruits from plants from magnetically exposed seeds were greater than those of the control plant fruits. At fruit maturity stage, all magnetic treatments increased significantly (P < .05) the mean fruit weight, the fruit yield per plant, the fruit yield per area, and the equatorial diameter of fruits in comparison with the controls. At the end of the experiment, total dry matter was significantly higher for plants from magnetically treated seeds than that of the controls. A significant delay in the appearance of first symptoms of geminivirus and early blight and a reduced infection rate of early blight were observed in the plants from exposed seeds to MFs. Pre-sowing magnetic treatments would enhance the growth and yield of tomato crop. PMID:16511881

  16. Complex Approach to Conceptual Design of Machine Mechanically Extracting Oil from Jatropha curcas L. Seeds for Biomass-Based Fuel Production

    PubMed Central

    Mašín, Ivan

    2016-01-01

    One of important sources of biomass-based fuel is Jatropha curcas L. Great attention is paid to the biofuel produced from the oil extracted from the Jatropha curcas L. seeds. A mechanised extraction is the most efficient and feasible method for oil extraction for small-scale farmers but there is a need to extract oil in more efficient manner which would increase the labour productivity, decrease production costs, and increase benefits of small-scale farmers. On the other hand innovators should be aware that further machines development is possible only when applying the systematic approach and design methodology in all stages of engineering design. Systematic approach in this case means that designers and development engineers rigorously apply scientific knowledge, integrate different constraints and user priorities, carefully plan product and activities, and systematically solve technical problems. This paper therefore deals with the complex approach to design specification determining that can bring new innovative concepts to design of mechanical machines for oil extraction. The presented case study as the main part of the paper is focused on new concept of screw of machine mechanically extracting oil from Jatropha curcas L. seeds. PMID:27668259

  17. Complex Approach to Conceptual Design of Machine Mechanically Extracting Oil from Jatropha curcas L. Seeds for Biomass-Based Fuel Production

    PubMed Central

    Mašín, Ivan

    2016-01-01

    One of important sources of biomass-based fuel is Jatropha curcas L. Great attention is paid to the biofuel produced from the oil extracted from the Jatropha curcas L. seeds. A mechanised extraction is the most efficient and feasible method for oil extraction for small-scale farmers but there is a need to extract oil in more efficient manner which would increase the labour productivity, decrease production costs, and increase benefits of small-scale farmers. On the other hand innovators should be aware that further machines development is possible only when applying the systematic approach and design methodology in all stages of engineering design. Systematic approach in this case means that designers and development engineers rigorously apply scientific knowledge, integrate different constraints and user priorities, carefully plan product and activities, and systematically solve technical problems. This paper therefore deals with the complex approach to design specification determining that can bring new innovative concepts to design of mechanical machines for oil extraction. The presented case study as the main part of the paper is focused on new concept of screw of machine mechanically extracting oil from Jatropha curcas L. seeds.

  18. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions.

    PubMed

    Bordoloi, Neonjyoti; Narzari, Rumi; Chutia, Rahul Singh; Bhaskar, Thallada; Kataki, Rupam

    2015-02-01

    In the present study, pyrolysis of Mesua ferrea seed cover (MFSC) and Pongamia glabra seed cover (PGSC) was performed to investigate the characteristics of bio-oil and its sub fractions. In a fixed bed reactor, the effect of temperature (range of 350-650 °C) on product yield and quality of solid product were monitored. The maximum bio-oil yield of 28.5 wt.% and 29.6 wt.% for PGSC and MFSC respectively was obtained at 550 °C at heating rate of 40 °C/min. The chemical composition of bio-oil and its sub fractions were investigated using FTIR and (1)H NMR. GC-MS was performed for both PGSC and MFSC bio-oils and their corresponding n-hexane fractions. The results showed that bio-oil from the feedstocks and its sub-fractions might be a potential source of renewable fuel and value added chemicals.

  19. Oxidative stability and alpha-tocopherol retention in soybean oil with lemon seed extract (Citrus limon) under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2009-11-01

    The synergistic effect of lemon seed extract with tert-butylhydroquinone (TBHQ) in soybean oil subjected to thermoxidation by Rancimat was investigated, and the influence of these antioxidants on a-tocopherol degradation in thermoxidized soybean oil. Control, LSE (2400 mg/kg Lemon Seed Extract), TBHQ (50 mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180 degrees C for 20 h. Samples were taken at time 0, 5, 10, 15 and 20 h intervals and analysed for oxidative stability and alpha-tocopherol content. LSE and Mixtures 1 and 2 showed the capacity of retarding lipid oxidation when added to soya oil and also contributed to alpha-tocopherol retention in oil heated at high temperatures. However, Mixtures 1 and 2 added to the oil presented a greater antioxidant power, consequently proving the antioxidants synergistic effect.

  20. Stabilization of water in oil in water (W/O/W) emulsion using whey protein isolate-conjugated durian seed gum: enhancement of interfacial activity through conjugation process.

    PubMed

    Tabatabaee Amid, Bahareh; Mirhosseini, Hamed

    2014-01-01

    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process.

  1. Increased adiposity induced by high dietary butter oil increases vertebrae trabecular structural indices in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity has been associated with both improved and impaired bone health, and other dietary factors apparently affect the nature of the association. An experiment was performed to determine whether increased adiposity induced by high dietary butter oil impairs bone structure and whether that effect ...

  2. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage.

  3. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. PMID:27566523

  4. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats.

    PubMed

    Fu, Jing; Wang, Baogui; Gong, Deming; Zeng, Cheng; Jiang, Yihao; Zeng, Zheling

    2015-08-01

    The total and positional fatty acid composition in camphor tree (Cinnamomum camphora) seed kernel oil (CKO) were analyzed, and for the first time, the effect of CKO on body fat deposition and blood lipids in rats was studied. The major fatty acids in CKO were determined to be decanoic acid (C10:0, 51.49%) and dodecanoic acid (C12:0, 40.08%), and uniformly distributed at Sn-1, 3, and Sn-2 positions in triglyceride (TG). Rats were randomly divided into control, CKO, lard, and soybean oil groups. At the end of the experiment, levels of blood lipids and the fats of abdomen in the rats were measured. The main organ were weighted and used for the histological examination. The results showed that body weight and fat deposition in CKO group were significantly lower than the lard and soybean groups. Moderate consumption of CKO was found to improve the levels of blood TG and low density lipoprotein cholesterol.

  5. Acylglycerol and fatty acid components of pulp, seed, and whole olive fruit oils. Their use to characterize fruit variety by chemometrics.

    PubMed

    Ranalli, Alfonso; Pollastri, Luciano; Contento, Stefania; Di Loreto, Giuseppina; Iannucci, Emilia; Lucera, Lucia; Russi, Francesca

    2002-06-19

    The contents of triacylglycerols and diacylglycerols in three kinds of olive fruit oils (pulp, seed, and whole fruit) were determined. The fatty acid composition and the quality ratios 1,2-diacylglycerols/1,3-diacylglycerols and 1,2-diacylglycerols/total diacylglycerols were also assessed. Seven major Italian olive varieties were considered. Results of univariate statistical analyses indicated that the above analytical parameters (glyceridic ratios excepted) were effective in discriminating between pulp and seed oils. The seed oil fraction did not determine any change in the glyceridic indices and the acylglycerol or fatty acid composition concerning the whole fruit oil (mixture of pulp and seed oil fractions), the weight (%) of seed ( approximately 2%) being by far lower than the weight (%) of pulp ( approximately 85%) (fruit weight basis). Based on the data of triacylglycerol or fatty acid composition, and using appropriate parametric or nonparametric multivariate statistics, the genetic origins (olive variety) of the three fruit oil kinds were characterized.

  6. Steroleosin, a Sterol-Binding Dehydrogenase in Seed Oil Bodies1

    PubMed Central

    Lin, Li-Jen; Tai, Sorgan S.K.; Peng, Chi-Chung; Tzen, Jason T.C.

    2002-01-01

    Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel β-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols. PMID:11950969

  7. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation.

    PubMed

    Foo, K Y; Hameed, B H

    2011-10-01

    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.

  8. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities.

    PubMed

    Teng, Hui; Chen, Lei; Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  9. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities

    PubMed Central

    Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  10. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

    PubMed Central

    Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.

    2014-01-01

    Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help