Sample records for seed iron loading

  1. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  2. Iron homeostasis in plants - a brief overview.

    PubMed

    Connorton, James M; Balk, Janneke; Rodríguez-Celma, Jorge

    2017-07-19

    Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.

  3. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L)

    PubMed Central

    Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.

    2014-01-01

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and distribution. PMID:24765096

  4. Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots

    PubMed Central

    Paul, Soumitra; Gayen, Dipak; Datta, Swapan K.; Datta, Karabi

    2016-01-01

    The present study highlights the molecular regulation of iron transport in soyFER1-overexpressing transgenic rice. Accumulation of iron in three different seed developmental stages, milk, dough, and mature, has been examined. The transgenic seeds of the milk stage showed significant augmentation of iron and zinc levels compared with wild-type seeds, and similar results were observed throughout the dough and mature stages. To investigate the regulation of iron transport, the role of miRNAs was studied in roots of transgenic rice. Sequencing of small RNA libraries revealed 153 known and 41 novel miRNAs in roots. Among them, 59 known and 14 novel miRNAs were found to be significantly expressed. miR166, miR399, and miR408 were identified as playing a vital role in iron uptake in roots of transgenic plants . Most importantly, four putative novel miRNAs, namely miR11, miR26, miR30, and miR31, were found to be down-regulated in roots of transgenic plants. For all these four novel miRNAs, natural resistance-associated macrophage protein 4 (NRAMP4), encoding a metal transporter, was predicted as a target gene. It is hypothesized that the NRAMP4 transporter is activated in roots of transgenic plants due to the lower abundance of its corresponding putative novel miRNAs. The relative transcript level of the NRAMP4 transcript was increased from 0.107 in the wild type to 65.24 and 55.39 in transgenic plants, which demonstrates the elevated amount of iron transport in transgenic plants. In addition, up-regulation of OsYSL15, OsFRO2, and OsIRT1 in roots also facilitates iron loading in transgenic seeds. PMID:27729476

  5. QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population.

    PubMed

    Blair, Matthew W; Medina, Juliana I; Astudillo, Carolina; Rengifo, Judith; Beebe, Steve E; Machado, Gloria; Graham, Robin

    2010-10-01

    Iron and zinc deficiencies are human health problems found throughout the world and biofortification is a plant breeding-based strategy to improve the staple crops that could address these dietary constraints. Common bean is an important legume crop with two major genepools that has been the focus of genetic improvement for seed micronutrient levels. The objective of this study was to evaluate the inheritance of seed iron and zinc concentrations and contents in an intra-genepool Mesoamerican × Mesoamerican recombinant inbred line population grown over three sites in Colombia and to identify quantitative trait loci (QTL) for each mineral. The population had 110 lines and was derived from a high-seed iron and zinc climbing bean genotype (G14519) crossed with a low-mineral Carioca-type, prostrate bush bean genotype (G4825). The genetic map for QTL analysis was created from SSR and RAPD markers covering all 11 chromosomes of the common bean genome. A set of across-site, overlapping iron and zinc QTL was discovered on linkage group b06 suggesting a possibly pleiotropic locus and common physiology for mineral uptake or loading. Other QTL for mineral concentration or content were found on linkage groups b02, b03, b04, b07, b08 and b11 and together with the b06 cluster were mostly novel compared to loci found in previous studies of the Andean genepool or inter-genepool crosses. The discovery of an important new locus for seed iron and zinc concentrations may facilitate crop improvement and biofortification using the high-mineral genotype especially within the Mesoamerican genepool.

  6. Bypassing Iron Storage in Endodermal Vacuoles Rescues the Iron Mobilization Defect in the natural resistance associated-macrophage protein3natural resistance associated-macrophage protein4 Double Mutant1[OPEN

    PubMed Central

    Mary, Viviane; Schnell Ramos, Magali; Gillet, Cynthia; Socha, Amanda L.; Giraudat, Jérôme; Agorio, Astrid; Merlot, Sylvain; Clairet, Colin; Kim, Sun A.; Punshon, Tracy; Guerinot, Mary Lou; Thomine, Sébastien

    2015-01-01

    To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an ethyl methanesulfonate-mutagenized population of nramp3nramp4 seedlings for mutations suppressing their phenotypes on low Fe. Here, we report that, among the suppressors, two independent mutations in the VACUOLAR IRON TRANSPORTER1 (AtVIT1) gene caused the suppressor phenotype. The AtVIT1 transporter is involved in Fe influx into vacuoles of endodermal and bundle sheath cells. This result establishes a functional link between Fe loading in vacuoles by AtVIT1 and its remobilization by AtNRAMP3 and AtNRAMP4. Moreover, analysis of subcellular Fe localization indicates that simultaneous disruption of AtVIT1, AtNRAMP3, and AtNRAMP4 limits Fe accumulation in vacuolar globoids. PMID:26232490

  7. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    NASA Astrophysics Data System (ADS)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  8. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  9. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

  10. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    PubMed

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in environments where beans are grown in alkaline soils, while the QTL for iron reductase under sufficiency conditions may be useful for selecting for enhanced seed nutritional quality.

  11. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.

    PubMed

    Drakakaki, Georgia; Marcel, Sylvain; Glahn, Raymond P; Lund, Elizabeth K; Pariagh, Sandra; Fischer, Rainer; Christou, Paul; Stoger, Eva

    2005-12-01

    We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.

  12. Reusability of contaminated seed crystal for cast quasi-single crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Li, Zaoyang; Liu, Lijun; Zhou, Genshu

    2015-04-01

    Reusing seed crystal is beneficial for reducing the production costs for cast quasi-single crystalline (QSC) silicon ingots. We numerically investigate the reusability of seed crystal in the casting processes with quartz crucible and silicon feedstock of different purities. The reused seed crystal is recycled from the standard QSC ingot and has been highly contaminated by iron impurity. Transient simulations of iron transport are carried out and special attention is paid to the diffusion and distribution characteristics of iron impurity at the ingot bottom. The heights of the bottom iron contaminated region are compared for silicon ingots grown from normal and recycled seed crystals. The results show that the purity of quartz crucible can influence the reusability of seed crystal more significantly than that of the feedstock. The recycled seed crystal with high iron concentration can be reused for casting processes with standard crucible, whereas it is not recommended for reusing for processes with pure crucible.

  13. Fe 2O 3-Au hybrid nanoparticles for sensing applications via SERS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, Emily; Murph, Simona Hunyadi

    Multifunctional iron oxide-gold hybrid nanostructures have been produced via solution chemistries and investigated for analyte detection. Gold nanoparticles of various shapes have been used for probing surface-enhanced Raman scattering (SERS) effects as they display unique optical properties in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies. The “hot spots” were created by using a seeded reaction to increase the gold loading on the iron oxide support bymore » 43% by weight. SERS Nanomaterials were evaluated for their ability to promote surface-enhanced Raman scattering of a model analyte, 4-mercaptophenol. The data shows an enhancement effect of the model analyte on gold decorated iron oxide nanoparticles.« less

  14. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    PubMed Central

    2010-01-01

    Background Iron is an important micronutrient for all living organisms. Almost 25% of the world population is affected by iron deficiency, a leading cause of anemia. In plants, iron deficiency leads to chlorosis and reduced yield. Both animals and plants may suffer from iron deficiency when their diet or environment lacks bioavailable iron. A sustainable way to reduce iron malnutrition in humans is to develop staple crops with increased content of bioavailable iron. Knowledge of where and how iron accumulates in seeds of crop plants will increase the understanding of plant iron metabolism and will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells surrounding the provascular tissue of P. vulgaris and P. coccineus seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron storage protein in legumes was only detected in the amyloplasts of the seed embryo. Using the non-destructive micro-PIXE (Particle Induced X-ray Emission) technique we show that the tissue in the proximity of the provascular bundles holds up to 500 μg g-1 of iron, depending on the genotype. In contrast to P. vulgaris and P. coccineus, we did not observe iron accumulation in the cells surrounding the provascular tissues of P. lunatus cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean and a Mesoamerican genotype. Conclusions The presented results emphasize the importance of complementing research in model organisms with analysis in crop plants and they suggest that iron distribution criteria should be integrated into selection strategies for bean biofortification. PMID:20149228

  15. Temporal changes in community composition of heterotrophic bacteria during in situ iron enrichment in the western subarctic Pacific (SEEDS-II)

    NASA Astrophysics Data System (ADS)

    Kataoka, Takafumi; Suzuki, Koji; Hayakawa, Maki; Kudo, Isao; Higashi, Seigo; Tsuda, Atsushi

    2009-12-01

    Little is known about the effects of iron enrichment in high-nitrate low-chlorophyll (HNLC) waters on the community composition of heterotrophic bacteria, which are crucial to nutrient recycling and microbial food webs. Using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, we investigated the heterotrophic eubacterial community composition in surface waters during an in situ iron-enrichment experiment (SEEDS-II) in the western subarctic Pacific in the summer of 2004. DGGE fingerprints representing the community composition of eubacteria differed inside and outside the iron-enriched patch. Sequencing of DGGE bands revealed that at least five phylotypes of α-proteobacteria including Roseobacter, Cytophaga-Flavobacteria- Bacteroides (CFB), γ-proteobacteria, and Actinobacteria occurred in almost all samples from the iron-enriched patch. Diatoms did not bloom during SEEDS-II, but the eubacterial composition in the iron-enriched patch was similar to that in diatom blooms observed previously. Although dissolved organic carbon (DOC) accumulation was not detected in surface waters during SEEDS-II, growth of the Roseobacter clade might have been particularly stimulated after iron additions. Two identified phylotypes of CFB were closely related to the genus Saprospira, whose algicidal activity might degrade the phytoplankton assemblages increased by iron enrichment. These results suggest that the responses of heterotrophic bacteria to iron enrichment could differ among phylotypes during SEEDS-II.

  16. Magnetic separation of antibiotics by electrochemical magnetic seeding

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Toyoda, K.; Beneragama, N.; Umetsu, K.

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  17. Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives.

    PubMed

    Sha, Xuejiao; Chen, Hai; Zhang, Jingsheng; Zhao, Guanghua

    2018-05-04

    Plant ferritin represents a novel class of iron supplement, which widely co-exists with phenolic acids in a plant diet. However, there are few reports on the effect of these phenolic acids on function of ferritin. In this study, we demonstrated that cinnamic acid derivatives, as widely occurring phenolic acids, can induce iron release from holo soybean seed ferritin (SSF) in a structure-dependent manner. The ability of the iron release from SSF by five cinnamic acids follows the sequence of Cinnamic acid > Chlorogenic acid > Ferulic acid > p -Coumaric acid > Trans -Cinnamic acid. Fluorescence titration in conjunction with dialysis results showed that all of these five compounds have a similar, weak ability to bind with protein, suggesting that their protein-binding ability is not related to their iron release activity. In contrast, both Fe 2+ -chelating activity and reducibility of these cinnamic acid derivatives are in good agreement with their ability to induce iron release from ferritin. These studies indicate that cinnamic acid and its derivatives could have a negative effect on iron stability of holo soybean seed ferritin in diet, and the Fe 2+ -chelating activity and reducibility of cinnamic acid and its derivatives have strong relations to the iron release of soybean seed ferritin.

  18. Impact of daily consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels (Cucurbita pepo) on serum iron in adult women.

    PubMed

    Naghii, Mohammad Reza; Mofid, Mahmood

    2007-01-01

    Iron deficiency, anemia, is the most prevalent nutritional problem in the world today. The objective of this study was to consider the effectiveness of consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels as two sources of dietary iron on status of iron nutrition and response of hematological characteristics of women at reproductive ages. Eight healthy female, single or non pregnant subjects, aged 20-37 y consumed 30 g of iron fortified ready-to-eat cereal (providing 7.1 mg iron/day) plus 30 g of pumpkin seed kernels (providing 4.0 mg iron/day) for four weeks. Blood samples collected on the day 20 of menstrual cycles before and after consumption and indices of iron status such as reticulocyte count, hemoglobin (Hb), hematocrit (Ht), serum ferritin, iron, total iron-binding capacity (TIBC), transferrin and transferrin saturation percent were determined. Better response for iron status was observed after consumption period. The statistical analysis showed a significant difference between the pre and post consumption phase for higher serum iron (60 +/- 22 vs. 85 +/- 23 ug/dl), higher transferrin saturation percent (16.8 +/- 8.0 vs. 25.6 +/- 9.0%), and lower TIBC (367 +/- 31 vs. 339 +/- 31 ug/dl). All individuals had higher serum iron after consumption. A significant positive correlation (r=0.981, p=0.000) between the differences in serum iron levels and differences in transferrin saturation percentages and a significant negative correlation (r=-0.916, p<0.001) between the differences in serum iron levels and differences in TIBC was found, as well. Fortified foods contribute to maintaining optimal nutritional status and minimizing the likelihood of iron insufficiencies and use of fortified ready-to-eat cereals is a common strategy. The results showed that adding another food source of iron such as pumpkin seed kernels improves the iron status. Additional and longer studies using these two food products are recommended to further determine the effect of iron fortification on iron nutrition and status among the target population, and mainly in young children, adolescents, women of reproductive ages and pregnant women.

  19. Effect of Dietary Iron Loading on Recognition Memory in Growing Rats

    PubMed Central

    Han, Murui; Kim, Jonghan

    2015-01-01

    While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory. PMID:25746420

  20. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces.Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces. Electronic supplementary information (ESI) available: TEM and HRTEM images of hematite seeds and iron oxide/SnO2 (12 h and 36 h). See DOI: 10.1039/c1nr10728c

  1. Multibuilding Block Janus Synthesized by Seed-Mediated Self-Assembly for Enhanced Photothermal Effects and Colored Brownian Motion in an Optical Trap.

    PubMed

    Sansanaphongpricha, Kanokwan; DeSantis, Michael C; Chen, Hongwei; Cheng, Wei; Sun, Kai; Wen, Bo; Sun, Duxin

    2017-02-01

    The asymmetrical features and unique properties of multibuilding block Janus nanostructures (JNSs) provide superior functions for biomedical applications. However, their production process is very challenging. This problem has hampered the progress of JNS research and the exploration of their applications. In this study, an asymmetrical multibuilding block gold/iron oxide JNS has been generated to enhance photothermal effects and display colored Brownian motion in an optical trap. JNS is formed by seed-mediated self-assembly of nanoparticle-loaded thermocleavable micelles, where the hydrophobic backbones of the polymer are disrupted at high temperatures, resulting in secondary self-assembly and structural rearrangement. The JNS significantly enhances photothermal effects compared to their homogeneous counterpart after near-infrared (NIR) light irradiation. The asymmetrical distribution of gold and iron oxide within JNS also generates uneven thermophoretic force to display active colored Brownian rotational motion in a single-beam gradient optical trap. These properties indicate that the asymmetrical JNS could be employed as a strong photothermal therapy mediator and a fuel-free nanoscale Janus motor under NIR light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    DOE PAGES

    Yang, Haibing; Wei, Hui; Ma, Guojie; ...

    2016-04-07

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusionmore » polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. In conclusion, CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.« less

  3. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haibing; Wei, Hui; Ma, Guojie

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusionmore » polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.« less

  4. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haibing; Wei, Hui; Ma, Guojie

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusionmore » polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. In conclusion, CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.« less

  5. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  6. Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    PubMed Central

    2008-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  7. In situ functionalization and PEO coating of iron oxide nanocrystals using seeded emulsion polymerization.

    PubMed

    Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst

    2013-04-16

    Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.

  8. Iron does not cause arrhythmias in the guinea pig model of transfusional iron overload.

    PubMed

    Kaiser, Lana; Davis, John; Patterson, Jon; Boyd, Ryan F; Olivier, N Bari; Bohart, George; Schwartz, Kenneth A

    2007-08-01

    Cardiac events, including heart failure and arrhythmias, are the leading cause of death in patients with beta thalassemia. Although cardiac arrhythmias in humans are believed to result from iron overload, excluding confounding factors in the human population is difficult. The goal of the current study was to determine whether cardiac arrhythmias occurred in the guinea pig model of secondary iron overload. Electrocardiograms were recorded by using surgically implanted telemetry devices in guinea pigs loaded intraperitoneally with iron dextran (test animals) or dextran alone (controls). Loading occurred over approximately 6 wk. Electrocardiograms were recorded for 1 wk prior to loading, throughout loading, and for approximately 4 wk after loading was complete. Cardiac and liver iron concentrations were significantly increased in the iron-loaded animals compared with controls and were in the range of those reported for humans with thalassemia. Arrhythmias were rare in both iron-loaded and control guinea pigs. No life-threatening arrhythmias were detected in either group. These data suggest that iron alone may be insufficient to cause cardiac arrhythmias in the iron-loaded guinea pig model and that arrhythmias detected in human patients with iron overload may be the result of a complex interplay of factors.

  9. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice.

    PubMed

    Yang, Haibing; Wei, Hui; Ma, Guojie; Antunes, Mauricio S; Vogt, Stefan; Cox, Joseph; Zhang, Xiao; Liu, Xiping; Bu, Lintao; Gleber, S Charlotte; Carpita, Nicholas C; Makowski, Lee; Himmel, Michael E; Tucker, Melvin P; McCann, Maureen C; Murphy, Angus S; Peer, Wendy A

    2016-10-01

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Identification of metabolites from an active fraction of Cajanus cajan seeds by high resolution mass spectrometry.

    PubMed

    Tekale, Satishkumar S; Jaiwal, Bhimrao V; Padul, Manohar V

    2016-11-15

    Antioxidants are important food additives which prolong food storage due to their protective effects against oxidative degradation of foods by free radicals. However, the synthetic antioxidants show toxic properties. Alternative economical and eco-friendly approach is screening of plant extract for natural antioxidants. Plant phenolics are potent antioxidants. Hence, in present study Cajanus cajan seeds were analyzed for antioxidant activity, Iron chelating activity and total phenolic content. The antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed 71.3% inhibition and 65.8% Iron chelating activity. Total 37 compounds including some short peptides and five major abundant compounds were identified in active fraction of C. cajan seeds. This study concludes that C. cajan seeds are good source of antioxidants and Iron chelating activity. Metabolites found in C. cajan seeds which remove reactive oxygen species (ROS), may help to alleviate oxidative stress associated dreaded health problem like cancer and cardiovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Calcium, Iron, and Zinc Bioaccessibilities of Australian Sweet Lupin (Lupinus angustifolius L.) Cultivars.

    PubMed

    Karnpanit, Weeraya; Coorey, Ranil; Clements, Jon; Benjapong, Wenika; Jayasena, Vijay

    2017-06-14

    In this study, we aimed to determine the effect of the cultivar and dehulling on calcium, iron, and zinc bioaccessibilities of Australian sweet lupin (ASL). Ten ASL cultivars grown in 2011, 2012, and 2013 in Western Australia were used for the study. The bioaccessibilities of calcium, iron, and zinc in whole seed and dehulled lupin samples were determined using a dialysability method. The cultivar had significant effects on calcium, iron, and zinc contents and their bioaccessibilities. Average bioaccessibilities of 6% for calcium, 17% for iron, and 9% for zinc were found for whole seeds. Dehulled ASL had average calcium, iron, and zinc bioaccessibilities of 11%, 21%, and 12%, respectively. Compared to some other pulses, ASL had better iron bioaccessibility and poorer calcium and zinc bioaccessibilities. Dehulling increased calcium bioaccessibilities of almost all lupin cultivars. The effect of dehulling on iron and zinc bioaccessibilities depends on the ASL cultivar.

  12. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach.

    PubMed

    Verma, Shailender Kumar; Kumar, Satish; Sheikh, Imran; Malik, Sachin; Mathpal, Priyanka; Chugh, Vishal; Kumar, Sundip; Prasad, Ramasare; Dhaliwal, Harcharan Singh

    2016-01-01

    To transfer the 2S chromosomal fragment(s) of Aegilops kotschyi (2S(k)) into the bread wheat genome which could lead to the biofortification of wheat with high grain iron and zinc content. Wheat-Ae. kotschyi 2A/2S(k) substitution lines with high grain iron and zinc content were used to transfer the gene/loci for high grain Fe and Zn content into wheat using seed irradiation approach. Bread wheat plants derived from 40 krad-irradiated seeds showed the presence of univalents and multivalents during meiotic metaphase-I. Genomic in situ hybridization analysis of seed irradiation hybrid F2 seedlings showed several terminal and interstitial signals indicated the introgression of Ae. kotschyi chromosome segments. This proves the efficacy of seed radiation hybrid approach in gene transfer experiments. All the radiation-treated hybrid plants with high grain Fe and Zn content were analyzed with wheat group 2 chromosome-specific polymorphic simple sequence repeat markers to identify the introgression of small alien chromosome fragment(s). Radiation-induced hybrids showed more than 65% increase in grain iron and 54% increase in Zn contents with better harvest index than the elite wheat cultivar WL711 indicating effective and compensating translocations of 2S(k) fragments into wheat genome.

  13. Chemical and cellular oxidant production induced by naphthalene secondary organic aerosol (SOA): effect of redox-active metals and photochemical aging.

    PubMed

    Tuet, Wing Y; Chen, Yunle; Fok, Shierly; Gao, Dong; Weber, Rodney J; Champion, Julie A; Ng, Nga L

    2017-11-09

    Exposure to air pollution is a leading global health risk. Secondary organic aerosol (SOA) constitute a large portion of ambient particulate matter (PM). In this study, the water-soluble oxidative potential (OP) determined by dithiothreitol (DTT) consumption and intracellular reactive oxygen and nitrogen species (ROS/RNS) production was measured for SOA generated from the photooxidation of naphthalene in the presence of iron sulfate and ammonium sulfate seed particles. The measured intrinsic OP varied for aerosol formed using different initial naphthalene concentrations, however, no trends were observed between OP and bulk aerosol composition or seed type. For all experiments, aerosol generated in the presence of iron-containing seed induced higher ROS/RNS production compared to that formed in the presence of inorganic seed. This effect was primarily attributed to differences in aerosol carbon oxidation state [Formula: see text]. In the presence of iron, radical concentrations are elevated via iron redox cycling, resulting in more oxidized species. An exponential trend was also observed between ROS/RNS and [Formula: see text] for all naphthalene SOA, regardless of seed type or aerosol formation condition. This may have important implications as aerosol have an atmospheric lifetime of a week, over which [Formula: see text] increases due to continued photochemical aging, potentially resulting in more toxic aerosol.

  14. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).

    PubMed

    Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A

    2018-05-11

    Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.

  15. Mycoflora and aflatoxin production in pigeon pea stored in jute sacks and iron bins.

    PubMed

    Bankole, S A; Eseigbe, D A; Enikuomehin, O A

    The mycoflora, moisture content and aflatoxin contamination of pigeon pea (Cajanus cajan (L.) Millisp) stored in jute sacks and iron bins were determined at monthly intervals for a year. The predominant fungi on freshly harvested seeds were Alternaria spp., Botryodiplodia theobromae, Fusarium spp. and Phoma spp. These fungi gradually disappeared from stored seeds with time and by 5-6 months, most were not isolated. The fungi that succeeded the initially dominant ones were mainly members of the general Aspergillus, Penicillium and Rhizopus. Population of these fungi increased up to the end of one year storage. Higher incidence of mycoflora and Aspergillus flavus were recorded in jute-sack samples throughout the storage period. The moisture content of stored seeds was found to fluctuate with the prevailing weather conditions, being low during the dry season and slightly high during the wet season. The stored seeds were free of aflatoxins for 3 and 5 months in jute sacks and iron bins respectively. The level of aflatoxins detected in jute-sack storage system was considerably higher than that occurring in the iron bin system. Of 196 isolates of A. flavus screened, 48% were toxigenic in liquid culture (54% from jute sacks and 41% from iron bins).

  16. Purification and characterization of new phytoferritin from black bean (Phaseolus vulgaris L.) seed.

    PubMed

    Deng, Jianjun; Liao, Xiayun; Hu, Ju; Leng, Xiaojing; Cheng, Jianjun; Zhao, Guanghua

    2010-05-01

    In contrast to animal ferritin, relatively little information is available on phytoferritin. Black bean (Phaseolus vulgaris L.) has been consumed in many countries. In the present study, new ferritin from black bean seed was purified by two consecutive anion exchange and size exclusion chromatography. The apparent molecular mass of the native black bean seed ferritin (BSF) was found to be approximately 560 kDa by native PAGE analysis. N-terminal sequence, MALDI-TOF-MS and MS/MS analyses indicate that BSF and soybean seed ferritin (SSF) share very high identity in amino acid sequence. However, SDS-PAGE result indicates that BSF consists of 26.5 (H-1) and 28.0 kDa (H-2) subunits with a ratio of 2 : 1, while the ratio of these two subunits in SSF is 1 : 1. This result demonstrates that the two proteins have different subunit composition which might affect their activities in iron uptake and release. Indeed, at high iron flux, the initial rate of iron oxidative deposition in apoBSF is larger than that in apoSSF. On the contrary, the iron release from BSF is significantly slower than that from SSF. All these results indicate that phytoferritin might regulate the transit of iron into and out of the protein cavity by changing its subunit composition.

  17. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

    PubMed

    Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2017-11-01

    Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.

  18. Can an increase in leaf iron reductase activity enhance seed iron accumulation in soybean?

    USDA-ARS?s Scientific Manuscript database

    Iron is an important micronutrient for human nutrition, with plant foods providing a significant amount of dietary iron in certain population groups, and in some cases, providing the sole source of dietary iron. Because iron deficiency is unfortunately common in many human populations, we have been...

  19. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.

    PubMed

    Healy, Sinead; McMahon, Jill M; FitzGerald, Una

    2017-11-01

    Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of dietary cadmium on iron metabolism in growing rats.

    PubMed

    Crowe, A; Morgan, E H

    1997-07-01

    Little is known regarding the interactions between iron and cadmium during postnatal development. This study examined the effect of altered levels of dietary iron and cadmium loading on the distribution of cadmium and iron in developing rats ages 15, 21, and 63 days. The uptake of iron, transferrin, and cadmium into various organs was also examined using 59Fe, [125I]transferrin, and 109Cd. Dietary cadmium loading reduced packed cell volume and plasma iron and nonheme iron levels in the liver and kidneys, evidence of the inducement of an iron deficient state. Dietary iron loading was able to reverse these effects, suggesting that they were the result of impaired intestinal absorption of iron. Cadmium loading resulted in cadmium concentrations in the liver and kidneys up to 20 microg/g in rats age 63 days, while cadmium levels in the brain reached only 0.16 microg/g, indicating that the blood-brain barrier restricts the entry of cadmium into the brain. Iron loading had little effect on cadmium levels in the organs and cadmium feeding did not lower tissue iron levels in iron loaded animals. These results suggest that cadmium inhibits iron absorption only at low to normal levels of dietary iron and that at high levels of intake iron and cadmium are largely absorbed by other, noncompetitive mechanisms. It was shown that 109Cd is removed from the plasma extremely quickly irrespective of iron status and deposits mainly in the liver. One of the most striking effects of cadmium loading on iron metabolism was increased uptake of [125I]transferrin by the heart, possibly by disrupting the process of receptor-mediated endocytosis and recycling of transferrin by heart muscle.

  1. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development.

    PubMed Central

    Lobreaux, S; Briat, J F

    1991-01-01

    Iron concentration and ferritin distribution have been determined in different organs of pea (Pisum sativum) during development under conditions of continuous iron supply from hydroponic cultures. No ferritin was detected in total protein extracts from roots or leaves. However, a transient iron accumulation in the roots, which corresponds to an increase in iron uptake, was observed when young fruits started to develop. Ferritin was detectable in total protein extracts of flowers and pods, and it accumulated in seeds. In seeds, the same relative amount of ferritin was detected in cotyledons and in the embryo axis. In cotyledons, ferritin and iron concentration decrease progressively during the first week of germination. Ferritin in the embryo axis was processed, and disappeared, during germination, within the first 4 days of radicle and epicotyl growth. This degradation of ferritin in vivo was marked by a shortening of a 28 kDa subunit, giving 26.5 and 25 kDa polypeptides, reminiscent of the radical damage occurring in pea seed ferritin during iron exchange in vitro [Laulhere, Laboure & Briat (1989) J. Biol. Chem. 264, 3629-3635]. Developmental control of iron concentration and ferritin distribution in different organs of pea is discussed. Images Fig. 4. Fig. 6. Fig. 7. PMID:2006922

  2. INFLUENCE OF IRON CHELATION ON R1 AND R2 CALIBRATION CURVES IN GERBIL LIVER AND HEART

    PubMed Central

    Wood, John C.; Aguilar, Michelle; Otto-Duessel, Maya; Nick, Hanspeter; Nelson, Marvin D.; Moats, Rex

    2008-01-01

    MRI is gaining increasing importance for the noninvasive quantification of organ iron burden. Since transverse relaxation rates depend on iron distribution as well as iron concentration, physiologic and pharmacologic processes that alter iron distribution could change MRI calibration curves. This paper compares the effect of three iron chelators, deferoxamine, deferiprone, and deferasirox on R1 and R2 calibration curves according to two iron loading and chelation strategies. 33 Mongolian gerbils underwent iron loading (iron dextran 500 mg/kg/wk) for 3 weeks followed by 4 weeks of chelation. An additional 56 animals received less aggressive loading (200 mg/kg/week) for 10 weeks, followed by 12 weeks of chelation. R1 and R2 calibration curves were compared to results from 23 iron-loaded animals that had not received chelation. Acute iron loading and chelation biased R1 and R2 from the unchelated reference calibration curves but chelator-specific changes were not observed, suggesting physiologic rather than pharmacologic differences in iron distribution. Long term chelation deferiprone treatment increased liver R1 50% (p<0.01), while long term deferasirox lowered liver R2 30.9% (p<0.0001). The relationship between R1 and R2 and organ iron concentration may depend upon the acuity of iron loading and unloading as well as the iron chelator administered. PMID:18581418

  3. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  4. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination.

    PubMed

    Eroglu, Seckin; Giehl, Ricardo F H; Meier, Bastian; Takahashi, Michiko; Terada, Yasuko; Ignatyev, Konstantin; Andresen, Elisa; Küpper, Hendrik; Peiter, Edgar; von Wirén, Nicolaus

    2017-07-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis ( Arabidopsis thaliana ) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 ( VIT1 ), MTP8 built up iron (Fe) hotspots in MTP8 -expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination1[OPEN

    PubMed Central

    Takahashi, Michiko; Terada, Yasuko

    2017-01-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. PMID:28461400

  6. [Iron from soil to plant products].

    PubMed

    Briat, Jean-François

    2005-11-01

    As an essential mineral, iron plays an important role in fundamental biological processes such as photosynthesis, respiration, nitrogen fixation and assimilation, and DNA synthesis. Iron is also a co-factor of many enzymes involved in the synthesis of plant hormones. The latter are involved in many pathways controling plant development or adaptative responses to environmental conditions. Iron reactivity with oxygen leads to its insolubility (responsible for deficiency) and potential toxicity, and complicates iron use by aerobic organisms. If plants lacked an active root system with which to acquire iron from the soil, most would experience iron deficiency and show physiological changes. In contrast, an excess of soluble iron, which can occur in flooded acidic soils, can lead to ferrous iron toxicity due to iron reactivity with reduced forms of oxygen and subsequent free radical production. An optimal iron concentration is thus required for a plant to grow and develop normally. This concentration depends on multiple regulatory mechanisms controlling iron uptake from soil by the roots, as well as iron transport and distribution to the various plant organs. Optimized seed iron content is a major biotechnological challenge identified by the World Health Organization, and it is therefore crucial to understand the underlying mechanisms. Iron delivery to seeds is tightly controlled, and depends on the nature of iron speciation in specific chelates, and their transport.

  7. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    PubMed

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  8. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    PubMed

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  9. An Aspergillus aculateus strain was capable of producing agriculturally useful nanoparticles via bioremediation of iron ore tailings.

    PubMed

    Bedi, Ankita; Singh, Braj Raj; Deshmukh, Sunil K; Adholeya, Alok; Barrow, Colin J

    2018-06-01

    Mining waste such as iron ore tailing is environmentally hazardous, encouraging researchers to develop effective bioremediation technologies. Among the microbial isolates collected from iron ore tailings, Aspergillus aculeatus (strain T6) showed good leaching efficiency and produced iron-containing nanoparticles under ambient conditions. This strain can convert iron ore tailing waste into agriculturally useful nanoparticles. Fourier-transform Infrared Spectroscopy (FT-IR analysis) established the at the particles are protein coated, with energy dispersive X-ray Spectroscopy (EDX analysis) showing strong signals for iron. Transmission Electron Microscopy (TEM analysis) showed semi-quasi spherical particles having average size of 15 ± 5 nm. These biosynthesized nanoparticles when tested for their efficacy on seed emergence activity of mungbean (Vigna radiata) seeds, and enhanced plant growth at 10 and 20 ppm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model

    PubMed Central

    Healy, Sinead; McMahon, Jill; Owens, Peter; FitzGerald, Una

    2016-01-01

    Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading. PMID:27808258

  11. SANS contrast variation study of magnetoferritin structure at various iron loading

    NASA Astrophysics Data System (ADS)

    Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter

    2015-03-01

    Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.

  12. Variation and inheritance of iron reductase activity in the roots of common vean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency anemia is a global problem, which often affects women and children of developing countries and is based on diets that are low in iron. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their root...

  13. 10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR STOREFRONT, SHOWING MANUFACTURER'S STAMP: IOWA IRON WOKS CO. DUBUQUE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  14. Plant Ferritin—A Source of Iron to Prevent Its Deficiency

    PubMed Central

    Zielińska-Dawidziak, Magdalena

    2015-01-01

    Iron deficiency anemia affects a significant part of the human population. Due to the unique properties of plant ferritin, food enrichment with ferritin iron seems to be a promising strategy to prevent this malnutrition problem. This protein captures huge amounts of iron ions inside the apoferritin shell and isolates them from the environment. Thus, this iron form does not induce oxidative change in food and reduces the risk of gastric problems in consumers. Bioavailability of ferritin in human and animal studies is high and the mechanism of absorption via endocytosis has been confirmed in cultured cells. Legume seeds are a traditional source of plant ferritin. However, even if the percentage of ferritin iron in these seeds is high, its concentration is not sufficient for food fortification. Thus, edible plants have been biofortified in iron for many years. Plants overexpressing ferritin may find applications in the development of bioactive food. A crucial achievement would be to develop technologies warranting stability of ferritin in food and the digestive tract. PMID:25685985

  15. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity.

    PubMed

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces.

  16. Trace element uptake and distribution in plants.

    PubMed

    Graham, Robin D; Stangoulis, James C R

    2003-05-01

    There are similarities between mammals and plants in the absorption and transport of trace elements. The chemistry of trace element uptake from food sources in both cases is based on the thermodynamics of adsorption on charged solid surfaces embedded in a solution phase of charged ions and metal-binding ligands together with redox systems in the case of iron and some other elements. Constitutive absorption systems function in nutrient uptake during normal conditions, and inducible "turbo" systems increase the supply of a particular nutrient during deficiency. Iron uptake is the most studied of the micronutrients, and divides the plant kingdom into two groups: dicotyledonous plants have a turbo system that is an upregulated version of the constitutive system, which consists of a membrane-bound reductase and an ATP-driven hydrogen ion extrusion pump; and monocotyledonous plants have a constitutive system similar to that of the dicots, but with an inducible system remarkably different that uses the mugeneic acid class of phytosiderophores (PS). The PS system may in fact be an important port of entry for iron from an iron-rich but exceedingly iron-insoluble lithosphere into the iron-starved biosphere. Absorption of trace metals in these graminaceous plants is normally via divalent ion channels after reduction in the plasma membrane. Once absorbed, iron can be stored in plants as phytoferritin or transported to active sites by transport-specific ligands. The transport of iron and zinc into seeds is dominated by the phloem sap system, which has a high pH that requires chelation of heavy metals. Loading into grains involves three or four genes each that control chelation, membrane transport and deposition as phytate.

  17. Increased Renal Iron Accumulation in Hypertensive Nephropathy of Salt-Loaded Hypertensive Rats

    PubMed Central

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Fujii, Aya; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Morisawa, Daisuke; Ohyanagi, Mitsumasa; Tsujino, Takeshi; Masuyama, Tohru

    2013-01-01

    Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis. PMID:24116080

  18. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

    PubMed

    Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T

    2012-12-01

    Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.

  19. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Micronutrients are essential elements needed in small amounts for adequate human nutrition and include the elements iron and zinc. Both of these minerals are essential to human well-being, and an adequate supply of iron and zinc helps to prevent iron deficiency anemia and zinc deficiency, two preva...

  20. In Vitro Iron Bioavailability of Brazilian Food-Based by-Products.

    PubMed

    Chiocchetti, Gabriela M; De Nadai Fernandes, Elisabete A; Wawer, Anna A; Fairweather-Tait, Susan; Christides, Tatiana

    2018-05-16

    Background : Iron deficiency is a public health problem in many low- and middle-income countries. Introduction of agro-industrial food by-products, as additional source of nutrients, could help alleviate this micronutrient deficiency, provide alternative sources of nutrients and calories in developed countries, and be a partial solution for disposal of agro-industry by-products. Methods : The aim of this study was to determine iron bioavailability of 5 by-products from Brazilian agro-industry (peels from cucumber, pumpkin, and jackfruit, cupuaçu seed peel, and rice bran), using the in vitro digestion/ Caco-2 cell model; with Caco-2 cell ferritin formation as a surrogate marker of iron bioavailability. Total and dialyzable Fe, macronutrients, the concentrations of iron-uptake inhibitors (phytic acid, tannins, fiber) and their correlation with iron bioavailability were also evaluated. Results : The iron content of all by-products was high, but the concentration of iron and predicted bioavailability were not related. Rice bran and cupuaçu seed peel had the highest amount of phytic acid and tannins, and lowest iron bioavailability. Cucumber peels alone, and with added extrinsic Fe, and pumpkin peels with extrinsic added iron, had the highest iron bioavailability. Conclusion : The results suggest that cucumber and pumpkin peel could be valuable alternative sources of bioavailable Fe to reduce iron deficiency in at-risk populations.

  1. Iron loading in HFE p.C282Y homozygotes found by population screening: relationships to HLA-type and T-lymphocyte subsets.

    PubMed

    Thorstensen, Ketil; Kvitland, Mona A; Irgens, Wenche Ø; Åsberg, Arne; Borch-Iohnsen, Berit; Moen, Torolf; Hveem, Kristian

    2017-11-01

    Iron loading in p.C282Y homozygous HFE hemochromatosis subjects is highly variable, and it is unclear what factors cause this variability. Finding such factors could aid in predicting which patients are at highest risk and require closest follow-up. The degree of iron loading has previously been associated with certain HLA-types and with abnormally low CD8 + cell counts in peripheral blood. In 183 Norwegian, p.C282Y homozygotes (104 men, 79 women) originally found through population screening we determined HLA type and measured total T-lymphocytes, CD4 + and CD8 + cells, and compared this with data on iron loading. In p.C282Y homozygous men, but not in homozygous women, we found that the presence of two HLA-A*03 alleles increased the iron load on average by approximately 2-fold compared to p.C282Y homozygous men carrying zero or one A*03 allele. On the other hand, the presence of two HLA-A*01 alleles, in male subjects, apparently reduced the iron loading. In p.C282Y homozygous individuals, the iron loading was increased if the CD8 + cell number was below the 25 percentile or if the CD4 + cell number was above the 75 percentile. This effect appeared to be additive to the effect of the number of HLA-A*03 alleles. Our data indicate that homozygosity for the HLA-A*03 allele significantly increases the risk of excessive iron loading in Norwegian p.C282Y homozygous male patients. In addition, low CD8 + cell number or high CD4 + cell number further increases the risk of excessive iron loading.

  2. Selected Translations on East European Foreign Trade, No. 5.

    DTIC Science & Technology

    1961-08-31

    eggs, cereals, oil -yielding seeds , and pulped fruit represented 2/3 of all exports. At the same time, unprocessed agricultural products [sic...prefer these raw materials, mainly grain, livestock for meat, and scarce oil - seeds , but show very little interest in, for instance, fruit pulps, which in...mineral materials, and metals. This is because the quantities of oil derivatives and cast iron are increased, and coal and iron ore from the Donets

  3. Effect of radiation processing on in vitro protein digestibility and availability of calcium, phosphorus and iron of peanut

    NASA Astrophysics Data System (ADS)

    Hassan, Amro B.; Diab, Eiman E.; Mahmoud, Nagat S.; Elagib, Randa A. A.; Rushdi, Mohamed A. H.; Osman, Gammaa A. M.

    2013-10-01

    The effect of gamma irradiation of two peanut cultivars (Sodari and Madani) on protein content, in vitro protein digestibility and availability of calcium, phosphorus and iron was determined. Seeds were treated with gamma irradiation at dose levels of 1.0, 1.5 and 2.0 kGy. Total protein in seeds was not changed significantly by irradiation. However, the in vitro protein digestibility was decreased for both cultivars. In addition, the irradiation also caused an increment on the available calcium, phosphorus and iron for both cultivars. Moreover, radiation processing caused an increment on tannin content of the seeds especially at the dose 2 kGy for both cultivars. Regarding these results, irradiation treatment of peanut up to 2 kGy can be used as an effective alternative method to chemical treatments for insect disinfestation and microbial disinfection.

  4. Iron bioavailability studies as assessed by intrinsic and extrinsic labeling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.D.

    Although soybeans are a rich source of iron and incorporation of soy protein into diets is increasing, the presence of phytate or fiber endogenous to the seeds may inhibit total iron absorption from diets including soy protein. Four studies on iron bioavailability as assessed by intrinsic and extrinsic labeling techniques in rats were completed. The effect of previous dietary protein on the absorption of intrinsically /sup 59/Fe labeled defatted soy flour was determined in rats. The results indicated that the type of dietary protein (animal vs. plant) in pre-test diets would have little influence on iron absorption from a singlemore » soy protein test meal. Therefore, adaptation of soy protein does not improve bioavailability of iron. Soybean hulls were investigated as a source of iron fortification in bread. The results indicated that retention of /sup 59/Fe from white bread baked with soy hulls did not differ from white bread fortified with bakery grade ferrous sulfate. The effect of endogenous soybean phytate on iron absorption in rats was measured using seeds of varying phytate content and intrinsically labeled with /sup 59/Fe. Increasing concentration of phytate in whole soybean flour had no significant effect on iron absorption.« less

  5. The effect of hydrostatic vs. shock pressure treatment of plant seeds

    NASA Astrophysics Data System (ADS)

    Mustey, A.; Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.; Hazell, P. J.

    2014-05-01

    The hydrostatic pressure and shock response of plant seeds has been investigated antecedently, primarily driven by interest in reducing bacterial contamination of crops and the theory of panspermia, respectively. However, comparisons have not previously been made between these two methods ofapplying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in collected data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder setup and shock compression via employment of a 50 mm bore, single stage gas gun using the flyer plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set. Data collected has shown that cress seeds are extremely resilient to static loading, whereas the difference in the two forms of loading is negligible for lettuce seeds. Germination time has been seen to extend dramatically following static loading of cress seeds to greater than 0.4 GPa. In addition, the cut-off pressure previously seen to cause 0% germination in dynamic experiments performed on cress seeds has now also been seen in lettuce seeds.

  6. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits.

    PubMed

    Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A

    2012-12-17

    Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.

  7. Stimulation of Peanut Seedling Development and Growth by Zero-Valent Iron Nanoparticles at Low Concentrations

    PubMed Central

    Li, Xuan; Yang, Yuechao; Gao, Bin; Zhang, Min

    2015-01-01

    Because of its strong pollutant degradation ability, nanoscale zerovalent iron (NZVI) has been introduced to soils and groundwater for remediation purposes, but its impacts on plants are still not very clear. In this work, the effects of low concentration (10–320 μmol/L) NZVI particles on seed germination and growth of peanut plants were evaluated. The exposure of peanut seeds to NZVI at all the tested concentrations altered the seed germination activity, especially the development of seedlings. In comparison with the deionized water treated controls (CK), all of the NZVI treatments had significantly larger average lengths. Further investigations with transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) suggested that NZVI particles may penetrate the peanut seed coats to increase the water uptake to stimulate seed germination. The growth experiments showed that although NZVI at a relatively high concentration (320μmol/L) showed phytotoxicity to the peanut plants, the lower concentrations of NZVI particles stimulated the growth and root development of the plants. At certain concentrations (e.g., 40 and 80 μmol/L), the NZVI treated samples were even better than the ethylenediaminetetraacetate-iron (EDTA-Fe) solution, a commonly used iron nutrient solution, in stimulating the plant growth. This positive effect was probably due to the uptake of NZVI by the plants, as indicated in the TEM analyses. Because low concentrations of NZVI particles stimulated both the seedling development and growth of peanut, they might be used to benefit the growth of peanuts in large-scale agricultural settings. PMID:25901959

  8. Iron overload diseases: the chemical speciation of non-heme iron deposits in iron loaded mammalian tissues

    NASA Astrophysics Data System (ADS)

    St. Pierre, T. G.; Chua-Anusorn, W.; Webb, J.; Macey, D. J.

    2000-07-01

    57Fe Mössbauer spectra of iron overloaded human spleen, rat spleen and rat liver tissue samples at 78 K were found to consist of a quadrupole doublet (major component) with magnetic sextet (minor component with fractional spectral area F s). The distributions of F s for spleen tissue from two different clinically identifiable groups (n = 7 and n = 12) of thalassemic patients were found to be significantly different. The value of F s for dietary-iron loaded rat liver was found to rise significantly with age/duration (up to 24 months) of iron loading.

  9. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  10. Effect of pollen load size and source (self, outcross) on seed and fruit production in highbush blueberry cv. 'Bluecrop' (VACCINIUM CORYMBOSUM; Ericaceae).

    PubMed

    Dogterom, M H; Winston, M L; Mukai, A

    2000-11-01

    Reproductive fitness of a plant is ultimately determined by both number and quality of seed offspring. This is determined by sexual selection of pollen microspores and ovules during pollination and fertilization. These processes may include pollen competition and seed abortion, which reduce the number of microspores and ovules available for final seed production. Thus, even an excess of pollen microspores to ovules does not result in fertile seeds equal to ovule number. We investigated pollen requirements of highbush blueberry (Vaccinium corymbosum cultivar 'Bluecrop') for maximal seed production and how fertile seed number translates into fruit quality, since fruit quality would ultimately determine the dispersal of its offspring. We demonstrate that individual blueberry flowers with a mean of 106 ovules reach their maximum fruit set and mass and minimum time to ripen when 125 outcross pollen tetrads pollinate a flower, compared to 10 or 25. Three hundred tetrads resulted in the increase of fertile seeds, but did not result in a further increase of fruit mass or fruit set, or decrease in time to ripen. We also examined the effect of pure and mixed loads of self and outcross pollen (25 and 125 tetrads), and found no differences in fertile seed number, fruit mass, or percentage fruit set when pollen loads were either 25 self or outcross pollen tetrads, although number of days to ripen was significantly shorter by 8 d with 25 outcross tetrads. When the pollen load of 125 tetrads consisted of self or a 50:50 mixture of self and outcross pollen, fruit mass, days to ripen, and percentage fruit set were not different from loads of 125 outcross pollen. In addition, a pollen load of 25 outcross tetrads resulted in fertile seed number and fruit quality in between that of 25 self, and 125 self, 125 mixed, or 125 outcross tetrads. Large, small, and flat seed types were identified, and only large seeds (length = 1.7 mm) were fertile. These results improve our understanding of pollen load size and source requirements of a crop plant and the limits to pollen transfer when translated to fruit growth.

  11. Characterization of Vinyl Ester Composites Filled with Carbonized Jatropha seed shell: effect of accelerated weathering

    NASA Astrophysics Data System (ADS)

    Sri Aprilia, N. A.; Khalil, H. P. S. Abdul; Amin, Amri; Meurah Rosnelly, Cut; Fathanah, Ummi; Mariana

    2018-05-01

    The effect of accelerated weathering test of carbonized jatropha seed shell filled vinyl ester biocomposites was investigated. In this study, four loading of carbonized jatropha seed shell and one without loading of vinyl ester biocomposites were used. The samples exposure at several circles time in QUV chamber. The durability of vinyl ester biocomposites filled carbonized jatropha seed shell changes in mechanical properties and weight loss during exposure in UV and condensation. The tensile test and flexural indicated decrease with increasing of carbonized jatropha seed shell loading. The SEM fracture surface of biocomposites looks rough and some carbonized out of the matrix.

  12. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations

    PubMed Central

    de Llanos, Rosa; Martínez-Garay, Carlos Andrés; Fita-Torró, Josep; Romero, Antonia María; Martínez-Pastor, María Teresa

    2016-01-01

    ABSTRACT Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption. PMID:26969708

  13. Differential iron distribution in seeds of two closely related legume species

    USDA-ARS?s Scientific Manuscript database

    The World Health Organization states that the lack of micronutrients such as zinc and iron represents a major threat to the health and development of populations around the world. Iron deficiency affects over 2 billion people, in particular children and pregnant women in developing countries. A comm...

  14. Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization

    NASA Astrophysics Data System (ADS)

    Safitri, Nina; Mubarok, M. Zaki; Winarko, Ronny; Tanlega, Zela

    2018-05-01

    In the present study, precipitation of nickel and cobalt as mixed hydroxide precipitate (MHP) from pregnant leach solution of nickel limonite ore from Soroako after iron removal stage was carried out. A series of MHP precipitation experiments was conducted by using MgO slurry as neutralizing agent and the effects of pH, temperature, duration of precipitation and the addition of MHP seed on the precipitation behavior of nickel, cobalt, as well as iron and manganese was studied. Characterization of MHP product was performed by particle size analyzer (PSA) as well as X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM) analyses. Kinetics analysis was made by using differential-integral method for the rate of homogenous reaction. Precipitation at pH 7, temperature 50°C for 30 minute, without seed addition resulted in nickel and cobalt recoveries of 82.8% and 92%, respectively with co-precipitated iron and manganese of 70% and 24.2%, respectively. The seed addition increases nickel and cobalt precipitations significantly to 99.9% and 99.1%, respectively. However, the addition of seed into led to a significant increase of manganese co-precipitation from 24.2% without seed addition to 39.5% at the addition of 1 g seed per 200 mL of PLS. Kinetics analysis revealed that Ni precipitation to form MHP follows the second-order reaction kinetics with activation energy of 94.6 kJ/mol.

  15. Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron.

    PubMed Central

    Cable, E. E.; Connor, J. R.; Isom, H. C.

    1998-01-01

    We have previously shown that hepatocytes in long-term dimethylsulfoxide (DMSO) culture, fed a chemically defined medium, are highly differentiated and an excellent in vitro model of adult liver. Hepatocytes in long-term DMSO culture can be iron loaded by exposure to non-transferrin-bound iron (NTBI) in the form of ferrous sulfate (FeSO4), ferric nitrilotriacetate, or trimethylhexanoyl (TMH)-ferrocene. Holotransferrin, at equivalent times and concentrations, was unable to load hepatocytes. Of the iron compounds tested, TMH-ferrocene most accurately simulated the morphological features of iron-loaded hepatocytes in vivo. When exposed to 25 micromol/L TMH-ferrocene, hepatocytes loaded increasing amounts of iron for 2 months before the cells died. When exposed to lower concentrations of TMH-ferrocene (as low as 2.5 micromol/L), hepatocytes continuously loaded iron and remained viable for more than 2 months. The cellular deposition of iron was different in hepatocytes exposed to TMH-ferrocene compared with those exposed to FeSO4; exposure to TMH-ferrocene resulted in the presence of more ferritin cores within lysosomes than were seen with FeSO4. When the concentration of TMH-ferrocene was increased, a greater number of ferritin cores were observed within the lysosome, and total cellular ferritin, as assessed by Western blot, increased. The formation of hemosiderin was also observed. Furthermore, nuclear shape was distorted in iron-loaded hepatocytes. The extent of deviation from circularity in the nucleus correlated with increasing concentrations of TMH-ferrocene and was greater in hepatocytes exposed to FeSO4 than an equivalent concentration of TMH-ferrocene. The deviation from circularity was smallest in hepatocytes that contained well formed ferritin cores and increased in hepatocytes that contained greater amounts of hemosiderin. Furthermore, in hepatocytes treated with FeSO4, a large amount of cell-associated iron was detected but without a significant increase in the total amount of ferritin. The deviation from circularity was the largest in FeSO4-treated hepatocytes, indicating that iron not properly incorporated into ferritin caused more cellular damage. We conclude that iron-loaded hepatocytes in long-term DMSO culture represent a flexible system for studying the effects of chronic iron loading on hepatocytes. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:9502420

  16. Iron and vegetarian diets.

    PubMed

    Saunders, Angela V; Craig, Winston J; Baines, Surinder K; Posen, Jennifer S

    2013-08-19

    Vegetarians who eat a varied and well balanced diet are not at any greater risk of iron deficiency anaemia than non-vegetarians. A diet rich in wholegrains, legumes, nuts, seeds, dried fruits, iron-fortified cereals and green leafy vegetables provides an adequate iron intake. Vitamin C and other organic acids enhance non-haem iron absorption, a process that is carefully regulated by the gut. People with low iron stores or higher physiological need for iron will tend to absorb more iron and excrete less. Research to date on iron absorption has not been designed to accurately measure absorption rates in typical Western vegetarians with low ferritin levels.

  17. Solid-State Kinetic Investigations of Nonisothermal Reduction of Iron Species Supported on SBA-15

    PubMed Central

    2017-01-01

    Iron oxide catalysts supported on nanostructured silica SBA-15 were synthesized with various iron loadings using two different precursors. Structural characterization of the as-prepared FexOy/SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, DR-UV-Vis spectroscopy, and Mössbauer spectroscopy. An increasing size of the resulting iron species correlated with an increasing iron loading. Significantly smaller iron species were obtained from (Fe(III), NH4)-citrate precursors compared to Fe(III)-nitrate precursors. Moreover, smaller iron species resulted in a smoother surface of the support material. Temperature-programmed reduction (TPR) of the FexOy/SBA-15 samples with H2 revealed better reducibility of the samples originating from Fe(III)-nitrate precursors. Varying the iron loading led to a change in reduction mechanism. TPR traces were analyzed by model-independent Kissinger method, Ozawa, Flynn, and Wall (OFW) method, and model-dependent Coats-Redfern method. JMAK kinetic analysis afforded a one-dimensional reduction process for the FexOy/SBA-15 samples. The Kissinger method yielded the lowest apparent activation energy for the lowest loaded citrate sample (Ea ≈ 39 kJ/mol). Conversely, the lowest loaded nitrate sample possessed the highest apparent activation energy (Ea ≈ 88 kJ/mol). For samples obtained from Fe(III)-nitrate precursors, Ea decreased with increasing iron loading. Apparent activation energies from model-independent analysis methods agreed well with those from model-dependent methods. Nucleation as rate-determining step in the reduction of the iron oxide species was consistent with the Mampel solid-state reaction model. PMID:29230346

  18. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    PubMed

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p < 0.04) and 8 g/L (p = 0.05) treatments. HAMP expression showed alternating elevations and increased upon 1 g/L (p < 0.05) and 5 g/L (p < 0.05). However, in the recombinant cells that showed higher intracellular iron levels than wild-type cells, HFE and HAMP expressions were elevated only at low 1 g/L treatment (p < 0.03) and were repressed at 2 g/L treatment (p < 0.03). Under holotransferrin-untreated conditions, the iron-loaded recombinant cells showed higher expressions of HFE (p < 0.03) and HAMP (p = 0.05) than wild-type cells. HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  19. Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading.

    PubMed

    Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A

    2005-01-01

    Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.

  20. Management of transfusional iron overload – differential properties and efficacy of iron chelating agents

    PubMed Central

    Kwiatkowski, Janet L

    2011-01-01

    Regular red cell transfusion therapy ameliorates disease-related morbidity and can be lifesaving in patients with various hematological disorders. Transfusion therapy, however, causes progressive iron loading, which, if untreated, results in endocrinopathies, cardiac arrhythmias and congestive heart failure, hepatic fibrosis, and premature death. Iron chelation therapy is used to prevent iron loading, remove excess accumulated iron, detoxify iron, and reverse some of the iron-related complications. Three chelators have undergone extensive testing to date: deferoxamine, deferasirox, and deferiprone (although the latter drug is not currently licensed for use in North America where it is available only through compassionate use programs and research protocols). These chelators differ in their modes of administration, pharmacokinetics, efficacy with regard to organ-specific iron removal, and adverse-effect profiles. These differential properties influence acceptability, tolerability and adherence to therapy, and, ultimately, the effectiveness of treatment. Chelation therapy, therefore, must be individualized, taking into account patient preferences, toxicities, ongoing transfusional iron intake, and the degree of cardiac and hepatic iron loading. PMID:22287873

  1. Management of transfusional iron overload - differential properties and efficacy of iron chelating agents.

    PubMed

    Kwiatkowski, Janet L

    2011-01-01

    Regular red cell transfusion therapy ameliorates disease-related morbidity and can be lifesaving in patients with various hematological disorders. Transfusion therapy, however, causes progressive iron loading, which, if untreated, results in endocrinopathies, cardiac arrhythmias and congestive heart failure, hepatic fibrosis, and premature death. Iron chelation therapy is used to prevent iron loading, remove excess accumulated iron, detoxify iron, and reverse some of the iron-related complications. Three chelators have undergone extensive testing to date: deferoxamine, deferasirox, and deferiprone (although the latter drug is not currently licensed for use in North America where it is available only through compassionate use programs and research protocols). These chelators differ in their modes of administration, pharmacokinetics, efficacy with regard to organ-specific iron removal, and adverse-effect profiles. These differential properties influence acceptability, tolerability and adherence to therapy, and, ultimately, the effectiveness of treatment. Chelation therapy, therefore, must be individualized, taking into account patient preferences, toxicities, ongoing transfusional iron intake, and the degree of cardiac and hepatic iron loading.

  2. Anaerobic Biodegradation Of Methyl tert-Butyl Ether Under Iron-Reducing Conditions In Batch And Continuous-Flow Cultures

    EPA Science Inventory

    The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing...

  3. Identification of quantitative trait loci associated with seed iron in the legumes Lotus japonicus and Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency is one of the leading micronuntrient deficiencies in humans, and increasing the amount of bioavailable iron in commonly consumed plant foods has been proposed as a means to ameliorate this deficiency. This approach seems especially beneficial in developing countries where plant food...

  4. Chemical changes associated with lotus and water lily natto production

    NASA Astrophysics Data System (ADS)

    Lestari, S. D.; Fatimah, N.; Nopianti, R.

    2017-04-01

    Natto is a traditional Japanese food made by fermenting whole soybean seeds with pure culture of Bacillus subtilis subsp. natto. The purpose of this study was to investigate the suitability of lotus (Nelumbo nucifera) and water lily (Nymphaea stellata) seeds as the raw materials for natto production. Chemical (proximate, amino acids and minerals) changes were observed on raw, steamed and fermented seeds. Proximate compositions of all samples were calculated in both wet basis and dry basis. In wet basis calculation, steaming and fermentation tended to lower the carbohydrates, ashes, fats and protein content which were attributed to the increase of moisture. The total amino acid, iron and magnesium contents of raw lotus seeds were 24.29%, 5.08 mg 100g-1 and 174.23 mg 100g-1 dry matter, respectively. After a 24h-fermentation at 40°C, the total amino acids decreased while iron and magnesium contents increased significantly reaching, in respective order, 9.9 mg 100g-1 and 411.36 mg 100g-1 dry matter. Changes in chemical composition after fermentation were more pronounced in lotus seeds than water lily seeds indicating that their nutrient composition were more suitable to support Bacillus subtilis growth.

  5. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  6. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds.

    PubMed

    Ochoa, Loren; Zuverza-Mena, Nubia; Medina-Velo, Illya A; Flores-Margez, Juan Pedro; Peralta-Videa, José R; Gardea-Torresdey, Jorge L

    2018-09-01

    The interaction of CuO nanoparticles (nCuO), a potential nanopesticide, with the growth hormone indole-3-acetic acid (IAA) is not well understood. This study aimed to evaluate the nutritional components in seeds of green pea (Pisum sativum) cultivated in soil amended with nCuO at 50 or 100mgkg -1 , with/without IAA at 10 or 100μM. Similar treatments including bulk CuO (bCuO) and CuCl 2 were set as controls. Bulk CuO at 50mgkg -1 reduced seed yield (52%), compared with control. Bulk CuO at 50mgkg -1 and nCuO at 100mgkg -1 , plus IAA at 100μM, increased iron in seeds (41 and 42%, respectively), while nCuO at 50mgkg -1 , plus IAA at 100μM reduced boron (80%, respect to control and 63%, respect to IAA at 100μM). IAA, at 10μM increased seed protein (33%), compared with control (p≤0.05). At both concentrations IAA increased sugar in seeds (20%). Overall, nCuO, plus IAA at 10μM, does not affect the production or nutritional quality of green pea seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis

    PubMed Central

    Ramos, Emilio; Ruchala, Piotr; Goodnough, Julia B.; Kautz, Léon; Preza, Gloria C.; Nemeth, Elizabeta

    2012-01-01

    The deficiency of hepcidin, the hormone that controls iron absorption and its tissue distribution, is the cause of iron overload in nearly all forms of hereditary hemochromatosis and in untransfused iron-loading anemias. In a recent study, we reported the development of minihepcidins, small drug-like hepcidin agonists. Here we explore the feasibility of using minihepcidins for the prevention and treatment of iron overload in hepcidin-deficient mice. An optimized minihepcidin (PR65) was developed that had superior potency and duration of action compared with natural hepcidin or other minihepcidins, and favorable cost of synthesis. PR65 was administered by subcutaneous injection daily for 2 weeks to iron-depleted or iron-loaded hepcidin knockout mice. PR65 administration to iron-depleted mice prevented liver iron loading, decreased heart iron levels, and caused the expected iron retention in the spleen and duodenum. At high doses, PR65 treatment also caused anemia because of profound iron restriction. PR65 administration to hepcidin knockout mice with pre-existing iron overload had a more moderate effect and caused partial redistribution of iron from the liver to the spleen. Our study demonstrates that minihepcidins could be beneficial in iron overload disorders either used alone for prevention or possibly as adjunctive therapy with phlebotomy or chelation. PMID:22990014

  8. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  9. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  10. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    NASA Astrophysics Data System (ADS)

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  11. Dephytinisation with Intrinsic Wheat Phytase and Iron Fortification Significantly Increase Iron Absorption from Fonio (Digitaria exilis) Meals in West African Women

    PubMed Central

    Moretti, Diego; Schuth, Stephan; Egli, Ines; Zimmermann, Michael B.; Brouwer, Inge D.

    2013-01-01

    Low iron and high phytic acid content make fonio based meals a poor source of bioavailable iron. Phytic acid degradation in fonio porridge using whole grain cereals as phytase source and effect on iron bioavailability when added to iron fortified fonio meals were investigated. Grains, nuts and seeds collected in Mali markets were screened for phytic acid and phytase activity. We performed an iron absorption study in Beninese women (n = 16), using non-dephytinised fonio porridge (FFP) and dephytinised fonio porridge (FWFP; 75% fonio-25% wheat), each fortified with 57Fe or 58Fe labeled FeSO4. Iron absorption was quantified by measuring the erythrocyte incorporation of stable iron isotopes. Phytic acid varied from 0.39 (bambara nut) to 4.26 g/100 g DM (pumpkin seed), with oilseeds values higher than grains and nuts. Phytase activity ranged from 0.17±1.61 (fonio) to 2.9±1.3 phytase unit (PU) per g (whole wheat). Phytic acid was almost completely degraded in FWFP after 60 min of incubation (pH≈5.0, 50°C). Phytate∶iron molar ratios decreased from 23.7∶1 in FFP to 2.7∶1 in FWFP. Iron fortification further reduced phytate∶iron molar ratio to 1.9∶1 in FFP and 0.3∶1 in FWFP, respectively. Geometric mean (95% CI) iron absorption significantly increased from 2.6% (0.8–7.8) in FFP to 8.3% (3.8–17.9) in FWFP (P<0.0001). Dephytinisation of fonio porridge with intrinsic wheat phytase increased fractional iron absorption 3.2 times, suggesting it could be a possible strategy to decrease PA in cereal-based porridges. PMID:24124445

  12. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques in Wightman Fork, southwestern Colorado, September 1997

    USGS Publications Warehouse

    Ortiz, Roderick F.; Bencala, Kenneth E.

    2001-01-01

    Spatial determinations of the metal loads in Wightman Fork can be used to identify potential source areas to the stream. In September 1997, a chloride tracer-injection study was done concurrently with synoptic water-quality sampling in Wightman Fork near the Summitville Mine site. Discharge was determined and metal concentrations at 38 sites were used to generate mass-load profiles for dissolved aluminum, copper, iron, manganese, and zinc. The U.S. Environmental Protection Agency had previously identified these metals as contaminants of concern.Metal loads increased substantially in Wightman Fork near the Summitville Mine. A large increase occurred along a 60-meter reach that is north of the North Waste Dump and generally corresponds to a region of radial faults. Metal loading from this reach was equivalent to 50 percent or more of the dissolved aluminum, copper, iron, manganese, and zinc load upstream from the outfall of the Summitville Water Treatment Facility (SWTF). Overall, sources along the entire reach upstream from the SWTF were equivalent to 15 percent of the iron, 33 percent of the copper and manganese, 58 percent of the zinc, and 66 percent of the aluminum load leaving the mine site. The largest increases in metal loading to Wightman Fork occurred as a result of inflow from Cropsy Creek. Aluminum, iron, manganese, and zinc loads from Cropsy Creek were equivalent to about 40 percent of the specific metal load leaving the mine site. Copper, iron, and manganese loads from Cropsy Creek were nearly as large or larger than the load from sources upstream from the SWTF.

  13. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    PubMed Central

    Lescure, A M; Massenet, O; Briat, J F

    1990-01-01

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron. Images Fig. 2. Fig. 3. PMID:2264818

  14. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    PubMed

    Lescure, A M; Massenet, O; Briat, J F

    1990-11-15

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.

  15. The impact of different stator and rotor slot number combinations on iron losses of a three-phase induction motor at no-load

    NASA Astrophysics Data System (ADS)

    Marčič, T.; Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Zagradišnik, I.

    The electromechanical characteristics of induction motors depend on the used stator and rotor slot combination. The correlation between the usage of different stator and rotor slot number combinations, magnetic flux density distributions, no-load iron losses and rated load winding over-temperatures for a specific induction motor is presented. The motor's magnetic field was analyzed by traces of the magnetic flux density vector, obtained by FEM. Post-processing of FE magnetic field solution was used for posterior iron loss calculation of the motor iron loss at no-load. The examined motor stator lamination had 36 semi-closed slots and the rotor laminations had 28, 33, 34, 44 and 46 semi-closed slots.

  16. Effect of transfusional iron intake on response to chelation therapy in beta-thalassemia major.

    PubMed

    Cohen, Alan R; Glimm, Ekkehard; Porter, John B

    2008-01-15

    The success of chelation therapy in controlling iron overload in patients with thalassemia major is highly variable and may partly depend on the rate of transfusional iron loading. Using data from the 1-year phase III study of deferasirox, including volumes of transfused red blood cells and changes in liver iron concentration (LIC) in 541 patients, the effect of iron loading on achieving neutral or negative iron balance was assessed in patients receiving different doses of deferasirox and the comparator deferoxamine. After dose adjustment, reductions in LIC after 1 year of deferasirox or deferoxamine therapy correlated with transfusional iron intake. At a deferasirox dose of 20 mg/kg per day, neutral or negative iron balance was achieved in 46% and 75% of patients with the highest and lowest transfusional iron intake, respectively; 30 mg/kg per day produced successful control of iron stores in 96% of patients with a low rate of transfusional iron intake. Splenectomized patients had lower transfusional iron intake and greater reductions in iron stores than patients with intact spleens. Transfusional iron intake should be monitored on an ongoing basis in thalassemia major patients, and the rate of transfusional iron loading should be considered when choosing the appropriate dose of an iron-chelating agent. This study is registered at http://clinicaltrials.gov as NCT00061750.

  17. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    PubMed

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  18. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model.

    PubMed

    Hu, Ying; Cheng, Zhiqiang; Heller, Larry I; Krasnoff, Stuart B; Glahn, Raymond P; Welch, Ross M

    2006-11-29

    Four different colored beans (white, red, pinto, and black beans) were investigated for factors affecting iron bioavailability using an in vitro digestion/human Caco-2 cell model. Iron bioavailability from whole beans, dehulled beans, and their hulls was determined. The results show that white beans contained higher levels of bioavailable iron compared to red, pinto, and black beans. These differences in bioavailable iron were not due to bean-iron and bean-phytate concentrations. Flavonoids in the colored bean hulls were found to be contributing to the low bioavailability of iron in the non-white colored beans. White bean hulls contained no detectable flavonoids but did contain an unknown factor that may promote iron bioavailability. The flavonoids, kaempferol and astragalin (kaempferol-3-O-glucoside), were identified in red and pinto bean hulls via HPLC and MS. Some unidentified anthocyanins were also detected in the black bean hulls but not in the other colored bean hulls. Kaempferol, but not astragalin, was shown to inhibit iron bioavailability. Treating in vitro bean digests with 40, 100, 200, 300, 400, 500, and 1000 microM kaempferol significantly inhibited iron bioavailability (e.g., 15.5% at 40 microM and 62.8% at 1000 microM) in a concentration-dependent fashion. Thus, seed coat kaempferol was identified as a potent inhibitory factor affecting iron bioavailability in the red and pinto beans studied. Results comparing the inhibitory effects of kaempferol, quercitrin, and astragalin on iron bioavailability suggest that the 3',4'-dihydroxy group on the B-ring in flavonoids contributes to the lower iron bioavailability.

  19. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols.

    PubMed

    Thomas, Daniel A; Coggon, Matthew M; Lignell, Hanna; Schilling, Katherine A; Zhang, Xuan; Schwantes, Rebecca H; Flagan, Richard C; Seinfeld, John H; Beauchamp, J L

    2016-11-15

    The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.

  20. DISTANT VIEW, BLM TACK SHED ON LEFT, BLM SEED SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANT VIEW, BLM TACK SHED ON LEFT, BLM SEED SHED AT LEFT CENTER, FIRE DISPATCH OFFICES 1 AND 2 AT RIGHT CENTER, UTILITY BUILDING "B" ON RIGHT. VIEW TO SOUTHWEST. - Cedar City Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  1. Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values

    EPA Science Inventory

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed ...

  2. Iron-based ferritin nanocore as a contrast agent.

    PubMed

    Sana, Barindra; Johnson, Eric; Sheah, Kenneth; Poh, Chueh Loo; Lim, Sierin

    2010-09-01

    Self-assembling protein cages have been exploited as templates for nanoparticle synthesis. The ferritin molecule, a protein cage present in most living systems, stores excess soluble ferrous iron in the form of an insoluble ferric complex within its cavity. Magnetic nanocores formed by loading excess iron within an engineered ferritin from Archaeoglobus fulgidus (AfFtn-AA) were studied as a potential magnetic resonance (MR) imaging contrast agent. The self-assembly characteristics of the AfFtn-AA were investigated using dynamic light scattering technique and size exclusion chromatography. Homogeneous size distribution of the assembled nanoparticles was observed using transmission electron microscopy. The magnetic properties of iron-loaded AfFtn-AA were studied using vibrating sample magnetometry. Images obtained from a 3.0 T whole-body MRI scanner showed significant brightening of T(1) images and signal loss of T(2) images with increased concentrations of iron-loaded AfFtn-AA. The analysis of the MR image intensities showed extremely high R(2) values (5300 mM(-1) s(-1)) for the iron-loaded AfFtn-AA confirming its potential as a T(2) contrast agent.

  3. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Nutritional quality evaluation of velvet bean seeds (Mucuna pruriens) exposed to gamma irradiation.

    PubMed

    Bhat, Rajeev; Sridhar, Kandikere R; Seena, Sahadevan

    2008-06-01

    Effects of gamma irradiation on Mucuna pruriens seeds at various doses (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) on the proximate composition, mineral constituents, amino acids, fatty acids and functional properties were investigated. Gamma irradiation resulted in a significant increase of crude protein at all doses, while the crude lipid, crude fibre and ash showed a dose-dependent decrease. Raw Mucuna seeds were rich in minerals (potassium, phosphorus, calcium, magnesium, iron and selenium). Sodium, copper and manganese were significantly decreased on irradiation at all the doses, while magnesium and iron showed a significant decrease only above 10 kGy. The essential amino acids of raw and gamma-irradiated Mucuna seeds were comparable with the FAO/WHO recommended pattern. A significant increase of in vitro protein digestibility was seen in seeds irradiated at 30 kGy. High amounts of unsaturated fatty acids in Mucuna seeds decreased significantly after irradiation. However, linoleic acid was not present in raw seeds but detected after irradiation and it was elevated to high level at 30 kGy. Behenic acid, a major anti-nutritional factor, was reduced significantly on irradiation, indicating the positive effect of gamma irradiation on Mucuna seeds. Significant enhancement in the water absorption and oil absorption capacities, protein solubility, emulsion activity and improvement in the gelation capacity was recorded after irradiation. Results of the present investigation reveal that application of gamma irradiation does not affect the overall nutritional composition and can be used as an effective method of preservation of Mucuna seed and their products.

  5. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake

    PubMed Central

    Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae

    2011-01-01

    Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302

  6. Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.

    PubMed

    van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C; Gietl, Anton F; Treyer, Valerie; Leh, Sandra E; Meyer, Rafael; Buck, Alfred; Kaufmann, Philipp A; Nitsch, Roger M; van Zijl, Peter C M; Hock, Christoph; Unschuld, Paul G

    2018-04-01

    The aging brain is characterized by an increased presence of neurodegenerative and vascular pathologies. However, there is substantial variation regarding the relationship between an individual's pathological burden and resulting cognitive impairment. To identify correlates of preserved cognitive functioning at highest age, the relationship between β-amyloid plaque load, presence of small vessel cerebrovascular disease (SVCD), iron-burden, and brain atrophy was investigated. Eighty cognitively unimpaired participants (44 oldest-old, aged 85-96 years; 36 younger-old, aged 55-80 years) were scanned by integrated positron emission tomography-magnetic resonance imaging for assessing beta regional amyloid plaque load (18F-flutemetamol), white matter hyperintensities as an indicator of SVCD (fluid-attenuated inversion recovery-magnetic resonance imaging), and iron load (quantitative susceptibility mapping). For the oldest-old group, lower cortical volume, increased β-amyloid plaque load, prevalence of SVCD, and lower cognitive performance in the normal range were found. However, compared to normal-old, cortical iron burden was lower in the oldest-old. Moreover, only in the oldest-old, entorhinal cortex volume positively correlated with β-amyloid plaque load. Our data thus indicate that the co-occurrence of aging-associated neuropathologies with reduced quantitative susceptibility mapping measures of cortical iron load constitutes a lower vulnerability to cognitive loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Zero-valent iron/biotic treatment system for perchlorate-contaminated water: lab-scale performance, modeling, and full-scale implications

    EPA Science Inventory

    The computer program AQUASIM was used to model biological treatment of perchlorate-contaminated water using zero-valent iron corrosion as the hydrogen gas source. The laboratory-scale column was seeded with an autohydrogenotrophic microbial consortium previously shown to degrade ...

  8. Characterization of polyphenol effects on inhibition and promotion or iron update by caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    Polyphenolic compounds present in the seed coat of the common bean are generally known to be inhibitors of iron bioavailability. Recent research identified specific polyphenols such as myricetin, quercetin, and their associated glucosides, as being potent inhibitors. Such research also identified p...

  9. Cardiac iron load and function in transfused patients treated with deferasirox (the MILE study).

    PubMed

    Ho, P Joy; Tay, Lay; Teo, Juliana; Marlton, Paula; Grigg, Andrew; St Pierre, Tim; Brown, Greg; Badcock, Caro-Anne; Traficante, Robert; Gervasio, Othon L; Bowden, Donald K

    2017-02-01

    To assess the effect of iron chelation therapy with deferasirox on cardiac iron and function in patients with transfusion-dependent thalassemia major, sickle cell disease (SCD), and myelodysplastic syndromes (MDS). This phase IV, single-arm, open-label study over 53 wk evaluated the change in cardiac and liver iron load with deferasirox (up to 40 mg/kg/d), measured by magnetic resonance imaging (MRI). Cardiac iron load (myocardial T2*) significantly improved (P = 0.002) overall (n = 46; n = 36 thalassemia major, n = 4 SCD, n = 6 MDS). Results were significant for patients with normal and moderate baseline cardiac iron (P = 0.017 and P = 0.015, respectively), but not in the five patients with severe cardiac iron load. Liver iron concentration (LIC) significantly decreased overall [mean LIC 10.4 to 8.2 mg Fe/g dry tissue (dw); P = 0.024], particularly in those with baseline LIC >7 mg Fe/g dw (19.9 to 15.6 mg Fe/g dw; P = 0.002). Furthermore, myocardial T2* significantly increased in patients with LIC <7 mg Fe/g dw, but not in those with a higher LIC. Safety was consistent with previous reports. Once-daily deferasirox over 1 yr significantly increased myocardial T2* and reduced LIC. This confirms that single-agent deferasirox is effective in the management of cardiac iron, especially for patients with myocardial T2* >10 ms (Clinicaltrials.gov identifier: NCT00673608). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. MRI Measurements of Iron Load in Transfusion‐Dependent Patients: Implementation, Challenges, and Pitfalls

    PubMed Central

    St Pierre, Tim G.

    2015-01-01

    Magnetic resonance imaging (MRI) has played a key role in studies of iron overload in transfusion‐dependent patients, providing insights into the relations among liver and cardiac iron loading, iron chelator dose, and morbidity. Currently, there is rapid uptake of these methods into routine clinical practice as part of the management strategy for iron overload in regularly transfused patients. Given the manifold methods of data acquisition and analysis, there are several potential pitfalls that may result in inappropriate decision making. Herein, we review the challenges of establishing suitable MRI techniques for tissue iron measurement in regularly transfused patients. PMID:26713769

  11. Epigallocatechin Gallate (EGCG) Decorating Soybean Seed Ferritin as a Rutin Nanocarrier with Prolonged Release Property in the Gastrointestinal Tract.

    PubMed

    Yang, Rui; Sun, Guoyu; Zhang, Min; Zhou, Zhongkai; Li, Quanhong; Strappe, Padraig; Blanchard, Chris

    2016-09-01

    The instability and low bioavailability of polyphenols limit their applications in food industries. In this study, epigallocatechin gallate (EGCG) and soybean seed ferritin deprived of iron (apoSSF) were fabricated as a combined double shell material to encapsulate rutin flavonoid molecules. Firstly, due to the reversible assembly characteristics of phytoferritin, rutin was successfully encapsulated within apoSSF to form a ferritin-rutin complex (FR) with an average molar ratio of 28.2: 1 (rutin/ferritin). The encapsulation efficiency and loading capacity of rutin were 18.80 and 2.98 %, respectively. EGCG was then bound to FR to form FR-EGCG composites (FRE), and the binding number of EGCG was 27.30 ± 0.68 with a binding constant K of (2.65 ± 0.11) × 10(4) M(-1). Furthermore, FRE exhibited improved rutin stability, and displayed prolonged release of rutin in simulated gastrointestinal tract fluid, which may be attributed to the external attachment of EGCG to the ferritin cage potentially reducing enzymolysis in GI fluid. In summary, this work demonstrates a novel nanocarrier for stabilization and sustained release of bioactive polyphenols.

  12. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon.

    PubMed

    Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding

    2015-01-01

    Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. D-propranolol attenuates lysosomal iron accumulation and oxidative injury in endothelial cells.

    PubMed

    Mak, I Tong; Chmielinska, Joanna J; Nedelec, Lucie; Torres, Armida; Weglicki, William B

    2006-05-01

    The influence of selected beta-receptor blockers on iron overload and oxidative stress in endothelial cells (ECs) was assessed. Confluent bovine ECs were loaded with iron dextran (15 muM) for 24 h and then exposed to dihydroxyfumarate (DHF), a source of reactive oxygen species, for up to 2 h. Intracellular oxidant formation, monitored by fluorescence of 2',7'-dichlorofluorescin (DCF; 30 microM), increased and peaked at 30 min; total glutathione decreased by 52 +/- 5% (p < 0.01) at 60 min. When the ECs were pretreated 30 min before iron loading with 1.25 to 10 microM d-propranolol, glutathione losses were attenuated 15 to 80%, with EC(50) = 3.1 microM. d-Propranolol partially inhibited the DCF intensity increase, but atenolol up to 10 microM was ineffective. At 2 h, caspase 3 activity was elevated 3.2 +/- 0.3-fold (p < 0.01) in the iron-loaded and DHF-treated ECs, and cell survival, determined 24 h later, decreased 47 +/- 6% (p < 0.01). Ten micromoles of d-propranolol suppressed the caspase 3 activation by 63% (p < 0.05) and preserved cell survival back to 88% of control (p < 0.01). In separate experiments, 24-h iron loading resulted in a 3.6 +/- 0.8-fold increase in total EC iron determined by atomic absorption spectroscopy; d-propranolol at 5 microM reduced this increase to 1.5 +/- 0.4-fold (p < 0.01) of controls. Microscopic observation by Perls' staining revealed that the excessive iron accumulated in vesicular endosomal/lysosomal structures, which were substantially diminished by d-propranolol. We previously showed that propranolol could readily concentrate into the lysosomes and raise the intralysosomal pH; it is suggested that the lysosomotropic properties of d-propranolol retarded the EC iron accumulation and thereby conferred the protective effects against iron load-mediated cytotoxicity.

  14. Effects of methanol-to-oil ratio, catalyst amount and reaction time on the FAME yield by in situ transesterification of rubber seeds (Hevea brasiliensis)

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami

    2014-10-01

    In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.

  15. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders

    PubMed Central

    Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.

    2013-01-01

    The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic mice. In conclusion, ZRT/IRT-like protein 14 protein levels are up-regulated in iron-loaded rat liver and pancreas and in hypotransferrinemic mouse liver. Divalent metal-ion transporter-1 protein levels are down-regulated in iron-loaded rat liver, and up-regulated in iron-deficient liver and heart. Our results provide insight into the potential contributions of these transporters to tissue iron uptake during iron deficiency and overload. PMID:23349308

  16. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.

    2016-11-01

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  17. Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values.

    PubMed

    Koster van Groos, Paul G; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Li, Dien; Peacock, Aaron D; Scheckel, Kirk G; Jaffé, Peter R

    2016-11-01

    Small-scale continuous flow wetland mesocosms (∼0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (μ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (μ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ∼4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    PubMed

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe 2+ ) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analysis of No-load Iron Losses of Turbine Generators by 3D Magnetic Field Analysis

    NASA Astrophysics Data System (ADS)

    Nakahara, Akihito; Mogi, Hisashi; Takahashi, Kazuhiko; Ide, Kazumasa; Kaneda, Junya; Hattori, Ken'Ichi; Watanabe, Takashi; Kaido, Chikara; Minematsu, Eisuke; Hanzawa, Kazufumi

    This paper focuses on no-load iron losses of turbine generators. To calculate iron losses of turbine generators a program was developed. In the program, core loss curves of materials used for stator core were reproduced precisely by using tables of loss coefficients. Accuracy of calculation by this method was confirmed by comparing calculated values with measured in a model stator core. The iron loss of a turbine generator estimated with considering three-dimensional distribution of magnetic fluxes. And additional losses included in measured iron loss was evaluated with three-dimensional magnetic field analysis.

  20. Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Increasing the amount of bioavailable micronutrients such as iron and zinc in plant foods for human consumption is a challenge, especially in developing countries where plant foods comprise a significant portion of the diet. Legume seeds have the potential to provide the essential nutrients require...

  1. Identification of quantitative trait loci (QTL) affecting seed mineral content in the model legume Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Increasing the amount of bioavailable micronutrients such as iron and zinc in plant foods for human consumption is a challenge especially in developing countries where plant foods comprise a significant portion of the diet. Legume seeds have the potential to provide the essential nutrients required...

  2. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris) is the most important legume crop. It represents a major source of micronutrients and has been targeted for essential trace mineral enhancement (i.e. biofortification). The aim of the study was to investigate whether it is possible to biofortify seeds with multi-micr...

  3. Embryonic Stem Cell-Based Cardiopatches Improve Cardiac Function in Infarcted Rats

    PubMed Central

    Vallée, Jean-Paul; Hauwel, Mathieu; Lepetit-Coiffé, Matthieu; Bei, Wang; Montet-Abou, Karin; Meda, Paolo; Gardier, Stephany; Zammaretti, Prisca; Kraehenbuehl, Thomas P.; Herrmann, Francois; Hubbell, Jeffrey A.

    2012-01-01

    Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction. PMID:23197784

  4. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging.

    PubMed

    Zhang, Ni; Liu, Xu; Jin, Xiaoduo; Li, Chen; Wu, Xuan; Yang, Shuqin; Ning, Jifeng; Yanne, Paul

    2017-12-15

    Phenolics contents in wine grapes are key indicators for assessing ripeness. Near-infrared hyperspectral images during ripening have been explored to achieve an effective method for predicting phenolics contents. Principal component regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR) models were built, respectively. The results show that SVR behaves globally better than PLSR and PCR, except in predicting tannins content of seeds. For the best prediction results, the squared correlation coefficient and root mean square error reached 0.8960 and 0.1069g/L (+)-catechin equivalents (CE), respectively, for tannins in skins, 0.9065 and 0.1776 (g/L CE) for total iron-reactive phenolics (TIRP) in skins, 0.8789 and 0.1442 (g/L M3G) for anthocyanins in skins, 0.9243 and 0.2401 (g/L CE) for tannins in seeds, and 0.8790 and 0.5190 (g/L CE) for TIRP in seeds. Our results indicated that NIR hyperspectral imaging has good prospects for evaluation of phenolics in wine grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The knockdown of OsVIT2 and MIT affects iron localization in rice seed.

    PubMed

    Bashir, Khurram; Takahashi, Ryuichi; Akhtar, Shamim; Ishimaru, Yasuhiro; Nakanishi, Hiromi; Nishizawa, Naoko K

    2013-11-20

    The mechanism of iron (Fe) uptake in plants has been extensively characterized, but little is known about how Fe transport to different subcellular compartments affects Fe localization in rice seed. Here, we discuss the characterization of a rice vacuolar Fe transporter 2 (OsVIT2) T-DNA insertion line (osvit2) and report that the knockdown of OsVIT2 and mitochondrial Fe transporter (MIT) expression affects seed Fe localization. osvit2 plants accumulated less Fe in their shoots when grown under normal or excess Fe conditions, while the accumulation of Fe was comparable to that in wild-type (WT) plants under Fe-deficient conditions. The accumulation of zinc, copper, and manganese also changed significantly in the shoots of osvit2 plants. The growth of osvit2 plants was also slow compared to that of WT plants. The concentration of Fe increased in osvit2 polished seeds. Previously, we reported that the expression of OsVIT2 was higher in MIT knockdown (mit-2) plants, and in this study, the accumulation of Fe in mit-2 seeds decreased significantly. These results suggest that vacuolar Fe trafficking is important for plant Fe homeostasis and distribution, especially in plants grown in the presence of excess Fe. Moreover, changes in the expression of OsVIT2 and MIT affect the concentration and localization of metals in brown rice as well as in polished rice seeds.

  6. Meta-QTL analysis of seed iron and zinc concentration in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrien...

  7. A randomized, controlled study evaluating effects of amlodipine addition to chelators to reduce iron loading in patients with thalassemia major.

    PubMed

    Eghbali, Aziz; Kazemi, Hamideh; Taherahmadi, Hassan; Ghandi, Yazdan; Rafiei, Mohammad; Bagheri, Bahador

    2017-12-01

    Cardiomyopathy due to iron overload can be fatal in patients with thalassemia major. Calcium channel blockers seem to be effective to reduce iron loading. Our goal was to study effects of amlodipine addition to chelators on iron loading in patients with thalassemia major. This randomized, controlled, and single-center trial was performed on 56 patients with thalassemia major. Patients were randomized 1:1 to combined group (iron chelator plus amlodipine) or control group (iron chelator) for 1 year. Iron content was measured by magnetic resonance imaging; heart T2*, and liver T2*. Serum ferritin was also measured. After 12 months of treatment, myocardial T2* values had significant improvement in combined group (21.9 ± 8.0 ms to 24.5 ± 7.6 ms; P < .05); Difference between two groups was significant (P = .02). Combined treatment had no effect on hepatic T2* value (9.6 ± 2.8 ms to 9.5 ± 3.6 ms); difference between two groups was not significant (P = .2). In addition, a significant reduction was seen in serum ferritin levels in two groups. Mild gastrointestinal upset was the most common untoward effect. Addition of amlodipine to iron chelators has beneficial effects for reduction of iron loading in patients with thalassemia major. This combination therapy seems safe. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Structure and Function of Iron-Loaded Synthetic Melanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiwen; Xie, Yijun; Wang, Zhao

    We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure- property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding ofmore » this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins.« less

  9. Energetics of surface confined ferritin during iron loading.

    PubMed

    Federici, Stefania; Padovani, Francesco; Poli, Maura; Rodriguez, Fernando Carmona; Arosio, Paolo; Depero, Laura E; Bergese, Paolo

    2016-09-01

    We report on the first quantitative picture on how iron loading inside ferritin molecules occurs when they are self-assembled onto solid surfaces. Recombinant human ferritin H-chain with ferroxidase activity was adsorbed onto microcantilever beams to form a stable close-packed thin film. The obtained nanomechanical system was used to track in real time the energetics of inter-ferritin surface interactions during incubation with Fe(II) for iron loading. We observed that iron loading is accompanied by increasing attractive in-plane inter-ferritin interactions able to perform a maximum surface work of 6.0±1.5mJ/m(2), corresponding to a surface energy variation per ferritin of about 40kbT. Unique to this protein surface transformation, part of the surface work is exerted by the attractive electrostatic forces arising among the new born nanosized iron cores inside the ferritin shells. The remaining work comes from subtle action of steric, bridging and depletion forces. These findings are of fundamental interest and add important information for the rational development of ferritin nanotechnology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    PubMed Central

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  11. Effect of Iron Chelation Therapy on Glucose Metabolism in Non-Transfusion-Dependent Thalassaemia.

    PubMed

    Chuansumrit, Ampaiwan; Pengpis, Pimprae; Mahachoklertwattana, Pat; Sirachainan, Nongnuch; Poomthavorn, Preamrudee; Sungkarat, Witaya; Kadegasem, Praguywan; Khlairit, Patcharin; Wongwerawattanakoon, Pakawan

    2017-01-01

    To compare insulin sensitivity, β-cell function and iron status biomarkers in non-transfusion-dependent thalassaemia (NTDT) with iron excess during pre- and post-iron chelation. Subjects with NTDT, aged older than 10 years, with serum ferritin >300 ng/ml, were included. Iron chelation with deferasirox (10 mg/kg/day) was prescribed daily for 6 months. Ten patients with a median age of 17.4 years were enrolled. The comparison between pre- and post-chelation demonstrated significantly lower iron load: median serum ferritin (551.4 vs. 486.2 ng/ml, p = 0.047), median TIBC (211.5 vs. 233.5 µg/dl, p = 0.009) and median non-transferrin binding iron (5.5 vs. 1.4 µM, p = 0.005). All patients had a normal oral glucose tolerance test (OGTT) both pre- and post-chelation. However, fasting plasma glucose was significantly reduced after iron chelation (85.0 vs.79.5 mg/dl, p = 0.047). MRI revealed no significant changes of iron accumulation in the heart and liver after chelation, but there was a significantly lower iron load in the pancreas, assessed by higher T2* at post-chelation compared with pre-chelation (41.9 vs. 36.7 ms, p = 0.047). No adverse events were detected. A trend towards improving insulin sensitivity and β-cell function as well as a reduced pancreatic iron load was observed following 6 months of iron chelation (TCTR20160523003). © 2016 S. Karger AG, Basel.

  12. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  13. SU-E-T-443: Geometric Uncertainties in Eye Plaque Dosimetry for a Fully Loaded 16 Mm COMS Plaque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, H; Menon, G; Jans, H

    Purpose: To determine the effect of geometric uncertainties in the seed positions in a COMS eye plaque on the central axis (CAX) dose. Methods: A Silastic insert was placed into a photopolymer 3D printed 16 mm COMS plaque, which was then positioned onto a custom-designed PMMA eye phantom. High resolution 3D images were acquired of the setup using a Siemens Inveon microPET/CT scanner. Images were acquired with the plaque unloaded and loaded with IsoAid I-125 seed shells (lack of silver core to minimize metal artifacts). Seed positions and Silastic thickness beneath each slot were measured. The measured seed coordinates weremore » used to alter the seed positions within a standard 16 mm COMS plaque in Plaque Simulator v5.7.3 software. Doses along the plaque CAX were compared for the original and modified plaque coordinates using 3.5 mCi seeds with treatment times set to deliver 70 Gy to tumour apexes of 3.5, 5, and 10 mm height. Results: The majority of seeds showed length-wise displacement, and all seeds showed displacement radially outward from the eye center. The average radial displacement was 0.15 mm larger than the expected 1.4 mm offset, approximately half of which was due to increased Silastic thickness beneath each slot. The CAX doses for the modified seed positions were consistently lower for all tumour heights due to geometric displacement of the seeds; dose differences were found to increase to a maximum of 2.6% at a depth of ∼10 mm, after which they decreased due to the inverse square dose fall-off minimizing this effect. Conclusion: This work presents initial results of a broader dosimetric uncertainty evaluation for fully loaded COMS eye plaques and demonstrates the effects of seed positioning uncertainties. The small shifts in seed depths had noticeable effects on the CAX doses indicating the importance of careful Silastic loading. Funding provided by Alberta Cancer Foundation Grant #26655, Vanier Canada Graduate Scholarship, and Alberta Innovates Health Sciences Graduate Studentship.« less

  14. Protein Nanoscaffolds for Delivering Toxic Inorganic Cargo to Cancer Cells

    NASA Astrophysics Data System (ADS)

    Cioloboc, Daniela

    Targeted delivery of anticancer drugs or prodrugs to tumors can minimize systemic toxicity and side effects. This study develops platforms for targeted delivery of two potentially less systemically toxic prodrugs by exploiting the native and/or bioinorganic properties of two ferritins, both of which function naturally as iron storage proteins. Two delivery approaches were investigated. The first system was designed to serve as either an enhancement or alternative to traditional photodynamic therapy by generating hydroxyl radical in addition to singlet oxygen as the toxic reactive oxygen species. This system used Escherichia coli bacterioferritin (Bfr) loaded with 2,500 irons and multiple zinc-porphyrin (ZnP) photosensitizers. Ferrous iron was released by photoreduction of ferric iron stored within the Bfr protein shell. Hydroxyl radicals were generated via the Fenton reaction between hydrogen peroxide and the released ferrous iron. The outer surface of the Bfr protein shell was coated with peptides that specifically bind to a receptor known to be overexpressed in many tumor cells and tumor vasculature. The iron-loaded peptide-ZnP-Bfr was endocytosed by melanoma cells, where it showed photo-triggered release of iron and light-dependent cytotoxicity. The second system, built around human heavy chain ferritin (HFn), was loaded with arsenate as a less toxic "prodrug" and designed to release arsenic in its toxic, therapeutically effective reduced form, arsenic trioxide (ATO). The Hfn shell was coated with peptides targeting receptors that are hyperexpressed in triple negative breast cancers. The arsenate/iron-loaded-Hfn was endocytosed by a breast cancer cell line and showed cytotoxicity equivalent to that of free ATO on an arsenic basis, whereas the "empty" or iron-only loaded Hfn showed no cytotoxicity. Although HFn has previously been used to deliver organic drugs and imaging agents, these new results demonstrate that both Bfr and HFn can be manipulated to function as 'Trojan horse' nanocarriers for inorganic drugs.

  15. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    PubMed

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  16. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media.

    PubMed

    Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian

    2018-04-01

    During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.

  17. Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet

    USDA-ARS?s Scientific Manuscript database

    Biofortification is a plant breeding method that introduces increased concentrations of minerals in staple food crops (e.g., legumes, cereal grains), and has shown success in alleviating insufficient iron (Fe) intake in various human populations. Unlike other strategies utilized to alleviate Fe defi...

  18. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  19. Seed size selection by olive baboons.

    PubMed

    Kunz, Britta Kerstin; Linsenmair, Karl Eduard

    2008-10-01

    Seed size is an important plant fitness trait that can influence several steps between fruiting and the establishment of a plant's offspring. Seed size varies considerably within many plant species, yet the relevance of the trait for intra-specific fruit choice by primates has received little attention. Primates may select certain seed sizes within a species for a number of reasons, e.g. to decrease indigestible seed load or increase pulp intake per fruit. Olive baboons (Papio anubis, Cercopithecidae) are known to select seed size in unripe and mature pods of Parkia biglobosa (Mimosaceae) differentially, so that pods with small seeds, and an intermediate seed number, contribute most to dispersal by baboons. We tested whether olive baboons likewise select for smaller ripe seeds within each of nine additional fruit species whose fruit pulp baboons commonly consume, and for larger seeds in one species in which baboons feed on the seeds. Species differed in fruit type and seed number per fruit. For five of these species, baboons dispersed seeds that were significantly smaller than seeds extracted manually from randomly collected fresh fruits. In contrast, for three species, baboons swallowed seeds that were significantly longer and/or wider than seeds from fresh fruits. In two species, sizes of ingested seeds and seeds from fresh fruits did not differ significantly. Baboons frequently spat out seeds of Drypetes floribunda (Euphorbiaceae) but not those of other plant species having seeds of equal size. Oral processing of D. floribunda seeds depended on seed size: seeds that were spat out were significantly larger and swallowed seeds smaller, than seeds from randomly collected fresh fruits. We argue that seed size selection in baboons is influenced, among other traits, by the amount of pulp rewarded per fruit relative to seed load, which is likely to vary with fruit and seed shape.

  20. Factors influencing the dissolved iron input by river water to the open ocean

    NASA Astrophysics Data System (ADS)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  1. Factors influencing the dissolved iron input by river water to the open ocean

    NASA Astrophysics Data System (ADS)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  2. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM). Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI) variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30–40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO), oral deferiprone (L1), and DFO–L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX) increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve the use of the iron-chelating drugs and other drug combinations not only for increasing iron excretion but also for preventing iron absorption. PMID:26893541

  3. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes.

    PubMed

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM). Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI) variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30-40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO), oral deferiprone (L1), and DFO-L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX) increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve the use of the iron-chelating drugs and other drug combinations not only for increasing iron excretion but also for preventing iron absorption.

  4. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin.

    PubMed

    Gruskiene, Ruta; Krivorotova, Tatjana; Staneviciene, Ramune; Ratautas, Dalius; Serviene, Elena; Sereikaite, Jolanta

    2018-05-08

    Nisin is a known bacteriocin approved as a food additive for food preservation. It exhibits a wide spectrum antimicrobial activity against Gram-positive bacteria. Iron oxide magnetic nanoparticles were synthesized and characterized by X-ray diffraction method. A main part of iron oxide nanoparticles was found to be maghemite though a small quantity of magnetite could also be present. Magnetic nanoparticles were stabilized by citric, ascorbic, gallic or glucuronic acid coating. Stable iron oxide magnetic nanoparticles were functionalized by nisin using a simple and low cost adsorption method. Nisin loading was confirmed by FT-IR spectra, thermogravimetric analysis, dynamic light scattering and atomic force microscopy methods. Nisin-loaded iron oxide magnetic nanoparticles were stable at least six weeks as judged by the measurements of zeta-potential and hydrodynamic diameter. The antimicrobial activity of nisin-loaded iron oxide magnetic nanoparticles was demonstrated toward Gram-positive bacteria. Functionalized nanoparticles could therefore find the application as antimicrobials in innovative and emerging technologies based on the magnetic field. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels.

    PubMed

    Bian, Liming; Zhai, David Y; Zhang, Emily C; Mauck, Robert L; Burdick, Jason A

    2012-04-01

    Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matrix, and the hypertrophic differentiation of human MSCs encapsulated in hyaluronic acid (HA) hydrogels during long term culture. After 70 days of culture, dynamic compressive loading increased the mechanical properties, as well as the glycosaminoglycan (GAG) and collagen contents of HA hydrogel constructs in a seeding density dependent manner. The impact of loading on HA hydrogel construct properties was delayed when applied to lower density (20 million MSCs/ml) compared to higher seeding density (60 million MSCs/ml) constructs. Furthermore, loading promoted a more uniform spatial distribution of cartilage matrix in HA hydrogels with both seeding densities, leading to significantly improved mechanical properties as compared to free swelling constructs. Using a previously developed in vitro hypertrophy model, dynamic compressive loading was also shown to significantly reduce the expression of hypertrophic markers by human MSCs and to suppress the degree of calcification in MSC-seeded HA hydrogels. Findings from this study highlight the importance of mechanical loading in stem cell based therapy for cartilage repair in improving neocartilage properties and in potentially maintaining the cartilage phenotype.

  6. Real-time PCR Demonstrates Ancylostoma duodenale Is a Key Factor in the Etiology of Severe Anemia and Iron Deficiency in Malawian Pre-school Children

    PubMed Central

    Jonker, Femkje A. M.; Calis, Job C. J.; Phiri, Kamija; Brienen, Eric A. T.; Khoffi, Harriet; Brabin, Bernard J.; Verweij, Jaco J.; van Hensbroek, Michael Boele; van Lieshout, Lisette

    2012-01-01

    Background Hookworm infections are an important cause of (severe) anemia and iron deficiency in children in the tropics. Type of hookworm species (Ancylostoma duodenale or Necator americanus) and infection load are considered associated with disease burden, although these parameters are rarely assessed due to limitations of currently used diagnostic methods. Using multiplex real-time PCR, we evaluated hookworm species-specific prevalence, infection load and their contribution towards severe anemia and iron deficiency in pre-school children in Malawi. Methodology and Findings A. duodenale and N. americanus DNA loads were determined in 830 fecal samples of pre-school children participating in a case control study investigating severe anemia. Using multiplex real-time PCR, hookworm infections were found in 34.1% of the severely anemic cases and in 27.0% of the non-severely anemic controls (p<0.05) whereas a 5.6% hookworm prevalence was detected by microscopy. Prevalence of A. duodenale and N. americanus was 26.1% and 4.9% respectively. Moderate and high load A. duodenale infections were positively associated with severe anemia (adjusted odds ratio: 2.49 (95%CI 1.16–5.33) and 9.04 (95%CI 2.52–32.47) respectively). Iron deficiency (assessed through bone marrow examination) was positively associated with intensity of A. duodenale infection (adjusted odds ratio: 3.63 (95%CI 1.18–11.20); 16.98 (95%CI 3.88–74.35) and 44.91 (95%CI 5.23–385.77) for low, moderate and high load respectively). Conclusions/Significance This is the first report assessing the association of hookworm load and species differentiation with severe anemia and bone marrow iron deficiency. By revealing a much higher than expected prevalence of A. duodenale and its significant and load-dependent association with severe anemia and iron deficiency in pre-school children in Malawi, we demonstrated the need for quantitative and species-specific screening of hookworm infections. Multiplex real-time PCR is a powerful diagnostic tool for public health research to combat (severe) anemia and iron deficiency in children living in resource poor settings. PMID:22514750

  7. Effect of processing on nutrients and fatty acid composition of garden cress (Lepidium sativum) seeds.

    PubMed

    Jain, Tanu; Grover, Kiran; Kaur, Gurpreet

    2016-12-15

    Garden cress seeds were undergone for different processing methods and analyzed for its nutritional composition. Effect of processing on nutrient retention was evaluated to attain the best processed form of seeds with maximum amount of nutrients. Soaking improved protein and ash by 2.10 and 2.48 percent respectively. Boiling improved fat and fibre by 1.66 and 8.32 percent respectively. Maximum retention of iron and zinc was found with roasting. It also improved calcium by 3.18 percent. Percent ionizable iron and bioavailability was found maximum with boiling (13.59 and 6.88% respectively). In vitro starch and protein digestibility were found maximum on boiling (57.98 and 32.39% respectively) with a decrease of 9.65 and 14.13 percent in phytin phosphorus and oxalate respectively. Amino acids and fatty acids were decreased with heat treatment and maximum retention was found with soaking. Overall improvement in nutrient composition and maximum nutrient retention was found with boiling method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A facile one-step route to synthesize cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in their shells.

    PubMed

    Li, Ling; Choo, Eugene Shi Guang; Tang, Xiaosheng; Ding, Jun; Xue, Junmin

    2009-02-28

    Cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles incorporated in their macroporous shells are synthesized in a facile manner through a one-step oil-in-diethylene glycol (DEG) microemulsion route.

  9. Predicting guar seed splitting by compression between two plates using Hertz theory of contact stresses.

    PubMed

    Vishwakarma, R K; Shivhare, U S; Nanda, S K

    2012-09-01

    Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®

  10. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.

  11. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomical traits

    USDA-ARS?s Scientific Manuscript database

    In common bean, lectins, phytic acid, polyphenols and tannins exert major antinutritional effects when grains are consumed as a staple food. Reduced iron and zinc absorption, low protein digestibility and high toxicity at the intestinal level are the causes of their antinutritional effect. To improv...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Kyle E.; Division of Gastroenterology-Hepatology, University of Iowa Roy J. and Lucille A. Carver College of Medicine; Program in Free Radical and Radiation Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA

    Introduction:: Oxidative stress can trigger a cellular stress response characterized by induction of antioxidants, acute phase reactants (APRs) and heat shock proteins (HSPs), which are presumed to play a role in limiting tissue damage. In rodents, hepatic iron overload causes oxidative stress that results in upregulation of antioxidant defenses with minimal progressive liver injury. The aim of this study was to determine whether iron overload modulates expression of other stress-responsive proteins such as APRs and HSPs that may confer protection against iron-induced damage in rodent liver. Methods:: Male rats received repeated injections of iron dextran or dextran alone over amore » 6-month period. Hepatic transcript levels for a panel of APRs and HSPs were quantitated by real-time PCR and protein expression was evaluated by Western blot and immunohistochemistry. Results:: Hepatic iron concentrations were increased > 50-fold in the iron-loaded rats compared to controls. Iron loading resulted in striking increases in mRNAs for Hsp32 (heme oxygenase-1; 12-fold increase vs. controls) and metallothionein-1 and -2 (both increased {approx} 6-fold). Transcripts for {alpha}1-acid glycoprotein, the major rat APR, were increased {approx} 3-fold, while expression of other classical APRs was unaltered. Surprisingly, although mRNA levels for the HSPs were not altered by iron, the abundance of Hsp25, Hsp70 and Hsp90 proteins was uniformly reduced in the iron-loaded livers, as were levels of NAD(P)H:quinone oxidoreductase 1, an Hsp70 client protein. Conclusions:: Chronic iron administration elicits a unique pattern of stress protein expression. These alterations may modulate hepatic responses to iron overload, as well as other injury processes.« less

  13. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the <200 kDa fraction. Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  14. Effects of strain and age on hepatic gene expression profiles in murine models of HFE-associated hereditary hemochromatosis.

    PubMed

    Lee, Seung-Min; Loguinov, Alexandre; Fleming, Robert E; Vulpe, Christopher D

    2015-01-01

    Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe-/- mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe-/-). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe-/- and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe-/- mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe-/- mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe-/- mice. These affects may underlie or reflect differences in iron loading in these mice.

  15. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe

    PubMed Central

    Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.

    2011-01-01

    Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449

  16. Consequences and management of iron overload in sickle cell disease.

    PubMed

    Porter, John; Garbowski, Maciej

    2013-01-01

    The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.

  17. Pathophysiology of transfusional iron overload: contrasting patterns in thalassemia major and sickle cell disease.

    PubMed

    Porter, John B

    2009-01-01

    The pathophysiological consequences of transfusional iron overload largely reflect the pattern of excess iron distribution and include cardiomyopathy, endocrinopathy, cirrhosis, and hepatocellular carcinoma. Since the introduction of desferrioxamine (DFO) in the late 1970s, these complications have fallen substantially but approximately half of the chelated adult patients with thalassemia major (TM) still show evidence of increased myocardial iron loading by MRI. An understanding of the factors that determine the propensity to extrahepatic iron distribution may be a key to minimizing the pathophysiological consequences of transfusional iron overload. Transfused patients with sickle cell disease (SCD) appear less likely to develop these extrahepatic complications, possibly because plasma nontransferrin-bound iron (NTBI) levels are typically lower than in TM patients at matched levels of iron loading. Other mechanisms that may reduce the extrahepatic iron distribution in SCD include raised plasma hepcidin due to chronic inflammation, lower growth differentiation factor 15 (GDF15) levels because of less ineffective erythropoiesis (IE), and induction of heme oxygenase (HO1) by intravascular hemolysis. Further understanding of these mechanisms may help in designing strategies to decrease extrahepatic iron distribution in TM.

  18. The use of skin Fe levels as a surrogate marker for organ Fe levels, to monitor treatment in cases of iron overload

    NASA Astrophysics Data System (ADS)

    Farquharson, Michael J.; Bagshaw, Andrew P.; Porter, John B.; Abeysinghe, R. D.

    2000-05-01

    A system based on the detection of K-shell x-ray fluorescence (XRF) has been used to investigate whether a correlation exists between the concentration of iron in the skin and the concentration of iron in the liver, as the degree of iron loading increases. The motivation behind this work is to develop a non-invasive method of determining the extent of the body's iron stores via measurements on the skin, in order to monitor the efficacy of chelation therapy administered to patients with β-thalassaemia. Sprague-Dawley rats were iron loaded via injections of iron dextran and subsequently treated with the iron chelator CP94. The non-haem iron concentrations of the liver, heart and spleen were determined using bathophenanthroline sulphonate as the chromogen reagent. Samples of abdominal skin were taken and the iron concentrations determined using XRF. A strong correlation between the skin iron concentration and the liver iron concentration has been demonstrated (R2 = 0.86). Similar correlations exist for the heart and the spleen. These results show that this method holds great potential as a tool in the diagnosis and treatment of hereditary haemochromatosis and β-thalassaemia.

  19. Growth of Salmonella on sprouting alfalfa seeds as affected by the inoculum size, native microbial load and Pseudomonas fluorescens 2-79.

    PubMed

    Liao, C-H

    2008-02-01

    To investigate the growth of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, microbial load and Pseudomonas fluorescens 2-79. Alfalfa seeds pre-inoculated with < or =10(1)-10(3) CFU g(-1) of salmonellae and with or without Ps. fluorescens 2-79 were sprouted in glass jars and the population of salmonellae were determined daily for up to 6 days. The population of salmonellae on germinating seeds reached the maximum 2-3 days after sprouting when total bacterial count reached the maximum (10(9) CFU g(-1)). The population of salmonellae on sprouting seeds not treated with Ps. fluorescens 2-79 showed a net increase of 3-4 log units. However, the population of salmonellae on alfalfa seeds treated with Ps. fluorescens 2-79 showed a net increase of only 1-2 log units. Disinfection of seeds with calcium hypochlorite enhanced the growth of salmonellae. Treatment of seeds with Ps. fluorescens 2-79 reduced the growth of salmonellae by 2-3 log units. The potential of Ps. fluorescens 2-79 as a biological agent for use in control of salmonellae on sprouting seeds was demonstrated and warrants further investigation.

  20. Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth.

    PubMed

    Agrawal, Shantanu; Guest, Jeremy S; Cusick, Roland D

    2018-04-01

    To reduce intra-plant nutrient cycling, and recover phosphorus (P) fertilizers from nutrient-rich sidestreams, wastewater utilities increasingly elect to employ struvite precipitation processes without a clear understanding of the inherent tradeoffs associated with specific design and operating decisions. Specifically, the impact of reactor conditions on struvite crystallization rate, and distribution between formation of fines particles and secondary growth onto large diameter seed crystals represent critical knowledge gaps limiting the predictive capabilities of existing process models. In this work, the relative impacts of initial supersaturation (S i ), and seed loading, on P removal kinetics, and struvite solids distribution were investigated. In experiments conducted at different levels of initial supersaturation (1.7-2.4) and seed loading (0-25 g L -1 ), struvite fines represented the majority of phosphate solids formed in 10 of 12 conditions. While total P removal was dependent on S i , and primarily attributed to formation of fines, the concentration of struvite seed granules had a significant impact on the rate of P removal. Struvite seed granules increased the rate of precipitation by reducing induction time of primary nucleation of struvite fines. Secondary crystal growth represented the majority of struvite solids formed at high seed loading and low S i , but presented the tradeoff of low total removal and low rate of removal. To convey the significance of these findings on process modeling, we show how a prominent kinetic model with a first-order dependency on solid struvite concentration over-predicts P removal rate when total mass is dominated by large diameter seeds (0.9 mm). This works reveals the critical role of struvite fines in P removal, and highlights the need to account for their production and kinetic importance in struvite process design and operation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enrichment and characterization of ferritin for nanomaterial applications

    NASA Astrophysics Data System (ADS)

    Ghirlando, Rodolfo; Mutskova, Radina; Schwartz, Chad

    2016-01-01

    Ferritin is a ubiquitous iron storage protein utilized as a nanomaterial for labeling biomolecules and nanoparticle construction. Commercially available preparations of horse spleen ferritin, widely used as a starting material, contain a distribution of ferritins with different iron loads. We describe a detailed approach to the enrichment of differentially loaded ferritin molecules by common biophysical techniques such as size exclusion chromatography and preparative ultracentrifugation, and characterize these preparations by dynamic light scattering, and analytical ultracentrifugation. We demonstrate a combination of methods to standardize an approach for determining the chemical load of nearly any particle, including nanoparticles and metal colloids. Purification and characterization of iron content in monodisperse ferritin species is particularly critical for several applications in nanomaterial science.

  2. Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation

    NASA Astrophysics Data System (ADS)

    Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.

    2018-06-01

    The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N  >  3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.

  3. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability.

    PubMed

    Wei, Yanyan; Shohag, M J I; Ying, Feng; Yang, Xiaoe; Wu, Chunyong; Wang, Yuyan

    2013-06-01

    The present study evaluated the effectiveness of germination and iron fortification on iron concentration and bioavailability of brown rice. Iron fortification during germination process with 0.05-2 g/L ferrous sulfate increased the iron concentration in germinated brown rice from 1.1 to 15.6 times than those in raw brown rice. Based on the recommended dietary allowance of iron, maximum germination rate and γ-aminobutyric acid, we recommend the brown rice fortified with 0.25 g/L FeSO(4) as a suitable fortification level to use in germination process. Iron fortification during the germination process has a positive effect on iron concentration and bioavailability. A significant difference was observed among the cultivars in respect to the capacity for iron accumulation and bioavailability. Germination alone could improve in vitro iron solubility, but had no effect on iron bioavailability in Caco-2 cell, the additional fortification process should be combined to get high amount of bioavailable iron from the brown rice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effectiveness of calcium hypochlorite on viral and bacterial contamination of alfalfa seeds.

    PubMed

    Wang, Qing; Kniel, Kalmia E

    2014-10-01

    Alfalfa sprouts have been involved in numerous foodborne outbreaks, which has increased the awareness for seed and sprout safety. This study compared the effectiveness of calcium hypochlorite (Ca(OCl)2) on the inactivation of bacteria and viruses on alfalfa seeds and in the presence of a simulated organic load. Alfalfa seeds were inoculated with human norovirus (huNoV) genogroup II (GII), murine norovirus (MNV), Tulane virus (TV), Escherichia coli O104:H4, and Salmonella enterica serovar Agona. Seeds were treated with Ca(OCl)2 (2000 ppm or 20,000 ppm with the average of free chlorine 1388 ± 117 mg/L and 11,472 ± 1500 mg/L, respectively, pH adjusted to 7.00). The reduction of huNoV genomic copies indicated that huNoV was relatively resistant to Ca(OCl)2 regardless of concentrations. Significant reductions were observed in the order of TV < Salmonella Agona < MNV < E. coli O104:H4 at 20,000 ppm Ca(OCl)2. A similar trend was found at 2000 ppm Ca(OCl)2 in the order of TV, Salmonella Agona, MNV < E. coli O104:H4. Ca(OCl)2 at 20,000 ppm was more effective than 2000 ppm for all the organisms tested. This trend was also observed in samples containing an artificial organic material load. Ca(OCl)2 activity on virus inactivation decreased as the organic load increased. Reduction was greater in fetal bovine serum-containing samples compared to alfalfa seeds, indicating a close relationship between the organisms and alfalfa seeds. Ca(OCl)2 could not completely inactivate bacteria or viruses inoculated on seeds, and high levels of E. coli O104:H4 and Salmonella Agona were present on sprouts from sanitized seed samples following a 7-day germination period.

  5. Chelation protocols for the elimination and prevention of iron overload in thalassaemia.

    PubMed

    Kolnagou, Annita; Kontoghiorghes, George John

    2018-01-01

    Iron overload toxicity is the main cause of mortality and morbidity in thalassaemia patients. The complete elimination and prevention of iron overload is the main aim of chelation therapy, which can be achieved by chelation protocols that can effectively remove excess iron load and maintain body iron at normal levels. Deferiprone and selected combinations with deferoxamine can be designed, adjusted and used effectively for removing all excess stored iron and for maintaining normal iron stores (NIS) in different categories of thalassaemia patients. High doses of deferiprone (75-100 mg/kg/day) and deferoxamine (50-60 mg/kg, 1-7 days/week) combinations can be used for achieving and maintaining NIS in heavily iron loaded transfused patients. In contrast, deferiprone (75-100 mg/kg/day) can be used effectively and sometimes intermittently for maintaining NIS in non heavily transfused patients. Deferasirox can in particular be used in patients not tolerating deferoxamine and deferiprone. The design of tailored made personalised protocols using deferiprone and selected combinations with deferoxamine should be considered as optimum chelation therapies for the complete treatment and the prevention of iron overload in thalassaemia.

  6. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery

    NASA Astrophysics Data System (ADS)

    Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi

    2016-12-01

    In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.

  7. Preparation, physical characterization, and stability of Ferrous-Chitosan microcapsules using different iron sources

    NASA Astrophysics Data System (ADS)

    Handayani, Noer Abyor; Luthfansyah, M.; Krisanti, Elsa; Kartohardjono, Sutrasno; Mulia, Kamarza

    2017-11-01

    Dietary modification, supplementation and food fortification are common strategies to alleviate iron deficiencies. Fortification of food is an effective long-term approach to improve iron status of populations. Fortification by adding iron directly to food will cause sensory problems and decrease its bioavailability. The purpose of iron encapsulation is: (1) to improve iron bioavailability, by preventing oxidation and contact with inhibitors and competitors; and (2) to disguise the rancid aroma and flavor of iron. A microcapsule formulation of two suitable iron compounds (iron II fumarate and iron II gluconate) using chitosan as a biodegradable polymer will be very important. Freeze dryer was also used for completing the iron microencapsulation process. The main objective of the present study was to prepare and characterize the iron-chitosan microcapsules. Physical characterization, i.e. encapsulation efficiency, iron loading capacity, and SEM, were also discussed in this paper. The stability of microencapsulated iron under simulated gastrointestinal conditions was also investigated, as well. Both iron sources were highly encapsulated, ranging from 71.5% to 98.5%. Furthermore, the highest ferrous fumarate and ferrous gluconate loaded were 1.9% and 4.8%, respectively. About 1.04% to 9.17% and 45.17% to 75.19% of Fe II and total Fe, were released in simulated gastric fluid for two hours and in simulated intestinal fluid for six hours, respectively.

  8. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    DOEpatents

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang

    2017-03-07

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.

  9. Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.

    PubMed

    Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin

    2006-01-01

    This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.

  10. Inclusion bodies of aggregated hemosiderins in liver macrophages.

    PubMed

    Hayashi, Hisao; Tatsumi, Yasuaki; Wakusawa, Shinya; Shigemasa, Ryota; Koide, Ryoji; Tsuchida, Ken-Ichi; Morotomi, Natsuko; Yamashita, Tetsuji; Kumagai, Kotaro; Ono, Yukiya; Hayashi, Kazuhiko; Ishigami, Masatoshi; Goto, Hidemi; Kato, Ayako; Kato, Koichi

    2017-12-01

    Hemosiderin formation is a structural indication of iron overload. We investigated further adaptations of the liver to excess iron. Five patients with livers showing iron-rich inclusions larger than 2 µm were selected from our database. The clinical features of patients and structures of the inclusions were compared with those of 2 controls with mild iron overload. All patients had severe iron overload with more than 5000 ng/mL of serum ferritin. Etiologies were variable, from hemochromatosis to iatrogenic iron overload. Their histological stages were either portal fibrosis or cirrhosis. Inclusion bodies were ultra-structurally visualized as aggregated hemosiderins in the periportal macrophages. X-ray analysis always identified, in addition to a large amount of iron complexes including oxygen and phosphorus, a small amount of copper and sulfur in the mosaic matrixes of inclusions. There were no inclusions in the control livers. Inclusion bodies, when the liver is loaded with excess iron, may appear in the macrophages as isolated organella of aggregated hemosiderins. Trace amounts of copper-sulfur complexes were always identified in the mosaic matrices of the inclusions, suggesting cuproprotein induction against excess iron. In conclusion, inclusion formation in macrophages may be an adaptation of the liver loaded with excess iron.

  11. Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe

    2013-11-01

    A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.

  12. Transfusional Iron Overload in a Cohort of Children with Sickle Cell Disease: Impact of Magnetic Resonance Imaging, Transfusion Method, and Chelation.

    PubMed

    Stanley, Helen M; Friedman, David F; Webb, Jennifer; Kwiatkowski, Janet L

    2016-08-01

    Transfusions prevent a number of complications of sickle cell disease (SCD), but cause inevitable iron loading. With magnetic resonance imaging (MRI), liver iron can be monitored noninvasively. Erythrocytapheresis can limit iron loading and oral chelation provides a more tolerable alternative to subcutaneous administration. The impact of these factors on control of iron burden in SCD has not been well studied. Iron monitoring practices, chelation use, and transfusion methods were assessed in our cohort of pediatric patients with SCD receiving chronic transfusion. The impact of these factors on iron burden was assessed. Among 84 subjects, the proportion that underwent appropriate liver iron concentration (LIC) assessment rose from 21% before to 81% after implementation of R2-MRI in 2006. Among subjects with at least two R2-MRI examinations, median LIC improved (13.2-7.9 mg/g dw, P = 0.027) from initial to final study. Most (67.9%) subjects initially received simple transfusions and subsequently transitioned to erythrocytapheresis. After switching, LIC improved from 13.1 to 4.3 mg/g dw (P < 0.001) after a median of 2.7 years and ferritin improved (2,471-392 ng/ml, P < 0.001) after a median of 4.2 years. Final serum ferritin and LIC correlated negatively with the proportion of transfusions administered by erythrocytapheresis and chelation adherence. Routine liver R2-MRI should be performed in individuals with SCD who receive chronic red cell transfusions. Adherence with chelation should be assessed regularly and erythrocytapheresis utilized when feasible to minimize iron loading or reduce iron stores accumulated during periods of simple transfusion. © 2016 Wiley Periodicals, Inc.

  13. Ferroportin disease: pathogenesis, diagnosis and treatment

    PubMed Central

    Pietrangelo, Antonello

    2017-01-01

    Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the ferroportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation. PMID:29101207

  14. Trace Element Mapping of a Biological Specimen by a Full-Field X-ray Fluorescence Imaging Microscope with a Wolter Mirror

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Yamada, Norimitsu; Ishino, Toyoaki; Namiki, Takashi; Watanabe, Norio; Aoki, Sadao

    2007-01-01

    A full-field X-ray fluorescence imaging microscope with a Wolter mirror was applied to the element mapping of alfalfa seeds. The X-ray fluorescence microscope was built at the Photon Factory BL3C2 (KEK). X-ray fluorescence images of several growing stages of the alfalfa seeds were obtained. X-ray fluorescence energy spectra were measured with either a solid state detector or a CCD photon counting method. The element distributions of iron and zinc which were included in the seeds were obtained using a photon counting method.

  15. Studies of cream seeded carioca beans (phaseolus vulgaris L.) from a Rwandan efficacy trial: in vitro and in vivo screening tools reflect human studies and predict beneficial results from iron biofortified beans

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) deficiency is a highly prevalent micronutrient insufficiency predominantly caused by a lack of bioavailable Fe from the diet. The consumption of beans as a major food crop in some populations suffering from Fe deficiency is relatively high. Therefore, our objective was to determine whether...

  16. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    PubMed Central

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M.; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  17. Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules.

    PubMed

    Kavosi, Maryam; Mohammadi, Abdorreza; Shojaee-Aliabadi, Saeedeh; Khaksar, Ramin; Hosseini, Seyede Marzieh

    2018-05-01

    Purslane seed oil, as a potential nutritious source of omega-3 fatty acid, is susceptible to oxidation. Encapsulation in yeast cells is a possible approach for overcoming this problem. In the present study, purslane seed oil was encapsulated in non-plasmolysed, plasmolysed and plasmolysed carboxy methyl cellulose (CMC)-coated Saccharomyces cerevisiae cells and measurements of oil loading capacity (LC), encapsulation efficiency (EE), oxidative stability and the fatty acid composition of oil-loaded microcapsules were made. Furthermore, investigations of morphology and thermal behavior, as well as a Fourier transform-infrared (FTIR) analyses of microcapsules, were performed. The values of EE, LC were approximately 53-65% and 187-231 g kg -1 , respectively. Studies found that the plasmolysis treatment increased EE and LC and decreased the mean peroxide value (PV) of microencapsulated oil. The presence of purslane seed oil in yeast microcapsules was confirmed by FTIR spectroscopy and differential scanning calorimetry analyses. The lowest rate of oxidation belonged to the oil-loaded plasmolysed CMC-coated microcapsules (16.73 meqvO 2 kg -1 ), whereas the highest amount of oxidation regardless of native oil referred to the oil-loaded in non-plasmolysed cells (28.15 meqvO 2 kg -1 ). The encapsulation of purslane seed oil in the yeast cells of S. cerevisiae can be considered as an efficient approach for extending the oxidative stability of this nutritious oil and facilitating its application in food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. A Novel Self-Expandable, Radioactive Airway Stent Loaded with 125I Seeds: A Feasibility and Safety Study in Healthy Beagle Dog.

    PubMed

    Wang, Yong; Guo, Jin-He; Zhu, Guang-Yu; Zhu, Hai-Dong; Chen, Li; Lu, Jian; Wang, Chao; Teng, Gao-Jun

    2017-07-01

    Airway stent placement is an effective treatment for the immediate palliation of malignant airway obstruction. However, restenosis caused by tumor ingrowth and/or overgrowth after stenting is common. The purpose of this study was to investigate the feasibility and safety of a novel self-expandable stent loaded with 125 I seeds in healthy beagle dog. Under fluoroscopic guidance, forty-eight self-expandable airway stents loaded with 125 I seeds were perorally placed in the main trachea of 48 healthy beagle dogs, who were randomly divided into four groups (Group A: 0.3 mCi; Group B: 0.6 mCi; Group C: 0.9 mCi; Control group: 0 mCi). The estimated radiation dose was calculated using the isotropic point source approximation. Radiological follow-up examinations and histopathological examinations of stented tracheal segments and their adjacent organs and tissues were performed at 2, 4, 8, and 16 weeks following the stenting. All stents were successfully deployed in the targeted tracheal segment in the beagle dogs without procedure-related complications. Tracheal stenosis became severe gradually in all the four groups, which was not associated with the radioactivity of 125 I seeds (p > 0.05). The tracheal injury scores increased along with the higher dose of radioactive seeds which reached peak at 8 weeks and then turned back slightly at 16 weeks. The adjacent tissue did not show pathohistological changes under microscope, while mild and reversible ultrastructure changes were showed under electronic microscope. This study demonstrates that it is feasible and safe to insert this novel self-expandable airway stent loaded with 125 I seeds in healthy beagle dog.

  19. 7 CFR 947.132 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Safeguards § 947.132 Reports. (a) Immature potatoes. The applicant shall identify the producer and the dates...) Certified seed. A special purpose shipment report shall be required for each load of certified seed when shipped outside the district (§ 947.18) where grown. The shipper of such certified seed potatoes shall...

  20. 7 CFR 947.132 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Safeguards § 947.132 Reports. (a) Immature potatoes. The applicant shall identify the producer and the dates...) Certified seed. A special purpose shipment report shall be required for each load of certified seed when shipped outside the district (§ 947.18) where grown. The shipper of such certified seed potatoes shall...

  1. 7 CFR 947.132 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Safeguards § 947.132 Reports. (a) Immature potatoes. The applicant shall identify the producer and the dates...) Certified seed. A special purpose shipment report shall be required for each load of certified seed when shipped outside the district (§ 947.18) where grown. The shipper of such certified seed potatoes shall...

  2. Browse diversity and iron loading in captive sumatran rhinoceroses (Dicerorhinus sumatrensis): a comparison of sanctuary and zoological populations.

    PubMed

    Candra, Dedi; Radcliffe, Robin W; Andriansyah; Khan, Mohammad; Tsu, I-Hsien; Paglia, Donald E

    2012-09-01

    Iron storage disease (ISD) is now recognized as a serious clinical disorder acquired by two species of browsing rhinoceroses, the African black (Diceros bicornis) and the Asian Sumatran (Dicerorhinus sumatrensis) rhinoceroses, when displaced from their natural habitats. The most complete knowledge of ISD comes from studies of the black rhinoceros, but the Asian species is also at risk. Sumatran rhinoceroses housed in traditional zoological settings outside of range countries have suffered significant morbidity and mortality potentially related to ISD induced by diet and/or other confinement conditions. With so few animals in captivity, very little information exists on iron loading in the Sumatran rhinoceros. To better characterize the problem, we retrospectively compared captive management conditions of Sumatran rhinoceroses housed under traditional zoological care with those in two native sanctuary environments. In general, zoo rhinoceroses are offered a paucity of plants and browse species compared with their sanctuary and wild counterparts managed in native rainforest habitats. Iron analyte levels and limited histopathologic observations in these populations suggest variable tendencies to overload iron, dependent upon differences in managed diet and individual food preferences. More detailed investigation of these markedly dissimilar ex situ populations is warranted to better understand the role of nutrition and other conditions affecting iron loading in browser rhinoceroses.

  3. Modeling study of radiation characteristics with different impurity species seeding in EAST

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Deng, G. Z.; Wang, L.; Liu, S. C.; Zhang, L.; Li, G. Q.; Gao, X.

    2017-12-01

    A critical issue for EAST and future tokamak machines such as ITER and China Fusion Engineering Testing Reactor is the handling of excessive heat load on the divertor target plates. As an effective means of actively reducing and controlling the power fluxes to the target plates, localized impurity (N, Ne, and Ar) gas puffing from the lower dome is investigated by using SOLPS5.0 for an L-mode discharge on EAST with double null configuration. The radiative efficiency and distribution of different impurities are compared. The effect of N, Ne, and Ar seeding on target power load, the power entering into scrape-off layer (SOL), Psep, and their concentration in SOL along the poloidal length and edge effective ion charge number (Zeff) which are closely related to core plasma performance are presented. The simulation results indicate that N, Ne, and Ar seeding can effectively reduce the peak heat load and electron temperature at divertor targets similarly. N seeding can reach the highest radiative loss fraction and both N and Ar strongly radiate power in the divertor region, while the radiative power inside the separatrix for Ar seeding is also significant. Ne radiates power mainly around the separatrix and X-point. Ne and Ar impurities' puffing results in a faster decrease of Psep than N seeding case; the reduction of Psep can eventually degrade the core performance of fusion plasma. Additionally, seeding with Ne has a totally larger concentration at the outer midplane and edge Zeff than those in N and Ar seeding cases; it suggests that N and Ar impurities are more acceptable than Ne in terms of fuel dilution for this discharge.

  4. R2* mapping for brain iron: associations with cognition in normal aging.

    PubMed

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The Rehbinder effect in iron during giga-cycle fatigue loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, M. V., E-mail: mbannikov@icmm.ru; Naimark, O. B.

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. Themore » mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.« less

  6. The Rehbinder effect in iron during giga-cycle fatigue loading

    NASA Astrophysics Data System (ADS)

    Bannikov, M. V.; Naimark, O. B.

    2015-10-01

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  7. Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo

    2018-03-01

    A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.

  8. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination.

    PubMed

    Elorza, Alvaro; Roschzttardtz, Hannetz; Gómez, Isabel; Mouras, Armand; Holuigue, Loreto; Araya, Alejandro; Jordana, Xavier

    2006-01-01

    Three nuclear genes, SDH2-1, SDH2-2 and SDH2-3, encode the essential iron-sulfur subunit of mitochondrial complex II in Arabidopsis thaliana. SDH2-1 and SDH2-2 probably arose via a recent duplication event and we reported that both are expressed in all organs from adult plants. In contrast, transcripts from SDH2-3 were not detected. Here we present data demonstrating that SDH2-3 is specifically expressed during seed development. SDH2-3 transcripts appear during seed maturation, persist through desiccation, are abundant in dry seeds and markedly decline during germination. Analysis of transgenic Arabidopsis plants carrying the SDH2-3 promoter fused to the beta-glucuronidase reporter gene shows that the SDH2-3 promoter is activated in the embryo during maturation, from the bent-cotyledon stage. beta-Glucuronidase expression correlates with the appearance of endogenous SDH2-3 transcripts, suggesting that control of this nuclear gene is achieved through transcriptional regulation. Furthermore, progressive deletions of this promoter identified a 159 bp region (-223 to -65) important for SDH2-3 transcriptional activation in seeds. Interestingly, the SDH2-3 promoter remains active in embryonic tissues during germination and post-germinative growth, and is turned off in vegetative tissues (true leaves). In contrast to SDH2-3 transcripts, SDH2-1 and SDH2-2 transcripts are barely detected in dry seeds and increase during germination and post-germinative growth. The opposite expression patterns of SDH2 nuclear genes strongly suggest that during germination the embryo-specific SDH2-3 is replaced by SDH2-1 or SDH2-2 in mitochondrial complex II.

  9. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magneticmore » material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.« less

  10. MHD (magnetohydrodynamics) channel development: Quarterly report for January 1987-March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-01

    During the report period several slag doping tests were performed. Four of these tests are described in this report. The results were generally encouraging. Four dopants were investigated: Fe/sub 2/O/sub 3/, Fe/sub 3/O/sub 4/, MnO, and CrO/sub 2/. All but the CrO/sub 2/ proved effective within some range of dopant flow rate. At flow rates above or below this range none of the dopants were desirable. The proper ranges for each of the dopants was coarsely mapped in these experiments. When the dopants were injected directly on the anode wall a power increase was observed. This indicates a possible reductionmore » in the voltage drop due to the presence of the dopant. No power gain or loss was observed when the dopant was injected on the cathode wall. However, inter-cathode voltages were observed to spread more uniformly along the wall. High voltages decreased and low voltages increased. This result should help to reduce wear on the cathodes and their neighboring wall elements by reducing the local electrical field. Current control circuits were tested on both MK VI and MK VII type generators and components for consolidation circuits ordered. Solutions to waste disposal problems created by the implementation of new environmental regulations are being investigated. The MHD generator data from the CDIF 87-SEED-1, 87-SEED-2, and 87-SEED-3 tests have been analyzed and the results are presented in this report. The results of the SIDA model presented in this quarterly report are obtained by assuming a constant boundary layer voltage drop. Variations in the boundary layer voltage drop as a result of diagonal loading changes, iron oxide addition, or seeding rates changes were not considered. Corrections for the effects of ..delta..V/sub b1/ will be made to the results of SIDA when the voltage drop measurements become available.« less

  11. 46 CFR 148.310 - Seed cake.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and moisture combined; and (2) As far as practical, is free from flammable solvent. (b) This part does... maximum of 14 percent oil and moisture combined. (c) Before loading, the seed cake must be aged per the... barge a certificate from a competent testing laboratory stating the oil and moisture content of the seed...

  12. 46 CFR 148.310 - Seed cake.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and moisture combined; and (2) As far as practical, is free from flammable solvent. (b) This part does... maximum of 14 percent oil and moisture combined. (c) Before loading, the seed cake must be aged per the... barge a certificate from a competent testing laboratory stating the oil and moisture content of the seed...

  13. 46 CFR 148.310 - Seed cake.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and moisture combined; and (2) As far as practical, is free from flammable solvent. (b) This part does... maximum of 14 percent oil and moisture combined. (c) Before loading, the seed cake must be aged per the... barge a certificate from a competent testing laboratory stating the oil and moisture content of the seed...

  14. Heart cells in culture: a model of myocardial iron overload and chelation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, G.; Pinson, A.; Hershko, C.

    1985-08-01

    The effect of iron loading and chelation was studied in heart cell cultures obtained from newborn rats. Radioactive iron uptake per 2 X 10(6) cells/24 hr was 3.8% for /sup 59/Fe-transferrin, 15.8% for /sup 59/Fe-ferric ammonium citrate (FeAC) at 20 micrograms Fe/ml in 20% serum, and 37.1% for /sup 59/FeAC at 20 micrograms Fe/ml in serum-free medium. About one third of the cellular radioactive iron was in ferritin and the rest in an insoluble lysosomal fraction. Iron uptake was almost completely inhibited by reducing the incubation temperature from 37 degrees C to 10 degrees C. Intracellular concentrations of malonyldialdehyde (MDA)more » were doubled after 15 minutes of iron loading and reached maximal concentrations at 3 hours. Conversely, iron mobilization by deferoxamine at concentrations ranging from 0.025 mmol/L to 0.3 mmol/L resulted in normalization of cellular MDA concentrations, in direct proportion to the amounts of iron removed. These findings indicate that cultured myocardial cells are able to assimilate large amounts of nontransferrin iron and that iron uptake and mobilization are associated with striking changes in lipid peroxidation as manifested by the respective increase and decrease in cellular MDA concentrations.« less

  15. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway

    PubMed Central

    Elgrabli, Dan; Dachraoui, Walid; Marmier, Hélène de; Ménard-Moyon, Cécilia; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    The in vivo fate and biodegradability of carbon nanotubes is still a matter of debate despite tremendous applications. In this paper we describe a molecular pathway by which macrophages degrade functionalized multi-walled carbon nanotubes (CNTs) designed for biomedical applications and containing, or not, iron oxide nanoparticles in their inner cavity. Electron microscopy and Raman spectroscopy show that intracellularly-induced structural damages appear more rapidly for iron-free CNTs in comparison to iron-loaded ones, suggesting a role of iron in the degradation mechanism. By comparing the molecular responses of macrophages derived from THP1 monocytes to both types of CNTs, we highlight a molecular mechanism regulated by Nrf2/Bach1 signaling pathways to induce CNT degradation via NOX2 complex activation and O2•−, H2O2 and OH• production. CNT exposure activates an oxidative stress-dependent production of iron via Nrf2 nuclear translocation, Ferritin H and Heme oxygenase 1 translation. Conversely, Bach1 was translocated to the nucleus of cells exposed to iron-loaded CNTs to recycle embedded iron. Our results provide new information on the role of oxidative stress, iron metabolism and Nrf2-mediated host defence for regulating CNT fate in macrophages. PMID:28120861

  16. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  17. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats.

    PubMed

    Bhaskar, Anusha; Vidhya, V G; Ramya, M

    2008-12-01

    The hypoglycemic effect of the aqueous extract of the seeds of Mucuna pruriens was investigated in normal, glucose load conditions and streptozotocin (STZ)-induced diabetic rats. In normal rats, the aqueous extract of the seeds of Mucuna pririens (100 and 200 mg/kg body weight) significantly (P<0.001) reduced the blood glucose levels after an oral glucose load from 127.5+/-3.2 to 75.6+/-4.8 mg% 2 h after oral administration of seed extract. It also significantly lowered the blood glucose in STZ diabetic rats from 240.5+/-7.2 to 90.6+/-5.6 mg% after 21 days of daily oral administration of the extract (P<0.001). Thus, this study shows that M. pruriens has an anti-hyperglycemic action and it could be a source of hypoglycemic compounds.

  18. Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora.

    PubMed

    Munguía-Rosas, Miguel A; Abdala-Roberts, Luis; Parra-Tabla, Víctor

    2013-11-01

    Few studies have simultaneously addressed the effects of biotic and abiotic factors on pre-dispersal seed predation (PSP). Plant-seed predator interactions may be influenced by natural enemies and pollinators (the latter through changes in fruit or seed traits), and the activity of pre-dispersal seed predators and their natural enemies may both be affected by the abiotic environment. Additionally, in the case of cleistogamous plants with fruit dimorphism, PSP may be biased towards larger and more seeded chasmogamous (CH) fruits [relative to the smaller cleistogamous (CL) fruits], and the effects of biotic and abiotic factors may be contingent upon this fruit dimorphism. We studied PSP in the cleistogamous Ruellia nudiflora using a split-plot experimental design and asked the following: (1) is PSP biased towards CH fruits and is there an effect of pollen load on PSP? (2) Do parasitoids influence PSP and is their effect influenced by pollen load or fruit type? And (3) do light and water availability modify PSP and parasitoid effects? PSP was higher for CH relative to CL fruits, and under low water availability it was lower for pollen-supplemented CH fruits relative to open-pollinated CH fruits. Parasitoids were not influenced by abiotic conditions, but their negative effect on PSP was stronger for pollen-supplemented CH fruits. Overall, we show that fruit dimorphism, abiotic factors and natural enemies affect PSP, and that these effects can be non-additive.

  19. Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major.

    PubMed

    Saravi, Mehrdad; Tamadoni, Ahmad; Jalalian, Rozita; Mahmoodi-Nesheli, Hassan; Hojati, Mosatafa; Ramezani, Saeed

    2013-01-01

    Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard non-invasive diagnostic test. A total of 100 TM patients with the mean age of 19±7 years and 100 healthy controls 18.8±7 years were evaluated. Conventional echocardiography, TDI, and cardiac MRI T2* were performed in all subjects. TDI measures included myocardial systolic (Sm), early (Em) and late (Am) diastolic velocities at basal and middle segments of septal and lateral LV wall. The TM patients were also subgrouped according to those with iron load (T2* ≤ 20 ms) and those without (T2* > 20 ms), and also severe (T2* ≤ 10 ms) versus the non-severe (T2* ≤ 10 ms). Using T2* cardiovascular MR, abnormal myocardial iron load (T2* ≤ 20 ms) was detected in 84% of the patients and among these, 50% (42/84) had severe (T2* ≤ 10 ms) iron load. The mean T2* was 11.6±8.6 ms (5-36.7). A negative linear correlation existed between transfusion period of patients and T2* levels (r = -0.53, p=0.02). The following TDI measures were lower in patients than in controls: basal septal Am (p<0.05), mid-septal Em and Am (p<0.05), basal lateral Am (p<0.05), mid-lateral LV wall Sm (p<0.05) and Am (p<0.05). Tissue doppler imaging is helpful in predicting the presence of myocardial iron load in Thalassemia patients. Therefore, it can be used for screening of thalassemia major patients.

  20. Design of Fucoidan Functionalized - Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Tran, Khanh Nghia; Tran, Phuong Ha-Lien; Vo, Toi Van; Tran, Thao Truong-Dinh

    2016-01-01

    This research aims to develop an iron oxide nanoparticle drug delivery system utilizing a recent material discovered from ocean, fucoidan. The material has drawn much interest due to many biomedical functions that have been proven for human health. One interesting point herein is that fucoidan is not only a sulfated polysaccharide, a polymer for stabilization of iron oxide nanoparticles, but plays a role of an anticancer agent also. Various approaches were investigated to optimize the high loading efficiency and explain the mechanism of nanoparticle formations. Fucoidan was functionalized on iron oxide nanoparticles by a direct coating or via amine groups. Also, a hydrophobic part of oleic acid was conjugated to the amine groups for a more favorable loading of poorly water-soluble anticancer drugs. This study proposed a novel system and an efficient method to functionalize fucoidan on iron oxide nanoparticle systems which will lead to a facilitation of a double strength treatment of cancer.

  1. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan F.; Frischer, Josa M.; Webb, Samuel M.

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distributionmore » of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Furthermore, upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.« less

  2. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

    DOE PAGES

    Popescu, Bogdan F.; Frischer, Josa M.; Webb, Samuel M.; ...

    2017-03-22

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distributionmore » of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Furthermore, upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.« less

  3. Current understanding of iron homeostasis.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  4. Analyses of the leaf, fruit and seed of Thaumatococcus daniefii (Benth.): exploring potential uses.

    PubMed

    Chinedu, Shalom Nwodo; Oluwadamisi, Adetayo Y; Popoola, Samuel T; David, Bolaji J; Epelle, Tamunotonyesia

    2014-06-01

    Thaumatococcus daniellii is an economic plant with versatile uses in Southern Nigeria. The arils attached to the seeds contain thaumatin, a non-sugar sweetener and taste modifier. This study examined the chemical constituents of the leaf, fruit and seed of T. daniellii. The fresh fruit, on weight basis, consists of 4.8% aril, 22.8% seed and 72.4% fleshy part. The leaf contained (per 100 g): 10.67 g moisture, 8.95 g ash, 17.21 g fat, 21.06 g protein, 24.61 g crude fiber 17.50 g carbohydrate, 0.10 g calcium, 0.08 g magnesium, 0.01 g iron and 0.37 g phosphorus. The fruit (fleshy part) contained 10.04 g moisture, 21.08 g ash, 0.93 g fat, 11.53 g protein, 18.43 g crude fiber, 37.27 g carbohydrate, 0.34 g calcium, 0.30 g magnesium, 0.01 g iron and 0.21 g phosphorus. The seed contained 15.15 g moisture, 11.30 g ash, 0.21 g fat, 10.36 g protein, 20.52 g crude fiber and 42.46 g carbohydrate. Terpenoids, flavonoids, alkaloids and cardiac glycosides were significantly present in both the leaf and fruit whereas phlobatannin, saponin, steroids, anthraquinones and ascorbic acid were absent. Tannin was present only in the leaf. The leaf and fruit of T. daniellii have significant nutritional and medicinal benefits. The leaf is rich in protein and fat. The fruit is a good source of minerals, particularly, calcium and magnesium; the leaf is also rich in phosphorus.

  5. The response of phytoplankton to iron enrichment in Sub-Antarctic HNLCLSi waters: Results from the SAGE experiment

    NASA Astrophysics Data System (ADS)

    Peloquin, Jill; Hall, Julie; Safi, Karl; Smith, Walker O., Jr.; Wright, Simon; van den Enden, Rick

    2011-03-01

    Areas of high nutrients and low chlorophyll a comprise nearly a third of the world's oceans, including the equatorial Pacific, the Southern Ocean and the Sub-Arctic Pacific. The SOLAS Sea- Air Gas Exchange (SAGE) experiment was conducted in late summer, 2004, off the east coast of the South Island of New Zealand. The objective was to assess the response of phytoplankton in waters with low iron and silicic acid concentrations to iron enrichment. We monitored the quantum yield of photochemistry ( Fv/ Fm) with pulse amplitude modulated fluorometry, chlorophyll a, primary productivity, and taxonomic composition. Measurements of Fv/ Fm indicated that the phytoplankton within the amended patch were relieved from iron stress ( Fv/ Fm approached 0.65). Although there was no significant difference between IN and OUT stations at points during the experiment, the eventual enhancement in chlorophyll a and primary productivity was twofold by the end of the 15-day patch occupation. However, no change in particulate carbon or nitrogen pools was detected. Enhancement in primary productivity and chlorophyll a were approximately equal for all phytoplankton size classes, resulting in a stable phytoplankton size distribution. Initial seed stocks of diatoms were extremely low, <1% of the assemblage based on HPLC pigment analysis, and did not respond to iron enrichment. The most dominant groups before and after iron enrichment were type 8 haptophytes and prasinophytes that were associated with ˜75% of chlorophyll a. Twofold enhancement of biomass estimated by flow cytometry was detected only in eukaryotic picoplankton, likely prasinophytes, type 8 haptophytes and/or pelagophytes. These results suggest that factors other than iron, such as silicic acid, light or physical disturbance limited the phytoplankton assemblage during the SAGE experiment. Furthermore, these results suggest that additional iron supply to the Sub-Antarctic under similar seasonal conditions and seed stock will most likely favor phytoplankton <2 μm. This implies that any iron-mediated gain of fixed carbon will most likely be remineralized in shallow water rather than sink and be sequestered in the deep ocean.

  6. Novel Flaxseed Gum Nanocomposites Are Slow Release Iron Supplements.

    PubMed

    Liang, Shan; Huang, Yu; Shim, Youn Young; Ma, Xiang; Reaney, Martin J T; Wang, Yong

    2018-05-23

    Nanocomposites, based on iron salts and soluble flaxseed gum (FG), were prepared as potential treatments of iron deficiency anemia (IDA). FG was extracted, characterized, and formulated into iron-loading nanocomposites via ion-exchange against FeCl 3 , Fe 2 (SO 4 ) 3 , FeCl 2 , and FeSO 4 ·7H 2 O. FG-iron nanocomposites preparation condition was optimized, and physicochemical properties of the nanocomposites were investigated. In vitro release kinetics of iron in simulated gastric fluid (SGF) was also evaluated. FG heteropolysaccharide, consisting of rhamnose (33.73%), arabinose (24.35%), xylose (14.23%), glucose (4.54%), and galactose (23.15%) monosaccharides, linked together via varieties of glycosidic bonds, was a good recipient for both ferric and ferrous irons under screened conditions (i.e., 80 °C, 2 h, I/G = 1:2). Iron loaded contents in the nanocomposites prepared from FG-FeCl 3 , FG-Fe 2 (SO 4 ) 3 , FG-FeCl 2 , and FG-FeSO 4 ·7H 2 O were 25.51%, 10.36%, 5.83%, and 22.83%, respectively. Iron in these nanocomposites was mostly in a bound state, especially in FG-FeCl 3 , due to chelation forming bonds between iron and polysaccharide hydroxyl or carboxyl groups and formed stable polysaccharide-iron crystal network structures. Free iron ions were effectively removed by ethanol treatments. Because of chelation, the nanocomposites delayed iron release in SGF and the release kinetics were consistent with Korsmeyer-Peppas model. This indicates that such complexes might reduce side effects of free iron in human stomach. Altogether, this study indicates that these synthetic FG-iron nanocomposites might be developed as novel iron supplements for iron deficiency, in which FG-FeCl 3 is considered as the best option.

  7. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells

    PubMed Central

    Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.

    2008-01-01

    Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020

  8. Biofortified red mottled beans (phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model

    USDA-ARS?s Scientific Manuscript database

    The objective was to compare the capacities of biofortified and standard colored beans to deliver iron (Fe) for hemoglobin synthesis. Two isolines of large-seeded, red mottled Andean beans (Phaseolus valgaris L.), one standard (“Low FE”) and the other biofortified (“High Fe”) in Fe (49 and 71 ug Fe...

  9. Surface-Water Hydrology and Quality at the Pike Hill Superfund Site, Corinth, Vermont, October 2004 to December 2005

    USGS Publications Warehouse

    Kiah, Richard G.; Deacon, Jeffrey R.; Piatak, Nadine M.; Seal, Robert R.; Coles, James F.; Hammarstrom, Jane M.

    2007-01-01

    The hydrology and quality of surface water in and around the Pike Hill Brook watershed, in Corinth, Vermont, was studied from October 2004 to December 2005 by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (USEPA). Pike Hill was mined intermittently for copper from 1847 to 1919 and the site is known to be contributing trace elements and acidity to Pike Hill Brook and an unnamed tributary to Cookville Brook. The site has been listed as a Superfund site since 2004. Streamflow, specific conductance, pH, and water temperature were measured continuously and monthly at three sites on Pike Hill Brook to determine the variation in these parameters over an annual cycle. Synoptic water-quality sampling was done at 10 stream sites in October 2004, April 2005, and June 2005 and at 13 stream sites in August 2005 to characterize the quality of surface water in the watershed on a seasonal and spatial basis, as well as to assess the effects of wetlands on water quality. Samples for analysis of benthic macroinvertebrate populations were collected at 11 stream sites in August 2005. Water samples were analyzed for 5 major ions and 32 trace elements. Concentrations of trace elements at sites in the Pike Hill Brook watershed exceeded USEPA National Recommended Water Quality Criteria acute and chronic toxicity standards for aluminum, iron, cadmium, copper, and zinc. Concentrations of copper exceeded the chronic criteria in an unnamed tributary to Cookville Brook in one sample. Concentrations of sulfate, calcium, aluminum, iron, cadmium, copper, and zinc decreased with distance from a site directly downstream from the mine (site 1), as a result of dilution and through sorption and precipitation of the trace elements. Maximum concentrations of aluminum, iron, cadmium, copper, and zinc were observed during spring snowmelt. Concentrations of sulfate, calcium, cadmium, copper, and zinc, and instantaneous loads of calcium and aluminum were statistically different (p<0.05) among the three continuously monitored sites (sites 1, 4, and 5). Instantaneous loads of aluminum, iron, and copper decreased by one to three orders of magnitude from site 1 to a site 1.1 mi downstream (site 4). Instantaneous loads of sulfate were similar between sites 1, 4, and at a site 3 mi downstream (site 5). Instantaneous loads of cadmium and zinc were similar between sites 1 and 4, and loads of iron and copper were similar between sites 4 and 5. Loads of chemical constituents were compared at site 1 (closest to the mine waste piles) and site 5 (near the mouth of Pike Hill Brook and below a majority of the wetlands). Annually, the loads of dissolved cadmium and zinc at site 1 were about five times greater than loads at site 5, and the load of dissolved copper at site 1 was about 17 times greater than at site 5. The ratio of loads for dissolved cadmium, copper, and zinc to total cadmium, copper, and zinc at site 1 was about 1. Samples collected in Pike Hill Brook upstream and downstream from the wetlands during low flows in August 2005 showed that oxidation of ferrous iron and precipitation of iron-hydroxides were probably not affecting trace metals in the wetlands through sorption; however, a significant portion of the iron entering the wetlands was in particulate form and may have transported sorbed copper and other trace metals. Thus, aerobic activity in the wetlands was probably not affecting metal cycling in the watershed. Concentrations and loads of sulfate may be unlikely to define unequivocally the role of the wetlands with regard to anaerobic bacterial sulfate reduction; however, bacterial sulfate removal may have affected loads of sulfate. Loads of copper increased downstream from the wetlands and may reflect the reductive dissolution of ferric hydroxide particulates in anaerobic parts of the wetlands.Concentrations of dissolved iron increased downstream from the wetlands. The most apparent effects on the macroinvertebr

  10. A Survey of Plant Iron Content-A Semi-Systematic Review.

    PubMed

    Ancuceanu, Robert; Dinu, Mihaela; Hovaneţ, Marilena Viorica; Anghel, Adriana Iuliana; Popescu, Carmen Violeta; Negreş, Simona

    2015-12-10

    Iron is an essential mineral nutrient for all living organisms, involved in a plurality of biological processes. Its deficit is the cause of the most common form of anemia in the world: iron deficiency anemia (IDA). This paper reviews iron content in various parts of 1228 plant species and its absorption from herbal products, based on data collected from the literature in a semi-systematic manner. Five hundred genera randomly selected from the Angiosperms group, 215 genera from the Pteridophytes groups and all 95 Gymnosperm genera as listed in the Plant List version 1.1 were used as keywords together with the word "iron" in computerized searches. Iron data about additional genera returned by those searches were extracted and included in the analysis. In total, iron content values for a number of 1228 species, 5 subspecies, and 5 varieties were collected. Descriptive and inferential statistics were used to compare iron contents in various plant parts (whole plant, roots, stems, shoots, leaves, aerial parts, flowers, fruits, seeds, wood, bark, other parts) and exploratory analyses by taxonomic groups and life-forms were carried out. The absorption and potential relevance of herbal iron for iron supplementation are discussed.

  11. Iron overload in thalassemia and related conditions: therapeutic goals and assessment of response to chelation therapies.

    PubMed

    Porter, John B; Shah, Farrukh T

    2010-12-01

    Transfusional iron loading inevitably results in hepatic iron accumulation, with variable extrahepatic distribution that is typically less pronounced in sickle cell disease than in thalassemia disorders. Iron chelation therapy has the goal of preventing iron-mediated tissue damage through controlling tissue iron levels, without incurring chelator-mediated toxicity. Historically, target levels for tissue iron control have been limited by the increased frequency of deferoxamine-mediated toxicity and low levels of iron loading. With newer chelation regimes, these limitations are less evident. The reporting of responses to chelation therapies has typically focused on average changes in serum ferritin in patient populations. This approach has three limitations. First, changes in serum ferritin may not reflect trends in iron balance equally in all patients or for all chelation regimens. Second, this provides no information about the proportion of patients likely respond. Third, this gives insufficient information about iron trends in tissues such as the heart. Monitoring of iron overload has advanced with the increasing use of MRI techniques to estimate iron balance (changes in liver iron concentration) and extrahepatic iron distribution (myocardial T2*). The term nonresponder has been increasingly used to describe individuals who fail to show a downward trend in one or more of these variables. Lack of a response of an individual may result from inadequate dosing, high transfusion requirement, poor treatment adherence, or unfavorable pharmacology of the chelation regime. This article scrutinizes evidence for response rates to deferoxamine, deferiprone (and combinations), and deferasirox. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Prevention of Iron Overload and Long Term Maintenance of Normal Iron Stores in Thalassaemia Major Patients using Deferiprone or Deferiprone Deferoxamine Combination.

    PubMed

    Kolnagou, Annita; Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2017-07-01

    Decrease in mortality and morbidity is observed in thalassaemia major patients with reduced iron load in comparison to heavy iron loaded patients. Effective and complete treatment of transfusional iron overload can be achieved by chelation protocols that can eliminate excess iron and maintain normal iron stores (NIS). The maintenance of NIS, i. e., serum ferritin (350 μg/L >), MRI T2* cardiac (>20 ms) and liver (>6.3 ms) relaxation time levels was monitored in 16 thalassaemia major patients (32-53 years, 12 splenectomized, 10 male, erythrocyte transfusions 120-323 ml/kg/year) for about 90 patient years. The patients were treated with individualised tailor-made deferiprone or deferiprone/deferoxamine combination protocols. In 8 patients deferiprone (50-100 mg/kg/day) was sufficient for maintaining NIS and withdrawal of deferiprone for 28 months in total was necessary in 4 patients for preventing iron deficiency. In 3 other patients intermittent deferoxamine (50-75 mg/kg/8-30 h, 1-4 days/week) in combination with deferiprone (75-100 mg/kg/day) was sufficient for maintaining NIS. In the remaining 5 patients deferiprone (75-100 mg/kg/day) and deferoxamine (50-60 mg/kg/8-15 h, 1-7 days/week) combination was used for maintaining NIS, as a result of increased transfusions which were caused mainly by splenomegaly and infections. No toxic side effects were detected during the study. Lower chelation doses were used for the maintenance of NIS in comparison to iron loaded categories of patients. The safe maintenance of NIS using deferiprone and deferiprone/deferoxamine combinations should be considered as an optimum therapy for the complete treatment of iron overload in the majority of thalassaemia patients. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    PubMed

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  14. Experimental study on ignition mechanisms of wet granulation sulfur caused by friction.

    PubMed

    Dai, Haoyuan; Fan, Jianchun; Wu, Shengnan; Yu, Yanqiu; Liu, Di; Hu, Zhibin

    2018-02-15

    It is common to see fire accidents caused by friction during the storage and transportation of wet granulation sulfur. To study the sulfur ignition mechanism under friction conditions, a new rotating test apparatus is developed to reproduce friction scenes at lab scale. A series of experiments are performed under different normal loads. The SEM-EDS and the XRD were utilized to examine the morphologies and compositions of the tested specimens and the friction products. Experimental results show that these two methods are mostly in agreement with each other. The iron-sulfide compounds are produced and the proportion of iron-sulfide compounds is reduced with normal loads increasing, compared to the total number of the friction products. The facts implied by the integration analysis of friction products with the temperature changes of the near friction surface unveil an underlying mechanism that may explain sulfur ignition by friction in real scenarios. The sulfur ignition may be mainly caused by the spontaneous combustion of iron sulfide compounds produced by friction under low normal load with 200N. With the increase of normal loads, the resulting iron-sulfide compounds are decreasing and the high temperature from friction heat begins to play a major role in causing fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Response of iron overload to deferasirox in rare transfusion-dependent anaemias: equivalent effects on serum ferritin and labile plasma iron for haemolytic or production anaemias

    PubMed Central

    Porter, John B; Lin, Kai-Hsin; Beris, Photis; Forni, Gian Luca; Taher, Ali; Habr, Dany; Domokos, Gabor; Roubert, Bernard; Thein, Swee Lay

    2011-01-01

    Objectives It is widely assumed that, at matched transfusional iron-loading rates, responses to chelation therapy are similar, irrespective of the underlying condition. However, data are limited for rare transfusion-dependent anaemias, and it remains to be elucidated if response differs, depending on whether the anaemia has a primary haemolytic or production mechanism. Methods The efficacy and safety of deferasirox (Exjade®) in rare transfusion-dependent anaemias were evaluated over 1 yr, with change in serum ferritin as the primary efficacy endpoint. Initial deferasirox doses were 10–30 mg/kg/d, depending on transfusion requirements; 34 patients had production anaemias, and 23 had haemolytic anaemias. Results Patients with production anaemias or haemolytic anaemias had comparable transfusional iron-loading rates (0.31 vs. 0.30 mL red blood cells/kg/d), mean deferasirox dosing (19.3 vs. 19.0 mg/kg/d) and baseline median serum ferritin (2926 vs. 2682 ng/mL). Baseline labile plasma iron (LPI) levels correlated significantly with the transfusional iron-loading rates and with serum ferritin levels in both cohorts. Reductions in median serum ferritin levels were initially faster in the production than the haemolytic anaemias, but at 1 yr, similar significant reductions of 940 and 617 ng/mL were attained, respectively (−26.0% overall). Mean LPI decreased significantly in patients with production (P < 0.0001) and haemolytic (P = 0.037) anaemias after the first dose and was maintained at normal mean levels (<0.4 μm) subsequently. The most common drug-related, investigator-assessed adverse events were diarrhoea (n = 16) and nausea (n = 12). Conclusions At matched transfusional iron-loading rates, the responses of rare transfusion-dependent anaemias to deferasirox are similar at 1 yr, irrespective of the underlying pathogenic mechanism. PMID:21649735

  16. Response of iron overload to deferasirox in rare transfusion-dependent anaemias: equivalent effects on serum ferritin and labile plasma iron for haemolytic or production anaemias.

    PubMed

    Porter, John B; Lin, Kai-Hsin; Beris, Photis; Forni, Gian Luca; Taher, Ali; Habr, Dany; Domokos, Gabor; Roubert, Bernard; Thein, Swee Lay

    2011-10-01

    It is widely assumed that, at matched transfusional iron-loading rates, responses to chelation therapy are similar, irrespective of the underlying condition. However, data are limited for rare transfusion-dependent anaemias, and it remains to be elucidated if response differs, depending on whether the anaemia has a primary haemolytic or production mechanism. The efficacy and safety of deferasirox (Exjade®) in rare transfusion-dependent anaemias were evaluated over 1 yr, with change in serum ferritin as the primary efficacy endpoint. Initial deferasirox doses were 10-30 mg/kg/d, depending on transfusion requirements; 34 patients had production anaemias, and 23 had haemolytic anaemias. Patients with production anaemias or haemolytic anaemias had comparable transfusional iron-loading rates (0.31 vs. 0.30 mL red blood cells/kg/d), mean deferasirox dosing (19.3 vs. 19.0 mg/kg/d) and baseline median serum ferritin (2926 vs. 2682 ng/mL). Baseline labile plasma iron (LPI) levels correlated significantly with the transfusional iron-loading rates and with serum ferritin levels in both cohorts. Reductions in median serum ferritin levels were initially faster in the production than the haemolytic anaemias, but at 1 yr, similar significant reductions of 940 and 617 ng/mL were attained, respectively (-26.0% overall). Mean LPI decreased significantly in patients with production (P < 0.0001) and haemolytic (P = 0.037) anaemias after the first dose and was maintained at normal mean levels (< 0.4 μm) subsequently. The most common drug-related, investigator-assessed adverse events were diarrhoea (n = 16) and nausea (n = 12). At matched transfusional iron-loading rates, the responses of rare transfusion-dependent anaemias to deferasirox are similar at 1 yr, irrespective of the underlying pathogenic mechanism. © 2011 John Wiley & Sons A/S.

  17. Synthesis and neuroprotective effects of the complex nanoparticles of iron and sapogenin isolated from the defatted seeds of Camellia oleifera.

    PubMed

    Yang, Qian; Zhao, Chuang; Zhao, Jun; Ye, Yong

    2017-12-01

    The defatted seeds of Camellia oleifera var. monosperma Hung T. Chang (Theaceae) are currently discarded without effective utilization. However, sapogenin has been isolated and shows antioxidative, anti-inflammatory and analgesic activities suggestive of its neuroprotective function. In order to improve the activities of sapogenin, the nanoparticles of iron-sapogenin have been synthesized, and the neuroprotective effects are evaluated. Structural characters of the nanoparticles were analyzed, and the antioxidant effect was assessed by DPPH method, and the neuroprotective effect was evaluated by rotenone-induced neurodegeneration in Kunming mice injected subcutaneously into the back of neck with rotenone (50 mg/kg/day) for 6 weeks and then treated by tail intravenous injection with the iron-sapogenin at the dose of 25, 50 and 100 mg/kg for 7 days. Mice behaviour and neurotransmitters were tested. The product had an average size of 162 nm with spherical shape, and scavenged more than 90% DPPH radicals at 0.8 mg/mL concentration. It decreased behavioural disorder and malondialdehyde content in mice brain, and increased superoxide dismutase activity, tyrosine hydroxylase expression, dopamine and acetylcholine levels in brain in dose dependence, and their maximum changes were respectively up to 60.83%, 25.17%, 22.13%, 105.26%, 42.17% and 22.89% as compared to vehicle group. Iron-sapogenin nanoparticle shows significantly better effects than the sapogenin. Iron-sapogenin alleviates neurodegeneration of mice injured by neurotoxicity of rotenone, it is a superior candidate of drugs for neuroprotection.

  18. Anaerobic digestion of Jatropha curcas L. press cake and effects of an iron-additive.

    PubMed

    Schmidt, Thomas

    2011-11-01

    Oil production from Jatropha curcas L. seeds generates large amounts of Jatropha press cake (JPC) which can be utilized as a substrate for biogas production. The objective of this work was to investigate anaerobic mono-digestion of JPC and the effects of an iron additive (IA) on gas quality and process stability during the increase of the organic loading rate (OLR). With the increase of the OLR from 1.3 to 3.2 g(VS) L(-1) day(-1), the biogas yield in the reference reactor (RR) without IA decreased from 512 to 194 L(N) kg(VS) (-1) and the CH₄ concentration decreased from 69.3 to 44.4%. In the iron additive reactor (IAR), the biogas yield decreased from 530 to 462 L(N) kg(VS) (-1) and the CH₄ concentration decreased from 69.4 to 61.1%. The H₂S concentration in the biogas was reduced by addition of the IA to values below 258 ppm in the IAR while H₂S concentration in the RR increased and exceeded the detection limit of 5000 ppm. The acid capacity (AC) in the RR increased to more than 20 g L(-1), indicating an accumulation of organic acids caused by process instability. AC values in the IAR remained stable at values below 5 g L(-1). The results demonstrate that JPC can be used as sole substrate for anaerobic digestion up to an OLR of 2.4 g(VS) l(-1) day(-1). The addition of IA has effectively decreased the H(2)S content in the biogas and has improved the stability of the anaerobic process and the biogas quality.

  19. Purification and partial characterization of low molecular weight vicilin-like glycoprotein from the seeds of Citrullus lanatus.

    PubMed

    Yadav, Sushila; Tomar, Anil Kumar; Jithesh, O; Khan, Meraj Alam; Yadav, R N; Srinivasan, A; Singh, Tej P; Yadav, Savita

    2011-12-01

    The watermelon (Citrullus lanatus) seeds are highly nutritive and contain large amount of proteins and many beneficial minerals such as magnesium, calcium, potassium, iron, phosphorous, zinc etc. In various parts of the world, C. lanatus seed extracts are used to cure cancer, cardiovascular diseases, hypertension, and blood pressure. C. lanatus seed extracts are also used as home remedy for edema and urinary tract problems. In this study, we isolated protein fraction of C. lanatus seeds using various protein separation methods. We successfully purified a low molecular weight vicilin-like glycoprotein using chromatographic methods followed by SDS-PAGE and MALDI-TOF/MS identification. This is the first report of purification of a vicilin like polypeptide from C. lanatus seeds. In next step, we extracted mRNA from immature seeds and reverse transcribed it using suitable forward and reverse primers for purified glycoprotein. The PCR product was analysed on 1% agarose gel and was subsequently sequenced by Dideoxy DNA sequencing method. An amino acid translation of the gene is in agreement with amino acid sequences of the identified peptides.

  20. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures.

    PubMed

    Wu, Wei; Zhang, Shaofeng; Xiao, Xiangheng; Zhou, Juan; Ren, Feng; Sun, Lingling; Jiang, Changzhong

    2012-07-25

    Mesoporous spindlelike iron oxide/ZnO core-shell heterostructures are successfully fabricated by a low-cost, surfactant-free, and environmentally friendly seed-mediate strategy with the help of postannealing treatment. The material composition and stoichiometry, as well as these magnetic and optical properties, have been examined and verified by means of high-resolution transmission electron microscopy and X-ray diffraction, the thickness of ZnO layer can be simply tailored by the concentration of zinc precursor. Considering that both α-Fe2O3 and ZnO are good photocatalytic materials, we have investigated the photodegradation performances of the core-shell heterostructures using organic dyes Rhodamin B (RhB). It is interesting to find that the as-obtained iron oxides/ZnO core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to the as-used α-Fe2O3 seeds and commercial TiO2 products (P25), mainly owing to the synergistic effect between the narrow and wide bandgap semiconductors and effective electron-hole separation at the interfaces of iron oxides/ZnO.

  1. Geographic consistency and variation in conflicting selection generated by pollinators and seed predators.

    PubMed

    Sun, Shi-Guo; Armbruster, W Scott; Huang, Shuang-Quan

    2016-08-01

    Floral traits that attract pollinators may also attract seed predators, which, in turn, may generate conflicting natural selection on such traits. Although such selection trade-offs are expected to vary geographically, few studies have investigated selection mediated by pollinators and seed predators across a geographic mosaic of environments and floral variation. Floral traits were investigated in 14 populations of the bumble-bee-pollinated herb, Pedicularis rex, in which tubular flowers are subtended by cupular bracts holding rain water. To study potentially conflicting selection on floral traits generated by pollinators and florivores, stigmatic pollen loads, initial seed set, pre-dispersal seed predation and final viable seed production were measured in 12-14 populations in the field. Generalized Linear Model (GLM) analyses indicated that the pollen load on stigmas was positively related to the exsertion of the corolla beyond the cupular bracts and size of the lower corolla lip, but so too was the rate of seed predation, creating conflicting selection on both floral traits. A geographic mosaic of selection mediated by seed predators, but not pollinators, was indicated by significant variation in levels of seed predation and the inclusion of two-, three- and four-way interaction terms between population and seed predation in the best model [lowest corrected Akaike Information Criterion (AICc)] explaining final seed production. These results indicate opposing selection in operation: pollinators generated selection for greater floral exsertion beyond the bracts, but seed predators generated selection for reduced exsertion above the protective pools of water, although the strength of the latter varied across populations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muryn, J; Wilkinson, D

    Purpose: The purpose of this work is to evaluate a method for confirming source strength of I-125 seeds in a bulk assay while maintaining sterility and time efficiency. Methods: The I-125 seeds used in this study (STM 1251, Bard Brachytherapy, Inc.) were available as loose seeds or linked in 3, 4, or 5 seed configurations. A third party 10% assay (NIST traceable) is provided. Source strengths ranging from 0.395 to 0.504 U were available for this study. A stand was built out of aluminum to hold an exposure meter (Inovision (Fluke) 451P) at 25 cm above the I-125 sources tomore » measure the exposure rate. Three different seed configurations were measured: loose, linked, and loaded needles (Bard FastFil Seed Implant Needle). The measurements were made in an operating room, and a sterile sheet was used under the non-sterile aluminum stand. Seeds and needles were placed in a sterile tray. Results: One hundred forty-two loose seeds in 5 batches (0.395, 0.395, 0.409, 0.444, 0.444 U/seed) and 902 seeds in 7 batches containing various strands (0.444, 0.444,.0444, 0.466, 0.466, 0.504, 0.504 U/seed) were measured. The average exposure rate per unit activity was measured to be 0.593 mR per hr per U with a standard deviation of 0.016. The Result for loaded needles was 0.261 mR per hr per U with a standard deviation of 0.014. Once the apparatus is set up, measurements of 180 linked sources as supplied in the Bard package requires only a few minutes. Conclusion: The proposed method can confirm the activity of a batch of loose or stranded I-125 seeds within a range of 5%.« less

  3. Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Ambrico, Paolo F.; Šimek, Milan; Morano, Massimo; De Miccolis Angelini, Rita M.; Minafra, Angelantonio; Trotti, Pasquale; Ambrico, Marianna; Prukner, Václav; Faretra, Francesco

    2017-08-01

    Naturally contaminated basil seeds were treated by a surface dielectric barrier discharge driven in the humid air by an amplitude modulated AC high voltage to avoid heat shock. In order to avoid direct contact of seeds with microdischarge filaments, the seeds to be treated were placed at sufficient distance from the surface discharge. After treatment, the seeds were analyzed in comparison with control samples for their microbial contamination as well as for the capability of germination and seedling growth. Moreover, chemical modification of seed surface was observed through the elemental energy dispersive x-ray analysis and wettability tests. We found that treatment applied at 20% duty cycle (effective discharge duration up to 20 s) significantly decreases microbial load without reducing the viability of the seeds. On the other side, seedling growth was considerably accelerated after the treatment, and biometric growth parameters of seedlings (total length, weight, leaf extension) considerably increased compared to the controls. Interestingly, scanning electron microscopy images taken for the different duration of treatment revealed that seed radicle micropylar regions underwent significant morphological changes while the coat was substantially undamaged. Inside the seed, the embryo seemed to be well preserved while the endosperm body was detached from the epithelial tegument. A total of 9 different genera of fungi were recovered from the analyzed seeds. Scanning electron microscopy images revealed that conidia were localized especially in the micropylar region, and after plasma treatment, most of them showed substantial damages. Therefore, the overall effect of the treatment of naturally contaminated seeds by reactive oxygen and nitrogen species produced by plasma and the consequent changes in surface chemistry and microbial load can significantly improve seed vigor.

  4. On the use of Kodak CR film for quality assurance of needle loading in I-125 seed prostate brachytherapy.

    PubMed

    Fog, L S; Nicholls, R; van Doom, T

    2007-09-01

    Low dose rate brachytherapy using implanted I-125 seeds as a monotherapy for prostate cancer is now in use in many hospitals. In contrast to fractionated brachytherapy treatments, where the effect of incorrect positioning of the source in one treatment fraction can be diminished by correcting the position in subsequent fractions, the I-125 seed implant is permanent, making correct positioning of the seeds in the prostate essential. The seeds are inserted into the prostate using needles. Correct configuration of seeds in the needles is essential in order to deliver the planned treatment. A comparison of an autoradiograph obtained by exposing film to the seed-loaded needles with the patient treatment plan is a valuable quality assurance tool. However, the time required to sufficiently expose Kodak XOMAT V film, currently used in this department is significant. This technical note presents the use of Kodak CR film for acquisition of the radiograph. The digital radiograph can be acquired significantly faster, has superior signal-to-noise ratio and contrast and has the usual benefits of digital film, e.g. a processing time which is shorter than that required for non-digital film, the possibility of image manipulation, possibility of paper printing and electronic storage.

  5. Left ventricular torsional mechanics and myocardial iron load in beta-thalassaemia major: a potential role of titin degradation.

    PubMed

    Chen, Mei-Pian; Li, Shu-Na; Lam, Wendy W M; Ho, Yuen-Chi; Ha, Shau-Yin; Chan, Godfrey C F; Cheung, Yiu-Fai

    2014-04-12

    Iron may damage sarcomeric proteins through oxidative stress. We explored the left ventricular (LV) torsional mechanics in patients with beta-thalassaemia major and its relationship to myocardial iron load. Using HL-1 cell and B6D2F1 mouse models, we further determined the impact of iron load on proteolysis of the giant sarcomeric protein titin. In 44 thalassaemia patients aged 25 ± 7 years and 38 healthy subjects, LV torsion and twisting velocities were determined at rest using speckle tracking echocardiography. Changes in LV torsional parameters during submaximal exercise testing were further assessed in 32 patients and 17 controls. Compared with controls, patients had significantly reduced LV apical rotation, torsion, systolic twisting velocity, and diastolic untwisting velocity. T2* cardiac magnetic resonance findings correlated with resting diastolic untwisting velocity. The increments from baseline and resultant LV torsion and systolic and diastolic untwisting velocities during exercise were significantly lower in patients than controls. Significant correlations existed between LV systolic torsion and diastolic untwisting velocities in patients and controls, both at rest and during exercise. In HL-1 cells and ventricular myocardium of B6D2F1 mice overloaded with iron, the titin-stained pattern of sarcomeric structure became disrupted. Gel electrophoresis of iron-overloaded mouse myocardial tissue further showed significant decrease in the amount of titin isoforms and increase in titin degradation products. Resting and dynamic LV torsional mechanics is impaired in patients with beta-thalassaemia major. Cell and animal models suggest a potential role of titin degradation in iron overload-induced alteration of LV torsional mechanics.

  6. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    PubMed

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Self-pollen interference is absent in wild radish (Raphanus raphanistrum, Brassicaceae), a species with sporophytic self-incompatibility.

    PubMed

    Koelling, Vanessa A; Karoly, Keith

    2007-05-01

    Explaining the diversity of mating systems and floral forms in flowering plants is a long-standing concern of evolutionary biologists. One topic of interest is the conditions under which self-pollination can interfere with seed set for flowering plants with a self-incompatibility system. We investigated the effect of self-pollen interference for wild radish, Raphanus raphanistrum, which has sporophytic self-incompatibility. We performed pollinations and determined seed set for plants grown in the greenhouse, using pollen mixtures representing either self- with outcross-pollen or outcross-pollen alone. Stigmas were collected for a subset of pollinated flowers to determine the number of pollen grains applied. Average seed set for the self/cross (5.13 seeds/pollination) and cross treatments (5.09 seeds/pollination) did not differ significantly. Stigmatic pollen loads averaged around 700 grains, an amount close to observed natural pollen loads on R. raphanistrum. We concluded that for R. raphanistrum in natural populations, self-pollen is unlikely to interfere with outcross-pollen success. This study is the first to investigate effects of self-pollen interference on seed set for a homomorphic species with sporophytic self-incompatibility where rejection occurs at the stigmatic surface.

  8. Sources of metal loads to the Alamosa River and estimation of seasonal and annual metal loads for the Alamosa River basin, Colorado, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert

    2002-01-01

    Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream site on the Alamosa River. These data indicate that metal partitioning and metal deposition from the water column to the streambed may be occurring in Exposure Areas 3a, 3b, and 3c. Metals that are deposited to the streambed probably are resuspended and transported downstream during high streamflow periods such as during snowmelt runoff and rainfall runoff. Seasonal and annual dissolved and totalrecoverable aluminum, copper, iron, and zinc loads> for 1995?97 were estimated for Exposure Areas 1, 2, 3a, 3b, and 3c. During 1995?97, many tons of metals were transported annually through each exposure area. Generally, the largest estimated annual totalrecoverable metal mass for most metals was in 1995. The smallest estimated annual total-recoverable metal mass was in 1996, which also had the smallest annual streamflow. In 1995 and 1997, more than 60 percent of the annual total-recoverable metal loads generally was transported through each exposure area during the snowmelt period. A comparison of the estimated storm load at each site to the corresponding annual load indicated that storms contribute less than 2 percent of the annual load at any site and about 5 to 20 percent of the load during the summer-flow period.

  9. A Survey of Plant Iron Content—A Semi-Systematic Review

    PubMed Central

    Ancuceanu, Robert; Dinu, Mihaela; Hovaneţ, Marilena Viorica; Anghel, Adriana Iuliana; Popescu, Carmen Violeta; Negreş, Simona

    2015-01-01

    Iron is an essential mineral nutrient for all living organisms, involved in a plurality of biological processes. Its deficit is the cause of the most common form of anemia in the world: iron deficiency anemia (IDA). This paper reviews iron content in various parts of 1228 plant species and its absorption from herbal products, based on data collected from the literature in a semi-systematic manner. Five hundred genera randomly selected from the Angiosperms group, 215 genera from the Pteridophytes groups and all 95 Gymnosperm genera as listed in the Plant List version 1.1 were used as keywords together with the word “iron” in computerized searches. Iron data about additional genera returned by those searches were extracted and included in the analysis. In total, iron content values for a number of 1228 species, 5 subspecies, and 5 varieties were collected. Descriptive and inferential statistics were used to compare iron contents in various plant parts (whole plant, roots, stems, shoots, leaves, aerial parts, flowers, fruits, seeds, wood, bark, other parts) and exploratory analyses by taxonomic groups and life-forms were carried out. The absorption and potential relevance of herbal iron for iron supplementation are discussed. PMID:26690470

  10. [Iron deficiency and pica].

    PubMed

    Muñoz, J A; Marcos, J; Risueño, C E; de Cos, C; López, R; Capote, F J; Martín, M V; Gil, J L

    1998-02-01

    To study the relationship between pica and iron-lack anaemia in a series of iron-deficiency patients in order to establish the pathogenesis of such relationship. Four-hundred and thirty-three patients were analysed. Pica was studied by introducing certain diet queries into the clinical history. All patients received oral iron and were periodically controlled with the usual clinico-haematological procedures. Pica was present in 23 patients (5.3%). Eight nourishing (namely, coffee grains, almonds, chocolate, ice, lettuce, carrots, sunflower seeds and bread) and 2 non-nourishing (clay and paper) substances were involved. A second episode of pica appeared in 9 cases upon relapsing of iron deficiency. Both anaemia and pica were cured by etiologic and substitutive therapy in all instances. No clear correlation was found with either socio-economic status or pathogenetic causes of iron deficiency and pica, and no haematological differences were seen between patients with pica and those without this alteration. (1) The pathogenesis of pica is unclear, although it appears unrelated to the degree of iron deficiency. (2) According to the findings in this series, pica seems a consequence of iron deficiency rather than its cause. (3) Adequate therapy can cure both conditions, although pica may reappear upon relapse of iron deficiency.

  11. Unconventional protein sources: apricot seed kernels.

    PubMed

    Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M

    1981-09-01

    Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.

  12. Streamflow, Water Quality, and Metal Loads from Chat Leachate and Mine Outflow into Tar Creek, Ottawa County, Oklahoma, 2005

    USGS Publications Warehouse

    Cope, Caleb C.; Becker, Mark F.; Andrews, William J.; DeHay, Kelli

    2008-01-01

    Picher mining district is an abandoned lead and zinc mining area located in Ottawa County, northeastern Oklahoma. During the first half of the 20th century, the area was a primary producer of lead and zinc in the United States. Large accumulations of mine tailings, locally referred to as chat, produce leachate containing cadmium, iron, lead, and zinc that enter drainages within the mining area. Metals also seep to local ground water and streams from unplugged shafts, vent holes, seeps, and abandoned mine dewatering wells. Streamflow measurements were made and water-quality samples were collected and analyzed from two locations in Picher mining district from August 16 to August 29 following a rain event beginning on August 14, 2005, to determine likely concentrations and loads of metals from tailings and mine outflows in the part of Picher mining district near Tar Creek. Locations selected for sampling included a tailings pile with an adjacent mill pond, referred to as the Western location, and a segment of Tar Creek from above the confluence with Lytle Creek to below Douthat bridge, referred to as Tar Creek Study Segment. Measured streamflow was less than 0.01 cubic foot per second at the Western location, with streamflow only being measurable at that site on August 16, 2005. Measured streamflows ranged from <0.01 to 2.62 cubic feet per second at Tar Creek Study Segment. One water-quality sample was collected from runoff at the Western location. Total metals concentrations in that sample were 95.3 micrograms per liter cadmium, 182 micrograms per liter iron, 170 micrograms per liter lead, 1,760 micrograms per liter zinc. Total mean metals concentrations in 29 water-quality samples collected from Tar Creek Study Segment from August 16-29, 2005, were 21.8 micrograms per liter cadmium, 7,924 micrograms per liter iron, 7.68 micrograms per liter lead, and 14,548 micrograms per liter zinc. No metals loading values were calculated for the Western location. Metals loading to Tar Creek Study Segment were calculated based on instantaneous streamflow and metals concentrations. Total metals loading to Tar Creek from chat leachate ranged from 0.062 to 0.212 pound per day of cadmium, <0.001 to 0.814 pound per day of iron, 0.003 to 0.036 pound per day of lead, and 10.6 to 47.9 pounds per day of zinc. Metals loading to Tar Creek Study Segment from chat leachate and mine outflow was determined by subtracting values at appropriate upstream and downstream stations. Four sources of calculated metal loads are from Tar Creek and Lytle Creek entering the study segment, from chat pile leachate, and from old Lytle Creek mine outflow. Less than 1 percent of total and dissolved iron loading came from chat leachate, while about 99 percent of total iron loading came from mine outflow. Total and dissolved lead loading percentages from chat leachate were greater than total and dissolved lead loading percentages from mine outflow. About 19 percent of total zinc loading came from chat leachate, about 29 percent of total zinc loading came from mine outflow, and about 52 percent of total zinc loading came from Lytle Creek.

  13. Mitochondrial iron chelation ameliorates cigarette-smoke induced bronchitis and emphysema in mice

    PubMed Central

    Cloonan, Suzanne M.; Glass, Kimberly; Laucho-Contreras, Maria E.; Bhashyam, Abhiram R.; Cervo, Morgan; Pabón, Maria A.; Konrad, Csaba; Polverino, Francesca; Siempos, Ilias I.; Perez, Elizabeth; Mizumura, Kenji; Ghosh, Manik C.; Parameswaran, Harikrishnan; Williams, Niamh C.; Rooney, Kristen T.; Chen, Zhi-Hua; Goldklang, Monica P.; Yuan, Guo-Cheng; Moore, Stephen C.; Demeo, Dawn L.; Rouault, Tracey A.; D’Armiento, Jeanine M.; Schon, Eric A.; Manfredi, Giovanni; Quackenbush, John; Mahmood, Ashfaq; Silverman, Edwin K.; Owen, Caroline A.; Choi, Augustine M.K.

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element binding protein 2 (IRP2) as an important COPD susceptibility gene, with IRP2 protein increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RIP-Seq, RNA-Seq, gene expression and functional enrichment clustering analysis, we identified IRP2 as a regulator of mitochondrial function in the lung. IRP2 increased mitochondrial iron loading and cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice with higher mitochondrial iron loading had impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas synthesis of cytochrome c oxidase (Sco2)-deficient mice with reduced COX were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD. PMID:26752519

  14. Timed non-transferrin bound iron determinations probe the origin of chelatable iron pools during deferiprone regimens and predict chelation response

    PubMed Central

    Aydinok, Yesim; Evans, Patricia; Manz, Chantal Y.; Porter, John B.

    2012-01-01

    Background Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transferrin bound iron to explore the origin of chelatable iron and to predict clinical response to deferiprone. Design and Methods Non-transferrin bound iron levels were determined at baseline and after 1 week of chelation in 32 patients with thalassemia major receiving deferiprone alone, desferrioxamine alone, or a combination of the two chelators. Samples were taken at baseline, following a 2-week washout without chelation, and after 1 week of chelation, this last sample being taken 10 hours after the previous evening dose of deferiprone and, in those receiving desferrioxamine, 24 hours after cessation of the overnight subcutaneous infusion. Absolute or relative non-transferrin bound iron levels were related to transfusional iron loading rates, liver iron concentration, 24-hour urine iron and response to chelation therapy over the subsequent year. Results Changes in non-transferrin bound iron at week 1 were correlated positively with baseline liver iron, and inversely with transfusional iron loading rates, with deferiprone-containing regimens but not with desferrioxamine monotherapy. Changes in week 1 non-transferrin bound iron were also directly proportional to the plasma concentration of deferiprone-iron complexes and correlated significantly with urine iron excretion and with changes in liver iron concentration over the next 12 months. Conclusions The widely used assay chosen for this study detects both endogenous non-transferrin bound iron and the iron complexes of deferiprone. The week 1 increments reflect chelatable iron derived both from liver stores and from red cell catabolism. These increments correlate with urinary iron excretion and the change in liver iron concentration over the subsequent year thus predicting response to deferiprone-containing chelation regimes. This clinical study was registered at clinical.trials.gov with the number NCT00350662. PMID:22180427

  15. Mixed pollen load and late-acting self-incompatibility flexibility in Adenocalymma peregrinum (Miers) L.G. Lohmann (Bignonieae: Bignoniaceae).

    PubMed

    Duarte, M O; Mendes-Rodrigues, C; Alves, M F; Oliveira, P E; Sampaio, D S

    2017-03-01

    Mixed cross and self-pollen load on the stigma (mixed pollination) of species with late-acting self-incompatibility system (LSI) can lead to self-fertilized seed production. This "cryptic self-fertility" may allow selfed seedling development in species otherwise largely self-sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early-acting inbreeding depression in putative selfed seeds from mixed pollinations. Experimental pollinations were carried out in a natural population. Fruit and seed set from self-, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments. Our results confirm self-incompatibility, and fruit set from cross-pollinations was three-fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self- than cross-fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross-pollinations is probably due to ovule discounting caused by self-fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross-pollinations, and the non-viable seeds from mixed pollinations showed one-third of the mass of those from cross-pollinations. The great number of empty seeds, lower germinability, lower mass of non-viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early-acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self-fertilized seedling establishment in A. peregrinum. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    PubMed

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    NASA Astrophysics Data System (ADS)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  18. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.).

    PubMed

    Guha, Titir; Ravikumar, K V G; Mukherjee, Amitava; Mukherjee, Anita; Kundu, Rita

    2018-04-12

    Engineered nanoparticles are utilized in agriculture for various purposes. They can be used as fertilizer, carrier for macro/micro nutrients or priming agents. Various nanoparticles are reported to have toxicity at very high doses, but at optimum concentration, they can be beneficial for plant growth and development. In the present study, low concentrations of nZVI nanoparticles were evaluated for their growth enhancement potential as seed priming agent in an aromatic rice cultivar, Oryza sativa cv. Gobindabhog. Seeds were primed with different concentrations (10, 20, 40, 80, 160 mg L -1 ) of nZVI and allowed to grow for 14 days. Seed germination and seedling growth were studied by assessing physiological, biochemical, and structural parameters at different time points. Maximum activities of hydrolytic and antioxidant enzymes, along with root dehydrogenase enzyme were observed in 20 mg L -1 nZVI primed seeds. Priming with low doses of nZVI increased seedling vigour, as expressed by increased root and shoot length, biomass and photosynthetic pigment content. Our study also confirmed that after 14 days growth, the seedling showed absence of membrane damage, reduction in proline level and anti-oxidant enzyme activities. However, seedlings primed with 160 mg L -1 nZVI suffered oxidative stress. SEM micrographs also revealed damage in root tissue at that concentration. AAS study confirmed uptake of nZVI by the rice plants as maximum level of iron was found in the plants treated with highest concentration (i.e. 160 mg L -1 nZVI). Thus, nZVI at low concentrations can be considered as priming agent of rice seeds for increasing plant vigour. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    PubMed

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  20. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    PubMed Central

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  1. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; ...

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less

  2. Diagnosis and management of transfusion iron overload: The role of imaging

    PubMed Central

    Wood, John C.

    2010-01-01

    The characterization of iron stores is important to prevent and treat iron overload. Serum markers such as ferritin, serum iron, iron binding capacity, transferrin saturation, and nontransferrin-bound iron can be used to follow trends in iron status; however, variability in these markers limits predictive power for any given individual. Liver iron represents the best single marker of total iron balance. Measures of liver iron include biopsy, superconducting quantum interference device, computer tomography, and magnetic resonance imaging (MRI). MRI is the most accurate and widely available noninvasive tool to assess liver iron. The main advantages of MRI include a low-rate of variability between measurements and the ability to assess iron loading in endocrine tissues, the heart and the liver. This manuscript describes the principles, validation, and clinical utility of MRI for tissue iron estimation. PMID:17963249

  3. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  4. Physiology and Pathophysiology of Iron in Hemoglobin-Associated Diseases

    PubMed Central

    Coates, Thomas D

    2016-01-01

    Iron overload and iron toxicity, whether because of increased absorption or iron loading from repeated transfusions, can be major causes of morbidity and mortality in a number of chronic anemias. Significant advances have been made in our understanding of iron homeostasis over the past decade. At the same time, advances in magnetic resonance imaging have allowed clinicians to monitor and quantify iron concentrations non-invasively in specific organs. Furthermore, effective iron chelators are now available, including preparations that can be taken orally. This has resulted in substantial improvement in mortality and morbidity for patients with severe chronic iron overload. This paper reviews the key points of iron homeostasis and attempts to place clinical observations in patients with transfusional iron overload in context with the current understanding of iron homeostasis in humans. PMID:24726864

  5. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium/redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    The effect of acid concentration on the performance of the iron-titanium redox flow cell was studied. When the acidity was increased, open-circuit voltages decreased on the titanium side but load voltages increased due to decreased polarization. The best load voltage occurs when there is high acidity on the titanium side coupled with low acidity on the iron side, but such cells show voltage losses with repeated cycling because of the diffusion of acid through the membrane. No membrane tested has been found capable of maintaining the differences in acidity. Chelating agents show some promise in reducing polarization at the Ti electrode and thus improving energy efficiency.

  6. High-rate behaviour of iron ore pellet

    NASA Astrophysics Data System (ADS)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  7. Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes.

    PubMed

    Shao, Zuo-Hui; Becker, Lance B; Vanden Hoek, Terry L; Schumacker, Paul T; Li, Chang-Qing; Zhao, Danhong; Wojcik, Kim; Anderson, Travis; Qin, Yimin; Dey, Lucy; Yuan, Chun-Su

    2003-06-01

    This study sought to test whether grape seed proanthocyanidin extract (GSPE) attenuates exogenous and endogenous oxidant stress induced in chick cardiomyocytes and whether this cytoprotection is mediated by PKC activation, mito K(ATP) channel opening, NO production, oxidant scavenging, or iron chelating effects. Cells were exposed to hydrogen peroxide (H(2)O(2)) (exogenous oxidant stress, 0.5mM) or antimycin A (endogenous oxidant stress, 100 micro M) for 2h following pretreatment with GSPE at various concentrations for 2h. Cells were also pretreated with GSPE or with inhibitors of PKC (chelerytherine), mito K(ATP) channel (5-hydroxydecanoate), nitric oxide synthase (nitro-L-arginine methyl ester) for 2h. Oxidant stress was measured by 2',7'-dichlorofluorescin diacetate and cell viability was assessed using propidium iodide. Free radical scavenging and iron chelating ability was tested in vitro. GSPE dose-dependently attenuated oxidant formation and significantly improved cell survival and contractile function. However, inhibitors of PKC, mito K(ATP) channel or NO synthase failed to abolish the protective action of GSPE during H(2)O(2) or antimycin A exposure. In vitro studies suggested that GSPE scavenges H(2)O(2), hydroxyl radical and superoxide, and may chelate iron. These results indicate that GSPE confers cardioprotection against exogenous H(2)O(2)- or antimycin A-induced oxidant injury. Its effect does not require PKC, mito K(ATP) channel, or NO synthase, presumably because it acts by reactive oxygen species scavenging and iron chelating directly.

  8. Brain transcriptome perturbations in the Hfe(-/-) mouse model of genetic iron loading.

    PubMed

    Johnstone, Daniel; Graham, Ross M; Trinder, Debbie; Delima, Roheeth D; Riveros, Carlos; Olynyk, John K; Scott, Rodney J; Moscato, Pablo; Milward, Elizabeth A

    2012-04-11

    Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene variants may affect brain function and modify risks of brain disease. To investigate how disruption of HFE influences brain transcript levels, we used microarray and real-time reverse transcription polymerase chain reaction to assess the brain transcriptome in Hfe(-/-) mice relative to wildtype AKR controls (age 10 weeks, n≥4/group). The Hfe(-/-) mouse brain showed numerous significant changes in transcript levels (p<0.05) although few of these related to proteins directly involved in iron homeostasis. There were robust changes of at least 2-fold in levels of transcripts for prominent genes relating to transcriptional regulation (FBJ osteosarcoma oncogene Fos, early growth response genes), neurotransmission (glutamate NMDA receptor Grin1, GABA receptor Gabbr1) and synaptic plasticity and memory (calcium/calmodulin-dependent protein kinase IIα Camk2a). As previously reported for dietary iron-supplemented mice, there were altered levels of transcripts for genes linked to neuronal ceroid lipofuscinosis, a disease characterized by excessive lipofuscin deposition. Labile iron is known to enhance lipofuscin generation which may accelerate brain aging. The findings provide evidence that iron loading disorders can considerably perturb levels of transcripts for genes essential for normal brain function and may help explain some of the neurologic signs and symptoms reported in hemochromatosis patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Accuracy of iron loss estimation in induction motors by using different iron loss models

    NASA Astrophysics Data System (ADS)

    Štumberger, B.; Hamler, A.; Goričan, V.; Jesenik, M.; Trlep, M.

    2004-05-01

    The paper presents iron loss estimation in a three-phase induction motor by using different iron loss models for the posterior iron loss calculation. The iron losses were determined by using modeled properties of used electrical steel and calculated distribution of magnetic induction B(t) in all parts of the motor by using 2D finite element software for a complete cycle of field variation. The comparison between estimated and measured core losses for a 4kW induction motor at no-load in dependency on supply voltage is given.

  10. Quality characteristics of bread and cookies enriched with debittered Moringa oleifera seed flour.

    PubMed

    Ogunsina, B S; Radha, C; Indrani, D

    2011-03-01

    The effects of replacing wheat flour with 0-15% debittered moringa seed (DBMS) flour on the dough rheology of wheat flour and physical, sensory and chemical properties of bread were studied. Incorporation of an increasing amount of DBMS from 0 to 15% decreased farinograph water absorption, dough stability, amylograph peak viscosity and overall quality of bread. The bread with 10% DBMS had a typical moringa seed taste and was acceptable. Addition of combination of additives improved the dough strength and quality of bread with 10% DBMS flour. Replacement of wheat flour with 10%, 20% and 30% DBMS grits was found to affect cookies quality. Cookies with 20% DBMS grits had the nutty taste of moringa seeds and were acceptable. Bread with 10% DBMS flour and cookies with 20% DBMS grits had more protein, iron and calcium. Incorporating moringa seeds in baked foods may be exploited as a means of boosting nutrition in Africa and Asia where malnutrition is prevalent.

  11. Early-acting inbreeding depression and reproductive success in the highbush blueberry, Vaccinium corymbosum L.

    PubMed

    Krebs, S L; Hancock, J F

    1990-06-01

    Tetraploid Vaccinium corymbosum genotypes exhibit wide variability in seed set following self- and cross-pollinations. In this paper, a post-zygotic mechanism (seed abortion) under polygenic control is proposed as the basis for fertility differences in this species. A pollen chase experiment indicated that self-pollen tubes fertilize ovules, but are also 'outcompeted' by foreign male gametes in pollen mixtures. Matings among cultivars derived from a pedigree showed a linear decrease in seed number per fruit, and increase in seed abortion, with increasing relatedness among parents. Selfed (S1) progeny from self-fertile parents were largely self-sterile. At zygotic levels of inbreeding of F>0.3 there was little or no fertility, suggesting that an inbreeding threshold regulates reproductive success in V. corymbosum matings. Individuals below the threshold are facultative selfers, while those above it are obligate outcrossers. Inbreeding also caused a decrease in pollen viability, and reduced female fertility more rapidly than male fertility. These phenomena are discussed in terms of two models of genetic load: (1) mutational load - homozygosity for recessive embryolethal or sub-lethal mutations and (2) segregational load - loss of allelic interactions essential for embryonic vigor. Self-infertility in highbush blueberries is placed in the context of 'late-acting' self-incompatibility versus 'early-acting' inbreeding depression in angiosperms.

  12. Uranium fate in wetland mesocosms: Effects of plants at two ...

    EPA Pesticide Factsheets

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (µ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (µ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ~4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. There are significant uncertainties regarding the environmental fate of uranium (U) and efforts to minimize U exposures require understanding of its mobility in environmental systems. Much research has focused on sequestering U as solids within groundwater aquifers, where localized risks can be controlled.1 Subsurface sequestration limits t

  13. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.

    2017-06-01

    Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

  14. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  15. Biologically tunable reactivity of energetic nanomaterials using protein cages.

    PubMed

    Slocik, Joseph M; Crouse, Christopher A; Spowart, Jonathan E; Naik, Rajesh R

    2013-06-12

    The performance of aluminum nanomaterial based energetic formulations is dependent on the mass transport, diffusion distance, and stability of reactive components. Here we use a biologically inspired approach to direct the assembly of oxidizer loaded protein cages onto the surface of aluminum nanoparticles to improve reaction kinetics by reducing the diffusion distance between the reactants. Ferritin protein cages were loaded with ammonium perchlorate (AP) or iron oxide and assembled with nAl to create an oxidation-reduction based energetic reaction and the first demonstration of a nanoscale biobased thermite material. Both materials showed enhanced exothermic behavior in comparison to nanothermite mixtures of bulk free AP or synthesized iron oxide nanopowders prepared without the use of ferritin. In addition, by utilizing a layer-by-layer (LbL) process to build multiple layers of protein cages containing iron oxide and iron oxide/AP on nAl, stoichiometric conditions and energetic performance can be optimized.

  16. Iron active electrode and method of making same

    DOEpatents

    Jackovitz, John F.; Seidel, Joseph; Pantier, Earl A.

    1982-10-26

    An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

  17. Implantable chemothermal brachytherapy seeds: A synergistic approach to brachytherapy using polymeric dual drug delivery and hyperthermia for malignant solid tumor ablation.

    PubMed

    Aguilar, Ludwig Erik; Thomas, Reju George; Moon, Myeong Ju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2018-08-01

    Chemothermal brachytherapy seeds have been developed using a combination of polymeric dual drug chemotherapy and alternating magnetic field induced hyperthermia. The synergistic effect of chemotherapy and hyperthermia brachytherapy has been investigated in a way that has never been performed before, with an in-depth analysis of the cancer cell inhibition property of the new system. A comprehensive in vivo study on athymic mice model with SCC7 tumor has been conducted to determine optimal arrays and specifications of the chemothermal seeds. Dual drug chemotherapy has been achieved via surface deposition of polydopamine that carries bortezomib, and also via loading an acidic pH soluble hydrogel that contains 5-Fluorouracil inside the chemothermal seed; this increases the drug loading capacity of the chemothermal seed, and creates dual drug synergism. An external alternating magnetic field has been utilized to induce hyperthermia conditions, using the inherent ferromagnetic property of the nitinol alloy used as the seed casing. The materials used in this study were fully characterized using FESEM, H 1 NMR, FT-IR, and XPS to validate their properties. This new approach to experimental cancer treatment is a pilot study that exhibits the potential of thermal brachytherapy and chemotherapy as a combined treatment modality. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Changes in phytates and HCl extractability of calcium, phosphorus, and iron of soaked, dehulled, cooked, and sprouted pigeon pea cultivar (UPAS-120).

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2002-01-01

    UPAS-120, a high yielding and early maturing variety of pigeon peas released by the Department of Plant Breeding, CCS Haryana Agricultural University, Hisar contained a significant amount of phytic acid, i.e. 886 mg/100 g. When it was subjected to various domestic processing and cooking methods viz. soaking (6, 12, 18 h), dehulling, ordinary as well as pressure cooking and germination (24, 36 and 48 h), a drastic decrease in level of phytic acid with a remarkable increase in the HCl-extractability of mono, divalent, and trivalent ions, like calcium, phosphorus, and iron occurred. Germination (48 h) was found to be the best method for decreasing the phytic acid content, i.e. 35 to 39 percent less than the control and significantly (p < 0.05) increasing the non-phytate phosphorus and HCl-extractable phosphorus. Pressure cooking of soaked-dehulled pigeon pea also rendered equally good results. The calcium, phosphorus, and iron contents of pigeon pea seeds were 197.3, 473.1, and 9.91 mg/100 g, respectively; some losses varying from 3 to 9 percent were noticed when the legume was subjected to soaking, cooking, and germination but the maximum losses, i.e. 23 percent, occurred when the seeds were dehulled. However, HCl-extractability of Ca, P, and Fe improved to a significant extent when the pigeon pea seeds were soaked, soaked-dehulled, cooked and sprouted which may have been due to decrease in the phytate content followed by processing and cooking. The significant negative correlations between the phytic acid and HCl-extractability of minerals of processed pigeon pea strengthens these findings.

  19. [Nutrition-related problems in pet birds].

    PubMed

    Schoemaker, N J; Lumeij, J T; Dorrestein, G M; Beynen, A C

    1999-01-15

    The detection and correction of dietary errors plays an important role in avian medicine. Examples of diseases caused in part by a deficiency or abundance of a nutrient include hypovitaminosis A in birds of the parrot (Psittacidae) family, hypocalcemia in the African grey parrot, goitre in budgerigars, and iron storage diseases in the minah and toucan. Hypovitaminosis A can lead to metaplasia of mucous membranes, which in turn can lead to chronic rhinitis and respiratory fungal infections. Vitamin A deficiency is caused by feeding a seed based diet. Seed mixtures are often deficient in calcium, and nutritional secondary hyperparathyroidism can develop if an additional source of calcium, in the form of ground shells, is not provided. Tetanic symptoms as a result of hypocalcemia are only seen in the African grey parrot and the timneh parrot. Over supplementation of vitamin D gives rise to poisoning with polyuria and polydipsia as common initial symptoms. The exact cause of iron storage diseases in toucans and minahs is not known. A diet low in iron and vitamin C is advised as therapy. Goitre can develop in budgerigars as a result of iodine-deficient drinking water and provision of a seed mixture based on millet. An unbalanced or multideficient diet can give rise to reproductive disorders, abnormal feathers, or infections as a result of diminished resistance. It is usually not possible to relate the cause of these diseases in a simple way to the composition of the diet. Obesity, which occurs in the galah, Amazon parrot, and budgerigars, can lead to fatty liver and lipoma. A gradual reduction in weight, by means of calorie restriction, is recommended. Commercially available nutritionally balanced bird food is often effective.

  20. Binding of iron, zinc, and lead ions from aqueous solution by shea butter (Butyrospermun Parkii) seed husks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eromosele, I.C.; Otitolaye, O.O.

    1994-08-01

    Several workers have reported on the potential use of agricultural products as substrates for the removal of metal ions from aqueous solutions. These studies demonstrated that considerable amounts of metal ions can be removed from aqueous solutions by cellulosic materials. The merit in the use of the latter is their relative abundance and cheapness compared to conventional materials for the removal of toxic metal ions from waste-waters. In some of the studies, chemical modification of cellulosic materials significantly enhanced their ion-binding properties, providing greater flexibility in their applications to a wide range of heavy metal ions. Shea butter plant (Butyrospermunmore » Parkii) normally grows in the wild within the guinea-savana zone of Nigeria. The seeds are a rich source of edible oils and the husks are usually discarded. The husk is thus available in abundance and, hence, there is reason to examine its ion-binding properties for its possible application in the removal of toxic metal ions from industrial waste-waters. This paper reports on preliminary studies of the sorption of iron, zinc and lead ions from aqueous solution by modified and unmodified shea butter seed husks. 8 refs., 5 figs., 1 tab.« less

  1. Transfusional iron overload in children with sickle cell anemia on chronic transfusion therapy for secondary stroke prevention.

    PubMed

    Kwiatkowski, Janet L; Cohen, Alan R; Garro, Julian; Alvarez, Ofelia; Nagasubramanian, Ramamorrthy; Sarnaik, Sharada; Thompson, Alexis; Woods, Gerald M; Schultz, William; Mortier, Nicole; Lane, Peter; Mueller, Brigitta; Yovetich, Nancy; Ware, Russell E

    2012-02-01

    Chronic transfusion reduces the risk of recurrent stroke in children with sickle cell anemia (SCA) but leads to iron loading. Management of transfusional iron overload in SCA has been reported as suboptimal [1], but studies characterizing monitoring and treatment practices for iron overload in children with SCA, particularly in recent years with the expansion of chelator options, are lacking. We investigated the degree of iron loading and treatment practices of 161 children with SCA receiving transfusions for a history of stroke who participated in the Stroke with Transfusions Changing to Hydroxyurea (SWiTCH) trial. Data obtained during screening, including past and entry liver iron concentration (LIC) measurements, ferritin values, and chelation were analyzed. The mean age at enrollment was 12.9 ± 4 years and the mean duration of transfusion was 7 ± 3.8 years. Baseline LIC (median 12.94 mg/g dw) and serum ferritin (median 3,164 ng/mL) were elevated. Chelation therapy was initiated after a mean of 2.6 years of transfusions. At study entry, 137 were receiving chelation, most of whom (90%) were receiving deferasirox. This study underscores the need for better monitoring of iron burden with timely treatment adjustments in chronically transfused children with SCA.

  2. Fractional solubility of aerosol iron: Synthesis of a global-scale data set

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.; Baker, Alexander R.; Powell, Claire F.

    2012-07-01

    Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool - the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.

  3. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  4. Gene co-expression networks shed light into diseases of brain iron accumulation.

    PubMed

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Omega 3 Chia seed loading as a means of carbohydrate loading.

    PubMed

    Illian, Travis G; Casey, Jason C; Bishop, Phillip A

    2011-01-01

    The purpose of this study was to determine if Omega 3 Chia seed loading is a viable option for enhancing sports performance in events lasting >90 minutes and allow athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids. It has been well documented that a high dietary carbohydrate (CHO) intake for several days before competition is known to increase muscle glycogen stores resulting in performance improvements in events lasting >90 minutes. This study compared performance testing results between 2 different CHO-loading treatments. The traditional CHO-loading treatment served as the control (100% cals from Gatorade). The Omega 3 Chia drink (50% of calories from Greens Plus Omega 3 Chia seeds, 50% Gatorade) served as the Omega 3 Chia loading drink. Both CHO-loading treatments were based on the subject's body weight and were thus isocaloric. Six highly trained male subjects V(O2)max 47.8-84.2 ml · kg(-1); mean (SD) of V(O2)max 70.3 ml · kg(-1) (13.3) performed a 1-hour run at ∼65% of their V(O2)max on a treadmill, followed by a 10k time trial on a track. There were 2 trials in a crossover counterbalanced repeated-measures design with a 2-week washout between testing sessions to allow the participants to recover from the intense exercise and any effects of the treatment. There was no statistical difference (p = 0.83) between Omega 3 Chia loading (mean 10k time = 37 minutes 49 seconds) and CHO loading (mean = 37 minutes 43 seconds). Under our conditions, Omega 3 Chia loading appears a viable option for enhancing performance for endurance events lasting >90 minutes and allows athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids but offered no performance advantages.

  6. Ductular reaction in hereditary hemochromatosis: the link between hepatocyte senescence and fibrosis progression.

    PubMed

    Wood, Marnie J; Gadd, Victoria L; Powell, Lawrie W; Ramm, Grant A; Clouston, Andrew D

    2014-03-01

    The development of portal fibrosis following the iron loading of hepatocytes is the first stage of fibrogenesis in hereditary hemochromatosis. In other chronic liver diseases it has been shown that a ductular reaction (DR) appears early, correlates with fibrosis progression, and is a consequence of activation of an alternative pathway of hepatocyte replication. This study was designed to investigate the presence of the DR in hemochromatosis and describe its associations. Liver biopsies from 63 C282Y homozygous patients were assessed for hepatic iron concentration (HIC) and graded for iron loading, fibrosis stage, steatosis, and inflammation. Immunostaining allowed quantification of the DR, hepatocyte senescence and proliferation, and analysis incorporated clinical data. Hepatocyte senescence was positively correlated with HIC, serum ferritin, and oxidative stress. A DR was demonstrated and occurred prior to histological fibrosis. HIC, age, hepatocyte senescence and proliferation, portal inflammation, and excessive alcohol consumption all had significant associations with the extent of the DR. In multivariate analysis, iron loading, hepatocyte replicative arrest, and portal inflammation remained independently and significantly associated with the DR. Of factors associated with fibrosis progression, the DR (odds ratio [OR] 10.86 P<0.0001) and the presence of portal inflammation (OR 4.31, P=0.028) remained significant after adjustment for cofactors. The extent of the DR regressed following therapeutic venesection. Iron loading of hepatocytes leads to impaired replication, stimulating the development of the DR in hemochromatosis and this correlates strongly with hepatic fibrosis. Portal inflammation occurs in hemochromatosis and is independently associated with the DR and fibrosis, and thus its role in this disease should be evaluated further. © 2014 by the American Association for the Study of Liver Diseases.

  7. Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart.

    PubMed

    Winter, E M; Hogers, B; van der Graaf, L M; Gittenberger-de Groot, A C; Poelmann, R E; van der Weerd, L

    2010-03-01

    Recently, debate has arisen about the usefulness of cell tracking using iron oxide-labeled cells. Two important issues in determining the usefulness of cell tracking with MRI are generally overlooked; first, the effect of graft rejection in immunocompetent models, and second, the necessity for careful histological confirmation of the fate of the labeled cells in the presence of iron oxide. Therefore, both iron oxide-labeled living as well as dead epicardium-derived cells (EPDCs) were investigated in ischemic myocardium of immunodeficient non-obese diabetic (NOD)/acid: non-obese diabetic severe combined immunodeficient (NOD/scid) mice with 9.4T MRI until 6 weeks after surgery, at which time immunohistochemical analysis was performed. In both groups, voids on MRI scans were observed that did not change in number, size, or localization over time. Based on MRI, no distinction could be made between living and dead injected cells. Prussian blue staining confirmed that the hypointense spots on MRI corresponded to iron-loaded cells. However, in the dead-EPDC recipients, all iron-positive cells appeared to be macrophages, while the living-EPDC recipients also contained engrafted iron-loaded EPDCs. Iron labeling is inadequate for determining the fate of transplanted cells in the immunodeficient host, since dead cells produce an MRI signal indistinguishable from incorporated living cells. (c) 2010 Wiley-Liss, Inc.

  8. Intracellular trafficking of silicon particles and logic-embedded vectors

    NASA Astrophysics Data System (ADS)

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-08-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. Electronic supplementary information (ESI) available: Confocal microscopy image showing internalized negative particles, and movie of the intracellular migration of silicon particles. See DOI: 10.1039/c0nr00227e

  9. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.

    PubMed

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.

  10. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  11. Effect of chemical structure on film-forming properties of seed oils

    USDA-ARS?s Scientific Manuscript database

    The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...

  12. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved. (author)« less

  13. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.« less

  14. Dynamic behaviors of historical wrought iron truss bridges: a field testing case study

    NASA Astrophysics Data System (ADS)

    Dai, Kaoshan; Wang, Ying; Hedric, Andrew; Huang, Zhenhua

    2016-04-01

    The U.S. transportation infrastructure has many wrought iron truss bridges that are more than a century old and still remain in use. Understanding the structural properties and identifying the health conditions of these historical bridges are essential to deciding the maintenance or rebuild plan of the bridges. This research involved an on-site full-scale system identification test case study on the historical Old Alton Bridge (a wrought iron truss bridge built in 1884 in Denton, Texas) using a wireless sensor network. The study results demonstrate a practical and convenient experimental system identification method for historical bridge structures. The method includes the basic steps of the in-situ experiment and in-house data analysis. Various excitation methods are studied for field testing, including ambient vibration by wind load, forced vibration by human jumping load, and forced vibration by human pulling load. Structural responses of the bridge under these different excitation approaches were analyzed and compared with numerical analysis results.

  15. Microstructural fingerprints of phase transitions in shock-loaded iron

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.

  16. Negligible seeding source effect on the final ANAMMOX community under steady and high nitrogen loading rate after enrichment using poly(vinyl alcohol) gel carriers.

    PubMed

    Cho, Kyungjin; Choi, Minkyu; Lee, Seockheon; Bae, Hyokwan

    2018-05-26

    This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m 3 ·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Iron Concentration in Deep Gray Matter Structures is Associated with Worse Visual Memory Performance in Healthy Young Adults

    PubMed Central

    Darnai, Gergely; Nagy, Szilvia Anett; Horváth, Réka; Ács, Péter; Perlaki, Gábor; Orsi, Gergely; Kovács, Norbert; Altbäcker, Anna; Plózer, Enikő; Tényi, Dalma; Weintraut, Rita; Schwarcz, Attila; John, Flóra; Varga, Eszter; Bereczkei, Tamás; Clemens, Zsófia; Komoly, Sámuel; Janszky, József

    2017-01-01

    Abnormally high deposition of iron can contribute to neurodegenerative disorders with cognitive impairment. Since previous studies investigating cognition-brain iron accumulation relationships focused on elderly people, our aim was to explore the association between iron concentration in subcortical nuclei and two types of memory performances in a healthy young population. Gender difference was found only in the globus pallidus. Our results showed that iron load characterized by R2* value on the MRI in the caudate and putamen was related to visual memory, while verbal memory was unrelated to iron concentration. PMID:28671115

  18. Comparative study of the chemical composition and mineral element content of Artocarpus heterophyllus and Treculia africana seeds and seed oils.

    PubMed

    Ajayi, Ibironke Adetolu

    2008-07-01

    A comparative study of Artocarpus heterophyllus and Treculia africana seeds, both of Moraceae family, was carried out to establish their chemical compositions and evaluate their mineral element content in order to investigate the possibility of using them for human and or animal consumption and also to examine if there is a relationship between the properties of these seeds. A. heterophyllus and T. africana are rich in protein; their protein contents are higher than those from high protein animal sources such as beef and marine fishes. Both seeds have high carbohydrate content and could act as source of energy for animals if included in their diets. The oil contents of the seeds are 11.39% and 18.54% for A. heterophyllus and T. africana, respectively. The oils are consistently liquid at room temperature. The results of the physicochemical properties of the two seeds are comparable to those of conventional oil seeds such as groundnut and palm kernel oils and could be useful for nutritional and industrial purposes. The seeds were found to be good sources of mineral elements. The result revealed potassium to be the prevalent mineral elements which are 2470.00 ppm and 1680.00 ppm for A. heterophyllus and T. africana, respectively followed by sodium, magnesium and then calcium. They also contain reasonable quantity of iron, in particular A. heterophyllus 148.50 ppm.

  19. Evaluation of the Cytotoxic Effects of Hyperthermia and 5-Fluorouracil Loaded Magnetic Nanoparticles on Human Colon Cancer Cell Line HT-29.

    PubMed

    Eynali, Samira; Khoei, Samideh; Khoei, Sepideh; Esmaelbeygi, Elaheh

    2016-10-04

    The purpose of this study was to evaluate the combined effects of heat and poly lactic-co-glycolic acid (PLGA) nanoparticles, as 5-fluorouracil carriers with/without iron oxide core, on the viability and proliferation capacity of human colon cancer cell line HT-29 in the spheroid model. HT-29 spheroid cells were treated with different concentrations of 5-FU or 5-FU loaded into both nanoparticles for 74 h. Hyperthermia was then performed at 43°C for 60 min. Finally, the effects of the mentioned treatments on cell viability and proliferation capacity were evaluated using the trypan blue dye exclusion test and colony formation assay, respectively. Our results showed that hyperthermia, in combination with 5-FU or PLGA nanoparticles as 5-FU carriers, significantly enhanced the cytotoxic effects as compared to the control group. Considering that nanoparticles could increase the intracellular concentration of drugs in cancer cells, the extent of cytotoxic effects following treatment with 5-FU loaded into both nanoparticles was significantly higher than that with free 5-FU. In addition, the presence of iron oxide cores in nanoparticles during hyperthermia enhanced the cytotoxic effects of hyperthermia compared with nanoparticles without iron oxide core. Based on this study, hyperthermia in combination with 5-FU-loaded PLGA nanoparticles with iron oxide core drastically reduced the proliferation capacity of HT-29 cells; therefore, it may be considered a new direction in the treatment of colon cancer.

  20. The fractography of casting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.W.

    1994-10-01

    Several types of casting alloys were fractured using various loading modes (uniaxial tension, bending, impact, and torsion, and cyclic stressing), and the corresponding mechanical properties were determined. The unetched and etched fracture surfaces and the microstructures were examined using conventional techniques. The types of casting alloys that were the subjects f these investigations include gray iron, ductile iron, cast steel, and aluminum-base alloys (A380, A356, and 319). The fractographic studies have yielded these generalizations regarding the topography of the fracture surfaces. In the case of low-ductility alloys such as gray iron and the aluminum-base alloys, the tensile edge of amore » fracture surface produced by a stress system with a strong bending-moment component has a highly irregular contour, whereas the compressive edge of the fracture surface is quite straight and parallel to the bend axis. On the other hand, the periphery of a fracture surface produced by uniaxial tension has a completely irregular contour. The fracture surface produced by cyclic loading of a gray iron does not display any macroscopic evidence (such as a thumb nail) of the loading mode. However, the fracture surface of each of the other casting alloys displays clear, macroscopic evidence of failure induced by fatigue. The aluminum-base alloys fracture completely within the interdendritic region of the microstructure when subjected to monotonic loading by uniaxial tension or bending, whereas a fatigue crack propagates predominantly through the primary crystals of the microstructure.« less

  1. Preventive effects of 125I seeds on benign restenosis following esophageal stent implantation in a dog model

    PubMed Central

    GAN, ZHEN; JING, JIAN; ZHU, GUANGYU; QIN, YONGLIN; TENG, GAOJUN; GUO, JINHE

    2015-01-01

    The present study aimed to evaluate the effects of iodine-125 (125I) seeds on the proliferation of primary esophageal fibroblasts in dogs, and to assess the safety and preventive efficacy of 125I seed-pre-loaded esophageal stents in benign restenosis following implantation. Primary fibroblasts were cultured with various 125I seed activities, which were then evaluated using cell proliferation and apoptosis assays as well as cell cycle analysis using Annexin V/propidium iodide (PI) double staining and PI staining. Prior to sacrification, animals were submitted to esophageal radiography under digital subtraction angiography. Esophageal tissues were collected and examined for macroscopic, microscopic and pathological alterations. The results demonstrated a significant and dose-dependent inhibition of fibroblast proliferation and increased apoptosis following exposure to 125I seeds. G0/G1 fibroblast populations increased in a dose-dependent manner following treatment with 125I seeds, in contrast to cells in S phase. Four weeks following implantation, α-smooth muscle actin and proliferating cell nuclear antigen expression levels in the experimental group were significantly lower compared with those in the control group; in addition, eight weeks following implantation, esophageal inner diameters were increased in the experimental group. 125I seeds inhibited proliferation of dog esophageal fibroblasts via cell cycle arrest and apoptosis. In conclusion, 125I seed-pre-loaded esophageal stents inhibited benign hyperplasia in the upper edge of the stent to a certain extent, which relieved benign restenosis following implantation with a good safety profile. PMID:25543838

  2. Evaluation of material heterogeneity dosimetric effects using radiochromic film for COMS eye plaques loaded with {sup 125}I seeds (model I25.S16)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail

    Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less

  3. 7 CFR 947.132 - Reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Reports. 947.132 Section 947.132 Agriculture... Safeguards § 947.132 Reports. (a) Immature potatoes. The applicant shall identify the producer and the dates...) Certified seed. A special purpose shipment report shall be required for each load of certified seed when...

  4. 7 CFR 947.132 - Reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Reports. 947.132 Section 947.132 Agriculture... Safeguards § 947.132 Reports. (a) Immature potatoes. The applicant shall identify the producer and the dates...) Certified seed. A special purpose shipment report shall be required for each load of certified seed when...

  5. ATOMIC-SCALE DESIGN OF IRON FISCHER-TROPSCH CATALYSTS: A COMBINED COMPUTATIONAL CHEMISTRY, EXPERIMENTAL, AND MICROKINETIC MODELING APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale

    2005-03-22

    Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less

  6. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System.

    PubMed

    Kheiri Manjili, Hamidreza; Ma'mani, Leila; Tavaddod, Sharareh; Mashhadikhan, Maedeh; Shafiee, Abbas; Naderi-Manesh, Hossein

    2016-01-01

    A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells.

  7. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Huang, Yu'an; Yang, Yang; Shen, Jianyi; Tang, Tao; Huang, Runsheng

    2010-10-01

    Composite materials containing electrically conductive expanded graphite (EG) and magnetic iron nano-particles for electromagnetic shielding were prepared by impregnating EG with an ethanol solution containing iron nitrate and acetic acid, followed by drying and reduction in H 2. Magnetic nano-iron particles were found to be highly dispersed on the surface of EG in the Fe/EG composites, and played the role of enhancing the electromagnetic shielding effectiveness (SE) at low frequencies (0.3-10 MHz), which seemed to depend proportionally on magnetic hysteresis loss of loaded iron nano-particles.

  8. Intracellular Trafficking of Silicon Particles and Logic-Embedded Vectors

    PubMed Central

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-01-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. PMID:20820744

  9. Some pollinators are more equal than others: Factors influencing pollen loads and seed set capacity of two actively and passively pollinating fig wasps

    NASA Astrophysics Data System (ADS)

    Kjellberg, Finn; Suleman, Nazia; Raja, Shazia; Tayou, Abelouahad; Hossaert-McKey, Martine; Compton, Stephen G.

    2014-05-01

    The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.

  10. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    The Mechanical Division fabricated three seed separators utilizing pressure gradients to move and separate wheat seeds. These separators are called minnow buckets and use air, water, or a combination of both to generate the pressure gradient. Electrostatic fields were employed in the seed separator constructed by the Electrical Division. This separator operates by forcing a temporary electric dipole on the wheat seeds and using charged electrodes to attract and move the seeds. Seed delivery to the hydroponic growth tray is accomplished by the seed cassette. The cassette is compatible with all the seed separators, and it consists of a plastic tube threaded with millipore filter paper. During planting operations, the seeds are placed in an empty cassette. The loaded cassette is then placed in the growth tray and nutrient solution provided. The solution wets the filter paper and capillary action draws the nutrients up to feed the seeds. These seeding systems were tested and showed encouraging results. Seeds were effectively separated and the cassette can support the growth of wheat plants. Problems remaining to be investigated include improving the success of delivering the seeds to the cassette and providing adequate spacing between seeds for the electric separator.

  11. Practical implications of liver and heart iron load assessment by T2*-MRI in children and adults with transfusion-dependent anemias

    PubMed Central

    Chirnomas, Sarah Deborah; Geukes-Foppen, Marnix; Barry, Kristen; Braunstein, Jennifer; Kalish, Leslie A.; Neufeld, Ellis J.; Powell, Andrew J.

    2017-01-01

    This study examined the relationship between hepatic and myocardial iron concentration, assessed by T2*-MRI in 66 patients (3–82 years) with transfusion-dependent anemias and thalassemia intermedia, to determine whether hepatic iron levels alone suffice for chelation adjustments. We found a poor correlation between hepatic and myocardial iron (r = 0.10, P = 0.43) and identified a subgroup (14%) with increased myocardial iron without a matched degree of hepatic hemosiderosis. Left ventricular ejection fraction was insensitive for detecting elevated myocardial iron. These findings were present in both adult and pediatric patients. We recommend therapeutic monitoring of iron burden by evaluation of both liver and myocardial iron with T2*-MRI. PMID:18661491

  12. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides

    PubMed Central

    Schaider, Laurel A.; Senn, David B.; Estes, Emily R.; Brabander, Daniel J.; Shine, James P.

    2014-01-01

    Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal: mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 μg g−1), Pb (up to 550 μg g−1) and Cd (up to 200 μg g−1) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage. PMID:24867708

  14. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.

    PubMed

    Saalfield, Samantha L; Bostick, Benjamin C

    2009-12-01

    Biologically mediated redox processes have been shown to affect the mobility of iron oxide-bound arsenic in reducing aquifers. This work investigates how dissimilatory sulfate reduction and secondary iron reduction affect sulfur, iron, and arsenic speciation. Incubation experiments were conducted with As(III/V)-bearing ferrihydrite in carbonate-buffered artificial groundwater enriched with lactate (10 mM) and sulfate (0.08-10 mM) and inoculated with Desulfovibrio vulgaris (ATCC 7757, formerly D. desulfuricans), which reduces sulfate but not iron or arsenic. Sulfidization of ferrihydrite led to formation of magnetite, elemental sulfur, and trace iron sulfides. Observed reaction rates imply that the majority of sulfide is recycled to sulfate, promoting microbial sulfate reduction in low-sulfate systems. Despite dramatic changes in Fe and S speciation, and minimal formation of Fe or As sulfides, most As remained in the solid phase. Arsenic was not solubilized in As(V)-loaded incubations, which experienced slow As reduction by sulfide, whereas As(III)-loaded incubations showed limited and transient As release associated with iron remineralization. This suggests that As(III) production is critical to As release under reducing conditions, with sulfate reduction alone unlikely to release As. These data also suggest that bacterial reduction of As(V) is necessary for As sequestration in sulfides, even where sulfate reduction is active.

  15. Effect of cooking time on some nutrient and antinutrient components of bambaragroundnut seeds.

    PubMed

    Omoikhoje, Stanley Omoh; Aruna, Mohammed Bashiru; Bamgbose, Adeyemi Mustapha

    2009-02-01

    The proximate composition, gross energy, mineral composition, percentage sugar, oligosaccharides and antinutrient substances of bambaragroundnut seeds subjected to different cooking times were determined. The seeds were cooked for 30, 60, 90 and 120 min. Results of the proximate analysis showed that only the ether extract and ash were significantly (P < 0.05) reduced as the cooking time increased. In contrast, gross energy values significantly (P < 0.05) increased with increased cooking time. Amongst, the mineral elements assayed, calcium, magnesium and iron were significantly (P < 0.05) increased, while phosphorous, potassium, sodium and copper were reduced significantly (P > 0.05) with inreased cooking time. Percentage sucrose and glucose of bambaragroundnut seeds were significantly (P < 0.05) lowest in the raw form, but increased progressively with increased of cooking time. Raffinose and stachyose levels were reduced significantly by increased cookinf time (P < 0.05) with the least value in seeds cooked for 120 min. Trypsin inhibitor, hemagglutinin and tannin were completely eliminated in seeds cooked for 60 min or longer, but the phytin level was reduced significantly (P < 0.05) by cooking. For a significant detoxification of antinutrient substances and for optimal bioavailability of the component nutrients of bambaragroundnut seeds, an optimum cooking time of 60 min at 100 degrees C is therefore recommended.

  16. Spatial variability in slug emergence patterns - third year results

    USDA-ARS?s Scientific Manuscript database

    Gray field slugs damage new plantings of crops such as perennial ryegrass grown for seed, and growers routinely make multiple applications of metaldehyde and iron posphate based slug baits. Two major challenges for growers are: (1) choosing the best timing for the first heavy application of slug bai...

  17. Modulation of hepcidin to treat iron deregulation: potential clinical applications

    PubMed Central

    Blanchette, Nicole L.; Manz, David H.; Torti, Frank M.

    2016-01-01

    The secreted peptide hormone hepcidin regulates systemic and local iron homeostasis through degradation of the iron exporter ferroportin. Dysregulation of hepcidin leads to altered iron homeostasis and development of pathological disorders including hemochromatosis, and iron loading and iron restrictive anemias. Therapeutic modulation of hepcidin is a promising method to ameliorate these conditions. Several approaches have been taken to enhance or reduce the effects of hepcidin in vitro and in vivo. Based on these approaches, hepcidin modulating drugs have been developed and are undergoing clinical evaluation. In this article we review the rationale for development of these drugs, the data concerning their safety and efficacy, their therapeutic uses, and potential future prospects. PMID:26669208

  18. Effect of carbon content on friction and wear of cast irons

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  19. DeNOx active iron sites in iron loaded ZSM-5 - a multitechnique analysis of a complex heterogeneous catalyst based on Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Padmalekha, K. G.; Huang, H.; Ellmers, I.; Pérez Vélez, R.; van Leusen, J.; Brückner, A.; Grünert, W.; Schünemann, V.

    2017-11-01

    Iron loaded zeolites like Fe-ZSM-5 are potent candidates for the catalytic abatement of nitrogen oxides from car exhaust, e.g. from Diesel engines. Recent problems in this field show that there is an urgent need in further improvement of such catalysts, for which a full analysis of Fe species present in them under different conditions is highly desirable. We have studied Fe-ZSM-5 catalysts prepared via solid-state ion exchange by using field dependent Mössbauer spectroscopy at low temperature in order to identify the different iron species present in this type of catalyst in the fresh state and after use in catalysis. Mössbauer spectroscopy proved to be the key technique for a full understanding of species structures, but due to the complexity of structures, guidance by parallel EPR experiments and control by SQUID magnetometry were essential to prove reliability of derived species distributions.

  20. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    PubMed

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation

    USGS Publications Warehouse

    Schroth, A.W.; Crusius, John; Chever, F.; Bostick, B.C.; Rouxel, O.J.

    2011-01-01

    Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.

  2. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

    PubMed Central

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer. PMID:22287840

  3. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    PubMed

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be associated with ferritin cages or transferrin receptor endosomes. The iron content and its distribution in puncta were similar in all neuron types studied including primary dopaminergic neurons. In summary, quantitative measurements of steady state metal levels in single primary cultured neurons made possible by SRXRF analyses provide unique information on the relative levels of each metal in neuronal soma and processes, subcellular location of zinc loads, and have confirmed and extended the characterization of heretofore poorly understood cytoplasmic iron puncta.

  4. Evaluation of seeding depth and guage-wheel load effects on maize emergence and yield

    USDA-ARS?s Scientific Manuscript database

    Planting represents perhaps the most important field operation with errors likely to negatively affect crop yield and thereby farm profitability. Performance of row-crop planters are evaluated by their ability to accurately place seeds into the soil at an adequate and pre-determined depth, the goal ...

  5. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age.

    PubMed

    van Bergen, J M G; Li, X; Quevenco, F C; Gietl, A F; Treyer, V; Meyer, R; Buck, A; Kaufmann, P A; Nitsch, R M; van Zijl, P C M; Hock, C; Unschuld, P G

    2018-03-13

    The accumulation of β-amyloid plaques is a hallmark of Alzheimer's disease (AD), and recently published data suggest that increased brain iron burden may reflect pathologies that synergistically contribute to the development of cognitive dysfunction. While preclinical disease stages are considered most promising for therapeutic intervention, the link between emerging AD-pathology and earliest clinical symptoms remains largely unclear. In the current study we therefore investigated local correlations between iron and β-amyloid plaques, and their possible association with cognitive performance in healthy older adults. 116 older adults (mean age 75 ± 7.4 years) received neuropsychological testing to calculate a composite cognitive score of performance in episodic memory, executive functioning, attention, language and communication. All participants were scanned on a combined PET-MRI instrument and were administered T1-sequences for anatomical mapping, quantitative susceptibility mapping (QSM) for assessing iron, and 18F-Flutemetamol-PET for estimating β-amyloid plaque load. Biological parametric mapping (BPM) was used to generate masks indicating voxels with significant (p < 0.05) correlation between susceptibility and 18F-Flutemetamol-SUVR. We found a bilateral pattern of clusters characterized by a statistical relationship between magnetic susceptibility and 18F-Flutemetamol-SUVR, indicating local correlations between iron and β-amyloid plaque deposition. For two bilateral clusters, located in the frontal and temporal cortex, significant relationships (p<0.05) between local β-amyloid and the composite cognitive performance score could be observed. No relationship between whole-cortex β-amyloid plaque load and cognitive performance was observable. Our data suggest that the local correlation of β-amyloid plaque load and iron deposition may provide relevant information regarding cognitive performance of healthy older adults. Further studies are needed to clarify pathological correlates of the local interaction of β-amyloid, iron and other causes of altered magnetic susceptibility. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection.

    PubMed

    Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.

  7. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection

    PubMed Central

    Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648

  8. Testing the iron hypothesis in a mouse model of atherosclerosis

    PubMed Central

    Kautz, Léon; Gabayan, Victoria; Wang, Xuping; Wu, Judy; Onwuzurike, James; Jung, Grace; Qiao, Bo; Lusis, Aldons J.; Ganz, Tomas; Nemeth, Elizabeta

    2013-01-01

    SUMMARY Hepcidin, the iron-regulatory hormone and acute phase reactant, is proposed to contribute to the pathogenesis of atherosclerosis by promoting iron accumulation in plaque macrophages, leading to increased oxidative stress and inflammation in the plaque (the “iron hypothesis”). Hepcidin and iron may thus represent modifiable risk factors in atherosclerosis. We measured hepcidin expression in Apoe−/− mice with varying diets and ages. To assess the role of macrophage iron in atherosclerosis, we generated Apoe−/− mice with macrophage-specific iron accumulation by introducing the ferroportin ffe mutation. Macrophage iron loading was also enhanced by intravenous iron injection. Contrary to the iron hypothesis, we found that hepatic hepcidin expression was not increased at any stage of the atherosclerosis progression in Apoe−/− or Apoe/ffe mice and the atherosclerotic plaque size was not increased in mice with elevated macrophage iron. Our results strongly argue against any significant role of macrophage iron in atherosclerosis progression in mice. PMID:24316081

  9. In vitro fibroblast migration by sustained release of PDGF-BB loaded in chitosan nanoparticles incorporated in electrospun nanofibers for wound dressing applications.

    PubMed

    Piran, Mehrdad; Vakilian, Saeid; Piran, Mehran; Mohammadi-Sangcheshmeh, Abdollah; Hosseinzadeh, Simzar; Ardeshirylajimi, Abdolreza

    2018-01-23

    Migration of fibroblasts into wound area is a critical phenomenon in wound healing process. We used an appropriate system to fabricate an electrospun bioactive scaffold with controlled release of PDGF-BB in order to induce migration of primary skin fibroblast cells. First of all, protein-loaded chitosan nanoparticles based on ionic gelation interaction between chitosan and sodium tripolyphosphate were prepared. Then polycaprolactone electrospun fibers containing chitosan nanoparticles or PDGF-BB-loaded chitosan nanoparticles were prepared. Cellular attachment and morphology of cells seeded on scaffolds with or without PDGF-BB were evaluated by using a fluorescence microscope and scanning electron microscopy. Cells were well-oriented 72 h after seeding on the scaffolds containing PDGF-BB. The mean aspect ratio of populations on scaffold containing PDGF-BB-loaded chitosan nanoparticles was significantly greater than those on the scaffold containing chitosan nanoparticles but no PDGF-BB. Furthermore, the Arp2 gene, which is involved in cell protrusion formation, showed about three times more expression at mRNA level, in cells seeding on PDGF-BB-containing scaffold compared to cells seeding on scaffold containing only chitosan nanoparticles, using Real Time PCR test. Finally, under agarose migration assay results demonstrated that cells' chemotaxic behavior was more toward scaffold containing PDGF-BB compared to the PDGF-BB alone or FBS group. In addition, in terms of distance, the cell mass could grow faster, in response to scaffold containing PDGF-BB compared to FBS or PDGF-BB alone; however, the number of migrating cells might be the same or significantly higher in the latter groups.

  10. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  11. Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes

    PubMed Central

    Jasid, Sebastián; Simontacchi, Marcela; Puntarulo, Susana

    2008-01-01

    Sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), were used as the source of exogenous NO to study the effect of NO upon germination of sorghum (Sorghum bicolor (L.) Moench) seeds through its possible interaction with iron. Modulation of cellular Fe status could be an important factor for the establishment of oxidative stress and the regulation of plant physiology. Fresh and dry weights of the embryonic axes were significantly increased in the presence of 0.1 mM SNP, as compared to control. Spin trapping EPR was used to assess the NO content in axes from control seeds after 24 h of imbibition (2.4±0.2 nmol NO g−1 FW) and seeds exposed to 0.01, 0.1, and 1 mM SNP (3.1±0.3, 4.6±0.2, and 6.0±0.9 nmol NO g−1 FW, respectively) and 1 mM DETA NONOate (6.2±0.6 nmol NO g−1 FW). Incubation of seeds with 1 mM SNP protected against oxidative damage to lipids and maintained membrane integrity. The content of the deferoxamine–Fe (III) complex significantly increased in homogenates of axes excised from seeds incubated in the presence of 1 mM SNP or 1 mM DETA NONOate as compared to the control (19±2 nmol Fe g−1 FW, 15.2±0.5 nmol Fe g−1 FW, and 8±1 nmol Fe g−1 FW, respectively), whereas total Fe content in the axes was not affected by the NO donor exposure. Data presented here provide experimental evidence to support the hypothesis that increased availability of NO drives not only protective effects to biomacromolecules, but to increasing the Fe availability for promoting cellular development as well. PMID:18832188

  12. Deferiprone for the treatment of transfusional iron overload in thalassemia.

    PubMed

    Belmont, Ami; Kwiatkowski, Janet L

    2017-06-01

    Transfusional iron overload can lead to hepatic fibrosis, arrhythmias and congestive heart failure and a number of endocrinopathies. Deferiprone is an oral iron chelator approved for use in the United States as a second line agent for the treatment of transfusional iron overload in patients with thalassemia. Areas covered: This article will review the data regarding the efficacy of deferiprone for iron chelation and prevention and reversal of iron related complications, the drug's adverse effect profile, and the use of this drug in combination regimens. Expert commentary: Extensive data support that deferiprone is particularly efficacious at cardiac iron removal and therefore, a chelator regimen that contains deferiprone is generally recommended when there is significant cardiac iron loading and/or in the setting of iron-related cardiac disease. The most concerning side effects of deferiprone are agranulocytosis and milder forms of neutropenia, which require appropriate monitoring and patient/provider education.

  13. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload.

    PubMed

    Pardo Andreu, G L; Inada, N M; Vercesi, A E; Curti, C

    2009-01-01

    One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21 +/- 4 to 130 +/- 7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H+ leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria.

  14. Divertor power load feedback with nitrogen seeding in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Dux, R.; Fuchs, J. C.; Fischer, R.; Geiger, B.; Giannone, L.; Herrmann, A.; Lunt, T.; Mertens, V.; McDermott, R.; Neu, R.; Pütterich, T.; Rathgeber, S.; Rohde, V.; Schmid, K.; Schweinzer, J.; Treutterer, W.; ASDEX Upgrade Team

    2010-05-01

    Feedback control of the divertor power load by means of nitrogen seeding has been developed into a routine operational tool in the all-tungsten clad ASDEX Upgrade tokamak. For heating powers above about 12 MW, its use has become inevitable to protect the divertor tungsten coating under boronized conditions. The use of nitrogen seeding is accompanied by improved energy confinement due to higher core plasma temperatures, which more than compensates the negative effect of plasma dilution by nitrogen on the neutron rate. This paper describes the technical details of the feedback controller. A simple model for its underlying physics allows the prediction of its behaviour and the optimization of the feedback gain coefficients used. Storage and release of nitrogen in tungsten surfaces were found to have substantial impact on the behaviour of the seeded plasma, resulting in increased nitrogen consumption with unloaded walls and a latency of nitrogen release over several discharges after its injection. Nitrogen is released from tungsten plasma facing components with moderate surface temperature in a sputtering-like process; therefore no uncontrolled excursions of the nitrogen wall release are observed. Overall, very stable operation of the high-Z tokamak is possible with nitrogen seeding, where core radiative losses are avoided due to its low atomic charge Z and a high ELM frequency is maintained.

  15. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect.

    PubMed

    Lin, Si; Chen, Mengxia; Jiang, Huayue; Fan, Linpeng; Sun, Binbin; Yu, Fan; Yang, Xingxing; Lou, Xiangxin; He, Chuanglong; Wang, Hongsheng

    2016-03-01

    Silk fibroin (SF) from Bombyx mori has an excellent biocompatibility and thus be widely applied in the biomedical field. Recently, various SF-based composite nanofibers have been developed for more demanding applications. Additionally, grape seed extract (GSE) has been demonstrated to be powerful on antioxidation. In the present study, we dedicate to fabricate a GSE-loaded SF/polyethylene oxide (PEO) composite nanofiber by green electrospinning. Our results indicated the successful loading of GSE into the SF/PEO composite nanofibers. The introduction of GSE did not affect the morphology of the SF/PEO nanofibers and GSE can be released from the nanofibers with a sustained manner. Furthermore, comparing with the raw SF/PEO nanofibrous mats, the GSE-loaded SF/PEO nanofibrous mats significantly enhanced the proliferation of the skin fibroblasts and also protected them against the damage from tert-butyl hydroperoxide-induced oxidative stress. All these findings suggest a promising potential of this novel GSE-loaded SF/PEO composite nanofibrous mats applied in skin care, tissue regeneration and wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis.

    PubMed

    Zhai, Zhiyang; Gayomba, Sheena R; Jung, Ha-Il; Vimalakumari, Nanditha K; Piñeros, Miguel; Craft, Eric; Rutzke, Michael A; Danku, John; Lahner, Brett; Punshon, Tracy; Guerinot, Mary Lou; Salt, David E; Kochian, Leon V; Vatamaniuk, Olena K

    2014-05-01

    Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an oligopeptide transporter, is a plasma membrane transporter capable of transporting transition ions in vitro. Studies in Arabidopsis thaliana show that OPT3 loads iron into the phloem, facilitates iron recirculation from the xylem to the phloem, and regulates both shoot-to-root iron signaling and iron redistribution from mature to developing tissues. We also uncovered an aspect of crosstalk between iron homeostasis and cadmium partitioning that is mediated by OPT3. Together, these discoveries provide promising avenues for targeted strategies directed at increasing iron while decreasing cadmium density in the edible portions of crops and improving agricultural productivity in iron deficient soils. © 2014 American Society of Plant Biologists. All rights reserved.

  17. Diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients.

    PubMed

    Siri-Angkul, Natthaphat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-18

    Thalassemia is among the most common genetic diseases. Patients with severe forms of the disease are transfusion-dependent, leading to iron overload. A condition which can eventually develop in the iron-loaded heart is iron overload cardiomyopathy, a debilitating disease that accounts for the majority of deaths in thalassemia patients. Areas covered: This review article provides a comprehensive summary of the diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients, with discussion covering current weak points and potential improvements of the relevant diagnostic and therapeutic strategies. Expert commentary: Current limitations of various diagnostic techniques for iron overload cardiomyopathy include suboptimal accuracy, untimely detection, or inadequate accessibility, and novel modalities are required to overcome these shortcomings. Treatment should address key pathophysiologic mechanisms of iron overload cardiomyopathy, which include cardiac iron mishandling and iron-induced oxidative injury. Apart from the promotion of iron removal by chelators, prevention of cardiac iron deposition and attenuation of oxidative damage should also be rigorously investigated on a cell-to-bedside basis.

  18. Iron loading site on the Fe-S cluster assembly scaffold protein is distinct from the active site.

    PubMed

    Rodrigues, Andria V; Kandegedara, Ashoka; Rotondo, John A; Dancis, Andrew; Stemmler, Timothy L

    2015-06-01

    Iron-sulfur (Fe-S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe-S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe-S clusters is the mitochondrial ISC pathway. Yeast Fe-S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.

  19. Successful Reproduction Requires the Function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 Metal-Nicotianamine Transporters in Both Vegetative and Reproductive Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, H.; Chiecko, J; Punshon, T

    2010-01-01

    Several members of the Yellow Stripe-Like (YSL) family of proteins are transporters of metals that are bound to the metal chelator nicotianamine or the related set of mugineic acid family chelators known as phytosiderophores. Here, we examine the physiological functions of three closely related Arabidopsis (Arabidopsis thaliana) YSL family members, AtYSL1, AtYSL2, and AtYSL3, to elucidate their role(s) in the allocation of metals into various organs of Arabidopsis. We show that AtYSL3 and AtYSL1 are localized to the plasma membrane and function as iron transporters in yeast functional complementation assays. By using inflorescence grafting, we show that AtYSL1 and AtYSL3more » have dual roles in reproduction: their activity in the leaves is required for normal fertility and normal seed development, while activity in the inflorescences themselves is required for proper loading of metals into the seeds. We further demonstrate that the AtYSL1 and AtYSL2 proteins, when expressed from the AtYSL3 promoter, can only partially rescue the phenotypes of a ysl1ysl3 double mutant, suggesting that although these three YSL transporters are closely related and have similar patterns of expression, they have distinct activities in planta. In particular, neither AtYSL1 nor AtYSL2 is able to functionally complement the reproductive defects exhibited by ysl1ysl3 double mutant plants.« less

  20. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.

    PubMed

    Waters, Brian M; Chu, Heng-Hsuan; Didonato, Raymond J; Roberts, Louis A; Eisley, Robynn B; Lahner, Brett; Salt, David E; Walker, Elsbeth L

    2006-08-01

    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. Beta-glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues.

  1. 12. Battery Richmond, emplacement no. 1, iron stair from terreplein ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Battery Richmond, emplacement no. 1, iron stair from terreplein up to loading platform. Beneath stair is doorway to powder room, at left is an entrance to the shot gallery; at center is entance to guard room - Forth Wadsworth Battery Richmond, Fort Wadsworth, Staten Island, New York County, NY

  2. Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine M.tb infection model

    PubMed Central

    Harrington-Kandt, Rachel; Stylianou, Elena; Eddowes, Lucy A.; Lim, Pei Jin; Stockdale, Lisa; Pinpathomrat, Nawamin; Bull, Naomi; Pasricha, Janet; Ulaszewska, Marta; Beglov, Yulia; Vaulont, Sophie

    2018-01-01

    Tuberculosis (TB), caused by the macrophage-tropic pathogen Mycobacterium tuberculosis (M.tb) is a highly prevalent infectious disease. Since an immune correlate of protection or effective vaccine have yet to be found, continued research into host-pathogen interactions is important. Previous literature reports links between host iron status and disease outcome for many infections, including TB. For some extracellular bacteria, the iron regulatory hormone hepcidin is essential for protection against infection. Here, we investigated hepcidin (encoded by Hamp1) in the context of murine M.tb infection. Female C57BL/6 mice were infected with M.tb Erdman via aerosol. Hepatic expression of iron-responsive genes was measured by qRT-PCR and bacterial burden determined in organ homogenates. We found that hepatic Hamp1 mRNA levels decreased post-infection, and correlated with a marker of BMP/SMAD signalling pathways. Next, we tested the effect of Hamp1 deletion, and low iron diets, on M.tb infection. Hamp1 knockout mice did not have a significantly altered M.tb mycobacterial load in either the lungs or spleen. Up to 10 weeks of dietary iron restriction did not robustly affect disease outcome despite causing iron deficiency anaemia. Taken together, our data indicate that unlike with many other infections, hepcidin is decreased following M.tb infection, and show that hepcidin ablation does not influence M.tb growth in vivo. Furthermore, because even severe iron deficiency did not affect M.tb mycobacterial load, we suggest that the mechanisms M.tb uses to scavenge iron from the host must be extremely efficient, and may therefore represent potential targets for drugs and vaccines. PMID:29324800

  3. Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease.

    PubMed

    Wang, Nan; Jin, Xin; Guo, Dongbo; Tong, Gangsheng; Zhu, Xinyuan

    2017-02-13

    Iron accumulation in substantia nigra pars compacta (SNpc) has been proved to be a prominent pathophysiological feature of Parkinson's diseases (PD), which can induce the death of dopaminergic (DA) neurons, up-regulation of reactive oxygen species (ROS), and further loss of motor control. In recent years, iron chelation therapy has been demonstrated to be an effective treatment for PD, which has shown significant improvements in clinical trials. However, the current iron chelators are suboptimal due to their short circulation time, side effects, and lack of proper protection from chelation with ions in blood circulation. In this work, we designed and constructed iron chelation therapeutic nanoparticles protected by a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) to delay the saturation of iron chelators in blood circulation and prolong the in vivo lifetime, with HIV-1 trans-activating transcriptor (TAT) served as a shuttle to enhance the blood-brain barrier (BBB) permeability. We explored and investigated whether the Parkinsonian neurodegeneration and the corresponding symptoms in behaviors and physiologies could be prevented or reversed both in vitro and in vivo. The results demonstrated that iron chelator loaded therapeutic nanoparticles could reverse functional deficits in Parkinsonian mice not only physiologically but also behaviorally. On the contrary, both untreated PD mice and non-TAT anchored nanoparticle treated PD mice showed similar loss in DA neurons and difficulties in behaviors. Therefore, with protection of zwitterionic polymer and prolonged in vivo lifetime, iron chelator loaded nanoparticles with delayed saturation provide a PD phenotype reversion therapy and significantly improve the living quality of the Parkinsonian mice.

  4. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    USGS Publications Warehouse

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    A mass-loading study of Lake Fork Creek of the Arkansas River between Sugarloaf Dam and the mouth was completed in September-October 2001 to help ascertain the following: (1) variation of pH and aqueous constituent concentrations (calcium, sulfate, alkalinity, aluminum, cadmium, copper, iron, manganese, lead, and zinc) and their relation to toxicity standards along the study reach; (2) location and magnitude of sources of metal loading to Lake Fork Creek; (3) amount and locations of metal attenuation; (4) the effect of streamside wetlands on metal transport from contributing mine tunnels; and (5) the effect of organic-rich inflow from the Leadville National Fish Hatchery on water quality in Lake Fork Creek. The study was done in cooperation with the Bureau of Land Management, U.S. Department of Agriculture Forest Service, and U.S. Fish and Wildlife Service. Constituent concentrations and pH showed variable patterns over the study reach. Hardness-based acute and chronic toxicity standards were exceeded for some inflows and some constituents. However, stream concentrations did not exceed standards except for zinc starting in the upper parts of the study reach and extending to just downstream from the inflow from the Leadville National Fish Hatchery. Dilution from that inflow lowered stream zinc concentrations to less than acute and chronic toxicity standards. The uppermost 800 meters of the study reach that contained inflow from the Bartlett, Dinero, and Nelson mine tunnels and the Dinero wetland was the greatest source of loading for manganese and zinc. A middle section of the study reach that extended approximately 2 kilometers upstream from the National Fish Hatchery inflow to just downstream from that inflow was the largest source of aluminum, copper, iron, and lead loading. The loading was partially from the National Fish Hatchery inflow but also from unknown sources upstream from that inflow, possibly ground water. The largest sources for calcium and sulfate load to the stream were the parts of the study reach containing inflow from the tribu-taries Halfmoon Creek (calcium) and Willow Creek (sulfate). The Arkansas River and its tributaries upstream from Lake Fork Creek were the source of most of the calcium (70 percent), sulfate (82 percent), manganese (77 percent), lead (78 percent), and zinc (95 percent) loads in the Arkansas River downstream from the Lake Fork confluence. In contrast, Lake Fork Creek was the major source of aluminum (68 percent), copper (65 percent), and iron (87 percent) loads to the Arkansas River downstream from the confluence. Attenuation was not important for calcium, sulfate, or iron. However, other metals loads were reduced up to 81 percent over the study reach (aluminum, 25 percent; copper, 20 percent; manganese, 81 percent; lead, 30 percent; zinc, 72 percent). Metal attenuation in the stream occurred primarily in three locations (1) the irrigation diversion ditch; (2) the beaver pond complex extending from upstream from the Colorado Gulch inflow to just downstream from that inflow; and (3) the stream reach that included the inflow from Willow Creek. The most likely attenuation mechanism is precipitation of metal oxides and hydroxides (primarily manganese), and sorption or coprecipitation of trace elements with the precipitating phase. A mass-balance calculation indicated that the wetland between the Dinero Tunnel and Lake Fork Creek removed iron, had little effect on zinc mass load, and was a source for, or was releasing, aluminum and manganese. In contrast, the wetland that occurred between the Siwatch Tunnel and Lake Fork Creek removed aluminum, iron, manganese, and zinc from the tunnel drainage before it entered the creek. Inflow from the National Fish Hatchery increased dissolved organic carbon concentrations in Lake Fork Creek and slightly changed the composition of the dissolved organic carbon. However, dissolved organic carbon loads increased in the stream reach downs

  5. DISTANT VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANT VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING "B" ON RIGHT. HOSE WINDING SHED ADJACENT TO SHED-ROOFED ADDITION ON THE UTILITY BUILDING, BLM SEED SHED AND TACK SHED VISIBLE IN FAR DISTANCE. VIEW TO EAST/ - Cedar City Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  6. VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND CASTING SEED ON THE LEFT, THE #1 BLAST FURNACE AND CASTING SHED ON THE RIGHT, AND THE STOVES, BOILERS, AND AUXILIARY EQUIPMENT IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  7. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  8. Iron deficiency-induced changes in growth reveal differences in nutrient partitioning between two ecotypes of Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Enhancing the nutritional quality of crops is of international importance, and multiple methods have been utilized to increase the nutrient content of legume seeds. Because nutrients mobilized from source leaves to growing reproductive sink tissues greatly contribute to the final composition of the ...

  9. Effect of various domestic processing and cooking methods on phytic acid and HCl-extractability of calcium, phosphorus and iron of pigeon pea.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    1999-01-01

    Manak, the high yielding cultivator of pigeon pea (Cajanus cajan) released by (International Crop Research Institute for Semi-Arid Tropics) ICRISAT, India was subjected to various domestic processing and cooking methods viz., soaking (6, 12 and 18 h, 30 degrees C), soaking and dehulling, ordinary cooking, pressure cooking and germination (24, 36 and 48 h, 30 degrees C). The unprocessed seeds of this variety contained considerable amounts of phytic acid i.e. 917 mg per 100 g. This antinutrient was reduced significantly (P < 0.05) to varying extents (4-37%) in the processed samples. Except soaking and dehulling, the remaining processing and cooking methods did not lower the contents of total calcium, phosphorus and iron. That HCl-extractability of these dietary essential minerals, an index of their bioavailability, enhanced significantly when the pigeon pea seeds were processed and cooked, may be due to reduction in phytate content, which is known to chelate the minerals. A significant and negative correlation between the phytic acid and HCl-extractability of minerals further strengthens our findings.

  10. THE APPLICATION OF NUCLEAR ENERGY TO AGRICULTURE. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moh, C.C.

    1963-07-01

    Progress is reported in basic and applied agricultural research using nuclear energy as a tool. Emphasis was placed on tropical agriculture and student training. Results are reported on studies of mutations induced by irradiation of seeds or plant parts of plant species for food crops or local industrial uses. Seeds of 7 pine species that grow at altitudes of 1600 to over 3000 meters, papaya, beans, cassava branches with nodes, and young mahogany plants were irradiated and progenies were examined for mutation frequency and morphology, disease resistance, sensitivity to low temperatures, and other characteristics. Tracer studies of plant physiology includedmore » sulfur metabolism in photosynthetic bacteria and plants, iron metabolism in plants, and the effects of iron on growth of coffee and cacao seediings. Results are included from tracer studies on dispersion and longevity of the Mediterranean fruit fly under natural conditions and the effects of radiosterilization at various developmental stages on eradication of these flies. A list of publications during the period covered by this report is included. (C.H.)« less

  11. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    PubMed Central

    Mammeri, Fayna; Ammar, Souad

    2018-01-01

    Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications. PMID:29518969

  12. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  13. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs)

    NASA Astrophysics Data System (ADS)

    Muchitsch, Nanna; Van Nooten, Thomas; Bastiaens, Leen; Kjeldsen, Peter

    2011-11-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (> 99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.

  14. The killing efficiency of soft iron shot

    USGS Publications Warehouse

    Andrews, R.; Longcore, J.R.

    1969-01-01

    A cooperative research effort between the ammunition industry and the Bureau of Sport Fisheries and Wildlife is aimed at finding a suitable non-toxic substitute for lead shot. A contract study by an independent research organization evaluated ways of coating or detoxifying lead shot or replacing it with another metal. As a result of that study, the only promising candidate is soft iron. Previous tests of hard iron shot had suggested that its killing effectiveness was poor at longer ranges due to the lower density. In addition, its hardness caused excessive damage to shotgun barrels. A unique, automated shooting facility was constructed at the Patuxent Wildlife Research Center to test the killing effectiveness of soft iron shot under controlled conditions. Tethered game-farm mallards were transported across a shooting point in a manner simulating free flight. A microswitch triggered a mounted shotgun so that each shot was 'perfect.' A soft iron shot, in Number 4 size, was produced by the ammunition industry and loaded in 12-gauge shells to give optimum ballistic performance. Commercial loads of lead shot in both Number 4 and Number 6 size were used for comparison. A total of 2,010 ducks were shot at ranges of 30 to 65 yards and at broadside and head-on angles in a statistically designed procedure. The following data were recorded for each duck: time until death, broken wing or leg bones, and number of embedded shot. Those ducks not killed outright were held for 10 days. From these data, ducks were categorized as 'probably bagged,' 'probably lost cripples,' or survivors. The test revealed that the killing effectiveness of this soft iron shot was superior to its anticipated performance and close to that obtained with commercial lead loads containing an equal number of pellets. Bagging a duck, in terms of rapid death or broken wing, was primarily dependent on the probability of a shot striking that vital area, and therefore a function of range. There was no indication that iron shot would result in greater crippling loss. Despite the apparent effectiveness of this iron shot, transition to its use in waterfowl hunting is not now possible. The sample used for this test was produced by a laboratory procedure that is unsuitable for manufacture. There is no process for producing soft iron shot in the quantities needed. Industry is doing its best to resolve this problem.

  15. Regulatory mechanisms for iron transport across the blood-brain barrier.

    PubMed

    Duck, Kari A; Simpson, Ian A; Connor, James R

    2017-12-09

    Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Phytotoxin production in Aspergillus terreus is regulated by independent environmental signals

    PubMed Central

    Gressler, Markus; Meyer, Florian; Heine, Daniel; Hortschansky, Peter; Hertweck, Christian; Brock, Matthias

    2015-01-01

    Secondary metabolites have a great potential as pharmaceuticals, but there are only a few examples where regulation of gene cluster expression has been correlated with ecological and physiological relevance for the producer. Here, signals, mediators, and biological effects of terrein production were studied in the fungus Aspergillus terreus to elucidate the contribution of terrein to ecological competition. Terrein causes fruit surface lesions and inhibits plant seed germination. Additionally, terrein is moderately antifungal and reduces ferric iron, thereby supporting growth of A. terreus under iron starvation. In accordance, the lack of nitrogen or iron or elevated methionine levels induced terrein production and was dependent on either the nitrogen response regulators AreA and AtfA or the iron response regulator HapX. Independent signal transduction allows complex sensing of the environment and, combined with its broad spectrum of biological activities, terrein provides a prominent example of adapted secondary metabolite production in response to environmental competition. DOI: http://dx.doi.org/10.7554/eLife.07861.001 PMID:26173180

  17. Environmental impacts of iron ore tailings—The case of Tolo Harbour, Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, M. H.

    1981-03-01

    Disposal of iron ore tailings along the shore of Tolo Harbour, Hong Kong has altered the adjacent environment. Due to the ever-expanding population, the vast development of various industries, and the lack of sanitary control, the existing pollution problem of Tolo Harbour is serious. The iron ore tailings consist of a moderate amount of various heavy metals, e.g., copper, iron, manganese, lead, zinc, and a lower level of macronutrients. A few living organisms have been found colonizing this manmade habitat. Higher metal contents were also found in the tissue of Paphia sp. (clam); Scopimera intermedia (crab); Chaetomorpha brychagona (green alga); Enteromorpha crinita (green alga); and Neyraudia reynaudiana (grass). The area can be reclaimed by surface amelioration using inert materials, soils, or organic substrates, and by direct seeding, using nontolerant and tolerant plant materials. Reclamation of the tailings would improve the amenity of the adjacent environment and also mitigate pollution escaping to the sea.

  18. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger.

    PubMed

    Glew, R H; Glew, R S; Chuang, L-T; Huang, Y-S; Millson, M; Constans, D; Vanderjagt, D J

    2006-06-01

    Dried seeds and nuts are widely consumed by indigenous populations of the western Sahel, especially those who inhabit rural areas. In light of the need for quantitative information regarding the content of particular nutrients in these plant foods, we collected dried pumpkin (Cucurbita spp) seeds and nuts of Cyperus esculentus in the Republic of Niger and analyzed them for their content of essential amino acids, minerals and trace elements, and fatty acids. On a dry weight basis, pumpkin seed contained 58.8% protein and 29.8% fat. However, the lysine score of the protein was only 65% relative to the FAO/WHO protein standard. The pumpkin seed contained useful amounts of linoleic (92 microg/g dry weight) and the following elements (on a microg per g dry weight basis): potassium (5,790), magnesium (5,690), manganese (49.3), zinc (113), selenium (1.29), copper (15.4), chromium (2.84), and molybdenum (0.81), but low amounts of calcium and iron. Except for potassium (5,573 microg/g dry weight) and chromium (2.88 microg/g dry weight), the C. esculentis nuts contained much less of these same nutrients compared to pumpkin seeds. In conclusion, pumpkin seeds represent a useful source of many nutrients essential to humans. The data in this report should of practical value to public health officials in rural areas of sub-Saharan Africa.

  19. Nutritional levels of diets fed to captive Amazon parrots: does mixing seed, produce, and pellets provide a healthy diet?

    PubMed

    Brightsmith, Donald J

    2012-09-01

    Poor nutrition is a serious problem in captive psittacine birds. Seed-based diets are known to contain excess fat, low calcium:phosphorus ratios, and other nutrient deficiencies, whereas many consider nutritionally superior, formulated diets to be monotonous. As a result, many bird owners feed a mixture of seed, produce, and formulated diet. However, the nutritional contents of such mixed diets have rarely been evaluated. In this study, we describe the nutrient contents of diets consumed by 7 adult (>6 years old), captive Amazon parrots offered produce (50% fresh weight), formulated diet (25%), and seed (25%). Diets consumed were deficient in calcium, sodium, and iron and contained more than the recommended amount of fat. In addition, the birds chose foods that exacerbated these imbalances. Birds offered low-seed diets (60% pellet, 22% produce, 18% seed, wet weight) consumed diets with more fat than recommended but acceptable levels of calcium and all other nutrients measured, as well as acceptable calcium:phosphorus ratios. This suggests that small quantities of seeds may not result in nutritionally imbalanced diets. Birds fed 75% formulated diet and 25% produce consumed diets within the recommendations for nearly all measured nutrients, demonstrating that owners of psittacine birds should be encouraged to supplement manufactured diets with low energy-density, fresh produce items to provide stimulation and foraging opportunities without fear of causing major nutritional imbalances.

  20. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  1. Dynamic Simulation Research on Chain Drive Mechanism of Corn Seeder Based on ADAMS

    NASA Astrophysics Data System (ADS)

    Wang, Y. B.; Jia, H. P.

    2017-12-01

    In order to reduce the damage to the chain and improve the seeding quality of the seeding machine, the corn seeder has the characteristics of the seeding quality and some technical indexes in the work of the corn seeding machine. The dynamic analysis of the chain drive mechanism is carried out by using the dynamic virtual prototype. In this paper, the speed of the corn planter is 5km/h, and the speed of the simulated knuckle is 0.1~0.9s. The velocity is 0.12m/s, which is equal to the chain speed when the seeder is running normally. Of the dynamic simulation of the movement and the actual situation is basically consistent with the apparent speed of the drive wheel has changed the acceleration and additional dynamic load, the chain drive has a very serious damage, and the maximum load value of 47.28N, in order to reduce the damage to the chain, As far as possible so that the sowing machine in the work to maintain a reasonable uniform speed, to avoid a greater acceleration, the corn sowing machine drive the design of a certain reference.

  2. 7T T₂*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease.

    PubMed

    van Rooden, Sanneke; Doan, Nhat Trung; Versluis, Maarten J; Goos, Jeroen D C; Webb, Andrew G; Oleksik, Ania M; van der Flier, Wiesje M; Scheltens, Philip; Barkhof, Frederik; Weverling-Rynsburger, Annelies W E; Blauw, Gerard Jan; Reiber, Johan H C; van Buchem, Mark A; Milles, Julien; van der Grond, Jeroen

    2015-01-01

    The aim of this study is to explore regional iron-related differences in the cerebral cortex, indicative of Alzheimer's disease pathology, between early- and late-onset Alzheimer's disease (EOAD, LOAD, respectively) patients using 7T magnetic resonance phase images. High-resolution T2(∗)-weighted scans were acquired in 12 EOAD patients and 17 LOAD patients with mild to moderate disease and 27 healthy elderly control subjects. Lobar peak-to-peak phase shifts and regional mean phase contrasts were computed. An increased peak-to-peak phase shift was found for all lobar regions in EOAD patients compared with LOAD patients (p < 0.05). Regional mean phase contrast in EOAD patients was higher than in LOAD patients in the superior medial and middle frontal gyrus, anterior and middle cingulate gyrus, postcentral gyrus, superior and inferior parietal gyrus, and precuneus (p ≤ 0.042). These data suggest that EOAD patients have an increased iron accumulation, possibly related to an increased amyloid deposition, in specific cortical regions as compared with LOAD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Protein Association and Dissociation Regulated by Ferric Ion

    PubMed Central

    Li, Chaorui; Fu, Xiaoping; Qi, Xin; Hu, Xiaosong; Chasteen, N. Dennis; Zhao, Guanghua

    2009-01-01

    Iron stored in phytoferritin plays an important role in the germination and early growth of seedlings. The protein is located in the amyloplast where it stores large amounts of iron as a hydrated ferric oxide mineral core within its shell-like structure. The present work was undertaken to study alternate mechanisms of core formation in pea seed ferritin (PSF). The data reveal a new mechanism for mineral core formation in PSF involving the binding and oxidation of iron at the extension peptide (EP) located on the outer surface of the protein shell. This binding induces aggregation of the protein into large assemblies of ∼400 monomers. The bound iron is gradually translocated to the mineral core during which time the protein dissociates back into its monomeric state. Either the oxidative addition of Fe2+ to the apoprotein to form Fe3+ or the direct addition of Fe3+ to apoPSF causes protein aggregation once the binding capacity of the 24 ferroxidase centers (48 Fe3+/shell) is exceeded. When the EP is enzymatically deleted from PSF, aggregation is not observed, and the rate of iron oxidation is significantly reduced, demonstrating that the EP is a critical structural component for iron binding, oxidation, and protein aggregation. These data point to a functional role for the extension peptide as an iron binding and ferroxidase center that contributes to mineralization of the iron core. As the iron core grows larger, the new pathway becomes less important, and Fe2+ oxidation and deposition occurs directly on the surface of the iron core. PMID:19398557

  4. The effect of hydrostatic vs. shock pressure treatment on plant seeds

    NASA Astrophysics Data System (ADS)

    Mustey, Adrian; Leighs, James; Appleby-Thomas, Gareth; Wood, David; Hazael, Rachael; McMillan, Paul; Hazell, Paul

    2013-06-01

    The hydrostatic pressure and shock response of plant seeds have both been previously investigated (primarily driven by an interest in reducing bacterial contamination of crops and the theory of panspermia respectively). However, comparisons have not previously been made between these two methods of applying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in such data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder set-up and shock compression via employment of a 50-mm bore, single stage gas gun using the flyer-plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set.

  5. Archaeobotanical reconstructions of vegetation and report of mummified apple seeds found in the cellar of a first-century Roman villa on Elba Island.

    PubMed

    Milanesi, Claudio; Scali, Monica; Vignani, Rita; Cambi, Franco; Dugerdil, Lucas; Faleri, Claudia; Cresti, Mauro

    In the late Roman Republic period (2nd-1st century BC), in the area of San Giovanni on Elba Island, previously subject to intense extraction of iron ore, a rustic villa was established by Marco Valerio Messalla, a supreme Roman magistrate. The foundations of the walls were discovered and excavated by an archaeological mission. Palaeobotanical analysis of a set of stratigraphic layers was performed. Palynological slides showed remains of palynomorphic and non-pollen objects, while data combined with anthracological investigations confirmed the hypothesis that in the 1st century AD the villa was destroyed by a fire that created a compact crust under which were discovered four broken Roman amphorae containing about five hundred apple seeds. Comparisons of archaeological and fresh seeds from reference collections showed discontinuous morphology except for one group of archaeological samples. DNA was isolated from seeds that had well-preserved embryos in all groups. DNA extracts from archaeological, wild and modern domestic seeds (controls) were amplified by PCR and tested with SSR molecular markers, followed by genome analysis. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  7. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia.

    PubMed

    Bou-Fakhredin, Rayan; Bazarbachi, Abdul-Hamid; Chaya, Bachar; Sleiman, Joseph; Cappellini, Maria Domenica; Taher, Ali T

    2017-12-20

    Iron overload (IOL) due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT), which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient's needs and on the available facilities. Iron chelation therapy (ICT) remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT.

  8. MRI Detects Myocardial Iron in the Human Heart

    PubMed Central

    Ghugre, Nilesh R.; Enriquez, Cathleen M.; Gonzalez, Ignacio; Nelson, Marvin D.; Coates, Thomas D.; Wood, John C.

    2010-01-01

    Iron-induced cardiac dysfunction is a leading cause of death in transfusion-dependent anemia. MRI relaxation rates R2(1/T2) and R2∗(1∕T2∗) accurately predict liver iron concentration, but their ability to predict cardiac iron has been challenged by some investigators. Studies in animal models support similar R2 and R2∗ behavior with heart and liver iron, but human studies are lacking. To determine the relationship between MRI relaxivities and cardiac iron, regional variations in R2 and R2∗ were compared with iron distribution in one freshly deceased, unfixed, iron-loaded heart. R2 and R2∗ were proportionally related to regional iron concentrations and highly concordant with one another within the interventricular septum. A comparison of postmortem and in vitro measurements supports the notion that cardiac R2∗ should be assessed in the septum rather than the whole heart. These data, along with measurements from controls, provide bounds on MRI-iron calibration curves in human heart and further support the clinical use of cardiac MRI in iron-overload syndromes. PMID:16888797

  9. The Effect of the Hemochromatosis (HFE) Genotype on Lead Load and Iron Metabolism among Lead Smelter Workers

    PubMed Central

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Background Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. Objectives To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Methods Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Results Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. Conclusions No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally. PMID:24988074

  10. The effect of the hemochromatosis (HFE) genotype on lead load and iron metabolism among lead smelter workers.

    PubMed

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  11. Hormone Replacement Therapy, Iron, and Breast Cancer

    DTIC Science & Technology

    2005-10-01

    tested in cell culture model systems and in an iron loaded transgenic mouse model. Since iron slowly accumulates due to the mutation of the HFE gene ...murine HFE gene is structurally similar to the human gene . Four different HFE gene disruptions have been reported in the mouse: an exon 4 knockout...Ex3 F Hfe Ex 5 R Figure 1. HFE gene knockout. Huang, X., DAMD-17-03-1-0717 5 mice provided by Dr. Nancy Andrews of the Howard Hughes Medical

  12. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, Wayne L.; Simon, N.S.; ,

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  13. Optimization of chitosan treatments for managing microflora in lettuce seeds without affecting germination.

    PubMed

    Goñi, M G; Moreira, M R; Viacava, G E; Roura, S I

    2013-01-30

    Many studies have focused on seed decontamination but no one has been capable of eliminating all pathogenic bacteria. Two objectives were followed. First, to assess the in vitro antimicrobial activity of chitosan against: (a) Escherichia coli O157:H7, (b) native microflora of lettuce and (c) native microflora of lettuce seeds. Second, to evaluate the efficiency of chitosan on reducing microflora on lettuce seeds. The overall goal was to find a combination of contact time and chitosan concentration that reduces the microflora of lettuce seeds, without affecting germination. After treatment lettuce seeds presented no detectable microbial counts (<10(2)CFU/50 seeds) for all populations. Moreover, chitosan eliminated E. coli. Regardless of the reduction in the microbial load, a 90% reduction on germination makes imbibition with chitosan, uneconomical. Subsequent treatments identified the optimal treatment as 10 min contact with a 10 g/L chitosan solution, which maintained the highest germination percentage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Parkhurst, David L.; Stollenwerk, Kenneth G.; Colman, John A.

    2003-01-01

    The subsurface transport of phosphorus introduced by the disposal of treated sewage effluent to ground-infiltration disposal beds at the Massachusetts Military Reservation on western Cape Cod was simulated with a three-dimensional reactive-transport model. The simulations were used to estimate the load of phosphorus transported to Ashumet Pond during operation of the sewage-treatment plant?from 1936 to 1995?and for 60 years following cessation of sewage disposal. The model accounted for spatial and temporal changes in water discharge from the sewage-treatment plant, ground-water flow, transport of associated chemical constituents, and a set of chemical reactions, including phosphorus sorption on aquifer materials, dissolution and precipitation of iron- and manganese-oxyhydroxide and iron phosphate minerals, organic carbon sorption and decomposition, cation sorption, and irreversible denitrification. The flow and transport in the aquifer were simulated by using parameters consistent with those used in previous flow models of this area of Cape Cod, except that numerical dispersion was much larger than the physical dispersion estimated in previous studies. Sorption parameters were fit to data derived from phosphorus sorption and desorption laboratory column experiments. Rates of organic carbon decomposition were adjusted to match the location of iron concentrations in an anoxic iron zone within the sewage plume. The sensitivity of the simulated load of phosphorus transported to Ashumet Pond was calculated for a variety of processes and input parameters. Model limitations included large uncertainties associated with the loading of the sewage beds, the flow system, and the chemistry and sorption characteristics in the aquifer. The results of current model simulations indicate a small load of phosphorus transported to Ashumet Pond during 1965?85, but this small load was particularly sensitive to model parameters that specify flow conditions and the chemical process by which non-desorbable phosphorus is incorporated in the sediments. The uncertainties were large enough to make it difficult to determine whether loads of phosphorus transported to Ashumet Pond in the 1990s were greater or less than loads during the previous two decades. The model simulations indicate substantial discharge of phosphorus to Ashumet Pond after about 1965. After the period 2000?10 the simulations indicate that the load of phosphorus transported to Ashumet Pond decreases continuously, but the load of phosphorus remains substantial for many decades. The current simulations indicate a peak in phosphorus discharge to Ashumet Pond of about 1,000 kilograms per year during the 1990s; however, comparisons of simulated phosphorus concentrations with measured concentrations in 1993 indicate that the peak in phosphorus load transported to Ashumet Pond may be larger and moving more quickly in the model simulations than in the aquifer. The results of the three-dimensional reactive-transport simulations are consistent with the loading history, experimental laboratory data, and field measurements. The results of the simulations adequately reproduce the spatial distribution of phosphorus concentrations measured in 1993, the magnitude of changes in phosphorus concentration with time in a profile near the disposal beds following cessation of sewage disposal, the observed iron zone in the sewage plume, the approximate flow of treated sewage effluent into Ashumet Valley, and laboratory-column data for phosphorus sorption and desorption.

  15. DISTANCE VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANCE VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING "B" ON RIGHT. HOSE WINDING SHED ADJACENT TO SHED-ROOFED ADDITION ON THE UTILITY BUILDING, BLM SEED SHED AND TACK SHED VISIBLE IN FAR DISTANCE. VIEW TO EAST, WITH SCALE. - Cedar City Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  16. Melter Throughput Enhancements for High-Iron HLW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less

  17. Analysis of interspecies physicochemical variation of grain legume seeds

    NASA Astrophysics Data System (ADS)

    Rybiński, Wojciech; Rusinek, Robert; Szot, Bogusław; Bocianowski, Jan; Starzycki, Michał

    2014-10-01

    The paper presents an attempt to assess the reaction of seeds to mechanical loads taking into account their geometry expressed as seed thickness and 1000 seed weight. The initial material comprised 33 genotypes of grain legume plants and included cultivars registered in the country and breeding lines that are subject to pre-registration trials. The analysis of variance revealed significant diversity of the cultivars and lines of the species studied in terms of each of the analysed trait. The highest weight of 1000 seeds were obtained for white lupine seeds and peas, the lowest for andean lupine seeds. The maximum deformation and energy were obtained for white lupine seeds, the lowest for pea seeds, the maximum force and module the lowest values were determined for narrow-leafed lupine and pea. The highest values of protein were obtained for andean and yellow lupine, a fat content for andean and white lupine. The fatty acid profile as much as 70% or more were linoleic and oleic acids. Against the background of all the species are distinguished by white lupine seeds with a high content of oleic acid and the lowest of linoleic acid, for yellow lupine were obtained the inverse ratio of the two acids.

  18. Biodiesel production methods of rubber seed oil: a review

    NASA Astrophysics Data System (ADS)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  19. Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin

    USGS Publications Warehouse

    Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James

    2009-01-01

    Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of these sites, 61 were seeded by using a drill, 27 were broadcast aerially, and 12 had a combination of both. We randomly sampled three burned and seeded, burned and unseeded, and unburned and unseeded locations in the vicinity of the fire, each within the same ecological site. We measured foliar cover of all plant functional groups (perennial or annual, shrub, grass, forb, native or introduced), biological soil crusts, and abiotic (bare soil and litter) variables using the line-point intercept protocol. Fuel loads and horizontal fuel continuity were measured. We applied linear mixed models to response variables (cover and density of plant groups) relative to the dependent variables (seeding treatments and precipitation/temperature relationships. Post-fire strengths with native perennial grasses or shrubs in mixes did not increase density or cover of these groups significantly relative to unseeded, burned areas. Seeded non-native perennial grasses and the shrub Bassia prostrata were effective in providing more cover in aerial and drill seedings. Seeded non-native perennial grass cover increased with increased annual precipitation regardless of seeding type. Seeding native shrubs, particularly Artemisia tridentata, did not significantly increase shrub cover in burned areas. Cover of undesirable non-native annual grasses was lower in drill seedings relative to unseeded areas but only at higher elevations. Seeding effectiveness after wildfire is unpredictable in drier, low elevation environments, and our findings indicate management objectives are more likely met when focusing efforts on higher elevation or higher precipitation locations where establishment of perennial grasses is more likely. On sites where potential for invasion and dominance of non-native annuals is high, such as lower and drier sites, intensive methods of restoration that include invasive plant control before seeding may be required. Where establishment of native perennial plants is the goal, managers might consider using native-only seed mixtures, because we found that the non-native perennials typically used in Great Basin restoration efforts are selected for their competitive nature and may reduce establishment of less competitive native species. Although we attempted to include information on livestock grazing history after seedings, we were unable to extract sufficient data from files to address this topic that may play an additional role in understanding native plant abundance post-fire seeding. Evaluation of drill and aerial seeding effects on fuel characteristics focused on two metrics that are standard inputs for fire behavior models, fuel load and fuel continuity. Fuel loads were evaluated separately for total fuel load biomass, and the individual components that sum to total biomass, namely herbaceous, shrub, shrub:herbaceous ratio, litter, 10-hour, and 100-hour fuel biomasses. Fuel continuity was evaluated using the following cover categories, total, annual grass, annual forb, perennial forb perennial grass, shrub, litter, vegetative interspace, and perennial interspace. Drill seeding did not affect fuel loads, except to reduce 10-hour fuels, probably due to mechanical destruction of dead and down fuels by the drill seeding equipment. Drill seeding did affect fuel continuity, specifically decreasing total plant cover by increasing perennial grass cover which suppressed annual grass and litter production resulting in a net decrease in continuity, but only at the elevations above approximately 1500m. Aerial seeding had no effect on any fuel load or fuel continuity category. For the Greater Sage-Grouse habitat study, we developed multi-scale empirical models of sage-grouse occupancy in 211 randomly located plots within a 40 million ha portion of the species’ range. We then used these models to predict sage-grouse habitat quality at 101 ES&R seeding projects. We compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe, and negatively associated with non-native grass and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.07–0.09) and was not significantly different from burned areas that had not been treated. Restoration was more often successful at higher elevation sites with low annual temperatures, high spring precipitation, and high plant diversity. No plots seeded after fire (n=313) met all overstory guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This trend was similar for summer habitat. Ninety-eight percent of treated plots did not meet winter habitat guidelines. Restoration actions in burned areas did not increase the probability of meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, local climate, and topography. Post-fire seeding treatments in Great Basin sagebrush shrublands generally have not created high quality habitat for sage-grouse. Understory conditions are more likely to be adequate than those of overstory, but in unfavorable climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using the restoration methods of the past two decades. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats. Our database of ES&R locations has used the Land Treatment Digital Library to archive data and location information regarding our study (see Pilliod and Welty 2013). This has contributed to two additional studies. One examined the potential spread of Bassia prostrata (aka Kochia prostrata; forage kochia) from ES&R project locations (Gray and Muir 2013). The second used remote sensing to determine the phenology of vegetation green-up on post-fire seeded sites (Sankey et al. 2013).

  20. Kinetic research on dechlorinating dichlorobenzene in aqueous system by nano-scale nickel/iron loaded with CMC/NFC hydrogel.

    PubMed

    Wan, Xiao-Fang; Guo, Congbao; Liu, Yu; Chai, Xin-Sheng; Li, Youming; Chen, Guangxue

    2018-03-01

    In this study, we reported on the nano-scale nickel/iron particles loaded in carboxymethyl/nanofibrillated cellulose (CMC/NFC) hydrogel for the dechlorination of o-dichlorobenzene (DCB) in aqueous solution. The biodegradable hydrogel may provide an ideal supporting material for fastening the bimetallic nano-scale particles, which was examined and characterized by TEM, SEM-EDX, FT-IR and BET. The performance of the selected bimetallic particles was evaluated by conducting the dechlorination of DCB in the solution under different reaction conditions (e.g., pH, dosage of nickel/iron nanoparticles and temperature). The results showed that about 70% of DCB could be dechlorinated at 20 °C in 8 h, which indicated that the immobilized reactive material had a high reduction activity when Ni/Fe loading dosage in the hydrogel (18 wt%) was considered. Moreover, the reduction behavior agreed to the pseudo-first order reaction, in which the dechlorination rate was irrelative to the pH aqueous solution. A kinetic model for predicting the concentration of DCB during the reduction reaction was established based on the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime.

    PubMed

    Ta, Thi D; Tieu, A Kiet; Zhu, Hongtao; Zhu, Qiang; Kosasih, Prabouno B; Zhang, Jie; Deng, Guanyu

    2016-03-02

    Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities.

  2. Kinetic Study on the Removal of Iron from Gold Mine Tailings by Citric Acid

    NASA Astrophysics Data System (ADS)

    Mashifana, T.; Mavimbela, N.; Sithole, N.

    2018-03-01

    The Gold mining generates large volumes of tailings, with consequent disposal and environmental problems. Iron tends to react with sulphur to form pyrite and pyrrhotite which then react with rain water forming acid rain. The study focuses on the removal of iron (Fe) from Gold Mine tailings; Fe was leached using citric acid as a leaching reagent. Three parameters which have an effect on the removal of Fe from the gold mine tailings, namely; temperature (25 °C and 50 °C), reagent concentration (0.25 M, 0.5 M, 0.75 M and 1 M) and solid loading ratio (20 %, 30 % and 40 %) were investigated. It was found that the recovery of Fe from gold mine tailings increased with increasing temperature and reagent concentration, but decreased with increasing solid loading ratio. The optimum conditions for the recovery of Fe from gold mine tailings was found to be at a temperature of 50 ºC, reagent concentration of 1 M and solid loading of 20 %. Three linear kinetic models were investigated and Prout-Tompkins kinetic model was the best fit yielding linear graphs with the highest R2 values.

  3. Probiotic/prebiotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice.

    PubMed

    Lin, Feifei; Wu, Haohao; Zeng, Mingyong; Yu, Guangli; Dong, Shiyuan; Yang, Huicheng

    2018-02-21

    Iron fortification has been associated with a modest increase in diarrhea risk among children. Herein, we investigate the correction for this unwanted side effect with probiotic/prebiotic supplementation in weaning mice. Iron fortification with 250 ppm and 500 ppm ferrous sulfate for 30 days significantly increased the species richness of the mouse gut microbiota compared to controls. The 500 ppm-FeSO 4 diet caused a significantly decreased abundance of potentially beneficial Lactobacillus. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), mice on the 500 ppm-FeSO 4 diet showed earlier appearance of poisoning symptoms, higher rates of weight and appetite loss, and lower survival rates, all of which were effectively reversed by supplementation with a probiotic (Lactobacillus acidophilus) or a prebiotic (inulin) for 7 days before infection. Iron fortification with 500 ppm ferrous sulfate also increased fecal shedding and spleen and liver load of viable S. Typhimurium, suggesting its promoting effect on pathogen colonization and translocation, and this negative effect was found to be well corrected by supplementation with Lactobacillus acidophilus or inulin. Light and transmission electron microscopic observation on the ileal villus structure revealed the histopathological impairment of the intestine by iron fortification with both 250 ppm and 500 ppm ferrous sulfate, and the intestinal lesions were markedly alleviated by supplementation with Lactobacillus acidophilus or inulin. These results provide experimental evidence for the increased diarrhea risk upon iron fortification with high pathogen load, and demonstrate that probiotic or prebiotic supplementation can be used to eliminate the potential harm of iron fortification on gut health.

  4. Source strength verification and quality assurance of preloaded brachytherapy needles using a CMOS flat panel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golshan, Maryam, E-mail: maryam.golshan@bccancer.bc.ca; Spadinger, Ingrid; Chng, Nick

    2016-06-15

    Purpose: Current methods of low dose rate brachytherapy source strength verification for sources preloaded into needles consist of either assaying a small number of seeds from a separate sample belonging to the same lot used to load the needles or performing batch assays of a subset of the preloaded seed trains. Both of these methods are cumbersome and have the limitations inherent to sampling. The purpose of this work was to investigate an alternative approach that uses an image-based, autoradiographic system capable of the rapid and complete assay of all sources without compromising sterility. Methods: The system consists of amore » flat panel image detector, an autoclavable needle holder, and software to analyze the detected signals. The needle holder was designed to maintain a fixed vertical spacing between the needles and the image detector, and to collimate the emissions from each seed. It also provides a sterile barrier between the needles and the imager. The image detector has a sufficiently large image capture area to allow several needles to be analyzed simultaneously.Several tests were performed to assess the accuracy and reproducibility of source strengths obtained using this system. Three different seed models (Oncura 6711 and 9011 {sup 125}I seeds, and IsoAid Advantage {sup 103}Pd seeds) were used in the evaluations. Seeds were loaded into trains with at least 1 cm spacing. Results: Using our system, it was possible to obtain linear calibration curves with coverage factor k = 1 prediction intervals of less than ±2% near the centre of their range for the three source models. The uncertainty budget calculated from a combination of type A and type B estimates of potential sources of error was somewhat larger, yielding (k = 1) combined uncertainties for individual seed readings of 6.2% for {sup 125}I 6711 seeds, 4.7% for {sup 125}I 9011 seeds, and 11.0% for Advantage {sup 103}Pd seeds. Conclusions: This study showed that a flat panel detector dosimetry system is a viable option for source strength verification in preloaded needles, as it is capable of measuring all of the sources intended for implantation. Such a system has the potential to directly and efficiently estimate individual source strengths, the overall mean source strength, and the positions within the seed-spacer train.« less

  5. Evaluation of Safety of Iron-Fortified Soybean Sprouts, a Potential Component of Functional Food, in Rat.

    PubMed

    Kujawska, Małgorzata; Ewertowska, Małgorzata; Ignatowicz, Ewa; Adamska, Teresa; Szaefer, Hanna; Zielińska-Dawidziak, Magdalena; Piasecka-Kwiatkowska, Dorota; Jodynis-Liebert, Jadwiga

    2016-03-01

    Ferritin-iron is currently considered as one of the most promising iron forms to prevent iron deficiency anaemia. We found that the cultivation of soybean seeds in a solution of ferrous sulfate results in material with extremely high iron content - 560.6 mg Fe/100 g of dry matter, while ferritin iron content was 420.5 mg/100 g dry matter. To assess the potential adverse effects of a preparation containing such a high concentration of iron, male and female Wistar rats were exposed via diet to 10, 30, 60 g soybean sprouts powder/kg feed for 90 days. There were no differences in final body weight and mean food consumption between controls and rats administered sprouts. No statistically significant differences in haematology and clinical chemistry parameters were found between controls and treated rats. Microscopic examination of 22 tissues did not reveal any pathology due to soybean sprouts intake. Long term administration of the test material did not cause oxidative damage to DNA and protein in the liver as evidenced by the unchanged basal levels of DNA damage as well as carbonyl groups content. Lipid peroxidation was slightly increased only in females. The activity of several antioxidant enzymes: superoxide dismutase, glutathione peroxidase and glutathione S-transferase was increased, which substantially enhanced the antioxidant status in the liver from the rats treated with soybean sprouts. Hence, the material tested can be recommended as a component of food supplements for individuals with iron deficiency anaemia and inflammatory bowel diseases.

  6. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease☆

    PubMed Central

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J.; Bain, Peter G.; Düzel, Emrah; Husain, Masud

    2013-01-01

    Background In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Methods Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. Results We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Conclusions Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. PMID:24025315

  7. Effect of strain hardening on friction behavior of iron lubricated with benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1974-01-01

    Sliding friction experiments were conducted with iron, copper, and aluminum in contact with iron in various states of strain. The surfaces were examined in dry sliding and with various benzyl compounds applied as lubricants. Friction experiments were conducted with a hemispherical rider contacting a flat disk at loads of from 50 to 600 grams with a sliding speed of 0.15 cm/min. Results indicate that straining increases friction for dry sliding and for surfaces lubricated with certain benzyl structures such as dibenzyl disulfide. With other benzyl compounds (e.g., benzyl formate), friction coefficients are lower for strained than for annealed iron.

  8. Photoreduction and incorporation of iron into ferritins.

    PubMed Central

    Laulhère, J P; Labouré, A M; Briat, J F

    1990-01-01

    Pea seed ferritin is able to incorporate ferrous iron into the mineral core. Fe2+ may be formed by reduction of exogenous Fe3+ with ascorbate or by photoreduction by ferritin and by ferric citrate. In our experimental conditions the bulk of the photoreduction is carried out by ferritin, which is able to photoreduce its endogenous iron. Citrate does not enhance the photoreduction capacity of ferritin, and exogenous ferric citrate improves the yield of the reaction by about 30%. The mineral core of the ferritin is shown to photoreduce actively, and the protein shell does not participate directly in the photoreduction. Low light intensities and low concentration of reducing agents do not allow a release of iron from ferritins, but induce a 'redox mill' of photoreduction and simultaneous ferroxidase-mediated incorporation. High ascorbate concentrations induce the release of ferritin iron. These reactions are accompanied by the correlated occurrence of damage caused by radicals arising from Fenton reactions, leading to specific cleavages in the 28 kDa phytoferritin subunit. This damage caused by radicals occurs during the oxidative incorporation into the mineral core and is prevented by o-phenanthroline or by keeping the samples in the dark. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:2375759

  9. DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.

    PubMed

    Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E

    2018-01-01

    Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    PubMed

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  11. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    PubMed Central

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  12. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    PubMed

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chemical and nutritional evaluation of two germplasms of the tribal pulse, Bauhinia racemosa Lamk.

    PubMed

    Mohan, V R; Janardhanan, K

    1994-12-01

    Two germplasms of the tribal pulse, Bauhinia racemosa Lamk. viz., Ayyanarkoil Forest and Mundanthurai Wildlife Sanctuary, were analysed for proximate composition, total (true) seed proteins, seed protein fractions, amino acid composition, fatty acids, minerals and antinutritional factors. Crude proteins, crude lipids, ash and nitrogen free extractives constituted 19.84%, 9.52%, 3.31% and 60.65%, respectively in Ayyanarkoil Forest germplasm; whereas, in Mundanthurai Wildlife Sanctuary germplasm they constituted 19.31%, 8.94%, 3.81% and 61.30%, respectively. The caloric values were found to be 407.64 KCal (Ayyanarkoil Forest) and 402.90 KCal (Mundanthurai Wildlife Sanctuary) germplasms. Essential amino acids like isoleucine, tyrosine, phenylalanine and lysine were found to be high in the seed proteins of both the germplasms. The fatty acids, palmitic, oleic and linoleic acids, were found to be relatively higher in the seed lipids of both the germplasms. Both the germplasms seemed to be a rich source of calcium, potassium, magnesium, zinc, manganese and iron. Antinutritional substances like total free phenols, tannins, L-DOPA and phytohaemagglutinating activity also were investigated.

  14. Nutritional and anti-nutritional potential of three accessions of itching bean (Mucuna pruriens (L.) DC var. pruriens): an under-utilized tribal pulse.

    PubMed

    Kala, Balasubiramanian Kamatchi; Mohan, Veerabahu Ramasamy

    2010-08-01

    Three accessions of the under-utilized legume itching bean (Mucuna pruriens var. pruriens) were analysed for proximate composition, mineral profiles, vitamins (niacin and ascorbic acid), fatty acid profiles, amino acid profiles of total seed protein, in vitro protein digestibility and certain anti-nutritional factors. All three accessions of M. pruriens var. pruriens contained higher amounts of crude protein and crude lipid when compared with most of the commonly consumed pulses. The fatty acid profiles revealed that the seed lipids contained a higher concentration of palmitic acid and linoleic acids. Amino acid profiles of M. pruriens var. pruriens revealed that the seed protein contained relatively higher levels of certain essential amino acids compared with the FAO/WHO requirement pattern. The investigated seeds are rich in minerals such as potassium, calcium, magnesium, phosphorus, iron and manganese. Anti nutritional substances such as total free phenolics, tannins, 3,4-dihydroxyphenylalanine, phytic acid, hydrogen cyanide, trypsin inhibitor activity, oligosaccharides and phytohaemagglutinating activity were investigated. The anti-nutritional fatty acid, behenic acid, also was detected in the present study.

  15. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less

  16. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium

    PubMed Central

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K.; Vera, Iset; Pittman, Jon K.; Staines, Henry M.; Mota, Maria M.

    2016-01-01

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km∼14.7 μM), and selective for Fe2+ over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit−) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit− parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host. PMID:26786069

  17. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium.

    PubMed

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K; Vera, Iset; Pittman, Jon K; Staines, Henry M; Mota, Maria M

    2016-01-20

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 μM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host.

  18. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells.

    PubMed

    Qu, Ding; Ma, Yihua; Sun, Wenjie; Chen, Yan; Zhou, Jing; Liu, Congyan; Huang, Mengmeng

    2015-01-01

    A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer.

  19. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    PubMed

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins.

    PubMed Central

    Lindqvist, Y; Huang, W; Schneider, G; Shanklin, J

    1996-01-01

    The three-dimensional structure of recombinant homodimeric delta9 stearoyl-acyl carrier protein desaturase, the archetype of the soluble plant fatty acid desaturases that convert saturated to unsaturated fatty acids, has been determined by protein crystallographic methods to a resolution of 2.4 angstroms. The structure was solved by a combination of single isomorphous replacement, anomalous contribution from the iron atoms to the native diffraction data and 6-fold non-crystallographic symmetry averaging. The 363 amino acid monomer consists of a single domain of 11 alpha-helices. Nine of these form an antiparallel helix bundle. The enzyme subunit contains a di-iron centre, with ligands from four of the alpha-helices in the helix bundle. The iron ions are bound in a highly symmetric environment, with one of the irons forming interactions with the side chains of E196 and H232 and the second iron with the side chains of E105 and H146. Two additional glutamic acid side chains, from E143 and E229, are within coordination distance to both iron ions. A water molecule is found within the second coordination sphere from the iron atoms. The lack of electron density corresponding to a mu-oxo bridge, and the long (4.2 angstroms) distance between the iron ions suggests that this probably represents the diferrous form of the enzyme. A deep channel which probably binds the fatty acid extends from the surface into the interior of the enzyme. Modelling of the substrate, stearic acid, into this channel places the delta9 carbon atom in the vicinity of one of the iron ions. Images PMID:8861937

  1. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins.

    PubMed

    Lindqvist, Y; Huang, W; Schneider, G; Shanklin, J

    1996-08-15

    The three-dimensional structure of recombinant homodimeric delta9 stearoyl-acyl carrier protein desaturase, the archetype of the soluble plant fatty acid desaturases that convert saturated to unsaturated fatty acids, has been determined by protein crystallographic methods to a resolution of 2.4 angstroms. The structure was solved by a combination of single isomorphous replacement, anomalous contribution from the iron atoms to the native diffraction data and 6-fold non-crystallographic symmetry averaging. The 363 amino acid monomer consists of a single domain of 11 alpha-helices. Nine of these form an antiparallel helix bundle. The enzyme subunit contains a di-iron centre, with ligands from four of the alpha-helices in the helix bundle. The iron ions are bound in a highly symmetric environment, with one of the irons forming interactions with the side chains of E196 and H232 and the second iron with the side chains of E105 and H146. Two additional glutamic acid side chains, from E143 and E229, are within coordination distance to both iron ions. A water molecule is found within the second coordination sphere from the iron atoms. The lack of electron density corresponding to a mu-oxo bridge, and the long (4.2 angstroms) distance between the iron ions suggests that this probably represents the diferrous form of the enzyme. A deep channel which probably binds the fatty acid extends from the surface into the interior of the enzyme. Modelling of the substrate, stearic acid, into this channel places the delta9 carbon atom in the vicinity of one of the iron ions.

  2. MD simulation of plastic deformation nucleation in stressed crystallites under irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korchuganov, A. V., E-mail: avkor@ispms.tsc.ru; Zolnikov, K. P., E-mail: kost@ispms.tsc.ru; Kryzhevich, D. S., E-mail: kryzhev@ispms.tsc.ru

    2016-12-15

    The investigation of plastic deformation nucleation in metals and alloys under irradiation and mechanical loading is one of the topical issues of materials science. Specific features of nucleation and evolution of the defect system in stressed and irradiated iron, vanadium, and copper crystallites were studied by molecular dynamics simulation. Mechanical loading was performed in such a way that the modeled crystallite volume remained unchanged. The energy of the primary knock-on atom initiating a cascade of atomic displacements in a stressed crystallite was varied from 0.05 to 50 keV. It was found that atomic displacement cascades might cause global structural transformationsmore » in a region far larger than the radiation-damaged area. These changes are similar to the ones occurring in the process of mechanical loading of samples. They are implemented by twinning (in iron and vanadium) or through the formation of partial dislocation loops (in copper).« less

  3. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D.; Meena, Sher Singh

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-raymore » energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.« less

  4. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds1

    PubMed Central

    Waters, Brian M.; Chu, Heng-Hsuan; DiDonato, Raymond J.; Roberts, Louis A.; Eisley, Robynn B.; Lahner, Brett; Salt, David E.; Walker, Elsbeth L.

    2006-01-01

    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. β-Glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues. PMID:16815956

  5. Ferritin accumulation under iron scarcity in Drosophila iron cells.

    PubMed

    Mehta, A; Deshpande, A; Bettedi, L; Missirlis, F

    2009-10-01

    Ferritins are highly stable, multi-subunit protein complexes with iron-binding capacities that reach 4500 iron atoms per ferritin molecule. The strict dependence of cellular physiology on an adequate supply of iron cofactors has likely been a key driving force in the evolution of ferritins as iron storage molecules. The insect intestine has long been known to contain cells that are responsive to dietary iron levels and a specialized group of "iron cells" that always accumulate iron-loaded ferritin, even when no supplementary iron is added to the diet. Here, we further characterize ferritin localization in Drosophila melanogaster larvae raised under iron-enriched and iron-depleted conditions. High dietary iron intake results in ferritin accumulation in the anterior midgut, but also in garland (wreath) cells and in pericardial cells, which together filter the circulating hemolymph. Ferritin is also abundant in the brain, where levels remain unaltered following dietary iron chelation, a treatment that depletes ferritin from the aforementioned tissues. We attribute the stability of ferritin levels in the brain to the function of the blood-brain barrier that may shield this organ from systemic iron fluctuations. Most intriguingly, our dietary manipulations demonstrably iron-depleted the iron cells without a concomitant reduction in their production of ferritin. Therefore, insect iron cells may constitute an exception from the evolutionary norm with respect to iron-dependent ferritin regulation. It will be of interest to decipher both the physiological purpose served and the mechanism employed to untie ferritin regulation from cellular iron levels in this cell type.

  6. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia

    PubMed Central

    Bou-Fakhredin, Rayan; Bazarbachi, Abdul-Hamid; Chaya, Bachar; Sleiman, Joseph; Cappellini, Maria Domenica; Taher, Ali T.

    2017-01-01

    Iron overload (IOL) due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT), which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient’s needs and on the available facilities. Iron chelation therapy (ICT) remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT. PMID:29261151

  7. Choices and consequences of oviposition by a pollinating seed predator, Hadena ectypa (Noctuidae), on its host plant, Silene stellata (Caryophyllaceae).

    PubMed

    Kula, Abigail A R; Dudash, Michele R; Fenster, Charles B

    2013-06-01

    Pollinating seed predators are models for the study of mutualisms. These insects have dual effects on host-plant fitness, through pollination as adults and flower and fruit predation as larvae. A rarely examined question is whether pollinating seed-predator oviposition choices are influenced by plant floral and size traits and the potential consequences of oviposition for host-plant reproduction. • We quantified oviposition by a pollinating seed predator, Hadena ectypa, on its host, Silene stellata, to determine if oviposition was associated with specific plant traits and whether oviposition was significantly correlated with fruit initiation or flower and fruit predation over three years. We also quantified whether stigmatic pollen loads of flowers visited by Hadena that both fed on nectar and oviposited were greater than when Hadena only fed on nectar. • Hadena had significant preference for plants having flowers with long corolla tubes in all three years. Moth oviposition was correlated with other traits only in some years. Oviposition did not increase stigmatic pollen loads. We observed significant positive relationships between both oviposition and fruit initiation and oviposition and flower/fruit predation. • Hadena ectypa oviposition choices were based consistently on floral tube length differences among individuals, and the consequences of oviposition include both fruit initiation (due to pollination while feeding on nectar prior to oviposition) and larval flower/fruit predation. The positive association between oviposition and fruit initiation may explain the long-term maintenance of facultative pollinating seed-predator interactions.

  8. The use of XAFS to determine the nature of interaction of iron and molybdenum metal salts within PS-b-P2VP micelles.

    PubMed

    Riskin, Alexander; Beale, Andrew M; Boyen, Hans-Gerhard; Vantomme, André; Hardy, An; Van Bael, Marlies K

    2013-02-07

    The poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) micelle route is a well established method for the preparation of bimetallic nanoparticles used for the catalysis of carbon nanotubes and other applications like ultrahigh density storage devices, yet to date no information is available concerning the internal structure of the P2VP-metal salt complex. For the first time, XAFS measurements were performed on micelles loaded with either iron(III) chloride or molybdenum(V) chloride and a combination of both. Analysis of the data revealed that iron is tetrahedrally coordinated within the core, whereas molybdenum is octahedrally coordinated in the pure loaded micelles and trigonally coordinated in the mixed micelles. For the bimetallic samples, analysis of the Fe and Mo K-edge data revealed the existence of an interaction between iron and molybdenum. This approach to obtain detailed structural information during the preparation of these catalyst samples will allow for a deeper understanding of the effects of structure on the function of catalysts used for CNT growth i.e. to explain differences in yield as well as potentially providing a deeper understanding of the CNT growth mechanism itself.

  9. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations.

    PubMed

    Wu, Ting-Ying; Gruissem, Wilhelm; Bhullar, Navreet K

    2018-05-01

    Iron deficiency affects one third of the world population. Most iron biofortification strategies have focused on genes involved in iron uptake and storage but facilitating internal long-distance iron translocation has been understudied for increasing grain iron concentrations. Citrate is a primary iron chelator, and the transporter FERRIC REDUCTASE DEFECTIVE 3 (FRD3) loads citrate into the xylem. We have expressed AtFRD3 in combination with AtNAS1 (NICOTIANAMINE SYNTHASE 1) and PvFER (FERRITIN) or with PvFER alone to facilitate long-distance iron transport together with efficient iron uptake and storage in the rice endosperm. The citrate and iron concentrations in the xylem sap of transgenic plants increased two-fold compared to control plants. Iron and zinc levels increased significantly in polished and unpolished rice grains to more than 70% of the recommended estimated average requirement (EAR) for iron and 140% of the recommended EAR for zinc in polished rice grains. Furthermore, the transformed lines showed normal phenotypic growth, were tolerant to iron deficiency and aluminum toxicity, and had grain cadmium levels similar to control plants. Together, our results demonstrate that deploying FRD for iron biofortification has no obvious anti-nutritive effects and should be considered as an effective strategy for reducing human iron deficiency anemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Microgravity mediated changes in phytoferritin accumulation in soybean root cap cells

    NASA Technical Reports Server (NTRS)

    Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Brown, C. S.; Chapman, D. K.

    2000-01-01

    Phytoferritin is an iron-protein complex analogous to the ferritin found in mammalian, bacteria and fungi cells. Phytoferritin molecules are large proteins, about 10.5 nm in diameter, visualised in an electron microscope as discrete, electron dense particles with iron-containing core, where several thousand atoms of iron lie within the proteinaceous shell (apoferritin). In higher plants, a plastid stroma is the site of phytoferritin storage. Phytoferritin is seen in all types of plastids. It is considered to be a mechanism used by cells to store iron in a non-toxic form. Phytoferritin-bound iron may subsequently be used to form iron-containing components. It was shown that low levels of phytoferritin are synthesised in normal green leaves, whereas chlorotic leaves do not have a measurable amount of phytoferritin and leaves of iron-loaded seedlings contain a high level of total iron, and phytoferritin well-filled by iron. Phytoferritin accumulation was observed in photosynthetic inactivity chloroplasts during senescence and disease. In this study we analised the effects of microgravity and ethylene on production of phytoferritin in the root cap columella cells of soybean seedlings.

  11. Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering.

    PubMed

    Kreja, Ludwika; Liedert, Astrid; Schlenker, Heiter; Brenner, Rolf E; Fiedler, Jörg; Friemert, Benedikt; Dürselen, Lutz; Ignatius, Anita

    2012-10-01

    The purpose of this study was to prove the effect of cyclic uniaxial intermittent strain on the mRNA expression of ligament-specific marker genes in human mesenchymal stem cells (MSC) and anterior cruciate ligament-derived fibroblasts (ACL-fibroblasts) seeded onto a novel textured poly(L-lactide) scaffold (PLA scaffold). Cell-seeded scaffolds were mechanically stimulated by cyclic uniaxial stretching. The expression of ligament matrix gene markers: collagen types I and III, fibronectin, tenascin C and decorin, as well as the proteolytic enzymes matrix metalloproteinase MMP-1 and MMP-2 and their tissue specific inhibitors TIMP-1 and TIMP-2 was investigated by analysing the mRNA expression using reverse transcriptase polymerase chain reaction and related to the static control. In ACL-fibroblasts seeded on PLA, mechanical load induced up-regulation of collagen types I and III, fibronectin and tenascin C. No effect of mechanical stimulation on the expression of ligament marker genes was found in undifferentiated MSC seeded on PLA. The results indicated that the new textured PLA scaffold could transfer the mechanical load to the ACL-fibroblasts and improved their ligament phenotype. This scaffold might be suitable as a cell-carrying component of ACL prostheses.

  12. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  13. Fate of blood meal iron in mosquitos

    PubMed Central

    Zhou, Guoli; Kohlhepp, Pete; Geiser, Dawn; Frasquillo, Maria del Carmen; Vazquez-Moreno, Luz; Winzerling, Joy J.

    2007-01-01

    Iron is an essential element of living cells and organisms as a component of numerous metabolic pathways. Hemoglobin and ferric-transferrin in vertebrate host blood are the two major iron sources for female mosquitoes. We used inductively coupled plasma mass spectrometry (ICP-MS) and radioisotope-labeling to quantify the fate of iron supplied from hemoglobin or as transferrin in Aedes aegypti. At the end of the first gonotrophic cycloe, ~87% of the ingested total meal heme iron was excreted, while 7% was distributed into the eggs and 6% was stored in different tissues. In contrast, ~8% of the iron provided as transferrin was excreted and of that absorbed, 77% was allocated to the eggs and 15% distributed in the tissues. Further analyses indicate that of the iron supplied in a blood meal, ~7% appears in the eggs and of this iron 98% is from hemoglobin and 2% from ferric-transferrin. Whereas of iron from a blood meal retained in body of the female, ~97% is from heme and <1 % is from transferrin. Evaluation of iron-binding proteins in hemolymph and egg following intake of 59Fe-transferrin revealed that ferritin is iron loaded in these animals, and indicate that this protein plays a critical role in meal iron transport and iron storage in eggs in A. aegypti. PMID:17689557

  14. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  15. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal.

    PubMed

    Jang, Min; Chen, Weifang; Cannon, Fred S

    2008-05-01

    Arsenic is of concern in water treatment because of its health effects. This research focused on incorporating hydrous ferric oxide (HFO) into granular activated carbon (GAC) for the purpose of arsenic removal. Iron was incorporated into GAC via incipient wetness impregnation and cured at temperatures ranging from 60 to 90 degrees C. X-ray diffractions and arsenic sorption as a function of pH were conducted to investigate the effect of temperature on final iron oxide (hydroxide) and their arsenic removal capabilities. Results revealed that when curing at 60 degrees C, the procedure successfully created HFO in the pores of GAC, whereas at temperatures of 80 and 90 degrees C, the impregnated iron oxide manifested a more crystalline form. In the column tests using synthetic water, the HFO-loaded GAC prepared at 60 degrees C also showed higher sorption capacities than media cured at higher temperatures. These results indicated that the adsorption capacity for arsenic was closely related to the form of iron (hydr)oxide for a given iron content For the column test using a natural groundwater, HFO-loaded GAC (Fe, 11.7%) showed an arsenic sorption capacity of 26 mg As/g when the influent contained 300 microg/L As. Thus, the preloading of HFO into a stable GAC media offered the opportunity to employ fixed carbon bed reactors in water treatment plants or point-of-use filters for arsenic removal.

  16. Dynamic Hydrostatic Pressure Regulates Nucleus Pulposus Phenotypic Expression and Metabolism in a Cell Density-Dependent Manner.

    PubMed

    Shah, Bhranti S; Chahine, Nadeen O

    2018-02-01

    Dynamic hydrostatic pressure (HP) loading can modulate nucleus pulposus (NP) cell metabolism, extracellular matrix (ECM) composition, and induce transformation of notochordal NP cells into mature phenotype. However, the effects of varying cell density and dynamic HP magnitude on NP phenotype and metabolism are unknown. This study examined the effects of physiological magnitudes of HP loading applied to bovine NP cells encapsulated within three-dimensional (3D) alginate beads. Study 1: seeding density (1 M/mL versus 4 M/mL) was evaluated in unloaded and loaded (0.1 MPa, 0.1 Hz) conditions. Study 2: loading magnitude (0, 0.1, and 0.6 MPa) applied at 0.1 Hz to 1 M/mL for 7 days was evaluated. Study 1: 4 M/mL cell density had significantly lower adenosine triphosphate (ATP), glycosaminoglycan (GAG) and collagen content, and increased lactate dehydrogenase (LDH). HP loading significantly increased ATP levels, and expression of aggrecan, collagen I, keratin-19, and N-cadherin in HP loaded versus unloaded groups. Study 2: aggrecan expression increased in a dose dependent manner with HP magnitude, whereas N-cadherin and keratin-19 expression were greatest in low HP loading compared to unloaded. Overall, the findings of the current study indicate that cell seeding density within a 3D construct is a critical variable influencing the mechanobiological response of NP cells to HP loading. NP mechanobiology and phenotypic expression was also found to be dependent on the magnitude of HP loading. These findings suggest that HP loading and culture conditions of NP cells may require complex optimization for engineering an NP replacement tissue.

  17. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  18. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds

    DOE PAGES

    Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.; ...

    2017-09-08

    Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolarmore » transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Finally, disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.« less

  19. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity

    PubMed Central

    2013-01-01

    Background Having considered how bioavailable aluminium (Al) may affect ecological systems and animals living there, especially cattle, and in search for a preventive dietary treatment against Al toxicity, we aimed to test the protective role of fenugreek seeds against chronic liver injury induced by aluminum chloride (AlCl3) in Wistar rats. Results Five months of AlCl3 oral exposure (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) caused liver atrophy, an inhibition of aspartate transaminase (AST), alanine transaminase (ALT) and glutamyl transpeptidase (GGT), an enhancement of both lipid peroxidation and lactate dehydrogenase (LDH) activity and an increase of total protein level in liver. Moreover, histopathological and histochemical examinations revealed moderate alterations in the hepatic parenchyma in addition to a disrupted iron metabolism. Co-administration of fenugreek seed powder (FSP) at 5% in pellet diet during two months succeeded to antagonize the harmful effects of AlCl3 by restoring all tested parameters. Conclusion This study highlighted the hepatotoxicity of AlCl3 through biochemical and histological parameters in one hand and the hepatoprotective role of fenugreek seeds on the other hand. Thus this work could be a pilot study which will encourage farmers to use fenugreek seeds as a detoxifying diet supplement for domestic animals. PMID:23363543

  20. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments.

    PubMed

    Du, Huihui; Peacock, Caroline L; Chen, Wenli; Huang, Qiaoyun

    2018-09-01

    Adsorption and coprecipitation of organic matter with iron (hydr)oxides can alter iron (hydr)oxide surface properties and their reactivity towards nutrient elements and heavy metals. Organo-mineral composites were synthesized using humic acid (HA) and iron oxide, during coprecipitation with ferrihydrite (Fh) and adsorption to pre-formed Fh with two C loadings. The Fh-HA coprecipitated composites have a higher C content and smaller surface area compared to the equivalent adsorbed composites. NanoSIMS shows there is a high degree of spatial correlation between Fe and C for both composites, but C distribution is more uniform in the coprecipitated composites. The C 1s NEXAFS reveals a similar C composition between the Fh-HA coprecipitated and adsorbed composites. However composites at high carbon loading are more enriched in aromatic C, likely due to preferential binding of carboxyl functional groups on aromatic rings in the HA. The amount of Cd sorbed is independent of the composite type, either coprecipitated or adsorbed, but is a function of the C loading. Composites with low C loading show Cd sorption that is almost identical to pure Fh, while composites with high C loading show Cd sorption that is intermediate between pure Fh and pure HA, with sorption significantly enhanced over pure Fh at pH < 6.5. A bidentate edge-sharing binding was identified for Cd on pure Fh and Cd-carboxyl binding on pure HA. These findings have significant implications not only for the sequestration of Cd in contaminated environments but also the coupled biogeochemical cycling of Cd, Fe and C in the critical zone. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. The application of inverse Broyden's algorithm for modeling of crack growth in iron crystals.

    PubMed

    Telichev, Igor; Vinogradov, Oleg

    2011-07-01

    In the present paper we demonstrate the use of inverse Broyden's algorithm (IBA) in the simulation of fracture in single iron crystals. The iron crystal structure is treated as a truss system, while the forces between the atoms situated at the nodes are defined by modified Morse inter-atomic potentials. The evolution of lattice structure is interpreted as a sequence of equilibrium states corresponding to the history of applied load/deformation, where each equilibrium state is found using an iterative procedure based on IBA. The results presented demonstrate the success of applying the IBA technique for modeling the mechanisms of elastic, plastic and fracture behavior of single iron crystals.

  4. Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics

    PubMed Central

    Wu, Jingxia; Li, Jingye; Deng, Bo; Jiang, Haiqing; Wang, Ziqiang; Yu, Ming; Li, Linfan; Xing, Chenyang; Li, Yongjin

    2013-01-01

    Self-healing of the superhydrophobic cotton fabric (SCF) obtained by the radiation-induced graft polymerization of lauryl methacrylate (LMA) and n-hexyl methacrylate (HMA), can be achieved by ironing. Through the steam ironing process, the superhydrophobicity of the SCFs will be regenerated even after the yarns are ruptured during the abrasion test under a load pressure of 44.8 kPa. SCFs made from LMA grafted cotton fabric can ultimately withstand at least 24,000 cycles of abrasion with periodic steam ironing. The FT-IR microscope results show that the migration of the polymethacrylates graft chains from the interior to the surface is responsible for the self-healing effect. PMID:24135813

  5. Date seed oil loaded niosomes: development, optimization and anti-inflammatory effect evaluation on rats.

    PubMed

    Soliman, Mahmoud S; Abd-Allah, Fathy I; Hussain, Talib; Saeed, Noha M; El-Sawy, Hossam S

    2018-07-01

    An optimized date seed oil (DSO) loaded niosomes was formulated. Maximize the extract anti-inflammatory efficacy and govern its release characteristics from nanoparticles for osteoarthritis prevention and treatment purposes. By using Box-Behnken Design, the effect of three formulation factors on the entrapment efficiency percentage (Y 1 ), initial DSO release percentage after 2 h (Y 2 ), and cumulative DSO release percentage of DSO after 12 h (Y 3 ), were optimized and studied. The optimized DSO formulation was specified, elaborated, particle size and zeta potential assessed, examined morphologically under electron and light microscope, and in vivo evaluated via carrageenan-induced rat paw edema study. 65.89%, 18.39%, and 58.27% were the measured responses of the optimized niosomes for Y 1 , Y 2 , and Y 3 , respectively. The vesicular structure of the optimized DSO loaded nano-vesicles with nano-size range and good stability features were confirmed. Furthermore, a distinguished anti-inflammatory activity in both prompt and sustained effectiveness were exhibited via the optimized DSO niosomes. Interestingly, the delayed efficacy outcomes of the extract loaded nanoparticles showed a similarity profile as well as the negative control group outcomes. To emphasize, DSO loading in niosomes revealed a significant enhancement toward inflammation alleviation, which offers a promising implement in osteoarthritis remediation and prohibition.

  6. Protective effect of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) on induced oxidation of low-density lipoprotein in rats.

    PubMed

    Mukthamba, Puttaswamy; Srinivasan, Krishnapura

    2016-01-01

    Dietary fenugreek seeds (Trigonella foenum-graecum) and garlic (Allium sativum) have been previously observed to have cardioprotective influence in experimentally induced myocardial infarction in rats. Since low-density lipoprotein (LDL) oxidation is a key factor in the arteriosclerotic process, we evaluated their potential in minimizing the LDL oxidation in rats. Fenugreek seeds, garlic, and their combination were included along with a high-cholesterol diet for 8 weeks. Iron-induced oxidation of LDL in vivo was considerably lowered by dietary fenugreek and garlic. The extent of copper-induced oxidation of isolated LDL in vitro was also significantly lesser in fenugreek-fed or fenugreek+garlic-fed rats. Anodic electrophoretic mobility of the oxidized LDL on agarose gel in case of spice-fed animals was decreased and hence consistent with the observed protective influence on LDL oxidation. Dietary fenugreek, garlic, and their combination significantly lowered lipid peroxide levels in plasma, liver, and heart in iron (II)-administered rats. The results suggest that these two dietary spices have protective effect on LDL oxidation under normal situation as well as in hypercholesterolemic situation. The protective effect of the combination of dietary fenugreek and garlic on LDL oxidation both in vivo and in vitro was greater than that of the individual spices. The protective effect of dietary fenugreek and garlic on LDL oxidation both in vivo and in vitro as evidenced in the present study is suggestive of their cardioprotective potential since LDL oxidation is a key factor in the arteriosclerotic process.

  7. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    PubMed

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  8. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    PubMed

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  9. Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume.

    PubMed

    Li, Yongchao; Jin, Zhaohui; Li, Tielong; Li, Shujing

    2011-01-01

    Silica fume supported-Fe(0) nanoparticles (SF-Fe(0)) were prepared using commercial silica fume as a support. The feasibility of using this SF-Fe(0) for reductive immobilization of Cr(VI) was investigated through batch tests. Compared with unsupported Fe(0), SF-Fe(0) was significantly more active in Cr(VI) removal especially in 84 wt% silica fume loading. Silica fume had also been found to inhibit the formation of Fe(III)/Cr(III) precipitation on Fe nanoparticles' surface, which was increasing the deactivation resistance of iron. Cr(VI) was removed through physical adsorption of Cr(VI) onto the SF-Fe(0) surface and subsequent reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) could be expressed by pseudo first-order reaction kinetics. The rate constant increased with the increase in iron loading but decreased with the increase in initial Cr(VI) concentration. Furthermore, column tests showed that the SF-Fe(0) could be readily transported in model soil.

  10. Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging.

    PubMed

    Li, Huan; Yan, Kai; Shang, Yalei; Shrestha, Lochan; Liao, Rufang; Liu, Fang; Li, Penghui; Xu, Haibo; Xu, Zushun; Chu, Paul K

    2015-03-01

    Polymeric micelles functionalized with folate conjugated bovine serum albumin (FA-BSA) and loaded with superparamagnetic iron oxide nanoparticles (SPIONs) are investigated as a specific contrast agent for tumor targeting and magnetic resonance imaging (MRI) in vitro and in vivo. The SPIONs-loaded polymeric micelles are produced by self-assembly of amphiphilic poly(HFMA-co-MOTAC)-g-PEGMA copolymers and oleic acid modified Fe3O4 nanoparticles and functionalized with FA-BSA by electrostatic interaction. The FA-BSA modified magnetic micelles have a hydrodynamic diameter of 196.1 nm, saturation magnetization of 5.5 emu/g, and transverse relaxivity of 167.0 mM(-1) S(-1). In vitro MR imaging, Prussian blue staining, and intracellular iron determination studies demonstrate that the folate-functionalized magnetic micelles have larger cellular uptake against the folate-receptor positive hepatoma cells Bel-7402 than the unmodified magnetic micelles. In vivo MR imaging conducted on nude mice bearing the Bel-7402 xenografts after bolus intravenous administration reveals excellent tumor targeting and MR imaging capabilities, especially at 24h post-injection. These findings suggest the potential of FA-BSA modified magnetic micelles as targeting MRI probe in tumor detection. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Uptake and release of metal ions by transferrin and interaction with receptor 1.

    PubMed

    El Hage Chahine, Jean-Michel; Hémadi, Miryana; Ha-Duong, Nguyêt-Thanh

    2012-03-01

    For a metal to follow the iron acquisition pathway, four conditions are required: 1-complex formation with transferrin; 2-interaction with receptor 1; 3-metal release in the endosome; and 4-metal transport to cytosol. This review deals with the mechanisms of aluminum(III), cobalt(III), uranium(VI), gallium(III) and bismuth(III) uptake by transferrin and interaction with receptor 1. The interaction of the metal-loaded transferrin with receptor 1 takes place in one or two steps: a very fast first step (μs to ms) between the C-lobe and the helical domain of the receptor, and a second slow step (2-6h) between the N-lobe and the protease-like domain. In transferrin loaded with metals other than iron, the dissociation constants for the interaction of the C-lobe with TFR are in a comparable range of magnitudes 10 to 0.5μM, whereas those of the interaction of the N-lobe are several orders of magnitudes lower or not detected. Endocytosis occurs in minutes, which implies a possible internalization of the metal-loaded transferrin with only the C-lobe interacting with the receptor. A competition with iron is possible and implies that metal internalization is more related to kinetics than thermodynamics. As for metal release in the endosome, it is faster than the recycling time of transferrin, which implies its possible liberation in the cell. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

    PubMed Central

    Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.

    2010-01-01

    Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696

  13. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  14. Risk of iron overload is decreased in beating heart coronary artery surgery compared to conventional bypass.

    PubMed

    Mumby, S; Koh, T W; Pepper, J R; Gutteridge, J M

    2001-11-29

    Conventional cardiopulmonary bypass surgery (CCPB) increases the iron loading of plasma transferrin often to a state of plasma iron overload, with the presence of low molecular mass iron. Such iron is a potential risk factor for oxidative stress and microbial virulence. Here we assess 'off-pump' coronary artery surgery on the beating heart for changes in plasma iron chemistry. Seventeen patients undergoing cardiac surgery using the 'Octopus' myocardial wall stabilisation device were monitored at five time points for changes in plasma iron chemistry. This group was further divided into those (n=9) who had one- or two- (n=8) vessel grafts, and compared with eight patients undergoing conventional coronary artery surgery. Patients undergoing beating heart surgery had significantly lower levels of total plasma non-haem iron, and a decreased percentage saturation of their transferrin at all time points compared to conventional bypass patients. Plasma iron overload occurred in only one patient undergoing CCPB. Beating heart surgery appears to decrease red blood cell haemolysis, and tissue damage during the operative procedures and thereby significantly decreases the risk of plasma iron overload associated with conventional bypass.

  15. Magnetic resonance imaging of reconstructed ferritin as an iron-induced pathological model system

    NASA Astrophysics Data System (ADS)

    Balejcikova, Lucia; Strbak, Oliver; Baciak, Ladislav; Kovac, Jozef; Masarova, Marta; Krafcik, Andrej; Frollo, Ivan; Dobrota, Dusan; Kopcansky, Peter

    2017-04-01

    Iron, an essential element of the human body, is a significant risk factor, particularly in the case of its concentration increasing above the specific limit. Therefore, iron is stored in the non-toxic form of the globular protein, ferritin, consisting of an apoferritin shell and iron core. Numerous studies confirmed the disruption of homeostasis and accumulation of iron in patients with various diseases (e.g. cancer, cardiovascular or neurological conditions), which is closely related to ferritin metabolism. Such iron imbalance enables the use of magnetic resonance imaging (MRI) as a sensitive technique for the detection of iron-based aggregates through changes in the relaxation times, followed by the change in the inherent image contrast. For our in vitrostudy, modified ferritins with different iron loadings were prepared by chemical reconstruction of the iron core in an apoferritin shell as pathological model systems. The magnetic properties of samples were studied using SQUID magnetometry, while the size distribution was detected via dynamic light scattering. We have shown that MRI could represent the most advantageous method for distinguishing native ferritin from reconstructed ferritin which, after future standardisation, could then be suitable for the diagnostics of diseases associated with iron accumulation.

  16. Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron within Cancer Cells.

    PubMed

    Cioloboc, Daniela; Kennedy, Christopher; Boice, Emily N; Clark, Emily R; Kurtz, Donald M

    2018-01-08

    Traditional photodynamic therapy for cancer relies on dye-photosensitized generation of singlet oxygen. However, therapeutically effective singlet oxygen generation requires well-oxygenated tissues, whereas many tumor environments tend to be hypoxic. We describe a platform for targeted enhancement of photodynamic therapy that produces singlet oxygen in oxygenated environments and hydroxyl radical, which is typically regarded as the most toxic reactive oxygen species, in hypoxic environments. The 24-subunit iron storage protein bacterioferritin (Bfr) has the unique property of binding 12 heme groups in its protein shell. We inserted the isostructural photosensitizer, zinc(II) protoporphyrin IX (ZnP), in place of the hemes and extended the surface-exposed N-terminal ends of the Bfr subunits with a peptide targeting a receptor that is hyperexpressed on the cell surface of many tumors and tumor vasculature. We then loaded the inner cavity with ∼2500 irons as a ferric oxyhydroxide polymer and finally conjugated 2 kDa polyethylene glycol to the outer surface. We showed that the inserted ZnP photosensitizes generation of both singlet oxygen and the hydroxyl radical, the latter via the reaction of photoreleased ferrous iron with hydrogen peroxide. This targeted iron-loaded ZnP-Bfr construct was endocytosed by C32 melanoma cells and localized to lysosomes. Irradiating the treated cells with light at wavelengths overlapping the ZnP Soret absorption band induced photosensitized intracellular Fe 2+ release and substantial lowering of cell viability. This targeted, light-triggered production of intracellular singlet oxygen and Fenton-reactive iron could potentially be developed into a phototherapeutic adjunct for many types of cancers.

  17. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    PubMed

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Power and Particle Exhaust in Tokamaks

    ScienceCinema

    Dr. Wojciech Fundamenski

    2018-04-19

    Dr. Fundamenski provides an introduction to plasma exhaust, specifically relating to the EFDA-JET and ITER projects in Europe. Divertor heat loads, impurity seeding, and disruption experiments are outlined.

  19. Antioxidant-Mediated Effects in a Gerbil Model of Iron Overload

    PubMed Central

    Otto-Duessel, Maya; Aguilar, Michelle; Moats, Rex; Wood, John C.

    2010-01-01

    Introduction Iron cardiomyopathy is a lethal complication of transfusion therapy in thalassemia major. Nutritional supplements decreasing cardiac iron uptake or toxicity would have clinical significance. Murine studies suggest taurine may prevent oxidative damage and inhibit Ca2+-channel-mediated iron transport. We hypothesized that taurine supplementation would decrease cardiac iron-overloaded toxicity by decreasing cardiac iron. Vitamin E and selenium served as antioxidant control. Methods Animals were divided into control, iron, taurine, and vitamin E/selenium groups. Following sacrifice, iron and selenium measurements, histology, and biochemical analyses were performed. Results No significant differences were found in heart and liver iron content between treatment groups, except for higher hepatic dry-weight iron concentrations in taurine-treated animals (p < 0.03). Serum iron increased with iron loading (751 ± 66 vs. 251 ± 54 μg/dl, p < 0.001) and with taurine (903 ± 136 μg/dl, p = 0.03). Conclusion Consistent with oxidative stress, iron overload increased cardiac malondialdehyde levels, decreased heart glutathione peroxidase (GPx) activity, and increased serum aspartate aminotransferase. Taurine ameliorated these changes, but only significantly for liver GPx activity. Selenium and vitamin E supplementation did not improve oxidative markers and worsened cardiac GPx activity. These results suggest that taurine acts primarily as an antioxidant rather than inhibiting iron uptake. Future studies should illuminate the complexity of these results. PMID:17940334

  20. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    PubMed Central

    Fernández, Belén; Fdez, Elena; Gómez-Suaga, Patricia; Gil, Fernando; Molina-Villalba, Isabel; Ferrer, Isidro; Patel, Sandip; Churchill, Grant C.; Hilfiker, Sabine

    2016-01-01

    ABSTRACT Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load. PMID:27383256

  1. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  2. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  3. Poly(D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Naik, Sweta; Carpenter, Everett E.

    2008-04-01

    Today many potent anticancer drugs like cisplatin are available which carry a number of side effects. A promising way of reducing the side effects is to target the drug to tissue sites by coating it with biocompatible materials like Poly (dl-lactide-co-glycolide) (PLGA) polymer where controlled drug release is achieved during the biodegradation of the polymer. Also the efficacy of anticancer drugs like cisplatin increases at elevated temperatures, so if local heating can be achieved where the drug is targeted. Local heating can be achieved by introducing iron core nanoparticles in the composites along with the drug, which can be heated by the 2.4 GHz microwaves. Local heating of the nanocomposites also helps to swell the polymer shell and enhance the drug release. The magnetic nanocomposites were synthesized using iron nanoparticles, PLGA and a fluorescent dye, tris-(2,2'bipyridyl) dichlororuthenium (II) using an oil-in-emulsion technique. The emulsion contains PLGA, dye, and iron nanoparticles dissolved in the oil phase and polyvinyl alcohol (PVA) as a stabilizer. As the sample is homogenized, and dried, uniform 100 nm composites are formed where the dye and iron nanoparticles are encapsulated in a PLGA shell. Control of the thickness and loading efficiency of the nanocomposite can be controlled by varying the ratio of PLGA, iron, and dye. The amount of loading was determined using TGA confirming from 20-50% (w/w) loading. As the dye is released from the composite the fluorescence intensity decreases due to self-quenching. This self-quenching allows for the determination of the release kinetics as a function of temperature using fluorescence spectroscopy. Initial results suggest that there is a release of 5-10% of the dye from the composite at 25°C and complete release after the nanocomposite reaches 90°C. Using local microwave heating the complete release of the dye can be accomplished with three two second pulses of 2.4 GHz microwaves. This allows for the complete drug delivery platform which allows for the controlled release using microwave frequency.

  4. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium, phosphorus, copper, iron, manganese and zinc uptake by peanut

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...

  5. Creation of Emergent Sandbar Habitat (ESH) in the Headwaters of Lewis and Clark Lake and the Impacts on Water Quality

    DTIC Science & Technology

    2009-04-01

    probably tich in decayed vegetative matter (i.e., humus ) and seed stock. The richness of the matetial is indicated by its ctru·ker color as shown in...iron and manganese), humus and peat materials, plankton, weeds, and industrial wastes (APHA, 1998). “True color” is the color of water from which

  6. The cotyledon cell wall of the common bean (phaseolus vulgaris) resists digestion in the upper intestine and thus may limit iron bioavailability

    USDA-ARS?s Scientific Manuscript database

    Strategies that enhance the Fe bioavailability from the bean are of keen interest to nutritionists, bean breeders and growers. In beans, the cotyledon contains 75-80% of the total seed Fe, most of which appears to be located within the cotyledon cell. The cotyledon cell wall is known to be resistan...

  7. Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.

    PubMed

    Simard, Marie-Josée; Légère, Anne; Willenborg, Christian J

    2009-01-01

    Pollen-mediated gene flow in space is well documented and isolation distances are recommended to ensure genetic purity of Brassica napus seed crops. Isolation in time could also contribute to gene flow management but has been little investigated. We assessed the effects of asynchronous and synchronous flowering on intraspecific B. napus gene flow by seeding adjacent plots of transgenic spring canola cultivars, either resistant to glyphosate or glufosinate, over a 0-4 week interval and measuring outcrossing rates and seed-set. Outcrossing rates, evaluated in the center of the first adjacent row, were reduced to the lowest level in plots flowering first when the seeding interval > 2 weeks. Increasing the time gap increased outcrossing rates in plots flowering second up to a seeding interval of two weeks. Flowers that opened during the last week of the flowering period produced fewer seed (< 10% of total seed production) and a smaller fraction of outcrossed seed (-25%). Observed time gap effects were likely caused by extraneous pollen load during the receptivity of productive seed-setting early flowers. Clearly, manipulation of B. napus flowering development through staggered planting dates can contribute to gene flow management. The approach will need to be validated by additional site-years and increased isolation distances.

  8. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition.

    PubMed

    Rejitha, V; Peter, M C Subhash

    2013-01-15

    The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps, has a vital role in Fe(II) and Fe(III) iron handling in this fish. Our data also provide evidence that adrenaline, T(3) and the feeding status are the vital factors that can regulate the storage and handling of iron in fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorodetsky, R.; Goldfarb, A.; Dagan, I.

    Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for noninvasive determination of iron and zinc in two distinct skin areas, representing predominantly dermal and epidermal tissues, in 56 patients with beta-thalassemia major and intermedia. The mean iron levels in the skin of patients with beta-thalassemia major and intermedia were elevated by greater than 200% and greater than 50%, respectively, compared with control values. The zinc levels of both skin areas examined were within the normal range. The data indicate that the rate and number of blood transfusions, which correlated well with serum ferritin levels (r .more » 0.8), are not the only factors that determine the amount of iron deposition in the skin (r less than 0.6). Other sources of iron intake contribute to the total iron load in the tissues, particularly in patients who are not given multiple transfusions. The noninvasive quantitation of skin levels may reflect the extent of iron deposition in major parenchymal organs. Repeated DXS examinations of the skin could monitor the clearance of iron from the tissues of patients with iron overload in the course of therapy with chelating agents.« less

  10. Research on magnetic separation for complex nickel deep removal and magnetic seed recycling.

    PubMed

    Qiu, Yiqin; Xiao, Xiao; Ye, Ziwei; Guan, Zhijie; Sun, Shuiyu; Ren, Jie; Yan, Pingfan

    2017-04-01

    This study investigated the deep removal of complex nickel from simulated wastewater using magnetic separation and magnetic seed recycling. Nano-magnetite (Fe 3 O 4 ) was used as the magnetic seed. The flocculant applied was N,N-bis-(dithiocarboxy) ethanediamine (EDTC), a highly efficient heavy metal chelating agent included in dithiocarbamate (DTC). Important investigated parameters included hydraulic retention time, magnetic seed dosage, and magnetic field strength. The study also explored the magnetic flocculation mechanism involved in the reaction. The result indicated that the residual Ni concentration was reduced to less than 0.1 mg/L from the initial concentration of 50 mg/L under optimal conditions. Magnetic seed recovery reached 76.42% after a 3-h stirring period; recycled magnetic seeds were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The zeta potential results illustrated that magnetic seeds firmly combined with flocs when the pH ranged from 6.5 to 7.5 due to the electrostatic attraction. When the pH was less than 7, magnetic seeds and EDTC were also combined due to electrostatic attraction. Particle size did affect microfloc size; it decreased microfloc size and increased floc volume through magnetic seed loading. The effective binding sites between flocs and magnetic seeds increased when adding the magnetic seeds. This led the majority of magnetic flocs to be integrated with the magnetic seeds, which served as a nucleus to enhance the flocculation property and ultimately improve the nickel complex removal rate.

  11. Iron balance and iron supplementation for the female athlete: A practical approach.

    PubMed

    Pedlar, Charles R; Brugnara, Carlo; Bruinvels, Georgie; Burden, Richard

    2018-03-01

    Maintaining a positive iron balance is essential for female athletes to avoid the effects of iron deficiency and anaemia and to maintain or improve performance. A major function of iron is in the production of the oxygen and carbon dioxide carrying molecule, haemoglobin, via erythropoiesis. Iron balance is under the control of a number of factors including the peptide hormone hepcidin, dietary iron intake and absorption, environmental stressors (e.g. altitude), exercise, menstrual blood loss and genetics. Menstruating females, particularly those with heavy menstrual bleeding are at an elevated risk of iron deficiency. Haemoglobin concentration [Hb] and serum ferritin (sFer) are traditionally used to identify iron deficiency, however, in isolation these may have limited value in athletes due to: (1) the effects of fluctuations in plasma volume in response to training or the environment on [Hb], (2) the influence of inflammation on sFer and (3) the absence of sport, gender and individually specific normative data. A more detailed and longitudinal examination of haematology, menstrual cycle pattern, biochemistry, exercise physiology, environmental factors and training load can offer a superior characterisation of iron status and help to direct appropriate interventions that will avoid iron deficiency or iron overload. Supplementation is often required in iron deficiency; however, nutritional strategies to increase iron intake, rest and descent from altitude can also be effective and will help to prevent future iron deficient episodes. In severe cases or where there is a time-critical need, such as major championships, iron injections may be appropriate.

  12. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    PubMed

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  13. Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure.

    PubMed

    Takai, Erica; Mauck, Robert L; Hung, Clark T; Guo, X Edward

    2004-09-01

    A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.

  14. Foam injection molding of elastomers with iron microparticles

    NASA Astrophysics Data System (ADS)

    Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto

    2015-12-01

    In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.

  15. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    NASA Astrophysics Data System (ADS)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  16. Interaction of some extreme-pressure type lubricating compounds with an iron surface

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    An iron surface was exposed to the extreme-pressure type lubricant benzyl chloride, dichlorophenyl phosphine, dichlorophenyl phosphine sulfide, ophenyl phosphine oxide. Iron, in the sputter-cleaned state, was exposed to these materials statically and during dynamic friction experiments. With benzyl chloride only chlorine adsorbed to the surface, and with dichlorophenyl phosphine no adsorption occurred, while the addition of sulfur to that same molecular structure resulted in the promotion of carbon and chlorine adsorption. substitution of oxygen for sulfur in the dichlorobenzyl phosphine molecule resulted in carbon, chlorine, and oxygen adsorption. With none of the phosphorus containing molecules was phosphorus detected on the surface. Sliding in an atmosphere of benzyl chloride promoted adsorption of chlorine to the iron surface. Increases in load resulted in a decrease in the surface concentration of iron chloride.

  17. Tests of Lead-bronze Bearings in the DVL Bearing-testing Machine

    NASA Technical Reports Server (NTRS)

    Fischer, G

    1940-01-01

    The lead-bronze bearings tested in the DVL machine have proven themselves very sensitive to load changes as in comparison with bearings of light metal. In order to prevent surface injuries and consequently running interruptions, the increase of the load has to be made in small steps with sufficient run-in time between steps. The absence of lead in the running surface, impurities in the alloy (especially iron) and surface irregularities (pores) decreases the load-carrying capacity of the bearing to two or three times that of the static load.

  18. Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis

    PubMed Central

    Ramos, Pedro; Guy, Ella; Chen, Nan; Proenca, Catia C.; Gardenghi, Sara; Casu, Carla; Follenzi, Antonia; Van Rooijen, Nico; Grady, Robert W.; de Sousa, Maria

    2011-01-01

    In hereditary hemochromatosis, mutations in HFE lead to iron overload through abnormally low levels of hepcidin. In addition, HFE potentially modulates cellular iron uptake by interacting with transferrin receptor, a crucial protein during erythropoiesis. However, the role of HFE in this process was never explored. We hypothesize that HFE modulates erythropoiesis by affecting dietary iron absorption and erythroid iron intake. To investigate this, we used Hfe-KO mice in conditions of altered dietary iron and erythropoiesis. We show that Hfe-KO mice can overcome phlebotomy-induced anemia more rapidly than wild-type mice (even when iron loaded). Second, we evaluated mice combining the hemochromatosis and β-thalassemia phenotypes. Our results suggest that lack of Hfe is advantageous in conditions of increased erythropoietic activity because of augmented iron mobilization driven by deficient hepcidin response. Lastly, we demonstrate that Hfe is expressed in erythroid cells and impairs iron uptake, whereas its absence exclusively from the hematopoietic compartment is sufficient to accelerate recovery from phlebotomy. In summary, we demonstrate that Hfe influences erythropoiesis by 2 distinct mechanisms: limiting hepcidin expression under conditions of simultaneous iron overload and stress erythropoiesis, and impairing transferrin-bound iron uptake by erythroid cells. Moreover, our results provide novel suggestions to improve the treatment of hemochromatosis. PMID:21059897

  19. A lower trophic ecosystem model including iron effects in the Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Okunishi, Takeshi; Kishi, Michio J.; Ono, Yukiko; Yamashita, Toshihiko

    2007-09-01

    We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.

  20. [The efficacy of phlebotomy with a low iron diet in the management of pulmonary iron overload].

    PubMed

    Fukuda, Tomoko; Kimura, Fumiaki; Watanabe, Yoichi; Yoshino, Tadasi; Kimura, Ikuro

    2003-05-01

    Numerous studies have shown that workers in ferriferous industries have an elevated risk of respiratory tract neoplasia and other airway diseases. Evidence is presented that iron is a carcinogenic and tissue toxic hazard as regarding the inhalation of ferriferous substances. Elimination of the inhaled iron and prevention from accumulation of iron in the lung seems to be very important. A 26-year-old man was admitted to our hospital complaining of right chest pain. He had worked as an arc welder for two years without a mask. A chest CT showed diffuse ground glass opacity in the bilateral lung fields. A transbronchial lung biopsy specimen showed numerous alveolar and interstitial iron-laden macrophages. A 200 ml phlebotomy was carried out biweekly in combination with a low iron diet (8 mg/day). When serum ferritin reached 20 ng/ml, phlebotomy was stopped. After that, serum ferritin level was kept at around 20 ng/ml with the low iron diet alone. A transbronchial lung biopsy was carried out again 7 months later and the specimen showed remarkable reduction in the number of iron-laden alveolar and interstitial macrophages. Phlebotomy in combination with a low iron diet might become a useful strategy in the management of pulmonary conditions associated with iron loading.

  1. Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update.

    PubMed

    Gordan, Richard; Wongjaikam, Suwakon; Gwathmey, Judith K; Chattipakorn, Nipon; Chattipakorn, Siriporn C; Xie, Lai-Hua

    2018-04-19

    Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.

  2. Iron Export through the Transporter Ferroportin 1 Is Modulated by the Iron Chaperone PCBP2*

    PubMed Central

    Yanatori, Izumi; Richardson, Des R.; Imada, Kiyoshi; Kishi, Fumio

    2016-01-01

    Ferroportin 1 (FPN1) is an iron export protein found in mammals. FPN1 is important for the export of iron across the basolateral membrane of absorptive enterocytes and across the plasma membrane of macrophages. The expression of FPN1 is regulated by hepcidin, which binds to FPN1 and then induces its degradation. Previously, we demonstrated that divalent metal transporter 1 (DMT1) interacts with the intracellular iron chaperone protein poly(rC)-binding protein 2 (PCBP2). Subsequently, PCBP2 receives iron from DMT1 and then disengages from the transporter. In this study, we investigated the function of PCBP2 in iron export. Mammalian genomes encode four PCBPs (i.e. PCBP1–4). Here, for the first time, we demonstrated using both yeast and mammalian cells that PCBP2, but not PCBP1, PCBP3, or PCBP4, binds with FPN1. Importantly, iron-loaded, but not iron-depleted, PCBP2 interacts with FPN1. The PCBP2-binding domain of FPN1 was identified in its C-terminal cytoplasmic region. The silencing of PCBP2 expression suppressed FPN1-dependent iron export from cells. These results suggest that FPN1 exports iron received from the iron chaperone PCBP2. Therefore, it was found that PCBP2 modulates cellular iron export, which is an important physiological process. PMID:27302059

  3. Adipocyte iron regulates leptin and food intake

    PubMed Central

    Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.

    2015-01-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  4. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  5. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    PubMed

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. © 2014 AAFC. New Phytologist © 2014 New Phytologist Trust.

  6. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    PubMed Central

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  7. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

  8. The spatial expression and regulation of transcription factors IDEF1 and IDEF2

    PubMed Central

    Kobayashi, Takanori; Ogo, Yuko; Aung, May Sann; Nozoye, Tomoko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K.

    2010-01-01

    Background and Aims Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. Methods Spatial patterns of IDEF1 and IDEF2 expression were analysed by histochemical staining of IDEF1 and IDEF2 promoter-GUS transgenic rice lines. Expression patterns of the target genes of IDEF1 and IDEF2 were analysed using transformants with induced or repressed expression of IDEF1 or IDEF2 grown in iron-rich or in iron-deficient solutions for 1 d. Key Results IDEF1 and IDEF2 were highly expressed in the basal parts of the lateral roots and vascular bundles. IDEF1 and IDEF2 expression was dominant in leaf mesophyll and vascular cells, respectively. These expression patterns were similar under both iron-deficient and iron-sufficient conditions. IDEF1 was strongly expressed in pollen, ovaries, the aleurone layer and embryo. IDEF2 was expressed in pollen, ovaries and the dorsal vascular region of the endosperm. During seed germination, IDEF1 and IDEF2 were expressed in the endosperm and embryo. Expression of IDEF1 target genes was regulated in iron-rich roots similar to early iron-deficiency stages. In addition, the expression patterns of IDEF2 target genes were similar between iron-rich conditions and early or subsequent iron deficiency. Conclusions IDEF1 and IDEF2 are constitutively expressed during both vegetative and reproductive stages. The spatial expression patterns of IDEF1 and IDEF2 overlap with their target genes in restricted cell types, but not in all cells. The spatial expression patterns and gene regulation of IDEF1 and IDEF2 in roots are generally conserved under conditions of iron sufficiency and deficiency, suggesting complicated interactions with unknown factors for sensing and transmitting iron-deficiency signals. PMID:20197292

  9. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.).

    PubMed

    Olchowik, Ewa; Lotkowski, Karol; Mavlyanov, Saidmukhtar; Abdullajanova, Nodira; Ionov, Maksim; Bryszewska, Maria; Zamaraeva, Maria

    2012-09-01

    Erythrocytes are constantly exposed to ROS due to their function in the organism. High tension of oxygen, presence of hemoglobin iron and high concentration of polyunsaturated fatty acids in membrane make erythrocytes especially susceptible to oxidative stress. A comparison of the antioxidant activities of polyphenol-rich plant extracts containing hydrolysable tannins from sumac leaves (Rhus typhina L.) and condensed tannins from grape seeds (Vitis vinifera L.) showed that at the 5-50 μg/ml concentration range they reduced to the same extent hemolysis and glutathione, lipid and hemoglobin oxidation induced by erythrocyte treatment with 400 μM ONOO(-) or 1 mM HClO. However, extract (condensed tannins) from grape seeds in comparison with extract (hydrolysable tannins) from sumac leaves stabilized erythrocytes in hypotonic NaCl solutions weakly. Our data indicate that both hydrolysable and condensed tannins significantly decrease the fluidity of the surface of erythrocyte membranes but the effect of hydrolysable ones was more profound. In conclusion, our results indicate that extracts from sumac leaves (hydrolysable tannins) and grape seeds (condensed tannins) are very effective protectors against oxidative damage in erythrocytes.

  10. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Tymoszuk, Piotr; Demetz, Egon; Moser, Patrizia; Haas, Hubertus; Fang, Ferric C.; Theurl, Igor; Weiss, Günter

    2017-01-01

    Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological features. HFE-associated hereditary hemochromatosis is characterized by overwhelming intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion. In contrast, excessive dietary iron intake results in iron deposition in macrophages. However, the functional consequences of genetic and dietary iron overload for the control of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection, we found animals of either genotype to induce hepcidin antimicrobial peptide expression and hypoferremia following systemic infection in an Hfe-independent manner. As predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced spleen iron content, which translated into improved control of Salmonella replication. Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading resulted in higher bacterial numbers in both WT and Hfe−/− mice, although Hfe deficiency still resulted in better pathogen control and improved survival. This suggests that Hfe deficiency may exert protective effects in addition to the control of iron availability for intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in both immune cells and microbes shapes the host-pathogen interaction in the setting of systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron excess result in different outcomes in infection, indicating that tissue and cellular iron distribution determines the susceptibility to infection with specific pathogens. PMID:28443246

  11. Iron regulatory proteins and their role in controlling iron metabolism.

    PubMed

    Kühn, Lukas C

    2015-02-01

    Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.

  12. The heart in transfusion dependent homozygous thalassaemia today – prediction, prevention and management

    PubMed Central

    Aessopos, Athanassios; Berdoukas, Vasilios; Tsironi, Maria

    2008-01-01

    Cardiac disease remains the major cause of death in thalassaemia major. This review deals with the mechanisms involved in heart failure development, the peculiar clinical presentation of congestive heart failure and provides guidelines for diagnosis and management of the acute phase of cardiac failure. It emphasizes the need for intensive medical – cardiac care and aggressive iron chelating management as, with such approaches, today, the patients outcomes can be favourable in the long term. It covers advances in the assessment of cardiac iron overload with the use of magnetic resonance imaging and makes recommendations for preventing the onset of cardiac problems by tailoring iron chelation therapy appropriate to the degree of cardiac iron loading found. PMID:18081719

  13. Development of iron chelators for Cooley's anemia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, W.H.; Green, R.

    Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid;more » D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B.« less

  14. Brain Tumor Hyperthermia with Static and Moving Seeds

    NASA Astrophysics Data System (ADS)

    Molloy, Janelle Arlene

    1990-01-01

    Thermodynamic studies are presented for both static and moving ferromagnetic "seeds" imbedded in biological media. These studies were performed in support of the development of a system which delivers localized hyperthermia to deep-seated brain tumors. In this system, a magnetic "seed" of approximately 5 mm dimension (length and diameter) is remotely repositioned within the brain by an externally produced magnetic field. The seed is inductively heated and repositioned throughout the tumor volume. An induction heating system was built for experimental use with tissue phantoms and animals. The maximum level of direct tissue heating produced by this system was measured in vivo in three animals. An upper limit on the power absorption was placed at 0.46 mW cm^{ -3}, a factor of 10^{-4 } below the power density produced in ferromagnetic seeds by the same system. Measurements were made of the temporal and spatial dependence of the temperature rise in the vicinity of a statically placed 6 mm diameter nickel sphere, in vivo in four pigs, and in one which was euthanized. These results were compared to a theroetical model which was based on a point source solution to the thermal diffusion equation and estimates of blood flow rates, tissue thermal conductivity and seed power absorption were found using a parameter estimation algorithm. Studies were also made of the temperature gradients produced by a heated iron ellipsoid of 4.8 mm diameter and 9.6 mm length in a brain tissue phantom. Temperature measurements were made both with the seed statically imbedded in the tissue phantom and with the phantom moving at a constant velocity of 0.11 mm s^{-1 } with respect to the seed. These static and moving data were compared to obtain an estimate for the thermal field and convective cooling of a moving seed. In addition, an exploratory study was performed in which the dependence of seed heating efficiency on material and geometry were tested. A "hybrid" seed was developed consisting of a permanent magnet core surrounded by a non -magnetic spacing material and a 0.5 mm thick ferromagnetic outer sleeve. This seed was designed to accommodate potentially conflicting magnetic force and induction heating requirements.

  15. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Lactoferrin binding protein B – a bi-functional bacterial receptor protein

    PubMed Central

    Ostan, Nicholas K. H.; Yu, Rong-Hua; Ng, Dixon; Lai, Christine Chieh-Lin; Sarpe, Vladimir; Schriemer, David C.

    2017-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation. PMID:28257520

  17. Clinical cofactors and hepatic fibrosis in hereditary hemochromatosis: the role of diabetes mellitus.

    PubMed

    Wood, Marnie J; Powell, Lawrie W; Dixon, Jeannette L; Ramm, Grant A

    2012-09-01

    The risk of hepatic fibrosis and cirrhosis in hereditary hemochromatosis relates to the degree of iron loading, but iron alone does not explain the variability in disease penetrance. This study sought to identify clinical cofactors that increase the risk of progressive liver disease. We identified 291 patients from our database who were homozygous for the C282Y mutation in HFE and had undergone a liver biopsy with quantification of hepatic iron concentration (HIC) and fibrosis staging. Data were collected from a retrospective chart review, including age, gender, alcohol consumption, medical therapy, smoking history, metabolic risk factors, mobilizable iron, and laboratory results. Male gender, excess alcohol consumption, HIC, and the presence of diabetes were independently associated with increasing fibrosis stage in multivariate analysis. Of these, the presence of diabetes showed the strongest association (odds ratio, 7.32; P = 0.03). The presence of steatosis was associated with higher fibrosis scores, but this was of borderline statistical significance. Risk factors for hepatic steatosis were male gender, impaired glucose tolerance, and increased body mass index. The presence of diabetes was associated with more severe hepatic fibrosis independent of iron loading, male gender, and alcohol consumption. The mechanism for this association is unknown and deserves further evaluation; however, it is possible that diabetes produces an additional hepatic oxidative injury from hyperglycemia. Thus, management of such cofactors in patients with hemochromatosis is important to reduce the risk of liver injury and fibrosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  18. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    PubMed Central

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-01-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade. PMID:27767185

  19. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain.

    PubMed

    Parkins, Katie M; Hamilton, Amanda M; Makela, Ashley V; Chen, Yuanxin; Foster, Paula J; Ronald, John A

    2016-10-21

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  20. Catalytic Properties of Fe-containing Layered Aluminosilicates in Photo-oxidation of Dye “Methyl Green”

    NASA Astrophysics Data System (ADS)

    Shadrina, O. A.; Dashinamzhilova, E. Ts; Khankhasaeva, S. Ts

    2017-11-01

    The iron-containing materials with an iron content of 40 mg/g and 52.5 mg/g, a specific surface area of 107 m2/g and 96 m2/g are developed on the basis of natural layered aluminosilicate (montmorillonite) and polyhydroxo complexes of iron. It is shown that the materials exhibit high catalytic activity in the photo-oxidation of dye “Methyl Green”. The influence of physicochemical parameters (loading of the catalyst, a ratio of initial concentrations [H2O2]/[MG] on the efficiency of the dye photo-oxidation was established. The optimum conditions, which made it possible to achieve high mineralization and 100 % the dye oxidation efficiency were determined: the catalyst loading equal to 1.0 g/l and the ratio of [H2O2] and [MG] equal to stoichiometric ratio (55 mol/mol). The decrease of the total organic carbon content after photo-oxidation reaction was 56.5%. The average value of the quantum yield of the dye photo-oxidation was to 0.30 mol/Einstein. The results of the conducted research show that the developed iron-containing materials are the promising catalysts for photo-Fenton processes of oxidative degradation of organic compounds. The materials are of interest for use in wastewater treatment processes from toxic organic pollutants.

  1. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts.

    PubMed

    Bradley, Matthew J; Ananth, Ramagopal; Willauer, Heather D; Baldwin, Jeffrey W; Hardy, Dennis R; Williams, Frederick W

    2017-09-20

    Iron-based CO₂ catalysts have shown promise as a viable route to the production of olefins from CO₂ and H₂ gas. However, these catalysts can suffer from low conversion and high methane selectivity, as well as being particularly vulnerable to water produced during the reaction. In an effort to improve both the activity and durability of iron-based catalysts on an alumina support, copper (10-30%) has been added to the catalyst matrix. In this paper, the effects of copper addition on the catalyst activity and morphology are examined. The addition of 10% copper significantly increases the CO₂ conversion, and decreases methane and carbon monoxide selectivity, without significantly altering the crystallinity and structure of the catalyst itself. The FeCu/K catalysts form an inverse spinel crystal phase that is independent of copper content and a metallic phase that increases in abundance with copper loading (>10% Cu). At higher loadings, copper separates from the iron oxide phase and produces metallic copper as shown by SEM-EDS. An addition of copper appears to increase the rate of the Fischer-Tropsch reaction step, as shown by modeling of the chemical kinetics and the inter- and intra-particle transport of mass and energy.

  2. [Preparation of nano zero-valent iron/Sargassum horneri based activated carbon for removal of Cr (VI) from aqueous solution].

    PubMed

    Zeng, Gan-Ning; Wu, Xiao; Zheng, Lin; Wu, Xi; Tu, Mei-Ling; Wang, Tie-Gan; Ai, Ning

    2015-02-01

    Nanoscale zero-valent iron supported on Sargassum horneri activated carbon (NZVI/SAC) was synthesized by zinc chloride activation and incipient wetness method, and characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XRD confirmed the existence of nano zero-valent iron, and SEM revealed that the material consisted of mainly 30-150 nm spherical particles aggregated into chains of individual units. The valence state of iron conformed with the nuclear-shell model. The effects of NZVI loading on AC, pH and the initial concentration of Cr(VI) on the removal of Cr(VI) were investigated. The final Cr(VI) removal percentage was up to 100% under the following conditions: 30 degrees C, pH = 2, NZVI/SAC dosage of 2 g x L(-1) and the amounts of NZVI loaded on SAC of 30%. And the equilibrium time was 10 minutes. These results showed that NZVI/SAC could be potentially applied for removal of high concentration Cr(VI). By analyzing the chemical change of NZVI/ SAC, we demonstrated that Cr(VI) was mainly reduced to insoluble Cr (III) compound in the reaction when pH was less than 4, and adsorbed by NZVI and SAC when pH was over 4.

  3. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    NASA Astrophysics Data System (ADS)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  4. Isotopically Heavy Low-Spin Iron in Ferropericlase at the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lin, J. F.; Dauphas, N.; Bi, W.; Zhao, J.

    2016-12-01

    The iron isotope fractionation between metal and silicate at high pressure is of great interest for it is potentially responsible for the iron isotopic difference between the 2 main iron reservoir —the mantle and the core and therefore vital for estimating the bulk iron isotopic composition of the Earth. In 2009, Polyakov pioneered the use of NRIXS(Nuclear Resonant Inelastic X-ray Scat- tering) technique to investigate iron isotope fractionation at core-mantle boundary. This synchr- otron-based technique is excellent in that it can be applied to samples loaded in DACs with tens of um in size and one doesn't needs to put minerals together to reach isotope exchange equilib- rium. However, the NRIXS data used in Polyakov(2009) was scanned over a limited energy range and thus is not suitable for isotope fractionation at high pressure: the phonon modes shift with increasing pressure and a scanned energy range over 100meV is necessary. Recently, Shahar and co-workers(2016) used NRIXS with a wider energy scan range and DFT simulation to estimate the light element alloying effect on iron bonding environment at high pressure. They found that C or H may not be a major light element in the core considering only bridgmanite as a proxy of the mantle, but another lower mantle mineral ferropericlase was not taken into account. Here we report newly collected NRIXS data at sector-3 of the Advanced Photon Source. >95% 57Fe enriched powder ferropericlase((Fe0.25,Mg0.75)O) was loaded in 3-fold panoramic DACs us- ing Be gasket and c-BN insert as windows for X-ray fluorescence. The NRIXS spectra of ferroperic- lase were measured up to 94GPa across the spin transition zone. We found that the spin state of iron dramatically influences its force constants at high pressure. Low-spin iron force constants incr- ease 3 times faster than high-spin iron with pressure. Assuming linear relationship between force constants and pressure, this will lead to a fractionation of 0.147 (delta57Fe/54Fe) between ferrop- ericlase and iron metal at the core-mantle boundary conditions (4000K and 135GPa). The partition coefficient KD of Fe/Mg between bridgmanite and ferropericlase decreases with the spin transition of iron, therefore the ferropericlase would be a major iron carrier at the core-mantle boundary and fur- ther emphasize the results here.

  5. Magnetic Tissue Engineering for Voice Rehabilitation - First Steps in a Promising Field.

    PubMed

    Dürr, Stephan; Bohr, Christopher; Pöttler, Marina; Lyer, Stefan; Friedrich, Ralf Philipp; Tietze, Rainer; Döllinger, Michael; Alexiou, Christoph; Janko, Christina

    2016-06-01

    The voice is one of the most important instruments of communication between humans. It is the product of intact and well-working vocal folds. A defect of these structures causes dysphonia, associated with a clear reduction of quality of life. Tissue engineering of the vocal folds utilizing magnetic cell levitation after nanoparticle loading might be a technique to overcome this challenging problem. Vocal fold fibroblasts (VFFs) were isolated from rabbit larynges and cultured. For magnetization, cells were incubated with superparamagnetic iron oxide nanoparticles (SPION) and the loading efficiency was determined by Prussian blue staining. Biocompatibility was analyzed in flow cytometry by staining with annexin V-fluorescein isothiocyanate propidium iodide, 1,1',3,3,3',3'-hexamethylindodicarbo-cyanine iodide [DiIC1(5)] and propidium idodide-Triton X-100 to monitor phosphatidylserine exposure, plasma membrane integrity, mitochondrial membrane potential and DNA degradation. Isolated VFFs can be successfully loaded with SPION, and optimal iron loading associated with minimized cytotoxicity represents a balancing act in magnetic tissue engineering. Our data are a firm basis for the next steps of investigations. Magnetic tissue engineering using magnetic nanoparticle-loaded cells which form three-dimensional structures in a magnetic field will be a promising approach in the future. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Varying iron release from transferrin and lactoferrin proteins. A laboratory experiment.

    PubMed

    Carmona, Fernando; González, Ana; Sánchez, Manu; Gálvez, Natividad; Cuesta, Rafael; Capdevila, Mercè; Dominguez-Vera, Jose M

    2017-11-01

    Iron metabolism is an important subject of study for undergraduate students of chemistry and biochemistry. Relevant laboratory exercises are scarce in the literature but would be very helpful in assisting students grasp key concepts. The experiment described here deals with different iron release mechanisms of two protagonists in iron metabolism: serum transferrin (Tf) and lactoferrin (Lf). Despite having very similar structures and iron-binding sites, Tf releases practically all its iron at pH 5.5 while Lf requires a significantly lower pH of 3. This difference in behavior is directly related to their respective biological functions as Tf blood-borne iron into the cell, while Lf competes with pathogens to sequester iron in biological fluids at more acidic pHs.  During this experiment, the students will carry out iron loading and unloading on both human Lf and Tf and monitor the iron release at different pHs using UV-Vis spectroscopy. With this simple approach, the students will discover the different patterns of iron release of Tf and Lf and how this variance in behavior relates to their biological functions. Furthermore, this laboratory practice can be expanded to allow students to investigate a variety of iron proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):521-527, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity.

    PubMed

    Han, Hye Jung; Lee, Ji-Soo; Park, Sun-Ah; Ahn, Jun-Bae; Lee, Hyeon Gyu

    2015-06-01

    The aim of this study was to optimize extraction conditions for jujube pulp and seed in order to obtain maximum active ingredient yield and antioxidant activity, as well as to prepare chitosan nanoparticles loaded with jujube pulp and seed extracts for enhancing stability. The extraction conditions, i.e. temperature, time, and ethanol concentration, were optimized at the following respective values: 61.2 °C, 38 h, and 60.4% for pulp, and 58 °C, 34 h, and 59.2% for seed. The jujube nanoparticle size significantly increased with a higher chitosan/sodium tripolyphosphate ratio and extract concentration. Entrapment efficiency was greater than 80% regardless of preparation conditions. The stabilities of jujube pulp and seed extract in terms of total phenolic content and antioxidant activity were effectively enhanced by nanoencapsulation. In conclusion, jujube pulp and seed extracts prepared using optimal conditions could be useful as a natural functional food ingredient with antioxidant activity, and nanoencapsulation can be used to improve the stability of jujube extract. Therefore, these results could be used to promote the utilization of not only jujube pulp but also seed, by product. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yi, Jinhui; Mukherjee, Sumit; Banerjee, Probal; Zhou, Shuiqin

    2014-10-01

    The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical applications due to their excellent optical properties, magnetic properties, high drug loading capacity and responsive drug release behavior.The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical applications due to their excellent optical properties, magnetic properties, high drug loading capacity and responsive drug release behavior. Electronic supplementary information (ESI) available: Fig. S1-S12. See DOI: 10.1039/c4nr03748k

  9. 29 CFR 780.718 - Employees who may be exempt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Employment by..., receiving, handling, and loading out grain, grinding and mixing feed or treating seed for farmers...

  10. 29 CFR 780.718 - Employees who may be exempt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Employment by..., receiving, handling, and loading out grain, grinding and mixing feed or treating seed for farmers...

  11. 29 CFR 780.718 - Employees who may be exempt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Employment by..., receiving, handling, and loading out grain, grinding and mixing feed or treating seed for farmers...

  12. 29 CFR 780.718 - Employees who may be exempt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Employment by..., receiving, handling, and loading out grain, grinding and mixing feed or treating seed for farmers...

  13. 29 CFR 780.718 - Employees who may be exempt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Employment by..., receiving, handling, and loading out grain, grinding and mixing feed or treating seed for farmers...

  14. Assessment of left ventricular functions and myocardial iron load with tissue Doppler and speckle tracking echocardiography and T2* MRI in patients with β-thalassemia major.

    PubMed

    Ari, Mehmet Emre; Ekici, Filiz; Çetin, İbrahim İlker; Tavil, Emine Betül; Yaralı, Neşe; Işık, Pamir; Hazırolan, Tuncay; Tunç, Bahattin

    2017-03-01

    The purpose of this study is to determine early myocardial dysfunction in β-thalassemia major (BTM) patients. Where the myocardial dysfunction cannot be detected by conventional echocardiography, it could be detected by tissue Doppler imaging (TDI) or speckle tracking echocardiography (STE). In this study, we analyzed 60 individuals, 30 of whom were BTM patients and the other 30 of whom were the control group. T2* magnetic resonance imaging (MRI) was used to measure cardiac iron deposition. The myocardial functions were evaluated by conventional echocardiography, TDI and STE. When basal lateral left ventricular and basal septal wall TDI values were compared between the patient group and control group, only isovolumic contraction time values were significantly longer in the patients. The global circumferential strain was significantly lower in the patients. When evaluated as segmental, longitudinal strain values of basal inferoseptum and circumferential strain values of anteroseptum, anterior, and inferolateral segments were significantly lower in the patients. In the patients, global longitudinal and circumferential strains in the group who had pathological T2* values were significantly lower than the group who did not. In addition, circumferential strain values in anteroseptum, anterolateral, inferior, and inferoseptum segments were significantly lower in the patients with T2* values<20 ms than those with T2* values≥20 ms. Although T2* MRI is the most sensitive test detecting myocardial iron load, TDI and STE can be used for screening myocardial dysfunction. The abnormal strain values, especially circumferential, may be detected as the first finding of abnormal iron load and related to T2* values. © 2017, Wiley Periodicals, Inc.

  15. Fluorine- and iron-modified hierarchical anatase microsphere photocatalyst for water cleaning: facile wet chemical synthesis and wavelength-sensitive photocatalytic reactivity.

    PubMed

    Liu, Shaohong; Sun, Xudong; Li, Ji-Guang; Li, Xiaodong; Xiu, Zhimeng; Yang, He; Xue, Xiangxin

    2010-03-16

    High photocatalytic efficiency, easy recovery, and no biological toxicity are three key properties related to the practical application of anatase photocatalyst in water cleaning, but seem to be incompatible. Nanoparticles-constructed hierarchical anatase microspheres with high crystallinity and good dispersion prepared in this study via one-step solution processing at 90 degrees C under atmospheric pressure by using ammonium fluotitanate as the titanium source and urea as the precipitant can reconcile these three requirements. The hierarchical microspheres were found to grow via an aggregative mechanism, and contact recrystallization occurred at high additions of the FeCl(3) electrolyte into the reaction system. Simultaneous incorporation of fluorine and iron into the TiO(2) matrix was confirmed by combined analysis of X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Surface structure and morphology changes of the microspheres induced by high-temperature annealing were clearly observed by field-emission scanning electron microscopy, especially for the phase-transformed particles. The original nanoparticles-constructed rough surfaces partially became smooth, resulting in a sharp drop in photocatalytic efficiency. Interestingly, iron loading has detrimental effects on the visible-light photocatalytic activity of both the as-prepared and the postannealed anatase microspheres but greatly enhances the photocatalytic activity of the as-prepared anatase microspheres under UV irradiation. No matter under UV or visible-light irradiation, the fluorine-loaded anatase microspheres and especially the postannealed ones show excellent photocatalytic performance. The underlying mechanism of fluorine and iron loading on the photocatalytic efficacy of the anatase microspheres was discussed in detail. Beyond photocatalytic applications, this kind of material is of great importance to the assembling of photoactive photonic crystal that can control light motion.

  16. Guidelines for quantifying iron overload.

    PubMed

    Wood, John C

    2014-12-05

    Both primary and secondary iron overload are increasingly prevalent in the United States because of immigration from the Far East, increasing transfusion therapy in sickle cell disease, and improved survivorship of hematologic malignancies. This chapter describes the use of historical data, serological measures, and MRI to estimate somatic iron burden. Before chelation therapy, transfusional volume is an accurate method for estimating liver iron burden, whereas transferrin saturation reflects the risk of extrahepatic iron deposition. In chronically transfused patients, trends in serum ferritin are helpful, inexpensive guides to relative changes in somatic iron stores. However, intersubject variability is quite high and ferritin values may change disparately from trends in total body iron load over periods of several years. Liver biopsy was once used to anchor trends in serum ferritin, but it is invasive and plagued by sampling variability. As a result, we recommend annual liver iron concentration measurements by MRI for all patients on chronic transfusion therapy. Furthermore, it is important to measure cardiac T2* by MRI every 6-24 months depending on the clinical risk of cardiac iron deposition. Recent validation data for pancreas and pituitary iron assessments are also presented, but further confirmatory data are suggested before these techniques can be recommended for routine clinical use. © 2014 by The American Society of Hematology. All rights reserved.

  17. Siderosomal ferritin. The missing link between ferritin and haemosiderin?

    PubMed Central

    Andrews, S C; Treffry, A; Harrison, P M

    1987-01-01

    A minor electrophoretically fast component was found in ferritin from iron-loaded rat liver in addition to a major electrophoretically slow ferritin similar to that observed in control rats. The electrophoretically fast ferritin showed immunological identity with the slow component, but on electrophoresis in SDS it gave a peptide of 17.3 kDa, in contrast with the electrophoretically slow ferritin, which gave a major band corresponding to the L-subunit (20.7 kDa). Thus the electrophoretically fast ferritin resembles that reported by Massover [(1985) Biochim. Biophys. Acta 829, 377-386] in livers of mice with short-term parenteral iron overload. The electrophoretically fast ferritin had a lower iron content (2000 Fe atoms/molecule) than the electrophoretically slow ferritin (3000 Fe atoms/molecule). Removal and re-incorporation of iron was possible without effect on the electrophoretic mobility of either ferritin species. On subcellular fractionation the electrophoretically fast ferritin was enriched in pellet fractions and was the sole soluble ferritin isolated from iron-laden secondary lysosomes (siderosomes). The amount and relative proportion of the electrophoretically fast species increased with iron loading. Haemosiderin isolated from siderosomes was found to contain a peptide reactive to anti-ferritin serum and corresponding to the 17.3 kDa peptide of the electrophoretically fast ferritin species. Unlike the electrophoretically slow ferritin, the electrophoretically fast ferritin did not become significantly radioactive in a 1 h biosynthetic labelling experiment. We conclude that the minor ferritin is not, as has been suggested for mouse liver ferritin, 'a completely new species of smaller holoferritin that represents a shift in the ferritin phenotype' in response to siderosis, but a precursor of haemosiderin, in agreement with the proposal by Richter [(1984) Lab. Invest. 50, 26-35] concerning siderosomal ferritin. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:3663170

  18. MRI assessment of pituitary iron accumulation by using pituitary-R2 in β-thalassemia patients.

    PubMed

    Bozdağ, Mustafa; Bayraktaroğlu, Selen; Aydınok, Yeşim; Çallı, Mehmet Cem

    2018-06-01

    Background Patients with thalassemia major (TM) require repeated blood transfusions, which leads to accumulation of iron in a wide variety of tissues. Accumulation of iron in the pituitary gland can lead to irreversible hypogonadotropic hypogonadism (HH) in this group of patients. Purpose To investigate the reliability of pituitary-R2 as a marker to estimate the extent of pituitary iron load by comparing the pituitary magnetic resonance imaging (MRI) findings with hepatic iron load and serum ferritin levels. Material and Methods A total of 38 β-TM patients were classified into HH (group A, n = 18) and non-HH (group B, n = 17) groups. A third group, group C, consisted of 17 healthy participants. Each participant underwent 1.5-T MRI examinations. Pituitary gland heights (PGH), pituitary-R2 values, and liver-R2 values were measured by using multi-echo spin-echo sequences. Results Pituitary-R2 values were significantly higher in group A compared with group B ( P < 0.05). A positive correlation was detected between the pituitary-R2 values and serum ferritin levels in TM patients ( P < 0.01). A threshold value of 14.1 Hz for pituitary-R2 was found to give a high specificity and sensitivity in distinguishing the TM patients with HH from those with normal pituitary functions. PGH measurements were significantly lower in group A compared with group B ( P < 0.05). Conclusion MRI-assessed pituitary-R2 seems to be a reliable marker for differentiating the TM patients with normal pituitary function from those with secondary hypogonadism due to iron toxicity.

  19. Efficacy of grape seed and skin extract against doxorubicin-induced oxidative stress in rat liver.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safouen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2015-11-01

    Doxorubicin (Dox) is an anthracycline used in chemotherapy, although it causes toxicity and oxidative stress. Grape seed and skin extract (GSSE) is a mixture of polyphenolic compounds with antioxidant properties. To evaluate the hepato-toxicity of Dox on healthy rats as well as the protective effect of GSSE, rats were treated with GSSE (500mg/kg bw) during 8 days. At the 4th day of treatment, they received a single dose of Dox (20 mg/kg bw). After the treatment (9th day), livers were collected and processed for oxidative stress status. Dox increased MDA (+ 900%), decreased catalase (-60%) and increased peroxidase (+90%) and superoxide dismutase (+100%) activities. In this latter case Dox mainly increased the iron isoform. Furthermore Dox altered intracellular mediators as catalytic free iron (-75%), H₂O₂(-75%) and calcium (+30%). Dox also affected liver function by elevating plasma triacylglycerol and transaminases and liver morphology by altering its typical architecture. Importantly all Dox-induced liver disturbances were alleviated upon GSSE treatment. Dox induced liver toxicity and an oxidative stress mainly characterized by increased lipoperoxidation but not protein carbonylation. GSSE efficiently protected the liver from Dox-induced toxicity and appeared as a safe adjuvant that could be incorporated into chemotherapy protocols.

  20. Do Not Pay Any Attention to the Umpires: Thought Suppression and Task-Relevant Focusing Strategies.

    PubMed

    Dugdale, Jeremy R; Eklund, Robert C

    2002-09-01

    Two studies grounded in ironic-cognitive-processing theory were conducted to determine (a) whether ironic errors may be associated with efforts to exert mental control that typically occur in sport settings and (b) whether these potential ironic effects could be negated through the use of a task-relevant cue word to refocus one's thoughts during suppression. Participants were asked to watch a videotape of a series of clips of Australian Rules Football players, coaches, and umpires. Study 1 revealed that participants were more aware of umpires when instructed not to pay attention to them. Contrary to expectations, however, ironic effects were not significantly magnified by the combination of high cognitive load and the instruction not to pay attention to the umpires. Results from Study 2 indicated that potential ironic effects could be negated when individuals were given a task-relevant cue word to focus on when suppressing unwanted or negative thoughts. Overall, support for ironic processing theory was found in Studies 1 and 2 in this investigation.

  1. A Comparative Study of Iron Uptake Mechanisms in Marine Microalgae: Iron Binding at the Cell Surface Is a Critical Step1[W][OA

    PubMed Central

    Sutak, Robert; Botebol, Hugo; Blaiseau, Pierre-Louis; Léger, Thibaut; Bouget, François-Yves; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2012-01-01

    We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface. PMID:23033141

  2. Iron storage disease (hemochromatosis) and hepcidin response to iron load in two species of pteropodid fruit bats relative to the common vampire bat.

    PubMed

    Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2018-07-01

    Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.

  3. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  4. Ironic effects of emotion suppression when recounting distressing memories.

    PubMed

    Dalgleish, Tim; Yiend, Jenny; Schweizer, Susanne; Dunn, Barnaby D

    2009-10-01

    Theories of ironic mental control posit that under conditions in which effortful control is compromised, for example, in laboratory manipulations of mental load or in those suffering from clinical levels of negative affect, attempts to suppress negative emotions can lead to a paradoxical increase in such feelings, relative to conditions in which no suppression is attempted. In line with this, we showed that high negative affect participants, when asked to suppress (downregulate) their negative feelings while writing about a distressing personal memory, exhibited an ironically greater increase in negative emotions compared with a no-instruction condition, in contrast to low negative affect controls who were able to suppress their emotions. Comparable ironic effects were not associated with instructions to experience emotions. This first demonstration of ironic effects of emotion suppression in response to personal material in those with emotional problems sheds light into how certain emotion regulation strategies may maintain and exacerbate such conditions.

  5. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.

    PubMed

    Bashir, Khurram; Ishimaru, Yasuhiro; Itai, Reiko Nakanishi; Senoura, Takeshi; Takahashi, Michiko; An, Gynheung; Oikawa, Takaya; Ueda, Minoru; Sato, Aiko; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-05-01

    The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.

  6. Microbial quality evaluation and effective decontamination of nutraceutically valued lotus seeds by electron beams and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bhat, Rajeev; Sridhar, K. R.; Karim, A. A.

    2010-09-01

    Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B 1, B 2, G 1 and G 2) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants ( P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.

  7. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells.

    PubMed

    Rolim, P M; Fidelis, G P; Padilha, C E A; Santos, E S; Rocha, H A O; Macedo, G R

    2018-03-01

    Melon (Cucumis melo L.) has high economic value and in recent years, its production has increased; however, part of the fruit is wasted. Usually, inedible parts such as peel and seeds are discarded during processing and consumption. Extracts of melon residues were prepared and their phenolic compounds, antioxidants and antiproliferative activities were evaluated. Total phenolic compounds were found in hydroethanolic, hydromethanolic, and aqueous extracts, especially for melon peel (1.016 mg gallic acid equivalent/100 g). Flavonoids total content found for melon peel aqueous extract was 262 µg of catechin equivalent (CA)/100 g. In all extracts of melon peel significant amounts of gallic acid, catechin, and eugenol were found. For total antioxidant capacity, reported as ascorbic acid equivalent, the hydroethanolic and hydromethanolic extracts in peels and hydromethanolic in seeds were 89, 74, and 83 mg/g, respectively. Different extracts of melon showed iron and copper ions chelating activity at different concentrations, especially melon peel aqueous extract, reaching values of 61% for iron and 84% for copper. The hydroethanolic extract of melon peel presented a significant ability for hydroxyl radicals scavenging (68%). To assess the antiproliferative potential in human cancer cell lines, such as kidney carcinoma, colorectal carcinoma, cervical adenocarcinoma and cervical carcinoma, MTT assay was performed. The proliferation was inhibited by 20-85% at extracts concentrations of 0.1-1.0 mg/mL in all cancer cell lines. The results suggest that melon residues extracts display a high antioxidant activity in in vitro assays and have effective biological activity against the growth of human tumor cells.

  8. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells

    PubMed Central

    Rolim, P.M.; Fidelis, G.P.; Padilha, C.E.A.; Santos, E.S.; Rocha, H.A.O.; Macedo, G.R.

    2018-01-01

    Melon (Cucumis melo L.) has high economic value and in recent years, its production has increased; however, part of the fruit is wasted. Usually, inedible parts such as peel and seeds are discarded during processing and consumption. Extracts of melon residues were prepared and their phenolic compounds, antioxidants and antiproliferative activities were evaluated. Total phenolic compounds were found in hydroethanolic, hydromethanolic, and aqueous extracts, especially for melon peel (1.016 mg gallic acid equivalent/100 g). Flavonoids total content found for melon peel aqueous extract was 262 µg of catechin equivalent (CA)/100 g. In all extracts of melon peel significant amounts of gallic acid, catechin, and eugenol were found. For total antioxidant capacity, reported as ascorbic acid equivalent, the hydroethanolic and hydromethanolic extracts in peels and hydromethanolic in seeds were 89, 74, and 83 mg/g, respectively. Different extracts of melon showed iron and copper ions chelating activity at different concentrations, especially melon peel aqueous extract, reaching values of 61% for iron and 84% for copper. The hydroethanolic extract of melon peel presented a significant ability for hydroxyl radicals scavenging (68%). To assess the antiproliferative potential in human cancer cell lines, such as kidney carcinoma, colorectal carcinoma, cervical adenocarcinoma and cervical carcinoma, MTT assay was performed. The proliferation was inhibited by 20–85% at extracts concentrations of 0.1–1.0 mg/mL in all cancer cell lines. The results suggest that melon residues extracts display a high antioxidant activity in in vitro assays and have effective biological activity against the growth of human tumor cells. PMID:29513789

  9. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil.

    PubMed

    Ogo, Yuko; Itai, Reiko N; Kobayashi, Takanori; Aung, May Sann; Nakanishi, Hiromi; Nishizawa, Naoko K

    2011-04-01

    Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant's lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.

  10. Seed abortion in wind-dispersed pods of Dalbergia sissoo: maternal regulation or sibling rivalry?

    PubMed

    Ganeshaiah, K N; Shaanker, R Uma

    1988-10-01

    Dalbergia sissoo, a wind-dispersed tropical tree, shows a positively skewed distribution of seeds per pod. This is attributed to the enhanced dispersal advantage of few-seeded pods due to their reduced wing loading (ratio of weight to pod surface area) and low settling velocity. The proximate mechanisms causing the positively skewed distribution were investigated. The distribution could not be attributed to the distribution pattern of ovule number per ovary, pollen grain limitation, lack of ovule fertilization, or post-fertilization elimination of many-seeded pods. Rather, it was caused by the post-fertilization abortion of seeds within a pod 2 weeks after fertilization. This intra-pod seed abortion (IPSA) is due to a dominance hierarchy of fertilized ovules from the distal (near stigma) to the basal end, generated by the temporal differences in fertilization. The dominant developing seeds at the distal end cause the abortion of others through the production and diffusion of an aborting agent. When the dominance hierarchy of the siblings is not intense, pods are formed with more than one seed. We argue that the positively skewed distribution of seeds per pod is not due to maternal regulation but is a result of sibling rivalry. We propose that this sibling rivalry is generated by genetic differences in pollen grain fitness and disucss the results in the context of parent-offspring conflict.

  11. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment.

    PubMed

    Quinto, Christopher A; Mohindra, Priya; Tong, Sheng; Bao, Gang

    2015-08-07

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy.

  12. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    PubMed

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  13. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  14. Systems analysis of iron metabolism: the network of iron pools and fluxes

    PubMed Central

    2010-01-01

    Background Every cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The very versatility of ionic iron makes it a toxic entity which can catalyze the production of radicals that damage vital membranous and macromolecular assemblies in the cell. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Intracellular regulation in different cell types is intertwined with a global hormonal signalling structure. Iron deficiency as well as excess of iron are frequent and serious human disorders. They can affect every cell, but also the organism as a whole. Results Here, we present a kinematic model of the dynamic system of iron pools and fluxes. It is based on ferrokinetic data and chemical measurements in C57BL6 wild-type mice maintained on iron-deficient, iron-adequate, or iron-loaded diet. The tracer iron levels in major tissues and organs (16 compartment) were followed for 28 days. The evaluation resulted in a whole-body model of fractional clearance rates. The analysis permits calculation of absolute flux rates in the steady-state, of iron distribution into different organs, of tracer-accessible pool sizes and of residence times of iron in the different compartments in response to three states of iron-repletion induced by the dietary regime. Conclusions This mathematical model presents a comprehensive physiological picture of mice under three different diets with varying iron contents. The quantitative results reflect systemic properties of iron metabolism: dynamic closedness, hierarchy of time scales, switch-over response and dynamics of iron storage in parenchymal organs. Therefore, we could assess which parameters will change under dietary perturbations and study in quantitative terms when those changes take place. PMID:20704761

  15. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition.

    PubMed

    Agnoli, C; Baroni, L; Bertini, I; Ciappellano, S; Fabbri, A; Papa, M; Pellegrini, N; Sbarbati, R; Scarino, M L; Siani, V; Sieri, S

    2017-12-01

    Interest in vegetarian diets is growing in Italy and elsewhere, as government agencies and health/nutrition organizations are emphasizing that regular consumption of plant foods may provide health benefits and help prevent certain diseases. We conducted a Pubmed search, up to September, 2015, for studies on key nutrients (proteins, vitamin B12, iron, zinc, calcium, vitamin D, and n-3 fatty acids) in vegetarian diets. From 295 eligible publications the following emerged: Vegetarians should be encouraged to supplement their diets with a reliable source of vitamin B12 (vitamin-fortified foods or supplements). Since the plant protein digestibility is lower than that of animal proteins it may be appropriate for vegetarians to consume more proteins than recommended for the general population. Vegetarians should also be encouraged to habitually consume good sources of calcium, iron and zinc - particularly vegetables that are low in oxalate and phytate (e.g. Brassicaceae), nuts and seeds, and calcium-rich mineral water. Calcium, iron, and zinc bioavailability can be improved by soaking, germination, and sour-dough leavening that lower the phytate content of pulses and cereals. Vegetarians can ensure good n-3 fatty acid status by habitually consuming good sources of a-linolenic acid (walnuts, flaxseeds, chia seeds, and their oils) and limiting linoleic acid intake (corn and sunflower oils). Well-planned vegetarian diets that include a wide variety of plant foods, and a reliable source of vitamin B12, provide adequate nutrient intake. Government agencies and health/nutrition organizations should provide more educational resources to help Italians consume nutritionally adequate vegetarian diets. Copyright © 2017. Published by Elsevier B.V.

  16. Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: Effect of modification procedure

    NASA Astrophysics Data System (ADS)

    Tsoncheva, Tanya; Genova, Izabela; Paneva, Daniela; Dimitrov, Momtchil; Tsyntsarski, Boyko; Velinov, Nicolay; Ivanova, Radostina; Issa, Gloria; Kovacheva, Daniela; Budinova, Temenujka; Mitov, Ivan; Petrov, Narzislav

    2015-10-01

    Ordered mesoporous silica of SBA-15 type and activated carbon, prepared from waste biomass (peach stones), are used as host matrix of nanosized iron and cobalt particles. The effect of preparation procedure on the state of loaded nanoparticles is in the focus of investigation. The obtained materials are characterized by Boehm method, low temperature physisorption of nitrogen, XRD, UV-Vis, FTIR, Mossbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic behaviour of the samples is tested in methanol decomposition. The dispersion, oxidative state and catalytic behaviour of loaded cobalt and iron nanoparticles are successfully tuned both by the nature of porous support and the metal precursor used during the samples preparation. Facile effect of active phase deposition from aqueous solution of nitrate precursors is assumed for activated carbon support. For the silica based materials the catalytic activity could be significantly improved when cobalt acetylacetonate is used during the modification. The complex effect of pore topology and surface functionality of different supports on the active phase formation is discussed.

  17. Strain rate effects on fracture behavior of Austempered Ductile Irons

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  18. Tests on a 30 kVA class superconducting transformer

    NASA Astrophysics Data System (ADS)

    Yoneda, E. S.; Tashiro, I.; Morohoshi, M.; Ito, D.

    To demonstrate the applicability of superconductors to electric power machines, the present authors made and tested a 30 kVA class single-phase superconducting transformer. The aim of the study was to determine the superconducting transformer properties. Therefore the superconducting transformer has a simple structure, i.e. the primary to secondary voltage ratio is 1:1 and the iron core is immersed in liquid helium. The core loss, evaluated from no-load tests, was 13 W and leakage impedance, obtained by short circuit tests, was 0.02 Ω in accordance with a calculated value. The superconducting transformer showed the limitation effect of fault currents. The authors succeeded in continuous operation with a 0.5 Ω load resistance. These results suggest that efficiency can be 98.5%, if the iron core is located outside the cryostat and if high Tc superconductors are used as current leads. Superconducting windings exhibit training quenches in general. The authors also developed a superconducting transformer quench detector with a third winding around the iron core. The quench detector revealed that the secondary winding quenches before the primary winding.

  19. Protein cage assisted metal-protein nanocomposite synthesis: Optimization of loading conditions

    NASA Astrophysics Data System (ADS)

    Sana, Barindra; Calista, Marcia; Lim, Sierin

    2012-11-01

    Ferritin is an iron-storage protein in most living systems with a cage-like structure. It has inherent property to form metallic nanocore within its cavity. The metallic core formed within the Archaeoglobus fulgidus ferritin cavity is stabilized by modulating the protein structure by site directed mutagenesis. Encapsulation protocol of various metals within the engineered ferritin cage (AfFtn-AA) is optimized. Dense metallic cores are visualized using electron microscopy and the bound metal was quantified by ICP-spectrometry. The AfFtn-AA is loaded with up to about 350 cobalt, 2000 chromium, and as high as 7000 iron atoms, separately. The metal-protein nanocomposites formed by encapsulation of cobalt, chromium, and iron are studied. Magnetic resonance imaging of the agarose embedded nanocomposites shows brightening of T1-weighted images and signal loss of T2-weighted images with increasing concentration of the nanocomposites. Shortening of magnetic relaxation times in the presence of the nanocomposites confirm their ability to enhance magnetic relaxation rate and suggests that the nanocomposites have potential application as MRI contrast agent.

  20. Mineral metabolism in a black-necked swan (Cygnus melanocoryphus) population from southern Chile.

    PubMed

    Norambuena, M Cecilia; Bozinovic, Francisco

    2009-12-01

    A population of black-necked swans (Cygnus melanocoryphus) residing in a perturbed habitat revealed a low body mass, malnutrition, and hyperferremia during 2005; the swans main dietary item, Egeria densa, was lost during an environmental crisis which occurred in 2004. The objective of this study was to monitor the diet and nutritional status of this population during 2006, as well as to verify how the consumption of sediment, as part of their new diet, may explain the mineral disorders observed in these birds. Results revealed that swans increased their body mass and had an adequate protein, lipid, and iron metabolism, in spite of the fact that they maintained the same new diet (sediment and roots) during 2005-2006. In addition, transferrine saturation was indicative of the high endogenous iron load in birds which agrees with the high iron load of their environment. On the other hand, the consumption of the Cayumapu River sediment in the diet (25%) did not affect the body mass nor the nutritional and hepatic function in domestic geese over a 45-day period.

Top